

Microsoft® Access® 2010
VBA Programming
Inside Out

Andrew Couch

Copyright © 2011 by Andrew Couch

All rights reserved. No part of the contents of this book may be reproduced or transmitted in
any form or by any means without the written permission of the publisher.

ISBN: 978-0-7356-5987-2

2 3 4 5 6 7 8 9 10 LSI 7 6 5 4 3 2

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need
support related to this book, email Microsoft Press Book Support at mspinput@microsoft.com.
Please tell us what you think of this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/
IntellectualProperty/Trademarks/EN-US.aspx are trademarks of the Microsoft group of
companies. All other marks are property of their respective owners.

The example companies, organizations, products, domain names, email addresses, logos,
people, places, and events depicted herein are fictitious. No association with any real company,
organization, product, domain name, email address, logo, person, place, or event is intended
or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book
is provided without any express, statutory, or implied warranties. Neither the authors,
Microsoft Corporation, nor its resellers, or distributors will be held liable for any
damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions and Developmental Editor: Kenyon Brown
Production Editor: Teresa Elsey
Editorial Production: Octal Publishing, Inc.
Technical Reviewer: Alan Cossey
Indexer: Denise Getz
Cover Design: Twist Creative • Seattle
Cover Composition: Karen Montgomery
Illustrator: Robert Romano

[2012-10-12]

pour Pamela, ma raison d’être

	 	 v

Contents at a Glance

Part 1: VBA Environment
and Language
Chapter	1
Using	the	VBA	Editor	and	Debugging	Code	 . . . 3

Chapter	2
Understanding	the	VBA	Language	Structure	39

Chapter	3
Understanding	the	VBA	Language	Features	 . . 89

Part 2: Access Object Model
and Data Access Objects (DAO)
Chapter	4
Applying	the	Access	Object	Model 127

Chapter	5
Understanding	the	Data	Access	
Object	Model	 . 161

Part 3: Working with Forms
and Reports
Chapter	6
Using	Forms	and	Events	 231

Chapter	7
Using	Form	Controls	and	Events	 273

Chapter	8
Creating	Reports	and	Events	 323

Part 4: Advanced
Programming with VBA Classes
Chapter	9
Adding	Functionality	with	Classes 	 339

Chapter	10
Using	Classes	and	Events 	 359

Chapter	11
Using	Classes	and	Forms	 381

Part 5: External Data and
Office Integration
Chapter	12
Linking	Access	Tables 	 . 395

Chapter	13
Integrating	Microsoft	Office	 437

Part 6: SQL Server and SQL Azure
Chapter	14
Using	SQL	Server	 . 483

Chapter	15
Upsizing	Access	to	SQL	Server	 543

Chapter	16
Using	SQL	Azure	 . 589

Part 7: Application Design
Chapter	17
Building	Applications 	 . 631

Chapter	18
Using	ADO	and	ADOX	 . 659

	 	 vii

Table of Contents

What	do	you	think	of	this	book?	We	want	to	hear	from	you!	
Microsoft	is	interested	in	hearing	your	feedback	so	we	can	continually	improve	our	books	and	learning	
resources	for	you .	To	participate	in	a	brief	online	survey,	please	visit:	

microsoft .com/learning/booksurvey

Introduction . xix

Part 1: VBA Environment and Language
Chapter	1:	 Using	the	VBA	Editor	and	Debugging	Code	 . 3

Debugging Code on a Form .4
Entering the VBA Editor .5
The Application and VBA Code Windows. .6

Creating Modules and Procedures .8
Creating a Module . 10
Creating a Procedure . 11
Executing a Subroutine . 13
Executing a Function . 15
Viewing and Searching Code . 16
Split Window . 17
Searching Code . 19

Debugging Code in a Module . 20
Debug Commands . 23

Breakpointing Code. 23
Set Next Command. 25
Breakpoint Step and Run Commands . 26
Displaying Variables in the Locals Window . 29
Tracing Procedures with the Call Stack . 30
Watching Variables and Expressions . 31
Adding Conditional Watch Expressions . 32
Working with the Immediate Window . 33
Changing Code On-the-Fly . 34

Using the Object Browser and Help System . 35
Configuring the Help System . 35
Working with the Object Browser . 36

Summary . 37

viii	 Table	of	Contents

Chapter	2:	 Understanding	the	VBA	Language	Structure . 39
VBA Language Settings . 40

Comments . 40
Setting Option Explicit . 41
Selecting Option Compare. 43
Compiling Code. 44
Conditional Compilation . 45
References . 46

Working with Constants and Variables . 49
Improving Code Quality with Constants. 49
The Enum Keyword. 51
Variables and Database Field Types. 52
Handling NULL Values, IsNull and Nz . 53
Using Static Variables . 55
Using Global Variables . 56
Variable Scope and Lifetime . 57
Working with Arrays . 59
Type Structures . 65

Functions and Procedures . 66
Managing Code with Subroutines . 67
Defining ByRef and ByValue Parameters . 70
Private and Public Procedures . 72
Optional and Named Parameters . 73
The ParamArray Qualifier . 75
Organizing Code in Modules and Class Modules . 76

Control Statements and Program Flow . 77
IF… Then… Else… Statements . 77
IIF Statements . 78
Choose Statements . 79
Select Case Statements. 80
TypeOf Statements . 80
For and For Each Loops . 81
Do While and Do Until Loops . 82
Exit Statements . 84
The With Statement . 85
GoTo and GoSub . 86
Line Continuation . 86
Splitting SQL Over Multiple Lines . 86

Summary . 87

Chapter	3:	 Understanding	the	VBA	Language	Features	 . 89
Using Built-In Functions . 90

Date and Time Functions. 90
String Functions. 92

Domain Functions . 95
Constructing Where Clauses . 97

SQL and Embedded Quotes. 98

	 Table	of	Contents	 ix

Using VBA Functions in Queries . 101
The Eval Function . 102
Shell and Sendkeys . 102
The DoEvents Command . 103

Objects and Collections . 103
Object Variables . 105
Is Nothing, IsEmpty, IsObject . 106

Creating Maintainable Code . 108
Naming Access Document Objects . 108
Naming Database Fields . 109
Naming Unbound Controls . 110
Naming Variables in Code. 110
Indenting Code . 113
Other Variable Naming Conventions. 113

VBA and Macros. 114
Access Basic . 114
Converting Macros to VBA . 115

Error Handling . 115
On Error Resume Next . 116
Err Object . 117
On Error GoTo. 118
Developing a General Purpose Error Handler . 118
OpenArgs and Dialog Forms . 121
Err.Raise. 122

Summary . 123

Part 2: Access Object Model and Data Access Objects (DAO)
Chapter	4:	 Applying	the	Access	Object	Model . 127

The Application Object Methods and Properties . 128
The Run Method . 128
The RunCommand Method. 129
Simplifying Filtering by Using BuildCriteria . 130
The ColumnHistory and Append Only Memo Fields . 130
Examining TempVars. 132
Invoking the Expression Builder . 133

The CurrentProject and CurrentData Objects . 134
Retrieving Version Information. 135
Changing Form Datasheet View Properties . 136
Object Dependencies . 137

The DoCmd Object . 138
Controlling the Environment. 138
Controlling Size and Position . 139
Application Navigation . 140
Data Exchange. 142

Manipulating the Forms and Reports Collections . 143
Using the Expression Builder. 144

x	 Table	of	Contents

Referencing Controls on a Subform. 145
Creating Access Objects in Code . 149

Using the Screen Object . 150
Changing the Mouse Pointer Shape . 150
Working with the ActiveForm and ActiveControl . 151

Enhancing the User Interface. 152
Setting and Getting Options. 152
Locking Down Access . 154
Monitoring Progress with SysCmd . 155
Custom Progress Bars. 156
Selecting Files with the Office FileDialog . 157

Summary . 160

Chapter	5:	 Understanding	the	Data	Access	Object	Model . 161
The DAO Model . 162

DAO, ADO, and References . 163
Working with Databases. 164

The DBEngine Object . 165
The Workspace Object . 165
Transactions . 166
The Errors Collection . 171
The Database Object . 173
CurrentDB, DBEngine, and CodeDB . 175
The TableDefs Collection and Indexes. 179
Managing Datasheet Properties . 184
Relationships . 186

Manipulating Data with Recordsets . 188
Searching . 188
Bookmarks . 191
Field Syntax . 191
Filter and Sort Properties . 193
Adding, Editing, and Updating Records . 193
Multiple-Values Lookup Fields . 194
Attachment Fields . 197
The OLE Object Data Type. 206
Calculated Fields . 210
Cloning and Copying Recordsets . 212
Reading Records into an Array . 215

Working with Queries in Code . 215
Temporary QueryDefs . 216
QueryDefs and Recordsets. 218
Creating QueryDefs. 218
QueryDef Parameters . 220

Investigating and Documenting Objects. 222
Containers and Documents. 222
Object Properties . 224

Sample Applications . 224

	 Table	of	Contents	 xi

Documenting a Database by Using the DAO. 224
Finding Objects in a Database by Using the DAO. 225

Summary . 227

Part 3: Working with Forms and Reports
Chapter	6:	 Using	Forms	and	Events	 . 231

Displaying Records . 233
Bound and Unbound Forms . 233
Modal and Pop-Up Forms. 234
Open and Load Events . 235

Filtering by Using Controls. 236
Filtering by Using the Filter Property . 243
Filtering by Using Another Form . 245
The ApplyFilter Event . 247
Unload and Close Events . 248
Working with the RecordsetClone. 248
Refresh, Repaint, Recalc, and Requery Commands . 250
Calling Procedures Across Forms . 251

Interacting with Records on a Form . 253
The Current Event . 253
Deactivate and Activate Events. 255
Setting the Timer Interval Property of the Timer Event. 255
The Mouse Events . 260

Editing and Undo on a Record . 262
BeforeUpdate and AfterUpdate Events . 262
Locking and Unlocking Controls . 264
BeforeInsert and AfterInsert Events . 265
The Delete Event . 267
KeyPreview and Key Events . 268
The Error Event . 269
Saving Records . 270

Summary . 271

Chapter	7:	 Using	Form	Controls	and	Events . 273
Control Events . 274

The Click and DblClick Events . 275
The BeforeUpdate Event. 276
The AfterUpdate Event . 276
The GotFocus and LostFocus Events . 277

Combo Boxes . 278
Synchronizing Data in Controls . 278
Combo Box RowSource Type. 280
Combo Box Columns . 282
Value List Editing. 284
Table/Query Editing . 285

xii	 Table	of	Contents

List Boxes . 286
Multiple Selections . 286
Multiple Selections with Two List Boxes . 290
Using the List Box as a Subform . 292

The TreeView Control . 295
Adding the TreeView Control . 296
Populating the Tree . 298
Adding Graphics . 301
Expanding and Collapsing Nodes . 303
Drag-and-Drop . 303
Deleting a Node with Recursion. 307
Adding Nodes . 309

The Tab Control . 311
Refreshing Between Tabs and Controls. 311
The OnChange Event . 314
Dynamically Loading Tabs . 314

Summary . 321

Chapter	8:	 Creating	Reports	and	Events	 . 323
Report Event Sequences . 324

Creating Drill-Down Reports and Current Event . 326
Creating a Boxed Grid with the Print Event . 327
Layout Control and the Format Event . 330

Report Layout Control . 331
Driving Reports from a Form . 331
Reducing Joins with a Combo Box. 333
Programming a Report Grouping . 333
Packing Address Information with a ParamArray . 334
Control of Printers. 335

Part 4: Advanced Programming with VBA Classes
Chapter	9:	 Adding	Functionality	with	Classes . 339

Improving the Dynamic Tab Control . 340
Creating a Class Module . 341
The Let and Get Object Properties. 342
Creating an Object with New and Set . 343
Collection of Objects . 345
Creating Collection Classes . 346
Using Classes with the Dynamic Tab . 351
Simplifying the Application with Classes . 352

Creating a Hierarchy of Classes . 354
Creating a Base Class . 354
Derived Classes . 355

Summary . 357

	 Table	of	Contents	 xiii

Chapter	10:	 Using	Classes	and	Events	 . 359
WithEvents Processing. 360

Handling Form Events . 360
Handling Control Events . 362
Asynchronous Event Processing and RaiseEvent . 363

Abstract and Implementation Classes . 370
Abstract Classes. 370
Implementation Classes . 372
Implementing an Abstract Class. 373
Hybrid Abstract and Non-Abstract Classes . 376

Friend Methods . 378
Summary . 379

Chapter	11:	 Using	Classes	and	Forms . 381
Opening Multiple Instances of a Form. 381
Classes and Binding Forms. 383

Binding a Form to a Data Access Object Recordset. 383
Binding a Form to an Active Data Object Recordset . 384

ActiveX Controls and Events . 386
Adding a Slider Control . 386
The UpDown or Spin Control . 388

Summary . 391

Part 5: External Data and Office Integration
Chapter	12:	 Linking	Access	Tables . 395

Linking Access to Access. 396
Using the Database Splitter. 397
Linked Table Manager . 398
Automating Relinking . 398

Linking to Excel and Text Files . 406
Linking to Excel . 406
Linking to Text Files . 407

Linking to SQL Server . 407
Setting up the Sample Database . 407
Creating a DSN . 410
Connecting to SQL Server Tables . 416
Refreshing SQL Server Linked Tables. 417
Connecting to a View in SQL Server . 418
Refreshing SQL Server Views . 419

Linking to SQL Azure. 420
SQL Azure DSN . 420
Connecting to SQL Azure . 424

Linking to SharePoint Lists . 426
Relinking SharePoint Lists . 428

Linking Access Web Databases . 430
Relinking to an Access Web Database. 432

Summary . 435

xiv	 Table	of	Contents

Chapter	13:	 Integrating	Microsoft	Office	 . 437
Working with Objects and Object Models . 438

Early vs. Late Binding and CreateObject vs. New. 438
The GetObject Keyword . 440
Opening Existing Files . 442

Connecting Access to Word. 443
Generating Documents from a Placeholder Document. 444
Opening a Placeholder Document. 446
Merging Data with Bookmarks. 447

Connecting Access to Excel . 451
Writing Data to a Spreadsheet . 452
Reading Data from a Spreadsheet . 459
Reporting with Excel Linked to Access . 460
Using MS Query and Data Sources . 468

Connecting Access to Outlook . 471
Extracting Information from Outlook . 472
Creating Objects in Outlook . 475
Writing to Access from Outlook. 477

Summary . 480

Part 6: SQL Server and SQL Azure
Chapter	14:	 Using	SQL	Server	 . 483

Introducing SQL Server. 484
Programs vs. Services . 484
Client-Server Performance . 485
SQL Server Versions . 486
SQL Express and SQL Server Products. 487
Database File Locations . 489
Log Files and Recovery Models . 490
Instances . 491
Windows Services . 492
System Databases . 493
System Tables. 494

Getting Started with the SQL Server Management Studio. 495
Running the Demo Database Script . 495
Creating a New Database . 496

Creating Tables and Relationships . 496
Database Diagrams. 496
Tables, Relationships, and Script Files . 499
Changing the Design of a Table . 500
Using the Identity Property . 504

Working with Views. 505
Graphical Interface . 505
Views and Script Files . 506
CROSSTAB Queries . 509

	 Table	of	Contents	 xv

Working with Stored Procedures . 511
Introducing T-SQL . 517

Defining Variables . 517
Using CAST and CONVERT . 518
Built-In Functions . 519
System Variables . 520
Controlling Program Flow . 521
Error Handling . 523

Working with Triggers. 526
Working with Transactions . 530

Transaction Isolation Levels. 532
Nesting Transactions . 533

User-Defined Functions . 534
Getting Started with SQL Server Security . 536

Surface Area Configuration. 536
SQL Server Authentication . 538
Windows Authentication . 541

Summary . 542

Chapter	15:	 Upsizing	Access	to	SQL	Server . 543
Planning for Upsizing . 543

Text Data Types and UNICODE. 544
Date and Time Data . 544
Boolean Data . 546
Integer Numbers . 547
Real Numbers, Decimals, and Floating-Point Numbers. 547
Hyperlinks. 547
IMAGE, VARBINARY(Max), and OLE Data . 547
Memo Data . 547
Currency . 548
Attachments and Multi-Value Data . 548
Required Fields . 549
Cycles and Multiple Cascade Paths . 549
Mismatched Fields in Relationships . 550
Replicated Databases and Random Autonumbers . 551
Unique Index and Ignore Nulls. 553
Timestamps and Row Versioning . 554
Schemas and Synonyms. 556

The Upsizing Wizard and the SQL Server Migration Assistant . 558
The Upsizing Wizard. 558
Upsizing to Use an Access Data Project . 561
SSMA . 564

Developing with Access and SQL Server . 574
The dbSeeChanges Constant. 574
Pass-Through Queries . 575
Stored Procedures and Temporary Tables . 578

xvi	 Table	of	Contents

Handling Complex Queries . 579
Performance and Execution Plans . 582
SQL Server Profiler . 586

Summary . 588

Chapter	16:	 Using	SQL	Azure . 589
Introducing SQL Azure . 590

Creating Databases. 590
Firewall Settings . 591
Using Management Studio . 592
Developing with the Browser Interface. 595

Migrating SQL Databases . 596
Creating a Set of Tables . 597
Transferring Data with the SQL Server Import and Export Wizard 599
Backing up and Copying a Database. 603

The Data Sync Feature . 604
The Data Sync Agent . 605
Sync Groups and Sync Logs. 610
Changing Data and Database Structure . 612
Conflict Resolution in Data . 613
Changes to Table Structure . 613

Planning and Managing Security . 615
Building Multi-Tenanted Applications . 617

User Tables and Views . 617
Application Tables and Views . 619
Managing Security . 623

SQL Server Migration Assistant and Access to Azure . 624
Summary . 628

Part 7: Application Design
Chapter	17:	 Building	Applications	 . 631

Developing Applications. 631
Application Navigation . 632
Ribbon Design . 639
32-Bit and 64-Bit Environments . 649
Working with the Windows Registry . 650
Using the Windows API . 651

Completing an Application . 653
Splash Screens . 653
Progress Bars . 653
Error Handling . 654
Locking Down an Application. 654

Deploying Applications. 655
Protecting Your Design with ACCDE Files. 655
Runtime Deployment . 655
Single and Multiple Application Files . 655

	 Table	of	Contents	 xvii

DSNs and Relinking Applications . 656
Depending on References . 656
Updating Applications . 656

Summary . 657

Chapter	18:	 Using	ADO	and	ADOX . 659
ActiveX Data Objects. 660

Cursors . 661
Asynchronous Operations . 662
Forms and ADO Recordsets . 662

Working with SQL Server . 663
Connection Strings . 663
Connecting to SQL Server . 664
Command Object . 666
Stored Procedures. 666
Multiple Active Result Sets and Performance . 668
MARS and Connections . 669

ADOX . 672
Summary . 673

Index	 . 675

xix

Introduction
Microsoft Visual Basic for Applications (VBA) is an exceptional programming language and
environment. The language has grown out of a need to have a programming language that
would allow more business-focused individuals to write programs, but equally support the
programming features that developers look for in a product. The environment is as impor-
tant as the language because of its unique features, allowing code to be quickly modified
while being debugged.

The Access Basic language in early product versions evolved into the VBA language, which
provided a cross-product language for the Microsoft Office products. This all coincided
with the revolution of an event-driven approach to programming, which was very impor-
tant, because the emphasis on being a programmer shifted from writing thousands of
lines of code to writing snippets of code in response to events. This also led to a change
of emphasis from writing large libraries of code to understanding how to manipulate the
object models in the environment—a focus which has progressed with .NET, albeit using
namespaces instead of object models.

Even with the introduction of object-oriented programming, VBA has kept pace with the
expectations of modern programming. The two products that have shaped VBA the most
are Microsoft Excel and Microsoft Access; Excel introduced VBA and originally gained VBA
programming features in advance of these becoming available within Access.

A significant strength of VBA is that it is universal to the Microsoft Office suite of programs;
all the techniques we describe in this book can be applied to varying degrees within the
other Office products. A major turning point for these products was the ability through
OLE Automation to be able to drive one product from another, and to cut and paste code
between the different environments with a minimum amount of change to the code. This
was a revolutionary feature introduced with the programming language of Access Basic,
conforming to the new VBA standard established in Excel. VBA suddenly provided the long-
awaited platform for the simple integration of the Office products and building solutions
that could easily exploit the strengths of each component product in the Office suite. The
combination of Access and VBA offers an extremely productive environment within which
to construct applications.

VBA has often been criticized for its simplicity as a language when compared to languages
such as C++ and C#. Quite to the contrary, the big advantage of VBA is that this simplicity
leads to more easily maintainable and reliable code, particularly when developed by people
with a more business-focused orientation to programming. Looking toward the future, the
emphasis in modern programming has moved from the language syntax to the intricacies
of understanding the objects that the language manipulates, so the emphasis on the spe-
cific syntax of languages is starting to blur.

xx	 Introduction

In the .NET world, the conflict between using VB.NET, which originates from VBA, and C#
continues, because even though the objects being manipulated are now common, there
are subtle differences between the languages, which means that developers moving from
VBA to C# can often feel that they are being led out of their comfort zone, especially when
they need to continue to use VBA for other applications.

Access has often been criticized for creating poor performance applications where a proto-
type turns into a business critical system, propagating a support nightmare for information
technology departments, and leading to applications that eat up network bandwidth. It has
also been stated that the product is never used for mission-critical applications. The truth
is that both Access and Excel are pivotal to many organizations, but the people answering
that mission-critical question are often not willing to admit to this because it is perceived as
vulnerability. The problem with using Access and Excel is that Rapid Application Develop-
ment (RAD) can often come to mean final application without recourse to a more struc-
tured oversight of what is being developed, and as data volumes and user communities
grow, so too the inevitable flaws in not having designed a scalable solution are exposed.

This book details how Access and VBA are not a problem, although their success is often
their downfall in the hands of those lacking some direction on how to effectively develop
applications. The big problem with Access is that the underlying database engine is
extremely efficient and can compensate for a design that normally would not scale. So if
you convert your Access database data to be located in Microsoft SQL Server, Microsoft
SQL Azure, or Microsoft SharePoint, you might find that the existing application design
techniques for searching and displaying data need to be revised. Our advice is to take into
account the mantra of Client-Server design, which is to minimize the amount of data being
transferred in any operation.

In this book, we would like to make our contribution toward creating a better informed
community of developers, and show how to better develop applications with VBA.

Who	This	Book	Is	For
This book is aimed at two types of reader. First, we want to enable the reader who has
worked with Access and developed applications to move to the next level of development.
We want to help that reader to more fully develop applications with a deeper understand-
ing of what it means to program with VBA.

Our second target audience is the more experienced VBA programmer, who needs the
assistance of a good instructional text to move up a gear and explore the more advanced
aspects of VBA programming. As well, we have devoted a significant number of our pages
to supporting you in developing with both SQL Server and cloud computing.

	 Introduction	 xxi

Assumptions	About	You
We make a basic assumption in this book that you are experienced either in working with
Access or that you have a strong programming background, which means that you can
learn VBA programming in Access very quickly. We will spend no time explaining how
to create a table, form, or report, and if you cannot do this, you need to first learn these
actions in more detail. We recommend our companion text Microsoft® Access® 2010 Inside
Out by Jeff Conrad and John Viescas.

If you have some VBA Programming experience, you can skim over Chapters 1–3. If your
experience level is not such that you are comfortable skipping chapters, Chapters 1–3 will,
we hope, give you a key appreciation of the power of the VBA development environment.

How	This	Book	Is	Organized
This book allows you to either start at the beginning and work through each chapter or to
dip into specific chapters or topics to investigate a particular feature of VBA. To enable dip-
ping into the book, each part is designed to be self-contained.

Part 1, “VBA Environment and Language”

In Chapters 1, 2, and 3, we provide a foundation that demonstrates how to program with
VBA. We start by showing you how to debug, write, and modify code (gaining confidence
with the VBA environment is the first step to efficiently developing applications within it).
Then we move on to an in-depth exposition of the VBA language, which can act both as a
reference for coding syntax and a solid introduction to the language.

Part 2, “Access Object Model and Data Access Objects (DAO)”

Chapters 4 and 5 dig deep into programming with the objects that make up Access, includ-
ing the DAO programming language, which is the bread and butter programming tech-
nique for any Access VBA developer.

Part 3, “Working with Forms and Reports”

Chapters 6, 7, and 8 illustrate how to apply VBA when working with forms, controls, and
reports. This develops your core techniques in understanding how to apply VBA for build-
ing the key interface components in applications.

Part 4, “Advanced Programming with VBA Classes”

Chapters 9, 10, and 11 are for some developers more esoteric than the rest of this book, but
they illustrate how you can exploit VBA to embrace the most advanced concepts of modern

xxii	 Introduction

computing by using object-oriented programming. There are a lot of cunning tricks and
techniques in these chapters that are worth reading about, and many of the ideas in these
chapters will take you forward in also handling development with .NET.

Part 5, “External Data and Office Integration”

In Chapters 12 and 13, we address the issue of how to link Access to external data and write
VBA to communicate both with other Office applications and external data sources such as
SQL Server and SharePoint.

Part 6, “SQL Server and SQL Azure”

Chapters 14, 15, and 16 provide a comprehensive description of how to extend the reach
of Access applications by moving the back-end data into SQL Server, and then onto SQL
Azure. Chapter 14 is dedicated to equipping developers with a solid understanding of how
to develop code with SQL Server, during which we explain both how to use the SQL Server
Management Studio and write programs using Transact SQL (T-SQL).

Chapter 15 moves on to look at converting Access Databases to SQL Server by using both
the Upsizing Wizard and the SQL Server Migration Assistant (SSMA). Chapter 16 discusses
how to move your databases into the cloud either by using the SQL Server Import and
Export Wizard feature in the SQL Server Management Studio from a local SQL Server, or
SSMA from an Access Database. We discuss how you can exploit the unique features of
Office in directly constructing links to Azure, building multi-tenanted solutions and using
the soon to be released new Data Sync features in SQL Azure.

Part 7, “Application Design”

The last part of this book, Chapters 17 and 18, shows you a number of ideas for helping
you to create applications, including a discussion of how to design the user interface, build-
ing ribbons, utilizing the Windows API, and working with ADO and ADOX. In Chapter 17,
we will step through the process of building applications. This chapter ties together all the
lessons you learn throughout the book, making references back to other sections.

	 Features	and	Conventions	Used	in	This	Book	 xxiii

Features and Conventions Used in This Book
This book uses special text and design conventions to make it easier for you to find the
information you need.

Text	Conventions
Convention Meaning

Boldface type This indicates user input that you are instructed to type; for example,
“Click the Save As command, name the file NewFile_01, and then
click OK.”

Ctrl+F Keystroke combinations are presented as Ctrl+G, which means to
hold down the Ctrl key and press the letter G on the keyboard, at the
same time.

Object names When we need to draw your attention to a specific technical term,
program elements, or an object in the sample database, it will be
presented in italic; for example, “Open the form frmSample and right-
click the ListBox control.”

Design	Conventions

INSIDE OUT 	This	statement	illustrates	an	example	of	an	“Inside	Out”	
heading

These	are	the	book’s	signature	tips .	In	these	tips,	you	get	the	straight	scoop	on	what’s	
going	on	with	the	software—inside	information	about	why	a	feature	works	the	way	it	
does .	You’ll	also	find	handy	workarounds	to	deal	with	software	problems .	

Note
Notes	offer	additional	information	related	to	the	task	being	discussed .

xxiv	 About	the	Companion	Content

About the Companion Content
You’ll see references to the sample files and bonus content throughout the book. A com-
plete list of the key database files follows (we have not listed all the smaller support files for
each chapter).

We have also included in the bonus content (which is located within the file sets for Chap-
ters 5, 7, and 18) additional application files that contain more code examples and provide
useful utilities to add to your program libraries.

To access and download the companion content, visit: http://www.microsoftpressstore.com/
title/9780735659872.

Chapter	or	topic Content
Chapter 1 ●	 VBAEnvironment.accdb
Chapter 2 ●	 VBAExamples.accdb
Chapter 3 ●	 VBAFeaturesExamples.accdb
Chapter 4 ●	 AccessObjectModel.accdb
Chapter 5 ●	 DAOExamples.accdb

●	 CountryLibrary.accdb

●	 Find_IT.accdb

●	 DocDAO.accdb
Chapter 6 ●	 FormExamples.accdb
Chapter 7 ●	 Controls.accdb

●	 TreeBuilder.accdb
Chapter 8 ●	 Reports.accdb
Chapter 9 ●	 BuildingClasses.accdb

●	 BuildingClassesAfterExportImport.accdb
Chapter 10 ●	 ClassesAndEvents.accdb
Chapter 11 ●	 ClassesAndForms.accdb
Chapter 12 ●	 Employees_be.accdb

●	 Sample_fe.accdb

●	 WebDatabase.accdb

http://www.microsoftpressstore.com/title/9780735659872
http://www.microsoftpressstore.com/title/9780735659872

	 About	the	Companion	Content	 xxv

Chapter	or	topic Content

Chapter 13 ●	 ExcelAnalysis.accdb

●	 OfficeApplications.accdb

●	 OutlookContacts.accdb

●	 WordQuote.accdb
Chapter 14 ●	 SQLServerExamples.accdb

●	 SQL Server Script files
Chapter 15 ●	 Northwind_ProblemsAndFixes.accdb

●	 SQLServerCodeExamples.accdb

●	 SQL Server Script files
Chapter 16 ●	 Northwind_ForAzure.accdb

●	 SQLAzureCodeExamples.accdb

●	 SQL Azure Script files
Chapter 17 ●	 ApplicationDevelopment.accdb

●	 ApplicationDevelopment64Bit.accdb

●	 ApplicationDevelopment_2007.accdb
Chapter 18 ●	 ADOExamples.accdb

●	 DocADOX.accdb

●	 SQL Server Script files
Bonus Content ●	 Chapter 5: Find_IT.accdb, DocDAO.accdb

●	 Chapter 7: TreeBuilder.accdb

●	 Chapter 18: DocADOX.accdb

Your	Companion	eBook	
The eBook edition of this book allows you to:

●	 Search the full text

●	 Print

●	 Copy and paste

To download your eBook, please see the instruction page at the back of this book.

xxvi	 About	the	Companion	Content

Access	Versions
All of the examples in the book are designed to run with Access 2010 32-bit.

If you are using Access 2010 64-bit, you should also be able to use the examples with the
following revisions: in Chapter 17, use ApplicationDevelopment64Bit.accdb. The Bonus
material databases have versions called Find_IT64Bit.accdb, DocADOX64Bit.accdb, and
DocDAO64bit.accdb. The file TreeView.accdb has no equivalent 64-bit version, as this con-
trol is not supported in the 64-bit environment.

The majority of the code examples in this book will work on older versions of Access, and
we have provided a set of .mdb files for this in Access 2002–2003 file format. However, the
older the version that you use, the less likely will be the compatibility. There are several top-
ics in Chapters 4, 5, 13, and 17 which were either not present in earlier versions of Access or
have undergone a significant amount of change.

In some chapters, we have inevitably had to construct examples that rely on a hardwired
path; in these situations you might find it easier either to construct your own example, as
described in a chapter, or move the files to a path that matches the completed example.
Where possible, we have provided assistance and advice in the sample databases to over-
come any path problems.

	 Acknowledgments	 xxvii

Acknowledgments
A good technical book needs an author who is well informed and passionate, and I hope
I can live up to that expectation. But it also needs contributions from a team of people to
turn the idea into a reality.

First, my thanks to Kenyon Brown at O’Reilly Media; without his asking me to propose to
write this book, it would have never have been started. Your diligence throughout the
entire process has been splendid.

Next, I offer immense gratitude to Alan Cossey, who acted as technical reviewer on this
book; having acted as a technical reviewer myself, I can greatly appreciate all of his time
and recommendations made during the review process.

I would also like to thank Bob Russell at Octal Publishing, Inc., for acting as my copy editor;
Bob has not only ensured that the flow of the book has a professional polish, but also
caused me to reflect on the meaning of many parts of the text.

I would like to thank my good friend Jeff Conrad at Microsoft. Jeff is a great advocate for
Access and helped wonderfully in answering and passing along many of my comments and
questions to the Microsoft teams.

Numerous thanks also to those members of UK Access User Group for helping in testing my
solutions to difficult technical issues. You can’t beat a good community of developers!

My thanks also to Dianne Russell at Octal Publishing, Inc., for managing the copy edit-
ing and composition, and Betsy Waliszewski, senior marketing manager, for promotional
activities.

Finally, I would like to thank my wife, Pamela, for her patience, and my son, Michael, for his
assistance at various stages in helping with chapter layouts.

Andrew Couch
July 2011

xxviii	 Support and Feedback

Support and Feedback
The following sections provide information on errata, book support, feedback, and
contact information.

Errata	&	Support
We’ve made every effort to ensure the accuracy of this book and its companion content.
Any errors that have been reported since this book was published are listed on our Micro-
soft Press site:

http://www.microsoftpressstore.com/title/ 9780735659872

If you find an error that is not already listed, you can report it to us through the same page.

If you need additional support, email Microsoft Press Book Support at mspinput@microsoft.
com.

Please note that product support for Microsoft software is not offered through the
addresses above.

We	Want	to	Hear	from	You
At Microsoft Press, your satisfaction is our top priority, and your feedback our most valu-
able asset. Please tell us what you think of this book at

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in advance
for your input!

Stay	in	Touch
Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

http://www.microsoftpressstore.com/title/ 9780735659872

	 	 1

PART 1

VBA Environment and
Language

Chapter 1

Using	the	VBA	Editor	and	Debugging	Code . . .3

Chapter 2

Understanding	the	VBA	Language	Structure	39

Chapter 3

Understanding	the	VBA	Language	Features . .89

3

ChAPTER 1

Using the VBA Editor and
Debugging Code

Debugging	Code	on	a	Form	 . .4

Creating	Modules	and	Procedures	 . .8

Debugging	Code	in	a	Module	 . 20

Breakpointing	Code	 . 23

Using	the	Object	Browser	and	Help	System	 35

The Microsoft Visual Basic for Applications (VBA) Editor is more than a simple editing
tool for writing program code. It is an environment in which you can test, debug, and
develop your programs. Understanding the unique way in which the editor allows

you to make modifications to application code while the execution of the code is paused
will help you to learn how to quickly develop your applications and master the techniques
for debugging code.

In addition to changing code on-the-fly as it executes, you can switch across to the Micro-
soft Access 2010 application window while your code is paused, create a query, run the
query, copy the SQL to the clipboard, and then swap back to the programming environ-
ment to paste the SQL into your code. It is this impressive flexibility during the develop-
ment cycle that makes developing applications with VBA a productive and exhilarating
experience.

In this chapter, you will work with examples of program code written in the VBA language.
The VBA language itself is systematically explained in Chapter 2, “Understanding the VBA
Language Structure,” and in Chapter 3, “Understanding the VBA language Features.” So,
before reading this chapter (or while you’re reading it) you might want to either skim read
those chapters or simply refer to specific topics as they arise in this chapter. We have also
included some examples of Data Access Object (DAO) programming code. In this chapter,
we will be providing only limited explanations of the DAO development environment, just
to place it into the context of building real applications. For more detailed information
about it, see Chapter 5, “Understanding the Data Access Object Model.”

To successfully work with VBA, you need an understanding of the language, the program-
ming environment, and the objects that are manipulated by the code. Getting started
means dipping into different topics as you begin to build sufficient knowledge to effec-
tively use VBA.

Chapter	1

4	 Chapter	1	 Using	the	VBA	Editor	and	Debugging	Code

By the end of this chapter, you will understand:

●	 The different ways that you can run and debug sections of program code.

●	 How to modify program code while it is paused and then resume execution.

●	 How to work with the different windows in the programming environment.

●	 Where code is stored in a VBA application.

●	 How procedures are created.

Note
As	you	read	through	this	chapter,	we	encourage	you	to	also	use	the	companion	content	
sample	database,	VBAEnvironment .accdb,	which	can	be	downloaded	from	the	book’s	
catalog	page .

Debugging	Code	on	a	Form
To begin, open the sample database, VBAEnvironment.accdb, which opens the startup
form, frmVBAStartsHere, shown in Figure 1-1.

Figure	1-1 The startup form, frmVBAStartsHere.

The sample database contains program code with errors intentionally integrated into it.
The frmVBAStartsHere form is designed to show how the code will break into Debug mode
when it encounters an error. As you work through this chapter, you will fix these errors.

Ch
ap
te
r	1

	 Debugging	Code	on	a	Form	 5

Click the button labeled Look At The Table Of Contacts. A pop-up window appears, as
shown in Figure 1-2.

Figure	1-2 In this Access pop-up window, you can either end the code
execution or click Debug to investigate the error.

If you click the End button, the program code stops executing. But as you want to debug
the code, click the Debug button.

Entering	the	VBA	Editor
When entering debugging mode, the program stops in the VBA editor and highlights the
line of code at which it failed in yellow, as shown in Figure 1-3.

Figure	1-3 Choosing Debug opens the VBA Editor and highlights the program code line that
generated the error.

In this example, the problem is a simple spelling error. The database contains a form called
frmContacts, not fromContacts. Access displays an error message that fully describes the
problem. It also provides you with the opportunity to edit the text to correct the misspell-
ing, as shown in Figure 1-4.

Chapter	1

6	 Chapter	1	 Using	the	VBA	Editor	and	Debugging	Code

Figure	1-4 Code stopped at the error line. Notice in the Project Explorer pane on the left that
the entry form _frmVBAStartsHere is highlighted. This tells you that you are viewing the form’s
code module.

DoCmd.OpenForm is a command that allows the program code to open the specified form.
DoCmd is a shorthand way of saying, ”do the macro command.” After correcting the mis-
spelling, you can either press the F5 key or click the Continue button on the toolbar to
allow the program to continue execution. Figure 1-5 demonstrates the results after con-
tinuing to execute the code, which now opens the frmContacts form.

Figure	1-5 After correcting the programming error, you can see the result of executing
DoCmd.OpenForm, which opens the requested Access form.

The	Application	and	VBA	Code	Windows
Notice that in your Windows task bar there are two windows open: one window containing
your Access application interface, and in the second window, the VBA Editor. When work-
ing with application code you can normally switch between the Editor and the application
windows, as shown in Figure 1-6.

Ch
ap
te
r	1

	 Debugging	Code	on	a	Form	 7

Figure	1-6 With the VBA editor open, you have two windows for Access, and you can switch
between the application window and the VBA Editor window.

If you choose to close the forms you will be prompted to save the changes that you have
made to the code on the form, as shown in Figure 1-7.

Figure	1-7 The prompt to save changes to the frmVBAStartsHere form.

Caution!
It	is	very	easy	to	click	the	wrong	button	and	lose	your	design	changes .	Ensuring	that	
you	click	the	Save	button	after	making	any	changes	to	code	means	that	you	always	
know	that	your	changes	have	been	saved .	If	your	program	code	closes	objects	as	part	
of	its	execution,	separate	dialog	boxes	for	saving	changes	can	pop	up,	and	you	can	eas-
ily	forget	to	save	a	change .	In	the	unlikely	event	that	the	Access	application	crashes	and	
you	have	not	been	saving	your	design	changes,	any	unsaved	changes	will	be	lost .	

INSIDE OUT 	Code	behind	a	form	or	report	is	located	in	the	class	module	
of	a	form	or	report	

The	last	example	illustrates	how	program	code	can	be	located	in	a	form’s	class	module .	
Code	is	written	behind	a	form	(“Code	Behind	a	Form”	or	CBF)	to	respond	to	events	
when	the	user	interacts	with	the	form	and	the	form’s	controls,	Figure	1-8	shows	the	
relationship	between	controls	on	a	form	and	the	procedures	in	the	form’s	class	module .

Form/Report Form/Report
Class Module

procedurecontrol

Figure	1-8 Code written in a form or report class module is normally related to events on
the form or report, and not normally shared in any other part of the application.

Chapter	1

8	 Chapter	1	 Using	the	VBA	Editor	and	Debugging	Code

The	term	class module	relates	to	VBA	classes	discussed	later	in	the	book,	the	form’s	
module	is	called	a	class	module	because	it	can	handle	events	from	the	controls	and	
form	sections;	this	is	a	feature	that	you	can	construct	within	your	own	module	classes .

When	code	is	written	behind	a	form’s	event,	it	is	a	subroutine,	but	it	is	also	possible	
to	have	functions	and	subroutines	on	a	form	that	are	not	directly	associated	with	any	
single	control .	This	normally	occurs	when	you	have	a	need	for	an	operation	to	be	per-
formed	by	several	controls .	In	this	case,	the	code	will	be	marked	in	the	General	section	
of	the	form’s	class	module .

You have now learned that:

●	 When a code problem occurs, you can click Debug to display the code and fix the
problem.

●	 VBA programs can be edited when the code is paused and then instructed to con-
tinue execution after you have fixed any errors.

●	 Regularly saving your changes after altering code is good practice.

●	 Program code can be stored in the class module of a form or report.

Creating	Modules	and	Procedures
In the last section, you saw that when the program code goes into Debug mode, the Editor
window is displayed. However, you can access the editing environment by using several dif-
ferent methods, as described in the following list:

●	 Press Alt+F11 (this applies to all Microsoft Office products).

●	 Press Ctrl+G. This displays the Immediate window in the Editor and automatically
opens the Editor window, if it is not already open.

●	 On the ribbon, on the Create tab, click Module. This creates a new module and enters
the Editor.

●	 In a form or report, on the ribbon, on the Design tab, click the View Code icon.

●	 Click any of the modules shown in the Navigation window.

●	 Right-click a Form/Report’s sections or controls, and then select Build Event, where
there is code written behind an event.

Ch
ap
te
r	1

	 Creating	Modules	and	Procedures	 9

If you are not already in the Editor, then open the sample database and press Alt+F11 to go
there.

The VBA Editor comprises a number of windows. If you accidently close one, or need to
show a window that is not already displayed, click View on the menubar to open the win-
dow, as shown in Figure 1-9.

Figure	1-9 From the View menu, you can open different types of Editor windows. Note the Proj-
ect window in the background with its expandable folders. This is a map of all the code modules
in the application. Double-click any form or report to open the document’s code module.

The Project pane normally contains two folders. The first folder, Microsoft Access Class
Objects, contains your forms and reports (only objects with an associated code module are
shown). Clicking one of these objects displays the existing code module. The term Class
refers to the special nature of a Form/Report module; it handles the events for the object.
These are sometimes simply called Form/Report modules. The separate Modules folder
below the Form/Report modules contains general purpose program code that can be used
in various parts of your application; these are sometimes called general or global modules
(this folder is only shown after you have created a module).

Below the Project pane is the Properties pane for the project. You can use this window to
change the name of the project or of a module (see Figure 1-10). The VBA project name
property should be changed if you use the operating system to copy a database to cre-
ate a new file, as the file copy operation does not change the VBA project name inside the
database.

Chapter	1

10	 Chapter	1	 Using	the	VBA	Editor	and	Debugging	Code

Figure	1-10 The Project pane displays all forms and reports that have code modules. You can
use the Modules tab for writing code that is not tied to a particular form or report.

Creating	a	Module
You can use the Project window to create a new module. There are several different ways to
add a new module; the method shown in Figure 1-11 involves right-clicking the Modules
tab, and then selecting Insert | Module from the shortcut menu that appears. This method
is used when you want to concentrate on setting up new modules when you are in the
middle of writing and debugging code.

Figure	1-11 Creating a new module or class module from the Project pane.

Ch
ap
te
r	1

	 Creating	Modules	and	Procedures	 11

When you create a new module, it is automatically assigned a default name (for example
Module1). When you click the save button, you will be prompted to give the module a
permanent, more meaningful name. Figure 1-12 shows the new module before it has been
saved with an alternative name. You might also notice that when you save the new module,
it contains two special Option keyword lines of text. This is explained in detail in Chapter 2,
but for the moment, you can ignore this.

Figure	1-12 After creating a new module, it will be displayed using a default name such as
Module1, Module2, Module3, and so on.

When you click the save option on the toolbar or close the database, you are prompted to
replace the default module name with something more meaningful.

Creating	a	Procedure
Modules contain procedures, and the procedures contain program code. Use the Insert
menu to open the Add Procedure dialog box (see Figure 1-13), in which you can add a
new Sub (subroutine), Function, or Property (class modules only). There is also an option to
prefix the procedure with the keyword Static, which makes variables hold their value when
repeatedly executing the procedure (static variables are described in Chapter 2).

Chapter	1

12	 Chapter	1	 Using	the	VBA	Editor	and	Debugging	Code

Figure	1-13 The Add Procedure dialog box.

There is another, quicker mechanism for creating a new procedure: click any empty area,
type the keyword Sub {name} or Function {name} (be sure you are not inside an existing
sub or function), and then press the Enter key. The VBA environment adds an End Sub key-
word automatically to complete the procedure block, as shown in Figure 1-14).

Figure	1-14 Creating a new procedure by using the Sub keyword. The window in the back-
ground shows the keyword and the procedure name typed in; the foreground window shows the
result after pressing return.

Type the word MsgBox, enter a space, and then type a double quotation mark. As you do
this, IntelliSense assists you as you type in each part of the syntax for the MsgBox proce-
dure, as shown in Figure 1-15.

Ch
ap
te
r	1

	 Creating	Modules	and	Procedures	 13

Figure	1-15 The built-in pop-up MsgBox procedure has three parts: the text to display; a con-
stant that is used to indicate what buttons and images to display; and finally, the title for the
window.

Executing	a	Subroutine
The subroutine code you created can be executed two ways. The first way is to click the
green Continue button on the toolbar menu or press the F5 key (you need to have the cur-
sor positioned inside the procedure on any part of the code). This should then display the
message box.

The second way is to type the name of the subroutine into the Immediate window, and
then press Return, as demonstrated in Figure 1-16.

Figure	1-16 You can type a subroutine name into the Immediate
window, and then press the Return key to execute it.

The second type of procedure in VBA is called a function. The key difference between a
function and a subroutine is that functions are always expected to return a value. Functions
are fully explained in Chapter 2.

To create a function, you can type Function {name}, similar to the way you entered your
subroutine (you should try this).

Chapter	1

14	 Chapter	1	 Using	the	VBA	Editor	and	Debugging	Code

INSIDE OUT 	Changing	a	procedure	type	from	a	subroutine	to	a	function	
or	from	a	function	to	a	subroutine .

VBA	allows	you	to	quickly	change	a	subroutine	into	a	function,	and	vice	versa .	After	
you	change	the	first	line	of	the	procedure,	the	VBA	Editor	automatically	changes	the	
End Sub	statement	to	an	End Function	(and	all	other	Exit Sub	statements	to	Exit Func-
tion	statements),	thereby	converting	the	subroutine	into	a	function .	This	is	very	useful	
if	you	have	larger	blocks	of	code	(spotting	all	the	changes	to	make	would	be	difficult)	
and	leads	to	improved	productivity	when	developing	code .	Figure	1-17	shows	the	orig-
inal	subroutine	in	the	first	window	(background) .	In	the	second	(middle)	window,	you	
can	see	the	word	Sub	has	been	edited	to	Function .	Finally,	as	shown	in	the	foreground	
window,	when	you	click	off	the	line	of	code,	the	VBA	Editor	automatically	changes	the	
code	End Sub	to	End Function .

Figure	1-17 As soon as you click off where you replaced the keyword Sub with Function,
VBA changes the End Sub to End Function.

Because a function returns information, you are going to modify the program code to
match Figure 1-18 so that it returns a value.

The MsgBox statement can be written in two different ways: the first is to write it when you
want to display a message with an OK button (where it looks like a Sub [see Figure 1-17]);
the second way is illustrated in Figure 1-18, where you want to gather input from a user (it
behaves like a function).

Ch
ap
te
r	1

	 Creating	Modules	and	Procedures	 15

Figure	1-18 The MsgBox function prompts the user with two buttons (Yes and No), and then
tests to see which button the user pressed.

After you have typed in a call to either a built-in procedure or your own procedure, you can
right-click the shortcut menu to display information on the parameters for the procedure
or get assistance with selecting constant values (see Figure 1-19). The MsgBox function has
alternative constants for the second parameter (vbYesNo) shown in Figure 1-18, which con-
trol the buttons and graphics displayed in a message box. To change a constant value in the
MsgBox routine, hover the mouse over the existing value, right-click to display the shortcut
menu, and then select List Constants. This simplifies entering a new constant value.

Figure	1-19 Accessing the shortcut menu to display information about the parameters for the
procedure. Other options on this menu include providing quick information on the function.

Executing	a	Function
To run a function, you can press the F5 key, but this will not display the returned value. (In
Chapter 2, you will see that functions can be used to assign a returned value to a variable.)
You can also call the function from the Immediate window by using the “?” (question mark)
symbol adjacent to the function name to display the returned value, as shown in Figure
1-20. Notice that when you execute a function you need to add parentheses "()" after the

Chapter	1

16	 Chapter	1	 Using	the	VBA	Editor	and	Debugging	Code

function name; a function needs to show that it accepts parameters even when it has no
parameters.

Figure	1-20 Executing a function from the Immediate window. Use the ?
(question mark) character to return a value from the function.

In this section, you have seen how program code can be written in a module that is not
connected to a form or report. These code units are called standard modules, or sometimes
general modules or global modules. Figure 1-21 illustrates how a standard module is an
object that is independent of any form or report. Compare this to Figure 1-8, which showed
a class module of a form or report that is attached to the Form/Report. Code written in
these procedures can link to other procedures in the same or different modules. The code
will normally not be specific to a single form. Form-specific code is better written inside a
form’s class module

Module

procedure

Figure	1-21 A schematic view of a module, which can contain one or more procedures.
The procedures can be a combination of functions and subroutines.

You should now understand that program code can be written either in the class module
of a form or report (when the code is specific to the Form/Report), or it can be written in a
standard module (when it is not specific to a Form/Report).

Viewing	and	Searching	Code
Module code can be viewed either showing the code for a single procedure (Procedure
view) or the entire module (Full Module view), using the scrollbars to browse through its
contents, as shown in Figure 1-22.

Ch
ap
te
r	1

	 Creating	Modules	and	Procedures	 17

Procedure View Full Module View

Figure	1-22 Using the buttons in the lower-left corner of the code window, you can display
either a single procedure or a scrollable list of all the procedures in the module.

Split	Window
The module code window can also be switched to a Split view (see Figure 1-23). This gives
you the ability to compare code in two different procedures, one above the other.

Figure	1-23 Use the Window menu to enable the Split view option.

Drag the splitter bar in the center of the screen up or down to change the proportion of
the screen that is used to display each procedure. The scrollbars and the PgUp/PgDown
buttons can be used independently in each window to browse through the procedures in
the module. Figure 1-24 illustrates the split window view.

Chapter	1

18	 Chapter	1	 Using	the	VBA	Editor	and	Debugging	Code

Figure	1-24 Viewing two procedures at the same time in Split view mode.

Dragging the splitter bar to the very top of the screen and releasing it will remove the split
view. Similarly, by moving the mouse to the top right, just above the vertical scroll bars, the
mouse pointer will change shape and you can drag down the splitter bar (this can be a little
tricky to do and you will find the Window menu easier to use for this).

Use the drop-down menu located on the upper-right portion of the window to select any
procedure within a module (see Figure 1-25). This applies to each of the windows when
using the split view, as well.

Figure	1-25 Use the drop-down menu to quickly display any function or subroutine in a mod-
ule. For standard modules the drop-down on the top left only has one available choice called
General; for class modules there will be other values shown in the drop-down.

Note
If	you	click	the	drop-down	menu	in	the	upper-left	portion	of	the	window,	you	will	see	
only	the	General	option .	However,	if	you	are	displaying	a	form	or	report	class	module,	
as	shown	in	Figure	1-26,	you	will	see	a	list	of	the	form	sections	and	controls,	and	the	
drop-down	menu	at	the	upper-right	will	now	display	the	events	for	the	object	selected	
in	the	lefthand	list .

Ch
ap
te
r	1

	 Creating	Modules	and	Procedures	 19

Figure	1-26 In a Form/Report class module, the drop-down menu on the left lists the controls
and sections in the document. The drop-down menu on the right shows all possible events for
the selected section or control. Events that have code associated with them are displayed in a
bold font.

If you have multiple code windows open, you can use the Windows menu to change
between the open windows. You also have the option to tile (horizontally or vertically) or
cascade the open windows, as shown in Figure 1-27.

Figure	1-27 The Window menu in the Editor allows multiple, open module windows to be
viewed in Tile mode or Cascade mode.

Searching	Code
If you need to find a procedure or a piece of code, press Ctrl+F to open the Find dialog
box and locate the code in the current procedure, module, project, or block of selected text
(use the mouse to select and highlight the text before pressing Ctrl+F), as demonstrated in
Figure 1-28.

Figure	1-28 Use the Find dialog box to search and replace code fragments
within a procedure, module, project, or selected text.

Chapter	1

20	 Chapter	1	 Using	the	VBA	Editor	and	Debugging	Code

To view the definition of a variable or procedure (see Figure 1-29), position your cursor on
it, right-click to open the shortcut menu, and then click Definition. Alternatively, again with
your cursor on the procedure or variable, press Shift+F2 to go to the definition. If the code
is in a different module, the appropriate module will be opened automatically.

Figure	1-29 Viewing the definition of a procedure or variable.

Additionally, referring still to Figure 1-29, if you click the text modUtilites_GetFirstName in
the subroutine ProcessNames, and then press Shift+F2, the body of the code for the proce-
dure is displayed.

Debugging	Code	in	a	Module
To demonstrate how code is debugged, we will use a routine that splits a person’s name
from a combined field in the frmContacts form into separate first name and surname. Fig-
ure 1-30 shows the Contact Name in the first record split into the FirstName and Surname
fields.

Figure	1-30 Using VBA code, the contact’s full name, which is contained in the Contact Name
field, is split into corresponding FirstName and Surname fields.

Return now to the opening frmVBAStartsHere form, and then press the button labeled
Break Apart The Contact Name Into First Name And Surname, as shown in Figure 1-31.

Figure	1-31 Click the Break Apart The Contact Name Into First Name And Surname button on
the frmVBAStartsHere form to trace through and debug the application code for splitting apart
the Contact Name field.

The code will pause at a Stop statement, as depicted in Figure 1-32.

Ch
ap
te
r	1

	 Debugging	Code	in	a	Module	 21

Figure	1-32 Hardcoded (permanent) breakpoints using the Stop keyword are a useful reminder
when developing code that it is incomplete, but they should not be included in any final
application.

Notice in Figure 1-32 that the code has stopped in the modUtilities module, and not in the
form’s class module.

Figure 1-33 presents the code behind the button. This code calls the procedure Process-
Names in the module modUtilities.

Figure	1-33 The code behind the button is written in the Click() event. This code calls
the ProcessNames routine, which is has been written in a module.

In Chapter 2, you will learn about naming conventions. The convention adopted in this
book is to add a prefix to procedures in modules so that we can easily see in which mod-
ule a procedure is defined. In the preceding example, if you had called the modUtilities_
ProcessNames procedure rather than ProcessNames, it would be easier to see how the code
on the form linked to the code in the module (in this case, we have not followed the con-
vention to illustrate the point).

There is another feature in the VBA Editor that can help display how the modules have
been linked together. Selecting the Call Stack from the View menu displays the path from
the forms class module to the procedure in the utilities module. Figure 1-34 illustrates that
this procedure was called from a form (indicated by the “Form_” prefix) with the name frm-
VBAStartsHere, from the control called cmdBreakApart on the Click event for the control.

Chapter	1

22	 Chapter	1	 Using	the	VBA	Editor	and	Debugging	Code

Figure	1-34 The Call Stack is a visual aid that helps to establish where you are in the code. In this
example, reading from top to bottom, you are in the code unit modUtilites_ProcessNames, which
was called from the code unit cmdBreakApart_Click, which is in the form frmVBAStartsHere.

INSIDE OUT 	Creating	code	in	a	module	and	linking	the	code	to	the	form	
or	report

In	earlier	sections,	you	looked	at	how	program	code	can	be	written	in	a	form’s	class	
module,	and	then	you	saw	how	more	general	purpose	code	can	be	written	in	a	stand-
alone	module	that	is	not	connected	to	a	form	or	report .	The	code	on	the	form	or	
report	can	be	linked	to	the	code	in	a	standalone	module .	This	is	shown	diagrammati-
cally	in	Figure	1-35 .

Form/Report Form/Report
Class Module

procedure

Module

procedure

control

Figure	1-35 Code in a form or report class module can call code in a module. The module
can contain code that is used in several parts of the application.

As	an	alternative	to	placing	the	code	ProcessNames	in	a	module,	you	can	instead	either	
write	the	code	behind	the	OnClick	event	in	the	form	or	add	the	code	as	a	subroutine	to	
the	form’s	class	module .	Which	of	these	alternatives	you	choose	depends	on	whether	
the	code	can	be	used	in	different	parts	of	the	form	or	in	more	than	one	form	or	report	
in	the	application .	Because	the	ProcessNames	routine	can	be	called	from	a	maintenance	
form	or	as	part	of	a	process	for	importing	data,	we	have	placed	the	code	in	a	general	
purpose	utilities	module .

Ch
ap
te
r	1

	 Breakpointing	Code	 23

Debug	Commands
Debugging code involves several operations. These operations are:

●	 Stopping or breakpointing the code so that it pauses at the correct point for
investigation.

●	 Examining and monitoring variables.

●	 Modifying and repeating the code execution.

Debug.Print is a command that displays values of program variables or expressions in the
Immediate window when developing code:

 Debug.Print strCombinedName, rst!FirstName, rst!Surname

There is another debug command called Debug.Assert, which can be used to halt the exe-
cution of program code when a specific condition is False. For example, the following code
halts execution when lngCount = 5 (note that the Debug.Assert stops when the condition is
false):

Sub modUtilities_DebugAssertExample()
 ' Example showing Debug.Assert
 Dim lngCount As Long
 For lngCount = 1 To 10
 Debug.Print lngCount
 Debug.Assert lngCount <> 5
 Next
End Sub

Breakpointing	Code
The Stop and Debug.Assert statements are hardcoded breakpoints, but you can also have
soft breakpoints that you can use when you interact with a block of code and need to find
out why the code is failing or behaving in a particular way.

There are three ways to enter a breakpoint. First, you need to locate the line in which you
want to insert the breakpoint, and then do one the following:

●	 Press the F9 Key.

●	 On the Debug tab, click Toggle Breakpoint.

●	 Click in the margin next to the line of code (this is the easiest method).

Figure 1-36 shows the code paused at the Stop statement and a soft breakpoint highlighted
farther down the page.

Chapter	1

24	 Chapter	1	 Using	the	VBA	Editor	and	Debugging	Code

Figure	1-36 The code discontinues execution at the Stop statement. Note the highlighted break-
point farther down the page

Unlike Stop statements, which need eventually to be removed from the code, breakpoints
are not remembered after you close the database. You can use the Debug menu to clear all
breakpoints in the application, or you can press Ctrl+Shift+F9.

With the breakpoint set, you want the code to execute until it reaches it. Use the Continue
button (see Figure 1-37) or press F5 to instruct the code to continue execution until it
either completes, or reaches a breakpoint.

Continue
Break

Reset

Figure	1-37 Three of the buttons on the Run menu are also displayed on the menu bar—
Continue (F5), Break (Ctrl+Break), and Reset (which halts code execution).

Press F5 to continue the code execution to reach the breakpoint shown in Figure 1-38.

Ch
ap
te
r	1

	 Breakpointing	Code	 25

Figure	1-38 Code continues to execute until it either reaches the next breakpoint
or completes execution.

The ProcessNames routine is an example of programming with a RecordSet object, which is
discussed in Chapter 5, “Understanding the Data Access Object Model.” The program code
loops through each record in the table and changes the Firstname and Surname fields.

If you switch to the Access application window and open the table tblCompanyContact,
you can investigate whether your code has worked. And as it turns out, it has not worked
as desired; Figure 1-39 shows that the entire contact name has been copied into the First-
Name field. The name was not split apart, as intended.

Figure	1-39 With the code paused at a breakpoint, you can switch to the application window
and open other Access objects (in this case a table) to see the changes made to the data. Here,
you can see that the code has not split apart the Contact Name.

Set Next	Command
If you move the cursor over the first line in the loop and then right-click, you can use the
Set Next statement to make the code go back and repeat the operation. This is typical of
how code is debugged. After identifying an error, you can move back to an earlier point in
the code to investigate it.

To change the current execution point to a different line of program code, place the cursor
on the line that begins with strCombinedName =, right-click to display the shortcut menu,
and then click Set Next Statement, as shown in Figure 1-40.

Chapter	1

26	 Chapter	1	 Using	the	VBA	Editor	and	Debugging	Code

Click this first line and then right-click
to display the shortcut menu

Figure	1-40 Changing the current execution point to a different line by using Set Next
Statement.

After you click Set Next Statement, the yellow highlighted line changes, as shown in Figure
1-41. Notice also that you can display the values of the variable by hovering the mouse
over it. (This is not restricted to variables in the highlighted line of code; you can hover the
mouse over variables on other lines to view their values, too.)

Figure	1-41 Hovering the mouse over any variables in the program code will
display the variable values.

As an alternative to using Set Next Statement to change the execution point, you can also
grab the yellow arrow on the side margin and drag it to a different line of code.

Breakpoint	Step	and	Run	Commands
You now know that this code has a fault, but rather than using the Continue (F5) execution
method that you just saw in the previous section, you can single step through the code to
locate the problem by using the Debug menu or hotkeys, as shown in Figure 1-42.

Ch
ap
te
r	1

	 Breakpointing	Code	 27

Figure	1-42 Using the Step commands on the Debug menu, you can
trace through the execution of your code.

You can do this in several ways. One way is to keep clicking the Debug menu options, but it
is much faster to use the following function key combinations to step through the code:

●	 F8 Follows the code execution to the next step.

●	 Shift+F8 Moves over a procedure call and executes everything in the procedure,
but does not show you the detailed execution steps.

●	 Ctrl+Shift+F8 Indicates that you have examined the procedure in enough detail
and want to complete the execution of this current procedure, but stops once you
have returned to the calling code.

●	 Ctrl+F8 or right-clicking and selecting Run To Cursor Process all the lines until
you reach the current position of the cursor.

●	 Locate a line, right click, and then select Set Next Statement.

It is important to remember that when you press either Shift+F8 or Ctrl+Shift+F8, both
operations cause any code to execute. If you do not want the code to execute, then locate
the next line that you do want to execute, and then use Set Next Statement to change the
execution point.

For the purposes of this example, keep pressing the F8 key until you arrive at the point
shown in Figure 1-43.

Figure 1-43 shows the unmodified code and the mouse hovering over the variable. The dis-
played value for the variable leads you to spot the logical error.

Chapter	1

28	 Chapter	1	 Using	the	VBA	Editor	and	Debugging	Code

Figure	1-43 Pressing F8 repeatedly brings you to this point in the code. Notice the displayed
value for the variable.

The bug in this code occurs because of a space in a name. The position of the space could
be represented by a value of lngPosSpace 6, yet the code states that when lngPosSpace
<> 0, we have found the entire name. So the logical test is the wrong way around. The fol-
lowing line needs to be changed from:

If lngPosSpace <> 0 Then

to:

If lngPosSpace = 0 Then

The problem with the code in Figure 1-43 is that it has branched into the wrong part of the
processing. You would have expected the code to branch into the statements after the Else
keyword. The mistake here is in testing for <> when you should be testing for =. You need
to now fix the code.

To fix the code, edit the <> to an = sign, as shown in Figure 1-44. Then right-click the line
containing the IF statement and select Set Next Statement (this means that we can repeat
the last action). Figure 1-44 shows the modified code and the result of selecting Set Next
Statement to change the execution point back to the line containing the coding error.

Ch
ap
te
r	1

	 Breakpointing	Code	 29

Figure	1-44 After changing the <> operator to =, right-click the mouse over the line where you
changed the code and select Set Next Statement to go back and repeat executing the step from
the code line that has now been corrected.

As before, press F8 to follow the code execution (you will also need to fix a similar coding
error in the procedure modUtilites_GetSurname). Figure 1-45 shows how the code execu-
tion point has branched to the correct point to extract the first name.

Figure	1-45 This time, pressing F8 to step through the code takes the program to
the correct processing statements.

There are a number of ways to see the result of evaluating an expression. The easiest
method is to hover the mouse pointer over the expression, but you can also paste a code
fragment into the Immediate window and see the result before executing the line of code
(this is useful when you want to see the values for different parts of a complex expression).

Displaying	Variables	in	the	Locals	Window
The Locals window gives you an instant view of the values in your program variables. This is
particularly useful for complex variables that have many components, such as a Recordset.
Figure 1-46 displays the local variables in your procedure.

Chapter	1

30	 Chapter	1	 Using	the	VBA	Editor	and	Debugging	Code

Figure	1-46 You can use the Locals window to both display and change values in variables.

In either the Locals window or the Immediate window, you can directly edit the values in
variables, as shown by the highlighted value in Figure 1-47.

Figure	1-47 Variables can also be assigned values in the Immediate Window.

Tracing	Procedures	with	the	Call	Stack
The Call Stack shows you where you are once your code has moved through several layers
of execution (see Figure 1-48). You can also use it to move to any of the procedures shown
by just clicking on the procedure itself in the Call Stack dialog box and then pressing the
Show button.

Figure	1-48 You can use the Call Stack to help find where you are in
your code, or you can use it to move directly to a procedure.

Ch
ap
te
r	1

	 Breakpointing	Code	 31

In Figure 1-48, the top line in the Call Stack dialog box shows the current routine that is
executing. Below that is the succession of routines that were called to take the execution
to its current point. Double-click any routine in the call stack to display that routine’s code
(note that the execution point remains unchanged if you do this).

Watching	Variables	and	Expressions
The Watches window is particularly useful for monitoring values as you iterate in a loop.
With the Watches window displayed, you can right-click and add an expression or variable
to be monitored. Figure 1-49 shows the shortcut menu to add a Watch variable.

Figure	1-49 The Watches window is particularly useful when debugging repeating loops in code.

INSIDE OUT Investigating	values	in	variables	with	complex	structures

Normally,	Watch	variables	are	simple	values,	but	if	you	add	a	more	complex	type	of	
object	(in	this	case	a	field	from	a	Recordset),	you	get	a	lot	more	information .	Figure	1-50	
shows	the	result	of	adding	a	Recordset’s	field	value	to	the	Watches	window .	This	kind	
of	variable	is	discussed	in	Chapter	5,	and	at	this	point,	we	only	want	to	illustrate	how	
more	complex	objects	can	be	examined	by	using	the	Watches	window .

Chapter	1

32	 Chapter	1	 Using	the	VBA	Editor	and	Debugging	Code

Figure	1-50 A Recordset variable is an object variable; rather than holding a single value,
it has a more complex structure, shown here being added to the Watches window.

Figure	1-51	demonstrates	how	more	complex	variables	can	be	directly	edited	in	the	
Watches	window .	You	might	find	this	easier	than	changing	values	in	the	Immediate	
window .

Figure	1-51 The values for watched variables can be directly edited.

The	ability	to	drill	up	and	down	into	more	complex	structures	is	also	a	feature	shared	
by	the	Locals	window .

Adding	Conditional	Watch	Expressions
Rather than use Debug.Assert or modify your code with a Stop statement, you can add
expressions to conditionally pause the execution of your code when an expression is True or
when a value changes. Figure 1-52 shows the inclusion of a Watch variable that will cause
the code to break execution when a specific condition holds.

Ch
ap
te
r	1

	 Breakpointing	Code	 33

Figure	1-52 Adding a Watch expression to break the execution of the code.

One last word regarding the Watches window: be aware that the settings are not perma-
nent. They are cleared once you exit the application.

Working	with	the	Immediate	Window
The Immediate window is a scratch pad for performing calculations as well as a powerful
tool to display and modify properties of tables, queries, and forms as they are executing.
Figure 1-53 presents some examples that you should try typing into the Immediate win-
dow. Type a question mark beside the item that you want to calculate, and then press Enter.

The Immediate window will continuously scroll as more information is displayed and there
is no option to clear the window (to clear the window, you highlight all text in the window
and press the Delete key).

Chapter	1

34	 Chapter	1	 Using	the	VBA	Editor	and	Debugging	Code

Figure	1-53 The Immediate window is a combination scratch pad and a tool to display and
modify properties of tables, queries, and forms.

Changing	Code	On-the-Fly
Throughout this chapter, you have seen how to change your program code while it is exe-
cuting, and you might wonder if there are limitations on doing this? The answer is yes, but
it doesn’t often get in the way of your development.

In the example shown in Figure 1-54, we have defined a new variable while the code is
executing.

Figure	1-54 The new variable ‘i’ has been added while code is executing.

If you try deleting (or changing) variables while the code is executing, you will be presented
with a warning that this will cause the code to stop executing (you might decide to add a
comment after the variable to remind yourself to delete it later when the code is no longer
executing).

For example, if we now decide that we have made a mistake and want to change the name
of our new variable in Figure 1-54 from ‘i’ to something different, then you will see the
warning shown in Figure 1-55. This means that you either must ignore your change (select
Cancel and fix it later) or stop code execution.

Ch
ap
te
r	1

	 Using	the	Object	Browser	and	Help	System	 35

Figure	1-55 A warning appears if you attempt to delete variables while the code is executing.

Using	the	Object	Browser	and	Help	System
In this section, you will look at how you can configure the behavior of the Help system and
the use of the Object Browser as an alternative method for locating help on objects.

Configuring	the	Help	System
VBA has an excellent Help system. To use it, simply click a word that you do not under-
stand, and then press F1. However, it's best to have the Help system set to work with Show
Content Only From This Computer; otherwise, many of the help topics might not easily
locate help for a particular keyword, function, or method. Figure 1-56 shows this setting
being changed at the bottom of the figure.

Figure	1-56 With the Help screen open, setting the Help system to Show Content Only From
This Computer can offer better identification of keywords.

Access comes with an extensive Help system, and by highlighting a keyword in code (for
example CurrentDb) and pressing F1, you can display help on the statement or object, as
shown in Figure 1-57.

Chapter	1

36	 Chapter	1	 Using	the	VBA	Editor	and	Debugging	Code

Figure	1-57 Press F1 when you have the cursor on a VBA keyword to locate the keyword in the
VBA Help system.

Working	with	the	Object	Browser

As you move into more advanced programming (as well as progress through this book),
you will see that when you work with objects outside of the Office suite, getting help by
pressing F1 will not always display the help information for the object. In this case, you can
use the Object Browser (Figure 1-58) either by using the toolbar or pressing the F2 key.
Later in this book, we add references to other libraries (for example Microsoft Excel). Help is
then also available on these external libraries through the object browser.

Figure	1-58 You can use the object browser to locate objects and
help on your project code and the built-in features in Access.

The object browser can be used for code units designed in your application, external refer-
enced programming units, and Office components including Access (Figure 1-59) where we
have searched for the text Currentdb.

Ch
ap
te
r	1

	 Summary	 37

Figure	1-59 When you have located an item in the object browser, press F1 to display the help
file that describes the object.

Summary
The VBA Editor and debugging environment in Access offers many useful features to assist
you and enhance your productivity in developing applications. Among these features are:

●	 VBA allows you to significantly modify program code while it is executing. The fea-
tures for stepping backwards and forwards through the code while it is paused per-
mits you to very quickly isolate logic errors in your code and rectify them. There are
minor restrictions on the changes that you can make to the code without the need to
restart the code.

●	 The ability to have both code executing and being able to redesign associated
objects such as queries and forms (other than the form that is currently executing
the code) is another useful productivity feature.

●	 The Immediate window is one of the most productive features of the VBA environ-
ment. With it, you can test and modify properties of the executing form while the
form is executing code.

●	 The search features that allow you to locate code either by pressing Shift+F2 on an
executing procedure or Ctrl+F for general searching. Again, these tools offer unique
productivity.

We end this chapter with some general comments on developing within the VBA environment.

Chapter	1

38	 Chapter	1	 Using	the	VBA	Editor	and	Debugging	Code

Mixed	Versions	of	Access

Since Access 2007, you might experience problems if you are developing with multiple ver-
sions of the Office products on a single computer. This is because different versions of the
product require different core libraries to be loaded when switching between the versions.
Although it is possible to develop with multiple versions on a single computer, it is not rec-
ommended, and we would suggest that for all versions prior to Access 2007, you can use a
single computer, but for versions including and after Access 2007, you should consider hav-
ing separate virtual or physical computers. There is a switch over feature to support differ-
ent versions on a single computer, but you might find that either it takes an unacceptable
amount of time to switch or you easily become vulnerable to any issues if library references
are not correctly switched over.

Expression	Builder

The Expression Builder is an indispensible tool when building applications to find the cor-
rect syntax when referring to controls on a form. Unfortunately, the VBA environment does
not have an Expression Builder option. The easiest way to get around this problem is to go
into the Query design tool, create a dummy query, and then go to the Criteria and right-
click, selecting Build, which will bring up the Expression Builder (Chapter 4, “Applying the
Access Object Model,” discusses this in more detail).

Object	Browser

When using 32-bit Microsoft ActiveX controls in a 64-bit operating system, the controls
might appear to work well, but there appear to be problems that cause Access to crash
when using the Object Browser to display the associated help information.

Debugging	Modal	Forms

When a user is interacting with a modal form, he or she cannot interact with other objects
on the desktop. Debugging code on modal forms is more challenging because you cannot
easily interact with other Access objects, such as checking data values in a table or query.
The best advice here is to remove the modal property when debugging the form and then
set it back to modal once you have resolved any problems in your code.

339

ChAPTER 9

Adding Functionality with Classes

Improving	the	Dynamic	Tab	Control	 340 Creating	a	Hierarchy	of	Classes 	 . 354

You have seen in earlier chapters how Microsoft VBA program code is either con-
tained in a module or held in a form’s class module. In this chapter, you look at how
VBA also allows you to construct your own class modules.

It is often overlooked that VBA supports Object-Oriented Programming (OOP), so in this
chapter, we introduce you to OOP concepts by having you construct your own classes.
Many Microsoft Access developers take a look at classes and then give up because they
have difficulty seeing the benefit and justification for using classes. It’s true that much of
what can be achieved with a simple class can also be achieved by using libraries of code,
and that to build classes you often need to put in more effort during the initial develop-
ment, but there are benefits in using classes that will be explored in this chapter as well as
in Chapter 10, “Using Classes and Events,” and Chapter 11, “Using Classes and Forms.”

This chapter focuses on two examples of classes, and uses each example to introduce the
techniques for creating your own classes.

The first example involves applying classes to solve a problem of designing a dynamic Tab
control that saw in Chapter 7, “Using Form Controls and Events.” This example will demon-
strate how classes can be used to improve the design of a general purpose tool that can be
re-used in your applications.

The second example looks at how to build classes to handle data for a specific business
problem.

After reading this chapter, you will:

●	 Understand how to create class modules.

●	 Know how to use Let, Get, Set, and New with classes.

●	 Be able to create collection classes.

●	 Be able to create base and derived classes.

●	 Be able to create a hierarchy of classes.

Chapter	9

340	 Chapter	9	 Adding	Functionality	with	Classes

Note
As	you	read	through	this	chapter,	we	encourage	you	to	also	use	the	companion	content	
sample	databases,	BuildingClasses .accdb	and	BuildingClassesAfterExportImport .accdb,	
which	can	be	downloaded	from	the	book’s	catalog	page .

The object-oriented view to developing software became popular in the 1980s, and in
addition to OOP, many terms such as Object-Oriented Design (OOD) and Object-Oriented
Analysis (OOA) became increasingly popular.

You have already seen many examples of working with objects in Access. These objects
have properties that describe the object, and methods that cause an object to perform an
operation. Access maintains collections of like objects; for example, the Forms collection,
which contains Form objects that open on the desktop, and the TableDefs collection in the
Data Access Object (DAO) model, which contains all the TableDef objects. These are exam-
ples of working with objects, but not examples of OOP.

OOP Programming (which is supported in VBA) means taking these ideas of working with
objects and extending this concept to guide how program code is written.

Classes can be applied in several different ways in Access to:

●	 Improve the quality of code (OOP can help you develop more maintainable code).

●	 Extend form/report behavior (OOP allows you to take control of the underlying
behavior of Access objects and wrap or extend the behavior).

●	 Integrate External Components (some external components do not expose all their
functionality and OOP features can help with this).

Improving	the	Dynamic	Tab	Control
In Chapter 7, you saw how to design a dynamic Tab control form that can load and unload
pages by using an array of Types, where each item in the array corresponds to a form that
is loaded into a subform control. The type structure for that is as follows:

Ch
ap
te
r	9

	 Improving	the	Dynamic	Tab	Control	 341

Private Type PageInfo
 strPageName As String
 strPageSubForm As String
 strRelatedPage As String
 blCanBeLoaded As Boolean
End Type

Dim AvailablePages() As PageInfo

As an alternative to using a Type, you will define these pages as objects with properties that
correspond to each part of the Type structure, and then you will build a collection to hold
these objects, which replaces the array that held the types.

We need the following properties for our object:

●	 PageName

●	 SubFormPageName

●	 RelatedPageName

●	 CanBeUnloaded

You might have noticed that we have renamed the CanBeLoaded property in the preceding
list to CanBeUnloaded. This is because an object-oriented perspective helps you to think in
terms of how an object’s state can be changed, so this is a more appropriate term to use.
With the object’s basic properties determined, you can now proceed to create the object
class.

Creating	a	Class	Module
To begin, in the Project pane, you create a new class module, as shown in Figure 9-1.

Figure	9-1 Use the Project pane to create a new class module.

Chapter	9

342	 Chapter	9	 Adding	Functionality	with	Classes

With this file created, you then save it using an appropriate class name; for this example,
use clsTabPage. Because you are now working in a class module, you do not need to explic-
itly define that you are creating a class (as you would need to do in Microsoft .NET). Next,
you define the object’s internal variables at the top of the class module code, as illustrated
in the following:

Option Compare Database
Option Explicit

' These could be declared as either Dim or Private
' as within a class their scope is restricted
Dim p_PageName As String
Dim p_SubFormPageName As String
Dim p_RelatedPageName As String
Dim p_CanBeUnloaded As Boolean

Note that these variables include the prefix “p_” to indicate that they are private variables
to each class object (other popular prefixes include “m” or “m_”). The next step is to provide
the user with a way of reading and writing these variable values.

The	Let	and	Get	Object	Properties
After you define the object’s internal variables or attributes for your class, you need to cre-
ate a mechanism to read or write these values. To do this, you define properties. On the
Insert menu, click Procedure to open the Add Procedure dialog box, as shown in Figure 9-2.

Figure	9-2 Use the Add Procedure dialog box to create a new private or public property.

Ensure that you are not clicked inside any other property when you insert a new property;
otherwise, it will fail to add the property correctly to the class. The code that is created
needs appropriate data types to be specified for the return type of the property and the
parameter type passed to the property.

Ch
ap
te
r	9

	 Improving	the	Dynamic	Tab	Control	 343

As shown in the code that follows, you use the Get statement to read an object property
from the internal private variable, and the Let statement to assign a value to the internal
private variable. An object can have a number of internal variables, but you might only
need to make a few of these available to the user. The idea is to keep the object’s exter-
nal interface very simple, exposing only the minimum number of essential features that a
user will need. It is up to you to decide for which properties you want both a Let and Get,
depending on whether the property is to be read-only (Get but no Let) or write-only (Let
but no Get):

Public Property Get PageName() As String
 PageName = p_PageName
End Property
Public Property Let PageName(ByVal PageName As String)
 p_PageName = PageName
End Property
Public Property Get RelatedPageName() As String
 RelatedPageName = p_RelatedPageName
End Property
Public Property Let RelatedPageName(ByVal RelatedPageName As String)
 p_RelatedPageName = RelatedPageName
End Property
Public Property Get CanBeUnloaded() As Boolean
 CanBeUnloaded = p_CanBeUnloaded
End Property
Public Property Let CanBeUnloaded(ByVal CanBeUnloaded As Boolean)
 p_CanBeUnloaded = CanBeUnloaded
End Property
Public Property Get SubFormPageName() As String
 SubFormPageName = p_SubFormPageName
End Property

Public Property Let SubFormPageName(ByVal SubFormPageName As String)
 p_SubFormPageName = SubFormPageName
End Property

Creating	an	Object	with	New	and	Set
To test your new class, you create a module (not a class module) to verify that you can
create an object. If you insert a breakpoint and trace through the code execution, you will
learn a great deal, as you can trace through the codes execution into the class module
code.

You can define the object variable and then later create an object with the New keyword, or
as is also shown demonstrated in the following code, with the aTab2 object, you can both
define and create the object at the same time. It is largely a matter of personal preference
as to which method you choose to use.

Chapter	9

344	 Chapter	9	 Adding	Functionality	with	Classes

Once you have finished with the object, set the object variable to Nothing; this destroys the
object. The object would be destroyed anyhow when the code stops execution, but explic-
itly tidying up your objects is good practice and becomes more important when you work
with more complex objects:

Sub modTabs_TestObject()
 ' test creating an object
 Dim aTab As clsTabPage
 Set aTab = New clsTabPage
 aTab.PageName = "ProductList"
 aTab.RelatedPageName = "Product Details"
 aTab.SubFormPageName = "frmTabsDynamicProductList"
 aTab.CanBeUnloaded = False

 Debug.Print aTab.PageName
 Set aTab = Nothing

 Dim aTab2 As New clsTabPage
 aTab2.PageName = "Product Details"
 Debug.Print aTab2.PageName
 Set aTab2 = Nothing
End Sub

INSIDE OUT Initialization	and	Termination	Events

When	you	are	in	a	class	module,	you	can	select	Class	from	the	upper-left	drop-down	
menu,	which	normally	shows	(General) .	Select	Initialize	or	Terminate	from	the	drop-
down	list	that	appears,	and	then	generate	the	following	procedures	(in	this	example	
the	type	name	ObjectType	is	not	a	real	type	but	could	for	example	be	replaced	with	a	
real	object	type	such	as	a	DAO.RecordSet	object):

Private Sub Class_Initialize()
 Set p_Object = New ObjectType
End Sub
Private Sub Class_Terminate()
 Set p_Object = Nothing
End Sub

Because	class	objects	can	contain	other	class	objects	or	built-in	class	objects	such	as	
a	Recordset,	you	might	need	to	use	the	New	keyword	in	Initialize	to	create	an	object	
that	is	assigned	to	a	private	variable,	and	then	set	the	objects	to	Nothing	to	close	the	
objects	in	the	Terminate	procedure .	Externally,	when	your	class	object	is	created,	the	
Initialize	procedure	is	executed,	and	when	it	is	set	to	Nothing	or	the	variable	goes	out	
of	scope,	the	Terminate	procedure	is	executed .

Ch
ap
te
r	9

	 Improving	the	Dynamic	Tab	Control	 345

Collection	of	Objects
A VBA collection is a set of objects that you can use in a similar manner as the built-in col-
lections, such as the Forms collection that you worked with in earlier chapters.

The example that follows defines a collection that is used to hold our Tab page objects:

Sub modTabs_Collection()
 ' test creating an object
 Dim TabPages As New Collection
 Dim aTab As clsTabPage
 Set aTab = New clsTabPage
 aTab.PageName = "ProductList"
 aTab.RelatedPageName = "Product Details"
 aTab.SubFormPageName = "frmTabsDynamicProductList"
 aTab.CanBeUnloaded = False
 TabPages.Add aTab, aTab.PageName
 Set aTab = Nothing

 Set aTab = New clsTabPage
 aTab.PageName = "Product Details"
 aTab.RelatedPageName = ""
 aTab.SubFormPageName = "frmTabsDynamicProductDetails"
 aTab.CanBeUnloaded = True
 TabPages.Add aTab, aTab.PageName
 Set aTab = Nothing

 For Each aTab In TabPages
 Debug.Print aTab.PageName, aTab.SubFormPageName, _
aTab.RelatedPageName, aTab.CanBeUnloaded
 Next
 Debug.Print TabPages.Count

 Stop
 Set aTab = TabPages("ProductList")
 Debug.Print aTab.PageName
 Debug.Print TabPages("Product Details").PageName
 ' note 1 based collection unlike built in collections
 Debug.Print TabPages(1).PageName
 Set TabPages = Nothing
 Set aTab = Nothing
End Sub

Notice how the aTab variable is used several times to create objects, and how setting it to
Nothing does not destroy the object. This is because once you have created an object, you
add it to the collection, which is then responsible for managing the object (when the col-
lection is set to Nothing, it will destroy the objects it contains.

When you add an object to a collection, you must also specify a collection key value (which
must be unique). Doing this means that rather than referring to a collection object as

Chapter	9

346	 Chapter	9	 Adding	Functionality	with	Classes

TabPages(1), you can use the key and refer to this as TabPages(“Product List”). The Collection
object’s Add method also allows you to specify an optional Before or After argument for
positioning an object relative to other objects in the collection. The collections first element
is 1 and not 0 (which is what the built-in Access collections use).

Be aware that when you refer to an object by using TabPages(1).PageName, you cannot
take advantage of IntelliSense assistance. This is because this type of collection can hold
different types of objects, so the environment cannot know exactly which properties would
apply to an object.

INSIDE OUT VBA	collection	classes

The	built-in	VBA	collection	classes	that	you	have	been	working	with	are	different	
from	an	Access	collection .	The	first	difference	is	that	the	Access	collections,	such	as	
TableDefs,	can	only	hold	one	type	of	object;	a	VBA	collection	can	hold	different	types	
of	objects	(this	explains	why	the	IntelliSense	is	limited) .	The	second	difference	is	that	
VBA	collection	classes	are	1-based,	whereas	the	Access	collections	are	0-based .

In	the	next	section,	you	will	be	creating	your	own	collection	classes	that	wrap	around	
the	VBA	collection	class .	These	collections	will	start	to	look	more	like	an	Access	
collection .

Once you have added an object to a collection and specified the key value, you will find
that you cannot subsequently display the key value—it is hidden. If your procedures
need to be able to refer to the key, you might find it useful to add your own property to
the object class, which saves and holds the key value in each object. Looking in the class
clsTabPage, you see the following (it is not essential to do this in the class):

Dim p_Key As String
Public Property Get Key() As String
 Key = p_Key
End Property
Public Property Let PageName(ByVal PageName As String)
 p_PageName = PageName
 p_Key = PageName
End Property

Creating	Collection	Classes
A VBA Collection object supports a limited number of operations—Add, Count, and
Remove. You will likely want to be able to add more operations to your collection. To do
that, you need to define your own collection class, called clsTabPageCollection.

Ch
ap
te
r	9

	 Improving	the	Dynamic	Tab	Control	 347

Defining a collection class follows the same steps as defining a normal class to create the
class module. Your collection class will contain a VBA collection, so you define an inter-
nal variable called p_TabPages. As we previously described, classes can have two specially
named methods for initializing and terminating the class. The simple clsTabPage didn’t
need any special operations, but the new class needs to create a VBA collection, and then
remove all the objects from the collection when it is terminated, as illustrated in the follow-
ing code:

Private p_TabPages As Collection

Private Sub Class_Initialize()
 Set p_TabPages = New Collection
End Sub

Private Sub Class_Terminate()
 Dim aClassPage As clsTabPage
 For Each aClassPage In p_TabPages
 p_TabPages.Remove CStr(aClassPage.PageName)
 Next
 Set p_TabPages = Nothing
End Sub

You also want to have the standard operations for counting, adding, and removing items
from the class, so you need to add these methods to our collection (you also add an Item
method, which is another standard feature of a class):

Public Property Get Count() As Long
 Count = p_TabPages.Count
End Property

Public Sub Add(aClassPage As clsTabPage)
 p_TabPages.Add aClassPage, aClassPage.PageName
End Sub

Public Sub Remove(PageName As Variant)
 p_TabPages.Remove CStr(PageName)
End Sub

Public Function Item(PageName As Variant) As clsTabPage
 Set Item = p_TabPages(PageName)
End Function

Once you start defining your own collection class, you will find that a number of the
expected built-in collection class features no longer work. For example, you cannot use a
For Each loop, or index the collection by using the friendly key name (you will see how to

Chapter	9

348	 Chapter	9	 Adding	Functionality	with	Classes

get around this). The following procedure can be used to test the class; the program lines
that are commented out have been included to show what will not work in our collection
class:

Sub modTabs_clsTabPageCollection()
 ' test creating an object
 Dim TabPages As New clsTabPageCollection
 Dim aTab As clsTabPage
 Dim lngCount As Long
 Set aTab = New clsTabPage
 aTab.PageName = "ProductList"
 aTab.RelatedPageName = "Product Details"
 aTab.SubFormPageName = "frmTabsDynamicProductList"
 aTab.CanBeUnloaded = False
 TabPages.Add aTab
 Set aTab = Nothing

 Set aTab = New clsTabPage
 aTab.PageName = "Product Details"
 aTab.RelatedPageName = ""
 aTab.SubFormPageName = "frmTabsDynamicProductDetails"
 aTab.CanBeUnloaded = True
 TabPages.Add aTab
 Set aTab = Nothing

' For Each aTab In TabPages
' Debug.Print aTab.PageName, aTab.SubFormPageName, _
' aTab.RelatedPageName, aTab.CanBeUnloaded
' Next
 For lngCount = 1 To TabPages.Count
 Set aTab = TabPages.Item(lngCount)
 Debug.Print aTab.PageName, aTab.SubFormPageName, _
 aTab.RelatedPageName, aTab.CanBeUnloaded
 Next
 Set aTab = Nothing
' Set aTab = TabPages("ProductList")

 ' following will work
 Set aTab = TabPages.Item(1)
 Debug.Print TabPages.Item(1).PageName
 Debug.Print aTab.PageName
 Set aTab = Nothing
 Set TabPages = Nothing
End Sub

There are two techniques available to get around the problem of not being able to refer to
the collection class by using the key names. The first technique involves adding an AllItems
function to the collection class, and the second method involves exporting, editing, and re-
importing the class.

Ch
ap
te
r	9

	 Improving	the	Dynamic	Tab	Control	 349

INSIDE OUT Adding	AllItems	to	a	collection	class

When	you	use	the	AllItems	method,	you	need	to	add	the	following	property	to	the	
class	(you	can	give	this	property	an	alternative	name):

Public Function AllItems() As Collection
 Set AllItems = p_TabPages
End Function

In	the	sample	testing	file,	modTabs_clsTabPageCollection2,	you	can	see	how	to	use	this	
feature .	The	important	code	is	as	follows:

 ' works with allitems
 For Each aTab In TabPages.AllItems
 Debug.Print aTab.PageName, aTab.SubFormPageName, _
 aTab.RelatedPageName, aTab.CanBeUnloaded
 Next
 Set aTab = TabPages.AllItems("ProductList")
 Debug.Print aTab.PageName
 Debug.Print TabPages.AllItems("ProductList").PageName

This	is	a	satisfactory	solution	as	long	as	you	are	prepared	to	insert	the	.AllItems	refer-
ence	when	using	the	collection	with	the	object’s	key .

Exporting	and	Re-importing	the	Class

The reason that you cannot refer to collections by using standard syntax is because VBA
classes do not allow special attributes to be set on a class, and these are required to sup-
port standard syntax.

If you right-click the collection class module in the project window, export it to a text file,
and then open the text file in notepad, you will see the following header information in the
class:

VERSION 1.0 CLASS
BEGIN
 MultiUse = -1 'True
END
Attribute VB_Name = "clsTabPageCollection"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = False
Attribute VB_Exposed = False
Option Compare Database
Option Explicit
' class clsTabPagesCollection
Private p_TabPages As Collection

Chapter	9

350	 Chapter	9	 Adding	Functionality	with	Classes

These attributes are not exposed in the VBA environment. There is a special attribute value,
which when set to 0, sets the member as the default member for the object. You want the
Item method to be the default member and you need to change the method adding the
following attribute definition (this will enable references such as TabPages("ProductList") to
work). Also, to support enumeration in a For … Each loop, you need to add the NewEnum
method, as shown in the following:

Public Function Item(ByVal Index As Variant) As clsTabPage
Attribute Item.VB_UserMemId = 0
 Set Item = p_TabPages(Index)
End Function

Public Function NewEnum() As IUnknown
Attribute NewEnum.VB_UserMemId = -4
 Set NewEnum = p_TabPages.[_NewEnum]
End Function

After saving these changes, import the class back into your project, as shown in Figure 9-3.

Figure	9-3 Re-importing a class back into Access.

If you look in the VBA Editor, you will not be able to see the new attribute you just added in
the Item method because it remains hidden.

This then means that the following references will work (note that in the sample database
BuildingClassesAfterExportImport.accdb, the following code will work, because we have
performed this rather complex operation; in the sample database BuildingClasses.accdb,
this code has been commented out because it will not work):

 For Each aTab In TabPages
 Debug.Print aTab.PageName, aTab.SubFormPageName, _
 aTab.RelatedPageName, aTab.CanBeUnloaded
 Next
 Set aTab = TabPages("ProductList")
 Debug.Print TabPages("ProductList").PageName
 Debug.Print aTab.PageName

This process needs to be repeated for each collection class in your project.

Ch
ap
te
r	9

	 Improving	the	Dynamic	Tab	Control	 351

Using	Classes	with	the	Dynamic	Tab
You are now able to modify the code in the frmTabsDynamic form to make use of your new
classes.

At the top of the module, where you had defined an array of types, declare your collection
class as shown here:

Option Compare Database
Option Explicit
Dim TabPages As clsTabPageCollection
Dim lngTabPages As Long

The form’s Open and Close events then create and dispose of the collection, as shown in
the following:

Private Sub Form_Close()
 Set TabPages = Nothing
End Sub

Private Sub Form_Open(Cancel As Integer)
 Set TabPages = New clsTabPageCollection
 LoadTabs
End Sub

In the following code, in the LoadTabs procedure, you create and load your class objects
into the collection:

 Do While Not rst.EOF
 Set aTabPage = New clsTabPage
 aTabPage.PageName = rst!PageName
 aTabPage.SubFormPageName = rst!SubFormName
 aTabPage.CanBeUnloaded = rst!CanUnloadPage
 aTabPage.RelatedPageName = Nz(rst!RelatedPage)
 TabPages.Add aTabPage
 Set aTabPage = Nothing
 If rst!DefaultVisible And lngPageVisibleCount + 1 < lngTabPages Then
 LoadThePage aTabPage, lngPageVisibleCount
 lngPageVisibleCount = lngPageVisibleCount + 1
 End If

 lngArray = lngArray + 1
 rst.MoveNext
 Loop

There are some other minor references in the code that used the array of types that now
need to be changed to use the new collection and objects.

Chapter	9

352	 Chapter	9	 Adding	Functionality	with	Classes

Simplifying	the	Application	with	Classes
In the preceding sections, you have been able to change your dynamic tab to use classes,
but it has not as yet resulted in any simplification of the applications code. In fact, you now
have more code to maintain than when you started. But you now have a framework in
which you can start to work that will lead to simplification and improved maintenance of
your code.

In examining the frmTabsDynamic form, you can see that it has a general routine LoadTabs
that involves reading information and placing the information into your collection. This
operation could be placed inside the collection. So we can start to enhance our collection
(clsTabPageCollection2) by adding the data loading function. But the process of loading the
information also involves setting values in controls on the form. This means you also want
to allow the collection to reference the controls on the form.

To begin, add new private members to the class:

' class clsTabPagesCollection
Private p_TabPages As Collection
Private p_TabControl As TabControl
Private p_Controls As Controls

You must change the termination routine to clear the new variables and provide properties
for setting the new variables, as follows:

Private Sub Class_Terminate()
 Dim aClassPage As clsTabPage
 For Each aClassPage In p_TabPages
 p_TabPages.Remove CStr(aClassPage.PageName)
 Next
 Set p_TabPages = Nothing
 Set p_TabControl = Nothing
End Sub
Public Property Let TabControl(ByRef TabCtl As TabControl)
 Set p_TabControl = TabCtl
End Property
Public Property Let Controls(ByRef Ctrls As Controls)
 Set p_Controls = Ctrls
End Property

You can then move the appropriate routines programmed into the form into the collection
class.

Note
The	full	code	for	this	can	be	seen	in	the	sample	file .

Ch
ap
te
r	9

	 Improving	the	Dynamic	Tab	Control	 353

The result of this is an impressive reduction in the code on the form, which now shrinks to
the following (see frmTabsDynamic2):

Option Compare Database
Option Explicit
Dim TabPages As clsTabPageCollection2
Private Sub Form_Close()
 Set TabPages = Nothing
End Sub
Private Sub Form_Open(Cancel As Integer)
 Set TabPages = New clsTabPageCollection2
 TabPages.TabControl = Me.TabCtl0
 TabPages.Controls = Me.Controls
 TabPages.LoadFromTable Me.Name, "tblTabPages"
End Sub
Private Sub TabCtl0_DblClick(Cancel As Integer)
 TabPages.TabPageDoubleClick CLng(Me.TabCtl0)
End Sub

Although the total amount of code remains unchanged, much of the code has moved out
of the form and into the classes. There are a couple of advantages to creating classes to
perform these operations:

●	 The code on the form is significantly simplified; it will be easy to add it to other forms
or in other applications.

●	 The new classes are easy and intuitive to work with, so using them in the future
should improve your applications, and you can add more features to these classes.

Some might argue that rather than using classes, which involves constructing a framework,
you could more simply have built a re-useable library. This line of argument nearly always
holds; thus, the decision to use classes becomes a question of whether it seems more intui-
tive and natural than using a traditional code module.

INSIDE OUT Classes	and	associated	terminology

Another	term	for	creating	an	object	is	instantiating	the	class	object .	This	means	using	
the	New	keyword	to	create	the	class	object .	

The	term	Encapsulation	is	often	used	to	convey	the	idea	of	tucking	away	all	the	func-
tionality	inside	the	class,	such	that	the	class	only	exposes	as	small	a	public	interface	as	
required	to	fulfill	its	purpose .	With	a	class,	you	are	wrapping	up	all	the	messy	code	and	
placing	that	inside	a	box	so	that	you	don’t	need	to	deal	with	it	on	a	regular	basis .

Chapter	9

354	 Chapter	9	 Adding	Functionality	with	Classes

Creating	a	Hierarchy	of	Classes
In this example, you look at creating a hierarchy of classes, which demonstrates the ability
of classes to be used as building blocks for improving the design in managing data objects.
The example involves a business problem for which the classes need to perform complex
calculations (although you will stick to simple calculations in the example).

Suppose that you have analyzed an insurance company’s business, the result of which
revealed that the company sells a large number of different insurance products, but you
noticed that there are common features in the products. Often, one type of policy only dif-
fers from another in a small number of ways. The task is to build an Access application that
assists with generating the policy documents and performing appropriate calculations for
the different policies.

Creating	a	Base	Class
The first task is to identify common features to all policies as well as the most standard cal-
culations that a policy would require to perform. This involves creating a class, which will
serve as the base class. In the following code, this is called clsPolicy.

From the project window in the VBA Editor, create a class module, and then save the mod-
ule with the name clsPolicy, as demonstrated in the following code:

Option Compare Database
Option Explicit

' clsPolicy is the base class which has common features
' required in other classes

Dim p_MonthlyPremium As Currency

Public Property Get MonthlyPremium() As Currency
 MonthlyPremium = p_MonthlyPremium
End Property

Public Property Let MonthlyPremium(ByVal MonthlyPremium As Currency)
 p_MonthlyPremium = MonthlyPremium
End Property

Public Function CalculateAnnualPolicyValue() As Currency
 CalculateAnnualPolicyValue = p_MonthlyPremium * 12
End Function

Ch
ap
te
r	9

	 Creating	a	Hierarchy	of	Classes	 355

This class can then be tested by using the following code:

Sub modInsurance_Policy()
 ' create a Policy from clsPolicy
 Dim Policy As New clsPolicy
 Policy.MonthlyPremium = 10
 ' Expect 120
 Debug.Print Policy.CalculateAnnualPolicyValue()
 Set Policy = Nothing
End Sub

Derived	Classes
With the basic insurance policy class created, you can now create several other classes that
will all use some of the base class features. This involves creating a class, which will serve
as the derived class, and in the following code is called clsHomePolicy, being derived from
the base class clsPolicy. The term derived is used because the class is in some way related or
derived from the base class:

Option Compare Database
Option Explicit

' clsHomePolicy uses clsPolicy
Dim p_Policy As clsPolicy

Private Sub Class_Initialize()
 Set p_Policy = New clsPolicy
End Sub
Private Sub Class_Terminate()
 Set p_Policy = Nothing
End Sub

Public Property Get MonthlyPremium() As Currency
 MonthlyPremium = p_Policy.MonthlyPremium
End Property

Public Property Let MonthlyPremium(ByVal MonthlyPremium As Currency)
 p_Policy.MonthlyPremium = MonthlyPremium
End Property

Public Function CalculateAnnualPolicyValue() As Currency
 CalculateAnnualPolicyValue = p_Policy.CalculateAnnualPolicyValue() + 50
End Function

The first derived class, clsHomePolicy, contains a base class object, clsPolicy, so you need to
have initialization and termination events to create and dispose of the base class object.

The clsHomePolicy is only loosely tied to clsPolicy, which means that you need to add all the
required properties and methods into the new class. But if you look at the CalculateAnnual
PolicyValue method, you will see how it can take advantage of the calculation in the base
class.

Chapter	9

356	 Chapter	9	 Adding	Functionality	with	Classes

INSIDE OUT Inheritance	and	polymorphism	in	classes

Note	that	we	are	using	the	term	derived	here	in	a	very	loose	manner .	Many	OOP	lan-
guages	incorporate	the	concept	of	inheritance,	which	means	truly	deriving	classes,	and	
they	use	the	term	polymorphism	for	how	derived	classes	can	implement	variations	on	
methods	available	through	base	classes .	

VBA	does	not	support	direct	inheritance	or	explicit	polymorphism,	but	you	can	use	the	
approach	described	here	to	create	structures	that	offer	some	of	these	characteristics .

Another	OOP	term	is	multiple inheritance,	which	means	inheriting	from	more	than	
one	base	class;	by	embedding	other	classes	using	this	technique,	we	can	also	form	
structures	that	behave	in	some	respects	like	those	having	multiple	inheritance .	The	
techniques	used	here	to	produce	a	hierarchy	can	also	be	described	by	the	term	wrap-
per,	where	we	wrap	around	one	class	for	the	purpose	of	extending	or	changing	its	
functionality .

As is illustrated in the code that follows, you can now define two additional classes, one
called clsSpecialHomePolicy, which is derived from clsHomePolicy, and the other, called cls-
CarPolicy, is derived from clsPolicy (you can view the code in the sample database):

Option Compare Database
Option Explicit

' clsSpecialHomePolicy
Dim p_Policy As clsHomePolicy

Private Sub Class_Initialize()
 Set p_Policy = New clsHomePolicy
End Sub
Private Sub Class_Terminate()
 Set p_Policy = Nothing
End Sub

Public Property Get MonthlyPremium() As Currency
 MonthlyPremium = p_Policy.MonthlyPremium
End Property

Public Property Let MonthlyPremium(ByVal MonthlyPremium As Currency)
 p_Policy.MonthlyPremium = MonthlyPremium
End Property

Public Function CalculateAnnualPolicyValue() As Currency
 CalculateAnnualPolicyValue = p_Policy.CalculateAnnualPolicyValue() + 100
End Function

Ch
ap
te
r	9

	 Summary	 357

These classes can be tested with the following code:

Sub modInsurance_Policy()
 ' create a Policy from clsPolicy
 Dim Policy As New clsPolicy
 Policy.MonthlyPremium = 10
 ' Expect 120
 Debug.Print Policy.CalculateAnnualPolicyValue()
 Set Policy = Nothing

 ' create a HomePolicy
 Dim HomePolicy As New clsHomePolicy
 HomePolicy.MonthlyPremium = 10
 ' Expect 120+50 = 170
 Debug.Print HomePolicy.CalculateAnnualPolicyValue()
 Set HomePolicy = Nothing

 ' create a SpecialHomePolicy
 Dim SpecialHomePolicy As New clsSpecialHomePolicy
 SpecialHomePolicy.MonthlyPremium = 10
 ' Expect 120+50+100 = 270
 Debug.Print SpecialHomePolicy.CalculateAnnualPolicyValue()
 Set SpecialHomePolicy = Nothing

 ' create a CarPolicy
 Dim CarPolicy As New clsCarPolicy
 CarPolicy.MonthlyPremium = 10
 ' Expect 120+80 = 200
 Debug.Print CarPolicy.CalculateAnnualPolicyValue()
 Set CarPolicy = Nothing
End Sub

Summary
In this chapter, you learned about classes via two examples. In the first example, you saw
how a general purpose framework for working with form Tab controls can dynamically load
subforms and be re-written using classes. The final result was simplified application code
with the complexity hidden within the class.

The second example introduced techniques for building a hierarchy of classes by using a
base class and several derived classes. This provides a more structured and maintainable
solution when using classes.

	 	 675

Index

ActiveX	Data	Objects .	See	ADO	(ActiveX	Data	Objects)

address	information,	packing,	 334

ADO	(ActiveX	Data	Objects)

ADO asynchronous execution class, 365–367

ADOX, understanding, 672

Asynchronous operations, 662

client-server performance, 485

connections

Connection and ActiveConnection, 385

DAO management of, 671

as the key object in ADO, 660

cursors (Recordsets)

differences with DAO, 661

forms, binding to, 384–386

vs. Data Access Object (DAO) model, 161, 659

forms and ADO Recordsets, 662

libraries to add, 660

program vs. services, 484

references and, 163

sample databases, 660

SQL Server, working with. See also SQL Server

command objects, 666

connecting to, 664

connection strings, 663

connection time, 665

MARS and connections, 669–671

MARS and performance, 668

stored procedures, 666

ADOX,	understanding,	 672

ADP	(Access	Data	Project)

ADO and, 659

query conversion, 563

strengths and weaknesses, 564

understanding, 561–563

Symbols
“&”	(ampersand)	character,	using,	 86,	92

/Decompile	command	line	switch,	 45

@@IDENTITY,	SCOPE_IDENTITY()	and	IDENT_CURRENT	in	
T-SQL,	 520

“*”	(star)	character,	 97

“_”	(underbar)	character,	using,	 86

a
abstract	and	implementation	classes

abstract classes, 370

hybrid abstract and non-abstract classes, 376–378

implementing an abstract class, 373–376

implements classes, 372

libraries, benefits of constructing, 370

object types, establishing with TypeOf, 375

ACCDE	files,	protecting	designs	with,	 655

Access	2010

Access Basic, 114

Access Connectivity Engine (ACE), 659

earlier versions of, 38

locking down, 154

Access	collections	vs .	VBA	collection	classes,	 346

Access	Web	Databases,	linking

Access database to an Access Web Database, 431

process of, 430

relinking, 432–434

Activate	and	Deactivate	events,	 255

ActiveForm	and	ActiveControl,	working	with,	 151

ActiveX	controls

Slider control, adding, 386–388

TreeView control, 295–300

UpDown or Spin control, 388–390

676	 AfterDelConfirm	event

AfterDelConfirm	event,	 268

AfterInsert	and	BeforeInsert	events,	 265–267

AfterUpdate	event,	 276

AllItems	method,	 349

“&”	(ampersand)	character,	using,	 86

Append	Only	memo	fields,	 130–132

application	development

application navigation

combo and list boxes, 637

custom interfaces for users, 637

DoCmd object, 140

forms, opening multiple copies of, 637

interface design decisions, 632

locking down an application, 654

Maximize, Popup, Modal, and MoveSize Proper-
ties, 638

the Navigation Control, 634

push buttons on a form, 632

the ribbon, 636

Switchboard Manager, 633

Tab controls, 636

the TreeView control, 635

completing an application

error handling, 654

IntelliSense, using in a standard module, 654

locking down Access, 154

progress bars, 653

splash screens, 653

deploying applications

ACCDE files, protecting your design with, 655

DSNs and relinking applications, 656

references, depending on, 656

Runtime deployment, 655

single and multiple application files, 655

ribbon design

Backstage view, 647

custom ribbon, loading, 649

default ribbon, setting, 644

elements of a ribbon, 641

for forms and reports, 648

the GetEnabled callback, 642

images for, 644

Office 2007 and the file menu, 647

the OnAction callback, 642

the OnLoad callback, 642

tab visibility and focus, dynamically changing, 646–
648

tips, 639

the USysRibbons table, 640

sample databases, 631

32-bit and 64-bit environments, 649

updating applications, 656

Windows API, using, 651–653

Windows Registry, working with, 650

ApplyFilter	event,	 247

arrays

determining the dimensions of, 64

dynamic arrays, 61

multi-dimensional arrays, 62–64

option base, 65

reading records into, 215

type structures, 65

working with, 59–61

ASC	function,	 93,	94

asynchronous	event	processing	and	RaiseEvent

ADO asynchronous execution class, 365–367

BatchProcessing SQL Server form, 368–370

stored procedures, 364

WithEvent processing, 363

asynchronous	operations	in	ADO,	 662

attachments

copying between tables and records, 204–206

data types, limitations, 197

fields in Recordsets, 197–200

importing, using LoadFromFile method, 203

planning for upsizing to SQL Server, 548

authentication .	See	security

Azure .	See	SQL	Azure

B
backing	up	SQL	Azure	databases,	 603

Backstage	view,	in	application	development,	 647

base	class,	creating,	 354

BatchProcessing	SQL	Server	form,	 368–370

	 classes	 677

BeforeDelConfirm	event,	 268

BeforeInsert	and	AfterInsert	events,	 265–267

BeforeUpdate	event,	 262,	276

binary	transfer,	using	with	OLE	data,	 207–209

bookmarks

merging data with, 447–451

in Recordsets, 191

synchronizing, 249

Boolean	data,	planning	for	upsizing	to	SQL	Server,	 546

bound	forms,	 233,	243

boxed	grids,	creating	with	the	Print	event,	 327–329

breakpointing	code

breakpoint Step and Run commands, 26–29

changing code on-the-fly, 34

conditional Watch Expressions, adding, 32

Immediate window, working with, 33

methods for, 23–25

procedures, tracing with Call Stack, 30

Set Next command, 25

variables, displaying in the locals window, 29

Watching variables and expressions, 31

broken	references,	 48

BuildCriteria,	using	to	simplify	filtering,	 130

BuildingClasses .accdb,	sample	database,	 340

BuildingClassesAfterExportImport .accdb,	sample	
database,	 340

built-in	functions

ASC function, 94

date and time functions, 90–92

format function, 94

Mid string function, 95

string functions, 92

ByRef	and	ByValue	parameters,	defining,	 70–72

C
calculated	fields	in	Recordsets,	 210

callbacks

GetEnabled callback, 642

OnAction Callback, 642

OnLoad callback, 642

calling	procedures	across	forms,	 251–253

Call	Stack

displaying module linking with, 21

tracing procedures with, 30

camel	notation,	 109

Case	statements	in	SQL	Server,	 581

CAST	and	CONVERT,	using	in	T-SQL,	 518

Choose	statements,	 79

Chr	function,	 93

ClassAndForms .accdb	sample	database,	 381

classes

abstract and implementation classes

abstract classes, 370

hybrid abstract and non-abstract classes, 376–378

implementing an abstract class, 373–376

implements classes, 372

libraries, benefits of constructing, 370

object types, establishing with TypeOf, 375

advantages of, 339, 340

asynchronous event processing and RaiseEvent

ADO asynchronous execution class, 365–367

BatchProcessing SQL Server form, 368–370

stored procedures, 364

WithEvent processing, 363

binding forms and

binding to an Active Data Object Recordset, 384

binding to a Data Access Object Recordset, 383

class modules

creating, 341

locating form or report code in, 7

Err.Raise and, 122

friend methods, 378

hierarchy of, creating

base class, creating, 354

derived classes, 355

inheritance and polymorphism in classes, 356

producing and consuming events, 364

sample database, 359

tabs, dynamically loading

class module, creating, 341

collection of objects, 345

improving, 340

Initialization and Termination events, 344

678	 classes	(cont.)

classes (cont.)

tabs, dynamically loading (cont.)

Let and Get object properties, 342

New and Set, creating an object with, 343

simplifying the application code with classes, 352

terminology of, 353

VBA collection classes

vs. Access collections, 346

adding AllItems to, 349

creating, 346–348

exporting and re-importing the class, 349

using with the Dynamic Tab, 351

WithEvents processing

control events, handling, 362

form events, handling, 360–362

Click	and	DblClick	events,	 275

client-side	cursors,	 661

cloning	and	copying	Recordsets,	 212–215

Close	events,	 248

cloud	computing .	See	SQL	Azure

Cloud	to	Cloud	(CTP1)	synchronization	service,	 604

COALESCE	function,	 623

code .	See also	debugging

calling directly from a control’s event, 152

calling public code on a form, 252

changing on-the-fly, 33

compiling in VBA, 44

control events, writing code behind, 274

line continuation in VBA, 86

quality of, improving with constants, 49–51

simplifying with classes, 352

CodeDB,	 175,	176–179

code,	maintainable

Access document objects, naming, 108

database fields, naming, 109

indenting code, 113

naming conventions, 113

unbound controls, naming, 110

using the Me object to reference controls, 113

variables in code, naming, 110–112

CodePlex	website,	 495

collections

Containers collections, 222

Errors collection, 171–173

objects and, 104, 345

TableDefs collection and indexes, 179–182

columns

adding, in T-SQL, 503

adding, with a default in T-SQL, 503

column data type, changing in T-SQL, 503

ColumnHistory memo fields, 130–132

column name, changing in T-SQL, 503

column visibility, controlling, 255

combo box columns, 282

combo	boxes

combo box columns, 282

data, synchronizing in controls, 278–280

defaults and the drop-down list, 279

and list boxes, in application development, 637

multi-value fields, 283

reducing joins with, 333

RowSource Type, 280–282

Table/Query editing, 285

Value List editing, 284

comments,	adding	in	VBA,	 40

compiler	directives

conditional compilation, 45

early and late binding, 438–440

32-bit or 64-bit, 650

conditional	statements	and	program	flow

Choose statements, 79

Do While and Do Until loops, 82–84

Exit statements, 84

For and ForEach loops, 81

GoTo and GoSub statements, 86

If...Then...Else... statements, 77

IIF statements, 78

line continuation, 86

Select Case statements, 80

TypeOf statements, 80

the With statement, 85

conditional	Watch	Expressions,	adding,	 32

	 currency,	in	upsizing	to	SQL	Server	 679

conflict	resolution,	in	SQL	Azure	data,	 613

constants	and	variables .	See also	variables

arrays

determining the dimensions of, 64

dynamic arrays, 61

multi-dimensional arrays, 62–64

option base, 65

type structures, 65

working with, 59–61

code quality, improving with constants, 49–51

Enum keyword, 51

global variables, 56

NULL values, IsNull and Nz, 53–55

scope rules, 58

static variables, 55

type structures, 65

variables and database field types, 52

variable scope and lifetime, 57–59

consuming	events,	 364

contacts	in	Outlook,	adding,	 476

Containers	and	Documents

Container usage, table of, 223

investigating and documenting in DAO, 222–224

controls

ActiveX controls

dialog box, 297

referring to methods and properties in, 304

slider control, adding, 386–388

UpDown or Spin control, 388–390

combo boxes

combo box columns, 282

data, synchronizing in controls, 278–280

defaults and the drop-down list, 279

multi-value fields, 283

RowSource Type, 280–282

Table/Query editing, 285

Value List editing, 284

control events

AfterUpdate event, 276

BeforeUpdate event, 276

bound or unbound, 233

calling code directly from, 152

Click and DblClick events, 275

GotFocus and LostFocus events, 277

handling, 362

writing code behind, 274

Control Wizard, 274

defaults for, 274

dynamically loading tabs, improving, 340

list boxes

multiple selections, 286–290

two list boxes, multiple selections with, 290–292

using as a subform, 292–295

sample databases, 273

tab controls

dynamically loading tabs, 314–320, 340–355

OnChange event, 314

referring to controls in, 314

refreshing between tabs and controls, 311–313

Tag property, 316

TreeView control

ActiveX controls, 304

adding, 296–298

in application development, 635

drag and drop, 303–307

graphics, adding, 301–304

nodes, adding, 309

nodes, expanding and collapsing, 303

nodes with recursion, deleting, 307–309

parent/child-related data, loading, 300

populating the tree, 298–301

recursive VBA code, writing and debugging, 308

sample database example, 295

using for filtering, 236–242

CONVERT,	using	in	T-SQL,	 518

copying	SQL	Azure	databases,	 603

CountryLibrary .accdb	database,	 176

CreateObject	vs .	New,	 438–440

CROSSTAB	queries	in	SQL	Server,	 509–511

CTP1	synchronization	service,	 604

CTP2	synchronization	service,	 604

currency,	in	upsizing	to	SQL	Server,	 548

680	 CurrentDB

CurrentDB,	 175

Current	event,	 326

CurrentProject	and	CurrentData	objects

dependency checking and embedded macros, 138

Form Datasheet View properties, changing, 136

object dependencies, 137

version information, retrieving, 135

cursors .	See also	Recordsets

DAO, differences with, 661

location, type, and lock type, 662

custom	interfaces	for	users,	in	application	
development,	 637

custom	ribbon,	loading,	 649

cycles	and	multiple	cascade	paths,	converting	for	SQL	
Server,	 549

D
DAO	(Data	Access	Object)	model

vs. ActiveX Data Objects (ADO), 161, 659

connections, management of, 671

databases, working with

CodeDB, 176–179

CurrentDB, DBEngine, and CodeDB, 175

DAO and ADO libraries and, 164

Database Object, 173

Data Definition Language (DDL), 183

datasheet properties, managing, 184–186

DBEngine Object, 165

Errors collection, 171–173

relationships, creating, 186

TableDefs collection and indexes, 179–182

transactions, 166–170

Workspace Object, 165

objects, investigating and documenting

Containers and Documents, 222–224

object properties, 224

queries

QueryDef parameters, 220–222

QueryDefs and Recordsets, 218

QueryDefs, creating, 218–220

temporary QueryDefs, 216–218

working with, 215

Recordsets

adding, editing, and updating records, 193

Attachment fields, 197–200

attachments, copying, 204–206

Bookmarks, 191

calculated fields, 210

cloning and copying, 212–215

Delete, 202

field syntax, 191

Filter and Sort properties, 193

forms, binding to, 383

information, displaying, 200

LoadFromFile method, 203

Multiple-Values lookup fields, 194–197

OLE Object data type, 206–209

reading records into an array, 215

SaveToFile method, 202

searching, 188

types of, 188

references and, 163

sample databases

DAOExamples.accdb, 162

DocDAO.accdb, 224

Find_IT.accdb, 225–227

understanding, 162

VBA libraries, techniques when writing, 177

data

data exchange, using DoCmd object, 142

data files, single and multiple application, 655

data types

converting for SQL Server, 547

mapping in SSMA, 567

naming conventions for, 112

text data types and UNICODE, 544

external, linking to, 430–434

extracting from Outlook, 472–475

merging with bookmarks, 447–451

minimizing, for display in forms, 485

multi-value data, planning for upsizing to SQL Server, 548

parent/child-related data, loading, 300

synchronizing in controls, 278–280

	 debugging	 681

Data	Access	Object	model .	See	DAO	(Data	Access	Object)	
model

databases .	See also	sample	databases;	upsizing	databases

Access Web Databases, linking

Access database to an Access Web Database, 431

process of, 430

relinking, 432–434

changing structure of, in SQL Azure, 612

database splitting, 396, 397

database systems, moving data between, 91

DFirst and DLast functions in, 100

fields, naming conventions for, 109

in SQL Server. See also SQL Server

database diagrams, 496–498

demo database script, running, 493

file locations, 488

system databases, 493

SQL Azure databases. See also SQL Azure

backing up and copying, 603

creating, 590

SQL databases, migrating using SQL Azure

sequence of steps, 596

set of tables, creating, 597–599

SQL Import/Export features when transferring to SQL
Azure, 602

SQL Server Import and Export Wizard and UNICODE
data types, 598

SSMA (SQL Server Migration Assistant), 598

transferring data with the SQL Server Import and
Export Wizard, 599–603

variables and database field types, 52

working with in DAO

CodeDB, 176–179

CurrentDB, DBEngine, and CodeDB, 175

DAO and ADO libraries and, 164

Database Object, 173

Data Definition Language (DDL), 183

datasheet properties, managing, 184–186

DBEngine Object, 165

Errors collection, 171–173

relationships, creating, 186

sample databases, 223–226

TableDefs collection and indexes, 179–182

transactions, 166–170

Workspace Object, 165

Data	Definition	Language	(DDL),	 183

Data	Link,	setting	advanced	properties,	 464

datasheet	properties,	managing,	 184–186

Datasheet	view,	 261

Data	Source	Name	(DSN) .	See	DSN

Data	Sources,	using,	 468–471

Data	Sync	Agent	in	SQL	Azure

conflict resolution in data, 613

data and database structure, changing, 612

database synchronization and triggers, 613

loading and installing, 605–609

Sync Groups and Sync Logs, 610–612

synchronization services, 604

table structure, changes to, 613

Data	Type	Mapping,	changing	in	SQL	Azure,	 627

dates

Date and Time data, converting for SQL Server, 544–546

date and time functions, 90–92

date values, rules for in Where clauses, 97

default, in data storage systems, 91

DBEngine	object,	 165,	175

DblClick	event,	 275

dbo	prefixes,	renaming,	 417

dbSeeChanges	constant	in	SQL	Server,	 574

DDL,creating	relationships	with,	 187

Deactivate	and	Activate	events,	interacting	with,	 255

debugging

breakpointing code

breakpoint Step and Run commands, 26–29

changing code on-the-fly, 34

conditional Watch Expressions, adding, 32

Immediate window, working with, 33

methods for, 23–25

procedures, tracing with Call Stack, 30

Set Next command, 25

variables, displaying in the locals window, 29

watching variables and expressions, 31

Debug Assert command, 23

682	 debugging	(cont.)

debugging	(cont.)

forms

application and VBA code windows, 6–8

database sample, 4

VBA editor, entering, 5

modal forms, 38

modules and procedures

debug commands, 23

debugging code in modules, demonstration of, 20–22

editing environment, accessing, 8–10

functions, executing, 15

modules, creating, 10

procedures, creating, 11

searching code, 19

split window, 17–19

subroutines, executing, 13–15

viewing and searching code, 16

Object Browser and Help system

Help system, configuring, 35

Object Browser, working with, 36

VBA code, recursive, 308

decimals

converting for SQL Server, 547

precision of, in DAO, 183

default	ribbon,	setting,	 644

deleting

Delete events, 267

DELETE query in SQL Server, 513

Recordsets, 202

demo	database	script,	running,	 495

dependency	checking,	and	embedded	macros,	 138

deploying	applications

ACCDE files, protecting your design with, 655

DSNs and relinking applications, 656

references, depending on, 656

Runtime deployment, 655

single and multiple application files, 655

derived	classes,	 355

developing	applications .	See	application	development

developing	with	SQL	Server

Case statements, 581

complex queries, handling, 579–582

dbSeeChanges constant, 574

efficient SQL, tips for, 585

the MSysConf table, 587

Pass-Through queries, 575–578

performance and execution plans, 582–585

SQL Server Profiler, 586

stored procedures and temporary tables, 578

stored procedures, using advanced features in, 578

DFirst	and	DLast	functions,	 100

Dialog	forms,	OpenArgs	and,	 121

diary	entries,	adding,	 476

DisplayAttachmentInfo	subroutine,	 200

displaying	records

bound and unbound forms, 233

modal and pop-up forms, 234

opening and loading forms, 235

Refresh, Repaint, Recalc, and Requery commands, 250

DISTINCT	and	DISTINCTROW,	 234

DocADOX .accdb	sample	database,	 660

DocDAO .accdb	sample	database,	 224

DoCmd	object

in application development, 140

application navigation, 140

data exchange, 142

environment, controlling, 138

size and position, controlling, 139

DoCmd .OpenForm	command,	 6

DoEvents	command,	 103

domain	functions

description of, 95

Where clauses, constructing, 97

Do	While	and	Do	Until	loops,	 82–84

drag	and	drop	in	TreeView	control,	 303–307

drill-down	reports,	creating,	 326

driver	limitations	with	VARCHAR(MAX),	 548

DSN	(Data	Source	Name)

creating, 410–413

Machine DSNs, 410

and relinking applications, 656

in SQL Azure, 420–423

dynamic	arrays,	 61

Dynamic	Tab,	and	using	classes,	 351

Dynaset,	 189

	 Exit	statements	 683

e
Early	Binding	vs .	Late	Binding,	 438–440

Editing	and	Undo	on	records

BeforeInsert and AfterInsert events, 265–267

BeforeUpdate and AfterUpdate events, 262

Delete events, 267

Error event, 269

KeyPreview and Key events, 268

Locking and Unlocking controls, 264

in Recordsets, 193

saving records, 270

edits,	multiple	using	transactions,	 170

ellipse	button,	 274

email

creating, in Outlook, 475

writing to Access, from Outlook, 477–479

embedded	macros,	dependency	checking	and,	 138

embedded	quotes,	SQL	and,	 98–101

Employees_be .accdb	sample	database,	 396

Encapsulation,	 353

Enum	keyword,	 51

Err	object,	 117,	172

Error	event,	 269

error	handling

in application development, 654

in T-SQL, 523–525

in VBA

Err object, 117

Err.Raise, 122

general purpose error handler, developing, 118–121

how errors occur, 115

On Error GoTo, 118

On Error Resume Next, 116

OpenArgs and Dialog forms, 121

subclassing form events, 362

error	messages,	 172

Errors	collection	in	DAO,	 171–173

Err .Raise,	 122

Eval	function,	 102

events

AfterDelConfirm event, 268

ApplyFilter event, 247

BeforeDelConfirm event, 268

BeforeInsert and AfterInsert events, 265–267

BeforeUpdate and AfterUpdate events, 262

Close events, 248

control events

AfterUpdate event, 276

BeforeUpdate event, 276

bound or unbound, 233

calling code directly from, 152

Click and DblClick events, 275

GotFocus and LostFocus events, 277

writing code behind, 274

Current event, 251

Deactivate and Activate events, 255

Delete events, 267

Error events, 269

Initialization and Termination events, 344

KeyPreview and Key events, 268

Mouse events, 260

OnChange event, 314

Open event, 235

producing and consuming events, 364

report event sequences

boxed grids, creating with the Print event, 327–329

drawing graphics and, 328

drill-down reports and current events, creating, 326

typical, 324–326

Timer event, 255–260

Unload and Close events, 248

ExcelAnalysis .accdb	sample	database,	 437

Excel,	Microsoft

connecting Access to

Data Link advanced properties, setting, 464

key objects in, 451

linking to external data, planning for, 466

MS Query and Data Sources, using, 468–471

QueryTables and ListObjects, 470

reporting with, 460–468

spreadsheets, reading data from, 459

spreadsheets, writing data to, 452–459

files, linking to, 406

Exit	statements,	 84

684	 exporting

exporting

migrating SQL databases, 598, 602

VBA collection classes, 349

expressions

conditional Watch Expressions, adding, 32

Expression Builder

invoking, 133

locating, 38

working with, 144

Watches window, 31

external	data,	linking	to,	 430–434

extracting	information	from	Outlook,	 472–475

F
fields

calculated fields in Recordsets, 210

field syntax in Recordsets, 191, 192

mismatched, converting for SQL Server, 550

Multiple-Values lookup fields, 194–197

multi-value fields connected to a combo box, 283

naming conventions for, 109

required fields, converting for SQL Server, 549

files,	opening,	 442

filtering

forms

ApplyFilter event, 247

calling procedures across forms, 251–253

RecordsetClone, 248

Unload and Close events, 248

using another form, 245–247

using controls, 245–251

using filter property, 243–245

simplifying by using BuildCriteria, 130

using controls, 236–242

FilterOnLoad	property,	 235

Filter	property,	 193,	243–245

Find	and	FindNext	methods,	 189

Find	operations,	 474

firewall	settings	in	SQL	Azure,	 591

floating	point	numbers,	converting	for	SQL	Server,	 547

flow,	program .	See	conditional	statements	and	program	
flow

focus	events,	 277

For	and	ForEach	loops,	 81

foreign	keys,	partially	completed,	 550

Format	event,	layout	control	and,	 330

Format	function,	 94

Format	string	function,	 93

Form	Datasheet	View	properties,	changing,	 136

forms

and ADO Recordsets, 662

BatchProcessing form, 368–370

binding forms and

binding to an Active Data Object Recordset, 384

binding to a Data Access Object Recordset, 383

bound or unbound, 233

calling public code on, 252

closing, 248

Continuous forms, controlling column visibility in, 255

control events and

AfterUpdate event, 276

BeforeUpdate event, 276

Click and DblClick events, 275

GotFocus and LostFocus events, 277

writing code behind, 274

debugging code

application and code windows, 6–8

the class module, locating code in, 7

database sample, 4

modal forms, 38

VBA editor, entering, 5

Dialog forms, OpenArgs and, 121

driving reports from, 331–333

Editing and Undo on records

BeforeInsert and AfterInsert events, 265–267

BeforeUpdate and AfterUpdate events, 262

Delete events, 267

Error event, 269

KeyPreview and Key events, 268

Locking and Unlocking controls, 264

saving records, 270

filtering

ApplyFilter event, 247

calling procedures across forms, 251–253

	 functions	 685

RecordsetClone, 248

Unload and Close events, 248

using another form, 245–247

using controls, 236–242

using filter property, 243–245

form events

handling, 360–362

subclassing, 362

frmCustomers form, 232

linking code to, in modules, 22

minimizing data display in, 485

opening

multiple copies of, 637

multiple instances of a form, 381–383

using DoCmd.OpenForm command, 6

using a Where clause, 246

properties and

FilterOnLoad, 235

OrderByOnLoad, 235

push buttons, in application development, 632

records, displaying

bound and unbound forms, 233

modal and pop-up forms, 234

opening and loading forms, 235

Refresh, Repaint, Recalc, and Requery commands, 250

records on forms, interacting with

Current event, 251

Deactivate and Activate events, 255

Mouse events, 260

Timer Interval property of the Timer event, set-
ting, 255–260

ribbon design for, 648

sample databases, 231

size and position, controlling

DoCmd object, 139

tabs, dynamically loading

class module, creating, 341

collection of objects, 345

Initialization and Termination events, 344

Let and Get object properties, 342

New and Set, creating an object with, 343

options for, 314

pages, loading, 315–318

pages, unloading, 320

related pages, dynamically loading, 319

simplifying the application code with classes, 352

Forms	and	Reports	collections

Access Objects, creating in code, 149

controls on a Subform, referencing, 145–148

Expression Builder, working with, 144

VBA class module, syntax for, 147

working with, 143

friend	methods,	 378

Full	Recovery	Model,	in	SQL	Server,	 491

functions

built-in functions

ASC function, 94

date and time functions, 90–92

format function, 94

Mid string function, 95

string functions, 92

in T-SQL, 519

changing to subroutines, and vice versa, 14

COALESCE function, 623

DFirst and DLast functions, 100

domain functions

description of, 95

Where clauses, constructing, 97

the Eval function, 102

executing, 15

Left, Right, Mid string functions, 93

Len string function, 93

MsgBox function, 14

and procedures

ByRef and ByValue parameters, defining, 70–72

calling, variations on standard rules for, 66

modules and class modules, organizing code in, 76

ParamArray qualifier, 75

parameters, Optional and Named, 73

procedures, private and public, 72

subroutines and functions, default referencing of
parameters in, 71

subroutines, managing code with, 67–70

in VBA, 13

686	 functions	(cont.)

functions	(cont.)

returning variant or string data, 93

Shell and Sendkeys, 102

table-valued functions, 535

User-Defined Functions (UDFs) in SQL Server, 534–536

VBA, using in Queries, 101

G
GetEnabled	callback,	 642

GetObject	keyword,	 440–442

Get	object	properties,	 342

global	variables,	 56

GotFocus	and	LostFocus	events,	 277

GoTo	and	GoSub	statements,	 86

graphical	interface

of SQL Azure, 595

of SQL Server, 505

graphics

adding to TreeView control, 301–304

drawing, and report event sequences, 328

grids,	creating	with	the	Print	event,	 327–329

GUI	(graphical	user	interface),	changing	table	designs	
with,	 500–502

h
Help	system,	configuring,	 35

hybrid	abstract	and	non-abstract	classes,	 376–378

hyperlinks,	converting	for	SQL	Server,	 547

i
@@IDENTITY,	SCOPE_IDENTITY()	and	IDENT_CURRENT	in	

T-SQL,	 520

Identity	property,	using	in	SQL	Server	tables,	 504

If . . .Then . . .Else . . .	statements,	 77

Ignore	NULLs,	in	SQL	Server,	 553

IIF	statements,	 78

images	for	ribbon	design,	 644

IMAGE,	VARBINARY	(Max),	and	OLE	Data,	converting	for	
SQL	Server,	 547

Immediate	window,	working	with,	 33

implementation	classes,	 372 .	See also	abstract	and	
implementation	classes

importing

data from SQL Azure, 603

migrating SQL databases, 598, 602

VBA collection classes, 349

indenting	code,	 113

indexes,	TableDefs	collection	and,	 179–182

INFORMATION_SCHEMA	views,	in	SQL	Server,	 494

inheritance	in	classes,	 356

Initialization	event,	 344

INSERT	and	INSERT	INTO	queries	in	SQL	Server,	 515–517

inserted	OLE	documents,	 209

installing	SSMA,	 564

instances	in	SQL	Server,	 491

Instnwnd .sql	sample	database,	 396

Instnwndtesting .sql	sample	database,	 396

InStr,	InStrReverse	string	functions,	 93

integer	numbers,	converting	for	SQL	Server,	 547

interfaces	for	users,	in	application	development,	 632,	637,	
638

IsBroken,	references,	 48

IsNothing,	IsEmpty,	and	IsObject,	 106

isolation	levels	of	transactions,	in	SQL	Server,	 532

J
JET	(Joint	Engine	Technology),	 659

Join	string	function,	 93

K
KeyPreview	and	Key	events,	 268

keys,	partially	completed	foreign,	 550

L
language	settings	in	VBA

comments, adding, 40

compiling code, 44

conditional compilation, 45

/Decompile command line switch, 45

Option Compare, selecting, 43

options, setting explicitly, 41

references, 46–49

Visual Basic for Applications Extensibility, 48

Late	Binding	vs .	Early	Binding,	 438–440

layout	control

report grouping, programming, 333

using the Format event, 330

	 locking	down	an	application	 687

layout	control	of	reports

driving reports from a form, 331–333

during printing, 330

joins, reducing with a combo box, 333

ParamArray, packing address information with, 334

printers, control of, 335

Left,	Right,	Mid	string	functions,	 93

Len	string	function,	 93

Let	object	properties,	 342

libraries

ADO libraries to add, 660

benefits of constructing, 370

DAO and ADO libraries and, 164

VBA libraries, techniques when writing, 177

Linked	Table	Manager,	 398

linked	TableName,	 406

linking

Access to Access

database splitter, using, 397

Linked Table Manager, 398

linked table name and SourceTableName, 406

relinking, automating, 398–406

relinking tables, essential details for, 400

splitting databases, 396

temporary tables and SQL Server, 397

Access Web Databases

Access database to an Access Web Database, 431

process of, 430

relinking, 432–434

to Excel files

Data Link advanced properties, setting, 464

key objects in, 451

linking to external data, planning for, 466

MS Query and Data Sources, using, 468–471

QueryTables and ListObjects, 470

reporting with, 460–468

spreadsheets, reading data from, 459

spreadsheets, writing data to, 452–459

and text files, 406

external data links, planning for, 466

to SharePoint lists

getting started, 426–428

relinking SharePoint lists, 428

to SQL Azure

connecting to SQL Azure, 424–426

DSN, 420–423

security stored procedures, support for, 421

to SQL Server

DSN (Data Source Name), creating, 410–415

getting started, 407

sample database, setting up, 407–409

script files, 409

Server driver, choosing, 412

Server instances, 408

Windows vs. SQL Server authentication, 414

to SQL Server tables

getting started, 416

linked tables, refreshing, 417

linked tables, renaming to remove the dbo_prefix, 417

updateability and Views, 419

views in SQL Server, connecting to, 418

views in SQL Server, refreshing, 419

to Text Files, 407

list	boxes

in application development, 637

key properties when working with multiple selections
in, 287

multiple selections, 286–290

selected choices, working with, 289

two list boxes, multiple selections with, 290–292

using as a subform, 292–295

ListObjects,	 470

lists

drop-down list, displaying, 279

SharePoint lists, 426–428

loading

LoadFromFile method, 203

and opening forms, 235

Locals	window,	displaying	variables	in,	 29

Locking	and	Unlocking	controls,	 264

locking	down	an	application,	 654

688	 Log	files	in	SQL	Server

Log	files	in	SQL	Server,	 490

loops

Do While and Do Until loops, 82–84

For and ForEach loops, 81

LostFocus	event,	 277

M
Machine	DSNs,	 410

macros

and VBA, evolution of, 114

converting to VBA, 115

embedded, dependency checking and, 138

Mail	Merge,	 451

Maintenance	Plan,	for	SQL	Express,	 488

Management	Studio,	using,	 592–594

MARS	(Multiple	Active	Result	Sets)

and connections in SQL Server, 669–671

and performance, 668

master	database,	in	SQL	Server,	 493

Maximize	property,	 638

MDI .	See	Multiple	Document	Interface	(MDI)

Memo	data,	converting	for	SQL	Server,	 547

Me	object,	to	reference	controls,	 113

Microsoft	Excel .	See	Excel,	Microsoft

Microsoft	Outlook .	See	Outlook,	Microsoft

Microsoft	SQL	Azure .	See	SQL	Azure

Microsoft	Word .	See	Word,	Microsoft

Mid	string	function,	 95

migrating	SQL	databases	using	SQL	Azure

sequence of steps, 596

set of tables, creating, 597–599

SQL Import/Export features when transferring to SQL
Azure, 602

SQL Server Import and Export Wizard and UNICODE data
types, 598

SSMA (SQL Server Migration Assistant), 598

transferring data with the SQL Server Import and Export
Wizard, 599–603

Migration	Wizard,	 565–567

missing	references,	 48

modal	forms

debugging, 38

and pop-up forms, 234

Modal	property,	 638

model	database,	in	SQL	Server,	 493

modules

class module, creating, 341

naming conventions for, 109

standard modules, using Intellisense in, 654

modules	and	procedures

the class module, locating code in, 7

code types for, 76

debug commands, 23

debugging code

debug commands, 23

debugging code in modules, demonstration of, 20–22

editing environment, accessing, 8–10

functions, executing, 15

in modules, 10, 20–22

procedures, creating, 11

searching code, 19

split window, 17–19

subroutines, executing, 13–15

viewing and searching code, 16

editing environment, accessing, 8–10

functions, executing, 15

modules and class modules, organizing code in, 76

modules, creating

how to, 10

linking code to forms and reports, 22

naming conventions, 21

scope rules and, 58

searching code, 19

split window, 17–19

subroutines, executing, 13–15

viewing and searching code, 16

Mouse	events,	interacting	with,	 260

MousePointer	shape,	changing,	 150

msdb	database,	in	SQL	Server,	 493

MsgBox	function,	 14

MS	Query,	 468–471

MSysASO	system	table,	relinking,	 434

MSysConf	table	in	SQL	Server,	 587

multi-dimensional	arrays,	 62–64

	 objects	and	collections	 689

Multiple	Active	Result	Sets .	See	MARS	(Multiple	Active	
Result	Sets)

multiple	cascade	paths,	converting	for	SQL	Server,	 549

Multiple	Document	Interface	(MDI),	 638

Multiple-Values	lookup	fields,	 194–197

multi-tenanted	applications	in	SQL

application tables and views, 619–622

optional parameters, creating, 623

overview, 617

security, managing, 623

user tables and views, 617–619

multi-user	interaction,	simulating	with	transactions,	 531

Multi-value	data,	and	upsizing	to	SQL	Server,	 548

n
Named	and	Optional	parameters,	 73

naming	conventions

Access document objects, 108

database fields, 109

the Me object to reference controls, 113

for procedures in modules, 21

unbound controls, 110

variables in code, 110–112

navigation	experience	of	users,	 140

navigation,	in	application	development

combo and list boxes, 637

custom interfaces for users, 637

DoCmd object, 140

forms, opening multiple copies of, 637

interface design decisions, 632

locking down an application, 654

the Navigation Control, 634

push buttons on a form, 632

the ribbon, 636

Switchboard Manager, 633

Tab controls, 636

the TreeView control, 635

nesting	transactions	in	SQL	Server,	 533

New	keyword,	 105,	343

nodes

adding to trees, 309

expanding and collapsing, 303

with recursion, deleting, 307–309

non-abstract	classes,	hybrid,	 376–378

NorthwindAzure .accdb	sample	database,	 396

NULL	values

and IsNull and Nz, 53–55

managing, with multiple controls for filtering, 242

in SQL Server, 553

string expressions and, 92

numbers

converting integers for SQL Server, 547

real numbers, decimals, and floating point numbers,
converting for SQL Server, 547

o
Object	Browser,	working	with,	 36,	38

objects

the class object, instantiating, 353

command objects in ADO, 666

creating

in Outlook, 475–477

using New and Set keywords, 343

Database Object in DAO, 173

DBEngine object, 165

Excel, key objects in, 451

investigating and documenting in DAO

Containers and Documents, 222–224

object properties, 224

Let and Get object properties, 342

object models and

Early vs. Late Binding and CreateObject vs. New, 438–
440

existing files, opening, 442

GetObject keyword, 440–442

object types, establishing with TypeOf, 375

Recordsets vs. Recordset2 objects, 188

Word object model, key objects in, 443

Workspace object, 165

objects	and	collections

CurrentProject and CurrentData objects

dependency checking and embedded macros, 138

Form Datasheet View properties, changing, 136

object dependencies, 137

properties and collections of, 134

version information, retrieving, 135

690	 objects	and	collections	(cont.)

objects	and	collections	(cont.)

description of, 103

the DoCmd object

application navigation, 140

data exchange, 142

the environment, controlling, 138

size and position, controlling, 139

Forms and Reports collections

Access Objects, creating in code, 149

controls on a Subform, referencing, 145–148

Expression Builder, working with, 144

VBA class module, syntax for, 147

working with, 143

IsNothing, IsEmpty, and IsObject, 106

object methods and properties

ColumnHistory and Append Only memo fields, 130–
132

the Expression Builder, invoking, 133

filtering, simplifying by using BuildCriteria, 130

the Run method, 128

the RunCommand Method, 129

TempVars, examining, 132

object variables, 105

Screen Object

ActiveForm and ActiveControl, working with, 151

control’s events, calling code directly from, 152

MousePointer shape, changing, 150

user interface, enhancing

locking down Access, 154

Office FileDialog, selecting files with, 157–159

progress bars, custom, 156

Setting and Getting options, 152–154

SysCmd, monitoring progress with, 155

ODBC	drivers,	 663

OfficeApplications .accdb	sample	database,	 437

Office	FileDialog,	selecting	files	with,	 157–159

Office,	Microsoft .	See also	specific	Office	applications

code to launch Office applications, 438

Office 2007 and the file menu, 647

Offline	Devices	(CTP2)	synchronization	service,	 604

OLE	Data,	converting	for	SQL	Server,	 547

OLEDB	providers,	 663

OLE	Object	data	type

advantages of, 206

binary transfer, using, 207–209

documents, inserted, 209

importing and exporting OLE objects, 206

OnAction	Callback,	 642

OnChange	event,	 314

On	Error	GoTo	mechanism,	 118

On	Error	Resume	Next	technique,	 116

OnLoad	callback,	 642

On-premise	to	Cloud	(CTP2)	synchronization	service,	 604

OOP	(Object-Oriented	Programming)

objects, working with, 340

supported in VBA, 339

Open	Args,	and	dialog	forms,	 112

opening

Excel, 454–456

existing files, 442

and loading forms, 235

Open event, 235

placeholder documents, 446

Optional	and	Named	parameters,	 73

Option	Compare,	selecting,	 43

Option	Explicit,	selecting,	 41

OrderByOnLoad	property,	 235

Orders_be .accdb	sample	database,	 396

OutlookContacts .accdb	sample	database,	 437

Outlook,	Microsoft

connecting Access to

creating objects in, 475–477

extracting information from, 472–475

Outlook object model, 471

Restrict and Find operations, 474

writing to Access from Outlook, 477–479

p
ParamArray

packing address information with, 334

qualifier, 75

parameters

creating, in a QueryDef, 221

creating optional, using the COALESCE function, 623

	 records,	displaying	 691

default values for optional parameters, specifying, 75

Optional and Named, 73

parent/child-related	data,	 300

Pass-Through	queries	in	SQL	Server,	 575–578

performance,	Multiple	Active	Result	Sets	and,	 668

periodic	execution	of	a	Timer	event,	 256

placeholder	documents

generating documents from, 444–446

opening, 446

polymorphism	in	classes,	 356

popup	and	modal	forms,	 234

Popup	property,	 638

Print	event,	creating	boxed	grids	with,	 327–329

printing

printer controls and settings, 335

reports, layout control during, 330

private	and	public	procedures,	 72

procedures

calling, across forms, 251–253

calling, variations on standard rules for, 66

changing types, 14

creating, 11

debug commands, 23

editing environment, accessing, 8–10

functions, executing, 15

in modules, naming conventions, 21

modules and class modules, organizing code in, 76

scope rules, 58

stored procedures

in ADO, 666

in SQL Server, 364, 578

subroutines, executing, 13–15

tracing, with Call Stack, 30

viewing and searching code, 16

producing	and	consuming	events,	 364

program	flow .	See	conditional	statements	and	program	
flow

progress	bars

custom, creating, 156

in application development, 653

properties

Filter and Sort, 193

Identity property, in SQL Server, 504

Let and Get object properties, 342

Managing Datasheet properties, 184–186

Maximize, Popup, Modal, and MoveSize Properties, 638

for multiple-selection list boxes, 287

Tag property, 316

push	buttons	on	a	form,	 632

Q
queries

complex queries, handling in SQL Server, 579–582

CROSSTAB queries in SQL Server, 509–511

DELETE query in SQL Server, 513

MS Query, using, 468–471

naming conventions for, 109

Pass-Through queries in SQL Server, 575–578

pasting links to, from Access into Word, 444

query conversion, 572–574

QueryDefs

creating, 218–220

parameters, 220–222

and Recordsets, 218

temporary, 216–218

QueryTables, 470

in SQL Server

DELETE query, 513

INSERT and INSERT INTO queries, 515–517

UPDATE query, 514

using VBA functions in, 100

working with, 215

quotation	marks,	embedded,	 98–101

r
RaiseEvent,	 363–368

random	autonumbers,	converting	for	SQL	Server,	 551–553

real	numbers,	decimals,	and	floating	point	numbers,	
converting	for	SQL	Server,	 547

Recalc,	Requery,	Refresh,	and	Repaint	commands,	 250

records,	displaying

bound and unbound forms, 233

modal and pop-up forms, 234

opening and loading forms, 235

Refresh, Repaint, Recalc, and Requery commands, 250

692	 records,	editing	and	undoing

records,	editing	and	undoing

BeforeInsert and AfterInsert events, 265–267

BeforeUpdate and AfterUpdate events, 262

controls, locking and unlocking, 264

deleting events, 267

multiple records, selecting for editing, 294

saving records, 270

RecordsetClone

synchronizing bookmarks with, 249

working with, 248

Recordsets .	See also	cursors

adding, editing, and updating records, 193

ADO, forms and, 662

Attachment fields, 197–200

attachments, copying, 204–206

Bookmarks, 191

calculated fields, 210

cloning and copying, 212–215

Delete, 202

field syntax, 191

Filter and Sort properties, 193

information, displaying, 200

LoadFromFile method, 203

Multiple-Values lookup fields, 194–197

OLE Object data type, 206–209

reading records into an array, 215

vs. Recordset2 objects, 188

SaveToFile method, 202

searching, 188

types of, 188

records	on	forms,	interacting	with

Current event, 251

Deactivate and Activate events, 255

Mouse events, 260

Timer Interval property of the Timer event,
setting, 255–260

Record	Source,	updateability	of,	 234

Recovery	Models	in	SQL	Server,	 490

recursion

deleting and node with, 307–309

in VBA code, writing and debugging, 308

references

in application development, 656

core libraries and, 46–49

refreshing	between	tabs	and	controls,	 311–313

Refresh,	Repaint,	Recalc,	and	Requery	commands,	 250

relationships

creating, in DAO, 186

creating, using DDL, 187

relinking	applications,	DSNs	and,	 656

relinking	databases

Access to Access, automating, 398–406

USysApplicationLog and MSysASO, 434

Web Databases, 432–434

Repaint,	Recalc,	Requery	and	Refresh	commands,	 250

Replace	string	function,	 93

replicated	databases	and	random	autonumbers,	
converting	for	SQL	Server,	 551–553

reports

with Excel linked to Access, 460–468

layout control

driving reports from a form, 331–333

during printing, 330

joins, reducing with a combo box, 333

ParamArray, packing address information with, 334

printers, control of, 335

report grouping, programming, 333

using the Format event, 330

linking code to, in modules, 22

opening, 323

report event sequences

boxed grids, creating with the Print event, 327–329

drawing graphics and, 328

drill-down reports and current events, creating, 326

typical, 324–326

Reports.accdb, sample database, 323

ribbon design, in application development, 648

sample reports, 323

side-by-side details, using multiple copies, 327

size and position, controlling, 139

Reports	collections

Access Objects, creating in code, 149

controls on a Subform, referencing, 145–148

	 SDI.	See	Single	Document	Interface	(SDI)	 693

Expression Builder, working with, 144

VBA class module, syntax for, 147

working with, 143

Requery,	Refresh,	Repaint,	and	Recalc	commands,	 250

Restrict	operations,	 474

Retail	&	Remote	Offices	(CTP2)	synchronization	
service,	 604

ribbon	design

in application development, Backstage view, 647

custom ribbon, loading, 649

default ribbon, setting, 644

elements of a ribbon, 641

for forms and reports, 648

the GetEnabled callback, 642

images for, 644

Office 2007 and the File menu, 647

the OnAction callback, 642

the OnLoad callback, 642

tab visibility and focus, dynamically changing, 646–648

tips, 639

the USysRibbons table, 640

RowSource	Type	combo	box,	 280–282

Row	Versioning	in	SQL	Server,	 554–556

rules,	scope,	 58

RunCommand	Method,	 129

Run	method,	 128

Runtime	deployment,	 655

S
sample	databases

AccessObjectModel.accdb, 128

ADOExamples.accdb, 660

for application development, 631

BuildingClasses.accdb, 340

BuildingClassesAfterExportImport.accdb, 340

ClassAndForms.accdb, 381

ClassesAndEvents.accdb, 359

Controls.accdb, 273

DAOExamples.accdb, 162

demo database script, 495

DocADOX.accdb, 660

DocDAO.accdb, 224

Employees_be.accdb, 396

FormExamples.accdb, 231

for Microsoft Office applications, 437

Instnwnd.sql, 396

Instnwndtesting.sql, 396

NorthwindAzure.accdb, 396

opening, 4

Orders_be.accdb, 396

Reports.accdb, 323

Sample_fe.accdb, 396

setting up in SQL Server, 407–409

for SQL Azure, 420

for SQL Server, 495

SQLServerExamples.accdb, 484

for upsizing databases from Access to SQL Server, 543

VBAEnvironment.accdb, 4

VBAExamples.accdb, 40

VBAFeaturesExamples.accdb, 89

WebDatabase.accdb, 396

sample	reports,	 323

SaveToFile	method,	 202

saving

records, 270

Save button, 7

Schemas

in SQL Server tables, 417

and synonyms in SQL Server, 556

using in SSMA, 567–570

scope

constants and, 51

scope rules, 58

SCOPE_IDENTITY()	in	T-SQL,	 520

Screen	Object

ActiveForm and ActiveControl, working with, 151

control’s events, calling code directly from, 152

MousePointer shape, changing, 150

script	files

in SQL Server, 506–509

in SQL Server tables, 499

SDI .	See	Single	Document	Interface	(SDI)

694	 searching

searching

code

for debugging modules and procedures, 16

in modules and procedures, 19

Recordsets, 188

security

planning and managing

firewall settings, working with SQL Azure, 591

in multi-tenanted applications, 623

security models in SQL Server, 615–617

in SQL Server

authentication, 538–540

surface area configuration, 536–538

Windows authentication, 541

Windows vs. SQL Server, 414

in SQL Azure, support for security stored procedures, 421

using Schemas and database roles to manage, 557

Select	Case	statements,	 80

selections,	multiple

key properties, 287

list boxes and, 286–290

with two list boxes, 290–292

SendKeys	action,	 102,	270

Set	keyword,	 343

Set	Next	command,	 25

Setting	and	Getting	options,	 152–154

SharePoint	lists,	linking	to,	 426–428

Shell	command,	 102

Single	Document	Interface	(SDI),	 638

64-bit	environments

ActiveX on, 386

in application development, 649

using the Windows API, 651–653

Slider	control,	adding,	 386–388

Sort	property,	 193

SourceTableName,	 406

Space	and	String	string	functions,	 93

Spin	control,	 388–390

splash	screens,	in	application	development,	 653

Split	string	function,	 93

splitting	databases

Database Splitter, using, 397

reasons for, 396

split	window	view,	 17–19

spreadsheets

reading data from, 459

writing data to

opening Excel, 454–456

when to use, 452–454

writing the data, 456–458

SQL .	See also	queries

Data Definition Language (DDL), 183

executing, different methods for, 217

splitting over multiple lines in VBA, 86

SQL	Azure

browser interface, developing with, 595

connecting to, 424–426

databases

backing up and copying, 603

creating, 590

sample databases, 420

Data Sync Agent

conflict resolution in data, 613

data and database structure, changing, 612

database synchronization and triggers, 613

loading and installing, 605–609

Sync Groups and Sync Logs, 610–612

table structure, changes to, 613

Data Type Mapping, changing, 627

DSN, 420–423

firewall settings, 591

graphical interface, 595

importing data from, 603

introduction to, 589, 590

Management Studio, using, 420, 592–594

migrating SQL databases

sequence of steps, 596

set of tables, creating, 597–599

SQL Import/Export features when transferring to SQL
Azure, 602

SQL Server Import and Export Wizard and UNICODE
data types, 598

SSMA (SQL Server Migration Assistant), 624

transferring data with the SQL Server Import and
Export Wizard, 599–603

	 SQL	Server.	See	also	upsizing	databases	 695

multi-tenanted applications, building

application tables and views, 619–622

optional parameters, creating, 623

overview, 617

security, managing, 623

user tables and views, 617–619

security, planning and managing

firewall settings, 591

for multi-tenanted applications, 623

security models, 615–617

security stored procedures, support for, 421

SQL Server Migration Assistant and Access to
Azure, 624–627

SQL	Express	and	SQL	Server	products,	 487–489

SQL	Server .	See also	upsizing	databases

ADO, working with

command objects, 666

connecting to SQL Server, 664

connection strings, 663

connection time, 665

MARS and connections, 669–671

MARS and performance, 668

stored procedures, 666

BatchProcessing SQL Server form, 368–370

database file locations, 489

description of, 485

developing with

Case statements, 581

complex queries, handling, 579–582

dbSeeChanges constant, 574

efficient SQL, tips for, 585

the MSysConf table, 587

Pass-Through queries, 575–578

performance and execution plans, 582–585

SQL Server Profiler, 586

stored procedures and temporary tables, 578

stored procedures, using advanced features in, 578

getting started with

demo database script, running, 495

new database, creating, 496

understanding components of, 495

INFORMATION_SCHEMA views, 494

instances, 491

introduction to, 484

limitations of, 483

linking to

DSN (Data Source Name), creating, 410–415

getting started, 407

sample database, setting up, 407–409

script files, 409

Server driver, choosing, 412

Server instances, 408

Windows vs. SQL Server authentication, 414

Log files and Recovery Models, 490

performance, improving, 486

sample database, 484

security

authentication, 538–540

surface area configuration, 536–538

Windows authentication, 541

SQL Express and SQL Server products, 487–489

SQL Server 2008 R2 Management Tools, 592

SQL Server Management Studio, using, 592–594

SQL Server Migration Assistant (SSMA), 624

statements, executing on the fly, 518

stored procedures

DELETE query, 513

INSERT and INSERT INTO queries, 515–517

system stored procedures, 508

UPDATE query, 514

working with, 511–513

system databases, 493

system tables, 494

tables and relationships, creating

database diagrams, 496–498

Identity property, using, 504

script files and batches of T-SQL commands, 499

table design, changing, 500–504

tables, relationships, and script files, 499

T-SQL script files, using to record and apply chang-
es, 502

tables, linking to

getting started, 416

linked tables, refreshing, 417

696	 SQL	server	(cont.)

SQL	server	(cont.)

tables, linking to (cont.)

linked tables, renaming to remove the dbo_prefix, 417

updateability and Views, 419

views in SQL Server, connecting to, 418

views in SQL Server, refreshing, 419

tables, Schemas in, 417

temporary tables and, 397

transactions

nesting transactions, 533

transaction isolation levels, 532

working with, 530–533

triggers, working with, 526–529

T-SQL (Transact SQL)

CAST and CONVERT, using, 518

error handling, 523–525

functions, built-in, 519

@@IDENTITY, SCOPE_IDENTITY() and IDENT_CUR-
RENT, 520

program flow, controlling, 521–523

system variables, 520

variables, defining, 517

User-Defined Functions (UDFs), 534–536

versions of, 486

views, working with

CROSSTAB queries, 509–511

graphical interface, 505

INFORMATION_SCHEMA views, 494

and script files, 506–509

updateability of, in Access, 506

Windows services, 492

SQL	Server	Profiler,	 586

SSMA	(SQL	Server	Migration	Assistant)

Access to Azure, 624

installing, 564

mapping data types, 567

Migration Wizard, 565–567

Schemas, using, 567–570

strengths and weaknesses, 574

standard	modules,	 654

“*”	(star)	character,	 97

statements

in SQL Server, executing on the fly, 518

in T-SQL, controlling program flow, 523

static	variables,	 55

Step	and	Run	commands,	breakpoint,	 25–28

stored	procedures

asynchronous event processing and, 364

in SQL Server

DELETE query, 513

INSERT and INSERT INTO query, 515–517

system stored procedures, 508

and temporary tables, 578

UPDATE query, 514

using advanced features from Access, 578

StrComp	string	function,	 93

string	functions,	 92

subclassing .	See	WithEvents	Processing

subforms

placing on the tab page, 311

referencing controls on, 145–148

using the list box as, 292–295

subroutines

changing to functions, and vice versa, 14

DisplayAttachmentInfo, 200

executing, debugging modules and procedures, 13–15

and functions, default referencing of parameters in, 71

managing code with, 67–70

surface	area	configuration	in	SQL	Server,	 536–538

Switchboard	Manager,	 633

Sync	Groups	and	Sync	Logs	in	Data	Sync	Agent	in	
SQL,	 610–612

synchronization	services	in	SQL	Azure .	See	Data	Sync	
Agent	in	SQL	Azure

synonyms	in	SQL	Server,	 556

SysCmd,	monitoring	progress	with,	 155

system	databases	in	SQL	Server,	 493

system	stored	procedures	in	SQL	Server,	 508

system	tables	in	SQL	Server,	 494

	 TreeView	control	 697

t
tab	controls

dynamically loading tabs

class module, creating, 341

collection of objects, 345

improving, 340

Initialization and Termination events, 344

Let and Get object properties, 342

New and Set, creating an object with, 343

options for, 314

pages, loading, 315–318

pages, unloading, 320

related pages, dynamically loading, 319

simplifying the application code with classes, 352

OnChange event, 314

referring to controls in, 314

refreshing between tabs and controls, 311–313

TableDefs	collection,	 179–182

Table/Query	editing,	 285

tables

DISTINCT and DISTINCTROW, using, 234

Linked Table Manager, 398

linked table name and SourceTableName, 406

MSysConf table in SQL Server, 587

naming conventions for, 109

relinking tables, essential details for, 400

SQL Server tables

database diagrams, 496–498

Identity property, using, 504

linked tables, refreshing, 417

linked tables, renaming to remove the dbo_prefix, 417

script files and batches of T-SQL commands, 499

system tables, 494

table design, changing using the GUI, 500–504

tables, relationships, and script files, 499

temporary tables, 516

T-SQL script files, using to record and apply chang-
es, 502

table conversion, comparing methods for, 571

table name, changing in T-SQL, 503

table structure, changes to, 613

temporary tables, in SQL Server, 397, 578

transactions, using to perform inserts, 169

truncating, 514

user tables, in SQL Server databases, 617

the USysRibbons table, 640

table-valued	functions,	 535

tabs

Agents tab, 605

Dynamic Tab, VBA collection classes and, 351

Tab controls, 636

tab visibility and focus, dynamically changing, 646–648

Tag	property,	 316

tasks	in	Outlook,	adding,	 476

tempdb	database,	in	SQL	Server,	 493

temporary	tables,	 397

temporary	tables,	in	SQL	Server,	 516,	578

TempVars,	examining,	 132

Termination	event,	 344

Text	Files,	linking	to,	 407

32-bit	and	64-bit	environments,	in	application	
development,	 649

time	and	date	functions,	 90–92

Time	data,	converting	for	SQL	Server,	 544–546

Timer	Interval	property

considerations in using, 255

monitoring, 258–260

periodic execution, 256

Timestamps	and	Row	Versioning,	 554–556

transactions

multiple edits and, 170

simulating multi-user interaction with, 531

in SQL Server

nesting transactions, 533

transaction isolation levels, 532

working with, 530–533

working with in DAO, 166–170

TreeBuilders .accdb	sample	database,	 273

TreeView	control

ActiveX controls, 304

adding, 296–298

in application development, 635

698	 TreeView	control	(cont.)

TreeView	control	(cont.)

drag and drop, 303–307

graphics, adding, 301–304

nodes, adding, 309

nodes, expanding and collapsing, 303

nodes with recursion, deleting, 307–309

parent/child-related data, loading, 300

populating the tree, 298–301

recursive VBA code, writing and debugging, 308

sample database example, 295

triggers

multiple rows in trigger code, allowing for changes
in, 553

in SQL Server, 526–529

Trim,	LTrim,	and	RTrim	string	functions,	 93

T-SQL	(Transact	SQL)

CAST and CONVERT, using, 518

error handling, 523–525

functions, built-in, 519

@@IDENTITY, SCOPE_IDENTITY() and
IDENT_CURRENT, 520

script files and batches of commands, 499

script files, using to record and apply changes, 502

statements, controlling program flow with, 523

system variables, 520

understanding, 511–513

variables, defining, 517

TypeOf	statements,	 80,	375

Type	structures,	for	working	with	arrays,	 65,	340

u
UCase	and	UCase$	functions,	 93

unbound	controls,	naming	conventions	for,	 110

unbound	forms,	 233,	243

“_”	(underbar)	character,	using,	 86

UNICODE	data	types

SQL Server Import and Export Wizard and, 598

text data types and, 544

Unique	Index	and	Ignore	NULLs,	in	SQL	Server,	 553

Unload	and	Close	events,	 248

updateability

of a Record Source, 234

support for, 419

of views, in SQL Server, 506

UPDATE	query	in	SQL	Server,	 514

updating	applications,	in	development,	 656

UpDown	or	Spin	control,	 388–390

Upper,	Lower,	StrConv	string	functions,	 93

upsizing	databases

planning for

attachments and Multi-Value data, 548

Boolean data, 546

currency, 548

cycles and multiple cascade paths, 549

Date and Time data, 544–546

hyperlinks, 547

IMAGE, VARBINARY (Max), and OLE Data, 547

integer numbers, 547

Memo data, 547

mismatched fields in relationships, 550

multiple rows in trigger code, allowing for changes
in, 553

partially completed foreign keys, 550

real numbers, decimals, and floating point num-
bers, 547

replicated databases and random autonumbers, 551–
553

Required fields, 549

Schemas and synonyms, 556

security, using Schemas and database roles to man-
age, 557

text data types and UNICODE, 544

Timestamps and Row Versioning, 554–556

Unique Index and Ignore NULLs, 553

query conversion, comparing in the Upsizing Wizard and
SSMA, 572–574

SSMA

installing, 564

mapping data types, 567

Migration Wizard, 565–567

Schemas, using, 567–570

strengths and weaknesses, 574

	 VBA	language	structure	 699

table conversion, comparing in the Upsizing Wizard and
SSMA, 571

Upsizing Wizard

strengths and weaknesses of, 561

using, 558–561

to use an Access Data Project (ADP)

ADP strengths and weaknesses, 564

query conversion, 563

understanding, 561–563

Upsizing	Wizard

strengths and weaknesses of, 561

using, 558–561

User-Defined	Functions	(UDFs)	in	SQL	Server,	 534–536

user	interface

in application development, 632, 638

custom, in application development, 637

enhancing

locking down Access, 154

Office FileDialog, selecting files with, 157–159

progress bars, custom, 156

Setting and Getting options, 152–154

SQL Azure, making a connection to, 424

SysCmd, monitoring progress with, 155

single and multiple application files, 655

USysApplicationLog	and	MSysASO	system	tables,	
relinking,	 434

USysRibbons	table,	 640

V
validation,	controlling	behavior	during,	 276

Value	List	editing,	 284

VARBINARY	(Max)	Data,	converting	for	SQL	Server,	 547

variables .	See also	constants	and	variables

Bookmarks, 191

complex variables, investigating values in, 31

displaying in the locals window, 29

Global variables, using, 56

naming conventions for, 110–112, 113

object variables, 105

scope and lifetime, 57–59

static variables, using, 55

system variables in T-SQL, 520

variables, defining in T-SQL, 517

Watches window, 31

VBA	class	module

Object-Oriented Programming (OOP), support for, 339

syntax when using, 147

VBA	collection	classes

vs. Access collections, 346

adding AllItems to, 349

creating, 346–348

exporting and re-importing the class, 349

using with the Dynamic Tab, 351

VBA	editor

entering, 6

features of, 37

Project pane, 9

Properties pane, 9

sample database, 4

windows, opening and closing, 9

VBA	language	structure

constants and variables, working with

arrays, 59–65

code quality, improving with constants, 49–51

Enum keyword, 51

global variables, 56

NULL values, IsNull and Nz, 53–55

scope rules, 58

static variables, 55

type structures, 65

variables and database field types, 52

variable scope and lifetime, 57–59

control statements and program flow

Choose statements, 79

Do While and Do Until loops, 82–84

Exit statements, 84

For and ForEach loops, 81

GoTo and GoSub statements, 86

If...Then...Else... statements, 77

IIF statements, 78

line continuation, 86

Select Case statements, 80

SQL, splitting over multiple lines, 86

TypeOf statements, 80

the With statement, 85

700	 VBA	language	structure	(cont.)

VBA	language	structure	(cont.)

functions and procedures

ByRef and ByValue parameters, defining, 70–72

calling, variations on standard rules for, 66

modules and class modules, organizing code in, 76

ParamArray qualifier, 75

parameters, Optional and Named, 73

procedures, private and public, 72

referencing from a control’s event property, 244

subroutines and functions, default referencing of
parameters in, 71

subroutines, managing code with, 67–70

understanding in VBA code, 66

language settings

comments, adding, 40

compiling code, 44

conditional compilation, 45

\Decompile command line switch, 45

Option Compare, selecting, 43

Option Explicit, setting, 41

references, 46–49

Visual Basic for Applications Extensibility, 48

sample database, 40, 89

VBA code, recursive, 308

VBA	libraries,	 177

vbCR,	vbCRLF,	vbLF,	vbTab	string	functions,	 93

vbObjectError	constant,	 123

version	information

retrieving, 135

for SQL Server, 486

views,	in	SQL	Server

connecting to, 418

CROSSTAB queries, 509–511

databases, 617

graphical interface, 505

INFORMATION_SCHEMA views, 494

refreshing, 419

and script files, 506–509

updateability of, in Access, 506

updateable Views, 419

Visual	Basic	for	Applications	Extensibility,	 48

W
Watches	window,	 32

WebDatabase .accdb	sample	database,	 396

Web	Databases,	linking

Access database to an Access Web Database, 431

process of, 430

relinking, 432–434

Where	clauses

constructing, 97

opening forms with, 246

windows

application and VBA code windows, 6–8

Immediate window, working with, 33

Locals window, displaying variables in, 29

split window, debugging modules and procedures
in, 17–19

Watches window, 32

Windows	API,	using	in	application	development,	 651–653

Windows,	Microsoft

authentication, 414

authentication in SQL Server, 541

SQL Server services, 492

Windows Registry, working with, 650

WithEvents	statements

control events, handling, 362

form events, handling, 360–362

processing, 363

With	statements,	 85

Word,	Microsoft

connecting Access to

data, merging with bookmarks, 447–451

documents, generating from a placeholder docu-
ment, 444–446

Mail Merge, 451

placeholder documents, opening, 446

Word object model, key objects in, 443

WordQuote .accdb	sample	database,	 437

Workspace	object,	working	with	in	DAO,	 165

About	the	Author
Andrew Couch has been working with Microsoft Access since 1992, developing, training,
and consulting on Client-Server design projects. With his wealth of experience in Access
and SQL products, he has been able to mentor software houses, blue chip companies, and
independent developers. Alongside running his own consultancy, Andrew has been heavily
involved in the developer community and jointly founded the UK Access User Group more
than 13 years ago. He has also earned Access MVP status for the last 5 years.

Andrew’s passion lies with VBA programming and extending the reach of VBA program-
mers into cloud computing and the .NET environment. He hopes that this book serves as
an example of his dedication to this exceptional piece of technology and its application.

In addition to consulting and regularly speaking at community events, Andrew has devel-
oped the Migration Upsizing SQL Tool (MUST), which is a tool that allows users to easily
convert Access Databases to SQL Server by using an Access-based application. Due to the
success of MUST, which is used by over 150 companies, SQL Translation capabilities and
WebForm code generators for .NET were added to the product range. More recently the
MUST technologies have been extended further to deliver automated services for convert-
ing Access database to a web legal format for publishing to SharePoint.

	Copyright
	Dedication
	Contents at a Glance
	Table of Contents
	Introduction
	Features and Conventions Used in This Book
	About the Companion Content
	Acknowledgments
	Support and Feedback
	Chapter 1. Using the VBA Editor and Debugging Code
	Debugging Code on a Form
	Entering the VBA Editor
	The Application and VBA Code Windows

	Creating Modules and Procedures
	Creating a Module
	Creating a Procedure
	Executing a Subroutine
	Executing a Function
	Viewing and Searching Code
	Split Window
	Searching Code

	Debugging Code in a Module
	Debug Commands

	Breakpointing Code
	Set Next Command
	Breakpoint Step and Run Commands
	Displaying Variables in the Locals Window
	Tracing Procedures with the Call Stack
	Watching Variables and Expressions
	Adding Conditional Watch Expressions
	Working with the Immediate Window
	Changing Code On-the-Fly

	Using the Object Browser and Help System
	Configuring the Help System
	Working with the Object Browser

	Summary

	Chapter 9. Adding Functionality with Classes
	Improving the Dynamic Tab Control
	Creating a Class Module
	The Let and Get Object Properties
	Creating an Object with New and Set
	Collection of Objects
	Creating Collection Classes
	Using Classes with the Dynamic Tab
	Simplifying the Application with Classes

	Creating a Hierarchy of Classes
	Creating a Base Class
	Derived Classes

	Summary

	Index

