
Professional Scrum

Development with

Microsoft®
 Visual

Studio®
 2012

Richard Hundhausen

Praise for this book

“Richard provides real Scrum guidance for real teams. If you’re a Scrum team using Visual Studio, this
book is a great resource.”

—Aaron Bjork, Principal Group Program Manager, Team Foundation Server, Microsoft

“Richard successfully marries the best tools for .NET developers to the most effective practices
­without sacrificing the people.”

—David Starr, Senior Program Manager, Visual Studio, Microsoft

“Finally, a book about Scrum from the Development Team’s point of view; Richard’s description of
the best and worst ways to implement Scrum is priceless. The first chapter alone is one of the best
descriptions of ‘Scrum done well’ that I’ve ever seen.”

—Charles Bradley, Scrum Coach & Professional Scrum Master

“The very first book on Team Foundation Server that I read was written by Richard, and he’s done it
again this time with another fantastic read.”

—Brian Keller, Principal Technical Evangelist for Microsoft Visual Studio

“Richard does a fantastic job of blending theory, practice, and tools in one easy to read book!
This book will surely be a staple for many of our Scrum coaching engagements.”

—Chad Albrecht, VP Centare, PST

“As an encore to helping introduce the industry shaking Professional Scrum Developer program,
Richard reminds us in this book why he’s a leading voice in Scrum and Visual Studio ALM.”

—Ryan Cromwell, Professional Scrum Trainer, MVP

“I’ve known Richard a long time and it’s been great to follow his progression towards becoming a
Scrum ‘white robe.’ I’m so happy the community now has the ultimate resource on understanding the
marriage of Scrum and TFS.”

—Adam Cogan, Microsoft Regional Director, Visual Studio ALM MVP [of the year 2011]

“If you’re new to Scrum or even if you’ve been doing it for a while, this book will help you get the
big picture.”

—Benjamin Day, Professional Scrum Trainer, MVP

“If you’re using Scrum and TFS and you haven’t read this book, then you’re probably doing it wrong.”

—Brian Randell, MCW Technologies, Visual Studio ALM MVP

“In this book, Richard uses the core values of Scrum to describe how to get the best Scrum adoption
of Visual Studio 2012. This is a superb combination of principles and mechanics that should be on all
teams’ bookshelves.”

—Simon Reindl Professional Scrum Developer Trainer

“I don’t keep a lot of technology books on my bookshelf due to the pace at which developer tools
evolve but this book, with its focus on people and processes, is definitely a keeper. Richard’s book is
to Scrum development as Petzold’s was to Windows development.”

—Charles Sterling, Visual Studio Senior Program Manager, Microsoft

“Among the plethora of Scrum literature out there, Richard’s book makes a difference by bringing
Scrum closer to where it belongs: the day-to-day work in the context of a team, supported by suitable
practices, and the state-of-the-art Visual Studio toolset. You’ll benefit from most of the advice it
contains, even if you don’t use Visual Studio!”

—Jose Luis Soria, Plain Concepts ALM Team Lead, PST

“Scrum, Visual Studio, and Team Foundation Server are just tools, and they will not make you better
by themselves. If you really want to improve you need to understand the tools and learn how to
­improve, and definitively, Richard’s book will help you to get there”

—Luis Fraile, Visual Studio ALM MVP, Globe ALM Division Manager

“A masterpiece which distills the world of Scrum in a Visual Studio environment; anyone who is using
Scrum will recognize many of the ‘smells’ and appreciate the sharing of real-world experience and
guidance.”

—Willy-Peter Schaub, Program Manager, Visual Studio ALM Rangers

“This book should be required reading for everyone on your team. It will help you bring people,
processes, and technology together quickly with Scrum.”

—Mike Vincent, Professional Scrum Developer Trainer, Visual Studio ALM MVP

Professional Scrum

Development with

Microsoft®
 Visual

Studio®
 2012

Richard Hundhausen

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2012 by Richard Hundhausen. Appendix copyright Ken Schwaber
and Jeff Sutherland.

All rights reserved. No part of the contents of this book may be reproduced or
transmitted in any form or by any means without the written permission of the
publisher.

Library of Congress Control Number: 2012948863
ISBN: 978-0-7356-5798-4

Printed and bound in the United States of America.

First Printing

Microsoft Press books are available through booksellers and distributors worldwide.
If you need support related to this book, email Microsoft Press Book Support at
mspinput@microsoft.com. Please tell us what you think of this book at
http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/
IntellectualProperty/Trademarks/EN-US.aspx are trademarks of the Microsoft group of
companies. All other marks are property of their respective owners.

The example companies, organizations, products, domain names, email addresses, logos,
people, places, and events depicted herein are fictitious. No association with any real
company, organization, product, domain name, email address, logo, person, place, or
event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in
this book is provided without any express, statutory, or implied warranties. Neither the
authors, Microsoft Corporation, nor its resellers, or distributors will be held liable for any
damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions and Developmental Editor: Devon Musgrave
Project Editor: Rosemary Caperton
Editorial Production: Christian Holdener, S4Carlisle Publishing Services
Copyeditor: Andrew Jones
Indexer: Jean Skipp
Cover: Twist Creative ∙ Seattle

http://www.microsoft.com/learning/booksurvey
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

This book is dedicated to my Scrum Team: Esmay, Isla, Berlin,
Blaize, Sawyer, and Kristen.

Contents at a Glance

Foreword	 xv

Introduction	 xix

PART I	 FUNDAMENTALS

CHAPTER 1	 Scrumdamentals	 3

CHAPTER 2	 Microsoft Visual Studio 2012 ALM	 41

CHAPTER 3	 Microsoft Visual Studio Scrum 2.0	 57

PART II	 USING SCRUM

CHAPTER 4	 The pre-game	 93

CHAPTER 5	 The Product Backlog	 127

CHAPTER 6	 The Sprint	 169

CHAPTER 7	 Acceptance test-driven development	 197

CHAPTER 8	 Effective collaboration	 227

PART III	 IMPROVING

CHAPTER 9	 Continuous improvement	 275

Appendix: The Scrum Guide	 327

Index	 341

		 ix

Contents

Foreword. xv
Introduction. xix

Who should read this book. xix

Who should not read this book. xx

Organization of this book. xx

Conventions and features in this book. xxi

Code samples. xxii

Acknowledgments. xxiii

Errata & book support. xxiii

We want to hear from you. xxiv

Stay in touch. xxiv

PART I	 FUNDAMENTALS

Chapter 1	 Scrumdamentals	 3
The Scrum Guide. 3

Scrum in action. 4

Scrum roles. 6

Scrum events. 14

Scrum artifacts. 27

Definition of “Done” . 36

The professional Scrum developer. 37

Chapter burndown. 39

x	 Contents

Chapter 2	 Mircosoft Visual Studio 2012 ALM	 41
Delivering continuous value. 42

Visual Studio 2012. .44

Editions. .46

Team Foundation Server . 51

Team Foundation Service. 52

Visual Studio Team Explorer Everywhere 2012. 54

MSDN subscriptions. .54

Chapter burndown. 55

Chapter 3	 Microsoft Visual Studio Scrum 2.0	 57
Dissecting the process template . 57

MSF process templates. 59

Exploring a process template . 59

Visual Studio Scrum 2.0. 61

What’s new and different. 62

Work item types. 67

Work item queries. 81

Reports. 83

Common customizations. 86

Chapter burndown. 88

PART II	 USING SCRUM

Chapter 4	 The pre-game	 93
Setting up the development environment. 94

Team Foundation Server: Buy vs. build . 94

Create a team project collection. 96

Configure Team Foundation Build . 97

Configure Lab Management . 100

Setting up product development. .103

Create a team project. 103

Source control. 108

	 Contents	 xi

Automated builds. 113

Project portal. 115

Reports. 118

Security groups. 121

Teams. 122

Chapter burndown. 124

Chapter 5	 The Product Backlog	 127
Creating the Product Backlog. 127

Team Web Access. 128

Using the “quick add” experience . 130

Handling epic PBIs. 134

Importing existing PBIs. 137

Reporting a bug. 140

Effective Product Backlog creation. 147

Grooming the Product Backlog. 149

Specifying acceptance criteria. 150

Estimating items in the Product Backlog. 152

Tracking estimates in the Product Backlog. 155

Ordering the Product Backlog. 156

Planning a release. 160

Time-driven vs. feature-driven releases. 161

Controlling and prioritizing scope . 161

Using Velocity to estimate. 162

Release Burndown report. 166

Chapter burndown. 167

Chapter 6	 The Sprint	 169
Creating the Sprint Backlog . 170

Forecasting the PBIs . 170

Capturing the Sprint Goal. 173

Creating the plan. 174

Daily Scrum activities. 179

xii	 Contents

The Daily Scrum. 180

Taking on work. 183

The task board. 185

Chapter burndown. 196

Chapter 7	 Acceptance test-driven development	 197
Keep the conversation going. 198

Collaborative specifications. 199

Executable specifications . 201

Acceptance test-driven development . 202

Test-driven development. 205

Automated acceptance testing. .206

Creating a test case. 206

Associating an automated test . 210

Executing automated acceptance tests. 214

Reusing test cases . 217

Other acceptance-testing frameworks. 221

Acceptance. 224

Chapter burndown. 225

Chapter 8	 Effective collaboration	 227
Individuals and interactions over processes and tools. 227

Listen actively. 229
Collocate. 230

Set up a team room. 232

Meet effectively. 233

Collaborate productively . 234

Achieve continuous feedback . 236

Collaborative development practices. 237

Collective code ownership. 238

Commenting in code. 240

Code reviews. 241

	 Contents	 xiii

Collaborative development tools. 244

Team Foundation Server. 244

Continuous integration. 245

Gated check-in builds. 249

Email alerts . 250

Shelving. 253

My Work . 254

PowerPoint Storyboarding. 257

Feedback client. 261

Code reviews. 267

Chapter burndown. 271

PART III	 IMPROVING

Chapter 9	 Continuous improvement	 275
Common challenges. 275

Bugs. 276

Impediments. 277
Estimation. 279
Assessing progress. 282
Renegotiating scope. 286
Undone work . 288
Spikes. 293
Fixed-Price contracts and Scrum. 294

Common dysfunctions. 296

Not getting “done” . 297
Flaccid Scrum. 298
Not inspecting, not adapting. 299

Development Team challenges. 300

Working with a challenging Product Owner. 304

Working with challenging stakeholders. 307
Working with a challenging Scrum Master. 309
Changing Scrum. 312

Improving. 315
Get a coach. 315
Build a cross-functional team . 316
Achieve self-organization. 317
Improve transparency. 318
Swarm. 319
Use a Kanban board to limit WIP . 319
Professional Scrum Developer training. 322
Assess your knowledge. 322
Become a high-performance Scrum Development Team.323

Chapter burndown. 324

Appendix: The Scrum Guide	 325

Index	 341

		 xv

Foreword

By 2001, the software industry was in trouble—more projects were failing than
succeeding. Customers began demanding contracts with penalties, and increasingly

sending work offshore. Some software developers, though, had increasing success with
a development process known as “lightweight.” Almost uniformly, these processes were
based on the well-known iterative, incremental process.

In February of 2001, these developers issued a manifesto—the Agile Manifesto.
The Manifesto called for Agile software development based on 4 principle values and
12 underlying principles. Two of the principles were 1.) to satisfy customers through
early and continuous delivery of working software, and 2). to deliver working software
frequently, from a couple of weeks to a couple of months, with a preference to the
shorter timescale.

By 2008, the Scrum Agile process was used predominantly. A simple framework, it
provided an easily adopted iterative incremental framework for software development.
It also incorporated the Agile Manifesto’s values and principles. The two authors of
Scrum, Jeff Sutherland and myself, also were among the authors of the Agile Manifesto.

I had anticipated some of the difficulties organizations (and even teams) would
face when they adopted Scrum. However, I believed that developers would bloom in
a Scrum environment. Stifled and choked by waterfall, developers would stand tall,
employing development practices, collaboration, and tooling that nobody had time to
use in waterfall projects.

Much to my surprise, this was only true for perhaps 20 percent of all software
developers.

Note  In 2007, Martin Fowler characterized most Agile software development
as “flaccid.” He stated: There’s a mess I’ve heard about with quite a few
projects recently. It works out like this:

■■ They want to use an Agile process, and pick Scrum.

■■ They adopt the Scrum practices, and maybe even the principles.

■■ After a while, progress is slow because the code base is a mess.

xvi	 Foreword

What’s happened is that they haven’t paid enough attention to the internal
­quality of their software. If you make that mistake you’ll soon find your
productivity dragged down because it’s much harder to add new features
than you’d like. You’ve taken on a crippling Technical Debt and your Scrum
has gone weak at the knees. (And if you’ve been in a real scrum, you’ll know
that’s a Bad Thing.) http://martinfowler.com/bliki/FlaccidScrum.html

Martin’s description of flaccid Scrum resonated with our experience. Most developers
were skilled, but not adequately skilled in the three dimensions required to rapidly
build complete increments of usable functionality. These dimensions are:

People  The ability to work in a small, cross-functional, self-organizing team.

Practices  The knowledge of and ability to apply modern engineering
practices that short cycle development mandates.

Tooling  Tools that integrated and automated these practices so that
successive increments could be rapidly integrated without the drag of
exponentially accruing artifacts that must be handled manually.

We put our business on hold while we worked through 2008 to create what has
become known as the Professional Scrum Developer program. Offered in both a
three- and five-day format, we formulated a workshop. The input was developers
whose knowledge and capabilities produced flaccid increments. The output were teams
of developers who had developed solid increments of software called for by the Agile
Manifesto and demanded by the modern, competitive organization.

Richard has been there since the beginning. His book, Professional Scrum
Development with Microsoft® Visual Studio® 2012 continues his participation in the
movement started by us few in 2009.

When you read Richard’s book, you can learn the three dimensions needed for
Agile software development: people, process, and tools. Just like the course, Richard
intertwines them into something you can absorb. If you are on a Scrum team, read
Richard’s book. List the called-for practices. Identify which practices pose challenges to
your team. Order them by their greatest impact. Then remediate them, one by one.

Many people spend money going to Agile conferences. Save the money and
more by buying this book, discussing it with others, and going to Code Camps, the
“un-conference” for the serious.

	 Foreword	 xvii

Richard and I look forward to your increased skill. Our industry and our society need
it. Software is the last great scalable resource needed by our increasingly complex
society. The effective, productive teamwork of Agile teams is the basis of problem
solving that our society also needs.

Scrum on!

Ken Schwaber
co-creator of Scrum

 September, 2012

In 2009, Richard took on a daunting task. Ken Schwaber and I came together because
we lamented the impediment facing software teams trying to improve their ability to
deliver customer value on frequent, short cadence. They could learn about practices,
they could learn about tools, or they could engage coaching, but putting it all together
was an exercise left to the readers.

That’s when Richard Hundhausen stepped into the breach. He put together
Professional Scrum Developer in a whirlwind. Quite literally, he toured the world
delivering beta courses, relentlessly receiving feedback, and inspecting and adapting.
The result was the first highly scalable training program that combined modern
software engineering practices and readily available tooling at the global scale. Richard
has been improving the course for three years through a dedicated community of
­certified trainers and has now distilled the basics into an easily accessible book.

If you’re new to Scrum and want to get better at delivering high-quality software
that your customers want quickly, Professional Scrum Developer is a great place to start.

Sam Guckenheimer
Product Owner, Visual Studio Product Line

Microsoft Corporation
September, 2012

		 xix

Introduction

Scrum is a framework for developing and sustaining complex products, such
as software. Scrum is just a set of rules, as defined in the Scrum Guide (www.scrum

.org/Scrum-Guides), and it describes the roles, events, and artifacts, as well as the
rules that bind them together. When used correctly, this framework enables a team to
address complex problems while productively and creatively delivering products of the
highest possible value. Scrum is an Agile method. In fact, it is the most popular Agile
method in use today.

Scrum employs an iterative and incremental approach to optimizing predictability
and controlling risk. This is due to the empirical process control nature of Scrum.
Through proper use of inspection, adaptation, and transparency, a Scrum Team can try
a new way of doing something (an experiment) and gauge its usefulness after a short
iteration. They can then collectively decide to embrace, extend, or drop the practice.
This includes the tools a team uses and how they use them.

Combining Scrum with the application lifecycle management (ALM) tools found in
Microsoft Visual Studio 2012 is a powerful combination. It is the purpose of this book
to establish a baseline understanding of Scrum, as well as how Scrum is supported
in Visual Studio 2012. I will also illustrate which practices provide more value when
executed without the use of tools. In addition, I will point out those tools which have been
erroneously marketed as healthy when used by a collocated, collaborative Scrum Team.

In software development, anything and everything can change in a moment’s notice.
Healthy teams know this. They also know that continuously inspecting and adapting the
way things are done is a way of life. High-performance Scrum Development Teams take
it a step further. They know that within every dysfunction or impediment identified is an
opportunity to learn and improve. Reading this book is a great first step.

Who should read this book

This book will be of value to any members of a software development team using
Scrum. I primarily focus on the responsibilities and tasks of the developer (which in
Scrum includes designers, architects, coders, testers, technical writers, etc.). Product
Owners and Scrum Masters will also derive value from this book, as they will be using

xx	 Introduction

many of the same Visual Studio tools to plan and manage their work and assess
progress. Stakeholders, including customers, users, and managers, will also gain value
from this book, especially when they learn what they can and cannot do according to
the rules of Scrum and which tools in Visual Studio support this.

Who should not read this book

This book is intended for teams using Scrum and Visual Studio 2012 together. It won’t
provide as much value for teams executing Agile (non-Scrum) software ­development
and won’t provide any value for teams running more formal “waterfall” software
development projects, although Chapter 1 may hopefully change the minds of such
proponents. Likewise, if a team is using Scrum, but not yet using Visual Studio 2012,
the bulk of the book won’t be very interesting. This is also the case for teams using
Visual Studio 2012 Express or Professional editions, which don’t contain the high-value,
team-based tools for planning and managing the backlogs and team collaboration.

Organization of this book

This book is divided into three sections, each of which focuses on a different aspect
of the marriage of Scrum and Visual Studio. Part I, “Fundamentals,” sets a baseline
understanding of the Scrum framework, Visual Studio 2012 editions and their
interesting ALM features, as well as the Visual Studio Scrum 2.0 process template.
Part II, “Using Scrum,” provides several chapters detailing the practical application
of how a Scrum Team would use the relevant features of Visual Studio 2012. Part III,
“Improving,” includes a chapter on identifying common challenges and dysfunctions
in order to remove them, as well as techniques to continually improve your game of
Scrum. By reading all sections sequentially, you will see how Visual Studio and
Scrum can be used together in an effective way and how a team can become
high-performance in the way it develops software.

Finding your best starting point in this book
The different sections of Professional Scrum Development with Microsoft Visual
Studio 2012 cover a range of topics. Depending on your needs and your existing
understanding of Scrum, Visual Studio, and the related development practices, you may
wish to focus on specific areas of the book. Use the following table to determine how
best to proceed through the book.

	 Introduction	 xxi

If you are Follow these steps

New to Scrum or have never heard of it Read Chapter 1

New to Visual Studio 2012 or its ALM tools Read Chapter 2

New to the Visual Studio Scrum process template or want to
know what’s new in version 2.0

Read Chapter 3

Familiar with Scrum and Visual Studio and only want to learn how
to setup and manage a Product Backlog.

Read Chapters 4 and 5

Familiar with Scrum and Visual Studio and only want guidance
on overcoming common challenges and dysfunctions.

Read Chapter 9

Conventions and features in this book

This book presents information using conventions designed to make the information
readable and easy to follow.

■■ Screenshots from relevant Visual Studio 2012 features are provided for your
reference.

■■ Boxed elements with labels such as “Note” or “Tip” provide additional
information and guidance related to the subject.

■■ Some notes and tips are practical guidance provided by fellow Professional
Scrum Developers who have helped review this book.

In addition, I have included two additional boxed elements, one labeled “Smells” and the
other labeled “Tailspin Toys Case Study.”. These are discussed in the following sections.

Smells  Throughout this book, I point out specific situations and traps that
a Scrum Team should avoid. I refer to these as smells. These smells typically
indicate an underlying dysfunction or other unhealthy behavior. For teams
new to Scrum, these smells may be hard to identify. Once they are brought
to light, however, they should be used as learning opportunities. As a team
improves, it should be able to recognize dysfunction on its own, as well
as remove it. High-performance Scrum Teams reach the ability to identify
­potential waste, evaluate the risks, and even decide to opt-in to specific
behaviors, including those that may be a smell to the uneducated.

xxii	 Introduction

Tailspin Toys case study  As you flip through the pages, you will read about
Tailspin Toys as a case study. This is a fictitious organization and team that is
building an online retail website that sells model aircraft and accessories. The
team has been using Scrum for some time and is moving to Visual Studio 2012.
My opinions on healthy and unhealthy behaviors are made evident through the
choices made by the Tailspin Toys team.

Code samples

Although this book contains almost no code samples, I did build a utility application
to help create and manage the Product Backlog and Sprint Backlog. This helped me
prepare the data seen in the various screen captures in this book. I affectionately
named this utility the Scrum Robot. The source code is yours if you think it can be
helpful. If nothing else, it demonstrates how to connect to a Team Foundation Server
2012 instance and manipulate basic team project data. The Scrum Robot can be
downloaded from the book’s companion content page:

http://www.microsoftpressstore.com/title/9780735657984

Note  You will need to have Visual Studio 2012 with Team Explorer installed
in order to use the Scrum Robot.

Installing and using the Scrum Robot
Follow these steps to install the Scrum Robot on your computer so that you can
programmatically access Team Foundation Server and manipulate a team project’s
areas, iterations, Product Backlog, and Sprint Backlog.

1.	 Unzip the ScrumRobot.zip file that you downloaded from the book’s website
(name a specific directory along with directions to create it, if necessary).

2.	 If prompted, review the displayed end user license agreement. If you accept the
terms, select the accept option, and then click Next.

http://www.microsoftpressstore.com/title/9780735657984

	 Introduction	 xxiii

Note  If the license agreement doesn’t appear, you can access
it from the same webpage from which you downloaded the
ScrumRobot.zip file.

3.	 Once unzipped, you can open the ScrumRobot.sln solution and review the code.
Press F5 to run the utility after changing any variables or constants, such as the
name and address of your Team Foundation Server.

Acknowledgments

There are several people who helped me write this book: Christian Holdener, for his
infinite patience. Devon Musgrave and Rosemary Caperton, for yet another opportunity
to write for Microsoft Press. Fellow Professional Scrum Developers: Mike Vincent, Simon
Reindl, Jose Luis Soria, David Starr, Jeroen van Menen, Chad Albrecht, Ryan Cromwell,
Luis Fraile, Rob Maher, and Peter Gfader for helping me sharpen the message. Fellow
Scrum and Visual Studio practitioners: Charles Bradley, Bob Hardister, Graham Barry,
Anna Russo, Christofer Löf, Willy-Peter Schaub, and Peter Provost for providing great
ideas and reviews. Thank you everyone.

Errata & book support

We’ve made every effort to ensure the accuracy of this book and its companion
content. Any errors that have been reported since this book was published are listed on
our Microsoft Press site:

http://www.microsoftpressstore.com/title/ 9780735657984

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

mailto:mspinput@microsoft.com
http://www.microsoftpressstore.com/title/ 9780735657984

xxiv	 Introduction

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress

		 1

P A R T I

Fundamentals

CHAPTER 1	 Scrumdamentals . 3

CHAPTER 2	 Microsoft Visual Studio 2012 ALM Tools 41

CHAPTER 3	 Microsoft Visual Studio Scrum 2.0 57

The chapters in this section will establish a baseline
understanding of the three areas that every professional Scrum
developer using the Microsoft tools platform must know:

■■ Scrum

■■ The Microsoft Visual Studio 2012 Application Lifecycle
­Management (ALM) tools

■■ The Visual Studio Scrum process template

We will begin by looking at Scrum and the rules of Scrum
from the developer’s perspective. The focus will be on how and
when the Development Team interacts with the Product Owner
and Scrum Master, participates in the various Scrum events,
and uses the various Scrum artifacts. Remember that in Scrum,
the term developer equates to a Development Team member.
This does not necessarily equate to programmer or coder. In
fact, Scrum recognizes testers, coders, designers, architects,
analysts, and database administrators (DBAs) as developers. It’s
important for all developers to understand the rules of Scrum,
and what’s expected of them and their team, as well as when
and how they can interact with the Product Owner, the Scrum
Master, and the various artifacts.

P A R T I

C H A P T E R 1

Scrumdamentals

The Scrum Guide
Scrum in action

Scrum roles

Scrum events

Scrum artifacts

Definition of “Done”

The professional Scrum developer

Chapter burndown

The remaining chapters will be more technical in nature
and cover the ALM tools found in Visual Studio 2012, including
Team Foundation Server and its Scrum process template. This
is Microsoft’s fourth release of these tools and a lot has been
added and improved from prior versions. With a full install of
Visual Studio and Team Foundation Server, there are many tools
available for a Development Team. I will endeavor to list and
discuss the relevant ALM tools, but I won’t explore the practice
of using each. In my opinion, some tools are better left in the
toolbox, allowing the team to exercise higher-valued collabora-
tive practices instead.

		 3

C H A P T E R 1

Scrumdamentals

Scrum is a framework for developing and sustaining complex products. Software is a complex
product. Scrum is ideal for managing the development of software. Scrum is not a methodology

or a process, although you can employ various processes within it. Software development doesn’t
generate the same output every time, given a certain input. Scrum embraces this fact and is empirical,
which means that it promotes the use of observation and experimentation in order to inspect and
adapt. This enables a team to regularly see the effectiveness of its development practices and make
changes accordingly.

Even today, more than 60 years into the evolution of software development, the chances are a
­medium-sized to large software project will fail. Fortunately, the industry has finally noticed, ­understands,
and has started to respond to this problem. Some organizations have turned this around. Things are
improving. Evidence shows that Agile practices, such as Scrum, are leading these successes.

Tip  Using a software development analogy, you can think of Agile as being an interface. Agile
defines 4 abstract values and 12 abstract principles (http://agilemanifesto.org). While there are
many ways to implement these values and principles, Agile does not describe them. Scrum
does. You can think of Scrum as a concrete class that implements Agile.

Agile teams know that they must continuously inspect and adapt—not just their product, but
their practices as well. Being book-smart on Scrum, Application Lifecycle Management (ALM), and
Microsoft Visual Studio is a good start. Having experience using them together in practice is better.
Being able to identify and act on opportunities for improvement as you use them is awesome. That
should be your goal. Don’t just settle for a non-failed project. Strive for completing the project better,
faster, and cheaper than the stakeholders thought possible.

The Scrum Guide

Scrum has been around since the early 1990s. During that time, Scrum’s definition and related
practices have come from books, presentations, and professionals doing their best to explain it.
Unfortunately, those messages were not always accurate and almost never consistent. Scrum, as it has
emerged today, doesn’t look like it did 10 years ago.

http://agilemanifesto.org

4	 PART I  Fundamentals

In 2010, Scrum.org codified Scrum by creating and publishing the Scrum Guide for free.
This roughly 15-page guide represents the official rules of Scrum and is maintained by Scrum’s
creators, Ken Schwaber and Jeff Sutherland. It is available in 30 languages and downloadable at
http://www.scrum.org/scrumguides. It is a great reference that you can use even as you are reading
this book. As you read the guide, you will see that Scrum is lightweight and quite easy to understand.
­Unfortunately, it is extremely difficult to master. The Scrum Guide will continue to be updated and
may supersede the guidance you read in this chapter and the rest of the book.

Tip  You can think of Scrum as being like the game of chess. Both have rules. For example,
Scrum doesn’t allow two Product Owners just as chess doesn’t allow two kings. When you
play chess, it is expected that you play by the rules. If you don’t, then you’re not playing
chess. This is the same with Scrum. Another way to think about it is that both Scrum and
chess do not fail or succeed. Only the players fail or succeed. Those who keep playing by
the rules will eventually improve, though it may take a long time to master the game.

The Scrum framework consists of the Scrum team and the associated roles, events, and artifacts. Each
of these items serves a specific purpose, as you will see in this chapter. The rules of Scrum, as defined in the
Scrum Guide, bind together the roles, events, and artifacts. Following these rules is essential to the success
of a team’s ability to use Scrum to develop a high-value, quality software product.

Scrum in action
If you study the Scrum Guide, you will understand the components and related rules. You won’t
­necessarily see how they flow together. This requires you to actually experience Scrum while
developing software on a team. As a substitute for that experience, Figure 1-1 was created by a
fellow professional Scrum developer to illustrate the Scrum framework in action.

In Scrum, the Product Backlog is the single source of requirements for any changes to be made
to the software product. This list includes features to be added, as well as bugs to be fixed. It is
the Product Owner’s responsibility to ensure that the Product Backlog is available, transparent,
­understood by the Development Team, and ordered (prioritized). The Development Team ­collaborates
with the Product Owner, and others as needed, during Sprint Planning and Product Backlog grooming to
understand and estimate the effort required to deliver the items in the Product Backlog.

The Sprint is a time-boxed event that contains the other Scrum events. Sprints should be a month
or less in duration. The first event within a Sprint is the Sprint Planning meeting. In this time-boxed
event, the Scrum team collaborates to plan the work of the upcoming Sprint. The Product Backlog
items (PBIs), ordered at the top of the Product Backlog by the Product Owner, are discussed. The
Development Team forecasts those Product Backlog items that it believes it can complete by the end
of the Sprint. A Sprint Goal is crafted, and the Sprint Backlog emerges. The Sprint Backlog contains
those items selected by the Development Team plus a plan for delivering them. The Sprint Backlog
shows the work remaining in the Sprint at all times.

http://www.scrum.org/scrumguides

	 CHAPTER 1  Scrumdamentals	 5

Is everyone
following Scrum?

Scrum
Master

Sprint
Planning

Sprint
Retrospective

Sprint Review
Working
Software

(Increment)

Product
Owner

Stakeholders

Product Backlog
Grooming:

10% of Sprint

Daily Scrum:
Daily,

15 minutes

Testing:
Daily

Sprint
Backlog

Product
Backlog

Sprint:
1−4 weeks

Development
Team

Feedback

FIGURE 1-1  The Scrum framework in action.

The bulk of the Sprint’s time-box will be spent developing the items in the Sprint Backlog. The
rules of Scrum are fairly silent on what occurs each day during development. The Development
Team must meet regularly for the Daily Scrum. This short meeting is for the Development Team to
synchronize on what work will be executed in the next 24 hours. The Development Team should also
meet with the Product Owner to groom the Product Backlog. During grooming, items in the Product
Backlog are given additional detail, and estimates are given by the Development Team. This keeps the
Product Backlog healthy so that the Product Owner can plan the software product’s release and make
better decisions on the items to develop next.

During the Sprint, the Development Team completes items in their Sprint Backlog according to
each item’s acceptance criteria and the team’s Definition of “Done”. This definition lists the practices
and standards that must be met for every item before it can be considered ­complete. The definition
is created by the Development Team but must be understood by the Product Owner. Both parties
must understand that if work does not meet the Definition of “Done,” it is not done and ­cannot be
released. Ideally, the Development Team collaborates with the Product Owner throughout the Sprint
to ensure that all criteria are being met. If the Development Team completes their forecasted work
early, they should collaborate with the Product Owner to find another ­suitable ­Product Backlog item
to work on. Conversely, at the first indication that the Development Team knows that they won’t be
able to complete their forecasted work, they should collaborate with the Product Owner to identify
and discuss trade-offs and modify the Sprint Backlog to reflect the reality of the Sprint without
­sacrificing quality.

6	 PART I  Fundamentals

Sprint Backlog items done according the Development Team’s definition are demonstrated during
the Sprint Review meeting. The Product Owner may invite various stakeholders to this meeting for
their feedback on the Increment. This Product Owner and stakeholder feedback might be captured
and end up as new items in the Product Backlog. Existing items may also need to be updated or
removed. The Product Owner may decide to release the Increment as soon as possible or delay it.
This should be a business decision. Regardless of when the Increment is released, the Development
Team should always develop the Increment as though it were going to be released as soon as possible.

The last event in the Sprint is the Sprint Retrospective meeting. This meeting provides an
opportunity for the Scrum Team to inspect themselves and identify what went well and what needs
­improving. If improvements are identified, the team should create an actionable plan for the next
Sprint. Nothing is out of scope during this meeting—people, relationships, process, and tools can all
be discussed. The Scrum Team may also decide to adjust its Definition of “Done” to increase product
quality. After the meeting, the next Sprint begins.

Scrum roles
The group of individuals who are responsible for, and committed to, building the software product is
known as the Scrum Team. The Scrum Team is a superset of the Development Team. The Scrum Team
consists of the following Scrum roles:

■■ Development Team

■■ Product Owner

■■ Scrum Master

As you will learn, there is an implied equality (that is, lack of rank or seniority) of the developers on
the Development Team since Scrum does not recognize titles. That is not the case with the Scrum Team
as a whole. The Product Owner is the visionary leader who chooses what is built, when it is ready to
release, and when to stop or cancel the project. If you think of the roles in terms of providing service, the
Development Team serves the Product Owner, while the Scrum Master serves both the Development
Team and the Product Owner. Therefore, the Development Team has strong ­influence to select (that is,
hire or fire) the Scrum Master. Correspondingly, the Product Owner has strong influence to select the
Development Team he or she wants to turn the Product Backlog into done Increments. Because of this
separation of duties, the roles should be played by separate individuals. This mitigates any chance of a
conflict of interest. That said, smaller teams may find it necessary to combine roles.

Note  Scrum Team != Development Team. The Scrum Team refers to the Development
Team plus the Product Owner and Scrum Master. The Development Team refers to the
subset of the Scrum Team that contains only the developers who will be developing the
Increment. When someone uses the unqualified term “team” during conversation, it could
refer to either. You may want to ask the person using the term to provide additional
context.

	 CHAPTER 1  Scrumdamentals	 7

The Development Team
The Development Team consists of between 3-9 professionals who are capable of building and
delivering a potentially-releasable Increment of software at the end of a Sprint. The size of 6 +/– 3
developers allows the team to be small and nimble, while being large enough to complete increments
of complex development. A team with only 2 developers doesn’t need Scrum, as they can simply
communicate directly and be productive. Also, there is a greater chance that the 2 developers won’t
have the skills required to do the work. On the other hand, teams with more than 9 developers
require too much coordination. These larger teams tend to generate too much complexity to derive
value from Scrum’s empiricism.

Note  The Product Owner and Scrum Master are not on the Development Team and are
not included in the 6 +/– 3 Development Team size count. However, if the Product Owner
or Scrum Master is also a developer who will be executing development tasks during the
Sprint, then you should count them.

In Scrum, Development Team members are called “developers,“ regardless of their background, job
title, or skill set. Development Team members may have experience in software engineering, testing,
architecture and design, graphic design, database administration, business analysis, technical writing,
or other similar specialties. Regardless of what their resume says, they are now “developers“ as far as
Scrum is concerned. They should burn their business cards and focus on delivering value in the form
of working software. Also, there are no subteams in Scrum, such as testing or QA. The Development
Team performs all of the work required to deliver the done increment of the software product.

It’s important to note that just because a team member is called a developer, this does not
­necessarily mean that they will be developing (writing) code. Depending on the task, they may
be developing architecture, developing user interface or design, developing test cases, developing
database objects, developing installers, or developing documentation, etc. Everyone develops
something. Table 1-1 lists the high-level activities that a Scrum Development Team will perform.

TABLE 1-1  Development team activities within Scrum.

Activity When

Collaborate with the Product Owner to forecast the Sprint’s
work and craft a Sprint Goal.

Sprint Planning.

Collaborate with fellow developers on a plan to implement
the forecasted work (including task ­estimation).

Sprint Planning, Daily Scrum.

Attend the Daily Scrum meeting. Daily Scrum.

Develop the Increment according the acceptance criteria
and the Definition of “Done.”

After Sprint Planning and prior to Sprint Review.

Collaborate with the Product Owner to groom the Product
Backlog (including PBI ­estimation).

During the Sprint. Product Backlog grooming makes
up to 10% of Development Team’s capacity during the
Sprint.

Collaboratively identify additional development when
forecasted work is completed early.

During the Sprint as needed.

8	 PART I  Fundamentals

Activity When

Collaboratively discuss trade-offs and create a contingency
plan for when the forecasted work can’t be completed.

During the Sprint as needed.

Demonstrate each Increment allowing inspection by
stakeholders and Product Backlog adaptation.

Sprint Review.

Reflect upon itself and its practices making delivery
improvements.

Sprint Retrospective.

Continuously learn and improve. Always.

Don’t assume that a developer will execute only those types of tasks that he or she is good
at or familiar with. For example, just because Dieter has a background in Microsoft SQL Server
programming, that doesn’t mean he’ll be the one executing those types of tasks. If, during the Sprint,
the team decides that the next logical task to execute requires SQL Server programming and Dieter
is busy or unavailable, another developer should jump in and take on that work if at all possible.
During development, the person who is best suited to perform a given task will emerge based on
many factors, including expertise and availability. It is for this reason that estimates are made by the
Development Team, not individuals—even if those individuals are experts in those domains. It’s also
why you should have more than one developer with a necessary skill set.

Tip  I find very few teams whose members refer to each other as “developers.“ There is
still a reflex to equate “developer” to programmer or coder. Our industry reinforces this.
For these teams, and for the time being, using the term “Development Team member” or
“team member” is a suitable substitute in my opinion.

Development Teams are cross-functional. This means that there is at least one developer on the
team who has the necessary skill set to execute some type of work required for the Increment. Put a
different way, it means that the Development Team has all the skills needed to complete its work. Being
a cross-functional Development Team doesn’t mean that each developer is cross-functional. Ideally, there
will be more than one developer who has a required skill set. If not, then the team should strive to improve
that by pairing and sharing, or by leveraging some other instructional techniques during development.
Having one single developer on a team with a key skill is a recipe for dysfunction.

The composition of the Development Team does not change during the Sprint. If it must change,
it may only change “in-between” Sprints. This is typically the result of a decision made collaboratively
during the Sprint Retrospective meeting. Changes may include adding a new team member, swapping
a member with another team, removing a team member, or changing a team member’s capacity. Any
change to the team composition is a disruption. Since Velocity is typically computed empirically, by
looking back at the Development Team’s accomplishments in prior Sprints, any change to the team
composition will most likely cause a variance. It will take time for the Velocity to normalize. In other
words, productivity will initially decrease for a time and then should (hopefully) increase.

	 CHAPTER 1  Scrumdamentals	 9

Note  Velocity is a measure of Product Backlog items that a Development Team delivers in
a single Sprint. Velocity can be measured in the number, size, or business value of those
items. Velocity of a single Sprint is not useful, but trending this number of several Sprints
shows the general direction of productivity of a Development Team. Once Velocity has
normalized, it is useful in planning Sprints and releases. For example, if a Development
Team has an average Velocity of 20 points per Sprint and the Product Backlog shows
12 PBIs totaling 96 points yet to be developed in this release, you can expect the release to
be available in roughly 5 Sprints, or 2 1/2 months given a 2-week Sprint duration. The term
“Velocity” is rooted in the User Story practice, so it is not an official Scrum term. That ­being
said, it can be adapted to other kinds of Product Backlog items, such as use cases, and
used in Scrum as a planning tool.

Tailspin Toys case study  The Tailspin Toys Development Team consists of seven cross-functional
developers with varying backgrounds, skill sets, and skill levels. The team members are Anna, Art,
Dave, Dieter, Raj, Toni, and Wade. Art and Anna have architecture, design, and some C# experience.
Dave, Wade, and Raj have solid C# experience. Raj and Dieter have SQL Server and Windows Server
experience, including Windows PowerShell. With the exception of Raj and Dieter, the Development
Team is co-located and spends the majority of their time on the Tailspin Toys development effort.
As a team, they all went through professional Scrum developer training and achieved passing
assessment scores.

The Product Owner
The Product Owner represents the voice of the user. This means the Product Owner not only knows
the product, its domain, and its vision, but also the users. Good Product Owners are in touch with the
needs of the users. Great Product Owners will actually share in user’s passion. Either way, the Product
Owner should understand users’ requirements and expectations. Just knowing how the product
works and what to fix is not enough to be a competent Product Owner.

Note  Over the years I’ve heard that the Product Owner is the voice of the customer. Lately,
however, I’ve been seeing that the Product Owner is the voice of the user. I tend to agree
with the latter, but what’s the difference? Fellow professional Scrum developer Jeroen
van Menen explains the subtle difference: the customer is the one who buys the software,
where the user is the one who uses it.

Therefore, the Product Owner must represent the needs of the user and drive value in his or her
direction, rather than just trying to satisfy the person writing the check. There is only one Product
Owner on a Scrum Team. This helps avoid confusion. When the developers have a question about

10	 PART I  Fundamentals

the product, their first instinct should be to ask the Product Owner. The Product Owner may need to
consult other domain experts and stakeholders for the answer, especially for very large and complex
products. The Product Owner should be considered the go-to person for all questions about the
product’s vision, value, release goals, features, and bugs.

The Product Owner is responsible for maximizing the value of the product through the work
of the Development Team. The Product Owner’s primary communication tool for doing this is a
well-groomed and -ordered Product Backlog. The Product Owner collaborates with the Development
Team on what and when to develop. A common misconception is that the Development Team
develops the product. In fact, it’s done through the collaboration and cooperation of the
Development Team and the Product Owner. Table 1-2 lists the Development Team’s interactions with
the Product Owner.

Tip  The ideal Product Owner should know the product, know the product’s domain, know
the product’s customer, know the product’s users, know Scrum, have authority to make
decisions related to the direction of the product, be highly available to the rest of the
Scrum Team, and have good people skills. Unfortunately, I’ve never met a Product Owner
who had all of these attributes, but I have met many Product Owners who desired to
improve in all these areas and worked toward that goal.

TABLE 1-2  Development team interactions with the Product Owner.

Interaction When

Collaboratively plan the Sprint and forecast work. Sprint Planning meeting.

Answer product and product domain questions. During the Sprint as needed.

Groom the Product Backlog (including estimation). During the Sprint. Duration should be up to 10% of Sprint
length.

Take on additional work. During the Sprint as needed.

Collaboratively plan contingency work. During the Sprint as needed.

Demonstrate the Increment and adapt the Product
Backlog.

Sprint Review meeting.

Collaborate to inspect the Scrum Team’s practices and
plan for improvement.

Sprint Retrospective meeting.

High-performance Scrum Teams understand the separation of duties between the Product Owner
and Development Team and have come to rely on each team member doing his or her part. Although
the Scrum Guide doesn’t explicitly state that the Product Owner cannot be the Scrum Master or a
Development Team member, I think those are good rules to set and follow. Keeping the Product Owner
focused on what to develop, the Development Team focused on how to develop it, and the Scrum Master
focused on ensuring that everyone understands and follows the rules of Scrum is a recipe for success.

Since the organization may hold the Product Owner accountable for the profit or loss of the
product, he or she should maintain a constant vigil for optimizing the product’s value. Passionate
Product Owners tend to be engaging Product Owners. They continuously want what is best for their
software product and, more importantly, the value provided to its users.

	 CHAPTER 1  Scrumdamentals	 11

Tailspin Toys case study  Paula is the Product Owner of the Tailspin Toys web application. She
is the daughter of Buzz, the company’s founder, and shares his passion for aviation and model
aircraft. She cares deeply about Tailspin Toys’ customers and community. This inspires her to
constantly improve and evolve the capabilities of the website. She even likes to brag that she’s
the site’s most prolific user. Her vision is to make Tailspin Toys the number one site for aircraft
models and hobbyists. Needless to say, Paula is an informed and engaging Product Owner
who is available when necessary and has the authority to make the necessary decisions. Paula
has been using Scrum for about three years. She has been through the Professional Scrum
Foundations and Professional Product Owner training.

The Scrum Master
The Scrum Master enacts the Scrum values, practices, and rules throughout the Scrum Team and even
the organization. He or she ensures that the Product Owner and Development Team are functional
and productive by providing necessary guidance and support. The Scrum Master is also responsible
for ensuring that Scrum is understood by all involved parties and that everyone plays by the rules.

Note  The Scrum Master is not a project manager. He or she is considered a manager, but
of Scrum itself, not the project, the people, or the product.

The Scrum Master must be resolute in holding fast to the rules of Scrum, giving the organization
time to normalize and realize the benefits. This means keeping any old “waterfall” habits at bay. It
also means keeping any unenlightened managers at bay, while continually quashing the illusion
that command and control and opaqueness equates to better and faster software development.
Sometimes the Scrum Master may become the de facto change agent, leading the effort for an
organizational adoption of Scrum. If this is the case, then the Scrum Master’s steadfastness must be
able to scale!

The Scrum Master has a softer side too. He or she can be called upon to act as a coach, ensuring
that the team is self-organizing, functional, and productive and shielding them from external ­conflicts
while removing any impediments to their progress. The ability of the Scrum Master to serve the team
by removing impediments to their success is a vital piece of Scrum. As a servant leader, the Scrum
Master achieves results by giving priority attention to the needs of the team. Scrum Masters may also
be of service to stakeholders and others in the organization, helping them understand the Scrum
framework and expectations from the various players. Servant leaders are often seen as humble
stewards of the people and processes in which they are involved. By having a “What can I do for you
today?” attitude, it fosters an environment of collaboration and respect, providing fertile soil for a
high-performance Scrum Team. Lao Tzu, the ancient Chinese philosopher, said it best:

12	 PART I  Fundamentals

When the master governs, the people are hardly aware that he exists. Next best is a
leader who is loved. Next, one who is feared. The worst is one who is despised. If you
don’t trust people, you make them untrustworthy. The master doesn’t talk, he acts.
When his work is done, the people say, “Amazing: we did it, all by ourselves!”

The Scrum Master is not a technical role. Having a strong background in software development is
not necessary, though it can be helpful at times. Scrum Masters must really know Scrum. That’s not
negotiable. A good Scrum Master will also have good communication and interpersonal skills. He or
she may have to facilitate interactions with other team members or enable cooperation across roles or
functions. It’s important to have those abilities. Keep this in mind when considering who might make
a good Scrum Master. Table 1-3 lists the ways in which the Scrum Master serves the Development
Team.

Tip  In my opinion, traditional project managers don’t make good Scrum Masters.
Unfortunately, this is a common reflex for an organization adopting Scrum. For example,
the decision makers decide to send “Roger,” their PMI-certified, Henry Laurence Gantt
medal recipient (look it up), Microsoft Project MVP to Professional Scrum Master training.
The expectation is that Roger will lead the change. What I’ve seen happen is that either
Roger’s project management “muscle memory“ adversely affects the adoption of Scrum, or
his old colleagues and managers do.

TABLE 1-3  Ways the Scrum Master serves the Development Team.

Service When

Help facilitate Scrum events. During the Sprint as needed.

Identify, document, and remove impediments. During the Sprint as needed.

Provide training, coaching, and motivation. During the Sprint as needed.

Coach the Development Team on self-organization. During the Sprint as needed

Attend required meetings on the Development Team’s
behalf.

During the Sprint as needed

Be the Development Team’s emissary to the
organization.

During the Sprint as needed

Shield the Development Team from interruption and
noise.

During the Sprint as needed.

Be relied upon less and less. Over time as the team improves.

The duties of the Scrum Master may not require a full-time commitment. High-performance teams
recognize this and may select a Development Team member to play the part-time role of Scrum
Master. This role may rotate between developers over time. Full-time Scrum Masters may get folded
back into the Development Team, or part-time Scrum Masters may start getting busier as new Scrum
Teams emerge in the organization. The Scrum Master role is more flexible than the other roles in
this regard. So long as a Scrum Team understands and follows the rules of Scrum and has access to
someone who can perform the duties of a Scrum Master when needed, party on.

	 CHAPTER 1  Scrumdamentals	 13

Tip  The skills of a Scrum Master are unique and important. Being a Scrum Master is
a career choice for some. In my experience, they tend to be high-performance and
continuously improve their skills as they serve the team. These Scrum Masters should
remain just that. If possible, they shouldn’t be dismissed or converted to another role. They
will bring more value to the team and the organization as a full-time Scrum Master.

Tailspin Toys case study  Scott was hired by Tailspin Toys last year to serve as Scrum
Master. Initially, he only served the web application team, providing the necessary
coaching in order to transform them into a high-performance Scrum Team. Upper
management plans on using Scott to help other teams within the organization learn and
adopt Scrum. Scott is an expert in Scrum and has years of practical, hands-on experience
with various companies and teams. He has been through Professional Scrum Foundations
and Professional Scrum Master training and is active in the Scrum.org community.

Stakeholders
Although not an officially defined role in the Scrum Guide, stakeholders include everyone else
involved or interested in the development of the software product. Stakeholders can consist of
managers, executives, analysts, domain experts, members from other teams, customers, and users
of the software. Stakeholders are very important. They represent the necessity for the software.
They also drive the vision and usability of the product by influencing the Product Backlog. Without
­stakeholders, who would use the software, pay for its development, or derive benefit from it?

In my experience, developers have a tendency to discount non-technical individuals. This is
unfortunate. Stakeholders should not be ignored. That said, some stakeholders can take too much
interest in the development effort and its status, becoming a distraction. Scrum has clear delineations
of when stakeholders and the Development Team can interact, and it’s very limited, as you can see
in Table 1-4. Inspecting and providing feedback on the product, such as requesting a feature, should
be handled by the Product Owner. Inspecting and providing feedback on the development process,
such as inquiring about status, should be handled by the Scrum Master. In other words, stakeholders
should almost always be kept out of the development process.

Tip  Burndown charts posted in a common area or on a web portal are a great way to
keep stakeholders informed, which This keeps the interruptions of the Scrum Team to a
minimum. If anyone has questions about the charts, the Scrum Master can educate them.

The Scrum Master should strive to keep stakeholders out of the various Scrum events, with
the exception of the Sprint Review meeting. Stakeholders should not be involved in any planning
or estimation meetings unless their domain expertise is required. Attendance to any event is by

14	 PART I  Fundamentals

invitation of the Scrum Team only. Stakeholders should also not attend the Daily Scrum, as its purpose
is to allow the Development Team to synchronize with each other on the upcoming work. Even the
Product Owner’s presence at this meeting is considered a distraction from its purpose.

TABLE 1-4  Development Team interactions with stakeholders.

Interaction When

Answer any questions the Development Team might have
about items in the Product Backlog (estimation, planning, etc.).

During the Sprint as needed.

Review the product Increment built during the Sprint and
provide feedback to be captured in the Product Backlog.

Sprint Review.

Tailspin Toys case study  The Tailspin Toys company has a rich history in aviation, both
commercial and military. As founder of the company, Buzz brought with him many of his pilot
buddies to serve as advisors. While they are not technical when it comes to software, they do
have deep expertise in the domain of aviation, aircraft, models, and the community. In addition
to these experts, there are a number of other stakeholders who provide feedback on the web
application. Some of these are die-hard users of the software—affectionately called the Fans
of Tailspin. Having previously been an executive of an airline, Buzz understands the importance
of capturing user feedback. To that end, he insisted on setting up wish@tailspintoys.com email
address to receive email feedback. These emails are routed to a support person who triages the
content and works with Paula to add the item to the Product Backlog.

Scrum events
The Scrum framework uses events to structure the various workflows of incremental software
­development. Each event is time-boxed, which means that there is a fixed period of time to execute
the activities within each event. Time-boxing ensures that an appropriate amount of time is spent
planning without allowing waste in the planning process. Figure 1-2 illustrates how the events and
related artifacts flow together.

Development

Increment
and

Feedback

Vision

Product
Backlog

Sprint Goal
and

Sprint Backlog

Sprint Planning

& Product Backlog Grooming

Daily Scrum(s)

Sprint 1 Sprint 2

Sprint Review

Sp
ri

nt
 R

et
ro

sp
ec

tiv
e

Updated
Product
Backlog

FIGURE 1-2  The sequence of Scrum events and related artifacts.

mailto:wish@tailspintoys.com

	 CHAPTER 1  Scrumdamentals	 15

These Scrum events are meant to establish regularity and a cadence. They are also meant to
minimize the need for wasteful or impromptu meetings that are not part of Scrum. All events are a
formal opportunity to inspect and adapt something. Inspecting allows the team to assess progress
toward a goal, as well as identify any variance in the current plan. If an inspection identifies any
unacceptable deviation, an adjustment must be made to the product or process. These adjustments
should be made as soon as possible to minimize further deviation. Failure to include or attend any
of the Scrum events results in reduced transparency and is a lost opportunity to inspect and adapt.
There are five prescribed events in Scrum:

■■ Sprint

■■ Sprint Planning meeting

■■ Daily Scrum

■■ Sprint Review meeting

■■ Sprint Retrospective meeting

Note  The Sprint is not a meeting. It is a container for all of the other events. This means
that the Sprint has begun when the Sprint Planning meeting commences. A notion exists
that the Sprint is that time period after the Sprint Planning meeting and before the Sprint
Review in which the actual development occurs. This is incorrect. Unfortunately, this
“event” doesn’t have a name. I refer to it as “development.”

The Sprint
A Sprint is the set period of time in which an Increment of the software product is developed.
A Sprint is Scrum’s term for an iteration. Sprints are typically fixed at two to four weeks in length and
run end to end, one after another. The frequency of feedback, experience of the team, and Product
Owner’s need for agility are key factors in determining the length of a Sprint. For example, if the
­software product is an enterprise desktop application with fairly well defined release goals, ­longer
sprints are fine. If the application is software as a service (SaaS), with demanding customers and
several competitors, shorter sprints would be more desirable. Both the customer and the Scrum Team
need to collaborate to determine the ideal length of the Sprint.

In Scrum, the Sprint is the outer (container) event for the other four events. In other words, the
Sprint Planning, development, Sprint Review, and Sprint Retrospective meetings all take place within
the Sprint. This is a change from earlier Scrum guidance, which suggested that the Sprint began once
Sprint Planning completed. Once you start using Scrum, you are always in a Sprint—assuming the
software still requires development. When this Sprint’s Retrospective meeting ends, the next Sprint
begins and you repeat the inner events again. There should never be any breaks in between Sprints.

Sprint length  I asked Ken Schwaber once how long a Sprint should be. His answer was, “As short
as possible and no shorter.” Sprints of longer than four weeks (one month) have a smell—the smell
of water falling. When a Sprint’s length is longer than a month, the definition of what is being built

16	 PART I  Fundamentals

may change or complexity and risk may increase. By limiting the maximum length of a Sprint, at most
one month of development effort would be wasted, rather than several months in a classic waterfall
project. Conversely, Sprints with a length of less than one week are possible, but should be executed
only by a high-performance Scrum Team. Even with very short Sprints, the overhead of the inner
events must be factored in, leaving even less time for actual software development. Teams working in
”micro sprints” like these need to be on their A-game every day.

Ideally, the length of the Sprint does not change. If it must, it can only change in between Sprints,
as a result of a decision made collaboratively during the prior Sprint’s retrospective meeting. Any
change to the length of a Sprint will cause disruption to the Development Team’s cadence. This will
correct over time, as will its Velocity.

Each Sprint is like a mini-project. The Sprint has a definition of what is to be developed. It also
includes a flexible approach on how to develop it. During the Sprint, all aspects of the development
work are executed. This will typically be more than just designing, coding, and testing. The scope
of work may be clarified as more is learned, and the Product Owner may collaborate with the
Development Team to renegotiate adding new items or swapping different items in the Sprint
Backlog. The Development Team may not decrease any quality goals in order to finish its work. The
resulting product Increment is produced and (hopefully) accepted by the Product Owner, who may
also decide to release the Increment to production.

The choice of which day of the week to start (and end) a Sprint is entirely up to the Scrum Team.
Some practitioners prefer Mondays or Fridays. Most don’t. Fellow professional Scrum developer Jose
Luis Soria Teruel cautions against teams that try to always start a Sprint on a given day. The team
can inadvertently give the day more importance than having a fixed Sprint length. For example, if
a holiday falls in the middle of a Sprint, the team might shorten the Sprint so they can stick with it
beginning on a Monday. Changing the Sprint length, even by a day, can affect cadence, Velocity, and
the ability to achieve the Sprint Goal.

Canceling a Sprint  Rarely does a Sprint need to be canceled, but it does happen. If a Sprint’s
forecasted work becomes irrelevant, then there is no reason to continue developing it. This can occur
if the product or organization needs to change direction immediately due to a technology or market
reason. Only the Product Owner has the authority to cancel a Sprint. He or she may do so under the
advisement of others, including stakeholders, the Development Team, or the Scrum Master. Canceled
Sprints require the Scrum Team to collaborate and decide if any done work is acceptable and
potentially releasable. The Scrum Team should also re-estimate any undone work, returning it to the
Product Backlog. The work done on partially completed PBIs depreciates quickly and may not have
any value in the future. Needless to say, canceling a Sprint will generate waste.

Tailspin Toys case study  Originally, the Scrum Team tried four-week Sprints. They felt that the
longer time-box would be closer to the quarterly delivery schedule they had been accustomed
to. Unfortunately, since the team was new to Agile, they continued to take a sequential
approach to development. They spent a lot of time on analysis and design at the beginning

	 CHAPTER 1  Scrumdamentals	 17

of the Sprint and deferred QA until the end. The resulting high-intensity crunch in the last few
days of the Sprint was not ­sustainable and was really just a backslide into waterfall habits (a.k.a.
“Scrummerfall”). The team did not experience the productivity gains everyone anticipated.
When they hired Scott (the Scrum Master), he recommended moving to two-week Sprints.
This caused the developers to experience a sense of urgency, change the way they worked,
and maintain a comfortable level of intensity throughout the Sprint. Scott also recommended
starting the Sprint on a Wednesday. This increased the chances of the whole team being in the
office and ­operating at peak capacity. It also allowed stakeholders to fly in for a Sprint Review
and the subsequent Sprint Planning meeting without having to stay over a weekend. The Scrum
Team has completed many successful Sprints while on this two-week cadence. Their average
Velocity over the last six Sprints is 22.

Sprint Planning meeting
The Sprint Planning meeting is for identifying and planning the development work that will be
­performed during the Sprint. This is the first event that occurs within the Sprint, and the most
important. The entire Scrum Team attends this meeting. The Development Team collaborates with the
Product Owner on the scope of work that can be accomplished. A groomed and ordered (prioritized)
Product Backlog is required as an input for Sprint Planning. This forecasted work, along with a Sprint
Goal and a plan for doing the work (the Sprint Backlog), are the outputs.

The Sprint Planning meeting is time-boxed, so everyone needs to be laser-focused. Distractions,
such as non-topical conversations, should be minimized. The length of the Sprint Planning meeting is
a function of the length of the Sprint, as you can see in Table 1-5.

TABLE 1-5  Length of the Sprint Planning meeting.

Sprint length Sprint Planning meeting length

4 weeks No longer than 8 hours

3 weeks No longer than 6 hours

2 weeks No longer than 4 hours

1 week No longer than 2 hours

Less than a week In proportion to the above lengths

The forecast  During Sprint Planning, the Development Team considers the highest-ordered PBIs from
the Product Backlog one at a time. The order is decided by the Product Owner. Each item’s requirements
and acceptance criteria are discussed. Clarification is provided by the Product Owner as well as other
domain experts who might be invited to the meeting. After obtaining a sufficient ­understanding of the
PBI, the Development Team estimates the effort. If the consensus believes that they can deliver the item in
this Sprint, the item is added to the forecast. Lack of consensus may require the PBI to be split or deferred
until a later Sprint, when more is known. The Development Team moves to the next item in the Product
Backlog. This is repeated until the Development Team thinks that they have forecasted a comfortable
amount of work for the Sprint, given their capacity and past performance. These forecasted PBIs are
moved from the Product Backlog to the Sprint Backlog.

18	 PART I  Fundamentals

The Development Team may use their Velocity to make the determination of what is an acceptable
amount of work. New Development Teams, who don’t yet have a normalized Velocity, as well as
high-performance teams, may just use their instinct to decide what feels like the right amount of
work. If the Development Team completes their forecasted work early, they can collaborate with the
Product Owner mid-Sprint to identify and develop an additional PBI. Because of this, their Velocity
may go up, and a larger forecast might occur at the next Sprint Planning meeting. The Development
Team should never forecast more work than they know they can complete.

Note  In 2011, the Scrum Guide introduced a somewhat controversial change to Sprint
Planning. The word ”commit” was replaced with ”forecast”. Scrum practitioners had an
issue with the word commit for some time. The problem was that ”commit” implied that
the Development Team was obligated to deliver the PBIs at the end of the Sprint. This
was especially true when stakeholders, who tend to not understand the complexities
of ­developing software, heard the word. Since software development is very difficult
and full of risk, delivering all PBIs every Sprint is unrealistic. The Development Team
might have to cut quality in order to make good on their promise and this is essentially
forbidden in Scrum. The term ”forecast” is more realistic and easier to understand by
business stakeholders who have heard terms like “sales forecast.” It suggests that, while the
Development Team will do their best, given what they know, new information will emerge
during the Sprint that might impede their best-laid plans. It will take some time to get used
to the new term. It may sound like a weasel word to some, but in the long run, its usage
will be deemed more honest and transparent.

The Sprint Goal  After the Development Team forecasts the PBIs that it thinks that it can develop in
the Sprint, they should collaborate with the Product Owner to craft a Sprint Goal. The Sprint Goal is an
objective, in narrative format, that guides the Development Team as they develop the Increment. The
Sprint Goal also provides stakeholders the ability to see a synopsis of what the Development Team is
working on. While the Development Team only forecasts the individual PBIs to be implemented, they
actually commit to achieving the Sprint Goal.

Note  Some teams like to craft the Sprint Goal first, or at least in parallel with the
forecasting of work. This way, there is more cohesion with the goal and the PBIs that are
developed during the Sprint. This cohesion makes it easier to understand the value of the
Increment and how it fits into the goals of the product or release. This approach can be
difficult for teams who need to develop disparate features and bug fixes for a given Sprint.

It’s important that the Product Owner and Development Team craft the Sprint Goal together
and agree on its verbiage and meaning. Everyone on the team should then commit it to memory.
­Stakeholders should have access to see it as well. Once development has begun (that is, the Sprint
Planning meeting is over), the Sprint Goal should not be changed. It is the theme that the team has

	 CHAPTER 1  Scrumdamentals	 19

committed to, and the T-shirts have already been printed—so to speak. If the Development Team isn’t
able to achieve the Sprint Goal, or the goal becomes obsolete, the Product Owner might decide to
cancel the Sprint—another indication of the Sprint Goal’s importance.

The Sprint Goal gives the Development Team some flexibility and guidance regarding the
functionality implemented within the Sprint. Even if the Development Team delivers less PBIs than
were forecasted in Sprint Planning, they can still achieve their Sprint Goal. For example, let’s assume
the Development Team forecasts the following PBIs during Sprint Planning:

1.	 Add a Twitter feed to the homepage.

2.	 Create a Facebook page for the company.

3.	 Create and host a wiki page for product support.

Given this forecast, the Sprint Goal might read, “To increase community awareness of our company
and its products.” As the developers work, they keep this goal in mind. If the team is unable to finish
the third PBI, they didn’t fail because they were still able to increase community awareness of our
company and its products by successfully completing the first two PBIs. If it sounds like Sprint Goals
give the Development Team “wiggle room,” you are correct. Remember that what developers do is
very difficult and full of risk. That’s why they should forecast the individual items they think they can
deliver, but commit to the goal that embodies them.

The plan  Sprint Planning is not complete until the Development Team has devised a plan for
how they will develop the forecasted PBIs. The plan must ensure that all PBI acceptance criteria are
­satisfied while meeting the team’s Definition of “Done.” The plan gets added to the Sprint Backlog.
On a whiteboard, this might be visualized as a collection of sticky notes in the same row as the
associated PBI sticky note. In software, it might be several child records related to a parent record.
Regardless of the tool the team uses, the Sprint Backlog contains both the forecasted PBIs and the
plan (tasks) to develop them.

Tip  Go lightweight during Sprint Planning. Whiteboards are a great medium for sketching
ideas and brainstorming tasks. Laptops aren’t. Whiteboards can be easily photographed
and wiped clean after the meeting. Files on laptops tend to linger and yearn to be
­updated. They also indicate a finality set in stone that is not necessarily the truth.
Using sticky notes to brainstorm tasks in the plan is also good. They can be moved and
removed easily from the board. A high-performance Scrum Team will avoid using any
software during Sprint Planning unless its value outweighs its distraction. Sticky notes and
­whiteboard sketches can be translated into digital files later, once the Development Team
agrees on the plan.

Because of the meeting’s time-box, the Development Team probably won’t be able to identify
every task required to develop a particular PBI. For expediency, a minimum amount of information
should be recorded—perhaps just a title and estimate of effort. Sprint Planning is not the time for
detailed design. The Development Team needs to focus on the high-level plan and its tasks.

20	 PART I  Fundamentals

For example, let’s assume that the team will have to create several database tables, stored procedures,
and related data access code. Rather than go down the design “rat hole” during the meeting, the
team should just identify a couple of high-level tasks: create database objects and create data-access
code. Each of these would include an aggregate estimate of effort to perform all the related activities.

The tasks to be performed first in the Sprint should be decomposed as necessary so that no
executable task is larger than can be achieved in one day. Estimates can be in whatever unit of
measure the Development Team decides. For tasks, hours are the most common unit. I’ve seen teams
also use days or story points. Personally, I think using story points for estimating tasks can lead to
confusion. Rarely would you want to relatively compare the estimations of two tasks that could end
up being done by different team members. Regardless of the unit of measure, all of these numeric
values will enable a Sprint burndown chart, should the team choose to employ one.

It’s important for the Development Team to leave the Sprint Planning meeting with a plan to
accomplish the Sprint Goal. This plan should be documented, in the Sprint Backlog, in a way that the
Product Owner and Scrum Master can understand the approach. Task ownership is not a required
outcome of the Sprint Planning meeting. In fact, it’s important to leave “to do” tasks unassigned so that
team members who have capacity can pick a relevant task to work on next. That said, it is fine if the team
decides to assign one or a few tasks to individuals by the end of the meeting. The Development Team will
then self-organize to undertake the work in the Sprint Backlog as needed throughout the Sprint. Table 1-6
lists the activities expected of a Development Team during the Sprint Planning meeting.

TABLE 1-6  Development Team activities during Sprint Planning.

Activity Where is it captured?

Forecast PBIs to be delivered that Sprint. PBIs in the Sprint Backlog.

Collaborate with Product Owner to craft a Sprint Goal. Whiteboard, sticky notes, Microsoft SharePoint, etc.

Develop a plan for delivering the forecasted PBIs. Tasks in the Sprint Backlog.

Tailspin Toys case study  The first Sprint Planning sessions were chaotic. The Development Team
were ­introduced to new PBIs for the first time at the meeting. Paula (the Product Owner) wasn’t
always prepared and the domain experts were sometimes unavailable. Most of the meeting was
spent understanding what was to be developed, and planning the how got deferred until the first
few days of the Sprint. This corrected itself over time, as the team members got used to Scrum.
Sprint Planning also became much more efficient when the team started meeting regularly to
groom the Product Backlog.

The Daily Scrum
The Daily Scrum is a 15-minute, time-boxed meeting for the Development Team to synchronize
their activities and create a plan for the next 24 hours. It allows developers to listen to what
other developers have done and are about to do. This leads to increased collaboration, as well as
accountability. If one developer hears that another developer is about to work in a similar area of
the product, they may choose to pair up for the day. On the other hand, if the team hears that a

	 CHAPTER 1  Scrumdamentals	 21

developer is on day 3 of a 4-hour task, it may be time to pair up or inquire about the root cause.
Team members need to understand that commitments are being made at this meeting and that these
commitments will be tested 24 hours from now.

Note  I hear a lot of teams refer to this event as the “daily standup.” The event is called the
“Daily Scrum.” If the team decides to stand during the meeting, they may do so.

The most popular technique that Development Teams use during the Daily Scrum is to stand in a
circle facing each other. Each developer, in turn, answers the following three questions:

1.	 What have I done since the last Scrum?

2.	 What will I do between now and the next Scrum?

3.	 What impediments are in my way?

The Development Team can use the dialogue heard during the Scrum to assess their progress.
By hearing what is or isn’t being accomplished each day, the team can determine if they are on their
way to achieving the Sprint Goal. As teams improve in their collaboration, this vibe will become more
noticeable—even outside the Daily Scrum. High-performance teams may even outgrow the need for
a formal assessment tool, such as a Sprint burndown chart. Stakeholders will only outgrow this need
once the Scrum Team has earned their trust, which takes time. The sustained increase of business
value being added to the software product should serve as its own assessment.

The meeting should be held in the same place and at the same time every day to reduce
complexity and to maximize the likelihood of attendance. Ideally, the meeting is held in the morning
so that the Development Team is able to synchronize their work that day. The Daily Scrum is not
a status meeting. Problem solving can occur in the meeting, but it is usually deferred to just after
the Daily Scrum because the problem solving can often lead to the team violating the 15-minute
time-box for the event, as well as conversations that are not relevant to all attendees.

The Daily Scrum is not meant to be attended by anyone other than the members of the
Development Team. This includes the Product Owner. In fact, the Scrum Master is not even required
to attend. He or she just needs to ensure that the Scrum takes place and that the rules are followed.
Any impediments can be identified, tracked, and even mitigated by the Development Team members.

Tip  Keep laptops, burndown charts, and other artifacts and props out of the Daily Scrum.
These tend to distract from the purpose of the meeting. Each developer should know their
own information without having to look anything up. Observations and impediments can be
recorded on a whiteboard or using sticky notes. High-performance teams will use a “parking
lot” to track anything not relevant to the Scrum, and a follow-up meeting can support those
conversations. The Development Team is self-organizing and can decide to meet formally or
informally at any time during the day for any reason. The Scrum framework has no guidance on
what the Development Team does the other 7 hours and 45 minutes of the day, other than to
say that the Development Team should be maximizing their self-organization capability.

22	 PART I  Fundamentals

Tailspin Toys case study  The Development Team has their Daily Scrum at 9 A.M. in
the hallway near their team’s area. Prior to the meeting, each developer updates their work
remaining estimates on their tasks. By doing this, it gives them a fresh perspective on
their ­remaining work and enriches the ­conversation. A side benefit is that this keeps the burndown
reports accurate, which is good if they are consulted at any follow-up meeting. During the
Scrum itself, the ­developers have adopted the practice of tossing a small rugby ball (a ­“talking
stick”) to the next developer to speak. Sticky notes are created and placed in a parking lot
section of a nearby whiteboard as needed. The Daily Scrum usually takes less than 10 minutes.

Sprint Review meeting
After the Sprint’s development time-box has expired, a Sprint Review meeting is held. The entire
Scrum Team attends, as well as any stakeholders the Product Owner invites. This informal meeting
is for inspecting the increment developed by the team. Stakeholders get to observe an informal
demonstration of the working software. Their feedback is elicited and captured. This collaboration
can produce new, updated, or removed PBIs.

The Sprint Review meeting is time-boxed. Its length is half that of the Sprint Planning meeting, or
1 hour for every week in the Sprint, as you can see in Table 1-7.

TABLE 1-7  Length of the Sprint Review meeting.

Sprint length Sprint Review meeting length

4 weeks No longer than 4 hours

3 weeks No longer than 3 hours

2 weeks No longer than 2 hours

1 week No longer than 1 hour

Less than a week In proportion to the above lengths

During the Sprint Review, the Sprint Goal and forecasted PBIs should be restated. Keeping their
audience in mind, the Development Team may give a short summary about what went well, what
didn’t, and how they overcame any problems. If applicable, completed PBIs are demonstrated by
running the working software, not by showing slides, mockups, or passing tests. Techniques can be
employed to provide context and value. For example, the demonstrators might role-play the personas
that would be using and benefiting from a particular feature being demonstrated. The Development
Team describes what the attendees are seeing and, if necessary, how it works behind the scenes. They
will also answer any questions the stakeholders might have.

Tip  The Development Team should never surprise their Product Owner at a Sprint
Review meeting. This should not be the first time that he or she sees the completed work.
High-performance Scrum Teams know the value of continuous collaboration with the
Product Owner. At a minimum, the Development Team should ask the Product Owner’s

	 CHAPTER 1  Scrumdamentals	 23

opinion on individual PBIs as they approach completion. Product Owner acceptance
doesn’t have to wait until the Sprint Review meeting. In fact, you don’t want Sprint Reviews
to become “sign-off” meetings. They are more about improving the product through
inspection of the Increment.

The Sprint Review meeting can generate one or more outcomes:

■■ Unfinished or unstarted PBIs are moved back to the Product Backlog.

■■ New feature ideas are added to the Product Backlog.

■■ Unnecessary items are removed from the Product Backlog.

■■ The Product Backlog is groomed.

■■ The Increment is released (“Ship it!”).

■■ Product development is canceled.

As previously mentioned, the Sprint Review is an informal meeting. The Development Team
should not spend much time preparing for it. Nobody should feel like they are attending a technical
presentation at a conference. On the other hand, the team should be organized enough so it doesn’t
waste the stakeholders’ time. If necessary, the Scrum Master can intervene and make corrections
to maximize the meeting’s value for everyone. Any corrections can be discussed at the Sprint
Retrospective meeting and implemented in the next Sprint.

There are many ways to run a Sprint Review. Some Scrum Teams like it to be structured. Others
don’t. Some like the Scrum Master to kick it off. Others like it to be the Product Owner. Some like to
rotate developers so everyone gets a chance to “drive” during the demonstration. Others like their
strongest communicator driving. Regardless, the Sprint Review should be down to earth and foster an
environment of collaboration and discussion. The Scrum Team should be inquisitive, and all feedback
should be welcomed and captured, preferably in the Product Backlog. Later, the Product Owner can
provide feedback on any of the captured PBIs regarding business value—or not. Inane ideas will
eventually sink to the depths of the Product Backlog.

Being mindful of the time-box, unfinished or unstarted PBIs can also be discussed with the
stakeholders. If they have blocked time out of their busy day, don’t squander the opportunity to get
their feedback on any PBI that might be coming up in an approaching Sprint. These discussions can
create valuable input for the next Sprint Planning meeting.

Tailspin Toys case study  Sprint Reviews have always been a big deal for the Scrum Team.
They meet every other Tuesday morning in the large conference room and invite all of the
­stakeholders and even members from other teams. Paula (the Product Owner) kicks off the
meeting with a review of the Sprint Goal and forecasted work. Scott (the Scrum Master) then
gives a summary of the Sprint, ­including the team’s progress (using the Sprint burndown chart),

24	 PART I  Fundamentals

any obstacles, and how the Development Team overcame them. The bulk of the two-hour
meeting is spent by the Development Team demonstrating the completed functionality.
They do so in a storytelling way, with the developers playing different personas as they act
out the user stories. This fun approach makes everyone in the room feel safe and comfortable
in sharing their opinions and ideas. Scott or another team member captures this feedback
in real time using Microsoft OneNote. Stakeholders also tend to send feedback in the form
of an email after the meeting. This is captured using the product TeamCompanion
(www.teamcompanion.com). Paula then wraps up the Sprint Review by discussing the forecasted
items that didn’t get ­finished or started, as well as her ideas for the next Sprint. Paula may also
update everyone present on progress toward a goal via a release burndown chart or other tool.

Sprint Retrospective meeting
The last event in the Sprint is the Sprint Retrospective meeting. In this meeting, the Scrum Team will
inspect and adapt its own behaviors and practices, looking for opportunities to improve. The Sprint
Retrospective meeting occurs after the Sprint Review meeting and before the next Sprint Planning
meeting. The exact time and location are up to the Scrum Team. It’s important for the Product Owner,
Scrum Master, and the entire Development Team to attend. The Sprint Retrospective meeting is
time-boxed, as you can see in Table 1-8.

TABLE 1-8  Length of the Sprint Retrospective meeting.

Sprint length Sprint Retrospective meeting length

4 weeks No longer than 3 hours

3 weeks No longer than 2 1/4 hours

2 weeks No longer than 1 1/2 hours

1 week No longer than 3/4 hour

Less than a week In proportion to the above lengths

The purpose of the Sprint Retrospective meeting is for everyone to share their observations,
thoughts, and ideas on what went well and what didn’t with regard to people, relationships, process,
and tools. These discussions can get heated, especially when you are talking about social interaction
problems with other people. The meeting should be constructive and it’s the Scrum Master’s
responsibility to keep it that way.

Note  Impediments and struggles with the development process and practices can be
inspected and adapted at any time, such as during the Daily Scrum or throughout the
day or Sprint. The Sprint Retrospective meeting provides a formal opportunity for such
inspection, as well as time for planning any adaptations.

The output of a Scrum Retrospective is a plan for implementing improvements. These
improvements can target the development process as a whole or individual practices within it.

	 CHAPTER 1  Scrumdamentals	 25

Improvements might include changing the way the Development Team works, or where, or when.
Improvements might also include changing the way the developers use their tools, or what tools
they use. Improvements might be more aesthetic, such as ways to make the work more enjoyable
by making the work area more or less stimulating. Any potential improvement is really just an
experiment, since the Scrum Team constantly inspects and adapts its practices. Table 1-9 lists some
other changes that the Scrum Team is allowed to make during the Sprint Retrospective or in between
Sprints. Some of these changes can be pretty major, so they should be executed only with the
consensus of the full Scrum Team and a complete understanding of the ramifications of making the
change. Any change made must still abide by the rules of Scrum.

TABLE 1-9  Changes that can be made at the Sprint Retrospective meeting or in between Sprints.

Change Examples

Increase product quality by updating the Definition of
“Done.”

Increase the minimum code coverage percentage.

Change the person playing the Scrum Master role. Relieve Scott of his duty while attributing the role to
Dave.

Change the team composition. Add another developer or drop Wade’s capacity to 50%.

Change the Sprint length. Change from two weeks to one week to increase agility.

Tip  Don’t be flaccid. Don’t just hold the Sprint Retrospective meeting for the sake of the ­meeting. If
problems are identified, make sure solutions are also identified. If solutions are ­identified, make sure
they are actually implemented in the upcoming Sprints. Inspect and adapt!

There are many techniques that a Scrum Team can use during a Sprint Retrospective meeting. The
most common is to have each Scrum Team member answer three questions:

■■ What did we do well this Sprint?

■■ What could we have done better?

■■ What will we try to do better next Sprint?

There are other approaches to start the conversation, elicit feedback, and brainstorm solutions.
Entire books and websites have been devoted to running successful retrospectives and related
techniques. Table 1-10 lists some of the techniques that my fellow professional Scrum developers
have employed successfully. You will have to search the web for additional information, such as the
instructions for using the technique.

TABLE 1-10  Sprint Retrospective meeting techniques and activities.

Technique Description

Timeline A timeline for the Sprint is marked on a wall, and team members add sticky notes to it
to indicate good and bad events that occurred at that point in time.

Emotional Seismograph Similar to the timeline, but team members mark their emotional level as a point on a
Y-axis throughout the Sprint.

26	 PART I  Fundamentals

Technique Description

Mad, Sad, Glad Team members brainstorm on the events that made them mad, sad, or glad during
the Sprint. Sticky notes are clustered together, normalized, discussed, and mitigated
as necessary.

The 4 L’s Create four posters or whiteboards, one for Liked, Learned, Lacked, and Long
For. Team members add sticky notes to the respective board. They are clustered,
discussed, and mitigated as necessary.

The 5 Why’s A question-asking technique used to explore the cause-and-effect relationships
underlying a particular problem.

Remember the Future Used to create a vision of what the team wants to achieve by inquiring about a future
point in time that follows another future point in time where the hypothetical change
was made.

Car Speeding Toward Abyss Draw a picture of a speeding car heading towards an abyss and use this analogy to
identify the engine, parachute, abyss, and bridge comparisons to the current Sprint’s
work. The Speedboat and Sailboat are variations on this technique.

Happiness Metric Similar to the emotional seismograph, but team members track their happiness levels
throughout the Sprint using a scale of 1–5 with comments. A chart is produced for the
Sprint Retrospective meeting and the peaks and valleys are discussed.

Perfection Game A technique used to maximize the value of ideas. Team members rate an idea from
1–10 and provide positive feedback on how to make it a 10. No feedback means
they’ve given it a 10.

Fishbowl Arranging chairs in an inner and outer circle in order to attract team members to an
empty chair in the inner circle (the fishbowl) and participate in the conversation.

Starfish Using a starfish diagram, team members add sticky notes in these categories: do
the same (=), do less of (<), stop doing (-), start doing (+), do more of (>). They are
normalized, discussed, and mitigated as necessary.

Problem Tree Diagram, or
Ishikawa (Fishbone) Diagram

A technique for visualizing the cause-and-effect relationships pertaining to a
particular problem.

Team Radar The team defines the factors (that is, communication, feedback, collaboration, etc.)
and then each team member rates their interpretation of that factor on a scale
of 0–10, where 0 means not at all and 10 means as much as possible. The chart is
discussed and saved for later comparison.

Circles and Soup A technique for helping identify what is and what is not the responsibility of the
Scrum Team. This is similar to the Circle of Concern and Circle of Influence technique.

It’s also important during the Sprint Retrospective to celebrate the team’s victories. The good
things that occurred should be encouraged to persist. Likewise, challenges in this Sprint should be
seen as opportunities for victory in the next. This continuous improvement mentality is foundational
in a high-performance Scrum Team. They live it every day. Since not every team member is wired this
way, encouragement and team building are important and should be part of the retrospective too, if
required. Everyone should see that the Development Team is more productive and happy.

Tailspin Toys case study  In the early Sprints, the Retrospective meetings would not generate
much return on the time invested. The entire Scrum Team would return to the large conference
room after lunch and go through the basic questions. To them, it just felt like a longer version
of the Daily Scrum and a waste of time. Retrospective notes were captured and the plan for
improving was sometimes executed. When Scott joined the Scrum Team as Scrum Master, this
changed. He introduced new techniques to get everyone involved. He focused on what went

	 CHAPTER 1  Scrumdamentals	 27

well and team building. He also ensured that any action items were implemented during the
next Sprint. He called it his Scrum Master backlog. More important, he convinced Paula and
Buzz to hold the Retrospective meeting in the back room at Fourth Coffee.

Product Backlog grooming
Maintaining a well-groomed Product Backlog helps the development of a successful product. Product
Backlog grooming is the periodic meeting of the Product Owner and the Development Team to add
detail to upcoming PBIs. This is the time when the requirements and acceptance criteria are explored
and revised. When the Development Team has sufficient understanding of the PBI, they will ­estimate
the effort required to develop it. This estimate may change over time, as more is learned about the
item. In fact, the Development Team may re-groom and re-estimate the same PBI several times
before it gets forecasted for development—usually as a result of new information.

Product Backlog grooming is a necessary and important part of Scrum. Although it is not a
formal event, the Scrum Guide says that it is an ongoing process taking no longer than 10 percent
of the capacity of the Development Team. The exact where and when of the Product Backlog
grooming sessions are up to the Scrum Team. Some teams try to avoid doing a grooming near the
very beginning or very end of the Sprint so that it doesn’t collide with the other, more formal Scrum
events, and closing out the Sprint. It is important to have the entire Development Team involved
in grooming because the analysis and estimation will be more meaningful and accurate. Diligently
grooming the Product Backlog minimizes the risk of developing the wrong product.

Tailspin Toys case study  With the adoption of two-week Sprints, the Development Team now
spends every Friday morning in a conference room with Paula for “story time”—a euphemism for
Product Backlog grooming. All developers attend the meeting because each has valuable input and
may be called on to collectively estimate the effort of the items being discussed. Because of these
regular grooming sessions, Sprint Planning meetings have become more productive. The Scrum
Team now spends less time forecasting because the most important PBIs and their estimates are
fresh in their minds.

Scrum artifacts
Scrum’s artifacts represent the work to be done in the product and Sprint, as well as the work that has
been done within the product itself. Each artifact has clear ownership by a specific role. Each artifact is
structured in a way that maximizes transparency of key information while providing opportunities for
inspection and adaptation. There are three artifacts in Scrum:

■■ Product Backlog

■■ Sprint Backlog

■■ The Increment

28	 PART I  Fundamentals

Note  Burndowns (product, release, and Sprint) were removed from the Scrum Guide in
2011. Their inclusion was considered too prescriptive. While it’s important for the Scrum
Team to monitor progress toward a goal, there are many practices that could support
this. Burndowns are certainly a popular option and are still acceptable and used by some
high-performance Scrum Teams. No technique will replace the importance of empiricism.
In complex environments, such as software development, what will happen is unknown.
The Scrum Team can only use what has happened to influence its decision making.

Product Backlog
The Product Backlog is an ordered list of everything required of the software product. It is the single
source of requirements for any potential changes to be made. Each item in the Product Backlog is
called a “Product Backlog item (PBI).“ A PBI can be a happy thing that doesn’t yet exist in the software
product, like a feature or an enhancement. PBIs can also be sad things, like a bug to be fixed. PBIs can
range from extremely important and urgent to silly and trivial. Because of this variety, I affectionately
refer to the Product Backlog as a list of desirements. At some point, somebody, somewhere, for some
reason desired each item in the Product Backlog.

Note  The Product Backlog is a dynamic, living document. It is never complete and will
constantly change as requirements change. The Product Backlog will exist so long as the
software product exists.

These items are considered valid PBIs:

■■ Feature

■■ Enhancement

■■ Behavior

■■ User stories

■■ Use case

■■ Scenario

■■ Bug/defect

These items should not be PBIs:

■■ Task (that is, refactor code, write more tests, meet in the lobby for the Daily Scrum)

■■ Acceptance criterion (that is, page content in German and English, report exportable as PDF)

■■ Non-functional requirements (when they are used as acceptance criteria)

	 CHAPTER 1  Scrumdamentals	 29

■■ Definition of “Done” (that is, code is peer-reviewed, code coverage > 50 percent, all tests pass)

■■ Impediment (that is, must reset my password on SQL Server, activate Windows)

Each PBI should be clearly identified by a title. This is the minimum amount of information
required to add it to the Product Backlog. If the Product Owner decides it’s worth the time to
describe it further, then a description should be added. This description should be written in a
business language, perhaps as a user story description. The PBI should also be assigned a business
value and ordered with the other items in the backlog. The Development Team will need to eventually
look at it and provide an estimate. This can be done at a Product Backlog grooming session or during
Sprint Planning. Table 1-11 lists the ways in which the Development Team interacts with the Product
Backlog.

TABLE 1-11  Development Team interactions with the Product Backlog.

Activity When

Inspect it. Any time

Add a new PBI to it. Any time (if allowed by the Product Owner)

Groom it. Product Backlog grooming, Sprint Planning, or Sprint Review (with Product
Owner)

Forecast work from it. Sprint Planning (with Product Owner)

I’m often asked if being responsible for the Product Backlog means that the Product Owner has
to be the person who actually creates the PBIs (that is, write the user stories). The answer is no. The
Product Owner can have the Development Team or stakeholders, including business analysts and
even the users themselves, create the PBIs. The Product Owner has the right to update any item, such
as making it more understandable or changing acceptance criteria, or to remove any item deemed
unnecessary. The Product Owner or Scrum Master may have to remind people that PBIs should only
define the what, and not the how.

User stories  A PBI represents a software requirement. It can take any number of shapes or forms.
Of all that I have seen, the user story practice is generally the best choice for teams doing Agile
software development. This is primarily because user stories are lightweight and not technical. User
stories describe the requirement from the customer or user’s perspective. It is not a requirements
document, nor is it a communiqué between the requirements giver and the Development Team.
A user story represents a “what” that the software product should do. A well-written user story
­description will explain who wants or would benefit from the feature, as well as how and why it will be
useful. In a single sentence, the user story provides lots of context, as well as a value proposition.

The most popular format of a user story description looks like this: As a (role), I want (something),
so that (benefit). An example would be, “As a returning customer, I want to log in with my ID and
password, so that I don’t have to enter my shipping and billing information each time I order a
product.” Another example would be, “As a visitor to the Tailspin Toys website, I want to see a list
of recent tweets, so that I know that Tailspin and its products are alive and well.” Anyone looking at
either PBI instantly knows the context and value to the customer.

30	 PART I  Fundamentals

Having a title and the initial description in user story format is a good start. To properly complete
a user story, communication between the Scrum Team and knowledgeable stakeholders is required.
A complete user story includes the three C’s: Card, Conversation, and Confirmation.

The card is already done at this point. You have written a title and the description (in user story
format) on a sticky note, an index card, or a software record. This allows somebody to reference the
user story during conversation, update it, estimate it, stack rank it, etc.

Next, the conversation takes place with the customers, users, or domain experts. This conversation
is meant to exchange thoughts and opinions. It can take place at any time with the Product Owner
and the stakeholders and the Development Team as needed. If the Development Team is to be
involved, it should take place at the Product Backlog grooming session, the Sprint Planning meeting,
or the Sprint Review meeting. Conversation that yields examples, especially executable and testable
examples, is preferred over formal documents and mockups.

Finally, the confirmation occurs. Here the user story’s acceptance criteria are agreed upon and
recorded. These criteria will help determine when the PBI is done. In other words, when all criteria are
met according to the team’s Definition of “Done,” the PBI is done. If and when the PBI gets forecasted
for a Sprint, the Development Team will create the appropriate manual or automated acceptance tests
to validate the acceptance criteria.

Tip  Don’t create tasks, tests, or code for a PBI before the Sprint in which you have
forecasted its development. Conditions can change rapidly, forcing a change to the PBI
or its acceptance criteria. Time spent creating these kinds of artifacts ahead of time will
often be wasted. The plan on how to develop a PBI, as well as any code or tests, just like
requirements, should be created at the latest responsible moment. Even though you will
always know more tomorrow than today, you should avoid falling into the trap of doing
things at the last possible moment.

Whoever creates a user story should be sure to INVEST in it. The mnemonic INVEST is a reminder
of the characteristics of a good user story:

■■ I–Independent  As much as possible, the story should stand alone, without any dependency
on another story. Try to write stories such that they don’t have long “dependency chains.”

■■ N–Negotiable  The story can be changed and rewritten up until it gets forecasted, but
­significant changes after being forecasted should be avoided and minimized. Minor tweaks
are okay so long as they don’t greatly affect the original estimate for the story.

■■ V–Valuable  The story must deliver value to the customer or user. This value is often
­delivered in the graphical user interface (GUI), but not always.

■■ E–Estimable  The Development Team must be able to estimate the effort to develop
the ­story. If too little is known about the story, it will be difficult for the team to come to
consensus on a story.

	 CHAPTER 1  Scrumdamentals	 31

■■ S–Small  The story must be small enough that the team can develop it in a single Sprint and
preferably within a few days. There are many suitable techniques for decomposing stories.

■■ T–Testable  The acceptance criteria is clearly understood and can be tested. This is probably
the most important characteristic. It relates to the third “C” in the three “C’s”: confirmation.

Product Backlog iceberg  You can think of the Product Backlog as an iceberg (see Figure 1-3).
PBIs on the top, above the surface, are what the Development Team has forecasted for the current
Sprint. These items should be crystal clear, estimated, and ready to be worked. Below the surface,
the Product Owner knows what other PBIs he or she would like in the release, but it won’t be clear
which ones surface until the next Sprint Planning meeting. These items are generally understood
and estimated so that a release plan can be devised. These are the items that will be in scope during
upcoming Product Backlog grooming sessions. At the bottom of the iceberg, you will find all of the
other PBIs that may or may not make it into a future release. Some of these may only have a title or
a vague description of the desired functionality. Some PBIs will remain in these cold, chilly depths for
eternity, which is typical of most Product Backlogs.

Sprint

Release

O
rd

er

Future
Releases

FIGURE 1-3  The Product Backlog iceberg.

Sometimes it’s a chicken-and-egg problem when it comes to evolving a PBI. The Product Owner
might need an estimate on the level of effort required to develop a PBI before he or she can order
(prioritize) it. If it’s going to require too much effort, the Product Owner may postpone it for the
next release, or beyond. However, the Development Team’s time is valuable and they shouldn’t
waste their time estimating PBIs that may not be developed. A solution I’ve seen work well is for the
­Development Team (or a proxy) to provide the Product Owner a rough order of magnitude estimate,
such as a T-shirt size (XS, S, M, L, XL). This should give the Product Owner enough insight to be able to
order (prioritize) the PBI effectively. A more thorough estimate, provided by the entire ­Development
Team and using a more precise scale, will be performed at a future Product Backlog grooming
session.

32	 PART I  Fundamentals

Note  The Scrum Guide uses the term “order“ instead of “prioritize“. This subtle change has
led to some confusion, which is why I’ve been using both terms together. Fellow professional
Scrum developer Jose Luis Soria Teruel explains the difference eloquently. Assume that a
Product Owner wants to have some software features as soon as possible, like the ability to sell
products and accept payments (priority). However, before those ­features can be ­developed,
other capabilities must be developed like the shopping cart feature (order).

The Product Owner is responsible for the Product Backlog, including the clarity and precision of its
contents. He or she should also ensure that the Product Backlog is visible to all interested parties. The
Product Owner will order (prioritize) the PBIs according to his goals for the product or release. The
PBIs at the top of the ordered Product Backlog will, more than likely, be what the Development Team
works on next. The Product Owner’s vision should be discernible by studying the order and content of
the PBIs. If necessary, the Scrum Master should help the Product Owner manage the Product Backlog
more effectively.

Creating an effective Product Backlog can be very difficult. It can take a long time. It can become
political. However, once you’ve gone through the exercise of creating the Product Backlog, you’ll
wonder how you ever got along without one.

Tailspin Toys case study  Creating the initial Product Backlog was difficult. Requirements,
feature requests, and bugs were tracked by different people in different formats. Giving up
control of those lists started a turf war—but in the end, it was best for the product. When
possible, all “happy” PBIs were converted to a user story format. Today, the Scrum Team
maintains its Product Backlog in Team Foundation Server. The server administrator gave
permissions to anyone on the Scrum Team to manage the Product Backlog. Everyone else
can only view it. Paula (the Product Owner) is considering granting access to some additional
stakeholders to help her create PBIs.

Sprint Backlog
The Sprint Backlog contains the Product Backlog items forecasted to be developed during the
Sprint and the plan (tasks) for developing them. The PBIs were agreed upon and selected through
collaboration of the Scrum Team. The plan for developing them was agreed upon and recorded
through collaboration of the Development Team. The Sprint Backlog is the output of the Sprint
Planning meeting and represents the Development Team’s forecast of what functionality will be in
the next software product Increment, and how it will happen. Some teams refer to the tasks as Sprint
Backlog tasks (SBTs) or Sprint Backlog items (SBIs). Technically, the forecasted PBIs are also considered
SBIs, so additional context will need to be provided when using that term in a conversation.

The Development Team owns the Sprint Backlog. This is to say that the Development Team is
wholly responsible for how to implement the PBIs, so long as they do so according to the acceptance
criteria and their Definition of “Done.” Nobody can tell the Development Team how to develop the

	 CHAPTER 1  Scrumdamentals	 33

Increment. In other words, nobody except the members of the Development Team can add, edit,
or remove tasks from the Sprint Backlog. The Sprint Backlog should be kept up to date and visible
to the Scrum Team. It provides a real-time picture of the work that the Development Team plans to
accomplish during the Sprint.

Tip  Increasing the Sprint Backlog’s visibility beyond the Scrum Team is an invitation for
the three “M’s”: meddling, misunderstanding, and micromanaging. Remember that the
Sprint Backlog primarily contains the how and not the what. Allowing stakeholders, or
any ­interested parties, to view the Product Backlog or burndown charts (if utilized) is
preferable.

Table 1-12 lists the ways in which the Development Team interacts with the Sprint Backlog.

TABLE 1-12  Development Team interactions with the Sprint Backlog.

Activity When

Inspect it. Any time

Move a PBI from the Product Backlog into it. Sprint Planning or any time afterward (with Product Owner
collaboration)

Add, update, split, or remove a task in it. Sprint Planning or any time afterward until Sprint Review

Take ownership of a new task in it. Any time (as work demands)

Update status of a PBI or task in it. Any time (as status changes)

Estimate work remaining for your tasks in it. Daily

The entire Development Team should collaborate on the plan and create the tasks. Scrum
Development Teams must be cross-functional for just this reason. Everyone can and should
contribute. This will create a richer and more honest Sprint Backlog than if only one or two code
gurus created the plan. A good approach is to start with a conversation in order to understand the
PBI and discuss any potential plan. The plan can evolve onto sticky notes or a whiteboard, and then
finally to records in a software application like Team Foundation Server. There’s zero technical debt in
a discussion, and close to zero in a set of sticky notes.

The Development Team must identify all tasks in the Sprint Backlog, not just the design, coding,
and testing ones. There may be learning, installing, deploying, data entry, design meetings, and
documenting tasks. The team’s may indirectly require tasks to be created in the Sprint Backlog
too. For example, a team’s Definition of “Done” might require that every PBI ­implemented in the
Increment has its own installer with notes and instructions in English and German. This self-imposed
requirement could drive the creation of several additional tasks for each PBI in the Sprint Backlog.

Tip  Have the team’s Definition of “Done” nearby during Sprint Planning. It will help the
developers as they brainstorm tasks. Also, depending on how the last Sprint went, there
may be additional tasks related to improvements identified at the Retrospective meeting.

34	 PART I  Fundamentals

The developers should estimate their Sprint Backlog items at least daily. This can be done before
or after the Daily Scrum, but not during. Most teams I work with prefer to re-estimate their tasks prior
to the Daily Scrum, so that any follow-up meetings will have an accurate burndown chart to reference.
Some high-performance Scrum Teams won’t bother tracking hours or estimating remaining work on
tasks. They focus on the Sprint Goal and delivering the PBIs, not the tasks. It is more difficult to assess
progress without this information.

Note  Scrum does not consider the time spent working on a task. Tracking actual hours is
counterproductive to obtaining the Sprint Goal. I would even call it wasteful. If, however,
an organization requires its employees to track their time to get paid, that’s a separate
discussion. The worry is that once such a metric is created, it would be used in a command
and control way. For example, a manager might see that a set of UX design tasks took 28
hours and then use that as an estimate for future work, or as a stick to beat the designer
with if her next set of tasks goes beyond that number—which it could, because software
development is very difficult and full of risk.

The Sprint Backlog will be empty at the start of a Sprint. It will begin to emerge during Sprint
­Planning, and (ideally) be fully populated with tasks by the first few days of the Sprint. For teams
new to Scrum or the product’s domain, this can be unachievable. These teams may find themselves
­creating new tasks all the way through the Sprint. This makes it difficult to assess progress, if you
don’t know what the plan is or when you might achieve it. Even high-performance Scrum Teams need
to change their plan sometimes. Each PBI introduces new complexities that can derail an execution
plan. New tasks may have to be created mid-Sprint.

Tip  In Scrum, work should never be directed or assigned. When creating a new Sprint
Backlog task, don’t assign it to anyone. For example, you should resist the urge to assign
the testing tasks to Toni (even though she has a background in testing). Doing so will
decrease collaboration and the opportunity for other team members to learn. When the
time is right, the team should decide who will take on that task. The team will take many
factors into account, including the background, experience, availability, and capacity of the
developer.

As the Development Team improves, it will learn to manage risk better, by taking on riskier
work early. The team will also become better at identifying the full spectrum of tasks, at least at
a high level, during Sprint Planning. It’s okay for the more distant tasks to be coarsely defined
and overestimated. As the time nears for that piece of work to begin, the eligible developer can
decompose and re-estimate it. If Sprint burndown charts are being used, they will be more accurate,
earlier in the Sprint. The trend lines, which predict when the Development Team will be done with
their work, will also be more accurate. Observers of the burndown charts need to understand that
the Development Team will know more tomorrow than they did today—so expect change. The Scrum
Master should be able to provide this education.

	 CHAPTER 1  Scrumdamentals	 35

Tailspin Toys case study  During Sprint Planning, the Development Team brainstorms the
plan for developing the Increment. When they were just starting out with Scrum, they would
only get one or two PBIs planned out and delay the planning of the rest of the PBIs until the
Sprint. They’ve improved in the way they decompose and plan their SBTs. They estimate the
tasks in hours, and they’ve improved the way they’ve done that. Originally, they would have
the “experts” in the various task areas do the estimates. That made estimation go quicker, but
during development, they would usually blow their estimates because the expert didn’t always
do the work. They now estimate the tasks collaboratively and find that they are under as many
times as they are over. They can live with that.

The Increment
Scrum is an iterative and incremental software development framework. The word “incremental“
means “occurring in especially small increments.” Each Sprint is an especially small period of time
during which the team develops one of these small increments. As we’ve already discussed, the small
period of times (the Sprints) reduce risk by maximizing collaboration and feedback. Incremental
delivery of a done software product ensures that a useful version of the working product is always
available.

Tip  If possible, make the Increment available to the Product Owner and stakeholders
throughout the Sprint. Think of it as a hands-on demo or lab environment. As the
Development Team finishes a PBI, the demo environment is updated for people to
play with the software. This doesn’t have to be any kind of a formal testing area,
just something that can drive feedback during the Sprint, rather than waiting until
the Sprint Review meeting. For example, it would be very convenient to be able to
send an email to the stakeholders letting them know there’s a “beta” hosted on
http://demoserver1/sprint6/tailspin.

In Scrum, the Increment is the sum of all the PBIs completed during the Sprint plus all previous
Sprints. It’s the aggregate of what’s currently running in production plus the done PBIs from previous
Sprints that haven’t yet been released, plus the done PBIs from the current Sprint. Only PBIs done
­according to their acceptance criteria and the team’s Definition of “Done” can be added to the
Increment and become potentially releasable.

Note  Potentially releasable means that the Increment could be released (to the customer or
production) if the Product Owner chooses to do so. This is possible because the Increment
contains only done PBIs. PBIs aren’t done until they meet the level of quality defined by the
Product Owner and the Development Team according to the Definition of “Done“. The Product
Owner may decide to wait until several related PBIs are completed (release by feature), until a
certain point in time (release by date), as each PBI is done (continuous deployment).

http://demoserver1/sprint6/tailspin
http://demoserver1/sprint6/tailspin

36	 PART I  Fundamentals

Definition of “Done”
The Definition of “Done” is not a formal artifact in Scrum, but it should be. Done is the state when a
PBI has been developed according to its acceptance criteria and team’s Definition of “Done.” Scaling
that up, done is also the state when the Increment containing all the done PBIs becomes potentially
releasable.

The Definition of “Done” is a simple, auditable checklist created by the Development Team. It must
be understandable by the Product Owner, the Scrum Master, and any stakeholders. This is why it must
be simple and as free of “geek speak” as possible. The definition can be influenced by organizational,
product, and release standards and constraints. For example, C# may be a language standard in the
organization, but a specific product must be written in C++ for compatibility reasons. Here is a simple
Definition of “Done“:

■■ All code compiles without errors or warnings.

■■ No code analysis errors or warnings exist.

■■ New code is covered by unit tests.

■■ An automated build exists.

■■ An .msi installer exists.

Definitions of “Done“ can be quite long and complex. Everything in the definition should be
achievable, although some items may not be applicable. For example, if the Development Team is
working on a PBI that is mostly graphic-design-centric, there won’t be any code to unit-test. For all
PBIs that have code, however, the team must create unit tests. It’s in the definition. The ­Development
Team should never cut corners by ignoring all or part of the definition in order to finish the forecast.
The team has ­already unanimously decided that quality, as defined by the Definition of "Done", is
more important than all-out speed.

Note  The Definition of “Done” is a minimum standard. There may be times when the
Development Team will want to do more than the minimum. This is acceptable so long
as the extra effort is justified and not considered “gold plating.“ Gold plating is when a
­developer continues to work on a PBI beyond what is fit for purpose. This extra work is
typically not worth the value that it adds to the software product.

Undone work
An explicit and concrete Definition of “Done“ may seem small, but it can be the most critical
checkpoint during a Sprint. Without a consistent meaning of “done,“ Velocity cannot be estimated.
Having a shared ­Definition of “Done” ensures that the Increment produced at the end of Sprint is of
high quality, with minimal defects. High-performance Scrum Teams consider the Definition of “Done“
to be sacrosanct. It is the soul of their entire development process. These teams will resist the urge to
release undone work, or even demonstrate it at a Sprint Review meeting.

	 CHAPTER 1  Scrumdamentals	 37

The Development Team should not generate undone work. They should also make sure the “done“
means completely done. In the long run, it will be cheaper to hold fast to the Definition of “Done“ by
improving development practices than to keep sprinting with an unknown amount of work still to be
done at the end of the release. If the Product Owner looks at an Increment and doesn’t know how
much work needs to be done, he or she won’t really know when the release will be ready. There may
be a need for one or more “stabilization” Sprints at the end of the release just to tackle all of the ac-
cumulated undone work.

What’s even worse is that the undone work from the Sprints accumulates exponentially, not
linearly. Subsequent Sprints will require even more work to reach done: 4 hours of undone work per
Sprint for 6 Sprints won’t be 24 hours of work, but more like 80 hours. This “undone work” uncertainty
has no place in a framework that is supposed to promote transparency and predictability, so every
effort should be given to eliminate undone work and “stabilization” Sprints.

As the Development Team improves, it is expected that their Definition of “Done“ will improve too.
The definition can be changed only in between Sprints. The Sprint Retrospective meeting provides
the opportunity to discuss and change it if necessary. The definition should only expand to include
more stringent criteria for higher quality. In other words, you should avoid removing items from the
­definition in order to get more “done” the next Sprint.

The professional Scrum developer

The Scrum Guide does not provide guidance on how to develop a software product. In fact,
during the time between the Sprint Planning meeting and the Sprint Review meeting, the guide
is intentionally vague. Other than requiring a Daily Scrum meeting and regular Product Backlog
grooming, not much guidance is provided. In fact, the rules state that a Daily Scrum should occur,
taking no longer than 15 minutes.

So what about the other 7 hours and 45 minutes of the day? What should the Development Team,
and the individual developers, be doing during that time? That’s the million dollar question. The short
answer is: the developers should be doing the right thing—even when nobody is looking. There are
many longer answers. The contents of this book will hopefully reveal several answers to this question.

Remember that developing software is a risky endeavor for both the developer and the customer.
The process is a complex undertaking consisting of specifying, designing, coding, and testing. More
things can go wrong than right. Any small mistake or fault on either side can lead to wasted effort—
if you are lucky. Some mistakes can lead to outright damage. Professional Development Teams
understand this, and they make sure their customer understands this. Ideally the customer will share
in these risks. This means that the customer and the developers understand that they are both equally
responsible for identifying and mitigating these risks, as well as sharing responsibility if a risk evolves
into a disaster of some sort.

Let’s drop the customer out of the discussion for a minute. Developers on a Scrum Team
collectively own their successes and failures, just as they collectively own the code, bugs, technical
debt, and other issues. These developers have also learned to rely on their fellow team members and

38	 PART I  Fundamentals

to trust them. They know that they must be resolute, forthright, transparent, and able to compromise
in order to reach their goals. These qualities sound similar to those of the chivalrous knights from the
Middle Ages —except for the compromising part.

When I’m meeting with a new team, I will often ask what they think the developer’s job is. “To write
code,” is the almost universal flip answer that I hear. Being a career developer myself, I used to agree
with that answer. As I’ve improved my understanding of the profession of software development,
this answer now irks me. I believe that a better answer would that a developer’s job is to provide
value in the form of working software. This answer encapsulates the attributes of a professional Scrum
developer. Professional Scrum developers understand that:

■■ They have the right and responsibility to maximize the self-organization capability of the team.

■■ They should reflect Scrum’s values: commitment, focus, openness, respect, and courage.

■■ They should only do work that provides value to the software product.

■■ They should plan realistic goals and then commit to achieving them.

■■ They don’t know everything, and they should be always willing to learn.

■■ They shouldn’t be afraid of working outside their comfort zone.

■■ They should respect the Scrum Guide and its “rules.”

■■ They shouldn’t be afraid of asking other team members for help.

■■ They should be transparent in what they do and how they do it.

■■ They are part of a team, and their voice is equivalent to others.

■■ They have a stake in the success (or failure) of the product.

■■ They look for and minimize waste in their practices.

■■ They are responsible for the quality of the product.

■■ They should be honest in their estimates.

■■ They should say “no” when appropriate.

■■ They should collaborate when possible.

■■ They are professionals, not hobbyists.

■■ They shouldn’t release undone work.

■■ They are more than just a coder.

■■ They are part of a larger team.

	 CHAPTER 1  Scrumdamentals	 39

Chapter burndown

Here are the key concepts we covered in this chapter:

■■ Scrum Guide  The Scrum Guide codifies the rules of Scrum. You should download it from
http://www.scrum.org/scrumguides and read it now. Its updates will supersede this chapter.

■■ The Development Team  The Development Team contains a cross-functional group of three
to nine professionals who develop the forecasted work during the Sprint.

■■ Product Owner  The Product Owner is the voice of the user and is responsible for
maximizing the value of the product and work of the Development Team.

■■ Scrum Master  The Scrum Master is responsible for ensuring Scrum is understood and
enacted.

■■ Sprint  A time-boxed event of one month or less that contains the other Scrum events.

■■ Sprint Planning  The meeting where the Scrum Team forecasts the work to be performed
during the Sprint, along with a plan for developing it.

■■ Daily Scrum  The daily meeting allowing the Development Team to synchronize activities
and create a plan for the next 24 hours.

■■ Sprint Review  The meeting where the Increment is demonstrated and feedback is captured.

■■ Sprint Retrospective  The meeting where the Scrum Team inspects its practices and creates
a plan to improve in the next Sprint.

■■ Product Backlog  An ordered list of everything that might be needed in the software
product.

■■ Sprint Backlog  The forecasted Product Backlog items plus the plan for developing them.

■■ The Increment  The sum of all done Product Backlog items (PBIs) during this and previous
Sprints.

■■ Definition of “Done”(DoD)  A shared understanding of what it means for the Development
Team to be done with the development of an individual Product Backlog item or the Incre-
ment itself.

http://www.scrum.org/scrumguides
http://www.scrum.org/scrumguides

		 227

C H A P T E R 8

Effective collaboration

There’s a buzz—a kind of energy that you can feel—when a high-performance Scrum
Development Team works in harmony to solve a problem. Each developer gets totally absorbed

in his or her task. Each member of the Development Team does his or her part integrating the design,
the coding, and the testing. Scenarios and features are completed and verified. Product Backlog
items (PBIs) are moved to the done column. Everyone loses track of time. They are experiencing flow.
Everyone feels happy and satisfied.

Bruce Tuckman wrote about the stages of group development. He identified four stages in the
development model: forming, storming, norming, and performing. In the initial, forming stage, the
individuals come together to form the team. They may not know each other or everyone’s strengths
and weaknesses. This leads to the storming stage, where each developer competes for their idea’s
consideration while working together to resolve their differences. This necessary stage can sometimes
be completed quickly. Unfortunately, some teams never leave this stage. Once the team members are
able to resolve their differences and participate with one another more comfortably, they enter the
norming phase. Here, the entity of the team begins to emerge. The members converge on a single
goal and come up with a mutual plan. Compromise and consensus decision making occurs in this
phase. High-performance Scrum Development Teams have reached the fourth and final phase, known
as performing. These teams not only function as a unit, but they also find ways to get the job done
smoothly and efficiently. They are able to self-organize and self-manage effectively. In my opinion,
very few teams reach this phase, but every one that does has mastered the art of collaboration.

In this chapter, we will look at some practices and tools that enable more effective collaboration.
By learning and adopting these practices, a team will increase its ability to reach the performing
phase of Bruce Tuckman’s model.

Individuals and interactions over processes and tools

The Agile Manifesto clearly states that while there is value in process and tools, there is more value in
interacting with individuals. This is to say that Agile software development recognizes the importance
of people and the value that they bring when working together. After all, it’s people who build
software, not the process or the tool. If you put bright, empowered, motivated people in a room with
no process and inadequate tools, they will still be able to get something accomplished. Their Velocity
may suffer, but they will produce value. They will also inspect and adapt their processes, while looking

C H A P T E R 8

Effective collaboration

Individuals and interactions over processes and tools

Listen actively

Collocate

Set up a team room

Meet effectively

Collaborate productively

Achieve continuous feedback

Collaborative development practices

Collective code ownership

Commenting in code

Code reviews

Collaborative development tools

Team Foundation Server

Continuous integration

Gated check-in builds

Email alerts

Shelving

My Work

PowerPoint Storyboarding

Feedback client

Code reviews

Chapter burndown

228	 PART II  Using Scrum

for methods of improvement. Conversely, if the people don’t work well together, no process or tool
will fix that. A bad process can screw up a good tool, but bad people can screw up everything.

Tip  Fellow Professional Scrum Developer Simon Reindl reminds us that to err is human,
but to forgive is vital.

Software development is a team sport. To succeed in this sport, game after game, the team must
share the vision, divide the work, and learn from each other. In other words, they must collaborate.
Even a team of expert craftsmen (rock stars in their own right) is doomed to fail if they don’t
collaborate with each other. If the striker on a soccer team has his best game ever—scoring four
goals—but the other team scores five goals, it is still a loss. The other team, with even mediocre
players, probably collaborated better.

A few years ago, Ken Schwaber did a series of podcasts where he answered frequently asked
questions about Scrum. My favorite question that he answered was, “Do I need very good developers
for Scrum?” His answer was insightful: “You need very good developers for software development.
You can do Scrum with terrible software developers, and you’ll get terrible increments of functionality
every Sprint.”

When I hear about teams that have tried Scrum and given up because it was “too difficult,” I know
that they are not talking about the complexity of Scrum. These are software developers. They are
some of the smartest problem solvers you’ll ever meet. Besides, Scrum is easy to understand. Chapter 1
pretty much covered it. No, what these people are talking about is the discipline of practicing Scrum
correctly within an organization that allowed them to do so, every single day. That’s why they gave up.

I agree with the Agile Manifesto. This is evident throughout this book as I point out the value of
interacting and collaborating with individuals. I have discussed process and tools as well, but have
been most vigilant in pointing out that not all application lifecycle management (ALM) tools and
automation frameworks are healthy for a team. Most are. Some, however, can lead to one or more
dysfunctional behaviors. For example, social networks, televisions with digital video recorders (DVRs),
and video games are appealing and fun, but sometimes the kids (or developers in this case) need to
get outside and interact with others.

Years ago, I was once asked to build a web-based work item approval system on top of Team
Foundation Server (TFS). The client designed it so that email alerts would be sent when a work item
changed to a certain state. These emails contained embedded hyperlinks that would redirect the user
to a webpage that allowed managers or leads to authorize the state change. It was a sophisticated
system—it even knew which users could cover for others if someone was on vacation or out of
the office. My company built it. The client installed it. It did exactly what they wanted, but they
ended up not using it. The reason they mothballed it was that it was too mechanical and removed
the opportunity for two people to meet face to face and have a discussion. This was a learning
opportunity for me and something I keep in mind whenever I see a shiny new feature in Microsoft
Visual Studio. I ask myself, “Does this feature encourage collaboration or discourage it?”

	 CHAPTER 8  Effective Collaboration	 229		 229

When it comes time to meet and collaborate with members of your Scrum Team or stakeholders,
here are some tips to consider:

■■ Establish the scope and the goal of the meeting, and stay focused on these topics.

■■ Meet face to face, especially if you anticipate a substantive conversation.

■■ Meet at a whiteboard, especially if you’re intent on solving a problem.

■■ Set a time-box for the meeting. Be prepared to explain the concept.

■■ Leave the gadgets in the other room, unless they are required.

■■ Employ active listening techniques.

In this section, I discuss some of the general—but important—collaboration practices that a Scrum
Team can adopt.

Listen actively
Software developers tend to have a short attention span and be impatient with anybody who is not
as smart as them or who doesn’t have the answer that they are looking for. Of course, I could just
be talking about myself. But as they say, acknowledging that you have a problem is the first step in
curing it. For me, active listening was that cure.

Active listening is a communication technique where the listener is required to feed back what is
heard to the speaker. This can be as simple as nodding the head, writing a note on a piece of paper,
or restating or paraphrasing what was said. This demonstrates your sincerity and respect for what
the person is saying. It also helps alleviate assumptions and other things that get taken for granted.
Opening a laptop and clicking through emails or otherwise getting distracted by anything else is not
active listening and may even be considered disrespectful. Even “lightweight” devices such as tablets,
slates, and smartphones can fall into this category.

Another part of active listening is waiting to speak. This is my particular problem. I tend to
complete other people’s sentences in order to move the conversation along to a more interesting
topic. In my mind, I think I’m being helpful, but I know that I’m probably coming across as being rude.
This is especially true for people who don’t know me and is especially apparent to me when I have
a conversation with another ADHD individual. Fortunately, there are techniques that can be used
to overcome this particular interpersonal dysfunction. My favorite is to take a stack of sticky notes
with me and write down the things that come to mind while the other person is talking. Soon it will
be my turn to talk, and I can go back through my notes. See what I did? I solved the feedback and
interruption problems with a single solution.

I’ll re-mention HARD at this point. HARD is a mnemonic for Honest, Appropriate, Respectful, and
Direct. It is a reminder of how you should always communicate with people, especially those that
don’t know you. Actively listening plus HARD communication is a recipe for successful collaboration.

230	 PART II  Using Scrum

Tailspin Toys case study  During a recent Sprint Retrospective meeting, Scott (the
Scrum Master) brought up his observations made during the Sprint. He witnessed a
few ­developers having difficulty conversing respectfully with each other (as well as with
stakeholders) during a couple of meetings. As a team, they decided to improve their
­communication abilities, specifically their active listening skills. Scott did some searching
online and found several websites dedicated to the subject. During the next few Sprints, Scott
coached the team as they adopted more and more of the techniques that they learned.

Collocate
I think we can all agree that communication and collaboration provides more value when practiced
face to face, rather than remotely. At least I would hope that everyone knows this, because we
experience it every day of our lives. When two people communicate face to face, they exchange
more than just words. There are facial expressions, body language, and other nonverbal gestures.
This kind of sideband data can be just as important, if not more important, than the text that is
exchanged. For example, the look on a Product Owner’s face when you suggest a solution to a
problem can short-circuit the need for a detailed explanation. Thank you, collocated Product Owner.
You just gave me back 20 minutes of my day.

Remember that Scrum has several formal events (meetings) built into the framework where
collaboration can occur. In addition, the Scrum Team, and certainly the Development Team, should
be continuously “meeting.” These are not traditional meetings, where someone speaks and everyone
else listens. These are short, collaborative, time-boxed meetings with the specific ­purpose of solving a
problem. In fact, I wouldn’t even call them a meeting, but more of a conversation. It’s important that
they occur as needed, with no logistical impediments. For example, if two developers need to discuss
something with the Product Owner, but all the conference rooms are booked, they should meet
anyway, somewhere, anywhere. To some degree, business formalities, and even etiquette, go out the
window during the Sprint when the Development Team is in the zone, developing and generating
business value.

When forming a new Development Team, collocation should be a requirement. This is not just a
nice-to-have feature. It’s required if you want a high-quality product and process. By collocation, I’m
not talking about being in the same time zone, city, or building. While these options are better than
some I’ve seen, I want the team in the same room or in adjacent rooms. The Product Owner should
be nearby too, but not necessarily in the same room. This way, the face-to-face communication can
occur on demand.

Tip  Fellow Professional Scrum Developer Simon Reindl suggests bringing a
geographically dispersed team together periodically. This is especially true at the
beginning of a new project, so they know with whom they are working.

	 CHAPTER 8  Effective Collaboration	 231

Professional Scrum developers know the value of collocation, and they strive for it. That said, there
may be cultural, political, or financial reasons for not collocating the Development Team. This is the
reality that I see as I visit larger organizations. The most common justification I’m given when I ask
why the team is not collocated is that it saves money to have one or more of the functions supported
or outsourced remotely, usually overseas. When I hear that, I hope that somebody, somewhere is
doing the math on that, taking into account the decreased quality of the product and the process.
Even if this decrease is not detectable or measurable, the decision makers should consider what the
increase in quality could be if they were to bring the entire team together.

Note  Do I think that developers working remotely as part of a distributed team can’t be
professional? Of course not. They absolutely can be professional and the team absolutely
can collaborate, deliver high-quality software, and create business value. That said, an
attribute of a professional Scrum developer is to inspect and adapt constantly, such as
looking for ways to improve the process. Collocating a dislocated team is one of the
biggest improvements that can be made, usually resulting in an increase of quality and
Velocity. That team’s Product Owner should wake up in the morning and go to bed
at night, thinking of ways to maximize the product’s value through the work of the
Development Team, such as through collocation.

Most organizations consider their custom software as a strategic advantage over their competitors.
I will sometimes ask executives where they would be without their line-of-business (LOB) ­application
or public-facing website. They all agree that it would be a complete disaster. Not only has their staff
forgotten how to run the business manually using paper and pencil, but they don’t even know where
to find the paper and pencils. Next, I ask them why they try to save money by limiting the capabilities
and productivity of the team developing that custom software. At this point, I’m either asked to tell
them more, or I’m escorted out of the building.

Note  I recently had a conversation with an IT director of a very large organization.
He ­explained to me that the Product Owner worked out of the main office, as did the
programmers. The testers were overseas—nearly 10 time zones away. He shared with me
a problem that they’d been having for the past few months. He said the programmers
would code a feature and then go home for the night. The testers would come in,
download the binaries, begin testing, and run into a bug. This blocked them from doing
any ­further ­testing until the developers could fix it. The programmers would come in the
next day, see the lack of progress, fix the bug, and have to wait until the end of the day
for the testers to do their thing. Sometimes this dance would take three to four days before
testing could proceed. He asked me how TFS could help him. I answered by asking why the
testers weren’t collocated with the rest of the team. He told me it was because they save
money by sending the work offshore. I’m glad we were having this conversation in person
because he was able to see the awesome facial expression I made at that point.

232	 PART II  Using Scrum

Set up a team room
Having the entire Development Team work in a shared, common room can be a good thing.
Whiteboards containing plans and design notes are visible to everyone. Artifacts such as the Sprint
Backlog and burndown chart can be updated easily and seen by everyone. During critical design
points, the team room can become a war room of sorts as the developers move from strategic
planning to tactical planning. Communication becomes more open and happens in real time.
Developers tend to focus their productivity toward solving problems, while minimizing time spent
on wasteful activities. Team rooms allow everyone, including stakeholders, to feel that buzz that
I mentioned in the beginning of the chapter.

However, not every developer wants to work in a war room every day. There needs to be the
opportunity to have private conversations, take phone calls, or just take a timeout from the rest of the
team. Developers are smart and can self-organize to come up with solutions for these requirements.
I’ve seen developers put on headphones, adjourn themselves to quiet rooms, or work away from the
office for a short time as needed. Ideally, the managers and the organization trust their developers
to the point where they can accommodate their needs. If they don’t, then that is a big impediment
to self-organization. Generating business value in the form of working software is a way for the
Development Team to earn that trust.

Some personalities and cultures see collocation as an impediment. These developers may actually
be counterproductive in such an environment. Remember that Scrum is about people, and people
are just human. Their idiosyncrasies map directly to their ability to collaborate and work effectively as
a team. The Velocity at which the Development Team is able to create business value is a function of
the Development Team’s productivity. Perhaps for these people, being in close proximity to, but not
in the same shared room with, the rest of the team is good enough at first. A strong Scrum Master, as
well as open and honest Sprint Retrospectives, can be used to improve this.

Note  An open-space team room is not the same thing as an open-plan office. ­Open-plan
offices are typically inhabited by employees working on different tasks for different
projects. Open-space team rooms are inhabited by developers working on a common
software product. Both environments can generate noise, but the type of conversations
found in an open-plan office will typically be more contrasting and thus, more distracting.

My recommendation is to set up a team room and just try it out. See if management will let the
Development Team take over one of the conference rooms for a Sprint or two. If, during the Sprint
Retrospective, the Development Team honestly believes that they were productive, then the Scrum
Master can work with management to create a more permanent, open-space room.

Tailspin Toys case study  The Development Team has been collocated since day one, with
Paula (the Product Owner) in a nearby office. During the Sprint, they regularly meet and
collaborate whenever and wherever it is required. Day to day, the developers sit near each other

	 CHAPTER 8  Effective Collaboration	 233

in a large, open-space room with a half-dozen whiteboards (approximately one for each PBI).
Because the developers use laptops with wireless connections, there’s a minimum amount
of cables in the room, and individuals can be more nomadic as they work. When one of
the developers needs to concentrate or requires some personal space, he or she will put
on headphones or go to a quieter room down the hall. When a developer has to travel or
otherwise work remotely, the team will set up a dedicated computer with an always-on
Skype connection, including video. Scott (the Scrum Master) has done a good job of edu-
cating the organization. Although the stakeholders know where the team room is located,
they know to avoid it during a Sprint—unless of course they’re invited by the Development
Team. Scott still has to remind them from time to time.

Meet effectively
High-performance Scrum Development Teams know to avoid meetings, if possible. To be clear, I’m not
talking about the built-in Scrum events, such as the Sprint Planning meeting, the Daily Scrum meeting, the
Sprint Review meeting, or the Sprint Retrospective meeting. I’m also not talking about the regular Product
Backlog grooming sessions, nor those impromptu but important meetings requested by the Development
Team in order to clarify requirements, gather feedback, or seek the Product Owner’s acceptance. I hope,
in fact, that I’ve made it clear that these meetings are important and they should be attended by all of
the involved parties face to face, if possible. I am talking about all the other meetings that an organization
might require its technical staff to attend. You know the ones that I’m talking about They are mandatory,
­read-only (they don’t ask for your feedback), and provide zero business value to the software product
being developed or the development process itself. Unfortunately, some of these meetings cannot be
avoided. They are a fact of life and a requirement to keep your job and get paid.

When you are invited to such a meeting, try to identify its purpose and expected outcome. This may
be stated in the invitation, but if it’s not, you may have to query the meeting organizer or sponsor. I know
many developers who will not accept a meeting invitation if no clear agenda or objective is given. From
this information, hopefully you can determine who the intended audience should be. Will the meeting be
technical? Will decisions be made? If you don’t fit the audience profile, try to skip the meeting, or send the
Scrum Master instead. Being a proxy for the Development Team at meetings like this is one of his or her
duties and allows the Development Team to what they do best.

If the tables are ever turned, and you find yourself organizing a meeting, you can follow the same
advice:

■■ Only schedule meetings that are absolutely necessary and that can’t be satisfied by one of the
other built-in meetings.

■■ Keep the meeting as short as possible.

■■ Establish a time-box to enforce it.

■■ Outline the agenda and expected outcome in the invitation.

234	 PART II  Using Scrum

■■ Send invitations only to those people who need to attend.

■■ At the beginning of the meeting, explain the time-box and its concept.

When someone who is versed in Scrum sets up and runs a meeting, he or she will end up sharing
good behaviors and practices, such as transparency, active listening, and time-boxing. This is a
good way to get others in the organization more educated on Scrum and some of its attributes and
practices. If appropriate, email any retrospective notes to the attendees, including action items. These
behaviors may even infect the organization as other business units and teams will want “to get some
of that Scrum.”

Tip  One way to keep meetings constructive is to say “yes, and” instead of “yes, but.”
If the current topic or solution being discussed is one that there is partial agreement on,
saying “yes, and …” comes across as being more constructive. If someone hears “yes, but,”
then they might think their idea is being discounted, or they may feel limited in what
can be accomplished. If, however, they hear “yes, and,” they will think that their idea was
accepted, or at least understood, and be more prone to ideas. More importantly, the
person will be more open to collaborating on a shared solution, which should always be
the goal to avoid discussions becoming polarized.

Tailspin Toys case study  Paula (the Product Owner) and Scott (the Scrum Master) are
good at running interference for the development team. For meetings that are not related
to the development of the software product, Scott will try to attend as a proxy for the
Development Team. Some meetings, such as the “all hands” meetings, cannot be avoided,
and the developers do attend them.

Collaborate productively
Collaboration means working with people. This typically means dividing the work between two or
more individuals and working together. Both the process of dividing the work and the actual working
together with others can require intense concentration. Getting into this productive state, otherwise
known as the flow or the zone, can take time. Getting out of that state prematurely, as caused by any
kind of interruption, can be considered waste. The irony is that collaboration requires interruption,
and you will need to get used to it and master it.

We are taught at a young age that it is disrespectful to interrupt others. If your team is working in
an open-space team room, it’s easy to see when a fellow developer is deep in thought or in the zone.
Your instinct should be not to interrupt them. When you’re working by yourself, however, it may be
harder to know when you are in the zone. Stopping to take a mental assessment may actually kick you
out of the zone. High-performance Scrum developers know how to minimize interruptions in order
to maximize productivity. There have been numerous books, blog posts, and white papers written
about being more productive.

	 CHAPTER 8  Effective Collaboration	 235

Here are some of my favorite tips:

■■ Cell phone Turn it to vibrate, turn it off, or leave it at home.

■■ Exit Microsoft Outlook Email can be a great productivity tool, but it can waste a lot of your
time as well. If you can’t or don’t want to turn it off, then be sure to disable all ­notifications.
Having an icon appear in the system tray, seeing the mouse pointer change, or hearing an
audible alert when a new email arrives, can have the same conditioning effect as one of
Pavlov’s dogs hearing a bell ring. Try to check email only three times a day: at the start of your
day, after lunch, and before leaving.

■■ Exit IM/chat client Close the program, or at least set your status to busy. The exception
to this is if the tool is used by the Development Team to share code or quick questions and
feedback.

■■ Limit Internet searches Developers can spend their whole day on the Internet if they are not
careful. Time-box the search and keep the scope to just researching the problem at hand.

■■ Just get started Some planning is required before starting a task, but overplanning
becomes the antithesis of productivity.

■■ Avoid formal meetings One reason that Scrum is so successful is that it defines the
important meetings to minimize the need for unimportant ones. A developer’s productivity
drops when he or she is away from the keyboard. Feel free to attend the valuable ad hoc
meetings over coffee or at another’s desk, but send the Scrum Master to the formal meetings
in the Development Team’s stead.

■■ Use active listening When your colleague is talking, you should listen to what he or she is
saying, and expect the same courtesy when you are talking.

■■ Stop fiddling Developers can have complex software environments. These can include multiple
­versions of software, one or more integrated development environments (IDEs), virtual
­desktops and servers, databases, frameworks , software development kits (SDKS), testing tools,
installers, etc. Do yourself a favor. Get it working, script it, snapshot it, and forget about it.
Endless tweaking tends to have a diminished return on value. Solve today’s problem today and
tomorrow’s problem tomorrow.

■■ Life happens We’re all human and have a life outside of software development. When issues
emerge, be open and honest about it, and take the necessary time to get your head right. Be
appropriately transparent with the rest of your team.

Tailspin Toys case study  The Scrum Team is always looking to do better. This is evident
during their Sprint Retrospective meetings where collaboration practices are almost always
discussed as improvement is sought. Everyone knows that the best way to increase Velocity
is to improve the individuals and interactions.

236	 PART II  Using Scrum

Achieve continuous feedback
Developers love feedback loops—the faster the better. As soon as we type a few lines of substantive
code, we hit F5 to see what the compiler thinks. As soon as we’ve got the method refactored, we run
our unit tests to see them pass. As soon as we have a tangible user interface (UI), we have a ­colleague
or the Product Owner look at it to tell us how he or she likes it. As soon as we are done with a task,
we check in so that the continuous integration build or another developer can evaluate our work.
Continuous feedback like this is healthy for the product, as well as the developer.

Automated feedback provided by builds, unit tests, code coverage, code analysis, and acceptance
tests are awesome. Developers can call upon Visual Studio or TFS to provide this feedback at any
time, day or night. The results tell the Development Team that they are building the feature correctly.
High-performance Scrum Development Teams will take advantage of all of these features to ensure
that they are well informed about the progress and quality of their work.

Smell  It’s a smell if the Development Team doesn’t ask for feedback from the Product
Owner during the Sprint. Passing unit and acceptance tests only ensure that the quality of
the feature or scenario has been met. The Development Team will want to make sure that
the person requesting the feature (the Product Owner) is happy with its design, ­function,
and usability. The Sprint Review meeting should not be the first time that the Product
Owner sees a feature being demonstrated.

Product Owner feedback is just as important as other types of feedback. An engaged Product
Owner who knows the product and the desires of its users can quickly give the Development Team
positive or negative feedback on a feature being developed. Getting in-person guidance on the
usability of a feature early in its development is very valuable. If the Development Team builds
the wrong feature, it’s essentially the same as if they introduced a bug into the software product.
The same advice goes for features as for bugs—it’s easier and cheaper to “fix” them earlier in their
lifecycle.

Note  The Product Owner feedback loop should be as short (fast) as possible as well. This is
another argument for collocating him or her near the Development Team.

I’m often asked if the Development Team can reach out directly to the stakeholder (user or
customer) who requested the feature in order to gather feedback. Technically, the answer is no. The
Product Owner is the one source of feedback to the Development Team. If she wants to establish her
own feedback loop to the stakeholders, that’s her prerogative. That said, I feel that there are times
and conditions where the Development Team can solicit feedback directly from a stakeholder if they
decide that bypassing the Product Owner will provide them more value. The Product Owner should
be informed and agree to this. During the next Sprint Retrospective meeting, this can be discussed to
determine if it was a one-time thing or if there’s a deeper dysfunction to address (like an untrained or
absent Product Owner).

	 CHAPTER 8  Effective Collaboration	 237

I see Product Owner feedback as falling into three broad categories in Scrum, with practices and
tools that can support each. These are listed in Table 8-1.

TABLE 8-1  Types of Product Owner feedback with the associated practice and tools.

Type of feedback When is it given? Practice Visual Studio tool

Can you give us more details
about this PBI?

Product Backlog
grooming, Sprint
Planning meeting
during development

Collaborate with the Product
Owner or stakeholder at a
whiteboard

PBI work item,
PowerPoint
storyboarding

Do you like this? Is this the
behavior you were expecting?

During development Sit down with the Product
Owner or stakeholder and go
through the feature

Microsoft Feedback
client

What else do you want, not
want, or want developed
differently?

Sprint Review meeting Collaborate with the Product
Owner and stakeholders to
update the Product Backlog

Team Web Access,
Microsoft Excel

The rest of this chapter will discuss some of the more effective collaboration practices and tools.

Collaborative development practices

Even the simplest software product requires a team with many talents. Beyond having the standard
capabilities of design, code, and test, there can be many types and levels of talent within each
discipline. Every developer has a unique background, set of skills, expertise, and personality. Each
brings something different to the team. For example, you may have two C# programmers with similar
resumes and experience. The way in which they analyze and solve problems will vary radically. Both
approaches can be fit for purpose according to the requirements, but they can be very different.

A high-performance Scrum Development Team understands this reality, and even uses it. These
types of teams recognize everyone has a different way of solving problems, and so long as those
solutions fit within the parameters of the product and the Development Team’s practices, they should
be embraced. Long, drawn-out discussions and arguments over approaches and coding styles tend to
generate little value, and typically only lower Velocity and morale.

In this section, we will explore several contemporary practices that boost the Development Team’s
effectiveness during collaboration.

Note  A self-organizing Scrum Development Team should pick and choose from these
as well as other development practices and try them for a Sprint or two. Later, during a
Sprint Retrospective, the team can decide whether to continue to embrace the practice, to
amplify it, or to abandon it.

238	 PART II  Using Scrum

Collective code ownership
Extreme Programming (XP) gave us the notion of collective code ownership. With this approach to
ownership, individual developers do not own modules, files, classes, or methods. All of those things
are owned collectively, by the entire Development Team. Any developer can make changes anywhere
in the code base.

Consider the alternative to collective code ownership, where each developer owns an assembly,
a namespace, or a class. On the surface, that may seem like a good idea. The developer is the ex-
pert on this component , as well as the gatekeeper for all changes. Strong code ownership like this
has a ­tendency to block productivity. Consider the situation where two developers (Art and Dave)
are working on separate tasks that both need to touch a common component owned by a third
­developer (Toni). Dave will have to wait while Art’s functionality is coded and tested. A collective code
ownership model would allow Dave to code the feature himself. The source control tools in TFS would
track who made what changes to which files and enable a merge (or a rollback) to occur if there were
any problems. Another potential problem with strong code ownership pops up when refactoring.
Modern refactoring tools, like those in Visual Studio, can do this safely, but if the file or files are
locked, then productivity is blocked again.

Adopting a collective code ownership mentality can take time. This is especially true if the
Development Team used to have strong code ownership. Pairing and shared learning is a way to
break up the turf and politics. Just as it takes time for the Product Owner and organization to trust
the Development Team’s ability to self-organize and self-manage, it also takes time for the individual
developers to trust each other.

Tracking ownership in TFS
The biggest advantage with collective code ownership is the boost in the social dynamics of the

Development Team. Because each developer has full control over all source code, there are less
­boundaries and more opportunities to find solutions. Remember that in Scrum, the Development
Team owns all the problems and all the solutions collectively. This includes the artifacts of those
solutions, namely the source code.

Should you ever have a need to determine who made a specific change to a file, TFS can help you.
By right-clicking a file or a folder and selecting View History (as shown in Figure 8-1), you can see a
­history of changes, including who made them, the type of change, the date and time, and a (hopefully
meaningful) comment. If you want to see what was changed between two versions, you can select
them both and right-click, choosing Compare as shown in Figure 8-2. The UI will show removed text
in red and new text in green. If you want to see who wrote which line of code in a specific version of a
file, you can use the Annotate tool as shown in Figure 8-3.

	 CHAPTER 8  Effective Collaboration	 239

FIGURE 8-1  Viewing a history of changes to a specific file in Team Foundation Server.

FIGURE 8-2  Comparing two versions of a file to see the differences.

FIGURE 8-3  Using Annotate to see which developer made which changes in a specific file.

240	 PART II  Using Scrum

Tailspin Toys case study  Because each member of the Scrum Team is a team project
administrator, everyone has full control over every aspect of the team project. This includes
the ability to view, edit, and even delete files from source control. Should the need arise
to see who made a change, the developers are all trained in TFS and can view history,
compare, and annotate as needed. Sometimes they will use the Annotate feature to praise
another developer for good work.

Commenting in code
With collective code ownership comes a certain amount of responsibility. Other developers on
the team will need to understand the code. If a developer or pair of developers is working on a
rather complex part of the code, they should consider adding some comments. This can be a block of
comments that give another developer enough information to understand this code. The comments
can also be regularly sprinkled throughout longer algorithms. You can think of comments as being
messages to the future, and it might be you reading those comments a year from now.

Tip  Comments shouldn’t tell the reader how the code works. The code should tell them
that. If the code isn’t clear, then you should refactor the code rather than add descriptive
comments.

When commenting in code, only comment about what the code can’t say for itself. If the code is
well formed and follows popular patterns and principles, it probably doesn’t need comments. When
someone looks at the source code, its logic and purpose should be apparent. Keep this in mind while
you are coding. Constantly ask yourself how clearly your code is telling you, or another developer,
what it is doing.

Tip  Fellow Professional Scrum Developer Jose Luis Soria Teruel suggests that commenting
in perfectly readable code can sometimes be useful too. For example, in Microsoft Visual
C#, you can create documentation for your code by including XML tags in special comment
fields in the source code directly before the code block they refer to. If you are developing
an application programming interface (API) for third parties, you may want to at least use
the summary tag to describe a type or a type member.

Remember that comments live inside your source code files, and as such, they become ­inventory just
like the code itself. Comments can even be a form of technical debt if they are wrong or misleading. Be
diligent about updating your comments or removing them as you refactor and improve your code. Adding
more comments isn’t necessarily a good thing unless they add value. Perhaps it’s time to refactor the code
into simpler units rather than adding more comments. You should prefer unit tests over comments. The
best comment is a set of working unit tests with high coverage.

	 CHAPTER 8  Effective Collaboration	 241

Smell  It’s a smell when I see a file with the author’s name at the top. I understand a
developer wanting to get credit for his or her work, but this kind of comment tells
­everyone else to go away. It could be that the code file is really old and hasn’t been
touched since the team started practicing collective code ownership. If that’s the case,
someone should remove it. TFS tracks this through changesets, so it is redundant anyway.
It could also be an organizational requirement to have predefined headers and require
authors to add their names. If that’s the case, meet with the decision makers and ensure
that the value delivered by the practice outweighs the waste that it seems to generate.

Tailspin Toys case study  The Development Team uses popular frameworks, principles,
and practices as they design and code. As a result, there’s not a lot of opportunity for
meaningful comments. Only when they are coding some complex LOB methods do they
add comments. The Development Team also knows that when checking in to TFS, they will
associate a Task work item (which links back to a PBI or Bug work item) and a meaningful
comment. Together, these two items provide more than enough context to explain later
why the changes were made. Additional comments in code are not required.

Code reviews
A code review is a simple way to assure code quality by having another developer look at the
code. This assurance can cover multiple levels of quality. It can assure that the code works, is fit for
purpose, is absent of bugs, is absent of avoidable technical debt, is readable, and meet’s the team’s
­agreed-upon coding standards, as well as the Definition of “Done.” Additionally, the developer whose
code is being reviewed can use the conversation as an opportunity to learn about the way that he or
she writes code.

Professional Scrum developers recognize that the candid feedback (otherwise known as ­criticism)
given during a code review is targeted at the code and not themselves. For new developers, or
developers new to code reviews, there can be a tendency to take these criticisms as an insult, even
becoming defensive. Over time, these developers will see that even experienced developers make
mistakes. Everyone is human. Everyone screws up now and then. Everyone can improve. Code reviews
are just another type of shared learning activity, where any developer can learn from another.

Tip  Code reviews can also catch and enforce coding style and standard issues. Be careful
spending too much time with these kinds of topics during a code review, as they can
become a rathole. A rathole is any discussion that detours the original purpose of the
conversation. Don’t get me wrong—discussions around coding styles and standards are very
important, but any debate or decisions around changing existing standards, or establishing
new ones, should be deferred until the Sprint Retrospective meeting. High-performance

242	 PART II  Using Scrum

Scrum Development Teams know that matters of style are not absolute. Developers should
be allowed to self-organize and use whatever style is fit for purpose. Once a Development
Team has been working together for a while, their coding standards will begin to emerge.
These standards may even become part of the Definition of “Done.”

When reviewing someone else’s code, you should avoid appearing as a “senior” developer.
The truth is that you may be the senior developer, but because everyone is equal within a Scrum
Development Team, it’s all about the sharing and learning. Choose your tone and your words carefully
as you identify problems and improvements in someone else’s code. Developers new to Scrum may
be put on the defensive. Don’t aggravate the situation by also going on the offensive.

Code reviews don’t have to be a formal process. They can happen spontaneously. They also
shouldn’t be despised or avoided. High-performance Scrum Development Teams actually look
forward to code reviews. This is because those teams know that the code is owned collectively.
Problems and criticisms aren’t directed at a single developer; rather, they are learning opportunities
for the entire team. Every code writer and code reviewer will have different perspectives and
approaches to solving problems.

Tip  Typically, most developers know the code that needs to be reviewed. This can change,
depending on the frequency of the code reviews. Developers can forget the changes that
they made and the context if too much time elapses. Fortunately, TFS knows what files a
developer has worked on for any given date range. From inside Source Control Explorer,
the developer can right-click a parent-level folder and view the history. Unfortunately,
this will show activity from every developer. There’s no way to filter out other developers’
changes. If you drop the command line, however, this filtering can be accomplished using
the Tf.exe command-line utility.

Here’s an example where Dave is asking TFS to list all of his changesets for a given date
range:

tf.exe history $/Tailspin/Code/Dev /version:D"07/04/2012"~D"07/17/2012" /user:"Dave
(Developer)" /recursive

Professional Scrum developers should build solutions that are fit for purpose while avoiding gold
plating. Gold plating is any design or coding that is above and beyond what is absolutely necessary for
the task at hand. For example, if a PBI requires a method that calculates the sales tax for the state of
Washington, and the developer adds additional logic to handle the nearby states, that’s gold plating.
The developer may try to justify the extra coding as being required down the road for a future Sprint.
In order to maximize value and minimize waste, Development Teams should solve today’s problem
today and tomorrow’s problem tomorrow (in the next Sprint, as it is in Scrum). Code reviews can be
a good way to unearth gold plating.

	 CHAPTER 8  Effective Collaboration	 243

Pair programming
You can think of pair programming as a form of code review—one that happens in real time. The
practice of pair programming has two developers sit together at one computer. One developer types
at the keyboard (drives), while the other observes, navigates, spellchecks, and otherwise reviews the
code being typed. The two developers will switch roles frequently.

A benefit of this two-person approach is that the driver can focus on the tactical (coding) activities,
while the observer is thinking about the broader, strategic solution to the problem. This collaboration
leads to better and simpler designs and fewer bugs, in shorter periods of time. Pairs of developers
working in close proximity like this are also less prone to get sidetracked from the task at hand.

During pair programming, knowledge is passed back and forth. The two developers can learn
new practices and techniques from each other. Pairing a newly hired developer, or a developer
with a different or weaker skill set, with a developer who is stronger will help improve the overall
effectiveness and Velocity of the Development Team. Some teams scale this idea using an approach
called “promiscuous pairing.” Each developer cycles through all the other developers on the team,
rather than pairing with only one partner. This behavior causes knowledge of the software product
and its inner workings to spread throughout the whole Development Team. This reduces risk if a key
developer leaves the team. Figure 8-4 demonstrates the possible outcomes of pairing weaker and
strong developers together.

Developer B

W
ea

k

D
ev

el
o

p
er

 A Mentoring

MentoringDanger

Flow

St
ro

n
g

Weak Strong

FIGURE 8-4  Possible outcomes when pairing developers together.

Tailspin Toys case study  The organization has no policies around code reviews. They leave
it up to the Development Team to decide. Sometimes the developers perform ad hoc code
reviews. These are done whenever a developer hits the wall or needs a better solution
for a complex problem. These kinds of code reviews are almost like an impromptu pair
programming session. In addition, the entire Development Team likes to sit down in the
conference room and use a projector. Each developer in turn shows off code. With a full
room, this approach encourages discussion on design and style. As the team has improved,
each review begins by showing the automated tests.

244	 PART II  Using Scrum

Collaborative development tools

Over the years, I have met with hundreds of software development teams. In my opinion, the most
productive, collaborative tools for software developers to facilitate a discussion are a whiteboard and
a dry erase marker or a laptop running Visual Studio and a projector. Using tools like these implies
several things: the collaborators are collocated, they each see the same thing, and they are having a
discussion in real time. There are no environmental impediments blocking the flow.

In a perfect world, all discussions and brainstorming meetings would occur like this. Unfortunately,
some of us work in a world that is not collocated. Our team members don’t work in the same office,
or even live in the same city, state, or country. When we are in bed, our colleagues are at work, and
vice versa. For environments like this, high-bandwidth collaboration tools like a whiteboard don’t
have the same impact. Alternatively, electronic tools must be substituted. Fortunately, Visual Studio
2012 includes several good ones.

Tip  There are countless more collaborative development tools available as open source or
for commercial license. A popular example is join.me. It is a free (and ridiculously simple)
screen-sharing tool for meetings on the fly. You can learn more at http://join.me.

In this section, I will discuss some of the Visual Studio 2012 features that enable collaboration.

Team Foundation Server
Team Foundation Server is the team’s hub for coordinating development efforts on a shared code
base using shared work items and shared, automated builds. TFS directly supports the first two,
and Team Foundation Build (Team Build), a feature of TFS, enables automated builds. The team
can use Team Build to automate the compilation, deployment, and testing of its software products.
Having at least one automated build for the product should be a goal. High-performance Scrum
Development Teams will have several.

TFS should be at the center of the development team at all times, especially when coding. There
are challenges, however, when supporting a busy team of developers working on a shared code base.
Parallel development such as this can lead to concurrency issues. In the time between a developer
getting the latest version of code, making changes, and then checking it back in, one or more
developers may have checked in their changes to the same folder. This means that when the original
developer checks in his or her code, the probability that a conflict will occur increases with the length
of time that the code is not checked in. Because these conflicts usually require a merge operation, you
should check in frequently.

Merging occurs when two variants of the same file are combined in a logical way to create a new
version of the file. Manually integrating files like this is a time-consuming process and should be
avoided. TFS can often auto-merge for you, but not always. One way to avoid having to merge is to
enable locking so that each developer locks the file(s) that he or she is working on. While this will
prevent anyone else for making changes to the file until the first developer is done, it will block other

	 CHAPTER 8  Effective Collaboration	 245

developers from working on the file and being productive. There is a better way—to integrate, or
merge, continuously.

Smell  It’s a smell when I see a team project that does not have multiple check-out enabled.
Either the team has been burned in the past by an inferior revision control system and
wants to play it safe, or they haven’t learned how to collaborate together effectively. Either
way, wholesale locking like this is a recipe for an impediment. To overcome this, I usually
start with a bit of education, letting the developers know that even with multiple check-out
enabled, they are still able to lock individual files as needed, such as when performing a
tricky refactoring operation. I’ve yet to see a team project that truly required locking of this
nature that didn’t have a deeper dysfunction driving the need.

Continuous integration
High-performance Scrum Development Teams have learned how to work smarter, not harder. One way
that they do this is by continuously integrating their code changes with others on the team and running
automated tests to verify the integration didn’t break anything. While these same automated tests can
be run inside Visual Studio, Team Build can probably run them faster and they will be asynchronous,
enabling the developer to work on something else. Another benefit is that the tests can be run in a
­controlled environment that will show any configuration management ­problems quickly.

A better way to avoid painful, manual merge operations is to do smaller, less painful merges
throughout the day. This is the basis for continuous integration (CI). Automated CI takes this a step
further. Upon a check-in, an automated build gets launched, having been triggered by a check-in
event. Source code is compiled, binaries are deployed, automated tests are run, and feedback is
returned to the team quickly.

Tip  Another way to minimize the pain of manually merging code is to listen to the other
developers during the Daily Scrum. Remember that the purpose of the Daily Scrum is
to synchronize and create a plan for the next 24 hours. This means that each developer
verbally shares their planned tasks with the other developers. If a developer hears another
mention a task that will be in the same file or files that he or she was planning on working
on, they should consider pairing up and working on their overlapping tasks together. This
should alleviate any need to merge the code manually, as well as increase knowledge and
productivity in general.

CI is about reducing risk. When a developer defers integration until late in the day, the week, or
the Sprint, the risk of failure (i.e., features not working, side effects, bugs) increases. By integrating
code changes with others regularly throughout the day, the Development Team will identify these
problems early and be able to fix them sooner because the offending code is fresh in everyone’s
mind. The practice of CI is a must for any high-performance Scrum Development Team.

246	 PART II  Using Scrum

A Development Team shouldn’t be afraid to break the build and work together to fix it.
Refactoring, restructuring classes and methods, and changing internal interfaces can be messy work.
There may be times that you want to check in your not-yet-finished code so that ­another ­developer
can begin working with a part of it. You may also want to see how many errors and warnings and
failed tests occur when your changes are integrated with others. This is fine. You are in the middle of
the Sprint. This is not production code. Just as a surgeon may need to make some cuts in order to fix
a critical problem, so might you have to break some code in the development process. These cuts are
temporary, and the CI build and failing tests will illuminate them until they are all healed.

Tailspin Toys case study  The Development Team has invested in a very powerful, very fast
build server. They keep it quite busy, integrating code changes, building, and testing on
every check-in. The developers aren’t afraid to break the build, but they are disciplined to
check the results of every build to ensure that they don’t miss a broken one. Some have
­installed the build notification tool and others use email notifications to stay connected to
the build status.

Builds check-in policy
Scrum Development Teams stay busy. They will work on a design task and when it’s done, switch
to a coding or testing task, and repeat, and repeat. As they finish a task, they usually check in their
work. When CI builds are enabled, the check-in triggers an automated build. The developer then
starts working on another task and, hopefully, remembers to go back and check that build’s status
and quality. Unfortunately, the developer may become focused on the new task or get sidetracked by
something else. He or she may forget to evaluate the results of that CI build. Compound several builds
on top of each other, and you might have a tangle of build results to work through.

The Builds check-in policy was created as a solution for just such a situation. When you configure
a CI build in Team Build, every check-in operation starts a build. When one of these builds breaks,
it is important for the Development Team to fix the problem that broke the build before making
additional, unrelated changes. You can use the Builds check-in policy as a tool to limit additional
check-ins until the broken build is fixed. When this policy is enabled, it literally blocks anyone
else from adding new files to any source control folder that is a working folder in/under the build
­definition. When the policy fails, the developer who is attempting to check in will receive a message
like the one shown in Figure 8-5.

When a developer runs into this warning message, the expected behavior is that he or she can
query the other team member who “broke” the build. Remember, it could just be that a single test
failed, and not some catastrophic system error. Once the Development Team has been consulted, the
developer who received the warning can then choose to override it by clicking the Override Warnings
hyperlink on the Pending Changes page and providing a comment. All developers will be blocked like
this until the CI build completes without errors and all tests pass.

	 CHAPTER 8  Effective Collaboration	 247

FIGURE 8-5  Builds check-in policy warning when the last CI build failed.

Tailspin Toys case study  The Development Team tried the Builds check-in policy for a
few Sprints and then, after discussing it during a Sprint Retrospective meeting, decided to
disable it. What had happened was, as they improved their CI practice, they got better at
proactively watching and analyzing the build results. In addition, some developers have
opted to enable the Build Notifications tool.

Build Notifications tool
Rather than having TFS block check-ins when a build fails, some developers would rather just be
­notified when the build completes and then check the results manually. Fortunately, Microsoft
­includes a notification tool that does exactly this.

The Build Notifications tool is installed by default, but not configured. The developer will have to
start it manually at first. It can be found under the Start menu by pointing to Microsoft Visual ­Studio
2012 > Team Foundation Server Tools. Each developer can choose the build(s) that they want to
monitor. They can also choose to be notified when each build gets queued, starts, or completes. They
can also choose to monitor only builds that they have started or that anyone on the team has started.
You can see an example of the settings in Figure 8-6.

Note  The Build Notification tool used to be part of the Team Foundation Server Power
tools, but starting with TFS 2010, Microsoft now includes it “in the box,” as part of a Visual
Studio or Team Explorer installation.

248	 PART II  Using Scrum

FIGURE 8-6  Enabling build notifications for the Tailspin.CI build.

The notifications will appear in the system notification area (otherwise known as the system tray),
in the lower-right corner of the Windows desktop. You can see an example of this in Figure 8-7.
The notification will appear for a few seconds and then fade away. You can click hyperlinks on the
­notification to allow you to view the details of the build. If the notification has since disappeared,
right-click the Build Notifications icon, in the system notification area, to view a build’s status or replay
a recent notification.

FIGURE 8-7  A notification that a build has finished, but only partially succeeded.

Tailspin Toys case study  There is not a team-level practice or requirement to use the Build
Notification tool. Some developers on the team, however, have configured it and use it.
Others have since disabled it. The most common reason for disabling it is to avoid the
“noise” that it generates. As previously mentioned, the Development Team is quite good at
watching the CI builds and responding to any problems.

	 CHAPTER 8  Effective Collaboration	 249

Gated check-in builds
Gated check-in builds are a type of private build, triggered by a check-in, but built using shelvesets in
order to ensure that there are no errors prior to checking in. The purpose of a gated check-in build
is to verify that the developer’s code integrates with the other team members and that tests pass
before committing the changes to the main source control repository. This feature was introduced in
TFS 2010.

One of the problems plaguing the gated check-in build feature is performance. Even in TFS 2012,
the slow performance of the UI notifications become apparent—very fast. Also, each gated check-in
definition can have only one running build at a time. Therefore, active teams doing lots of check ins
and builds are more likely to develop a large queue of gated check-in builds. Fortunately, there’s a
new feature in TFS 2012 that helps with performance, which I’ll get to in a moment.

Smell  It’s a smell if I see a team using gated check-in builds on their development
codeline. Ideally, the Development Team practices lots of small, frequent check-ins. If one
breaks the build, a few minutes later, they should know about it, fix it, and keep going.

Gated check-ins are a solution to a misunderstanding. When the original authors of XP said, “Don’t
break the build,” they didn’t mean it literally. They meant that if a developer ever does break the
build, it is their responsibility to fix it immediately. Really, the authors should have said, “Don’t ever
leave the build broken.” When I’ve seen teams use gated check-in builds, they often do so because
they are unable to meet the requirement of never leaving it broken. It could be that their build
takes too long or they simply don’t have the discipline to follow the practice. It also may be because
the organization has a low tolerance for broken builds. We need to recognize that these are all
dysfunctions of some type.

Tip  If your production gated check-in build takes a long time to complete, even without
running tests, consider creating a second CI build that builds and runs the tests. The CI
build would kick off in parallel with the gated check-in build and provide a measure of
quality. It might take a really long time to finish the CI build, but at least the gated check-in
build wouldn’t get any slower, and you’d still get a sense of the code quality.

For teams running long gated check-in builds, TFS 2012 offers a helpful new feature. Gated
check-in builds can now batch together multiple shelvesets into a single build. For example, a team
might configure a production build to build up to three submissions simultaneously, as shown in
Figure 8-8. These submissions (shelvesets) would get merged and built together on one build agent.
If the build succeeds, and all tests pass, each shelveset would be committed (checked in) separately.
If the build fails or any tests fail, then each shelveset is built, one at a time, to determine which one
caused the failure.

250	 PART II  Using Scrum

FIGURE 8-8  Configuring a gated check-in build to merge and build up to three submissions.

Tailspin Toys case study  The Development Team makes heavy use of CI builds. They were
selected over gated check-in builds for development in the DEV folder. Everyone agreed
that the practice of CI promotes healthier team behaviors than relying on a tool. The team
does use gated check-in builds when fixing bugs in code (in the PROD folder) that has
been released.

Email alerts
A developer can also monitor builds by enabling an email alert. He or she can register an email
address with TFS to receive an email that alerts them to the fact that a build has completed or a
build’s quality has changed. In fact, alerts can be established to notify when changes occur to work
items, code reviews, and source control files, as well as builds. These are just standard emails
(in either plaintext or HTML format) that are sent from TFS to a user’s inbox using an intermediary
Simple Mail Transfer Protocol (SMTP server). Developers can subscribe to alerts for themselves, for
others, or for the entire team.

The body of these email alerts contain hyperlinks that can be clicked to take the reader to the
respective information in Team Web Access. Emails pertaining to source control, such as check-ins,
will display information about the changeset when clicked. Emails about work items will take the
reader to the respective work item when clicked. Emails about builds will direct the user to the build
in question.

	 CHAPTER 8  Effective Collaboration	 251

Before TFS can send any alert email, a TFS administrator must configure the server to use an
existing SMTP server. This can be accomplished in the Team Foundation Server Administrative Console
in the Application Tier section, as shown in Figure 8-9. At a minimum, the administrator must specify
the SMTP Server and the Email From Address. In TFS 2012, Microsoft added the ability to specify
optional advanced SMTP settings, including User, Password, Port, and additional security information
directly from the console. This was a long-anticipated feature in the product.

FIGURE 8-9  Configuring SMTP settings so that TFS can send alert emails.

Tip  The out-of-the-box emails are very plain. They convey the basic information, and
not much else. There are no fancy colors or graphics. If a team wanted to, they could
add some style or missing functionality to the content and format of the base email
alerts by ­customizing the associated .xsl transform files. The event service uses these files
to ­transform the XML data for an event into a human-readable email message. Editing
the ­respective .xsl file would provide a different format for the email. You should make
a ­backup copy of the transform files before attempting any customization. Better yet,
consider creating a separate team project for such an effort so that you can manage
changes to those files. For more information check out http://msdn.microsoft.com/en-us/
library/bb552337.aspx.

Alert subscriptions are stored on the server and organized by team project. A developer can
add different alerts for each team project or team that they are a member of. A developer can also
­configure a team alert, which is new in Visual Studio 2012. Team alerts simplify the administration
of setting up the same alert for everyone on the team. For example, if all Scrum Team members,
including the Product Owner and Scrum Master, want to be informed when a build has completed or
when a PBI is “done,” someone can create a team alert such as the one shown in Figure 8-10.

http://msdn.microsoft.com/en-us/library/bb552337.aspx

252	 PART II  Using Scrum

FIGURE 8-10  Creating a team alert so that everyone on the Tailspin Team is notified when a PBI is done.

For build-related alerts, there are two fields that you should be aware of: Requested By and
­Requested For. The Requested By field is populated by TFS and is always the account that ­actually
queues the build. For manual builds, it contains the user that queues the build, but for CI and
scheduled builds, it contains the build service account. If you are interested in knowing who
­requested the CI build, this won’t work. Instead, you should reference the Requested For field. Its
behavior is very similar to the Requested By field, except that for CI builds it contains the user who
performed the check-in.

Email alerts can also be configured to let a developer, or a whole team, know when a build has
completed or failed. This would be an alternative to using the Build Notifications tool previously
­mentioned. In addition, by using the Requested For field, a single team alert can be created that is
smart enough to only email the developer who requested the build, and nobody else. This is done
by creating a team alert with the criteria Requested For = [Me], as shown in Figure 8-11. This criteria
establishes a behavior which causes an email to be sent to only the person who requested the build.
You’ll be happy to know that the [Me] macro, and its related behavior, is available for all types of
alerts.

FIGURE 8-11  Creating a team alert with the [Me] macro to email only the developer who broke the build.

	 CHAPTER 8  Effective Collaboration	 253

Shelving
Shelving lets you set aside a batch of pending changes for whatever reason. It could be that you were
interrupted by some more important work, or you want to queue a private build, back up your work,
or hand something off to another developer. Shelving can also be used when you want to have your
code reviewed.

Shelving produces an artifact called a shelveset. Shelvesets exist outside of the normal TFS source
control repository and are identified by a unique name provided by the developer who created it.
Some point in time later, that developer (or another) can unshelve those pending changes into a local
workspace and continue working or review the code.

When a developer shelves his or her code, anybody on the team with the appropriate permissions
can view and unshelve those pending changes. In other words, to unshelve a pending change,
you must have the Read and Check out permissions set to Allow. For a Scrum Development Team
­practicing my recommended security configuration, this means that any developer can unshelve
another developer’s pending changes. This is how it should be on a high-performance Scrum
Development Team. Any developer can review any other developer’s code without being limited by
the tool.

If the developer reviewing the code makes any changes, he or she must create a new shelveset or
check in the code. This is because the second developer cannot change the first developer’s ­shelveset.
What I have seen happen is that the reviewer will create a second shelveset with the proposed
changes and comments, and then the first developer will create a third shelveset, and so on. If the
two developers are not diligent about cleaning up their shelvesets as they iterate, there will be a big
housekeeping task at the end. For this reason, as well as for general efficiency reasons, code reviews
should be performed in person, where all developers look at the same screen at the same time.

Smell  It’s a smell if I see a team using shelvesets as a mechanism for code reviews. If
it turns out that they are used sparingly for situations where the coder or reviewer are
remote, then that is OK. I will suggest, however, that the developers use a screen-sharing
utility such as Microsoft Lync or http://join.me. By sharing a screen, you avoid the
back-and-forth of shelveset creation or the administrivia of creating them or cleaning them
up after the exercise.

Tailspin Toys case study  The Development Team primarily uses shelvesets for interruptions
and private builds. They also use them indirectly with the new suspend and resume
features in Visual Studio 2012.

254	 PART II  Using Scrum

My Work
Visual Studio 2012 Premium and Ultimate edition users can use My Work as a way to see and manage
their current, in-progress work. As a developer works through his or her tasks in the Sprint Backlog,
they can be started in the My Work page. Work can also be suspended and resumed as needed. Code
reviews can be requested and managed. Check-ins can be performed. It’s a very powerful page within
Team Explorer, and every developer on the team should consider using it.

To begin working on a new task, drag it from the Available Work Items section to the In Progress
section, as shown in Figure 8-12. You can also right-click the task and add it to In Progress or click the
Start link. If the task you want to start isn’t visible, you may have to run a different query or refresh
the results. It may be that you have to create the Task work item first.

FIGURE 8-12  Getting started on a new task by dragging it to the In Progress section.

Note  Microsoft provides two default queries to get you started in the Available Work
Items window: “All Iterations - <project team>” and “Current Iteration - <project team>”.
The second query is the interesting one. It contains some behind-the-scenes magic to
determinate what the current iteration is. If your team has set up the iterations (Sprints)
and specified start and end dates, then TFS knows what the current Sprint is. This value
is looked up and hard-coded into this query to return Task work items from the current
Sprint. This is very convenient, but unfortunately the magic cannot be bottled and reused
on other custom queries. Hopefully, Microsoft will give us a CurrentIteration macro, or
something like it, to use in our queries some day soon.

Dragging the work item to the In Progress section will also change the State to In Progress. More
important, it gives you context on what you’re doing. For example, even taking 60 seconds to
answer a phone call can generate a lengthy “Now where was I?” pause. Being able to see what

	 CHAPTER 8  Effective Collaboration	 255

item you are working on will help return that focus more quickly. If you exit Visual Studio without
finishing an In Progress task, it will still be there later when you return.

Smell  It’s a smell if I see two or more tasks In Progress. Just because Team Explorer allows
it, doesn’t mean that it makes sense from a work management perspective. Are you really
working on two things at once? Perhaps you didn’t create the right tasks in the first place.
Maybe you switched context and didn’t know how to suspend your existing work before
starting something new.

Later, when you are done with your task, you can check in your changes and resolve (rather than
associate) the task. You can also just click the Finish link in My Work. Both of these methods will
transition the work item to the Done state and set any Remaining Hours to zero. If you click Finish,
Visual Studio may prompt you with a warning that you haven’t checked anything in. For tasks that
don’t require a check-in, you can dismiss the warning. The task will be removed from My Work, as will
the pending changes when you check them in, allowing you to move to your next task.

Code reviews can also be requested and managed from the My Work page. I will discuss them
later in this chapter.

Suspending and resuming work
From time to time throughout the Sprint (or the day on some dysfunctional teams), a developer will
experience an interruption. In a perfect world, this never happens, but in the real world, it does.
A high-performance Scrum Development Team works to marginalize this reality by either reducing
the number of interruptions or making them less painful. When an interruption does occur, switching
context to the new problem can be difficult and wasteful.

For example, let’s say that you are deep in thought, implementing a complex scenario within a
PBI and the Product Owner drops into the team area with an emergency. It’s obvious that an urgent
bug fix is required and, as this is critical to the business, you should drop what you’re doing and fix it.
Forget your forecast. It’s about saving money and customers at this point. What most developers do
is to shelve their code, undo pending changes, and close their solution. Others will just start a new
instance of Visual Studio, get the specific version of code that’s running in production, and go about
locating, verifying, and fixing the bug. Visual Studio 2012 now offers a better way.

From the My Work page, the developer can suspend the current work he or she is doing. Behind
the scenes, a shelveset is created to save any pending changes to code, tests, and other files.
Important elements of Visual Studio are also saved, such as open windows, breakpoints, and other
debug states. The developer assigns the suspended work a friendly name in order to find it easily at
some point in the future. By default, this name is the title of the In Progress work item, as you can see
in Figure 8-13.

256	 PART II  Using Scrum

FIGURE 8-13  Suspending in-progress work and giving it a friendly name.

Suspending will shelve any pending changes and then undo the local changes, putting your
workspace back into a clean state. It is now ready to handle the new crisis by dragging the new task
into the In Progress section. You can see the suspended work listed in the Suspended & Shelved Work
section of the My Work page, as shown in Figure 8-14.

FIGURE 8-14  Suspended work is given a friendly name and persisted as a shelveset.

Smell  It’s a smell if I see more than one piece of suspended work listed. Maybe you are the kind
of developer who spends more time helping, mentoring, and supporting others. This could
explain the various pieces of suspended work. Maybe your organization is so chaotic that even
the interruptions get interrupted? Maybe you are just the kind of developer who leaves a bunch
of half-eaten sandwiches sitting around your house. That’s a different kind of smell.

Later, when the crisis has passed and the developer is able to return to the planned work, he or
she can select the suspended work and click the Resume link. The original pending changes will be
unshelved, and the task will be put back in the In Progress section. Other IDE settings and behaviors
will be restored as well.

In the event that your interruption gets interrupted, you may want to suspend it, and return to
your original work. If this is the case, then instead of a Resume link, there will be a Switch link. Clicking
Switch will suspend the interruption work, and return context to the original task. Alternatively, you
can choose to Merge With In Progress and bring all the pending changes from the two tasks together.

	 CHAPTER 8  Effective Collaboration	 257

PowerPoint Storyboarding
Visualizations allow the Development Team to elicit feedback more easily. This feedback can come from
other members of the Scrum Team, as well as stakeholders, especially domain experts. Shapes and lines
drawn on a whiteboard to represent components and actions enable ideas to be vetted by the right
people. It’s faster to sketch out the high-level concepts and their interactions than it is to try to design or
code anything in Visual Studio. It’s also cheaper to fix a bug in a drawing than later in code.

As previously mentioned, feedback is important when brainstorming how to tackle a problem
such as developing a particular feature or scenario. This is especially true when the developers
are not ­familiar with the domain or the workflow is complex. Having the right people involved in
the conversation is critical. The more eyes you can put on a problem, the better the chances of
­finding an optimal solution. Unfortunately, this is not always possible when the required people are
geographically distributed.

Smell  It’s a smell when the Development Team doesn’t have access to the people who
know the domain. It’s the Product Owner’s responsibility to either know the domain or
collaborate with experts who do. The Scrum Master might have to get involved to make
sure the introductions, communication, and collaboration occur effectively. It’s also a smell
when the opposite occurs, and the Development Team becomes the domain experts. This
is natural in an organization that encapsulates its critical business processes into software.
The developers know the software, and thus the domain behind it. This is fine so long as
the organization doesn’t start using their technical staff as the business help desk.

For Development Teams that love their whiteboards, I recommend setting up a laptop with a
webcam in the meeting room or team area. By aiming the webcam at the whiteboard, and then
strategically standing out of the way after drawing on it, remote attendees can be part of the design
session and discussion. This is less ideal than collaborating in person, but still allows for rapid design
with a dry erase pen, rather than fumbling with a software design tool.

When the Development Team has a need to present their ideas to (and gather feedback from)
remote stakeholders, then the new PowerPoint Storyboarding feature in Visual Studio 2012 can be
beneficial. Users of Visual Studio 2012 Premium, Ultimate, or Test Professional editions can install and
use PowerPoint Storyboarding, which allows a developer to illustrate a PBI or a specific ­feature or
scenario using Microsoft PowerPoint. The illustration is created by dragging and dropping predefined,
inline images and adding formatted text. It can then be linked to a work item, such as the PBI that it
describes, and shared with other TFS users.

Smell  It’s a smell when I see storyboards created before the Sprint in which the PBI gets
forecast for development. It could be that the Development Team had to iterate on the
design of a complex feature or scenario with a remote stakeholder or two before they were
able to estimate it. It could also be that the Development Team started working on this

258	 PART II  Using Scrum

PBI in a previous Sprint and didn’t finish it. From my experiences, the more likely ­reason is that
someone on the team got bored, fired up PowerPoint, and started ­designing ­something. When
a developer has spare time, he or she should help the rest of the Development Team complete
their forecast work. If the whole Development Team has spare time, they should meet with the
Product Owner to discuss working on an additional PBI.

Tip  Fellow Professional Scrum Developer Jose Luis Soria Teruel has experimented with
using storyboards while grooming the Product Backlog. Wary of generating waste, he and
the other developers keep them to the right (rough) level of detail. This was a practice that
they opted into as a team.

To create a PowerPoint storyboard, there are a few simple steps to follow:

1.	 Open the PBI work item, choose the Storyboarding tab, and then choose the Start
Storyboarding link. You can also start the tool from the Start menu under Microsoft Visual
Studio 2012 or by starting PowerPoint directly.

2.	 Add slides, shapes, and text to the blank presentation to illustrate a PBI, feature, or scenario,
as shown with the Customer Login storyboard in Figure 8-15.

FIGURE 8-15  An example PowerPoint storyboard with annotations.

3.	 Save the storyboard presentation to a network share or Microsoft SharePoint.

4.	 (Optional) Link the presentation to the PBI work item that it describes, as shown in
Figure 8-16.

5.	 Share the storyboard with others.

	 CHAPTER 8  Effective Collaboration	 259

FIGURE 8-16  A PBI work item with a linked PowerPoint storyboard.

6.	 Others may provide feedback by annotating the PowerPoint document or by using the
Feedback client.

As the stakeholders review the storyboard, they can add comments or even make changes to the
illustrations using the built-in features of PowerPoint. If the presentation is stored on SharePoint,
it can enjoy the dual benefit of broad availability and revision control. Users can check out the
presentation and check in any changes. Feedback can also be provided out-of-band, via email, voice,
or using the Feedback client, which is covered in the next section.

Tip  I’m often asked if a Development Team should use PowerPoint Storyboarding or
SketchFlow. On the surface, they appear to be very similar in functionality. SketchFlow is a
feature of Expression Studio Ultimate and has a new UI to learn. PowerPoint Storyboarding
runs inside PowerPoint, so the learning curve isn’t as steep. While SketchFlow is more
­sophisticated (with a richer set of user controls for designing UIs), it’s not as nicely
integrated into a development process that uses TFS. Another important difference is
that SketchFlow is able to convert (forward-engineer) the prototypes into starter projects.
PowerPoint storyboards don’t support that. They will always just be illustrations.

Creating a storyboard
To create a storyboard, a developer can select from several layouts that support common user
interfaces, such as web and Windows Phone backgrounds. Images can be dragged and dropped
from the Storyboard Shapes pane in addition to using all the features available within PowerPoint.
These features include clipping and inserting screenshots, hyperlinking from one page to another,
animation, inserting images and shapes, and aligning and grouping objects. For example, a developer

260	 PART II  Using Scrum

might create two slides to illustrate the UI for a particular PBI. She might add information about
upcoming service appointments to the customer’s account page and add buttons that customers can
use to schedule, reschedule, and cancel those appointments.

Tip  You can save a custom shape to MyShapes and then use it in the same way that you
use the predefined storyboard shapes. Also, you can export shapes to share with other
developers on the team or import shapes that others have created. Microsoft has also
created a Storyboard Shapes Authoring tool to help make storyboard shapes that can be
used with PowerPoint Storyboarding. It is available for free at http://visualstudiogallery
.msdn.microsoft.com/75f32d63-8ff2-49f3-b86e-70297d300858.

Before you can link a storyboard to a work item, you must save it to a shared location. The shared
location can be any shared folder on the network or a SharePoint site (such as the team project
portal). By linking the storyboard to a work item, you are essentially inviting the rest of your team
to access this shared file, so be sure they have the appropriate permissions. They can open the
presentation, review it, and add their comments. You can link storyboards only to certain types of
work items based on the process template from which your team project was created. In the Visual
Studio Scrum process template, you can only link storyboards to Product Backlog Item work items.
It is possible to link a storyboard to more than one work item.

Note  You cannot create work items from PowerPoint, but you can link to them. This means
that if you create the storyboard first, you will have to switch to Visual Studio or Team Web
Access to create the PBI so that you may link it. This situation is less likely to occur for a
Scrum Team, who should be creating and grooming PBIs a long time before the Sprint.

To create and modify storyboards by using PowerPoint Storyboarding, a developer must have
installed either PowerPoint 2007 or later, and one of the following versions: Visual Studio Premium,
Visual Studio Ultimate, or Visual Studio Test Professional. Storyboarding is not available in Visual
Studio Professional or Express edition. To view storyboards that were created by using the PowerPoint
Storyboarding template, users must have PowerPoint 2007 or later installed. They do not need Visual
Studio 2012 installed.

Tailspin Toys case study  In the past, some developers on the team have used Balsamiq
to mock up complex UIs. Over time, the Development Team realized that in-person
conversations at a whiteboard provide the most value. They take this approach whenever
possible. Occasionally, however, it’s not possible because a stakeholder or expert is not
available for an in-person discussion. When this happens, they will usually generate and
send the storyboard over email or even store them on SkyDrive, allowing the stakeholder
to review and comment. Once the feature or scenario is done, the storyboards are deleted.

http://visualstudiogallery.msdn.microsoft.com/75f32d63-8ff2-49f3-b86e-70297d300858

	 CHAPTER 8  Effective Collaboration	 261

Feedback client
As you read in the last section, the PowerPoint Storyboarding tool enables a team to create rapidly a
UI mockup or illustration of a feature that can be shared with other team members or stakeholders.
It’s important to close that loop by collecting rich feedback about what those users think of a feature,
and whether it is still being brainstormed, under development, or has been released. Feedback
should always be welcomed, and even encouraged. If the feature has been released and valid
feedback is given, it can be captured in the Product Backlog to be considered for future development.

One of the new features of Visual Studio 2012 is the ability to capture rich stakeholder feedback
on features being implemented and bugs being fixed. This is good for distributed organizations
who want stakeholders to evaluate the emerging Increment or a design that may still be in flux. The
Feedback client is used to gather this type of feedback. It is versatile enough that it can be used to
provide feedback on anything the user can see and interact with on the desktop.

Note  Users submitting feedback using the Feedback client do not need a TFS Client Access
License (CAL). A Windows Server CAL may still be required, however. Please refer to the
latest version of the Visual Studio 2012 licensing white paper at http://go.microsoft.com/
fwlink/?LinkID=246172.

This type of feedback can either be formally requested via a work item and email sent from Visual
Studio, or it can be provided voluntarily, without solicitation. We will look at both scenarios shortly.

Requesting feedback
The first feedback scenario occurs when a member of the Scrum Team, preferably the Product
Owner, solicits feedback from one or more stakeholders. These stakeholders will receive a feedback
request through an email that is constructed from the feedback request form. From the email, the
stakeholders can install and launch the Feedback client tool, which guides them in providing and
capturing their feedback. TFS stores this feedback as a Feedback Response work item.

In order to request feedback, TFS must be configured to use an existing SMTP server in order to
send emails. This requirement was mentioned earlier in the chapter in the context of setting up email
alerts and, hopefully, it is already configured. To begin, click the Request Feedback link on the Team
Web Access home page, as shown in Figure 8-17.

FIGURE 8-17  The Request Feedback link on the Team Web Access home page.

http://go.microsoft.com/fwlink/?LinkID=246172
http://go.microsoft.com/fwlink/?LinkID=246172
http://go.microsoft.com/fwlink/?LinkID=246172

262	 PART II  Using Scrum

Feedback can be requested on any aspect of the product, from the entire application down
to a specific scenario within a feature. Because the feedback request is essentially an email, the
­requester can be as ambiguous or as specific as he or she wants to be. In addition, one request can
be ­partitioned to ask for feedback on up to five discrete items. For example, if the Development Team
is code-complete on three scenarios within a PBI, a request could be created that contains three
items—one for each scenario the Product Owner desires feedback on.

Note  Regardless of the size and scope of the request, the stakeholders must be able to
­access physically the application and feature(s) in question, and they must have the time
and know-how to do it. This should be considered as the feedback request is created.

When creating the feedback request, one or more stakeholders must be selected. These users
must have an email address associated with their user name. Users without email addresses won’t be
sent a request. The stakeholders should also be told how to access the application in question. An
address and instructions can be provided for a web application, (rich) client application, or a remote
machine. Finally, the item(s) to be evaluated and any related notes are added to the request.
Figure 8-18 shows a feedback request ready to be sent to a stakeholder to evaluate the Customer
Login feature of a web application.

FIGURE 8-18  Creating a request for feedback on the Customer Login feature.

	 CHAPTER 8  Effective Collaboration	 263

Tip  Consider previewing the request before sending it. It will show what the email that the
stakeholder(s) receive will look like and allow you to customize it. It will also show the email
addresses rather than the user names, so you can see if there are any discrepancies, such as
wrong or missing email addresses associated with the user names. For example, if you add a
stakeholder by user name and that user doesn’t have an email address associated with his or
her account, you will receive an error message like this: TF400596: Cannot find email
addresses for the following recipient(s): ‘Chuck’. If this occurs, you can just add the email
address manually and continue with the request. However, you should ask the stakeholder to
update his or her profile and provide a valid email address to avoid this error in the future.

As the feedback requester, you will receive a copy of the email submission automatically when you
send it. You can also add other email addresses in the To box when previewing the email. Figure 8-19
shows a sample email requesting feedback. If an administrator has not granted permissions to the
accounts of those stakeholders that you add, they will not be able to provide feedback through the
Feedback client.

FIGURE 8-19  A sample email sent to a stakeholder requesting feedback.

Providing feedback
When the stakeholder receives the request, he or she should first make sure that the Feedback client
is installed. If this is the first time providing feedback, it will need to be installed. The email contains
a hyperlink to download it, if necessary. Next, the stakeholder starts the feedback session by clicking
the large hyperlink in the email, or copying and pasting the supplemental URL into the web browser.

264	 PART II  Using Scrum

As the stakeholder reviews the new feature, he or she is able to perform the following tasks using
the Feedback client:

■■ Record video of the interaction with the application.

■■ Record voice comments.

■■ Capture a screenshot.

■■ Annotate a screenshot using a program such as Microsoft Paint.

■■ Type comments.

■■ Attach a file.

■■ Rate each item of feedback on a scale of 1–5 stars.

On the Provide page of the Feedback client, one or more items appear for the user to provide
feedback. For each item, he or she can get context on what’s being asked and then provide free-form
feedback through any of the aforementioned methods of input. Figure 8-20 shows the various
recording options. If there are multiple items, clicking Next will advance to the next item for which to
provide feedback. Recordings appear as images within the Feedback client’s text box.

FIGURE 8-20  The Feedback client provides many ways to record and attach your feedback.

By annotating screenshots, the reviewer can indicate corrections or improvements by adding text
or images to the screenshot that was captured. By default, Paint opens automatically when the user
opens a screenshot image that was captured within the Feedback client. Another annotation tool,
such as Paint.NET or Snagit, can be configured instead by clicking on the cog icon at the top of the

	 CHAPTER 8  Effective Collaboration	 265

feedback tool, as shown in Figure 8-21. After feedback has been provided for each item, the user can
review, make corrections or additions, and then submit the feedback to the requesting user via TFS.

FIGURE 8-21  Click the cog icon to configure your annotation tool.

Tip  Be careful when recording sensitive data, such as user names, passwords, account
numbers, etc. If the recording is going, everything will be captured. If you do record
sensitive data, you can delete the recording by deleting its representative image in the text
box and then record it again.

In order for stakeholders to be able to provide feedback, an administrator must grant them
­specific permissions in TFS. They can either be added to the Limited license group in Team Web
Access or a custom group with specific permissions. The Limited group is provided specifically to
support access to TFS for users who do not need a CAL. If the stakeholders have a CAL and you are
not going to use the Limited group, then make sure to grant the minimum permissions required,
which are project-level permissions to create and view test runs and view project-level information, as
well as area path permissions to view and edit work items in the respective nodes.

Regardless of which permissions approach you take, you should try to group the feedback
stakeholders together in their own Windows group. Because providing feedback is probably the only
way that they will interact with TFS, keeping them grouped together will simplify management and
allow the Scrum Team to know exactly who their feedback stakeholders are.

Feedback requests generate a Feedback Request work item assigned to the creator of the request. The
Description field contains the body of the email that was sent. Feedback Response work items are created
to hold the feedback provided by the stakeholder using the tool. Remember that both Feedback Request
and Feedback Response work item types are designated as Hidden types. This means that they cannot be
created directly from Visual Studio or Team Web Access. Instead, they are created using the appropriate
tool, such as the Request Feedback link and Feedback client respectively.

Smell  It’s a smell when the Development Team solicits stakeholder feedback directly.
Gathering feedback from stakeholders is the responsibility of the Product Owner, not the
Development Team. If the developers want to seek feedback from stakeholders or other
domain experts, they should do it with the blessing of the Product Owner. If necessary, the
Scrum Master can help facilitate this. Visual Studio, however, doesn’t know about the rules
of Scrum, and it allows anyone to request or provide feedback. If the Feedback client is
being used inconsistently with the rules of Scrum, the Scrum Team should discuss it during
the next Sprint Retrospective meeting and adapt accordingly.

266	 PART II  Using Scrum

Tailspin Toys case study  The Development Team does not use this feature, but Paula
(the Product Owner) does. She will sometimes send a request for feedback to a stakeholder
in a remote office, along with a link to the test website. Andy (the TFS administrator) will
add any new stakeholders to the Limited license group in Team Web Access so that they
have adequate permissions.

Voluntary feedback
Another way to use the Feedback client to provide feedback is for a stakeholder to start it directly. It
can be found on the Start menu under Visual Studio 2012. If it’s missing, it can be downloaded from
Microsoft.

When started, the client will be in voluntary feedback mode. There won’t be any associated request
or instructions, as you can see in Figure 8-22. Hopefully, the stakeholder will already know what
application to start, what features or scenarios to evaluate and provide feedback on, and what team
project to submit the feedback response to.

FIGURE 8-22  Feedback client running in voluntary feedback mode.

	 CHAPTER 8  Effective Collaboration	 267

Feedback that has been submitted voluntarily like this can be found in TFS by running the
Feedback shared query. This query returns work items that are in the Microsoft.FeedbackResponse
Category work item type category. In the Visual Studio Scrum process template, this would only
include Feedback Response work items.

When viewing a Feedback Response work item, you will see many of the standard fields, such as
title, created by, state, rating, area, and iteration. The more interesting data will be in the Notes field,
as it contains the comments typed by the stakeholder and any references to audio, video, screenshots,
or attached files. There won’t be any linked stories (PBIs), but the developer can add them as needed.
Be aware that any files attached in the Feedback client will appear as Result Attachments links on the
All Links tab and not as true work item attachments.

Note  Currently, the Feedback client doesn’t capture and persist system information. It was
available during the beta version of Visual Studio 2012, but it was later removed. Microsoft
is considering enabling it in a future update, along with the ability to disable it selectively
for organizations that are sensitive to this kind of data being collected.

Tailspin Toys case study  During the Sprint, completed features are deployed to a
­dedicated acceptance testing environment where the Scrum Team (as well as stakeholders)
can use the system and provide feedback. Once Paula’s remote stakeholders know how
to use the Feedback client, they may drop in on the deployed website periodically and
provide feedback. The Development Team has created an email alert that watches for new
Feedback Response work items being created to let everyone know when an unsolicited,
voluntarily provided piece of feedback arrives.

Code reviews
As we discussed earlier in this chapter, code reviews and pair programming are two ways that
developers can collaborate to help assure higher code quality. These practices also reduce the risk of
creating bugs, technical debt, and gold plating. Visual Studio Premium and Ultimate edition users can
use Visual Studio to facilitate code reviews.

Smell  It’s a smell when I see a collocated Development Team using tools to facilitate
code reviews. They should be able to practice these reviews in person. Excuses are usually
to the effect of “But the developers are busy right now” or “It would be rude to interrupt
them.” It’s obvious that they want to use the asynchronous behavior that the tool provides.
I understand that there’s a cost to interruptions, and that instant messaging (IM) and Short
Message Service (SMS) texts are good for quick questions. Code reviews are not quick
interruptions. They require a full stop and context shift in order for the review to have
everyone’s full attention. As I’ve mentioned several times in this chapter, conversations

268	 PART II  Using Scrum

that take place face to face are more efficient, reduce ambiguity and misunderstanding,
and provide more value than anything facilitated by a tool.

Tip  Fellow Professional Scrum Developer Jose Luis Soria Teruel sometimes uses the Code
Review tool to ask people outside the Development Team to review the code. It’s useful
to get the opinion of someone not working directly on the code, especially where new
technologies are concerned. The Code Review tool provides the opportunity to involve an
expert in the matter being reviewed.

From the My Work page, you can request a code review of work that currently has a state of
In Progress or that has been suspended. You can also request a code review on a shelveset or
changeset. Code reviews can be requested from various other pages and menus as well. Let’s focus
on the scenario where we want another developer to review some code that is currently In Progress.
­Assuming that there are pending changes on one or more files, the coder will click the Request
Review link from the My Work page. Next, he or she selects one or more reviewers to send the
request to. He or she can specify a friendly name for the code review, the area path, and a helpful
comment, as shown in Figure 8-23. Unlike sending a request for feedback, this feature just assigns
work items to the other TFS users. No email is sent.

FIGURE 8-23  Creating a new code review request for two other developers.

	 CHAPTER 8  Effective Collaboration	 269

Tip  Each code review recipient must have access to the files in TFS. In other words, if some
files are off limits to a particular developer, don’t ask her to review your changes to those
files. She won’t get very far. Also, it is possible to add yourself as a reviewer. Microsoft
enabled this particular workflow so that you could add comments on your own code to
explain the context before the review is sent to others. When those reviewers receive the
code review request, they can read your comments first to obtain context and understanding.

When the request is submitted, a Code Review Request work item is created and assigned to the
requester. In addition, one or more Code Review Response work items are created and assigned
to the individual developers being asked to review the code. All of these work items are in the
Requested state. Code Review Request and Code Review Response work item types are designated
as Hidden types. This means that they cannot be created directly from Visual Studio or Team Web
Access. Instead, they are created and managed using the appropriate tooling in Team Explorer. While
you can query and open one of these work item types in Team Explorer or Team Web Access, the data
in the form is read only.

The prospective reviewers will see the incoming request in the Code Reviews & Requests section
of their My Work window. You can see an example of this in Figure 8-24. A number in parentheses
shows, at a glance, how many code reviews are being displayed in the view. This is a quick way to
see if any code reviews need your attention. There are several available views that can be selected to
show code reviews in different ways. If you are curious, you can click the Open Query link to see the
work item query (WIQ) behind any of the views.

Here is a list of the built-in views:

■■ Incoming Requests Shows active code reviews in which you are a reviewer.

■■ Outgoing Requests Shows active code reviews that you have requested.

■■ Incoming & Outgoing Shows both incoming and outgoing code reviews. This is the default
view.

■■ Recently Finished Shows code reviews that have been completed in the last seven days.

FIGURE 8-24  My Work page showing an incoming code review request.

270	 PART II  Using Scrum

When a request appears, the prospective code reviewer should open it to learn more. This opens
the Code Review page in Team Explorer, as you can see in Figure 8-25. On this page, the reviewer can
accept or decline the request by clicking the respective link towards the top. If the developer chooses
to decline the request, he or she can provide a reason for declining the request.

FIGURE 8-25  Opening a code review request in Team Explorer.

Reviewing code within Visual Studio consists of performing one or more of the following activities:

■■ View the associated shelveset or changeset that contains the code.

■■ Open and review the associated Task work items.

■■ Add additional reviewers or remove current reviewers.

■■ Add overall comments.

■■ Comment on another’s overall comment.

■■ Review the individual files and add inline comments (as shown in Figure 8-26).

■■ Check the boxes next to each file to ensure everything is reviewed.

■■ Finish the review.

	 CHAPTER 8  Effective Collaboration	 271

FIGURE 8-26  Adding two separate comments about the CustomerLogin table.

Once the reviewer is done with the review, he or she can complete and send it with an overall
opinion. The opinion choices are Looks Good, With Comments, or Needs Work. At this point, the
work item will be closed and the person named in the Assigned-To field will be removed. At any time,
the code review requester can expand the outbound request in his or her My Work page and see if
the prospective reviewers have accepted, declined, ignored, or finished the request. The requester can
also complete the code review as a whole at any time by closing it or abandoning it.

Tailspin Toys case study  The Development Team has been performing code reviews
and pair programming for some time now. They don’t make either practice mandatory,
but let the individual developers decide which will serve them best. They rarely use the
code review features in Visual Studio, opting for in-person reviews instead. Occasionally,
however, they have used this tooling when team members are on the road or otherwise
working remotely.

Chapter burndown

Here are the key concepts we covered in this chapter:

■■ Collaboration is key Software development is a team sport. The Scrum Team needs to
communicate with each other, as well as stakeholders, effectively.

■■ Active listening Communication techniques that enable better, more effective dialogue.

■■ Collocated teams Development Teams working in close proximity are more productive
and generate more business value than teams that are geographically distributed. Large,
open-space team rooms can be particularly effective.

■■ Meet effectively Scrum has all the built-in events (meetings) that a Development Team
needs. Limit attendance to other meetings, or send the Scrum Master instead.

■■ Limit interruptions Turn off or otherwise neutralize cell phones, email clients, and IM/chat
clients. Limit Internet searches and attending non-essential meetings.

272	 PART II  Using Scrum

■■ Collective code ownership The entire Development Team owns every aspect of the code.
Everyone can read, check out, or check in code for any assembly, namespace, or class. TFS will
effectively track all changes made.

■■ Comments When commenting code, be sure to explain your actions to others, assuming the
code and/or check-in comments can’t do it for you.

■■ Code reviews Practice these in person, or consider pair programming as an alternative.
Developers should be open to giving and receiving criticism. Use the code review features in
Visual Studio only when in-person reviews are not possible.

■■ Continuous integration Merging is painful, so do it more often so it hurts less. Stay in touch
with your builds, especially when they fail. Get them healthy again as soon as possible.

■■ Builds check-in policy This check-in policy requires that the last build was successful for
each affected CI build definition.

■■ Build Notification tool Configure and use this to receive alerts from TFS in your notification
area (system tray) when a build queues, starts, or completes.

■■ Gated check-in build Use this on production code to ensure that the codeline stays healthy.
CI is a better practice for the active development codeline.

■■ Email alerts TFS can be configured to send individuals or the entire team an email when
something interesting happens, like a build breaking.

■■ My Work A page in Team Explorer that enables a developer to see and manage their current,
in-progress work. The page is available to Visual Studio 2012 Ultimate or Premium users. Work
can be suspended and resumed as other priorities crop up.

■■ PowerPoint storyboards Mockups and illustrations can be created in a familiar environment
and shared with remote stakeholders to obtain their feedback.

■■ Feedback client A freely downloadable, lightweight tool that enables desktop video, audio,
screenshots, and notes to be recorded as a stakeholder evaluates a piece of software. This
feedback can be requested, or it can be offered voluntarily, without solicitation.

Index

	 341

Symbols and Numbers
.NET frameworks, 222–223
4 Ls activity, 26
5 Why’s technique, 26

A
Acceptance criteria

acceptance tests vs., 224
adding, 150
as definition of successful PBIs, 198–200
confirmation of, 30–31
definition of, 225
Definition of “Done” and, 36
expected results and, 143
fields, 69, 72, 75
specifying, 150–151

Acceptance test-driven development (ATDD)
benefits of, 204
overview, 197
workflow, 202–204
workflow diagram, 204

Acceptance tests
acceptance criteria vs., 224
associating, with Test Cases, 210–212
automated, 203, 206–210
defining, 76
executing, 214–217
failing, 202, 204–205, 209
function of, 201
manual, 206, 210, 221
running, 216–217
sad path, 202–203
specifications and, 201

Acceptance, concept of, 224–225

Active listening, 229–230
Activity field, 75, 178–179
Adaptation, 296–298, 326
Agents

build, 99, 124
for Visual Studio 2012, 53–54

Agile estimation, 153, 168
Agile Manifesto, 3, 227–228
Agile templates, 59
Albrecht, Chad, 279, 283, 287, 303
Alerts

email, 228, 235, 250–252, 261–263
team, 251–252

All Iterations query, 254
Allocation of work, 175
ALM. See Application lifecycle management

(ALM)
Anchoring of estimates, 154
Annotation tools, 264
Application lifecycle management (ALM)

definition of, 41
Development Teams and, 43–44
tools for enabling, 41–42, 45–46

Architectural validation, 49
Architecture Explorer feature, 49
Artifacts. See also Increments; also Product Backlogs;

also Sprint Backlogs; also Specific types of
artifacts (e.g. work items, source control,
automated builds and tests)

Scrum, 27–28, 334
storage of, 45, 52

Assessment
of progress, 280–284
Scrum.org, 320–321

Assigned To field, 176, 183, 190, 192, 196
Attachments, 86, 267

342

Backlog management feature

B
Backlog management feature, 47
Backlog Overview reports, 62, 64, 83–84, 89,

118–119, 217
Backlog pages, 128–129

customization, 158–160
Product, 128–129, 139
Sprint, 170–172, 178–179

Backlog Priority field
changes to, 64
entering numbers in, 68, 72, 75
hidden, 62, 65
limiting, 317–318
ordering Product Backlog using, 148
parent-child hierarchy and, 135
sorting in, 131
viewing values in, 157

Backlogs. See Product Backlogs; Sprint Backlogs
Behavior frameworks, 222
Blocked tasks, 74, 76, 182, 276
Board page. See Task boards
Bradley, Charles, 275, 291–292, 297, 310
Branch builds, 114
Branching, 110–111
Buddy builds, 114
Bug triage, 140–141
Bug work items

customization, 86–87
forecasting, 170–172
in Team Foundation Server, 127
in-Sprint, 146, 274
Out-of-Sprint, 146–147, 274
overview, 70–73
reactivation of, 147
reporting, 140–147
validating, 140–141

Bugs, software
handling, 145, 274–275
sources of, 144–145

Build agents, 99, 124
Build controllers, 99
Build machines, 99–100
Build Notifications tool, 247–249, 252, 272
Build numbers, 142, 215–216
Build Success Over Time reports, 85
Build Summary reports, 85
Builds

automated, 98, 113–115, 244
hosted, 53

monitoring, 250–252
property, 215
types of, 113–114

Bulk edits, 139–140, 148, 171–172
Burndown charts, 13, 34, 167, 187, 280–284
Burn-ups, 283
Business value, 43, 68, 140, 338

C
Cancellation of Sprints, 16, 285–286, 330–331
Capability Maturity Model Integration (CMMI)

templates. See CMMI (Capability Maturity
Model Integration) templates

Capacity planning, 178, 300, 331
Car Speeding Toward Abyss activity, 26
Cards, user story, 30
Certification, 297, 320–321
Changes

implementing, 8, 24
team member, 8
tracking, 238–239

Changesets, 108, 241, 268, 270
Check-in builds

continuous integration (CI), 98, 114–115, 215,
245–250

gated, 114, 249–250, 272
limiting, 246–247
policy, 114, 246–247, 272

Child-linked tasks, 135–136, 184–185
Circles and Soup technique, 26
Cloning, test suite, 219–221
CMMI (Capability Maturity Model Integration)

templates, 59, 140
Coaches

developers as, 301
Scrum, 313–314
Scrum Masters as, 11–12, 308, 329

Code clone analysis, 48, 98
Code First API Library, Scaffolding & Guidance for

Coded UI Tests, 212–213
Code metrics, 48
Code ownership, 238–241
Code Review Requests, 63, 80–81, 269
Code Review Response, 63, 80–81, 269
Code reviews, 267–271

built-in views for, 269
definition of, 49
developers and, 241–243

	 343

	 Development Teams

opening, 270
requesting, 268
shelvesets in, 253

Code Reviews and Request feature, 268–271
CodedUI CodeFirst, 212–213
Collaboration

best practices for creating, 237
bug handling using, 274
challenges to, 300–301
group development model in, 227
HARD communication in, 198, 229
importance of, 228–229
informal meetings as part of, 230
productive, 234–235
tools for enabling, 244

Collocation, 230–233
Columns, backlog, 158–160
Command-and-control practices, 11, 34, 302,

304, 316
Comments

in code, 240–241
in source code, 240–241
link, 220
on code reviews, 269

Commitment, to Sprint Goal, 18–19
Communication. See Collaboration; Collocation;

Conversations
Complete builds, 114
Conchango, 61
Concrete class, 3
Configurations property, 215
Confirmation, user story, 30
Consensus, 17, 176, 199, 227
Continuous delivery (CD) of value, 43
Continuous integration (CI) builds, 98, 114–115,

215, 245–246
Contracts, fixed-price, 292–294
Conversations

importance of, 198
individual, value of, 227
user story, 30

Copying
test suites, 218–219
undone work, 289–291
undone work items, 289–291

Creating
Product Backlogs, 127–128
Sprint Backlogs, 170
storyboards, 258–260
tasks, 175–176

team projects, 103–104
Test Cases, 76–78, 206–210

Cromwell, Ryan, 209
Cross-functionality, 8, 33, 39, 314–315
Cumulative Flow Diagrams, 317–318
Current Iterations query, 254
Customization

of backlog columns, 158–160
bug work items, 86–87
process templates, 86–88
of quick add panel, 132–134
(Sprint) Backlog page, 178–179

D
Daily Scrum, 20–21, 169, 179–182, 332–333

duration of, 20
Product Owners and, 21
Scrum Masters and, 333
stakeholders and, 13
whiteboards, use of, in, 21–22

Daily standup. See Daily Scrum
Debug builds, 114
Decomposition

Product Backlog item, 286
task, 74, 135–136, 176–177, 183–185, 196, 286

Deep copies, 218
Definition of “Done,” 5, 36, 287, 295–296, 337

transparency and, 117
Velocity and, 162–164

Dependency graphs, 49
Dependency validation, 63
Description field, 201
Desirements, 200, 225
Developers

as coaches, 301
attributes of professional, 37–38
definition of, 1
feedback for, 115
pair programming by, 243
role of, 6–9
training for, 297, 320
viewing tasks of, 188–190

Development Teams
allocation of work on, 175
application lifecycle management (ALM) and,

43–44
capacity planning for, 178
challenges facing, 273–294, 298–301

344

DevOps

Development Teams (continued)
characteristics of, 328
collaboration outside, 198
cross-functionality of, 8, 33, 39, 314–315
Definition of “Done” and, 36
dysfunctional behavior on, 294–301
estimation and, 152, 336
group development model and, 227, 315
high-performance, 321–322
members of, 1
performance measurement of, 301
Product Backlogs and, 29
Product Owners and, 10, 22, 302–305
responsibilities of, 5, 7–8, 20
role of, 6–9, 328
Scrum Masters and, 12, 307–310, 329
Scrum rules and, 310–313
self-organization in, 315–316, 328
size of, 7–9, 328
Sprint Backlog and, 33–34
stakeholders and, 14, 305–307

DevOps, 43
Distributed Version Control Systems (DVCS), 113
Done state, 64–65, 108–109, 119, 193, 255
Done, Definition of. See Definition of “Done”
Drag-and-drop feature, 65, 156–158, 171, 184,

193–194
DVCS (Distributed Version Control Systems), 113
Dysfunctional behaviors, common, 294–310

E
Eclipse, 52, 54, 98
Effort field, 119, 155
Email alerts, 228, 235, 250–252, 261–263
EMC, 61
Emergent architecture, 292, 311
Emotional seismograph activity, 25
Empiricism, 297, 326, 336
Epic field, 86
Epics, 134–137, 167, 184–185
Estimation

Agile, 153, 168
anchoring, 154
Development Teams and, 152, 336
Effort field and, 155
of items in Product Backlog, 152–155, 277–280
of time, 175
of unknown entities, 291–292

project, 162
remaining work, 195
task, 20, 34
translation of story points and, 278

Events, Scrum, 4–6, 330
Evil path scenarios, 200
Excel, Microsoft, 129, 137–139, 148
Executable specifications

definition of, 225
importance of, 221–222
overview, 201–204

Experiments, 291–292
Exploratory testing, 47
Express editions (Visual Studio 2012), 50–51
Expression Studio Ultimate, 259

F
F5 builds, 114
Fakes framework, 50, 210
FBI Sentinel Project, 273
Feature creep. See Scope creep
Feature-drive release plans, 161
Features, 200–201, 208
FeatureToggle, 289
Feature toggles, 287–289
Feedback

for developers, 115
for Development Teams, 236–237
from Product Owners, 236
from stakeholders, 236, 257–267
gathering, 257–260
managing, 48
permissions for, 265
providing, 259, 263–266
requesting, 261–263
voluntary, 266–267

Feedback client tool, 48, 63, 80, 261–267, 272
Feedback Request, 63, 80–81, 265
Feedback Response, 63, 80–81, 261, 265
Feedback Response work item, 267
Files

attachment, 86, 267
working with, 244–245

FIRO-B, 299
Fishbowl activity, 26
FitNesse, 222
Fixed-budget contracts, 293
Fixed-price contracts, 292–294, 323

	 345

	 Local builds

Fixed-scope contracts, 293
Flow, getting into the, 227, 234, 303
Folders, 81, 109–111
Forecasting, 17–19, 165–166, 170–172, 304, 336
Forming stage of development, 227
Found in Build field, 142
Fowler, Martin, 296
Fraile, Luis, 282
Framework for Integrated Fitness (FIT), 222
Frameworks, 222–223
Full builds, 114

G
Gartner Magic Quadrant, 45
Gated check-in builds, 114, 249–250, 272
GE Medical, 338
Git, 113
Given-When-Then (GWT) format, 87, 202
Gold plating, 36, 143, 242, 275, 312
Graphs. See also Reports

dependency, 49
Grooming

definition of, 168, 335
estimation and, 277
Product Backlog, 5, 7, 27, 31, 149–150, 152
scenarios and, 200
undone work, 323

Group development model, 227, 315

H
Happiness Metric activity, 26
Happy path scenarios, 200
HARD communication, 198, 229
Haugen, N. C., 154
Hidden work item types, 80–81, 265, 269
Hierarchy in backlogs, 174, 184–185
Highlighting tasks by person feature, 188–190
Hours, tracking, 34, 74, 119, 279

I
Iceberg, Product Backlog, concept of, 31, 152
Icons, 111, 264
IDX, 338
Images, use of, 142
Impediments, 62, 78–80, 180–182, 275–277

In Progress (task state), 64, 76, 193, 254–255, 268.
See also Work in progress

Incremental builds, 114
Increments, 6, 16, 35, 44, 287, 328, 337
Individual, Inc., 338
Initial blocking tasks, 176
Inspection, 15, 296–298, 326
In-Sprint bugs, 146, 274
Integrated in Build field, 142
Integration builds, 114
Integration Platform, 140
Intellitrace, 49
Interruptions

handling, 255–256
limiting, 234–235
Scrum Masters and, 12–13, 308

INVEST mnemonic, 30–31, 151, 302
Ishikawa (Fishbone) diagram, 26
Iteration paths

manual change of, 82–83
setting, 170

Iteration property, 215

J
join.me, 244, 253

K
Kanban, 106, 317–318

L
Lab Management, Microsoft, 41, 48, 53, 95, 100–102
Label builds, 114
Labels, 112
Lao Tzu, 11–12
Law of large numbers (LLN), 162
Layer diagrams, 49, 98
Licenses, 55, 261
Licenses, Team Web Access, 129–130
Limited license group, 129, 265
Link types, 65, 69, 72, 119, 208
Linking

scenarios, 207
storyboards, 64, 70, 73, 260
Test Cases, 69, 72

Links tab, 220
Local builds, 114

346

Machine.Specifications (MSpec)

M
Machine.Specifications (MSpec), 223
Macros, 252

team-based, 83
Mad, Sad, Glad activity, 26
Magic Quadrant, 45
Mainline builds, 114
Martin, Chris, 337
McKenna, Jeff, 337, 252
Measurement

performance, 301
Sprint Backlog, 34
task, 20

Meetings
duration of, 17, 22, 24
effective, 233–234
face-to-face, 230–233

Merging files, 244
Michaelis, Mark, 83
Microsoft Developer Network (MSDN) subscriptions,

54–55
Microsoft Excel, 129, 137–139, 148
Microsoft fakes, 50, 210
Microsoft Lab Management, 41, 48, 53, 95, 100–102
Microsoft Paint, 264
Microsoft Sharepoint. See Sharepoint, Microsoft
Microsoft Solutions Framework (MSF), 59
Microsoft Test Manager (MTM), 41, 47, 77, 214,

219, 225
Microsoft Visual Studio 2010, 46
Microsoft Visual Studio 2010 Express, 50
Microsoft Visual Studio 2012. See Visual Studio 2012
Microsoft Visual Studio Scrum 2.0. See Visual

Studio Scrum 2.0
Microsoft Visual Studio Team Explorer Everywhere

2012, 54
Microsoft Visual Studio Team System (VSTS), 41
Molokken-Ostvold, K., 154
Moving undone work items, 289–291
MSDN (Microsoft Developer Network)

subscriptions, 54–55
MSF (Microsoft Solutions Framework), 59
MSpec (Machine.Specifications), 223
MTM, 41, 47, 77, 214, 219, 225
Multiple check-out feature, 245
My Work feature, 49, 254–256, 268–269
MyShapes, 260

N
Name property, 215
Naming, 211
NBehave, 222
Negotiable value, 151, 162
Nightly builds, 114
Norming stage of development, 227
NSpec, 223
NuGet, 213, 289

O
Offices, open-plan, 232
Open Impediments query, 181
Opinions, code review, 271
Out-of-Sprint bugs, 146–147, 274
Ownership

code, 238–241
task, 183, 192–193, 196
tracking, 238–240

P
Page objects, 212–213
Paint, Microsoft, 264
Pair programming, 243, 267
Parent-child hierarchy, creating, 135–136
Parking lots, use of, 21
Partial builds, 114
Partially succeeded builds, 114
Perfection Game technique, 26
Performance, 283, 301
Performing stage of development, 227
Permissions

stakeholder feedback, 265
Team Foundation Server, 121–122
Team Web Access, 129–130

Planning. See Sprint Planning
Planning Poker, 153–155
Plans

considerations while creating, 177
high-level, 19–20
release, 160–161
Scrum Retrospective, 24
work item implementation, 174–176

Potentially releasable, concept of, 35, 287, 295

	 347

	 Reactivation

PowerPoint Storyboarding, 48, 257–260, 272
Predictability, 326
Premium edition (Visual Studio 2012), 46,

48–50, 55–56
Prioritization, 31–32, 156–158, 317–318, 335.

See also Backlog Priority field
Private builds, 114
Problem tree diagram technique, 26
Problem-solving behavior, 298
Process Editor, 60–61
Process templates

changes made to, 65–67
customizations, 86–88
definition of, 58–59
downloading, 59–61
elements in, 58–59
history of Visual Studio Scrum, 57
modifying, 88
MSF, 59
new features of, 63–65
Process Editor, 59–61
task boards and, 194
work item types in, 62

Product Backlog items (PBIs), 28–29, 67–70
attributes of, 335
creating, 127–128
decomposing, 134–137
estimation and, 280
features and scenarios in, 200–201
forecasting, 17, 170–172
importing, 137–140
prioritizing, 31–32, 156–158
renaming, 136
responsibility for, 127
Sprint cancellation and, 285
states of, 70, 150
types of, 28
unfinished, 286–287
value in, 128
Velocity and, 8–9

Product Backlogs, 27–32, 335–336
acceptance criteria in, 150–151
best practices for, 147–148
concept of iceberg structure, 152
creating, 127–128
definition of, 127
grooming, 5, 7, 27, 149–150, 152, 168, 335
iceberg concept of, 31
item estimation in, 152–155
Kanban and, 317–318

managing, 128–129
ordering, 156–158
prioritizing, 335
purpose of, 4
removing work items from, 132
responsibility for, 10

Product Owners, 9–11
attributes of successful, 302
common dysfunctions of, 302–305
Daily Scrum and, 21
Definition of “Done” and, 5
Development Teams and, 10, 22, 302–305
feedback, 236–237
Product Backlog and, 4, 29, 127–128
responsibilities of, 32, 302–305, 327–328
role of, 9–11, 327–328
scope negotiation and, 284–285
Scrum Masters and, 329
Sprint cancellation and, 285–286

Product value, 10
Productivity

email alerts and, 235
ways to increase, 234–235

Professional edition (Visual Studio 2012), 46–47, 55
Professional Scrum Developer tool, 321
Professional Scrum Developers (PSD)

program, 297
Professional Scrum Master tool, 320
Professional Scrum Product Owner tool, 321
Profiling, advanced, 47
Progress

assessment of, 280–284
monitoring, 336
warning signs of poor, 281–284

Project portals, 51, 115–117, 125, 173
Promiscuous pairings, 243
Properties, test plan, 215

Q
Quality control, 43, 98
Queries, 62, 81–82, 181, 254
Queued builds, 114
Quick add panel, 130–132, 157, 167

R
Ratholes, 241
Reactivation

348

Regression tests

Reactivation, (Continued)
bug work item, 147
task, 283

Regression tests, 217–218, 225
Reindl, Simon

on creating plans, 176
on evaluating Development Team

improvement, 297
ion impediments, 182
on forgiveness, 228
on need for face-to-face meetings, 230
on Product Backlog grooming, 149
on using custom queries, 138

Release builds, 114
Release Burndown reports, 62, 84, 166–168
Release planning, 156, 160–161, 168
Release plans, 160–161
Remaining work field, 193, 195
Remember the Future activity, 26
Remote access, 257
Removed state, 70, 73, 76, 150, 193–194
Removing

Activity field, 178–179
work items, 132

Reports, 83–86
Backlog Overview, 62, 64, 83–84, 89,

118–119, 217
bug work item, 140–144
engineering, 85–86
Release Burndown, 62, 84, 166–168
Team Explorer, 118–120
Team Foundation Server, 118–121, 163
Team Web Access, 120
Test Case Readiness, 85–86
Test Plan Progress, 86
using, 283
Velocity, 84, 168
Visual Studio Scrum 2.0, 62

Request Feedback link, 261
Requested By field, 252
Requested For field, 252
Requests, 63, 80–81, 269
Requirement test suites, 214
Requirements, 132

software, 4, 28–29
work item category, 62, 65. See also

 Acceptance criteria
Result Attachments, 267
Resumption of in-progress work, 255–256

Retirement, application, 42
Risk, control of, 294, 326
Roberts, Jason, 289
Roles

in testing, 214
Scrum, 6–14, 327–329. See also Development

Teams; also Product Owners; also Scrum
Masters

S
Sad path acceptance tests, 202–203
Sad path scenarios, 200, 203
Scaffolding, test case, 212–213
Scenarios

acceptance tests for, 202–203
definition of, 200
grooming and, 200
linking, 207
rewording, 202–203
types of, 200

Scheduling, 16
Schwaber, Ken, 4, 15, 228, 273, 312, 320, 325,

337–338
Scope

controlling, 161–162
renegotiation of, 284–285, 323
variable, 293

Scope creep, 151–152, 162, 282–283, 303
Screenshots as feedback tool, 264
Scrum

application lifecycle management (ALM) and,
41–46

certification in, 320–321
checklist for “doing,” 321–322
coaches, 313–314
compromises in using, 312–313
definition of, 3, 325
developer training, 320–322
dysfunctional behaviors found with,

294–298
events, 14–27, 330
framework, 4–6, 325
improving the practice of, 296–297, 313
preparation for, 93–94
rules of, 310
theory of, 326
waterfall practices to avoid in, 310–312

Scrum Guide 3–4, 37

	 349

	 Sprint Review

Scrum Masters
as coaches, 11–12, 308, 329
attributes of successful, 307–308
common dysfunctions of, 307–310
Daily Scrum and, 333
Development Teams and, 12, 307–310, 329
Impediments and, 181, 276
responsibilities of, 328–329
role of, 11–13, 310, 328–329

Scrum Open, 320
Scrum Teams

benefits of Visual Studio 2012 for,
45–46

improving, 313–318
roles on, 6–14, 327–329
self-organization in, 315–316

Scrum.org, 4, 117, 320–321
ScrumButs, 312–313
SCVMM, 101–102
Security groups, 121–122
Self-organization, 315–316, 328
Servant leaders, 11
Severity field, 72, 140
Shallow copies, 218
Shapes, custom, 260
Shared queries, 81–82
Shared Steps, 62, 67, 77, 80, 219
Sharepoint, Microsoft

capturing Sprint Goals in, 173–174, 196
increasing transparency using, 125, 148
project portals in, 51, 115–117
storing Definition of “Done” in, 117
storyboards in, 258–259

Shelvesets, 114, 249, 253, 256
Shelving, 253
Single-piece flow, practice of, 283, 287, 317
Size of Development Teams, 7–9, 328
Sketchflow, 259
Smith, Mike, 337
SMTP settings, 251
Snapshots, in testing, 102
Software development

agile practices in, 3, 29, 43–44
continuous delivery value in, 42–44
risks in, 37–38
waterfall practices in, 310–312

Software in 30 Days (Schwaber and
Sutherland), 273

Soria Teruel, Jose Luis

on Acceptance Criteria field for tracking features
and scenarios, 201

on commenting code, 240
on decomposing tasks, 184
on difference between commit and forecast,

304
on estimation, 278
on priority vs. order, 32
on release burndown charts, 281
on role of Scrum Masters, 310
on storyboarding, 258
on use of Code Review tool, 267
on when to start Sprints, 16

Source code, 238–241
Source control, 51, 108–110
Spec frameworks, 222
SpecFlow, 223, 225
Spikes, 291–292, 323
Sprint Backlog items (SBIs), 6, 32, 34
Sprint Backlogs, 32–35, 336

capacity planning in, 178
creating, 170–177
customization, 178–179
definition of, 332
epics in, 184–185
forecasting, 170–172
managing, 128–129
measurement, 34
purpose of, 4–5

Sprint Burndown reports, 62, 84
Sprint Goals

achieving, 19, 332
capturing, 66, 115–117, 173–174, 196
commitment to, 18–19
definition of, 18, 331
obsolete, 285, 331

Sprint Planning
duration of, 17
inputs and outputs of, 169, 331–332
overview, 17–20, 331–332
purpose of, 4, 326

Sprint Retrospective, 24–27, 297, 334
definition of, 39
duration of, 24
publishing notes from, 115
purpose of, 6, 24–25, 326
review of bugs and failures, 144
techniques for successful, 25–26

Sprint Review, 6, 22–24, 326, 333–334

350

Sprints

Sprints
cancellation of, 16, 285–286, 330–331
definition of, 15, 169
determining current, 254
length of, 15–16, 330
monitoring progress of, 336–337
overview, 4–6, 330–331
rules of, 330
scope of, 16
selecting from Product Backlog page, 171
summary, 174
when to start, 16

Stakeholders
at Sprint Reviews, 6, 22–23
common dysfunctions of, 305–307
considerations, 13–14
Daily Scrum and, 13
Development Teams and, 14, 305–307
feedback from, 236, 257–267
feedback permissions for, 265

Standard environments, 101
Standup, daily. See Daily Scrum
Starfish activity, 26
Starr, David, 290, 337
Start Date/End Date property, 215
State fields, 172, 193–194, 290
State property, 215
Static code analysis, 47
Steps, 77
Steps To Reproduce field, 72, 142–144
Sticky notes, use of, 19, 21, 33, 115, 155
Stories

spike, 291–292
user, 23, 29–31, 68

Storming stage, of development, 227
Story points, 20, 199, 278
Storyboard Shapes Authoring tool, 259–260
Storyboards, 48, 69–70, 257–260, 272
StoryQ, 222
Stress behavior, 298
Subscriptions

email alert, 251
MSDN (Microsoft Developer Network), 54–55

Success, acceptance criteria as definition of, 199
Suspension

of in-progress work, 254–256
task, 49

Sutherland, Jeff, 4, 273, 320, 325, 337–338
Swarming, 317
System builds, 114

System Center Virtual Machine Manager (SCVMM),
101–102

System.WorkItemType field, 141
Systems development life cycle (SDLC), 41

T
T4Scaffolding, 213
Tags, 99
Task boards

accessing, 186
adding new tasks, 191
changing task states, 193–194
process templates and, 194
purpose of, 47, 185–186
setting task ownership, 192
transparency and, 316
use of, 180
viewing tasks on, 188–190

Task suspend and resume feature, 49
Task work items, 62, 73–76

adding, 191
changing states of, 193–194
in Sprint Backlog, 174–176

Tasks
blocked, 74, 76, 182, 276
creating, 175–176
decomposing, 74, 135–136, 176–177, 183–185,

196, 286
highlighting by person, 188–190
planning, 19–20
reactivation of, 283
spike, 291–292
suspending work on, 255–256
suspension of, 49
unassigned, 20, 183, 188–190, 192
viewing, by team member, 188–190
when to create, 283

Tcm.exe command, 212, 219–220
Team alerts, 251–252
Team Explorer, 76

Code Review work item types in, 80, 269–270
My Work feature, 254–256, 271
process templates in, 59
project portal settings in, 116–117
reports, 118–120
shared queries in, 81
team projects in, 103
team selection within, 122–124

	 351

	 Tracking

Test Case work items in, 129
Team Explorer Everywhere, 52, 54
Team Foundation Build, 51, 97–100, 114, 124, 244
Team Foundation Server (TMS), 51, 244–245

build definitions in, 113–115
configuring, 108–113
definition of, 56
documentation in, 115–117
Integration Platform, 140
Kanban and, 318
on-premises vs. hosted, 94–95
permissions, 121–122
process templates in, 59
reports, 118–121, 163
standard environments in, 101–102
Team Foundation Service vs., 94–95
team project collections in, 96–97
team projects in, 103–108
teams within, 122–124
Tester Power Tool, 219
tracking ownership in, 238–240

Team Foundation Server 2012 Express, 50–51
Team Foundation Service, 52–53, 56, 94–95, 318
Team project collections, 96–97, 124
Team projects

Backlog, 104–107
creating, 103–104
default groups, 121–122
naming, 107–108
security groups, 121–122
single, modifying, 88
teams within, 122–124

Team Radar activity, 26
Team rooms, 232–233, 271
Team Web Access

backlog page in, 128–129
bulk edits for, 171–172
bulk edits in, 139–140
features of, 47–48
forecasting tool in, 165–166
licensing levels in, 129–130
Product Backlog management, 128–134,

156–160
queries in, 81
reports, 120
Sprint summary, 174
Velocity charts in, 163–164, 168

Teams. See also Development Teams; also
Scrum Teams

collocated, 230, 236

common dysfunctions of, 294–298
development of, 278–279
estimation and, 277
interpersonal dynamics of, 298–301

Test Case Migrator Plus project, 140
Test Case Readiness reports, 85–86
Test case scaffolding, 212–213
Test Cases

associating automated tests with, 210–212
cloning, 219–221
copying, 219
creating, 76–78, 206–210
linking, 69, 72
reusing, 217–221
states of, 78

Test controllers, 214
Test Environment property, 215
Test Manager, 41, 47, 77, 214, 219, 225
Test Plan Progress reports, 86
Test plans, 214–216
Test Professional edition (Visual Studio 2012),

46–49, 55
Test Settings property, 215
Test suites, 214, 217–221
Test-driven development (TDD), 205–206
Tested by link type, 69, 72, 77, 119, 208
Tester Power Tool, 219
Testing Center, 215–216
Tests. See also Acceptance tests

automated, 97, 275
code coverage, 48
manual, 97
regression, 217–218, 225
UI, 48, 212
unit, 47, 205, 210

Tests link type, 69, 72, 77, 208
Tf.exe command line utility, 63, 242
TFS Integration Platform, 140
TFS Tester Power Tool, 219
The Enterprise and Scrum (Schwaber), 312
Time-boxing, 14, 291
Time-driven release plans, 161
Timeline activity, 25
To Do state, 64, 76, 193
Toggles, feature, 287–289
Torvalds, Linus, 113
Tracer bullets, 292
Tracking

changes, 238–241
estimates, 279

352

Training, developer

Tracking, (Continued)
hours, 34, 74, 119, 279
impediments, 181
ownership, 238–240

Training, developer, 297, 320–322
Translation, of story points and estimation, 278
Transparency

definition of “Done” and, 117
need for, 326
task boards and, 316

Trend lines, 34, 84, 281–282
Triage, bug, 140–141
Trunk builds, 114
Tuckman, Bruce, 227, 315
Tweaking, 235

U
UITestControl, 212
Ultimate edition (Visual Studio 2012), 46, 48–50, 56
UML diagrams, 50
Unassigned tasks, 20, 183, 188–190, 192
Undone work, 36–37, 286–291
Unit tests, 47, 205, 210
User stories, 23, 29–31, 68
User Stories Overview Report, 64, 83, 95

V
Validation

architectural, 49
dependency, 63

Value
continuous delivery of, 43
negotiable, 151, 162
product, 10

Variable scope, 293
Velocity

as performance measurement, 301
charts, 163–164, 168
Definition of “Done” and, 36, 162–164
estimation and, 162–164, 288
forecasts and, 18
Product Backlog items and, 8–9
reports, 84, 168
team composition and, 8–9
undone work in, 286

Version control, 51, 113, 147, 287

Viewing
acceptance test results, 216–217
tasks, 188–190
values, 157

Vincent, Mike, 45, 275, 304, 316
Virtual Test Lab Management, 95
Virtualization, value of, 100–102
Visual Studio 2010, 46
Visual Studio 2010 Express, 50
Visual Studio 2012

agents for, 53–54
ALM features of, 45
ALM tools in, 43
editions, 46–51
licensing, 55
overview, 44
subscription to, 54–55
Team Explorer Everywhere, 52
Team Foundation Server, 51
Team Foundation Service in, 52–53

Visual Studio Lab Management, 41, 48, 53, 95,
100–102

Visual Studio Scrum 2.0
customizations, 86–88
features removed from, 66–67
My Work page, 254–256
new features in, 62–66
process templates, 57, 86–88
queries, 62, 82
reports, 62
undone work in, 289–291
work item types, 62

Visual Studio Team Explorer Everywhere 2012, 54
Visual Studio Team System (VSTS), 41
Visualizations, 257–260, 317–318

W
Warning signs, of poor progress, 281–284
Waterfall practices, 310–312
Weasel words, dysfunctional behavior, 299–301
Web Access. See Team Web Access
Web performance and load testing feature, 49
White box tests, 98
White Elephant game, 155
Whiteboards, use of

as collaborative tool, 244, 257–258
danger in, 48
in Daily Scrum, 21–22

	 353

	 Zone

Response; also Impediments; also Product
Backlog items (PBIs); also Shared Steps;
also Task work items; also Test Cases

Work items
adding, 130–134
editing, 139–140, 171–172
importing, 137–140
removing, 132
selecting, 171
stubbing out, 176
undone, 289–291

Workspaces, local, 113

Y
You Ain’t Gonna Need It (YAGNI) principle, 282

Z
Zone, getting into the, 234–235, 303

during planning, 19
remote access to, 257
in team rooms, 232
in White Elephant game, 155

Witadmin.exe command-line utility, 88, 132
Work

allocation of, 175
taking on, 183, 196
updating remaining, 195

Work details function, 178
Work in progress

managing, 254–256, 317–318. See also My
Work feature

resumption, 255–256
suspension of, 254–256

Work item categories, 48, 62, 64–65
Work item queries, 81–83
Work item types, 62, 67–81, 88, 265, 269. See

also Bug work items; also Code Review
Requests; also Code Review Response;
also Feedback Request; also Feedback

	Cover Page
	Praise for this book Page
	Title Page
	Copyright Page

	Dedication
	Contents at a Glance Page
	Contents
	Foreword
	Introduction
	Who should read this book
	Who should not read this book
	Organization of this book
	Finding your best starting point in this book

	Conventions and features in this book
	Code samples
	Installing and using the Scrum Robot

	Acknowledgments
	Errata & book support
	We want to hear from you
	Stay in touch

	Chapter 1: Scrumdamentals
	The Scrum Guide
	Scrum in action
	Scrum roles
	Scrum events
	Scrum artifacts
	Definition of “Done”

	The professional Scrum developer
	Chapter burndown

	Chapter 8: Effective collaboration
	Individuals and interactions over processes and tools
	Listen actively
	Collocate
	Set up a team room
	Meet effectively
	Collaborate productively
	Achieve continuous feedback

	Collaborative development practices
	Collective code ownership
	Commenting in code
	Code reviews

	Collaborative development tools
	Team Foundation Server
	Continuous integration
	Gated check-in builds
	Email alerts
	Shelving
	My Work
	PowerPoint Storyboarding
	Feedback client
	Code reviews

	Chapter burndown

	Index

