




Learn Microsoft® 

Visual C#® 2010

John Paul Mueller



Copyright © 2011 by John Mueller
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any 
means without the written permission of the publisher.

ISBN: 978-0-7356-5772-4

1 2 3 4 5 6 7 8 9  LSI  6 5 4 3 2 1

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related 
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of 
this book at http://www.microsoft.com/learning/booksurvey. 

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies.  All other marks are property of 
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and 
events depicted herein are fictitious. No association with any real company, organization, product, domain name, 
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without 
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, 
nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly 
or indirectly by this book.

Acquisitions and Developmental Editor: Russell Jones

Production Editor: Teresa Elsey

Editorial Production: S4Carlisle Publishing Services

Technical Reviewer: Russ Mullen

Indexer: WordCo Indexing Services, Inc.

Cover Design: Jake Rae

Cover Composition: Karen Montgomery



This book is dedicated to our beagle, Reese—the peanut butter 
dog. She’s the guardian of the orchard, checker of the fire, and 
warmer of the lap. Her incredibly soft fur amazes and soothes 
at the same time.





 Contents at a Glance v

Contents at a Glance

Introduction xvii

Chapter 1 Getting to Know C# 1
Chapter 2 Developing a Web project 27
Chapter 3 Basic Data Manipulation techniques 57
Chapter 4 Using Collections to Store Data 89
Chapter 5 Working with XML 125
Chapter 6 accessing a Web Service 151
Chapter 7 Using the Windows presentation Foundation 179
Chapter 8 Working with Libraries 209
Chapter 9 Creating Utility applications 241
Chapter 10 Using LINQ in Web applications 265
Chapter 11 Working with Silverlight applications 295
Chapter 12 Debugging applications 325

Index 353





  vii

What do you think of this book? We want to hear from you! 
Microsoft is interested in hearing your feedback so we can continually improve our  
books and learning resources for you. To participate in a brief online survey, please visit: 

microsoft.com/learning/booksurvey

Contents

Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .xvii

Chapter 1 Getting to Know C# 1
Obtaining and Installing Visual Studio 2010 Express  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2

Downloading the Products .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2

Installing Visual C# 2010 Express   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3

Installing Visual Web Developer 2010 Express  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3

Installing Visual Studio 2010 Service Pack 1  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5

Starting Visual C# 2010 Express  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6

Creating the No-Code Web Browser  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8

Creating a New Windows Forms Application Project  .  .  .  .  .  .  .  .  .  .  .  .  . 8

Saving Your Project  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .11

Adding Windows Forms Controls  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .11

Configuring the Windows Forms Controls   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .13

Testing the Windows Forms Application  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .13

Viewing the Web Browser Code  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .14

Ending Your Session  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .16

Creating the No-Code WPF Web Browser  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .16

Starting a New WPF Application Project  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 17

Adding WPF Controls   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .19

Configuring the WPF Controls  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .19

Trying the WPF Application  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .20

Viewing the WPF Code  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .21

Creating the No Code WPF Browser Application  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .22

Setting Internet Explorer as the Default   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .22

Starting a WPF Browser Application Project  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .23



viii Contents

Creating the WPF Browser Application . . . . . . . . . . . . . . . . . . . . . . . .23

Adding WPF Browser Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

Configuring the WPF Browser Controls . . . . . . . . . . . . . . . . . . . . . . . .24

Trying the WPF Browser Application . . . . . . . . . . . . . . . . . . . . . . . . . .24

Viewing the WPF Browser Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

Get Going with C#  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26

Chapter 2 Developing a Web Project 27
Starting Visual Web Developer 2010 Express  . . . . . . . . . . . . . . . . . . . . . . . .28

Creating the No-Code Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

Starting the New Project. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Understanding the Default Site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

Viewing the Site in a Browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43

Creating the No Code Website . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45

Defining a Website Location  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45

Adding a New Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47

Adding the Page to the Site Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Trying the Site in a Browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53

Get Going with C#  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54

Chapter 3 Basic Data Manipulation Techniques 57
Understanding LINQ  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58

Creating the List Project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59

Starting the List Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

Adding the Controls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

Configuring the Controls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62

Using the Code Editor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64

Using the Double-Click Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64

Choosing an Event Directly  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66

Using the Right-Click Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66

Understanding the Code Editor Features  . . . . . . . . . . . . . . . . . . . . . .67

Writing Some Simple Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69

Testing the List Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70



 Contents ix

Tracing the List Application with the Debugger . . . . . . . . . . . . . . . . . . . . . .71

Discovering Application Functionality Through Tracing . . . . . . . . . .71

Creating a Breakpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72

Viewing Application Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73

Testing a Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75

Creating the List 2 Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77

Starting the Second List Project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77

Copying the Controls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77

Finessing the Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78

Adding the Extended Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79

Tracing Through the Extended Example . . . . . . . . . . . . . . . . . . . . . . .80

Understanding Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81

Testing Selection Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85

Get Going with C#  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88

Chapter 4 Using Collections to Store Data 89
Understanding Arrays  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90

Creating the Array Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90

Starting the Array Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91

Adding the Array Project Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . .91

Configuring the Array Project Controls . . . . . . . . . . . . . . . . . . . . . . . .92

Adding the Array Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93

Tracing Through the Array Example . . . . . . . . . . . . . . . . . . . . . . . . . . .96

Testing Looping Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97

Testing Conditional Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100

Understanding Dictionaries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101

Creating the Dictionary Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101

Starting the Dictionary Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102

Adding the Dictionary Project Controls . . . . . . . . . . . . . . . . . . . . . . .102

Configuring the Dictionary Project Controls . . . . . . . . . . . . . . . . . . .102

Adding the Dictionary Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104

Tracing Through the Dictionary Example  . . . . . . . . . . . . . . . . . . . . .106

Testing Sorting Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109

Testing Statistical Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109



x Contents

Understanding Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110

Creating the Structure Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111

Starting the Structure Project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111

Adding the Structure Project Controls . . . . . . . . . . . . . . . . . . . . . . . .111

Configuring the Structure Project Controls . . . . . . . . . . . . . . . . . . . .112

Creating a Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115

Adding the Structure Example Code  . . . . . . . . . . . . . . . . . . . . . . . . .117

Tracing Through the Structure Example  . . . . . . . . . . . . . . . . . . . . . .120

Get Going with C#  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123

Chapter 5 Working with XML 125
Understanding XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126

Combining XML and LINQ  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128

Defining the XML_LINQ Project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128

Adding and Configuring the XML_LINQ Controls . . . . . . . . . . . . . .128

Using the System.Xml.Linq Namespace . . . . . . . . . . . . . . . . . . . . . . .129

Adding the XML_LINQ Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130

Developing the XMLSave Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131

Creating the XMLSave Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131

Adding XMLSave Application Code . . . . . . . . . . . . . . . . . . . . . . . . . .132

Testing the XMLSave Application . . . . . . . . . . . . . . . . . . . . . . . . . . . .133

Viewing the XMLSave Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135

Developing the XMLRead Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136

Creating the XMLRead Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136

Adding the XMLRead Application Code  . . . . . . . . . . . . . . . . . . . . . .137

Testing the XMLRead Application . . . . . . . . . . . . . . . . . . . . . . . . . . . .138

Tracing the XMLRead Application with the Debugger . . . . . . . . . .138

Handling XML Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139

Using XML to Store Application Settings . . . . . . . . . . . . . . . . . . . . . . . . . . .143

Creating the XMLSetting Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143

Adding the XMLSetting Application Code  . . . . . . . . . . . . . . . . . . . .143

Testing the XMLSetting Application . . . . . . . . . . . . . . . . . . . . . . . . . .146

Get Going with C#  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148



 Contents xi

Chapter 6 Accessing a Web Service 151
Defining Web Services  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152

Web Services and XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153

Working with REST Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . .154

Working with SOAP Web Services  . . . . . . . . . . . . . . . . . . . . . . . . . . .156

Developing the REST Web Service Application . . . . . . . . . . . . . . . . . . . . . .157

Creating the RESTService Project  . . . . . . . . . . . . . . . . . . . . . . . . . . . .157

Adding the RESTService Application Code . . . . . . . . . . . . . . . . . . . .159

Testing the RESTService Application . . . . . . . . . . . . . . . . . . . . . . . . . .171

Developing the SOAP Web Service Application . . . . . . . . . . . . . . . . . . . . .172

Creating the SOAPService Project . . . . . . . . . . . . . . . . . . . . . . . . . . . .173

Adding and Configuring the SOAPService Controls  . . . . . . . . . . . . 174

Adding the SOAPService Application Code  . . . . . . . . . . . . . . . . . . .175

Testing the SOAPService Application . . . . . . . . . . . . . . . . . . . . . . . . .177

Get Going with C#  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177

Chapter 7 Using the Windows Presentation Foundation 179
Considering the WPF Differences with Windows  

Forms Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180

Understanding XAML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181

Developing the WPF Data Store Application . . . . . . . . . . . . . . . . . . . . . . . .184

Creating the WPF_XML Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184

Adding and Configuring the WPF_XML Controls . . . . . . . . . . . . . . .185

Adding the WPF_XML Application Code . . . . . . . . . . . . . . . . . . . . . .187

Testing the WPF_XML Application  . . . . . . . . . . . . . . . . . . . . . . . . . . .193

Tracing the WPF_XML Application with the Debugger . . . . . . . . . .194

Developing the WPF SOAP Web Service Application . . . . . . . . . . . . . . . . .195

Creating the WPFSOAPService Project . . . . . . . . . . . . . . . . . . . . . . . .196

Adding a New Service Data Source  . . . . . . . . . . . . . . . . . . . . . . . . . .196

Adding and Configuring the WPFSOAPService Controls . . . . . . . .197

Adding the WPFSOAPService Application Code  . . . . . . . . . . . . . . .198

Testing the WPFSOAPService Application . . . . . . . . . . . . . . . . . . . . .199



xii Contents

Developing the EmbeddedSource Application . . . . . . . . . . . . . . . . . . . . . .199

Starting the EmbeddedSource Project . . . . . . . . . . . . . . . . . . . . . . . .200

Creating an Embedded Resource . . . . . . . . . . . . . . . . . . . . . . . . . . . .200

Adding and Configuring the EmbeddedSource Controls . . . . . . . .201

Adding the EmbeddedSource Application Code . . . . . . . . . . . . . . .202

Testing the EmbeddedSource Application  . . . . . . . . . . . . . . . . . . . .206

Tracing the EmbeddedSource Application with the Debugger . . .207

Get Going with C#  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207

Chapter 8 Working with Libraries 209
Understanding Reusable Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210

Considering How Classes Work  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211

Defining Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212

Defining Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212

Understanding Fields versus Properties . . . . . . . . . . . . . . . . . . . . . . .213

Defining Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213

Using Enumerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213

Understanding Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214

Creating the UseLibrary Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214

Starting the TestLibrary Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215

Adding the TestLibrary Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216

Adding the TestApplication Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226

Starting the TestApplication Project . . . . . . . . . . . . . . . . . . . . . . . . . .226

Setting TestApplication as the Startup Project . . . . . . . . . . . . . . . . .227

Defining the TestLibrary Reference . . . . . . . . . . . . . . . . . . . . . . . . . . .227

Adding and Configuring the TestApplication Controls . . . . . . . . . .228

Adding the TestApplication Application Code . . . . . . . . . . . . . . . . .230

Testing the UseLibrary Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239

Get Going with C#  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240

Chapter 9 Creating Utility Applications 241
Working at the Command Line  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242

Opening and Using the Command Line  . . . . . . . . . . . . . . . . . . . . . .242

Understanding Utility Application Uses . . . . . . . . . . . . . . . . . . . . . . .246



 Contents xiii

Creating the Console Application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248

Defining Command-Line Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249

Creating the Main() Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249

Offering Help at the Command Line . . . . . . . . . . . . . . . . . . . . . . . . .251

Checking for Required Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . .253

Checking for Optional Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . .254

Testing the DisplayDate Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .255

Opening the Command Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .256

Checking the Help Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257

Displaying a Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258

Tracing the DisplayDate Application with the Debugger  . . . . . . . . . . . . .260

Setting the Command-Line Arguments . . . . . . . . . . . . . . . . . . . . . . .260

Performing the Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261

Get Going with C#  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263

Chapter 10 Using LINQ in Web Applications 265
Creating the WebList Project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266

Starting the WebList Project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266

Adding and Configuring the WebList Project Controls . . . . . . . . . .268

Defining the using Statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271

Adding the WebList Project Code . . . . . . . . . . . . . . . . . . . . . . . . . . . .272

Tracing Through the WebList Project Example . . . . . . . . . . . . . . . . .274

Creating the WebArray Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .275

Starting the WebArray Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .276

Adding and Configuring the WebArray Project Controls . . . . . . . .278

Adding the WebArray Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .279

Tracing Through the WebArray Example . . . . . . . . . . . . . . . . . . . . . .284

Creating the WebStructure Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .285

Starting the WebStructure Project . . . . . . . . . . . . . . . . . . . . . . . . . . .285

Adding and Configuring the WebStructure Project Controls  . . . .285

Adding the WebStructure Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .287

Tracing Through the Structure Example  . . . . . . . . . . . . . . . . . . . . . .292

Get Going with C#  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293



xiv Contents

Chapter 11 Working with Silverlight Applications 295
Understanding the Silverlight Development Difference . . . . . . . . . . . . . .296

Developing a Basic Silverlight Application . . . . . . . . . . . . . . . . . . . . . . . . . .297

Starting the BasicSilverlight Application . . . . . . . . . . . . . . . . . . . . . .297

Adding and Configuring the BasicSilverlight Project Controls  . . .300

Adding the BasicSilverlight Project Code. . . . . . . . . . . . . . . . . . . . . .304

Tracing Through the BasicSilverlight Project Example  . . . . . . . . . .308

Configuring Your Silverlight Application for Debugging . . . . . . . . . . . . . .309

Setting the Browser Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . .309

Debugging with Firefox  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .310

Adding XML Data Support to a Silverlight Application . . . . . . . . . . . . . . .310

Starting the SilverlightXML Application . . . . . . . . . . . . . . . . . . . . . . .310

Adding and Configuring the SilverlightXML Project Controls . . . .310

Adding the SilverlightXML Project Code . . . . . . . . . . . . . . . . . . . . . .311

Tracing Through the SilverlightXML Project Example . . . . . . . . . . .318

Get Going with C#  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .323

Chapter 12 Debugging Applications 325
Understanding the Debugging Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .326

Stepping Through the Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329

Working with the Debug Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .330

Adding Debug Statements to the Example . . . . . . . . . . . . . . . . . . . .331

Working with the Trace Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .336

Working with Watches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .336

Using Visualizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338

Drilling Down into Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340

Understanding the Call Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344

Using the Immediate Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .346



 Contents xv

Working with Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347

Understanding an Exception Dialog Box . . . . . . . . . . . . . . . . . . . . . .347

Communicating with the Administrator Using the Event Log . . . .349

Get Going with C#  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351

Index 353

What do you think of this book? We want to hear from you! 
Microsoft is interested in hearing your feedback so we can continually improve our  
books and learning resources for you. to participate in a brief online survey, please visit: 

microsoft.com/learning/booksurvey





  xvii

Introduction

C# is an amazing C-like language that has almost all of the flexibility of C and C++, 
without any of the arcane programming rules. You can create applications quickly and 
easily using C#. The mixture of the Visual Studio Integrated Development Environment 
(IDE) aids and the natural flow of the language itself makes working with C# possible 
for even the complete novice. As your skills grow, you’ll find that C# grows with you 
and makes nearly any kind of application possible, even applications that you normally 
don’t associate with higher level languages.

Start Here! Learn Microsoft Visual C# 2010 is your doorway to discovering the joys 
of programming in C# without the usual exercises and rote learning environment of 
a college course. Instead of boring regimen, you begin programming immediately 
in Chapter 1, “Getting to Know C#.” In fact, you’ll create three completely different 
applications in Chapter 1 alone, which makes this book different from other novice-
level books on the market. Yes, the examples are decidedly simple to begin with, 
but it won’t take you long to begin interacting with web services, creating Silverlight 
applications, and working at the command line.

What’s truly amazing about this book is that every tool it uses is free. You’ll discover 
an amazing array of C# application types and it won’t cost you a penny to uncover 
them. These aren’t old school techniques either—you’ll use the newest methods of 
creating applications such as working with Language INtegrated Query (LINQ) to ask 
the application to supply data to you. Of course, the techniques you learn will transfer 
easily to the paid versions of Microsoft’s products that include a great deal more 
capability and provide better flexibility.

Who Should Read This Book

The focus of this book is to learn by doing. If you’re a hands-on sort of a person 
and find other texts boring and difficult, this is the book for you. Every example is 
completely explained and you’ll use a special tracing method to discover the inner 
secrets of each programming technique. You’ll at least encounter most basic application 
types by the time you’ve completed this book.



xviii  Introduction

Assumptions
This book was conceived and created for the complete novice—someone who has no 
programming experience at all. It is also appropriate for someone has been exposed 
to another language, but lacks significant experience in that language. This book uses 
a hands-on training approach, so you’re not going to be doing a lot of reading—you’ll 
be trying everything out as part of the learning process. Therefore, you need to have 
a system that’s capable of running the tools and a desire to use that system during your 
learning process.

You should be able to work with Windows as an operating system. The book 
assumes that you know how to work with a mouse and that you’ve worked with other 
applications that have basic features such as a File menu. Even though this book is for 
the complete novice from an application development perspective, it doesn’t do a lot 
of hand-holding when it comes to working with basic Windows functionality.

Who Should Not Read This Book

You’re going to be disappointed if you’re an advanced programmer and interested in 
learning C# as a second language. The examples in this book are relatively basic, and 
the explanations are kept simple. Developers who have a lot of experience will feel that 
I’m exploring the obvious—but what is obvious to experienced programmers often isn’t 
obvious at all to someone who is just learning to write code.

Organization of This Book

Start Here! Learn Microsoft Visual C# 2010 uses a hands-on approach to learning where 
readers actually trace through applications and discover how they work by seeing 
them perform tasks. Because this book is targeted toward complete novices, it should 
be read sequentially; later chapters require knowledge covered in previous chapters. I 
strongly suggest starting at the first chapter and working forward through the book. If 
you do have some experience with another language, you could possibly start at Chap-
ter 3. This book provides the following topics.

■■ Chapter 1: Getting to Know C# You’ll create three desktop applications in 
this chapter that show the sorts of things that C# is capable of doing. Part of 
this process is learning how to trace through applications so that you can see 
how they perform the tasks that they do, so you’ll learn the tracing technique 



 Introduction  xix

used throughout the rest of the book in this chapter. This chapter also helps you 
download and install the tools you need to work with C#.

■■ Chapter 2: Developing a Web Project In addition to the desktop 
applications introduced in Chapter 1, it’s also possible to create web applications 
using C#. This chapter shows two completely different web applications that 
will help you understand the small differences involved in tracing through web 
applications. You’ll also learn how to download and install the tools used to 
create web applications.

■■ Chapter 3: Using Simple Data Manipulation Techniques The first two 
chapters help acquaint you with C# on the desktop and the web. This chapter 
exposes you to the main purpose behind most applications—data manipulation. 
You’ll use a new technique to manipulate data that relies on LINQ. The five 
examples in this chapter emphasize the fact that data manipulation need not 
be hard.

■■ Chapter 4: Using Collections to Store Data Although Chapter 3 focuses 
on simple data, this chapter begins showing you how to work with complex 
data. You’ll discover how to create containers to store similar data together. 
This chapter contains three examples that emphasize three different types of 
data storage.

■■ Chapter 5: Working with XML It seems as if just about everything runs 
on the eXtensible Markup Language (XML) today. The four examples in this 
chapter show you how to work with XML files so that you can do things like save 
application settings and work with web services.

■■ Chapter 6: Accessing a Web Service Web services make it possible to 
obtain data through a remote connection. Often this connection relies on the 
Internet, but web services are everywhere. In fact, you’ll be surprised at how 
many free web services exist and the impressive range of data you can access 
through them. The two examples in this chapter show you how to use the two 
techniques, REpresentational State Transfer (REST) and Simple Object Access 
Protocol (SOAP), that C# provides to access web services.

■■ Chapter 7: Using the Windows Presentation Foundation Windows 
Presentation Foundation (WPF) is a new way to create applications with C#. 
It helps you create applications with impressive interfaces and new features that 
aren’t available using older C# development methods. The four examples in 
this chapter emphasize techniques that you can use to create great applications 
using WPF.



xx  Introduction

■■ Chapter 8: Working with Libraries At some point you’ll want to reuse some 
of the code you create. Libraries provide the means for reusing code easily 
and in a standardized way. The example in this chapter shows how to create 
and use a library as part of an application.

■■ Chapter 9: Creating Utility Applications Many people haven’t used 
the command line, but most administrators are at least aware of it. The 
command line makes it possible to type a single command that performs tasks 
that would require multiple mouse clicks. The example in this chapter shows 
how to create applications that have a command-line interface so that you can 
work with them quickly and automate them in various ways.

■■ Chapter 10: Using LINQ in Web Applications Earlier chapters explored 
the use of LINQ in desktop applications. Fortunately, it’s quite easy to use 
LINQ in web applications, too. You use LINQ for the same purpose—to ask the 
application to supply certain types of data. The three examples in this chapter 
show different ways to use LINQ in a web application.

■■ Chapter 11: Working with Silverlight Applications Silverlight applications 
can perform amazing tasks. You can create them to work in either a browser 
or at the desktop. The technology works with multiple browsers and on multiple 
platforms. In short, you can use Silverlight to transform your C# application into 
something that works everywhere. The two examples in this chapter help you 
understand the basics of Silverlight development using C#.

■■ Chapter 12: Debugging Applications Throughout the book you’ve used 
tracing techniques to discover how applications work. Debugging is a step 
further. When you debug an application, you look for errors in it and fix them. 
The example in this chapter extends what you already know about tracing to 
make it easier to begin debugging your applications.



 Introduction  xxi

Free eBook Reference

When you purchase this title, you also get the companion reference, Start Here!™ 
Fundamentals of Microsoft® .NET Programming, for free. To obtain your copy, please 
see the instruction page at the back of this book.

The Fundamentals book contains information that applies to any programming lan-
guage, plus some specific material for beginning .NET developers.

As you read through this book, you’ll find references to the Fundamentals book that 
look like this:

For more information, see <topic> in the accompanying Start Here! Fundamentals of Microsoft 
.NET Programming book.

When you see a reference like this, if you’re not already familiar with the topic, you 
should read that section in the Fundamentals book. In addition, the Fundamentals book 
contains an extensive glossary of key programming terms. 

Conventions and Features in This Book

This book presents information using conventions designed to make the information 
readable and easy to follow:

■■ This book relies heavily on procedures to help you create applications and 
then trace through them to see how they work. Each procedure is in a separate 
section and describes precisely what you’ll accomplish by following the steps it 
contains.

■■ Boxed elements with labels such as “Note” provide additional information 
or alternative methods for completing a step successfully. Make sure you pay 
special attention to warnings because they contain helpful information for 
avoiding problems and errors.

■■ Text that you type (apart from code blocks) appears in bold.

■■ A plus sign (+) between two key names means that you must press those keys 
at the same time. For example, “Press Alt+Tab” means that you hold down the 
Alt key while you press the Tab key.

■■ A vertical bar between two or more menu items (such as File | Close), means that 
you should select the first menu or menu item, then the next, and so on.



xxii  Introduction

System Requirements

You will need the following hardware and software to work through the examples in 
this book:

■■ One of following operating systems: Windows XP with Service Pack 3 (except 
Starter Edition), Windows Vista with Service Pack 2 (except Starter Edition), 
Windows 7, Windows Server 2003 with Service Pack 2, Windows Server 2003 R2, 
Windows Server 2008 with Service Pack 2, or Windows Server 2008 R2

■■ Visual C# 2010 Express edition

■■ Visual Web Developer 2010 Express edition

■■ A computer that has a 1.6 GHz or faster processor (2 GHz recommended)

■■ 1 GB (32 Bit) or 2 GB (64 Bit) RAM (Add 512 MB if running in a virtual machine 
or SQL Server Express editions, more for advanced SQL Server editions.)

■■ 3.5 GB of available hard disk space

■■ 5400 RPM hard disk drive

■■ DirectX 9 capable video card running at 1024 x 768 or higher-resolution display

■■ DVD-ROM drive (if installing Visual Studio from DVD)

■■ An Internet connection to download software or chapter examples

Depending on your Windows configuration, you might require Local Administrator 
rights to install or configure Visual C# 2010 Express edition and Visual Web 
Developer 2010 Express edition products.

Code Samples

Most of the chapters in this book include exercises that let you interactively try out new 
material learned in the main text. All sample projects, in both their pre-exercise and 
post-exercise formats, can be downloaded from the following page:

http://www.microsoftpressstore.com/title/9780735657724

Follow the instructions to download the Start_Here_CSharp_Sample_Code.zip file.

http://www.microsoftpressstore.com/title/9780735657724


 Introduction  xxiii

Note In addition to the code samples, your system should have Visual  
Studio 2010 and SQL Server 2008 installed. The instructions below use SQL 
Server Management Studio 2008 to set up the sample database used with the 
practice examples. If available, install the latest service packs for each product.

Installing the Code Samples
Follow these steps to install the code samples on your computer so that you can use 
them with the exercises in this book.

1. Unzip the Start_Here_CSharp_Sample_Code.zip file that you downloaded from 
the book’s website. (Name a specific directory along with directions to create it, 
if necessary.)

2. If prompted, review the displayed end user license agreement. If you accept 
the terms, select the accept option, and then click Next.

Note If the license agreement doesn’t appear, you can access it from the 
same webpage from which you downloaded the Start_Here_CSharp_Sample_
Code.zip file.

Using the Code Samples
The folder created by the Setup.exe program creates a book folder named “Start Here! 
Programming in C#” that contains 12 subfolders—one for each of the chapters in the 
book. To find the examples associated with a particular chapter, access the appropriate 
chapter folder. You’ll find the examples for that chapter in separate subfolders. Access 
the folder containing the example you want to work with. (These folders have the same 
names as the examples in the chapter.) For example, you’ll find an example called 
“No-Code Windows Forms” in the “Create a New Windows Forms Application Project” 
section of Chapter 1 in the \Start Here! Programming in C#\Chapter 01\No Code 
Windows Forms folder on your hard drive. If your system is configured to display file 
extensions of the C# project files, use .sln as the file extension.



xxiv  Introduction

Acknowledgments

Thanks to my wife, Rebecca, for working with me to get this book completed. I  really don’t 
know what I would have done without her help in researching and  compiling some of the 
information that appears here. She also did a fine job of  proofreading my rough draft. 
Rebecca keeps the house running while I’m buried in work.

Russ Mullen deserves thanks for his technical edit of this book. He greatly added to 
the accuracy and depth of the material you see here. Russ is always providing me with 
great URLs for new products and ideas. However, it’s the testing Russ does that helps 
most. He’s the sanity check for my work. Russ also has different computer equipment 
from mine, so he’s able to point out flaws that I might not otherwise notice.

Matt Wagner, my agent, deserves credit for helping me get the contract in the first 
place and taking care of all the details that most authors don’t really consider. I always 
appreciate his assistance. It’s good to know that someone wants to help.

A number of people read all or part of this book to help me refine the approach, test 
the coding examples, and generally provide input that all readers wish they could have. 
These unpaid volunteers helped in ways too numerous to mention here. I especially 
appreciate the efforts of Eva Beattie and Osvaldo Téllez Almirall, who provided general 
input, read the entire book, and selflessly devoted themselves to this project. I also 
appreciated Rod Stephen’s input on a number of questions.

Finally, I would like to thank Russell Jones, Dan Fauxsmith, Christian Holdener, Becka 
McKay, Christie Rears, and the rest of the editorial and production staff at O’Reilly for 
their assistance in bringing this book to print. It’s always nice to work with such a great 
group of professionals. This is my first book with this group and I hope we get to work 
together again in the future.

Errata & Book Support

We’ve made every effort to ensure the accuracy of this book and its companion 
content. Any errors that have been reported since this book was published are listed 
on our Microsoft Press site:

http://www.microsoftpressstore.com/title/9780735657724.

If you find an error that is not already listed, you can report it to us through 
the same page.

http://www.microsoftpressstore.com/title/9780735657724


 Introduction  xxv

If you need additional support, email Microsoft Press Book Support  
at mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through 
the addresses above.

We Want to Hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most 
valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in 
advance for your input!

Stay in Touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.





  1

Chapter 1

Getting to Know C#

after completing this chapter, you’ll be able to:

■■ Install all of the tools required to use C# to develop applications.

■■ Start Visual Studio 2010 Express so that you can use it to create applications.

■■ Create and explore a standard desktop application without using any code.

■■ Create and explore a Windows Presentation Foundation (WPF) application without using 
any code. 

C# IS AN INCREDIBLE LANGUAGE. You can use it to create just about any kind of application—desk-
top, web, or mobile—using less code than you’re likely to need with just about any other language.  
However, as shown in this chapter, you may not even need to write much code; the Visual Studio  
Integrated Development Environment (IDE) provides a graphical interface that also writes code for 
you in the background. Amazing! You design how you want the program to look, then you inform 
the IDE about behaviors the application should have—and then the IDE writes the code for you! This 
chapter walks you through several no-code examples that actually do something useful. With that 
said, normally you’ll write at least some code to create most applications.

Of course, before you can create a C# application, you need some sort of tool to create it with. 
(Technically, you could write an application using Notepad and compile it at the command line, but 
that’s a lot of work, especially when you can obtain a tool free and use it to write useful applications 
the easy way.) The first section of this chapter shows how to download and install the tools you need 
for the rest of the examples in the book. If you already have a full version of Visual Studio installed on 
your system, you can skip the first section of this chapter and move right to the ”Starting Visual  
C# 2010 Express” section.

This chapter doesn’t tell you absolutely everything there is to know about the IDE; it does provide 
some basics to get you started. The second section of the chapter helps you launch Visual C# 2010 



2  Start here! Learn Microsoft Visual C# 2010

Express the first time; you can then look around to see what it provides. Don’t worry, you’ll learn a 
great deal more about the features of this IDE before you get through the book.

After the IDE walkthrough, the remainder of the chapter focuses on the three no-code  desktop 
 application examples. The IDE does write some code for you, and you’ll examine that as part of 
 working through the examples. The best way to learn about coding is to try things out and explore 
code written by someone else; this book allows you to do both.

Obtaining and Installing Visual Studio 2010 Express

Before you can do anything with C#, you need an environment in which to work. Fortunately, you 
can obtain a free working environment, Visual Studio 2010 Express, directly from Microsoft. After you 
install the required products, you’ll be able to work with any of the examples in this book and be on 
your way to a new world of developing applications.

Downloading the products
Microsoft produces a number of Express products that you can download from  
http://www.microsoft.com/express/Downloads/, but for the purposes of this book you need to 
 download only the following items:

Important You should download and install the packages from the download link in the 
order listed here.

■■ Visual C# 2010 express Provides a Visual Studio IDE suitable for developing C#  applications.

■■ Visual Web Developer 2010 express Provides a Visual Studio IDE and other tools that help 
you develop web applications.

■■ Visual Studio 2010 Service pack 1 Fixes bug in the two Visual Studio Express versions.  
You should install this last.

The download for Visual C# 2010 Express simply produces a file on your hard drive. The Visual 
Web Developer 2010 Express download also installs the product for you. As part of the Visual Web 
Developer 2010 Express installation, you also get the Microsoft Web Platform Installer; because it’s 
part of the package you don’t need to perform a separate download to obtain it. But make sure you 
download and install both the C# and Visual Web Developer Express versions before you download 
and install Visual Studio 2010 Service Pack 1. The next three sections provide detailed instructions for 
installing all three products, so you can follow along or simply follow the prompts yourself.



 CHAPTER 1 Getting to Know C#  3

Note You must have an Internet connection to install the products described in this 
 chapter. In  all cases, the installer will rely on this connection to download product features 
as part of the installation process.

Installing Visual C# 2010 express
To download Visual C# Express, click the bullet next to its entry on the download page,  
http://www.microsoft.com/express/Downloads. When you select a language from the drop-down list, 
the page starts the download automatically. The initial download is only 3.1 MB, so it won’t take long. 
(The installer will download 104 MB more data during the installation process.) Double-click the  
 vcs_web.exe file when the download completes. (Click Yes if you see the User Account Control dialog 
box.) You’ll see a Setup dialog box appear for a few minutes. When you see the Welcome To Setup 
dialog box, you can start the installation process described in the following steps.

Note The sizes of the file downloads in this chapter are approximate and will probably 
change with time. The main reason for including them is to give you some idea of how 
large a download will be and how long it will take.

performing the Visual C# 2010 express Installation

1. Click Next. The License Terms dialog box appears.

2. Read the licensing terms, select I Have Read And Accept The License Terms, and click Next. 
The Destination Folder dialog box appears. Normally, the default destination works fine and 
that’s the assumption this book makes when telling you about Visual C# 2010 Express-specific 
folders. Therefore, unless you have a good reason to change the default folder, accept the 
default.

3. Click Install. The installer begins downloading the required files from the Internet. The 
 download is 45 MB, so it may take a few minutes to complete. The actual installation  process 
begins automatically when the download is complete. So get a cup of coffee, grab your 
 favorite magazine, and kick back for a few minutes. At some point, a dialog box appears, 
 indicating that the installation is complete.

4. Click Exit. You’re now ready to create desktop applications using Visual C# 2010 Express!

Installing Visual Web Developer 2010 express
To download Visual Web Developer 2010 Express, click the bullet next to its entry on the download 
page. Click Install. You’ll see a Microsoft web page where you can install the Microsoft Web Platform 
Installer. Click Install Now to start the download process. After a few minutes, you’ll have a file named 



4  Start here! Learn Microsoft Visual C# 2010

Vwd.exe on your system. Double-click this file to open and start the installer. (Click Yes if the User 
 Account Control dialog box appears.) The installer downloads some additional files and installs them 
automatically, after which you see the Web Platform Installer 3.0 dialog box shown in Figure 1-1.

`
FIGURE 1-1 The Web Platform Installer starts the Visual Web Developer 2010 Express installation.

You’re ready to begin installing Visual Web Developer 2010 Express. The following steps take you 
through the installation process:

 performing the Visual Web Developer 2010 express Installation

1. Click Install. You’ll see the Web Platform Installation dialog box shown here.

This dialog box contains a list of the applications that the installer will download and install to 
create a Visual Web Developer 2010 Express installation for you. Many of the items have links 



 CHAPTER 1 Getting to Know C#  5

for privacy and licensing terms. You’ll need to read the privacy and licensing terms for each 
product before you proceed so that you know the requirements of using that product.

Note Don’t change the default installation selections. For example, you won’t need a copy 
of SQL Server to work through the examples in this book. Configuring these other items can 
prove difficult in some cases, so this is one situation where the default installation is best.

2. Read the privacy and licensing terms. Click I Accept. The installer will begin downloading and 
installing each of the products in the list for you automatically. This process will take a while, 
so you can gaze out the window and contemplate your weekend activities while whistling a 
merry tune. Eventually, you’ll see the Web Platform Installer 3.0 dialog box shown here, from 
which you can install additional products. At this point, Visual Web Developer 2010 Express is 
installed and ready.

3. For this book, you don’t need to install any additional products, so click Exit. 

Installing Visual Studio 2010 Service pack 1
It’s possible that the newly downloaded and installed copy of Visual C# 2010 Express and Visual 
Web Developer 2010 Express will already have Service Pack 1 (SP1) installed. You can check for this 
requirement by looking at the About dialog box for each of the applications (click Help | About to see 
the dialog box). Of course, you might have an older copy of these Express products, or have another 
Visual Studio product installed on your system. The various IDEs won’t start until all your Visual 
Studio products have SP1 installed, so check for the SP1 compliance and follow the instructions in this 
section only if you actually need them. In the event of a problem, a dialog box like the one shown in 
Figure 1-2 appears.



6  Start here! Learn Microsoft Visual C# 2010

FIGURE 1-2 You’ll see this dialog box if the Service Pack 1 installation fails.

To download Visual Studio Service Pack 1, click the bullet next to its entry on the download page. 
Click Install. You’ll see another page load. Click Download on this page to start the download. After 
the download is complete, double-click the file VS10sp1-KB983509.EXE to begin the installation 
process. (Click Yes if the User Account Control dialog box appears.) At this point, the installation 
proceeds automatically. Click Finish when the installation completes.

Starting Visual C# 2010 Express

An Integrated Development Environment (IDE) provides an environment that contains tools to help 
you create applications. It provides editors (to write code), designers (to lay out graphical  elements), 
  a compiler (to create executable code), a debugger (to find mistakes in your code), and other tools 
that make the development process easier. The Visual C# 2010 Express IDE helps you create 
 desktop applications, which is the focus of this chapter.

Note You need to register both Visual C# 2010 Express and Visual Web Developer 
2010 Express. The products you download will only run for 30 days without registration. 
Registration is free. All you need to do is choose Help | Register Product and follow the 
 instructions to register the applications.

Now that you have a copy of the IDE installed on your computer, it’s time to start it to see what it 
looks like. To start Visual C# 2010 Express, choose Start | All Programs | Microsoft Visual Studio 2010 
Express | Microsoft Visual C# 2010 Express. You’ll see the IDE start up shown in Figure 1-3.



 CHAPTER 1 Getting to Know C#  7

FIGURE 1-3 The Visual Studio IDE opens with the Start Page showing.

This first view of Visual C# 2010 Express is the one that you’ll see every time you start the IDE. 
The left side of the page contains links for creating new projects or opening existing projects. After 
you have created some applications, you’ll also see a list of applications you’ve recently worked 
with, which makes it fast and easy to open current projects. On the bottom left are options to close 
the Start page after you open a project (to reduce clutter) and to display the Start page every time 
the IDE opens. Generally, you’ll leave these options set as shown in the figure to make your work 
 environment efficient.

The right side of the Start page contains helpful information. The first tab contains information you 
can use to get started using C# more quickly. The second tab provides access to the latest information 
about C#; however, to see this information, you must click Enable RSS Feed. The page will automatically 
update with the latest information.

tip Opening the latest information in the IDE can slow things down at times. A better option 
is to add the RSS feed to Outlook (or the RSS feed reader of your choice) by following these 
steps: Make sure Outlook is running. Copy the URL from the RSS Feed field and paste it into 
your browser’s address field. Press Enter, and after a few seconds your browser will ask if 
you want to add the RSS feed to Outlook. Click Yes. 



8  Start here! Learn Microsoft Visual C# 2010

Creating the No-Code Web Browser

Desktop applications have been around for a long time. Initially, developers had to write all sorts 
of weird code to make them work, but modern IDEs make it possible to create most applications 
in  significantly less time. This example demonstrates the Windows Forms approach, which is the 
 approach that Windows developers have used for many years to create applications. This particular 
example shows how to create a fully functional Web browser. You’ll actually be able to use it to surf 
the Internet should you desire to do so.

Understanding the Benefits of Windows Forms
Windows Forms technology has been around for many years, and it’s incredibly stable. In addition, 
most developers have created a Windows Forms application sometime in their career. The 
 combination of long use and familiarity make Windows Forms applications a good starting point 
for anyone. One of the more important reasons to create a Windows Forms application is that you 
have access to an astonishing array of controls and tools. If you need to support older platforms, 
Windows Forms is also the best choice for compatibility reasons. You don’t need anything special 
installed on older systems to use a Windows Forms application except the version of the .NET 
Framework required by the application. The .NET Framework contains the code that makes C# 
and other .NET languages run. It is available wherever you need it. In short, even though  Windows 
Forms applications are older technology, they’re still relevant for developers today. Microsoft 
plans to continue supporting Windows Forms applications into the foreseeable future, so you 
certainly don’t need to worry about the practicality of this approach for your next application.

Creating a New Windows Forms application project
You always begin a new project by opening the IDE and then clicking the New Project link. The IDE 
displays the New Project dialog box shown in Figure 1-4.

FIGURE 1-4 The New Project dialog box contains the templates you use to create new applications.



 CHAPTER 1 Getting to Know C#  9

The left pane contains a list of template folders. Each folder contains a particular group of 
 templates. In this case, you’re interested in the Visual C# folder. The center pane shows the templates 
contained within the selected template folder. Because this project is about creating a Windows 
Forms application, highlight the Windows Forms Application template. The right pane contains 
 information about the selected template.

Every project requires a name—preferably something better than the default WindowsForms 
 Application1.  Always give your projects a descriptive name so that you always know what they 
 contain. In this case, type No-Code Windows Forms in the Name field. The name is a little long, 
 but descriptive. Click OK and the IDE creates a new project for you like the one shown in Figure 1-5.

FIGURE 1-5 A Windows Forms Application begins with a designer that displays a blank form.

Note It’s perfectly normal to see some small differences between your display and the 
screenshots in this book. Visual Studio is an incredibly flexible IDE and you can configure 
it to meet your specific needs. However, if you see large differences (for example, the 
screenshot doesn’t look anything at all like the one in the book), you have probably made 
an error in following the procedure and will need to retrace your steps. Visual Studio is also 
incredibly forgiving—nothing bad is going to happen if you have to start over.

Quite a few windows are visible in the figure, but don’t get overwhelmed. The book discusses them 
as needed. For now, all you really need to know is that the form designer appears on the left side of 
the display and the Properties window appears on the right. You use the designer to create the user 
interface for your application. The Properties window lets you configure the application elements as 
described in the “Configuring the Windows Forms Controls” section later in this chapter. You’ll get 
familiar with what controls are and how to use them soon. If you don’t currently see the Properties 
window in your IDE, choose View | Other Windows | Properties Window, or press Ctrl+W,P.



10  Start here! Learn Microsoft Visual C# 2010

Note The content of the Properties window reflects the object you select. The contents will 
change when you select a form instead of a specific control. Each control will also display 
different content in the Properties window. Later, when you use Solution Explorer, you’ll 
find that the Properties window content will change to reflect any entries you choose in 
Solution Explorer. If your Properties window content doesn’t match the screenshot in the 
book, make sure you’ve selected the proper form, control, or Solution Explorer entry.

You may not think you can do too much with the application yet, but you can. It’s possible to 
 configure the form. Normally, you’ll perform some form configuration before you even add any 
 controls. Start by giving your form a better name. Highlight the (Name) field in the Properties 
window, and type BrowserTest, as shown in Figure 1-6. (Do not put a space between the words. 
BrowserTest needs to be all one word for it to work.)

FIGURE 1-6 The Properties window tells you about form and controls settings in your application.

Notice that the Properties window displays a description of the property you’ve highlighted 
in a pane at the bottom of the window. If you don’t see this pane, you can always display it by 
 dragging the splitter bar that appears near the bottom of the window up to provide more space for 
the  description. The (Name) property is a text property, meaning it’s made up of characters (letters and/or 
numbers) so you simply type something to fill it. Other properties will have other ways to provide 
information, such as a list of acceptable values or even special dialog boxes that help you configure 
the property. You’ll see these other kinds of properties in action as the book progresses.

tip You can display the properties in two different ways to make them easier to find. The 
example in this section displays the properties in alphabetical order. You can also display 
the properties grouped into categories. To switch between views, click either Categorized 
or Alphabetical at the top of the Properties window. 

It’s important to give easily understood names to the controls and forms that make up your 
 application so that they are easier to work with. A name can’t start with a number, nor can it contain 



 CHAPTER 1 Getting to Know C#  11

any spaces. Many developers use an underscore (_) as a substitute for a space. For example, you could 
give your form the name Browser_Test. If you try to give your form an invalid name, the IDE displays 
an error dialog box informing you that the name is invalid, and returns the name to the previous 
(valid) name.

Scroll down to the Text property. This property determines the text that appears in the form’s title 
bar. Type Web Browser Test for this property’s value. Notice that the title bar text changes in the 
Designer after you press Enter.

Saving Your project
It’s a good idea to get into the habit of saving your project regularly. Saving the project reduces the 
likelihood that you’ll lose information. Click Save All on the Standard toolbar, choose File | Save All, or 
press Ctrl+Shift+S. Save All saves all the files that have been modified; Save saves only the current file. 
You’ll see the Save Project dialog box shown in Figure 1-7.

FIGURE 1-7 Save your project often to prevent loss of changes you make to it.

The Name field contains the name of this particular project. The IDE suggests a name based on 
the name you provided when you created the project. The Location field tells where the project is 
stored. Visual Studio defaults to using the C:\Users\<User Name>\documents\visual studio 2010\
Projects folder on your hard drive, but you can store your projects anywhere. The Solution Name field 
contains the name of the solution that holds the project. A solution is a kind of container. You can 
store multiple projects in a single solution. For example, you might store an application as well as a 
program to test it in a single solution. A solution will often have a different name than the first project 
you create—but for now, keep the project and solution names the same.

adding Windows Forms Controls
The IDE’s border area displays some tabs, each of which corresponds to a particular window. Don’t 
worry too much about them now, but one tab of immediate interest is the Toolbox. Clicking a tab 
displays its associated window. If you want the window visible without clicking it all the time, click 
Auto Hide (the pushpin icon in the upper-right corner of the window). Try it out now: click Auto Hide 
on the Properties window to hide it, and then click Auto Hide on the Toolbox to display it. Notice that 
the thumbtack icon changes to show whether a window will automatically hide. Your IDE will look 
something like the example shown in Figure 1-8.



12  Start here! Learn Microsoft Visual C# 2010

FIGURE 1-8 The Toolbox contains controls you use to create a user interface.

The Toolbox contains a wealth of controls. Controls are the building blocks of application development. 
You can snap them together in various ways to create a basic application design. Take some time to 
scroll through the list and explore the available controls now. As you can see, the Toolbox groups the 
controls into categories to make them easier to find. Otherwise, you’d spend your entire day looking 
for controls rather than creating incredibly useful applications. Most applications rely on the standard 
set of controls that you can find in the Common Controls category. One of these controls is the 
WebBrowser control used for this example.

Adding a control to your form is easy. You have three convenient ways to add the control:

■■ Drag the control from the Toolbox and drop it onto the form.

■■ Click the control within the Toolbox and then click where you want to place it on the form.

■■ Double-click the control within the Toolbox. This places it in a default position on the form.

Try one of these techniques now with the WebBrowser control. You’ll see the control added to the 
form, as shown in Figure 1-9.

FIGURE 1-9 The WebBrowser control doesn’t look like much when you first add it, but it contains information later.



 CHAPTER 1 Getting to Know C#  13

As you can see, the control is invisible, but you can tell that the IDE added the control to the form 
because of the sizing handles (the little squares in each corner). In addition, in the upper-right corner 
you’ll see an arrow that you can click to display a shortcut menu containing quick (and common) 
configuration settings. The control provides a vertical scroll bar that appears on the right side of the 
control in the figure. Your no-code application is ready for configuration.

Configuring the Windows Forms Controls
After you design the user interface for your application by selecting controls from the Toolbox, you’ll 
normally hide the Toolbox window and display the Properties window again so that you can perform 
configuration tasks. Use the following steps to configure the WebBrowser control for this example.

Creating the No Code Windows Forms application

1. Click the WebBrowser control in the form to select it. 

2. Select the (Name) property and type MyBrowser.

3. Select the ScriptErrrorsSuppressed property and choose True. This is a Boolean property—it 
can only have one of the values True or False. Selecting True means that the WebBrowser 
control won’t display scripting errors that occur when the control displays the URL you select.

4. Select the Url property and type http://www.microsoft.com. You could change this URL to 
any value you like. The Url property value you provide determines what resource the WebBrowser 
control displays when the application starts. At this point, the control is configured and ready 
for use.

testing the Windows Forms application
Believe it or not, you have a usable application at this point—and you haven’t written a single line 
of code! It’s true that the application doesn’t do much—but it’s a good place to start. To use the application, 
you need to tell the IDE to compile it. Compiling converts human-readable code into something 
that the computer can understand. The precise manner in which this works isn’t important now, but 
you’ll learn more about it as the book progresses. For now, simply choose Debug | Build Solution or 
press F6. In the lower-left corner of the IDE you’ll see a message saying the build succeeded. (If you 
don’t see the build succeeded message, it means that you made a mistake in following the previous 
 sections and that you need to retrace your steps.) What this means is that the compiler was able to 
create executable code from the design you created and the executable is now ready to test.

To start the application, choose Debug | Start Debugging, or press F5, or click Start Debugging 
on the Standard toolbar. You’ll see the application start. The browser window is going to be small at 
first, but you can resize it to see more of the page. Figure 1-10 shows some typical results from this 
application.



14  Start here! Learn Microsoft Visual C# 2010

FIGURE 1-10 The example application displays a web page.

The application is fully functional. Click a link and you’ll see the next page, just as you would in 
Internet Explorer. Right-click the application window and you’ll see a shortcut menu containing all the 
usual browser controls. For example, you can move forward and backward through the history list, just 
as you would in Internet Explorer. Of course, it would be nice to have visible controls to perform these 
tasks, but you can worry about that later. For now, you’ve created your first usable application. To stop 
your application, click the Close box in the upper-right corner of the application window (the red X).

Viewing the Web Browser Code
Although you didn’t write any code to make this application work, the IDE has been busy on your 
 behalf. It generated code that matches all the design decisions you made. When you compiled the 
application earlier, you actually created an executable file based on the code that the IDE generated 
for you. Even though you won’t normally edit this IDE-generated code, it’s interesting to look at, 
because you can learn a great deal from it.

To see the Designer code, you must open a different IDE window. Hide the Properties window and 
display the Solution Explorer window shown in Figure 1-11.

FIGURE 1-11 Solution Explorer provides you with access to the application files.



 CHAPTER 1 Getting to Know C#  15

Solution Explorer presents a view of the files in your project. In this case, the figure shows the Form1 
entry opened up to display the files associated with Form1—the form that contains the WebBrowser 
control. Notice the Form1.Designer.cs file. This is the file that contains the code used to create the 
form. Double-click this entry and you’ll see the code you’ve created during the design process. Hide 
Solution Explorer so that you can see the code a little better. If you scroll down a bit, you’ll see the 
entries that start to look familiar, like the ones shown in Figure 1-12.

FIGURE 1-12 Even though you haven’t written any code, the IDE has performed the task for you.

Note Make sure you open the correct file—you’ll only see the information shown in this 
screenshot if you open Form1.Designer.cs. Also, you’ll need to scroll down in the file to see the 
InitializeComponent() method. You may also need to click the plus sign (+) next to Windows 
Forms Designer generated code to expand the code so that it looks like the code shown here.

Here you can see the results of all of the changes you made. For example, you renamed the 
 WebBrowser control as MyBrowser and you can see a number of MyBrowser code entries. Look a little 
closer and you’ll see the property changes as well. For example, the line MyBrowser.Name = “MyBrowser”, 
simply states that you changed the name of the control to MyBrowser using the Properties window. 
The line of code literally says that the MyBrowser control’s Name property is “MyBrowser”. Try browsing 
through the code to see more of what the IDE has done for you, but be careful not to change any of it.



16  Start here! Learn Microsoft Visual C# 2010

tip One of the ways that professional programmers learn new coding techniques is the 
very technique you just used—trying something out using a tool and then seeing what 
code the tool produced. You’ll use this technique several times in the book because it’s so 
incredibly useful.

ending Your Session
When you’re finished working with an example, it’s a good idea to end your session. Choose File | 
Exit to close the IDE. Starting the IDE fresh for each example ensures that you’re working with a clean 
environment and that there is less of a chance that errors will occur. Make sure that you end your 
session after each of the examples throughout the book. The book’s procedures assume that you’re 
starting with a fresh copy of the IDE each time, so the instructions might not work if you try to use the 
same session for all of the examples.

Creating the No-Code WPF Web Browser

Windows Presentation Foundation (WPF) is the latest technology for creating applications. In 
fact, the IDE you’re using to create your applications relies on WPF. The site at http://10rem.net/
blog/2010/10/28/the-present-and-future-of-wpf provides examples of additional real-world applications 
that rely on WPF. You’ll find that WPF has many advantages over Windows Forms applications. Of 
course, it’s hard to compare two technologies unless you perform the same task with each of them. 
The example in this section does just that. It shows how to create a Web browser application with the 
same capabilities as the one found in the “Creating the No-Code Web Browser” section, except that in 
this case, you’ll use WPF instead.

Understanding the Benefits of WPF
Windows Forms applications will remain a faithful standby for many years because of the infrastructure 
in place to support it. However, the technology is getting old and isn’t well-suited to today’s 
user needs. Microsoft created WPF to make it easy to combine multiple presentation technologies 
in one package. When working with WPF, you can use these types of presentations:

■■ Forms

■■ Controls

■■ Complex text (such as found in a PDF)

■■ Images



 CHAPTER 1 Getting to Know C#  17

■■ Video

■■ Audio

■■ 2D graphics

■■ 3D graphics

To obtain access to this wealth of presentation technologies, you’d normally need to 
combine several disparate application development techniques that might not even work 
well together. In short, you use WPF when you want to create an application that provides 
all of the experiences that modern users have come to expect. However, to obtain the extra 
functionality, you need additional skills. For example, even with the best tools, you can’t create 
a 3D presentation without the appropriate skill set.

Using WPF has other benefits and this book will tell you about them as it progresses. However, 
one benefit stands out. WPF relies on a declarative language called Extensible Application 
Markup Language (XAML, pronounced zammel) to create the user interface. This language 
makes it possible to create an application with less code that is less reliant on precise connections 
with underlying application layers. As a consequence, you can often change the user interface 
without changing the underlying application layers—something that causes Windows Forms 
developers a lot of pain today.

Starting a New WpF application project
The example in this section creates a browser application precisely like the one in the section 
 “Creating the No-Code Web Browser” except that this example relies on WPF. The following steps 
help you create the application project:

Creating the No-Code WpF application

1. Start the Visual C# 2010 Express IDE if you haven’t started it already.

2. Click New Project. The New Project dialog box appears.

3. Select the WPF Application template from the Visual C# folder.

4. Type No Code WPF in the Name field.

5. Click OK. The IDE creates the new project for you, as shown here.



18  Start here! Learn Microsoft Visual C# 2010

You’ll notice immediately that the WPF environment is completely different from the Windows 
Forms environment. For one thing, it looks a lot more complex. The environment really isn’t that 
much more complex and you’ll find that it provides a lot more flexibility. The top half of the Designer 
window shows a graphical interface similar to the one you used to create the Windows Forms 
 example. The bottom half shows the XAML associated with the user interface you create—similar to 
the Form1.Designer.cs file described in the “Viewing the Web Browser Code” section of the chapter. 
The only difference is that the WPF environment shows you this information from the outset so that 
you can create the user interface graphically or by writing XAML code to do it.

Fortunately, you don’t have to look at the XAML if you don’t want to. Click Collapse Pane in the 
Designer window and the XAML pane simply disappears, as shown in Figure 1-13.

FIGURE 1-13 The WPF designer lets you hide the XAML tags from view.



 CHAPTER 1 Getting to Know C#  19

If you decide later that you really do want to see the graphical environment and the XAML 
 side-by-side, you can click Vertical Split or Horizontal Split in the Designer window. It’s also possible 
to see the XAML by clicking the XAML tab. In this case, you see a full page of XAML instead of just 
seeing part of the code in a pane. So, there really isn’t anything scary about this environment after all.

Before you do anything else, you’ll want to give your application better title bar text so that it 
identifies the purpose of the application. Display the Properties window, select the Title property, and 
type No Code WPF. You can hide the Properties window again.

adding WpF Controls
As with any application you develop, WPF applications rely on the Toolbox as a source of controls. 
To add controls to this example, you need to display the Toolbox by clicking its tab and then clicking 
the Auto Hide button on the Toolbox window. You can add the WebBrowser control (the only control 
used in this example) using any of the three techniques described in the “Adding Windows Forms 
Controls” section of the chapter.

Configuring the WPF Controls
When you add the WebBrowser control to your WPF application, you’ll notice that it appears in the 
upper-right corner of the MainWindow. A WPF application relies on windows, not on forms as a 
Windows Forms application does. Because of this difference, configuring the WebBrowser control is a 
bit different from configuring it for a Windows Forms application. The following steps tell you how to 
perform this task:

Modifying the WpF application Controls

1. Hide the Toolbox and display the Properties window. One thing you’ll notice immediately is 
that the WPF properties window doesn’t provide any helpful information about the property 
you select, as shown here.

 



20  Start here! Learn Microsoft Visual C# 2010

This difference means you must know a bit more about the properties you’re using when 
working with WPF. Fortunately, Microsoft provides detailed help for the controls and you can 
always refer to Help by pressing F1.

tip If you find that you’ve set a property incorrectly, you can always return it to its 
default value by right-clicking the property and choosing Reset Value. This feature 
makes it  possible to experiment safely with your application settings. 

2. Type Auto in the Height property. This value ensures that the control automatically adjusts to 
its container size in the y axis.

3. Change the HorizontalAlignment property value to Stretch. This change lets the WebBrowser 
control extend the length of the window, no matter what size the window is.

4. Type http://www.microsoft.com in the Source property. This change sets the starting URL 
for the WebBrowser control.

5. Change the VerticalAlignment property value to Stretch. This change lets the WebBrowser 
control extend the height of the window no matter what size the window is.

6. Type Auto in the Width property. This value ensures that the control automatically adjusts to 
its container size in the x axis. At this point, the control is configured for use.

trying the WpF application
It’s time to try the WPF application. Like the Windows Forms application, you must compile the 
WPF application by choosing Debug | Build Solution or by pressing F6. You’ll see a Build Succeeded 
message in the lower-left corner of the IDE, as before. To start the application, choose Debug | Start 
Debugging, press F5, or click Start Debugging on the Standard toolbar. You’ll see an application that 
looks similar to the Windows Forms application, as shown in Figure 1-14.

FIGURE 1-14 The WPF application produces about the same output as the Windows Forms application.



 CHAPTER 1 Getting to Know C#  21

The two applications aren’t precisely the same in appearance, but they’re very close. They do work 
precisely the same way. Click any link in the window and you’ll go to that page. You can access all of 
the browser controls by right-clicking the window and choosing an option from the shortcut menu. 
In short, you’ve created a WPF version of the Windows Forms application you created earlier—all 
 without any coding! When you’re done with the application, click the Close box as usual.

Viewing the WpF Code
As with the Windows Forms example, every design decision you make when working with WPF  creates 
code. The IDE creates this code for you in the background. You can see this code by clicking the XAML 
tab in the IDE. Remember that XAML is actually a form of XML, so it looks like code that you may have 
seen in other situations. Figure 1-15 shows what the XAML looks like for this example. (I’ve reformatted 
it for the book—the code you’ll see will appear on a single line, but it’s the same code.)

FIGURE 1-15 The XAML code for the example application is simpler than the Windows Forms alternative.

If anything, this code is a little clearer than the Windows Forms example code. All of the changes 
you made appear as part of the <WebBrowser> tag. Each attribute/value pair describes a single 
change.

You might wonder why this example didn’t change the name of the form and the control as the 
Windows Forms example did. It turns out that these properties don’t appear in the Properties window. 
If you want to make this particular change, you need to work with the XAML directly. For example, if 
you want to change the name of the WebBrowser control, you’d type Name=”MyBrowser”.



22  Start here! Learn Microsoft Visual C# 2010

Creating the No Code WPF Browser Application

Both of the applications presented so far in the chapter have one thing in common—they create 
a separate application that appears like any other application on your hard drive. The application 
starts just like any other application you’ve seen before. The WPF Browser Application example in this 
 section is different. It starts up in your browser. That’s right—this is a special kind of application that 
appears in your browser, even though you aren’t accessing it from the Internet. The benefit of this 
kind of application is that it lets you start the user on the local hard drive and move onto the Internet 
or a local server without any change in appearance. The user only knows that the application appears 
in a browser, not where the application or its associated data resides.

Understanding the Benefits of a Mixed Application
Don’t get the idea that Windows Forms and WPF are mutually exclusive—that you must choose 
between one technology and the other. In fact, Microsoft has purposely made it possible for 
each technology to host the other. It’s possible to create an application that mixes the two 
 together, so that you can get the best of each. You could potentially update an existing application 
with WPF elements to give users the kind of experience they demand without reworking the 
entire application.

The best way to use this potential is to build application programming skills a little at a time. 
You can start with Windows Forms applications and add WPF elements gradually until you 
know both technologies well. The mixed environment also makes it possible to gradually move 
users to the new environment so that they require less training time.

Setting Internet explorer as the Default
Before you can use this application type successfully, you need to set Internet Explorer as your default 
browser. Follow these instructions to ensure that you have the correct setup:

Configuring Internet Explorer as the Default Browser

1. Choose Start | Control Panel. The Control Panel opens.

2. Click Network And Internet. The Network and Internet options appear.

3. Click Internet Options. The Internet Properties dialog box appears.

4. Click the Programs tab. This tab contains a number of options, including the default browser.

5. Click Make Default. Internet Explorer becomes the default browser (if it isn’t the default already).



 CHAPTER 1 Getting to Know C#  23

Starting a WpF Browser application project
Now that you have Internet Explorer configured, it’s time to create the WPF project. The following 
stps show how to create a basic WPF project that won’t require any coding.

Creating the WpF Browser application
1. Start the Visual C# 2010 Express IDE if you haven’t started it already.

2. Click New Project. The New Project dialog box appears.

3. Select the WPF Browser Application template from the Visual C# folder.

4. Type WPF Browser Example in the Name field.

5. Click OK. The IDE creates the new project for you, as shown here.

As you can see, this is another WPF application. However, notice that this application doesn’t have 
a MainWindow—instead it has a page. That’s because the application is hosted in  Internet Explorer 
and isn’t created as a-standalone application.

adding WpF Browser Controls
This example doesn’t rely on the WebBrowser control used for the other two examples in the chapter. 
If you try to use the WebBrowser control in your WPF Browser application, the application will likely 
crash. That’s because you’re attempting to host a copy of Internet Explorer within itself (at least, that 
seems to be the theory). So this example relies on a different control for demonstration purposes. 
Begin by displaying the Toolbox by clicking its tab and then clicking the Auto Hide button on the 



24  Start here! Learn Microsoft Visual C# 2010

Toolbox window. Add the Image control (the only control used in this example) using any of the three 
techniques described in the “Adding Windows Forms Controls” section of the chapter.

Configuring the WPF Browser Controls
When you add the Image control to your WPF application, you’ll notice that it appears in the upper-right 
corner of the Page1. Working with an Image control is similar to working with the WebBrowser, but there 
are some differences. The following steps tell you how to configure the Image control for use:

Modifying the WpF Browser application Controls

1. Hide the Toolbox and display the Properties window.

2. Set the Height property to Auto.

3. Change the HorizontalAlignment property value to Stretch.

4. Type http://apod.nasa.gov/apod/image/1104/m74_baixauli_900.jpg in the Source 
property. This change sets the picture that the Image control displays. If you have some other 
favorite picture you’d like to see, you can provide its location as a source instead.

tip If you set the Source property successfully, you’ll see the picture appear immediately 
in the IDE, unlike the WebBrowser control where you must try the application out to see 
whether the Source property is correct. A number of controls provide instant feedback, 
which makes them easier to use.

5. Change the VerticalAlignment property value to Stretch.

6. Set the Width property to Auto.

trying the WpF Browser application
The IDE does provide certain shortcuts when working with applications. Normally, you want to 
 compile your application first to determine whether there are any errors, and then run it. However, 
this time try something different. Choose Debug | Start Debugging, press F5, or click Start Debugging 
on the Standard toolbar to start the application without first compiling it. What you’ll see is that the 
IDE automatically performs three tasks:

1. Saves your project to disk.

2. Compiles the application for you and displays the success message in the lower-left corner of 
the IDE (you need to look quickly). 

3. Starts the application for you.



 CHAPTER 1 Getting to Know C#  25

Even though the IDE will perform these tasks for you, it’s still better to do them yourself. It’s a 
good idea to get into the habit of saving your project often and looking for errors when you compile 
it. Still, it’s nice to know that the IDE performs these steps for you when you forget. Figure 1-16 shows 
what the example application looks like.

FIGURE 1-16 The WPF Browser Application displays within a browser, rather than as a desktop application.

The example shows a stunning picture of the universe (M74, a spiral galaxy). As you can see, 
the page exists in Internet Explorer and it could just as easily be an application that relies on both 
local and remote resources. Closing Internet Explorer stops the application and returns the IDE to 
 development mode.

Viewing the WpF Browser Code
As with the previous WPF example, you click the XAML tab to see the code produced for you by the 
IDE. Instead of a WebBrowser control, you’ll see the code for an Image control this time. Figure 1-17 
shows the code you’ll see (with the code reformatted for presentation in the book—your code will 
appear on a single line).



26  Start here! Learn Microsoft Visual C# 2010

FIGURE 1-17 The XAML for this application shows the use of the Image control to display content.

Get Going with C#

This chapter gets you started with Visual C#. You install products that permit both desktop and web 
development. In addition, you create three desktop application examples that require no coding on 
your part. Of course, you now know that all three examples do have code in them and that the IDE 
creates this code for you. The biggest lesson you can learn from these examples is to let the IDE help 
you create your applications whenever possible. Using IDE features to speed development efforts 
means that you spend less time coding and more time enjoying some time out on the town.

You discovered some new techniques for creating an application in this chapter. Although most 
 applications do require that you add code to make them functional, you can play around with many 
of the controls and develop an application that’s at least partially functional. Take some time now to 
play around with some of the more interesting controls to see what they do. Of course, we’ll cover 
many controls as the book progresses, but it’s important to realize that working with applications can 
be fun and that play time (time spent seeing what happens when you do something) is a big part of 
 application development—at least it is for the best developers.

Chapter 2, “Developing a Web Project,” adds to the information you’ve already learned in this 
chapter. However, instead of working with desktop applications, you’ll work with web applications. 
In this chapter, you opened the Visual C# 2010 Express IDE and learned some basics about it;  Chapter 2 goes 
through the same process for Visual Web Developer 2010 Express. By the time you finish  Chapter 2, 
you’ll have created some additional no-code web examples and will understand how they differ from 
desktop applications.



  27

Chapter 2

Developing a Web 
project

after completing this chapter, you’ll be able to:

■■ Start Visual Web Developer 2010 Express so you can build web applications with it

■■ Create a standard project without writing any code

■■ Create a standard website without writing any code

DESKTOP APPLICATIONS ARE STILL THE primary way that businesses interact with data—but a vast 
 array of other options are available. One increasingly common choice relies on the Internet (or an 
intranet) to host various kinds of applications. This book won’t show you every kind of application you 
can create in Visual Studio, but it does provide an overview of how to build the more popular types. 

Most applications begin with the need to access some type of data from a client application. 
The client-server paradigm has been around for many years in a number of forms. These Internet 
 applications are just another form.

For more information, see “client-server” in the accompanying Start Here! Fundamentals of Microsoft .NET 
Programming book. To obtain your copy, see the section titled “Free Companion eBook” in the introduction to 
this book, or turn to the instruction page at the back of the book.

This chapter begins by exploring the tool you use to create web applications of various types: 
Visual Web Developer 2010 Express. The applications you will focus on first are intended for the client. 
Knowing how to create a user interface for any sort of data is helpful, even data hosted by someone 
else. In fact, with the incredible stores of data available online, it’s a wonder that people still find 
something new to store—but they do. Visual Web Developer 2010 Express can help you create most 
of the client application types that the .NET Framework supports.

After you get to know Visual Web Developer 2010 Express a little better, you’ll begin working with 
some actual applications, creating a simple project, and using it to define a simple web application. 



28  Start here! Learn Microsoft Visual C# 2010

The second project shows you how to create a simple website and access it using a browser. These two 
 application types go a long way toward getting you started programming the Internet, but of course, 
they’re just the beginning. Other chapters in this book explore web applications in considerably more 
detail.

Note This chapter assumes that you’ve installed Visual Web Developer 2010 Express 
on your system. If you haven’t performed this task, look at the instructions found in the 
“Obtaining and Installing Visual Studio 2010 Express” section of Chapter 1. This section 
shows how to install both Visual C# 2010 Express and Visual Web Developer 2010 Express. 
It also contains instructions for updating your installation to use Service Pack 1 (SP1), which 
contains important fixes that affect the examples in this book.

Starting Visual Web Developer 2010 Express

After you have Visual Web Developer 2010 Express installed on your system, follow these steps to 
start the Integrated Development Environment (IDE) (which is different from the Visual C# 2010 
 Express product used in Chapter 1): choose Start | All Programs | Microsoft Visual Studio 2010 Express 
| Microsoft Visual Web Developer 2010 Express. You’ll see the IDE start up, as shown in Figure 2-1.

FIGURE 2-1 The Visual Web Developer IDE opens with the Start Page.



 CHAPTER 2 Developing a Web Project  29

The IDE begins by displaying the Start Page. You can turn this feature off by clearing the Show 
Page On Startup option in the lower-left corner. If you later decide you want to see the Start Page, 
choose View | Start Page and select the Show Page On Startup option again. The Close Page After 
Project Load option works for both projects and websites. It frees up screen real estate by closing the 
Start Page when it’s no longer needed after you create or open a project or website.

The left side of the Start Page also contains links for creating or opening a project or website.  
The “Understanding the Difference Between Websites and Projects” section of this chapter describes 
the differences between a project and website, so don’t worry about it for now. 

Anything you’ve worked on recently (both projects and websites) appears in the Recent Proj-
ects list. Click the entry for the project or website you want to open. If you’re using Windows 7, 
remember that you also have access to the Jump Lists feature by right-clicking the Microsoft 
Visual Web Developer 2010 Express entry in the Start menu, and choosing the project or website 
you want to open.

On the right side of the display, the Get Started tab contains a number of interesting entries. These 
entries are all devoted to helping you become more productive with Visual Web Developer 2010 
Express quickly. They’re also different from the Visual C# 2010 Express offerings. Here are the four Get 
Started topics and why you should look at them:

■■ Get Started with aSp.Net and Visual Web Developer express This option doesn’t display 
help information—you get help by pressing F1. Instead, the first link for this entry provides 
access to videos and tutorials you can use to learn more about Visual Web Developer. The 
second link provides access to the Active Server Page (ASP).NET forums where you can ask 
questions of other developers and various experts that roam the forums.

■■ explore Free Open Source applications Click the link for this option to see open source 
applications at http://www.microsoft.com/web/gallery/. When you get to the site, you’ll see a 
number of free applications. You can select an application and click Install to download and 
automatically install the application to your hard drive so that you can use it. For example, 
you’ll find a number of interesting Content Management Systems (CMSs), such as Joomla and 
DotNetNuke. It pays to spend some time browsing this site even if you don’t end up down-
loading anything, because looking at the range of available applications can provide useful 
ideas for your own applications.

■■ Find affordable Web hosting Click this link to find a number of affordable web hosting 
companies at http://www.microsoft.com/web/hosting/home. Each company offers different 
features at different rates, so you’re likely to find a solution that meets your needs. 

Note You don’t need a web hosting company for development. You need one 
only when you’re  planning to publish your applications online—usually for public 
 consumption.



30  Start here! Learn Microsoft Visual C# 2010

■■ Get More Software at No Cost This section contains a number of links for free software. 
For example, if you click the Microsoft DreamSpark for Students link, you’ll go to   
http://www.microsoft.com/web/hosting/home, where you can find out more about this 
product.  DreamSpark is more than a single application; the site actually provides access to a 
number of applications, including Visual Studio 2010 Professional and Microsoft Certification 
exams.

The Latest News tab provides information in Really Simple Syndication (RSS) form about Visual 
Web Developer updates and changes. To use this feature, click the Enable RSS Feed option. However, 
you should know that obtaining the latest information in the IDE can slow things down at times.  
A better option is to add the site’s RSS feed to Outlook. To do that, first make sure Outlook is running. 
Copy the Uniform Resource Locator (URL) from the RSS Feed field and paste it into your browser’s 
 address field. Press Enter, and after a few seconds your browser will ask if you want to add the RSS 
feed to Outlook. 

Note The link provided for Visual Web Developer 2010 Express is different from the one 
for Visual C# 2010 Express, so you’ll want to add them both to Outlook.

Creating the No-Code Project

Web development is substantially different from desktop development. For one thing, when creating a 
web application you’re always interacting with a web server, even if that server is installed on your own 
system. A desktop application has no such intermediary—the operating system executes the application 
directly on the local system. In addition, web applications normally rely on a browser to host them on the 
client computer. You’ll encounter a number of these differences as the book progresses, but this chapter 
will introduce you to a few of the desktop/web application differences.

Note Visual Web Developer 2010 Express supports multiple languages—Visual Basic .NET 
and Visual C#—and a wealth of project types. This book won’t discuss the Visual Basic .NET 
features of Visual Web Developer—you can find those features discussed in Start Here! 
Programming in Visual Basic .NET—however, you’ll explore all the C# project types as you 
progress through this book.

The example in this section is a simple project. You’ll create an ASP.NET application with a 
basic interface. As with the desktop applications presented in Chapter 1, you’ll let the IDE create 
the required source code for you.



 CHAPTER 2 Developing a Web Project  31

Starting the New project
This section of the chapter shows how to build a project. This process is typical for every kind of 
 project, even if you’re using a different template than the one discussed in this section. Of course, 
each template produces a different kind of application, so what you see after you complete the 
 process will differ depending on which template you’re using. Carefully follow these steps to get 
started.

Create a New Web project

1. Choose Start | All Programs | Microsoft Visual Studio 2010 Express | Microsoft Visual Web 
Developer 2010 Express. You’ll see the IDE start up.

2. Click New Project. You’ll see the New Project dialog box shown here.

Notice that Visual Web Developer 2010 Express supports both Visual Basic .NET and Visual C#. 
Make sure you always select the Visual C# folder to work with the C# templates. Otherwise, 
you’ll create a Visual Basic .NET application.

3. Highlight the Visual C# folder. You’ll see a number of subfolders that help you locate 
 application templates by type. For example, if you click the web folder, you’ll see only those 
templates associated with web projects.



32  Start here! Learn Microsoft Visual C# 2010

Choosing a specific type can save time when you know the type of application you want to 
create. The center pane of the New Project dialog box contains the list of templates within a 
particular folder. The right pane describes the template you select. Notice that the left pane 
confirms that you’ve selected a Visual C# template.

The New Project dialog box also contains controls to change the appearance of the center 
pane. You can choose small or larger icons. In addition, you can sort the templates in a specific 
order.

4. Select a project type. The example application uses the ASP.NET Web Application template.

5. Type the name No Code Project in the Name field. Notice that the Solution Name field 
 automatically changes to reflect the name you just typed in the Name field. The Solution 
Name field can contain a different value. A solution is a kind of container. You can store 
multiple projects in a single solution. For example, you might store an application and its test 
program in a single solution. Thus, the Solution Name field can be different from the project 
name because it reflects the name for a multi-project solution.

6. Choose a location where you want to store the project files. (Click Browse to display the 
Project Location dialog box to choose the folder you want to use.) The default location is 
c:\users\<User Name>\documents\visual studio 2010\Projects; however, you can choose 
any location on your hard drive to store the project. Unlike the desktop applications  
created in Chapter 1, the simple act of creating a project stores files on disk, which is why 
you must choose a storage location in the New Project dialog box.



 CHAPTER 2 Developing a Web Project  33

7.  Select the Create Directory For Solution option if you want the solution file to appear in its 
own folder. This feature is useful primarily when you’re creating a multiple-project solution, 
because each project will appear in its own subfolder. However, keeping the option selected 
for a single project solution doesn’t cause any problems, so normally you keep this option 
selected.

8. Click OK. The IDE will create the new project for you based on the template you select. Some 
templates provide default content; others are completely blank. The template used for the 
example project provides the default content shown here.

The default display takes you to the code immediately, which isn’t what you want in this case.  
You can click Design to see the graphical interface or click Split to see a combination of the  graphical 
interface and code. Click Design and you’ll see the graphical view of the default site, as shown in 
Figure 2-2.



34  Start here! Learn Microsoft Visual C# 2010

FIGURE 2-2 The sample application includes a number of interesting elements.

That’s quite a bit of content. The “Understanding the Default Site” section explains all this content 
in a little more detail.

Understanding the Default Site
The default site that the ASP.NET Web Application template creates contains a number of individual 
elements. Each element contributes toward the whole site. In many cases, you’ll want to keep all 
these elements as a starting point for your project. But because they can prove confusing, this section 
explains the most important elements—the ones you need to know about now to create a program 
without coding anything. Later, this book describes more of the template elements so you can begin 
coding your website.

Looking at the elements
Before going any further, it’s important to understand how these default site elements appear in the 
IDE. If you can see the Properties window, click the Auto Hide button in the upper-right corner. Click 
Solution Explorer, and then click the Auto Hide button so the window remains fixed in position. You’ll 
see a list of the default site elements like the one shown in Figure 2-3.



 CHAPTER 2 Developing a Web Project  35

FIGURE 2-3 Solution Explorer makes it possible to see all of the files for your application.

Solution Explorer provides access to all the files that make up the default site, even those you won’t 
use for this example. The entries you need to know about for this project are:

■■ Site.Master Provides a template that gives the entire site the same look and feel. This file 
is the master page—a page that controls all the other pages. Using a master page makes it 
possible to create complex sites with far less code. The master page contains the overall site 
design, so you need to make changes to the master page only when you want to change your 
entire site to have a different look and feel.

■■ Site.css Describes the formatting used for the entire site. For example, if you want all 
 headings to use a bold font, you’d place that information in this file.

■■ Default.aspx Contains the content for the first page that anyone who visits your site sees 
when they enter your site using just the domain URL. (As with any other site, someone can 
enter a page-specific URL to access another content page directly.) This default page normally 
contains an overview of your site as well as links to other information on your site.

■■ about.aspx Holds information about your site, the application, or your organization. The 
default site provides this simply as a placeholder page; you won’t find any actual content on 
this page.

The default site contains a number of features that you may not require at all. For example, the 
master page contains a link to a login page that users can use to log on to your site. Unless you need 
this security feature, you probably won’t keep it in place. However, for now you won’t need to worry 
about whether these features are in place. The example in this section doesn’t use them, and you 
don’t need to worry about them.



36  Start here! Learn Microsoft Visual C# 2010

Working with the Master page
The master page, Site.Master, contains the overall design for your site. When you open a content 
page that uses the master page, you see an entry for it in the upper-right corner of the page in 
 Design view. 

Note The master page file may not always be named Site.Master, but it is when you’re 
working with the default site.

Begin by looking at the Def ault.aspx file that you see when Visual Web Developer 2010 Express 
first opens the project for you. If you place the cursor in any location controlled by the master page, 
you’ll see a red circle with a line through it, as shown in Figure 2-4.

FIGURE 2-4 The master page contains all of the elements that are common to all pages on a website.

To change the site name, open the master page by clicking the Site.Master link in the upper-right 
corner. Figure 2-5 shows what you see when you click this link and choose the Design tab.



 CHAPTER 2 Developing a Web Project  37

FIGURE 2-5 In order to change master page content, you must open the Site.Master file.

All the elements that were previously inaccessible are now ready to edit. Making a change here 
 affects every page that uses this master page. Now that you can access the master page, you can 
make changes to it.

edit the Master page

1. Type No Code Project for the heading.

2. Press Enter to create another line.

3. Change the Block Format to Heading 2 and type An Example of Working with an ASP.NET 
 Application. Notice that the color of the text is unreadable against the background.

4. Highlight the entire line, click Foreground Color, and choose Red as the new color.

5. Scroll to the right side of the page. Highlight and delete the login entries because this 
 example doesn’t use them. At this point, your Site.Master file should look like the one shown 
on the next page.



38  Start here! Learn Microsoft Visual C# 2010

This shows the Split view of the file. As you can see at the top, the code reflects the changes 
made in the various steps. Notice that changing the color of the second heading creates a 
new style entry. This change appears only in the Site.Master file, not in the Site.css file used to 
control the styles for the entire site.

6. Save and close the Site.Master file.

Changing the Default.aspx Content
The Default.aspx file contains content. The master page controls the overall layout of the page 
and the Style.css file controls the appearance of the page. So when you work with this page, you’ll 
 typically want to focus on the actual content, using the other two resources only when you want to 
change the layout or appearance of all the pages on your site.

This part of the example displays a custom heading and an image as content. Use these steps to 
make the changes.



 CHAPTER 2 Developing a Web Project  39

add Content to Default.aspx

1. Highlight the existing heading text and type An Image on a Web Page. The next step is to 
display an actual image.

2. Highlight the existing text under the heading and delete it.

3. Click the Toolbox tab, and then click Auto Hide to keep it displayed. As with Windows Forms 
applications, you can use one of three techniques to add controls to a webpage:

• Drag the control from the Toolbox and drop it onto the page.

• Single-click a control within the Toolbox and then click the page where you want the 
 control to appear.

• Double-click the control within the Toolbox, placing it in a default location on the page.

4. Use one of the preceding three techniques to add an Image control to the webpage.

5. Close the Toolbox by clicking Auto Hide.

6. Display the Properties window by clicking its tab and then clicking Auto Hide.

7.  Be sure that the Image control you added is selected, and then type StellarImage into the 
(ID) property field. The (ID) property serves the same purpose as the (Name) property for 
Windows Forms applications—it identifies the control so that you can access it easier later.

8. Type 400 in the Height property. This property sets the height of the image in pixels. If you 
don’t set the image height, the page displays the image at the same size as the image source.

tip To maintain an image’s aspect ratio (the relationship between its height and 
width), you can set either the Height or Width property. The image automatically 
 resizes the image in both dimensions to maintain the aspect ratio. For example, 
when the source image is 800 pixels wide by 600 pixels high, setting the Height 
property to 300 automatically changes the Width property to 400. Use the property 
that matters most to your site’s layout.

9. Type http://apod.nasa.gov/apod/image/1104/m74_baixauli_900.jpg in the ImageUrl 
property. The image will display on the page automatically.



40  Start here! Learn Microsoft Visual C# 2010

10. Type 450 in the Width property. This property sets the image width in pixels. If you don’t set 
the image width, the page will display it at the original size (839 x 746), which is too large. Your 
Default.aspx page should now look like this.

At this point, it’s helpful to close the Properties window and click Source. You’ll see the source code 
used to create Default.aspx—there isn’t much, as shown in Figure 2-6.



 CHAPTER 2 Developing a Web Project  41

 
FIGURE 2-6 Even though the application output looks complex, it doesn't require much code.

The source code begins with some ASP script code. Any code you see that appears between the 
delimiters <% and %> is ASP script. This script defines programming-related features of Default.aspx, 
including the programming language (C#), the name of the master page file, and the name of the 
file used to hold the C# code for the page (the code behind file). Setting AutoEventWireup to “true” 
 simply means that any events that the user generates on the page (such as clicking a button) will 
automatically get passed to the C# code that supports the page. The Inherits entry tells which class 
within the code behind file to use with this page. You’ll discover more about ASP script later in this 
book; for now, all you really need to know is that entry defines some aspect of the page.

After the ASP script code, you see an <asp:Content> tag. This is also an ASP.NET entry that refers 
to a kind of control used on webpages. In this case, the control is described in the Master.Site file. 
The ContentPlaceHolderID=”HeadContent” entry tells you that this is the header content from the 
Master.Site file. You can place header-specific information for Default.aspx here, such as <meta> tags 
that describe the page content. Meta-information is information about something else—in this case, 
<meta> tags describe the content of the page.



42  Start here! Learn Microsoft Visual C# 2010

A second <asp:Content> tag appears next. This one uses the ContentPlaceHolderID=”MainContent” 
entry from the Master.Site file. The content appears within this placeholder. There’s a level 2  heading 
(the <h2> tag) that contains the content title you defined and a paragraph (<p> tag) that contains the 
Image control, which is actually an <asp:Image> tag. Each property you defined earlier appears as a 
separate attribute in the file. You’ll see more examples of how this kind of content works as the book 
progresses.

Viewing the Master.Site File Code
The “Changing the Default.aspx Content” section earlier in this chapter explored the code used to 
 define the default page. That code relies heavily on the master page code that resides in the Master.
Site file. Reopen this file by clicking the Site.Master link in the Default.aspx file Design view. Click 
Source when the Master.Site opens. You’ll see the code shown in Figure 2-7.

FIGURE 2-7 The Site.Master file contains a lot of code that applies to all pages that use it.

The first line is an ASP script similar to the one you saw in Default.aspx, and serves the same purpose. 
Of course, Master.Site doesn’t contain any MasterPageFile entry—because it’s the master page!

Immediately below the ASP script, you’ll see some entries that you’d find in any webpage, such 
as the <!DOCTYPE>, <html>, and <head> tags. These are all standard for a webpage. However, 
look inside the <head> tag and you’ll see some ASP.NET entries. The <asp:ContentPlaceHolder 
ID=”HeadContent” runat=”server”> tag is a placeholder tag that defines the position of header 
content that will be added later by the various pages that rely on this master page. You’ll remember 



 CHAPTER 2 Developing a Web Project  43

seeing the HeadContent identifier from the Default.aspx file—this is where that identifier comes from. 
The <head> tag also contains a <link> tag that points to the Site.css file, which defines all the styles 
for the site.

The “Working with the Master Page” section already discussed the <body> tag content briefly. 
One of the tags you want to pay attention to in the <body> tag is the <asp:ContentPlaceHolder 
ID=”MainContent” runat=”server”/> tag. This tag describes the other content placement tag you saw 
in Default.aspx. Those <asp:Content> tags are where you’ll add page-specific content in the pages 
that rely on this master page. The other tags in the <body> tag describe the layout and content 
features common to all pages. Don’t worry about getting too deeply into this information now; just 
view it, start becoming familiar with the tag names, and start thinking about how the various pieces 
interact with each other.

Viewing the Site in a Browser
You’ve looked at the master page, Master.Site, and a content page that relies on the master page, 
Default.aspx. It’s time to see the application in action. Press F5, choose Debug | Start Debugging, or 
click Start Debugging on the Standard toolbar. The IDE starts the ASP.NET Development Server. This 
server appears as an icon in the Notification Area. Right-click the icon and you’ll see three options on 
the shortcut menu:

■■ Open in Web Browser Opens a copy of the default page in the default browser. The server 
and the browser run independently. You can close the browser and reopen the page by 
 choosing this option.

■■ Stop Stops the ASP.NET Development Server and shuts it down. This isn’t the same as 
 shutting down a web server installed on your system. You can restart the server at any time by 
pressing F5 again.

■■ Show Details Displays information about this particular ASP.NET Development server, as 
shown here (clicking the link opens a copy of the default page in your browser).

After the ASP.NET Development Server starts, it opens a copy of your default browser and displays 
the Default.aspx page, as shown in Figure 2-8.



44  Start here! Learn Microsoft Visual C# 2010

FIGURE 2-8 The example application displays a picture within a browser, and also provides access to other site 
features.

Notice that the URL contains a port setting (the 2244 after the localhost domain in the Address 
field). The IDE configures each of your applications to use a different, non-standard, port as a security 
feature. Using a non-standard port makes it less likely that someone will attempt to gain access to 
your system through the ASP.NET Development Server.

If you’re using a default Internet Explorer setup, you’ll likely see the warning note displayed at the 
top of the client window in this screenshot. Click the warning message and you’ll see a shortcut menu. 
Choose the Enable Intranet Settings option. At this point, you’ll see a message box warning you that 
intranet settings are less secure than Internet settings. Click Yes to enable the intranet settings so 
that you can easily debug your ASP.NET applications. The page will redisplay with all the features in a 
 usable state.

Notice the two tabs on the page: Home and About. If you click About, you’ll see the About.aspx 
page content. It doesn’t look like the pages have changed, but the page content has. The  Address 
field does change to show the change in pages, but the overall effect is that only the content 
changes, not the layout. ASP.NET provides a host of very cool effects that you’ll try out as you go 
through the examples in the book. When you finish working with the example, right-click the ASP.NET 
 Development Server icon in the Notification Area and choose Stop from the shortcut menu.



 CHAPTER 2 Developing a Web Project  45

Creating the No Code Website

Visual Web Developer 2010 Express gives you a choice between creating a project and a website. 
There are situations when you will use a project instead of a website—each type has advantages and 
disadvantages. The purpose of this section is to explore the difference between projects and websites.

Defining a Website Location
A project always appears on your hard drive. You create the project as described in the “Starting the 
New Project” section of this chapter. Websites can begin on the hard drive, just like projects—but you 
can also create them on either a website, using the Hypertext Transfer Protocol (HTTP), or on a File 
Transfer Protocol (FTP) site, using FTP. The following steps help you get a new website started.

Create a New Website

1. Choose Start | All Programs | Microsoft Visual Studio 2010 Express | Microsoft Visual Web 
Developer 2010 Express. You’ll see the IDE start up.

2. Click New Web Site. You’ll see the New Web Site dialog box shown here.

One of the first things you should notice is that fewer projects are available when  working 
with a new website. For example, no Silverlight projects are available when using this  option, 
nor will you find an entry for using Azure. Even though a website offers more location 
 flexibility, you lose the option of using certain types of templates. Of course, if you need the 
location flexibility, using a new website project will still likely be your best choice.

3. Select a project type. For this example application, select the ASP.NET Web Site template.



46  Start here! Learn Microsoft Visual C# 2010

4. Select an option from the Web Location drop-down list. Use File System for this example, as 
shown in the preceding figure.

5. Provide a location (path) and name in the location field. When working with a website, you 
don’t have the option of using a solution to group projects together. This example uses a File 
System connection in the default directory, with No Code Site as its location. You need to 
provide one of three kinds of information in this field, depending on the option you selected 
from the Web Location drop-down list:

• File System Provide a path and website name. The default path is C:\Users\<User Name>\
Documents\Visual Studio 2010\WebSites\, but you can use any location on a local hard 
drive or on a network drive that you can access. As with projects, the simple act of creat-
ing a project stores files on disk, which is why you must choose a storage location in the 
New Project dialog box. Click Browse to display a Choose Location dialog box like the one 
shown here where you can choose a file system location anywhere your system can access.

• http Supply a fully qualified URL for the website you want to use. The URL must include 
the http:// protocol. Click Browse to display the Choose Location dialog box. In this case, 
you can choose between Local IIS and Remote Site options. In both cases, you end up with 



 CHAPTER 2 Developing a Web Project  47

a fully qualified URL pointing to the website. When working with a Local IIS site, you can 
also select the Use Secure Sockets Layer option to create a secure connection to the site 
(when the site supports the SSL).

• Ftp Supply a fully qualified URL and accompanying information to access an FTP site. 
Unless your site allows anonymous access, you must click Browse in this case to display the 
FTP information. This information includes the server domain, port number, initial server 
directory, whether to use passive mode, and the login information (name and password).

6. Click OK. The IDE creates a new website for you. The basic site features look precisely the same 
as the project features described earlier.

adding a New page
In the project example earlier in the chapter you modified Default.aspx. You could perform precisely 
the same changes in this site, but you can make other changes. In this case, you’ll add another page 
to the site using the following steps.

1. Click the Solution Explorer tab and then click Auto Hide to keep the window open. You’ll see a 
list of folders and files contained within the site, as shown here.

2. Right-click the topmost (site) entry in the list and choose Add New Item from the shortcut 
menu. You’ll see the Add New Item dialog box, as shown on the next page.



48  Start here! Learn Microsoft Visual C# 2010

3. Highlight the Web Form entry, as shown in the figure. (As you can see from the figure, you can 
add quite a few items using this dialog box, some of which are discussed later in this book.)

4. Type Image.aspx in the Name field. This is the name of the file as it appears in Solution 
 Explorer later.

5. Select the Select Master Page option. This selection will create a page that uses the existing 
master page, rather than a stand-alone page that uses its own layout and formatting. 

Note If you don’t select this option, the resulting page won’t look the same as the 
others on the site.

6. Click Add. You’ll see the Select a Master Page dialog box shown here.



 CHAPTER 2 Developing a Web Project  49

Because only one master page is associated with this site, you see only one entry in the list 
in the right pane. However, your site can use as many master pages as needed to fully define 
the characteristics of your site. If your site places the master pages in a special folder, you can 
navigate to that folder using the entries in the left pane.

7.  Highlight Site.master and click OK. You’ll see a new page added to your project as shown in 
Solution Explorer. The page contains only the ASP script and the two placeholder entries for 
the header and main content, as shown here.

8. Click Auto Hide in Solution Explorer to hide the window. Display the Toolbox by clicking its tab 
and then clicking Auto Hide.



50  Start here! Learn Microsoft Visual C# 2010

9. Drag an Image control onto the Source window so that it appears like the one shown here.

Note When working with a web project or site, you can drag and drop controls into 
the Design or Source windows with equal ease. You can choose whichever solution 
works best for you.

10. Close the Toolbox by clicking Auto Hide.

11. Display the Properties window by clicking its tab and then clicking Auto Hide.

12. Type StellarImage in the (ID) property. Notice that you can see each of the changes you’re 
making in the Source window. This is one advantage of using the Source window over using 
the Design window. Of course, you can’t see what’s actually happening to the control—all you 
can see is the code that your change is generating.

13. Type 400 in the Height property. This example won’t set the Width property; the page 
 automatically maintains the aspect ratio when you set just one of the Width or Height 
 property values.

14. Type http://apod.nasa.gov/apod/image/1104/m74_baixauli_900.jpg in the ImageUrl 
property. Because you’re working in the Source window, you won’t see the image, but the 
 image will appear if you click Design.

15. Close the Properties window by clicking Auto Hide.



 CHAPTER 2 Developing a Web Project  51

adding the page to the Site Menu
You have a shiny new page—but no way to access it. At this point, you need to add this new page to 
the master page so that you can select it in the browser.

1. Click Design on the new Image.aspx page. Click the Site.Master link in the upper-right corner. 
The Site.master file opens.

2. Select the square that contains the words Home and About. Notice the odd arrow that 
 appears when you do this. Many controls provide a similar arrow. When you click the arrow, 
you see a Menu Tasks dialog box like the one shown here.

3. Click Edit Menu Items. You’ll see the Menu Item Editor window shown here.

This editor lets you change the characteristics of this control without writing any code. As with 
many other tasks, the IDE writes the code for you in the background based on the input you 
provide. Writing code this way is less error prone and considerably easier, so always look for 
these handy control-specific editors whenever possible.

4. Click Add A Root Item. You’ll see a new root item added to the list in the left pane.



52  Start here! Learn Microsoft Visual C# 2010

5. Select the NavigateUrl property and then click the ellipsis button (…) that appears on the right 
side. You’ll see the Select URL window shown here.

6. Highlight the Image.aspx entry in the right pane and click OK. The IDE automatically adds the 
correct entry to the NavigateUrl property for you.

7.  Type Image in the Text property. Notice that the IDE automatically adds Image to the Value 
property for you. Click OK. The control now has a new entry, Image, as shown here.



 CHAPTER 2 Developing a Web Project  53

You’re ready to begin using the new page. When the application runs, you’ll be able to select the 
new page you’ve added simply by clicking its tab.

trying the Site in a Browser
It’s time to try out the changes you’ve made to the site you created. Begin by choosing File | Save All, 
pressing Ctrl+Shift+S, or clicking Save All on the Standard toolbar to save your application changes. 
Now press F5, choose Debug | Start Debugging, or click Start Debugging on the Standard toolbar to 
see the website in your browser. At this point you see the message shown in Figure 2-9.

FIGURE 2-9 You must enable debugging in order to see what your website is doing.

A project is configured for a developer to work through issues from the outset and then create a 
production environment later. On the other hand, a site starts as a production environment, so you 
must specifically enable debugging. Select the Run Without Debugging option and click OK. The 
site opens in your browser. Click the Image tab and you’ll see the new page you added, as shown in 
Figure 2-10.

Warning If you allow the IDE to modify the Web.config file, you’ll need to compile the site 
code again before you can run it. Otherwise, the change won’t appear when you run the 
site and you’ll wonder why the change didn’t take effect.



54  Start here! Learn Microsoft Visual C# 2010

FIGURE 2-10 The new page contains an interesting image.

Feel free to explore the application. When you’re finished, right-click the ASP.NET Development 
Server icon in the Notification Area and choose Stop. The server will stop, and you’ll be able to make 
additional changes to your project.

Get Going with C#

This chapter introduced you to Visual Web Developer 2010 Express. As with the Visual C# 2010 
Express introduction in Chapter 1, this chapter has just barely scratched the surface of creating an 
 application, much less what you can do once you start adding code. However, it’s amazing to see 
what the IDE can do for you without any coding on your part. Visual Web Developer helps you 
start the application, design the user interface, and even writes some of the code for you in the 
 background. As you saw in this chapter, it’s possible to create a small but usable application without 
writing any code at all. You can depend on the IDE to perform quite a lot of work for you.

You can follow many tracks just by using the information in this chapter. For example, you might 
want to try to create a Silverlight application using the same techniques you used in this chapter to 
create a project. Check out the other kinds of projects you can create as well. The right pane of the 
New Project dialog box describes these other project types when you select them.



 CHAPTER 2 Developing a Web Project  55

Make sure you spend some time examining the Toolbox controls as well. Try playing with 
some of these controls in a test application to see what they do. Remember that playing with the 
programming environment is an extremely good way to learn. Don’t be afraid to experiment. 
Try listing a few of the controls that you think you might be able to configure and use to create 
another application without writing any code. All this experimentation will build your knowledge 
of C# and Visual Web Developer.

Note Any project you create and modify without saving is temporary. When you try to 
close the project, the IDE will ask if you want to save the project. Click No and the project 
is placed in the Recycle Bin. If you later decide that you really did want to save that project, 
you can drag it from the Recycle Bin to a location on your hard drive.

The next chapter introduces you to some coding techniques. However, this book takes a different 
 approach from many other texts in that it leaps right into something truly useful, Language Integrated 
Query (LINQ). Using LINQ is an interesting experience because it doesn’t treat programming as an 
 obscure, abstract task that only those with vast knowledge can perform. Instead, it treats applications as a 
source for answering questions. That’s right, the basis of LINQ is to provide you with a way to ask  questions 
about data and obtain a result. You’ll find that Chapter 3, “Basic Data Manipulation Techniques,” is a real 
eye opener when it comes to programming.



 353

array queries
conditional loop version of, 283–284
LINQ version code for, 280–281
loop version of, 282–283

arrays
about, 90
creating, in WebArray project, 279–280

ASP.NET
Development Server, 275
displaying dialog box with, 281
Silverlight vs., 296–297
WebList project, 266–267

Assembly.GetEntryAssembly() method, 192
Assert() method, 330, 333, 334, 335
atom syndication format, 153
automation services, 247

B
background tasking services, 247
balls (TestApplication project)

adding/removing, 233–236
displaying a list of, 237
displaying ball data, 232–233
moving between, 236

BasicSilverlight project, 297–309
adding code, 304–308

enabling buttons, 305–306
handling radio button clicks, 306–308
images in real-world applications, 305
initializing global variable, 304–305
using statement, 304

adding/configuring controls, 300–303
adding XML data support to, 310–323
configuring, for debugging, 309–310
creating, 297–300
debugging with Firefox, 310
setting browser configuration, 309
tracing, 308–309

Index

A
AcceptButton property, 92
access keys, 270
AccessKey setting, 271
Active Server Page (ASP).NET forums, 29
AddBall() method, 225
AddDays() method, 254
Add() method, 105
AddRange() method, 105, 231
alert() function, 296
anchoring, 114
APOD_Image_ImageOpened() event handler, 308
APOD_Select() event handler, 308
Append() method, 273
application data, viewing, 73–75
Application.GetResourceStream() method, 204
application projects, adding, to solutions, 226
applications, configuring, 230–232
App.xaml, 300
arguments

checking for optional, 254–255
checking for required, 253–254
setting command-line, 260–261

array projects
Array project

adding code in, 93–95
adding controls to, 91
configuring controls for, 92–93
starting, 91
testing conditional theories in, 100–101
testing loop theories in, 97–100
tracing, 96–97

WebArray project, 276–285
adding code, 279–284
adding/configuring controls, 278–279
starting, 276–277
tracing, 284–285



354  Index

bool data type

bool data type, 82
Boolean.Parse() method, 145
breakpoints, creating, 72–73
browser

no-code Windows Forms, 8–16
no-code WPF, 16–21
setting configuration of, for debugging, 309
setting default, 22
trying no-code website in, 53–54
viewing No Code web project in, 43–44

browser application, no-code WPF, 22–26
browsers, 64-bit, 296
btnCancel_Click() event handler, 65
btnLINQ_Click() event handler, 95
btnNext_Click() event handler, 290, 292
btnPrevious_Click() event handler, 290, 292
btnQuit, 132
btnTest_Click() event handler, 272, 273, 274
buttons

enabling, 305–306
handling radio button clicks, 306–308

byte data type, 82

C
C#, 1–26

no-code Windows Forms web browser, 8–16
no-code WPF browser application, 22–26
no-code WPF web browser, 16–21
Visual C# 2010 Express, 6–7
Visual Studio 2010 Express, 2–6

call stack, 344–346
CancelButton property, 92
C# data type, 83
char data type, 82
chkChecked_LostFocus() event handler, 321
class-based event handlers, 238–239
classes, 211–214

Debug, 330
and enumerations, 213–214
and events, 213
fields vs. properties with, 213
methods and, 212
and properties, 212–213
and structures, 214
Trace, 336

Click attribute, 183
Close() method, 65, 68, 188
closing event handler, defining the, 188–190

code
adding

Array project, 93–95
BasicSilverlight project, 304–308
Dictionary project, 104–106
EmbeddedSource project, 202–206
List 2 project, 79–80
RESTService project, 159–171
SOAPService project, 175–176
Structure project, 117–120
TestApplication project, 230–239
TestLibrary project, 216–226
WebList project, 272–274
WebStructure project, 287–292
WPFSOAPService project, 198–199
WPF_XML project, 187–193
XML, 130–131
XML_LINQ project, 130–131
XMLRead application, 137–138
XMLSave application, 132–133
XMLSetting project, 143–146

changing, to match data type, 83–84
as error source, 328
reusable, 210–211
viewing

for Windows Forms no-code web 
browser, 14–16
Master.Site file, 42–43
no-code WPF browser application, 25–26
no-code WPF web browser, 21

writing, in Code Editor, 69
Code Editor, 64–69

choosing events directly in, 66
double-click method in, 64–65
features of, 67–68
right-click method in, 66–67
writing simple code in, 69

collapsing entries, 161
collections, 89–124

Array project, 90–101
in arrays, 90
dictionaries for, 101
Dictionary project, 101–110
Structure project, 111–122
structures for, 110–111

command line
arguments

optional, 254–255
required, 253–254
setting, 260–261



 debugger

 Index  355

opening/using, 242–246
parameters

defining, 249–255
Help feature, 251–253
Main() method, 249–251
optional arguments, 254–255
required arguments, 253–254

testing DisplayDate application, 256
utility application uses for, 246–247

compile errors, 326
conditional loop, array query as, 283–284
conditional theories, 100–101
configuration services, 247
ConfigureDate() method, 255, 262
console applications

creating, 248–249
testing, 255–259
tracing, 260–262

Console.WriteLine() method, 253
constructors, 212

creating, 216–217
Content attribute, 183
Content Management Systems (CMSs), 29
content (No Code web project)

adding, to default site, 39–42
changing, of default site, 38–42

controls
adding

Array project, 91
BasicSilverlight project, 300–303
Dictionary project, 102
EmbeddedSource project, 201–202
List project, 60
no-code Windows Forms web browser, 11–13
no-code WPF browser application, 23–24
no-code WPF web browser, 19
RESTService project, 157–159
SilverlightXML project, 310–311
SOAPService project, 174–175
Structure project, 111–112
TestApplication project, 228–230
WebList project, 268–271
WebStructure project, 285–287
WPFSOAP Service project, 197–198
WPF_XML project, 185–187
XML_LINQ project, 128–129
XMLRead application, 136–137
XMLSave application, 132
XMLSetting project, 143

configuring
Array project, 92–93
BasicSilverlight project, 300–303
Dictionary project, 102–104
EmbeddedSource project, 201–202
List project, 62–64
no-code Windows Forms web browser, 13
no-code WPF browser application, 24
no-code WPF web browser, 19–20
RESTService project, 157–159
SilverlightXML project, 310–311
SOAPService project, 174–175
Structure project, 112–115
TestApplication project, 228–230
WebList project, 268–271
WebStructure project, 285–287
WPFSOAP Service project, 197–198
WPF_XML project, 185–187
XML_LINQ project, 128–129
XMLRead application, 136–137
XMLSave application, 132
XMLSetting project, 143

copying, for List 2 project, 77
finessing, for List 2 project, 78

cookies, 313
Count.Count() method, 110

D
data

application, 73–75
ball, 232–233
displaying, in RESTService project, 165–166
drilling down into, 340–343

data access services, 247
data store application, WPF. See WPF_XML project
data structure, defining the, 288
data types, 81–85

changing code to match, 83–84
mixing, in text box, 84–87

Debug class, 329, 330
debugger, 71–76. See also tracing

changing focus in, 76
checking application functionality with, 71
console applications, 260–262
creating breakpoints for, 72–73
DisplayDate application, 260–262
EmbeddedSource project, 207
testing theories with, 75–76



356  Index

debugger (continued)

debugger (continued)
viewing application data with, 73–75
WPF_XML project, 194–195
XMLRead application, 138–139

debugging, 325–352
BasicSilverlight project, 310
basics of, 326–329
call stack and, 344–346
configuring Silverlight applications for, 309–310
drilling down and, 340–343
exceptions, 347–351

event log, 349–351
Exception dialog box, 347–349

Immediate window and, 346–347
System.Diagnostics namespace, 329–336

adding debugging statements, 331–335
Debug class, 330
Trace class, 336

visualizers for, 338–340
Watch window and, 336–338

debugging statements, 331–335
Debug.WriteLine() method, 322
decimal data type, 82
declarations, event, 222
default browser, setting, 22
default site (No Code web project), 34–43

adding content to, 39–42
changing content of, 38–42
elements of, 34–35
master page of, 36–38
viewing Master.Site file code, 42–43

delegates, 222
DeleteBall() method, 225
dialog box(es)

displaying, with ASP.NET, 281
Exception, 347–349

dictionaries, 101
Dictionary project, 101–110

adding code in, 104–106
adding controls to, 102
configuring controls for, 102–104
starting, 102
testing sorting theories in, 109
testing statistical theories in, 109–111
tracing, 106–109

Directory.CreateDirectory() method, 190
Directory.Exists() method, 190
DisplayData() method, 165
DisplayDate application

creating, 248–249

testing, 255–259
checking Help functionality, 257–258
displaying a date, 258–259
opening command line, 256

tracing, 260–262
performing the trace, 261–262
setting command-line arguments, 260–261

DisplayHelp() method, 252
DisplayQuickHelp() method, 252
DotNetNuke, 29
double-click method (Code Editor), 64–65
double data type, 82
drilling down into data, 340–343

E
ElementAt() method, 233
Element() method, 145, 204
elements, 90

changing focus in debugger on, 76
of default website, 34–35
TextBox

selecting specific, 86–87
skipping, 85–86

embedded resource, creating an, 200–201
EmbeddedSource project, 199–207

adding code, 202–206
application setup, 203–204
moving between items, 204–206
using statements, 202

adding/configuring controls, 201–202
embedded resource, creating an, 200–201
testing, 206
tracing, 207
XML files, creating/embedding, 200–201

ending
application, 188
sessions, with Windows Forms no-code web 
browser, 16

entries, showing, 289
enumeration(s)

defining, in TestLibrary project, 217–218
using, 213–214

Enum.GetNames() method, 231
environmental errors, 327
Environment.GetFolderPath() method, 133, 342
ErrorLevel variable, 251
event declarations, 222
event handlers, 211

class-based, 238–239
closing, 188–190



 items, moving between

 Index  357

event logs, 349–351
event raising, 222
events

choosing directly, in Code Editor, 66
defining, 213
describing, in TestLibrary project, 222–223
handling. See event handlers

exception handling (as error source), 328
exceptions, 347–351

event logs and, 349–351
Exception dialog box, 347–349
Silverlight, 315
XMLRead application, 139–142

Express edition products, 329
eXtensible Application Markup Language 
(XAML), 17, 179, 181–183

F
fields, properties vs., 213
File.Exists() method, 145, 148
File.FileExists() method, 348
File Transfer Protocol (FTP), 45
Firefox, 309

debugging BasicSilverlight project with, 310
float data type, 82
focus, changing, in debugger, 76
forecasts (RESTService project)

getting, 162–165
selecting next/previous, 167–168

Form1() method, 93
free software, 30
from keyword (LINQ), 58
functionality, checking application, 71

G
general methods, 212
GetBall() method, 235
GetCustomAttributes() method, 192
GetForecast() method, 162
GetNames() method, 225
getProductInfo() method, 177
GetType() method, 84
GetWeather() method, 176
global variables

BasicSilverlight project, 304–305
creating, 312–313

initializing, 304–305
RESTService project, 160–162
SilverlightXML project, 312–313

GUIs, 242

H
hard drive, finding XML on your, 323
Height attribute, 183
Help feature

command line, 251–253
RESTService project, 164
testing functionality of, 257–258

help parameters, 249
HorizontalAlignment attribute, 183
Hypertext Transfer Protocol (HTTP), 45

I
icons, choosing different, 171
IDE. See Integrated Development Environment
images, in real-world applications, 305
Immediate window, 346–347
Indent() method, 330
information services, 246
InitializeComponent() method, 15
initializing

global variables, 304–305
RESTService application, 167

in keyword (LINQ), 58
installing

Visual C# 2010 Express, 3
Visual Studio 2010 Express Service Pack 1, 5–8
Visual Web Developer 2010 Express, 3–5

Int32.Parse() method, 289
Int32.TryParse() method, 87
int data type, 82
Integrated Development Environment (IDE), 1, 6
IntelliSense, 65, 336
Internet Explorer, 296, 309

setting, as default browser, 22
isolated storage, 313
IsolatedStorageFile object (ISO), 313
IsolatedStorageFileStream() constructor, 315
isolated storage usage, tracing through, 318–324
items, moving between, 204–206



358  Index

JavaScript

J
JavaScript, 281
JavaScript Object Notation (JSON), 153
Joomla, 29

L
Language Integrated Query. See LINQ (Language 
Integrated Query)
libraries, 209–240

classes and, 211–214
and reusable code, 210–211
TestApplication project, 226–239
testing UseLibrary application, 239–240
UseLibrary solution, 214–226

library projects, creating and placing, 215–216. See 
also TestLibrary project
licensing terms, 3
LINQ (Language Integrated Query)

array query code in, 280–281
and Code Editor, 64–69
creating List 2 project, 77–87
creating List project, 59–64
testing List project, 70–71
tracing List application with debugger, 71–76
understanding, 58–59
web applications with. See web applications with 
LINQ
XML and, 128–131

list projects
List 2 project

adding code to, 79–80
copying controls for, 77
creating, 77–87
data types and, 81–85
finessing controls for, 78
testing selection theories in, 85–87
tracing, 80–81

List project
adding controls to, 60
configuring controls for, 62–64
creating, 59–64
starting, 60
testing, 70–71
tracing, with debugger, 71–76
using Code Editor with, 64–69

WebList project, 266–275
adding code, 272–274
adding/configuring controls, 268–271

defining the using statement, 271–272
starting, 266–267
tracing, 274–275

location
defining, for no-code website, 45–47
entering new, in RESTService project, 169–170

logic (semantic) errors, 327
long data type, 82
loop

array query as, 282–283
conditional, 283–284

loop theories, 97–100

M
Main() method, 249–251, 344
MainPage.xaml, 300
Margin attribute, 183
master page (default website), 36–38
MessageBox.Show() method, 94, 110, 296
methods

about, 212
developing, 223–226

Microsoft Web Platform Installer, 2

N
Name attribute, 183
namespaces

System.Diagnostics, 329–336
System.Xml.Linq, 129–130

names, project, 9
no-code web browsers

Windows Forms, 8–16
adding controls for, 11–13
configuring controls for, 13
ending your session with, 16
new Windows Forms Application project 
for, 8
saving, 11
testing, 13–14
viewing code, 14–16

WPF, 16–21
adding controls for, 19
configuring controls for, 19–20
new WPF Application project for, 17–19
trying out, 20–21
viewing code of, 21



 runtime errors

 Index  359

No Code web project, 30–44
default site in, 34–43
starting, 31–34
viewing, in browser, 43–44

no-code website, 45–54
adding new page to, 47–50
adding page to site menu, 51–53
defining location for, 45–47
trying, in browser, 53–54

no-code WPF web browser application, 22–26
adding controls for, 23–24
configuring controls for, 24
and setting default browser, 22
starting the project, 23
trying out, 24–25
viewing code of, 25–26

nomenclature (as error source), 328

O
object data type, 83
objects, drilling down into, 340–343
open source applications, 29
optional arguments, checking for, 254–255
optional parameters, 249
output (XMLSave application), 135

P
Page_Load() event handler, 279, 284, 292, 293
pages

adding
to no-code website, 47–50
to site menu, 51–53

loading, in WebStructure project, 288–289
Print() method, 330, 333, 336
private variables, 219–220
project names, 9
properties

defining, 212–213
fields vs., 213
public, 219–220

Properties window, 9
public properties, 219–220

Q
queries, array

conditional loop version of, 283–284
LINQ version code for, 280–281
loop version of, 282–283

R
radio button clicks, 306–308
Really Simple Syndication (RSS), 30
records, moving between, 290–292
reference statements, adding, to SilverlightXML 
project, 311–312
reference (to TestLibrary), 227–228
registration, 6
remote access services, 247
Representational State Transfer (REST), 152
required arguments, checking for, 253–254
required parameters, 249
Reset Value, 20
resources, embedded, 200–201
restarting (XMLSetting application), 148
restoring settings

SilverlightXML project, 315–318
WPF_XML project, 190–193
XMLSetting project, 144–145

RESTService project, 157–172
adding code to, 159–171

choosing different icons, 171
displaying data, 165–166
entering a new location, 169–170
getting forecasts, 162–165
global variables, 160–162
Help files, 164
initializing the application, 167
selecting next/previous forecasts, 167–168

adding/configuring controls for, 157–159
creating, 157–159
testing, 171–172

REST web services, 154–156
reusable code, 210–211
right-click method (Code Editor), 66–67
runtime errors, 327



360  Index

sandbox

S
sandbox, 154
SaveSettings() method, 315
saving

settings
SilverlightXML project, 313–315
WPF_XML project, 188–190
XMLSetting project, 144

Windows Forms no-code web browser, 11
sbyte data type, 82
selection theories, 85–87
select keyword (LINQ), 59
semantic (logic) errors, 327
SetDate() method, 262
SetTime() method, 254
SettingData.Save() method, 144
setting projects

SilverlightXML project, 310–323
adding code, 311–318
adding/configuring controls, 310–311
starting application, 310
tracing, 318–323

settings
creating, in XMLSetting project, 146–148
restoring

SilverlightXML project, 315–318
WPF_XML project, 190–193
XMLSetting project, 144–145

saving
SilverlightXML project, 313–315
WPF_XML project, 188–190
XMLSetting project, 144

short data type, 82
ShowEntry() method, 118, 289
Silverlight application

Application project, creating, 297–300
Silverlight applications, 295–324

adding XML data support to, 310–323
ASP.NET applications vs., 296–297
configuring, for debugging, 309–310
developing basic, 297–309

SilverlightXML project, 310–323
adding code

creating global variables, 312–313
reference and using statements, 311–312
restoring settings, 315–318
saving settings, 313–315

adding/configuring controls, 310–311
starting application, 310

tracing, 318–323
finding XML on your hard drive, 323
isolated storage usage, 318–324

Simple Object Access Protocol (SOAP), 152
site menu (no-code website), 51–53
SOAPService projects

Windows Forms, 172–177
adding code, 175–176
adding/configuring controls, 174–175
creating, 173–174
testing, 177

WPF, 195–199
adding code, 198–199
adding/configuring controls for, 197–198
adding service data source, 196–197
creating, 196
testing, 199

SOAP web services, 156–157
software, free, 30
Solution Explorer, 35
solutions, adding application projects to, 226
sorting theories, 109
Split() method, 272, 275
startup project, starting TestApplication as, 227
statements

debugging, 331–335
reference, 311–312
using. See using statements

Static Members, 342
static methods, 137
statistical theories, 109–111
string data type, 83
structure projects

Structure project, 111–122
adding code to, 117–120
adding controls to, 111–112
configuring controls for, 112–115
creating structure in, 115–116
starting, 111
tracing, 120–122

WebStructure project, 285–293
adding code, 287–292
adding/configuring controls, 285–287
starting, 285
tracing, 292–293

structures
about, 214
creating, 115–116
defining, 220–221
for collections, 110–111



 txtMessage_LostFocus() event handler

 Index  361

Substring() method, 94, 101, 110, 280, 284
syntax errors, 326
System.Diagnostics namespace, 329–336

adding debugging statements, 331–335
Debug class, 330
Trace class, 336

System.Xml.Linq namespace, 129–130

T
TabIndex attribute, 183
Telnet, 242
TestApplication project, 226–239

adding application project to existing 
solution, 226
adding code, 230–239

adding/removing balls, 233–236
configuring the application, 230–232
creating class-based event handlers, 238–239
displaying a list of balls, 237
displaying ball data, 232–233
handling class events, 237–239
moving between balls, 236
using statements, 230

adding/configuring controls, 228–230
defining TestLibrary reference, 227–228
starting, 226
starting, as startup project, 227

TestClass class, 216
testing

console applications, 255–259
DisplayDate application, 255–259
EmbeddedSource project, 206
List project, 70–71
RESTService project, 171–172
SOAPService project, 177
UseLibrary solution, 239–240
Windows Forms no-code web browser, 13–14
WPFSOAPService project, 199
WPF_XML project, 193
XMLRead application, 138
XMLSave application, 133–135
XMLSetting project, 146–148

testing theories
Array project, 97–100
conditional theories, 100–101
with debugger, 75–76
Dictionary project, 109
List 2 project, 85–87
loop theories, 97–100

selection theories, 85–87
sorting theories, 109
statistical theories, 109–111

TestLibrary class, 216
TestLibrary project, 215–226

adding code to, 216–226
constructors, creating, 216–217
enumeration, defining an, 217–218
events, describing, 222–223
methods, developing, 223–226
private variables and public properties, 219–
220
structure, defining a, 220–221

library projects, creating and placing, 215–216
starting, 215–216

TestLibrary reference, defining, 227–228
TextBox data, changing, 75–76
TextBox elements

selecting specific, 86–87
skipping, 85–86

text boxes, mixing data types in, 84–87
Text property, 11
TheEntry.ToUpper() method, 69
ToArray<String>() method, 94, 105
ToLongDateString() method, 255
Toolbox, 11
ToShortDateString() method, 255
ToString() method, 87, 110
Trace class, 329, 336
TraceError() method, 336
TraceInformation() method, 336
TraceWarning() method, 336
tracing

Array project, 96–97
BasicSilverlight project, 308–309
console applications, 260–262
Dictionary project, 106–109
DisplayDate application, 260–262
EmbeddedSource project, 207
List 2 project, 80–81
List project, 71–76
SilverlightXML project, 318–323
Structure project, 120–122
WebList project, 274–275
WebStructure project, 292–293
WPF_XML project, 194–195
XMLRead application, 138–139

try…catch block, 141
txtMessage_LostFocus() event handler, 321, 322



362  Index

uint data type

U
uint data type, 82
ulong data type, 82
underscore (_), 11
Unindent() method, 330, 333
UseLibrary solution

creating, 214–226
TestApplication project, 226–239
testing, 239–240
TestLibrary project, 215–226

starting, 215–216
user interface (as error source), 328
ushort data type, 82
using statements

adding
BasicSilverlight project, 304
EmbeddedSource project, 202
SilverlightXML project, 311–312
TestApplication project, 230

defining
WebList project, 271–272
WPF_XML project, 187–188
XMLSetting project, 146

utility applications, 241–264
command line in, 242–247

uses, 246–247
command-line parameters for, 249–255
console applications, 248–249
testing DisplayDate, 255–259
tracing DisplayDate, 260–262

V
values, 101
variables

as error source, 328
global. See global variables
private, 219–220

var keyword (LINQ), 59
VerticalAlignment attribute, 183
viewing. See also code, viewing

application data, 73–75
Master.Site file code, 42–43
No Code web project, 43–44
output from XMLSave application, 135

Visual C# 2010 Express, 2
installing, 3
starting, 6–7

visualizers, 338–340

Visual Studio 2010 Express, 2–6
downloading, 2–3
installing Service Pack 1, 5–8
installing Visual C# 2010 Express, 3
installing Visual Web Developer 2010 
Express, 3–5

Visual Studio 2010 Express Service Pack 1
installing, 5–8

Visual Web Developer 2010 Express, 2
installing, 3–5
starting, 28–30

W
Watch window, 336–338
web applications with LINQ, 265–294

WebArray project, 276–285
WebList project, 266–275
WebStructure project, 285–293

WebArray project, 276–285
adding code, 279–284

conditional loop version of query, 283–284
creating the array, 279–280
displaying dialog box, 281
LINQ version of query code, 280–281
loop version of query, 282–283

adding/configuring controls, 278–279
starting, 276–277
tracing, 284–285

web browser. See browser
web hosting companies, 29
WebList project, 266–275

adding code, 272–274
adding/configuring controls, 268–271
defining the using statement, 271–272
starting, 266–267
tracing, 274–275

web projects, 27–56
No Code web project, 30–44
no-code website, 45–54
Visual Web Developer 2010 Express, 28–30

web services, 151–178
defining, 152–153
REST, 154–156
RESTService project, 157–172
SOAP, 156–157
SOAPService project, 172–177
WPFSOAPService project, 195–199
XML and, 153–154



 XMLRead application

 Index  363

Web Services Description Language (WSDL), 156
website, no-code. See no-code website
WebStructure project, 285–293

adding code, 287–292
defining the data structure, 288
loading the page, 288–289
moving between records, 290–292
showing an entry, 289

adding/configuring controls, 285–287
starting, 285
tracing, 292–293

Width attribute, 183
window(s)

Immediate, 346–347
Watch, 336–338

Windows Forms
benefits of, 8
new projects in, 8
WPF vs., 180

Windows Forms no-code web browser, 8–16
adding controls for, 11–13
configuring controls for, 13
ending your session with, 16
new Windows Forms Application project for, 8
saving, 11
testing, 13–14
viewing code, 14–16

Windows Forms SOAPService project, 172–177
adding code, 175–176
adding/configuring controls, 174–175
creating, 173–174
testing, 177

Windows Presentation Foundation (WPF), 179–208
benefits of, 16
data store application, 184–195
EmbeddedSource project, 199–207
new project in, 17–19
SOAPService application, 195–199
Windows Forms vs., 180, 181–183

WPF no-code web browser, 16–21
adding controls for, 19
configuring controls for, 19–20
new WPF Application project for, 17–19
trying out, 20–21
viewing code of, 21

WPFSOAPService application, 195–199
WPFSOAPService project

adding code, 198–199
adding/configuring controls for, 197–198

adding service data source, 196–197
creating, 196
testing, 199

WPF_XML project, 184–195
adding code in, 187–193

closing event handler, defining, 188–190
defining using statements, 187–188
ending the application, 188
restoring settings, 190–193
saving settings, 188–190

adding/configuring controls, 185–187
creating, 184
testing, 193
tracing, 194–195

WriteLineIf() method, 330, 333, 334
WriteLine() method, 251, 253, 330, 333
writing code, in Code Editor, 69

X
XAML. See Extensible Application Markup Language 
(XAML)
XDocument.Load() method, 137, 138, 163, 204
XML data support, 310–323
XML (eXtensible Markup Language), 125–150

about, 126–128
adding code in, 130–131
finding, on your hard drive, 323
LINQ and, 128–131
storing application settings in, 143–148
web services and, 153–154
WPF and. See WPF_XML project
XAML and, 181–183
XMLRead application, 136–142
XMLSave application, 131–135

XML files, creating and embedding, 200–201
XML_LINQ project, 128–131

adding code, 130–131
adding/configuring controls for, 128–129
defining, 128
System.Xml.Linq namespace, 129–130

XMLRead application, 136–142
adding code, 137–138
adding/configuring controls for, 136–137
exception handling in, 139–142
testing, 138
tracing, 138–139



364  Index

XMLSave application

XMLSave application, 131–135
adding code, 132–133
adding/configuring controls, 132
creating, 131–132
testing, 133–135
viewing output from, 135

XMLSetting project, 143–148
adding code, 143–146

restoring settings, 144–145
saving settings, 144
using statements, 146

adding/configuring controls, 143
creating, 143–148
creating settings in, 146–148
restarting the application, 148
testing, 146–148



about the author

JOHN PAUL MUELLER is a freelance author and technical editor. He has writing in 
his blood, having produced 88 books and over 300 articles to date. The topics range 
from networking to artificial intelligence and from database management to heads-
down programming. Some of his current books include a Windows command-line 
reference, books on VBA and Visio 2007, a C# design and development manual, and 
an IronPython programmer’s guide. His technical editing skills have helped more 
than 60 authors refine the content of their manuscripts. John has provided technical 
editing services to both Data Based Advisor and Coast Compute magazines. He’s also 
contributed articles to magazines such as Software Quality Connection, DevSource, 
InformIT, SQL Server Professional, Visual C++ Developer, Hard Core Visual Basic, asp.
netPRO, Software Test and Performance, and Visual Basic Developer. Be sure to read 
John’s blog at http://blog.johnmuellerbooks.com/.

When John isn’t working at the computer, you can find him outside in the garden, 
cutting wood, or generally enjoying nature. John also likes making wine and knitting. When 
not occupied with anything else, he makes glycerin soap and candles, which come in handy 
for gift baskets. You can reach John on the Internet at John@JohnMuellerBooks.com. John is 
also setting up a website at http://www.johnmuellerbooks.com/. Feel free to take a look and 
make suggestions on how he can improve it.





Your Free 
eBook
Reference

	

	
			

	

	
			

	 To	download	your	eBook,	go	to
http://go.microsoft.com/FWLink/?Linkid=230718
	 and	follow	the	instructions.

When	you	purchase	this	title,	you	also	get	the	companion	volume,	Start Here!™ 
Fundamentals of Microsoft® .NET Programming,	for	free.

Need	help?	Please	contact:
mspinput@microsoft.com

eBook-fundamentals.indd   1 10/11/11   1:36 PM



What do  
you think of  
this book?
We want to hear from you! 
To participate in a brief online survey, please visit: 

Tell us how well this book meets your needs —what works effectively, and what we can  
do better. Your feedback will help us continually improve our books and learning  
resources for you.   

Thank you in advance for your input!

microsoft.com/learning/booksurvey 

SurvPage_Corp_02.indd   1 5/19/2011   4:18:12 PM


	Dedication
	Introduction
	Who Should Read This Book
	Who Should Not Read This Book
	Organization of This Book
	Free eBook Reference
	Conventions and Features in This Book
	System Requirements
	Code Samples
	Acknowledgments
	Errata & Book Support
	We Want to Hear from You
	Stay in Touch

	1-Getting to Know C#
	Obtaining and Installing Visual Studio 2010 Express
	Downloading the Products
	Installing Visual C# 2010 Express
	Installing Visual Web Developer 2010 Express
	Installing Visual Studio 2010 Service Pack 1

	Starting Visual C# 2010 Express
	Creating the No-Code Web Browser
	Creating a New Windows Forms Application Project
	Saving Your Project
	Adding Windows Forms Controls
	Configuring the Windows Forms Controls
	Testing the Windows Forms Application
	Viewing the Web Browser Code
	Ending Your Session

	Creating the No-Code WPF Web Browser
	Starting a New WPF Application Project
	Adding WPF Controls
	Configuring the WPF Controls
	Trying the WPF Application
	Viewing the WPF Code

	Creating the No Code WPF Browser Application
	Setting Internet Explorer as the Default
	Starting a WPF Browser Application Project
	Creating the WPF Browser Application
	Adding WPF Browser Controls
	Configuring the WPF Browser Controls
	Trying the WPF Browser Application
	Viewing the WPF Browser Code

	Get Going with C#

	2-Developing a Web Project
	Starting Visual Web Developer 2010 Express
	Creating the No-Code Project
	Starting the New Project
	Understanding the Default Site
	Viewing the Site in a Browser

	Creating the No Code Website
	Defining a Website Location
	Adding a New Page
	Adding the Page to the Site Menu
	Trying the Site in a Browser

	Get Going with C#

	Index



