

Documents, Presentations,
and Workbooks:
Using Microsoft® Office
to Create Content That
Gets Noticed

Stephanie Krieger

Copyright © 2011 Stephanie Krieger

Complying with all applicable copyright laws is the responsibility of the user. All rights reserved. Without limiting the
rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any
purpose, without express written permission of Microsoft Press, Inc.

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 M 6 5 4 3 2 1

Microsoft Press titles may be purchased for educational, business or sales promotional use. Online editions are also
available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/institutional
sales department: (800) 998-9938 or send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, ActiveX, Excel, FrontPage, Internet Explorer, PowerPoint, SharePoint, Webdings, Windows,
and Windows 7 are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries. Other product and company names mentioned herein may be the trademarks of their respective owners.

Unless otherwise noted, the example companies, organizations, products, domain names, email addresses, logos,
people, places, and events depicted herein are fictitious, and no association with any real company, organization, prod-
uct, domain name, email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the author, Microsoft Corporation, nor their
respective resellers or distributors, will be held liable for any damages caused or alleged to be caused either directly
or indirectly by such information.

Acquisitions and Development Editor: Kenyon Brown
Production Editor: Kristen Borg
Production Services: Octal Publishing, Inc.
Technical Reviewer: Kurt Schmucker
Indexing: Lucie Haskins
Cover: Karen Montgomery
Illustrator: Robert Romano

978-0-735-65199-9

For Shauna Kelly—a talented and generous document
expert, and a woman of great strength and grace. I
wish I had gotten to know you earlier and better, but
am honored to know you at all—and I’m just one of a
great many people who are better for having met you.

	 	 v

Contents at a Glance

Part I	 Document Essentials
1	 Welcome to Office 2010 and Office for Mac 2011 3
2	 Collaborating and Sharing When and Where You Choose . . 25
3	 Understanding Electronic Documents 59
4	 Planning Your Documents . 81
5	 Doing More with Less Work: Key Cross-Program Features . 101

Part II	 Word
6	 Building Easy-to-Manage, Robust Documents 139
7	 Working with Text . . 161
8	 Styles . . 181
9	 Tables . 223
10	 Managing Graphics . 257
11	 Sections . 295
12	 Dynamic Content . 317

Part III	 PowerPoint
13	 Creating Presentations: From Theme to Master to Slide . . 363
14	 Creating Professional Presentation Graphics 431
15	 Creating Multimedia Presentations 487
16	 Putting on a Show . 505

Part IV	 Excel
17	 Data-Based Documents: Formatting and Managing

Worksheets . 523
18	 Working with Data . 547
19	 Data Visualization . 581
20	 Charts . 607
21	 Powerful Reporting, Easier Than You Think: A PivotTable

Primer . 643

vi	 Contents at a Glance

Part V	 Templates, Automation, and Customization
22	 The Many Faces of Microsoft Office Templates 679
23	 VBA Primer . . 707
24	 Office Open XML Essentials . 769

	 	 vii

Table of Contents
Introduction . xix

Companion Content . xxiii

Support for This Book . xxiv

Acknowledgments . xxv

Part I	 Document Essentials
1	 Welcome to Office 2010 and Office for Mac 2011 3

Redefining Documents for a Connected World . 4
Introducing What’s New and Improved for Your Documents in Office 2010
and Office for Mac 2011 . 5

Explore What’s New Across Both Versions . 5
Explore Your Environment . . 6
Explore Key Exclusive Features in Office 2010 . 11
Explore Key Exclusive Features in Office for Mac 2011 12
Explore More New Word Features . . 14
Explore More New PowerPoint Features . 15
Explore More New Excel Features . 15
Explore What’s New and Improved Across Both Versions 16

Understanding the Office Open XML File Formats . 16
Understand the File Types . . 17
Choose Your Format . . 17
Understand File Structure . 18

Understanding How the Office Programs “Think”: Documents 101 19
Benefit by Being Lazy . . 19
Put Less Work In = Get Better Results Out . . 20
Use Microsoft Office Effectively: Choose the Best Tools for the Task . . 22

Putting It All Together . 24

2	 Collaborating and Sharing When and Where You Choose 25
Moving Your Documents into the Cloud . 25

Introducing SkyDrive . 27
Introducing SharePoint 2010 . 30

viii	 Table of Contents

Exploring Office Web Apps: What Can You Really Do with Them? 34
Understanding the Benefits of Office Web Apps 35
Getting Started with Office Web Apps . 36
Editing Documents in Word Web App . 41
Editing Presentations in PowerPoint Web App . 44
Editing Workbooks in Excel Web App . . 46
Editing Notebooks in OneNote Web App . 48

Working Together Without Waiting Your Turn . 50
Going Mobile . 52

Introducing Office Mobile for Windows Phone 7 53
Introducing OneNote Mobile for iPhone . 55
Understanding Office Web Apps Mobile: The Office Mobile Viewers . 56

3	 Understanding Electronic Documents . 59
Creating Documents for Electronic Sharing . 59

Consider the Importance of Document Construction 61
Understanding How Font Choices Can Impact What Recipients See 64

Share Files Without Concern About Fonts . 68
Securing the Private Information in Your Documents . 71

Know the Simple Truth About Document Metadata and
Hidden Data . 71

Managing Hidden Data . 72

4	 Planning Your Documents . 81
Using the Best Tool for the Task . 82

Using Word . 82
Using PowerPoint . 84
Using Excel . 87
Using Programs Together . 88
Don’t Forget About OneNote . . 89

Design Considerations . 90
How Will Your Document Be Delivered? . 91
Focusing On the Content . 93
Making the Right Statement About You and Your Business 94

Content Planning . 96
Making Choices About Content . 96
Using Layout and Design to Organize Your Content 97

Linking Notes for Better Document Planning . 99

	 Table of Contents	 ix

5	 Doing More with Less Work: Key Cross-Program Features 101
Introducing Document Themes . 102

Understanding the Importance of Themes . 105
Exploring Theme Elements . 106
Understanding How Themes Work . 113

Customizing Themes . 117
Mixing and Matching to Create Your Own Theme 118
Creating a Complete Custom Theme . 119

Exploring the Advanced Picture Formatting Tools . 124
Adjusting Images . 125
Cropping Images . 129
Using Picture Styles and Effects . 131
Replacing and Managing Images . 132

Sharing Content Across Programs . 133
Using Microsoft Office As Your Toolbox . 135

Part II	 Word
6	 Building Easy-to-Manage, Robust Documents 139

Staying in Control: Be the Boss of Your Documents . 142
Exploring the Three Levels of Word Formatting 142
Working with Objects and Stories . 147
Finding the Simple Approach to Any Task . 148

Bringing Yourself to the Document: Using Document Logic 149
Working with Formatting Marks . 150
Using Views Effectively . 152

Monitoring the Health of Your Document . 154
Recognizing Document Corruption . . 155
Using Open And Repair . 158

Creating Any Document with These Six Tools . 159

7	 Working with Text . 161
Introducing What’s New for Text Formatting in Word 2010 and
Word 2011 . 162
Introducing the OpenType Typography Tools . 165

Understanding the Difference Between Feature and
Feature Support . 165
Exploring the OpenType Typography Features Available in Word 166

x	 Table of Contents

Introducing Text Effects: The New Generation of WordArt 171
Differentiating Between Text Effects and WordArt 172

Using Font and Paragraph Formatting As Layout Tools 175
Using Character Spacing and Positioning to Adjust Layout 176
Using Line and Paragraph Spacing to Simplify Layout 178
Using Line and Page Break Options to Manage Layout 179

8	 Styles . 181
Understanding the Style Environment Today . 182

Exploring the Styles Pane . 186
Creating Effective Style Sets . 188

Considering Built-In vs. Custom Styles . 189
Benefits of Using Character Styles . 193
Making Effective Use of Base and Following Styles 194
Understanding Linked Styles . 198
Creating Styles That Make User-Friendly Documents 200
Using Quick Style Sets . 201

Mastering Lists . . 204
Understanding Lists . 204
Simplifying Your Work with Lists . 206
Sharing Lists Between Documents and Templates 216

Working with Table Styles . 217
Creating Table Styles . 217
Setting a Default Table Style . . 219

Managing Styles . 219
Using the Manage Styles Dialog Box . 220
Inspecting Your Styles . 221

9	 Tables . . 223
Getting Organized . 224
Creating Tables That Work . 225

Choose Between Paragraph Formatting and Table Formatting 227
Use Table Properties to Simplify Table Setup . 237
Simplify Table Behavior with AutoFit Options . 240

Creating Page Layouts Using Tables . 241
Create an Effective Host Table . 243
Understand Nested Tables vs. Text Wrap Around Tables 245
Manage Nested Tables . 247

	 Table of Contents	 xi

Formatting Financial Tables . . 248
Decimally Align Numbers and Currency Symbols 251

Managing Tables from Other Sources . . 255
Considerations for Tables That Originate in Excel 255
Considerations for Tables That Originate on the Web 256

10	 Managing Graphics . 257
Introducing the New and Improved Graphics Tools in Word 2010 and
Word 2011 . 258
Using the Best Program for the Graphic Task . 261
Understanding Differences for Working with Pictures and Objects 264

Linking and Embedding Objects Between Microsoft Office
Programs . 265
Converting Embedded or Linked Objects to Pictures 269
Editing Linked and Embedded Objects . . 271
Determining the Best Picture Type for Your Graphic 273

Simplifying Graphic Layout . 278
Using the In Line With Text Layout . 279
Using Table Cells As Graphic Placeholders . 282
Using Text Wrap When You Must . 282

Working in Publishing Layout View in Word 2011 . 287
Using the Features You Already Know . 288
Using Features Designed Just for Publishing Layout View 290
Sharing Publishing Layout View Documents Online and
Across Platforms . 293

11	 Sections . 295
Determining Whether You Need a Section Break . . 296

Knowing When to Use a Section Break . 296
Knowing When Not to Use a Section Break . . 297

Keeping Sections Simple . 299
Understanding How Section Formatting Is Stored 301
Understanding Section Break Types . 303

Using Headers and Footers . 305
Working with Page Numbers . 308
Managing the Different First Page and Different Odd & Even Pages
Headers and Footers . 310
Understanding Link To Previous . 312
Simplifying Book-Style Page Layout . 313
Creating Watermarks . 315

xii	 Table of Contents

12	 Dynamic Content . 317
Working with Content Controls . 319

Types of Content Controls . . 320
Using Content Controls . 321
Creating Content Controls . 322
Formatting Controls and Editing Properties . 324
Nesting Controls . 330

Understanding Document Protection Options for Content Controls 331
Grouping Content Controls . . 331
Using Restrict Editing Options . 331

Using Document Property Quick Parts . 334
Understanding Building Blocks: The Evolution of Documents 337

Inserting Building Block Entries . 341
Creating Your Own Building Blocks . 343
Managing Building Blocks . . 347

Working with Fields . 348
Understanding Field Construction . . 350
Creating Fields . . 351
Editing Fields . 357
Nesting Fields . 358

Part III	 PowerPoint
13	 Creating Presentations: From Theme to Master to Slide 363

Exploring What’s New for PowerPoint Presentations in Office 2010 and
Office for Mac 2011 . 364

Sharing More Easily . 365
Simplifying Slide Editing . 366

Understanding the Themes–PowerPoint Connection 368
Exploring the Evolution of PowerPoint Design Templates 369
Examining Theme Structure . 370

Creating Documents That Live in PowerPoint . 373
Setting Up a Presentation . 376

Control the Layout—Don’t Let It Control You . 376
Managing Page Setup . 380
Understanding Headers and Footers . 386

Working with Masters and Layouts . 390
Exploring the Master–Layout Relationship . 390
Managing Masters and Layouts . 393

	 Table of Contents	 xiii

Customizing Slide Masters . 398
Customizing and Creating Slide Layouts . 400
Creating Effective Slides and Layouts . 406

Managing Slides and Slide Elements . 409
Working with Charts . 410
Working with Text . . 412
Working with PowerPoint Tables . 418
Working with Embedded Objects . 420
Managing Slides . 421

14	 Creating Professional Presentation Graphics 431
Exploring What’s New for Presentation Graphics . 434
Determining When to Use Office Art . 436
Determining the Best Diagram for Your Content . 437
Making Smart Choices with SmartArt . 439

Creating a SmartArt Diagram . . 439
Selecting a Diagram Layout . 440
Understanding and Using SmartArt Styles and Formatting 445
Editing SmartArt Diagram Content . 450

Using Drawing Tools to Their Fullest . 454
Getting It “Perfect” Is Easier than “Close Enough” 455
Accessing and Managing Shapes . . 458
Formatting Shapes Effectively . 462
Sizing and Positioning Objects . . 472
Organizing Content Precisely with the Arrange Tools 474
Using Drawing Guides . 477

Editing Shapes . 478
Changing Shapes . 479
Edit Points to Create Virtually Anything . 481

Getting Your Graphic into Other Programs . 484
Getting Your Vector Graphics into Microsoft Office . 484

15	 Creating Multimedia Presentations . . 487
Embedding and Managing Media . 488

Insert Video or Audio into Your Presentation . 491
Work with Linked Media Files . . 493
Compress Media and Improve Compatibility . 495
Create a Video of Your Presentation . 499

xiv	 Table of Contents

Formatting Videos . 501
Adjust and Format Video Right on the Slide . 501
Create Better Slides Using Video Poster Frame . 502

Editing Video and Audio in PowerPoint 2010 . 503
Trim Video and Audio Files . 503
Use Bookmarks to Navigate or Choreograph Your Media 504

16	 Putting on a Show . 505
Using Slide Transitions . 506
Working with Animations . 509

Introducing Animation Painter in PowerPoint 2010 514
Understanding Bookmarks and Triggers . 514

Using Animation and Transitions Effectively . 515
Setting Up and Delivering Your Show . 516

Presenting Your Show . 519

Part IV	 Excel
17	 Data-Based Documents:

Formatting and Managing Worksheets . 523
Formatting Documents That Live in Excel . 526
Streamlining Worksheet Formatting . 527

Working with Themes in Excel . 530
Using Cell Styles . 533
Formatting Ranges As Tables . 537
Managing Page Layout Effectively . 541

Treating Your Workbooks Like the Documents They Are 545

18	 Working with Data . 547
Crunching Numbers in Excel 2010 and Excel for Mac 2011: What’s New . . . 548

Excel 2010 . 549
Excel 2011 . 550

Using Tables As a Data Tool . 552
Creating Formulas—Working with Functions . 558

If There’s Logic to It, Excel Functions Can Do It 559
Nesting Formulas . 563
Defining Names and Using Structured References 565
Managing Formulas . 570

Simplifying Data Organization . 573
Using External Data . 578

	 Table of Contents	 xv

19	 Data Visualization . 581
Exploring What’s New for Conditional Formatting . . 582
Increasing Your Options with Conditional Formatting 585

Setting Additional Data Visualization Options . 589
Managing the Rules in Your Workbook . 597

Creating Sparklines: Power in a Small Package . . 598
Understanding Sparkline Types . 599
Adding Sparklines to Your Data . 599
Managing Sparklines . 601
Customizing Sparklines . 602

20	 Charts . 607
Exploring Chart Creation Essentials . 610
Formatting Fighter-Pilot-Cool Charts . 612

Using Chart Quick Styles . 613
Customizing Chart Elements . . 616
Combining Chart Types . 626
Using Secondary Axes . 627
Adding Drawing Objects to Charts . 629

Timesaving Techniques for Adding or Editing Chart Data 631
Reorder Data Series and Set Data Display Options 633

Creating Advanced Chart Types . 635
Creating Bubble Charts . 635
Creating Price/Volume Charts . 637

21	 Powerful Reporting, Easier Than You Think:
A PivotTable Primer . 643

Why Use a PivotTable? . 645
Creating a PivotTable . 645

Setting Up Your Data . 645
Creating the Table . 647
Understanding PivotTable Field Areas . 655

Managing PivotTables . 657
Working with Field Settings . 657
Modifying Table Options . . 663

Formatting PivotTables . 664
Slicing and Dicing Your Data: Introducing the PivotTable Slicer for
Excel 2010 . . 665

Exploring Slicer Essentials . 667

xvi	 Table of Contents

Using PivotCharts . 670
Creating and Using a PivotChart . 672
Managing the Connection Between PivotTable and PivotChart 673

Creating and Formatting a PivotTable: A Quick Reference 673

Part V	 Templates, Automation, and Customization
22	 The Many Faces of Microsoft Office Templates 679

Understanding Template Types . 680
Creating a Template File . 683

Use Content Templates . 685
Use Design Templates . 686
Use Form Templates . 687
Understand Feature-Specific Templates . 689
Differentiate Between Automated Templates, Global Templates, and
Add-Ins . 696
Locate Template Folders . 697

Considering Best Practices for Word Templates . 699
Considering Best Practices for PowerPoint Templates 702
Considering Best Practices for Excel Templates . 703
Sharing Themes . 704
The Office 2010 and Office 2011 Automation Story . . 705

23	 VBA Primer . 707
Understanding When and Why to Use VBA . . 708
Introducing the VBA Language and Code Structure . 709

Recording Macros . . 709
Reading VBA Code . 711
Understanding Statements, Procedures, Modules, and Projects 714

Using the Visual Basic Editor . 714
Introducing the Code Window . . 716
Introducing Project Explorer . . 716
Introducing the Properties Window . 717
Setting Up Your Workspace . 717

Writing, Editing, and Sharing Simple Macros . 718
Creating Modules and Starting Procedures . 719
Learning the Language of Objects, Properties, and Methods 720
Introducing Object Models . 721
Using Auto Lists . . 724

	 Table of Contents	 xvii

Understanding Variables . 725
Using Constants . 735
Understanding Collection Objects . 737
Grouping Statements . 740
Looping Code . 744
Using Conditional Structures . 750
Using Operators . 754
Introducing Message Boxes and Input Boxes . 755
Running One Macro from Another . 759
Setting Macros to Conditionally Stop Executing Commands 760
Running Macros and Compiling Projects . 761
Getting Help . 763
Saving and Sharing Macros . . 764

Working with VBA: Next Steps . 766

24	 Office Open XML Essentials . 769
Introducing XML Basics for Reading Your Documents 771

Reading a Markup Language . 771
Understanding Key Terms . 774
Selecting Your Tools for Editing Office Open XML 775

Getting to Know the Office Open XML Formats . 777
Breaking In to Your Document . 777
Understanding the Office Open XML File Structure 781
Taking a Closer Look at Key Document Parts . 784
Building a Basic Word Document from Scratch 788

Editing and Managing Documents Through XML . . 796
Understanding Units of Measure . 797
Editing Text and Formatting . 798

Working with the Office Open XML Formats: Next Steps 811

Index . 813

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

Introduction
Welcome to the PCs and the Macs. I am delighted to be able to bring you a resource for experi-
enced Microsoft Office users on both platforms. Whether you work only with Microsoft Office 2010
or only with Microsoft Office for Mac 2011, or you work across platforms as I do, this book is for
you.

As a document consultant and trainer, I’ve often been frustrated by the lack of available resources
that move beyond ‘click here’ or ‘point there’ to explain why things work the way they do, which
best practices can make a real difference to your work, and what tools you may be missing that
could simplify your work and expand your possibilities. So when I began writing books about
Microsoft Office, it was exactly what I wanted to provide. For Microsoft Office 2007, I had the
opportunity to do that with my book Advanced Microsoft Office Documents 2007 Edition Inside
Out. Now, a few years later, I’ve updated and expanded on that book to bring you Documents, Pre-
sentations, and Workbooks for both Office 2010 and Office for Mac 2011.

Throughout this book, you’ll learn about new features in both Office 2010 and Office 2011. You’ll
also learn about new technologies and related tools available to users on both platforms, such as
Microsoft SharePoint 2010, Windows Live SkyDrive, and Microsoft Office Web Apps. But this book
is not about new features.

What this book is about is helping you to put what you already know together with both new and
existing methods and concepts to work the way the experts do; helping you create the kind of
documents and templates you’ve always wanted; and giving you the tools to take full advantage
of the capabilities in these programs to find the simple solutions you’ve often wondered about. In
short, it’s about doing less work, getting better results, and expanding your possibilities.

Who Will Benefit Most from This Book
You’re an experienced Microsoft Office user and you don’t need to start from scratch. This book
takes you at your word, so the basics you already know are not repeated here. Though a few
chapters that are specific to advanced tasks (such as Microsoft Excel PivotTables) do start from the
beginning and move at an advanced pace, you’ll find far more lists of key tips, hands-on concepts,
and advanced timesaving or troubleshooting methods in most chapters than step-by-step instruc-
tions for using the basics of a feature. Following are a few examples of what you’ll find here:

n	 In Part I of this book, “Document Essentials,” you’ll find guidance for planning effective
documents, presentations, and workbooks; sharing content electronically; choosing the best
program for the task; and understanding features that make a difference to the content you
create in multiple Microsoft Office programs.

For example, in Chapter 5, “Doing More with Less Work: Key Cross-Program Features,” you’ll
learn about a few features, including the incredibly valuable formatting functionality known
as themes. But it’s not about how to click to apply a built-in theme to your document. In that

chapter, you’ll find a thorough introduction to themes that explains not just what they are,
but why they are important and how they integrate with features across Microsoft Word,
PowerPoint, and Excel. You’ll also learn how to customize and create your own themes to
more easily implement your own formatting requirements (such as corporate branding)
across your documents, presentations, and workbooks.

n	 In Part II, “Word,” you’ll learn about the six features that can enable you to create any docu-
ment you need and how to put the pieces together to create better documents more easily.

For example, the Word chapter on styles (Chapter 8, “Styles”) does not walk you through
steps for how to use the New Style dialog box. Instead, the chapter addresses the way that
styles are structured, how to create effective style sets, and how to manage styles in docu-
ments and templates. It also provides guidance for more advanced tasks, such as how to
simplify your work with the often overcomplicated lists (bullets, numbering, and outline
numbering).

n	 In Part III, “PowerPoint,” learn how to craft great presentations that are as easy to edit as they
are powerful to share, discover how you can do more with Office Art graphics, and get help
for taking your presentations to the next level.

For example, the PowerPoint chapter on creating presentations (Chapter 13, “Creating Pre-
sentations: From Theme to Master to Slide”) does not step you through the basics of apply-
ing a layout or explain the difference between adding your logo to a master or an individual
slide. Instead, this chapter explains the relationship between themes, masters, layouts to help
you create presentations and templates that look and behave the way you want. It provides
best practices for creating and customizing layouts, working with various content types
(such as charts or embedded Word tables) in your presentation, and tips for managing and
troubleshooting presentations.

n	 In Part IV, “Excel,” explore the documents known as Excel workbooks and the powerful func-
tionality you can include in them, from formatting worksheets and working with data to
using charts, tables, data visualizations tools, and PivotTables.

For example, the chapter on charts (Chapter 20, “Charts”) does not step you through creat-
ing a basic chart or explain basics such as what an axis is. Instead, the chapter gives you the
direction you need to create and customize charts efficiently; tips for creating more effective
charts; help for more advanced tasks such as managing data, combining chart types, and
working with secondary axes; and step by step instructions and troubleshooting for creating
complex chart types such as price/volume charts and bubble charts.

n	 In Part V, “Templates, Automation, and Customization,” get ready to take it to the next level.
Here you can learn about creating and sharing templates for Word, PowerPoint, and Excel,
but you can also discover new ways to both simplify and expand on your use of Microsoft
Office.

	﻿ 	 xxi

In Chapter 23, “VBA Primer,” and Chapter 24, “Office Open XML Essentials,” you get thor-
ough, detailed introductions to extending Microsoft Office using Microsoft Visual Basic for
Applications (VBA) macros and the technology that underlies the current Word, PowerPoint,
and Excel file formats, Office Open XML.

I strongly believe that the programming capabilities that are built into Microsoft Office can
greatly simplify your work and save you time. You absolutely don’t need to be a developer
to make use of this powerful functionality. That said, an understanding of core features and
experience working with Office 2010 or Office 2011 is essential to being able to capitalize on
the available programmability and customization options in these versions of Word, Power-
Point, and Excel. So, those who have mastered the essentials of complex document produc-
tion that are covered in Parts I through IV of this book will get the most from Part V.

Additional Resources for Reviewing the Basics
At the beginning of most feature-specific chapters throughout this book, you see a reference to
this introduction as the place to find recommendations of additional resources for those who want
more basic information on a given topic. The Step by Step book series is a good place to start for
core basics with Office 2010:

n	 Microsoft Word 2010 Step by Step, by Joyce Cox and Joan Lambert III

n	 Microsoft PowerPoint 2010 Step by Step, by Joyce Cox and Joan Lambert III

n	 Microsoft Excel 2010 Step by Step, by Curtis D. Frye

For Office for Mac 2011, one good resource that starts at the beginning is Office 2011 for
Macintosh: The Missing Manual, by Chris Grover.

Additionally, though Microsoft Outlook is not an application covered in this book, Microsoft Out-
look for Mac 2011 is a completely new program that warrants a mention. So, if you’re looking for
help getting started with Outlook for Mac, you might want to check out Microsoft Outlook for Mac
2011 Step by Step, by Maria Langer.

For additional resources at all levels, including links to blogs and other websites from members of
the Microsoft Office product teams for both Windows and Mac as well as several Microsoft MVPs,
see the online companion content for this book, described later in this introduction.

xxii	 ﻿

What You Can Expect from This Book
This book is a comprehensive guide to advanced document and template production, trouble-
shooting, and customization using Word, PowerPoint, and Excel.

n	 Approximately 30 percent of this book’s content covers Word topics.

n	 Approximately 20 percent each is devoted to PowerPoint and Excel topics.

n	 About 15 percent each focuses on big-picture concepts that cross multiple programs (such as
managing electronic documents and planning documents) and programmability topics (VBA
and Office Open XML).

The most important distinction I want to make for those venturing into this book is that it’s not a
general guide to Office 2010 or Office 2011. For example, you will learn how to lay out complex
pages, create professional presentation graphics, and troubleshoot documents more easily, but you
won’t learn how to configure email settings or create a database here.

So, if you’re ready to take your work with Microsoft Office documents to the next level, read on,
and welcome to Office 2010 and Office 2011.

	﻿ 	 xxiii

Companion Content
A number of sample files are available for working with the tasks discussed in several chapters
throughout this book. Additionally, the companion content for this book includes a selection of
bonus content on topics not specifically addressed in the book itself. You’ll see references to the
sample files and bonus content where applicable throughout the book, and a complete list follows.

To access and download the companion content, visit: http://aka.ms/651999/files

Chapter or Topic Content
Chapter 3 n	 Hidden Data Checklist.xltx
Chapter 6 n	 Fearless.docx

n	 Fearless.vsd
Chapter 9 n	 Table exercise.docx

n	 Completed table.docx
Chapter 10 n	 Adjacency Report.dotx
Chapter 12 n	 Nested field sample.docx
Chapter 19 n	 Data Visualization Examples.xlsx
Chapter 20 n	 Price-Volume.xlsx
Chapter 21 n	 Pivot Data.xlsx

n	 PivotTables.xlsx
Chapter 23 n	 Sample macros.docm

n	 PrimerSamples.bas
Chapter 24 n	 Copy XML.txt

n	 Text editing.docx
Bonus Content n	 “Securing Access to Your Documents—Document Protection Tools and

Options”
n	 “Should I Consider Microsoft Publisher for My Document?”
n	 “Reference Tables and Tools”
n	 “Visualizing Data with Excel and Visio”
n	 “Managing VBA Errors”
n	 “Creating VBA UserForms”

http://aka.ms/651999/files

xxiv	 ﻿

Support for This Book
Every effort has been made to ensure the accuracy of this book and the companion content.
Microsoft Press provides support for books and companion content at the following website:

http://www.microsoftpressstore.com/about/support

You can also look for updates and a list of errata at the following website:

http://aka.ms/651999/files.

Questions and Comments
If you have comments, questions, or ideas regarding the book or the companion content, or ques-
tions that are not answered by visiting the sites above, please send them to Microsoft Press via
email to mspinput@microsoft.com.

We Want to Hear from You
At Microsoft Press, your satisfaction is our top priority, and your feedback is our most valuable
asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in advance for
your input!

Stay in Touch
Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

http://www.microsoftpressstore.com/about/support
http://aka.ms/651999/files

	﻿ 	 xxv

Acknowledgments
Writing a book such as this is anything but a sole effort. Many people contributed to this project
in many ways. I don’t think it’s possible to thank everyone I should. But, here is a start:

n	 To Kenyon Brown, acquisitions editor, developmental editor, and dedicated shepherd of this
book. Thank you for believing in this book and in me, and for your (tremendous) patience.

n	 To Kristen Borg, production editor. Thank you for your meticulous care of this book, your
patience, and your kindness.

n	 To Kurt Schmucker, this book’s technical reviewer and one of the best people on this planet
to work with. I am so lucky that you were willing to be a part of this project.

n	 To Dennis Cohen, who stepped in and completed the technical review of several chapters.

n	 To all of the many people at O’Reilly and Microsoft Press who worked hard to bring this
project to completion and helped to make it a better book, especially copyeditor Rachel
Monaghan, indexer Lucie Haskins, illustrator Robert Romano, and designer Mark Paglietti—
as well as desktop publishers Bob and Dianne Russell at Octal Publishing, Inc.

n	 To Beth Melton, for jumping in to help when you didn’t have the time.

n	 To the many generous and wonderful people on the Office 2010 and Office for Mac 2011
product teams who answer my (incessant) questions and contributed many invaluable tips
to this book. In particular, thank you Marcus Aiu, Roger Baerwolf, Bill Barry, Adam Callens,
Tristan Davis, Jodie Draper, Amani Ahmed Dye, Shawn Larson, Doug Mahugh, Chris Maloney,
Blair Neumann, Rick Schaut, Derek Snook, Stuart Stuple, and Scott Walker.

n	 To the many wonderful people I have the pleasure to work with, especially those of you
who have been so patient in the face of book deadlines these last several months, including
Nathalie Alfred, Chris Bryant, Nancy Crowell, Erika Ehrli, Sabrina Goebel, Stephanie Hancock,
Tess Kander, Courtney Keppler, Tal Krzypow, Sharon Meramore, Steven Michalove, Andrew
Mole, Michael Pierce, Kurt Schmucker, Karen Shogren, Helena Snowden, Kendall West,
Jennifer Winters, and Ayça Yuksel.

n	 To Echo Swinford, Adrienne Sam, and Stacey Barone, for making it possible for me get every-
thing else done, too.

n	 To the Microsoft MVP program that I am so privileged to be a part of, and the many smart
and generous experts within that community who make me better at what I do.

n	 To my family—Mom, Dad, Elise, Michael, Ari, and Jared—for always believing in me despite
rarely seeing me.

n	 To the dear friends who are always there for me with unwavering support and text-message
therapy, especially Alex Jennings, David Rubin, and Stuart Stuple.

n	 To Gayle Gibbons Madeira, the lazy operator herself.

n	 And to the two small, furry creatures who provide the daily joy that is better for stress relief
than all the lavender and chamomile tea in the world, Janie and Murphy.

	 	 101

Chapter 5

Doing More with Less Work: Key
Cross-Program Features

In this chapter, you will:

n	 Uncover the power of document themes

n	 Discover how themes integrate with features across Microsoft Office

n	 Learn to create your own themes

n	 Explore advanced picture editing tools

n	 Understand how to easily share content across programs

n	 Get tips for leveraging tools across Microsoft Office

n	 Learn about recovering your unsaved content in Office 2010

Are you ready? This chapter just might change your life (well, the part of your life that you
spend creating documents, anyway). Here we explore how you can use the same tools and
even the same content in multiple programs.

One of the best developments in recent versions of Microsoft Office is the proliferation of
features that exist across the suite. Why is that such a good thing? The obvious answer is that
it’s easier to get up to speed with a new version when features you learn in one program
work the same in others. But, in the long term, it also means you can reuse more content
(and formatting) not just between the documents you create in one program but across mul-
tiple programs. So you can work more quickly, do less work, and get more consistent results
in the process.

In a chapter on this subject, there is only one place to begin—document themes. Themes
were first introduced in Office 2007 and Office 2008 for Mac, and they are among the best
things to ever happen to Microsoft Office documents. Like nested tables in Microsoft Word,
customizable layouts in Microsoft PowerPoint, and tables in Microsoft Excel, themes dra-
matically increase your options for formatting content. Even better, themes help you create
higher-quality content more easily in all three programs.

In this chapter, you’ll learn why themes are important and what they can do for your docu-
ments across Word, PowerPoint, and Excel. In addition, we’ll look at new cross-program func-
tionality for formatting pictures and explore the types of content and formatting that you
can easily share across programs.

102	 Chapter 5  Doing More with Less Work: Key Cross-Program Features

And before you leave this chapter, Office 2010 users can learn about a new feature available
in Word, PowerPoint, and Excel that just might make your day (or save it). You can now often
recover document content you believe you’ve lost, even if you never saved the file.

See Also  To learn how to use nested tables in Word to simplify complex page layouts, see
Chapter 9, “Tables.” To learn about customizing PowerPoint slide layouts, see Chapter 13,
“Creating Presentations: From Theme to Master to Slide.” To learn about the power of Excel
tables, see Chapter 17, “Data-Based Documents: Formatting and Managing Worksheets,” and
Chapter 18, “Working with Data.”

Note  Office 2010 users should note that themes are also available in some types of Microsoft
Outlook content. For example, when editing the body of an email message, find the Themes
group on the Options tab and theme fonts and colors on the Format Text tab, under Change
Styles. You can also find the Format Text tab options in the body of a calendar appointment or
the notes area of a contact.

Because this book is about content you create in Word, PowerPoint, and Excel, Outlook is not
referenced throughout this chapter. However, note that Outlook rich content is based on Word
capabilities. So, for example, just as you can save a custom theme or apply different themes or
theme elements from the Themes group on the Ribbon in Word, you can do the same from the
Themes group on the Options tab in Outlook 2010.

Themes are not available in Outlook for Mac 2011. It’s too bad, but—considering that the Office
for Mac team built Outlook from the ground up for this release and it’s far better in its first ver-
sion than Microsoft Entourage ever was—let’s give them a pass on this omission.

Introducing Document Themes
Themes were born in PowerPoint. Fundamentally, they are the evolution of PowerPoint
design templates. And they are one of many powerful tools enabled by the Office Open XML
Formats.

n	 In Word, PowerPoint, and Excel, themes provide sets of colors, fonts, and graphic for-
matting effects that you can apply to an entire document, presentation, or workbook
with just a click.

n	 In PowerPoint, the same themes also provide the slide master, slide layouts, and slide
background gallery styles for your presentation.

See Also  In Office 2010, you can take advantage of those same slide background
gallery styles for shape fills in Word, PowerPoint, and Excel. To learn more about using
this feature (known as Other Theme Fills) to further coordinate your Word documents
and PowerPoint presentations, see Chapter 10, “Managing Graphics,” and Chapter 14,
“Creating Professional Presentation Graphics.”

	 Introducing Document Themes	 103

There are 40 themes built in to Office 2010 and 57 themes built in to Office for Mac 2011.
Office 2010 also provides additional themes from Office.com in the Themes gallery.

Note  In Office 2010, you see an Office.com category in a few places, such as the Themes gallery
and the SmartArt graphics dialog box. The Office.com categories are known as connected gal-
leries because they periodically update automatically as new content becomes available online.
These galleries don’t display all available content on Office.com, but rather a selection of recom-
mended content.

Some of the Office.com themes that you see in the connected galleries in Office 2010 are among
the built-in themes that Mac users see in Office 2011. If you are working in Office 2010 and you
don’t see this category in the Themes gallery, at the bottom of the gallery, click Enable Updates
from Office.com. (If the gallery doesn’t appear and the option is unavailable, it may have been
disabled by your system administrator.)

You can apply a built-in theme as-is, customize a built-in theme, or create your own com-
pletely custom theme (to help implement your company’s branding across all of your docu-
ments, for example). One quick way to quickly customize a theme is to mix and match the
elements of built-in themes. As you see in Figure 5-1, you can apply an entire theme from the
Themes gallery or apply just the colors, fonts, or (in Office 2010) graphic effects.

PowerPoint 2010

PowerPoint 2011

Figure 5-1  The Themes gallery and theme element galleries, shown in PowerPoint 2010 and PowerPoint 2011.

As shown in Figure 5-1, the Themes gallery is available on the Design tab in PowerPoint 2010
and the Themes tab in PowerPoint for Mac 2011. In Word 2010 and Excel 2010, this gallery
(shown in Figure 5-2) is available on the Page Layout tab. In Word for Mac 2011 and Excel for
Mac 2011, find this gallery on the Home tab.

104	 Chapter 5  Doing More with Less Work: Key Cross-Program Features

Word 2010 Word 2011

Figure 5-2  The Themes group, shown in Word 2010 (left) and Word 2011 (right).

Note  As you see in Figures 5-1 and 5-2, you get different information about the available
themes in these galleries depending on the program you’re using. In PowerPoint 2010 and
PowerPoint 2011, the Themes gallery displays thumbnails of the title slide layout for each theme;
in PowerPoint 2010, those thumbnails also show a preview of the fonts and colors from the
theme (though they’re admittedly tough to see in a black-and-white image). In Word and Excel
on both platforms, the theme thumbnails in the gallery display just font and color previews for
the theme.

For Mac Users
In Word 2011 Print Layout view, on the Home tab, you see the Themes gallery but do
not see the Theme Color and Theme Font galleries by default. However, you can easily
add the full Themes group (including the Theme Color and Font galleries) to the Layout
tab. Find this option in the Word Preferences dialog box, on the Ribbon tab.

Note also that just because you don’t have a separate gallery for theme effects like
Office for Windows users get, it doesn’t mean you can’t easily mix and match themes
with different graphic effects.

	 Introducing Document Themes	 105

See Also  Adding the Themes group to the Layout tab in Word 2011 is one of several
options that you can configure on the Ribbon in the Office 2011 programs. For more
information about the Office 2011 Ribbon, see Chapter 1, “Welcome to Office 2010 and
Office for Mac 2011.” Learn about how Mac users can mix-and-match theme effects,
and how advanced Microsoft Office users on either platform can create their own custom
theme effects, later in this chapter.

Understanding the Importance of Themes
Every Office 2010 and Office 2011 document contains a theme, whether you make use of it
or not. And themes integrate with a great deal of the available formatting tools across Word,
PowerPoint, and Excel.

n	 In both Word and Excel, theme fonts and colors integrate with all style types that you
can customize. In Word, this includes paragraph, character, list, and table styles. In
Excel, it includes cell, table, and PivotTable styles.

n	 In Word, PowerPoint, and Excel, theme fonts, colors, and graphic effects integrate with
the Quick Style galleries (that is, the formatting galleries) for SmartArt graphics, charts,
and shapes. Additionally, fonts and colors integrate with the WordArt gallery options in
all three programs (a feature also known in Word as Text Effects).

n	 In PowerPoint, virtually everything integrates with themes because a theme controls
not only colors, fonts, and effects, but also the masters, layouts, and slide background
options.

Essentially, themes integrate with almost any feature that uses color, fonts, or graphic format-
ting effects. For example, in Word, many types of building block entries (called document ele-
ments in Word 2011)—such as cover pages, headers, and footers—coordinate with the active
theme because they include content that is formatted with font and color (and sometimes
graphic effects). Similarly, in Excel, themes can integrate with features such as conditional for-
matting and sparklines.

Simply put: you can’t take advantage of most Office 2010 or Office 2011 formatting tools
without using themes. And since themes make it easier to format your documents, why
would you not want to use them?

What if you don’t use color or graphics in your content and always want your font to remain
the same? As mentioned earlier, the document contains a theme whether you make use of it
or not. So it’s just as important to know how themes work and how they are implemented in
your documents whether or not you take advantage of them.

106	 Chapter 5  Doing More with Less Work: Key Cross-Program Features

Exploring Theme Elements
See Also  This section addresses cross-program elements of themes—colors, fonts, and graphic
effects. For a detailed look at PowerPoint-specific theme elements (including the slide background
gallery styles that are available in Office 2010 as other theme fills for shapes), see Chapter 13.

As mentioned earlier, the cross-program elements of a theme (those that are available in all
three programs) are colors, fonts, and graphic formatting effects. In this section, we’ll take a
brief look at what that means in more detail.

Explore Theme Colors
A theme color set includes 12 colors. Their breakdown is easy to see in the Create New
Theme Colors dialog box (known as the Create Theme Colors dialog box in Office 2011),
shown in Figure 5-3 and described in the list following it.

Note  This dialog box is available in Office 2010 at the bottom of the Theme Colors gallery in
Word, PowerPoint, and Excel. In Office 2011, this dialog box is available only in PowerPoint, from
the bottom of the Theme Colors gallery.

See Also  Learn about customizing themes in the section “Customizing Themes,” later in this chapter.

Figure 5-3  The Create New Theme Colors dialog box, shown in Office 2010.

n	 Dark 1 and Light 1 (the primary dark and light text and background colors). Note that
these are typically black and white but are not required to be.

n	 Dark 2 and Light 2. These are also designed for use as text and background colors (pre-
dominantly for the purposes of PowerPoint slides), so they should be substantially dark
and light colors, rather than the mid-range colors you are likely to use for content such
as graphic fills.

	 Introducing Document Themes	 107

n	 Six accent colors. These are used automatically to format Office Art graphics such as
Excel charts (the six accent colors correspond to the first six data series in a chart),
SmartArt diagrams, and shapes. It is recommended that these colors be mid-range
(that is, not extremely dark or extremely light) so that they are visible on either light or
dark backgrounds.

See Also  When you choose a colorful range of accent fills for a SmartArt layout, many
SmartArt layouts begin with Accent 2 by default rather than Accent 1. There is a reason
for this, but it is also possible for advanced users to create their own SmartArt color
styles that begin with Accent 1. To learn more about SmartArt styles, see “Explore Theme
Effects,” later in this section, and Chapter 14.

Note that creating custom SmartArt color styles requires the use of Office Open XML. To
learn about the basics of Office Open XML, see Chapter 24, “Office Open XML Essentials.”
Those experienced with Office Open XML can check out the MSDN Office Developer
Center article “Creating Custom SmartArt Graphics” to learn how to create your own
SmartArt color styles and download samples that include a custom SmartArt color style
that you can install and try out for yourself. Find this article at http://msdn.microsoft.com/
en-us/library/gg583880.aspx.

n	 Hyperlink and followed hyperlink colors. These colors do not appear in any color pal-
ette but are automatically used when you create hyperlinks in a Word, PowerPoint, or
Excel document.

The first 10 theme colors (that is, theme colors other than hyperlink and followed hyperlink)
appear as the top row of the color palette that you see across Word, PowerPoint, and Excel.
Notice, as shown in Figure 5-4, the heading Theme Colors at the top of the palette. The sub-
sequent five rows beneath the primary theme colors are tints (lighter variations) and shades
(darker variations) of the theme colors that Microsoft Office generates automatically.

Light and Dark 1 and 2 Accents 1 through 6

Figure 5-4  The Theme Colors palette, shown in Office 2010.

http://msdn.microsoft.com/en-us/library/gg583880.aspx
http://msdn.microsoft.com/en-us/library/gg583880.aspx

108	 Chapter 5  Doing More with Less Work: Key Cross-Program Features

Can You Control the Tint and Shade Percentages in the Theme
Colors Palette?
The short answer to this question is no: you can’t control the tints and shades that
appear in the Theme Colors palette. From top to bottom, following are the tints and
shades you’ll see:

n	 Mid-range colors get tints of 80%, 60%, and 40% lighter than the original and
shades of 25% and 50% darker than the original.

n	 Extremely light colors get shades of 10%, 25%, 50%, 75%, and 90% darker than
the original.

n	 Extremely dark colors get tints of 90%, 75%, 50%, 25%, and 10% lighter than the
original.

n	 Pure white gets shades of 5%, 15%, 25%, 35%, and 50% darker.

n	 Pure black gets tints of 50%, 35%, 25%, 15%, and 5% lighter.

So, you can’t change how colors look in the palette, but that doesn’t mean that you
are limited to those tints and shades when creating custom content that you want to
behave like part of the theme (that is, to update automatically if a different theme is
applied). You can’t make this type of change in the Microsoft Office programs, but this
kind of customization is one of the benefits of learning how to work with Microsoft
Office extensibility using Visual Basic for Applications (VBA) or the Office Open XML
Formats. You can use a macro to apply a custom tint or shade while still adhering to
the theme, or you can do the same by adding a custom tint or shade value in the XML
under the hood of your document.

See Also  To learn about the basics of VBA, see Chapter 23, “VBA Primer.” To learn about
the basics of Office Open XML, see Chapter 24.

Explore Theme Fonts
At its simplest, a theme font set specifies two fonts—one for headings and one for body text.
If you (and anyone you might create a theme for) use only one editing language, that’s most
of what you need to know.

However, if you or those you work with use more than one editing language, you might want
to know that a theme font set can actually specify up to three pairs of heading and body
fonts, as follows:

n	 Latin  This font set is for Latin script languages such as English and French, and also
includes some other scripts, such as Cyrillic.

n	 East Asian  This font set is for Asian languages such as Japanese and Chinese.

	 Introducing Document Themes	 109

n	 Complex Script  This font set is for complex script languages such as Hebrew, Arabic,
Thai, or Hindi.

In addition to these font pairings, a theme can specify unique heading and body fonts to use
for specific language scripts.

It’s important to understand that a theme specifies fonts; it does not actually store font files
in the document. So, if you share documents electronically, fonts appear correctly for recipi-
ents only if they have the fonts you’re using, whether or not you have specified those fonts in
the theme.

Additionally, keep in mind that heading and body fonts are applied by default to certain
aspects of your documents in Word, PowerPoint, and Excel. However, you can choose to use
your heading font in body text or assign your body font to a heading as needed. Some key
default settings for heading and body fonts are as follows:

n	 In Word, the theme body font is the primary font (that is, the font used for the docu-
ment defaults and Normal template) in a new Word 2010 or Word 2011 document.
Additionally, the theme heading font is applied by default to several of the built-in
heading styles.

n	 In PowerPoint, the theme heading font is applied by default to title text placeholders
on the slide master and layouts; the theme body font is applied by default to body text
placeholders and other objects, such as Office Art objects including charts, SmartArt
graphics, and text boxes within shapes.

n	 In Excel, the theme body font is the default font for worksheet and chart text. It’s also
used for most theme-aware built-in cell styles (other than the Title style, which uses the
theme heading font), and is used by default in other built-in style types, even for con-
tent such as heading row formatting in table styles.

In Excel 2010, the worksheet row and column headings also take on the active theme
body font by default.

In all of the preceding examples, you can customize these default settings. For example, you
can customize Word styles or PowerPoint placeholders to use whatever font you choose (for
example, you can apply the theme heading font where the theme body font is the default).

In Excel, you can do the same. Notably, if you set the default font for new workbooks to be
something other than the theme body font, whatever font you select (theme-ready or other-
wise) will then be the automatic font anywhere the theme body font is the default (such as
worksheet text and most cell styles).

110	 Chapter 5  Doing More with Less Work: Key Cross-Program Features

See Also  You can create your own theme fonts from within the Office 2010 programs Word,
PowerPoint, and Excel. You cannot do this from within Office 2011 programs, but Mac
users still have an easy way to create custom theme fonts. To learn more, see the section
“Customizing Themes,” later in this chapter.

To learn about how to select fonts to simplify document sharing, see Chapter 3, “Managing
Electronic Documents.”

For help with Word styles, see Chapter 8, “Styles.” To learn about customizing layouts and
masters in PowerPoint, see Chapter 13. For information about customizing worksheet
formatting in Excel, see Chapter 17.

Explore Theme Effects
Theme effects are all about Office Art. That is, they are the settings that populate the Quick
Styles galleries for shapes, charts, and SmartArt graphics. (In PowerPoint, the top two rows
of table styles, ambiguously labeled Best Match For Document, also coordinate with theme
effects.)

If you’re never going to create your own theme effects, that’s really all you need to know
about this feature. Just apply different themes and then check out the Shape Styles, SmartArt
Styles, and Chart Styles galleries (or check out the changes to the Office Art content in your
document) to see if you like the effects. Or, for Office 2010 users, you can also point to differ-
ent options in the Theme Effects gallery to see a preview of how they will affect your Office
Art content.

However, if you want to understand how theme effects work (that is, how those galleries are
populated), and even potentially create or customize your own theme effects, there’s quite a
bit more to understand.

Note  You cannot create custom theme effects from within any Office 2010 or Office 2011 pro-
gram. You can, however, customize theme effects through Office Open XML or—for Windows
users—by using a free download called the Theme Builder.

See Also  Learn more about creating custom themes, including creating theme effects and how
to get the Theme Builder tool, in the section “Customizing Themes,” later in this chapter.

A theme effect set consists of three fill formats, three line formats, and three effect formats.
Within each group (fill, line, and effect), the three formats are categorized as subtle, moder-
ate, and intense. That is, there are subtle, moderate, and intense format settings for fill, line,
and effect.

	 Introducing Document Themes	 111

n	 Fill formats can be solid, gradient, or image.

❑	 Solid and gradient fills can use tints, shades, and transparencies (as well as HSL
variations). Gradients can include up to 10 stops.

❑	 Image fills can be static (so that the image always looks the same), or they can use
duotone recoloring to take on the hues of applicable theme colors.

n	 Line formats can also be solid or gradient, and they can specify settings such as line
style and end and join types.

n	 Effect formats can include multiple effects, including inner and outer shadows, glow,
soft edges, reflections, and 3-D format settings.

The idea that there are three sets of formats seems straightforward, but when you look at
the various Office Art Quick Style galleries, you’ll see that it’s not quite that simple. Nowhere
in any of these galleries will you actually see a subtle, moderate, or intense style that cor-
responds to the complete subtle, moderate, and intense formatting sets in the active theme
effects. Figures 5-5 through 5-7 illustrate which elements of a theme effects set are used to
populate the Quick Style galleries for shapes, SmartArt graphics, and charts.

Note  Figure 5-6 shows the five SmartArt styles that appear in the Best Match For Document
category at the top of the gallery in Office 2010. In Office 2011, there are no defined categories
in this gallery, but these are the first five styles in the gallery (starting from top-left).

These five styles coordinate with the effects in the active theme. The additional built-in SmartArt
style options (not shown here) are in the 3-D category in that gallery. Some of these use ele-
ments from theme effects as well, but some elements of each 3-D SmartArt style remain static
regardless of the theme applied.

White fill,
moderate line,

no effects

Subtle fill,
intense line,

subtle effects

Intense fill,
subtle line,

moderate effects

Subtle fill,
moderate line,
no effects

Moderate fill,
subtle line,
subtle effects

Intense fill,
no line,
intense effects

Figure 5-5  The Shape Styles gallery, with an explanation of included theme effects.

112	 Chapter 5  Doing More with Less Work: Key Cross-Program Features

Simple Fill style
Subtle fill,

moderate line,
no effects

Intense Effect style
Intense fill,
no line,
intense effectsWhite Outline style

Subtle fill,
intense line,

subtle effects

Subtle Effect style
Moderate fill, no line,

subtle effect,
plus a small bevel

White Outline style
Intense fill,

no line,
moderate effects

Figure 5-6  The first five styles in the SmartArt Styles gallery, with an explanation of included theme effects.

Subtle fill,
no line,

no effects

Intense fill,
no line,

moderate effects

Subtle fill,
subtle line,
no effects,

light 1 fills chart
area, and a light

1 shade fills
plot area

Subtle fill,
subtle line,
no effects

Intense fill,
no line,
intense effects

Intense
fill, no line,
intense effects,
dark 1 fills
chart area,
and a dark 1
tint fills plot
area

Figure 5-7  The Chart Styles gallery, with an explanation of included theme effects.

Following are a few key points that address common questions or areas of confusion about
working with theme effects in these Office Art galleries:

n	 As you see in Figure 5-6, SmartArt styles are named (the names are visible in a
ScreenTip when you point to the style). However, shape styles and chart styles are not
named. If you point to a style in the Shape Styles or Chart Styles galleries, you see only
a style number.

n	 You cannot change what theme effect elements are included in a given gallery entry
because they are automatically populated from the theme effect settings in your active

	 Introducing Document Themes	 113

theme. However, when you create your own theme effects, you can customize the
subtle, moderate, and intense fill, line, and effect definitions that make up the majority
of settings in these galleries—so you can tremendously affect the appearance of Office
Art styles by customizing your theme effects.

n	 Although this book’s screenshots are in grayscale, note that the Office Art galleries all
provide options that span the six accent colors and also include your Dark 1 theme col-
or (for SmartArt, color options are in a separate gallery; for shapes and charts, they’re
displayed across the galleries shown in Figures 5-5 and 5-7).

Understanding How Themes Work
If you’ve tried to apply a theme to a document in the past and nothing appeared to change,
the document was not formatted using theme-aware (also referred to as theme-ready) for-
matting. For example, look at the paragraph style definition for Heading 1 in a new Word
2010 or Word 2011 document, as shown in Figure 5-8.

Figure 5-8  ScreenTip displaying the built-in Heading 1 style definition, shown in Word 2010.

n	 Notice that the font definition in Figure 5-8 uses the term +Headings. This indicates
that it is the heading font from the active document theme. So, if the theme were
changed, the font in that style would automatically change as well to the heading font
from the new theme. If you only saw the font name (Cambria, in this case) and did not
see either +Body or +Heading, then the font specified is not theme-ready (in other
words, it will not update when the theme changes).

n	 Similarly, notice that the font color in the Heading 1 definition shown in Figure 5-8 is
Accent 1. That means that when the theme changes, the style will update automatically
to whatever color is set as Accent 1 in the active theme. If you see an RGB value in the
style definition instead, that color is not theme-ready.

114	 Chapter 5  Doing More with Less Work: Key Cross-Program Features

Note  Remember that a style definition in Word includes only those features that are set for the
specific style. That is, if a style uses the same font as the style it’s based upon, you will not see
any font or color definition in that style.

It’s also worth noting that the way theme colors are specified in style descriptions is not always
complete. When a style uses a tint or shade of the theme color (from the Theme Colors palette,
as shown in Figure 5-10), the definition still indicates only the theme color. For example, if you
apply the 40% lighter tint of Accent 1, the style definition would still list only Accent 1 as the
color.

See Also  To learn about base styles in Word, see Chapter 8.

Essentially, to apply theme-aware formatting, you have to apply content from theme-specific
entry points. For example, consider the following:

n	 If the theme heading font in your active theme is Calibri, to apply that as theme-aware
formatting (that is, formatting that updates automatically when the theme changes
to use the heading font in the active theme), you must select Calibri from the Theme
Fonts portion of any font list, as shown in Word in Figure 5-9. If you instead select
Calibri from the All Fonts portion of the list, the font will not update when the theme is
changed.

Figure 5-9  Use the Theme Fonts portion of a font list to apply theme-aware formatting.

n	 Similarly, if you want to apply the Accent 3 color from your active theme, you must do
so from the Theme Colors portion of the gallery, as shown in Figure 5-10. If you apply
the same color value, but do so by specifying the RGB value, for example, that color
will not be theme-aware where you apply it (that is, it won’t update to take on the new
Accent 3 color when the theme is changed).

	 Introducing Document Themes	 115

Figure 5-10  Use the Theme Colors portion of the color palette to apply theme-aware formatting.

n	 The Office Art galleries shown earlier in Figures 5-5 through 5-7 are the locations from
which to apply graphic effect formatting to make that formatting to be theme-aware.
Although you can apply the same effects—such as shadows, bevels, reflections, and
fills—from the individual fill, line, or effect galleries on various Format tabs and dialog
boxes, only the Quick Styles are theme-aware—not the individual effect options.

The difference in behavior between using and not using theme-aware formatting is similar
in concept to whether you use styles or direct formatting in Word. When you apply direct
character or paragraph formatting to text in Word, updating styles in the document will not
affect the portions of the text that you directly formatted. Similarly, any content to which
you apply direct formatting for font, color, or graphic effects—rather than the theme-aware
alternatives in Word, PowerPoint, or Excel—will be unaffected when you change the active
document theme.

How Themes and the Microsoft Office File Formats Are
Connected
Themes are available only in the Office Open XML file formats. So, if you’re working
with a document that was created in a version earlier than Office 2007 on Windows or
Office 2008 on Mac, you need to convert the file to the latest format before you can
begin to apply theme-ready formatting.

In Office 2010 programs, find the option to convert a document in Backstage view, on
the Info tab. In Office 2011, find this option on the File menu. Note that these options
appear if the document was created in any version earlier than Office 2010 or Office
2011, because some capabilities have been added to the Office Open XML file formats
in these versions.

116	 Chapter 5  Doing More with Less Work: Key Cross-Program Features

It’s a good idea to convert the document when this option appears, regardless of the
file format. For example, in Word, the latest Office Art graphics—such as the new text
effects (WordArt) and shape formatting—are not available in Word 2007 or Word 2008
for Mac documents. But if the document was created in Office 2007 or Office 2008
and is an Office Open XML Format document (that is, a document that uses the current
four-character file extensions for Microsoft Office documents), you don’t have to con-
vert it to work with themes. All Office Open XML Format documents contain a theme
and may already contain theme-ready formatting.

Note also that, because themes are the evolution of PowerPoint design templates,
applying a theme in a presentation that uses the legacy file formats will affect the pre-
sentation. At a glance, it will appear that the theme has been applied. But there’s not
a one-to-one mapping between legacy design templates and themes, and correctly
updating a legacy PowerPoint presentation to use themes will take a few more steps.

See Also  To learn about the Office Open XML file format extensions and get an
introduction to working with these file formats in Office 2010 or Office 2011, see Chapter
1. For information on how legacy design templates relate to themes in PowerPoint, see
Chapter 13.

For Mac Users
Office 2011 introduces the template galleries in Word, PowerPoint, and Excel, from
which you can access built-in templates, tens of thousands of templates that are hosted
on Office.com, your own custom templates, and your recently opened documents. In
Word and PowerPoint, these galleries also integrate with themes to give you the ability
to customize a template (or, in PowerPoint, a theme) before you even create a docu-
ment. (You can customize both built-in templates and those that you save to the My
Templates and My Themes categories in the template galleries.)

It’s often a great idea to start with an existing template even if it’s not exactly what you
need, because you can save time by starting with the elements that fit your require-
ments and customizing the rest. Office 2011 just makes that even easier.

To access the template gallery in the applicable program, on the File menu, click New
From Template. (And note that these galleries appear by default each time you open
the program, unless you’ve told them not to.) The galleries are named for the program
in which they reside, including the Word Document Gallery, PowerPoint Presentation
Gallery, and Excel Workbook Gallery.

	 Customizing Themes	 117

In all three galleries, you can use the options on the right side to browse previews of
all pages of the template. Or, just drag your mouse pointer across the thumbnail in the
gallery to see multipage previews. However, in Word and PowerPoint, the righthand
pane is a customization pane that enables you to apply different theme colors and
theme fonts (and, in PowerPoint, to change the presentation aspect ratio), and preview
those changes directly in that pane before you create the document.

In Word, you can customize built-in Print Layout view and Publishing Layout view tem-
plates before creating your document. In PowerPoint (as shown in Figure 5-11), you can
customize built-in templates and themes before creating your presentation.

Figure 5-11  The PowerPoint Presentation Gallery dialog box.

Customizing Themes
Whether your goal is to create branded content across Microsoft Office (for example, to
implement company branding or your own personal or professional branding), or just to cre-
ate polished, professional content, the ability to customize themes is one of your most pow-
erful tools.

118	 Chapter 5  Doing More with Less Work: Key Cross-Program Features

Note  Branding refers in this case to visual brand identity—that is, a set of components (such as
logo, colors, fonts, layouts, and style) that define the way content created for the company (or
brand within the company, or individual) should look. Typically, the purpose of a visual brand
identity is to provide consistent, professional content that expresses the personality of the com-
pany or product. Just as overall branding is about distinguishing the company or brand from the
competition (such as when a logo or tagline becomes instantly recognizable to the public), visual
brand identity is about conveying that unique identity in all of the content you create.

That said, you don’t have to be part of a large company to create a visual brand identity. You
might be an independent contractor or a student, for example, and still want to create a consis-
tent, professional look that expresses your personality in all of the content you create. So, regard-
less of whether you have a professional design team at your disposal to help develop your brand
identity, or you’re entirely on your own, you can use themes to make the job substantially easier.

Mixing and Matching to Create Your Own Theme
As we discussed earlier in this chapter, you can mix and match elements of a theme with just
a few clicks to quickly create your own custom theme. Use the following tips to help you do
this with as little work as possible:

n	 If you use PowerPoint, it’s a good idea to customize your theme from within that pro-
gram; in PowerPoint presentations, the theme controls many features beyond the fonts,
colors, and graphic effects that it controls in Word and Excel.

In other words, you may want to select the overall theme that you like best in
PowerPoint, since that theme includes the slide master, slide layouts, and slide back-
ground style options for your presentations. Then, you can select different theme col-
ors and fonts (and, in Office 2010, effects) to mix and match for your custom theme.

See Also  For help getting this done and more information about PowerPoint-specific
theme elements, see Chapter 13.

n	 If you’re using Office 2010, remember that you have Live Preview functionality avail-
able, so you can just point to options in the Themes, Theme Colors, Theme Fonts, and
Theme Effects galleries to see how they’ll appear in your content before selecting them.

n	 If you’re using Office 2011, remember that you don’t have a separate gallery for theme
effects. So, even if you use only Word or Excel, start by finding a complete theme con-
taining graphic formatting effects that you like. Then, you can select different theme
colors and fonts to mix and match for your custom theme.

After you apply the theme, theme colors, theme fonts, and theme effects that you want in
your document, it takes just a couple of quick steps to save that combination as a custom
theme. Once it’s saved, your new custom theme is automatically available to all of the docu-
ments you create in Word, PowerPoint, or Excel.

	 Customizing Themes	 119

Note  In Office 2010, you see custom themes and theme elements in the galleries in Word,
PowerPoint, and Excel as soon as you save them in any of these programs. In Office 2011, new
themes and theme elements appear the next time you start the program.

To save a custom theme:

	 1.	 At the bottom of the Themes gallery in Word, PowerPoint, or Excel, click Save Current
Theme (Save Theme in Office 2011).

	 2.	 Name your new theme and then click Save.

Important  Do not change the file path when saving your custom theme. Custom themes
must appear in the default location to appear in the Themes gallery.

Apply the Theme from One Document to Any Other
You can apply the theme contained in any Office 2010 or Office 2011 document to any
other. For example, apply the theme in a PowerPoint presentation to your Word docu-
ment or Excel workbook. You can even apply a theme from an Office 2010 document
to an Office 2011 document (or vice versa).

To do this, find the Browse For Themes feature (called Browse Themes in Office 2011)
that appears at the bottom of all Themes galleries. From there, you can select any
Office Open XML document (so it includes your Office 2007 and Office for Mac 2008
files as well) to apply the theme stored in that document to any other.

Keep in mind that Word and Excel documents don’t store the slide master and slide lay-
outs that are part of the theme in PowerPoint. So, to get all theme elements when you
use the browse feature to apply a theme in PowerPoint, start from another PowerPoint
presentation.

Creating a Complete Custom Theme
Just as you can apply different built-in options from the Themes and Theme Elements galler-
ies and then save the combination as a custom theme, you can create your own theme ele-
ments to include a custom theme or even your own entirely custom theme.

n	 In Office 2010, you can create custom theme colors from Word, PowerPoint, and Excel.

In Office 2011, you can do this from PowerPoint.

120	 Chapter 5  Doing More with Less Work: Key Cross-Program Features

n	 In Office 2010, you can create custom theme fonts from Word, PowerPoint, and Excel.

In Office 2011, you cannot do this from within the applications, but you can still do it
easily using the TextEdit Mac OS utility.

In both Office 2010 and Office 2011, to specify a font for a specific language script
(such as a font that is specific to Japanese text rather than to any Asian language),
you must use Office Open XML; you cannot do it from within the Microsoft Office
programs.

n	 You cannot customize theme effects from within any Microsoft Office program.
However, as with any other aspect of themes that can’t be customized from within the
programs, you can do it using Office Open XML.

n	 In PowerPoint 2010 or PowerPoint 2011, you can customize the masters and layouts for
your theme from within the program. However, the slide background gallery options
cannot be customized from within PowerPoint.

See Also  To learn about PowerPoint-specific theme elements as well as customizing slide
masters and layouts, see Chapter 13.

Because themes are shared across Word, PowerPoint, and Excel, when you customize a
theme element from one program, it becomes available in all three.

Note  Some other Office 2010 programs include a feature named Themes, but even if you see
some of the same theme names (in Microsoft Publisher 2010, for example), the features are not
the same. Custom themes you create in Word, PowerPoint, or Excel are available only in those
three programs.

To create a completely custom theme, including your own custom theme effects and slide
background gallery options, you must use Office Open XML. As mentioned earlier in this
chapter, Windows users can download a free tool—the Theme Builder—to help create the
theme effects and slide background gallery options (and you can use that tool for creating
theme colors and fonts as well) without having to read or write Office Open XML.

See Also  For help using Office Open XML to create complete custom themes, and for
additional information about creating complete custom themes using either Office Open XML
or the Theme Builder tool, see the following resources:

To learn about the basics of Office Open XML, see Chapter 24.

	 Customizing Themes	 121

To download the Theme Builder, visit http://connect.microsoft.com/themebuilder. This
tool is in a public beta at the time of this writing, and is expected to be available at this link
indefinitely. Once you install the Theme Builder, on the Help menu, you can find a detailed
theme creation guide and theme SDK documentation, both of which provide in-depth
recommendations and best practices for creating themes. These documents were written for
Office 2007 but are still applicable to creating themes in Office 2010 (and Office 2011). The
theme creation guide was written by members of the PowerPoint team, and I am proud to have
been engaged by Microsoft to write the Office 2007 version of the themes SDK document.

Additionally, Office 2010 and Office 2011 users who want to venture into Office Open XML
for creating complete custom themes can see the article “Creating Custom Themes with the
Office Open XML Formats,” available on MSDN at http://msdn.microsoft.com/en-us/library/
cc964302.aspx. I wrote this paper for Office 2007 and Office 2008 for Mac, but it is still
applicable to the themes that you create in Office 2010 and Office 2011.

Companion Content  If you'd like to check out the themes SDK document without
downloading the Theme Builder tool, it's accessible to everyone. See the links list available in
the Bonus Content folder online at http://aka.ms/651999/files for a link to
this document. At the time of this writing, the document was written for Office 2007. However,
the PowerPoint team expects to update the document for Office 2010 (which will also apply to
Office 2011) and the link will remain the same.

Create Custom Theme Colors
You can create theme colors from the Office 2010 programs Word, PowerPoint, and Excel, or
from PowerPoint 2011. To do this, follow these steps:

	 1.	 If an existing set of theme colors is similar to the one you want, apply it to the active
document.

When you start to create a custom theme color set from within the Microsoft Office
programs, the dialog box always starts with the theme colors in the active document.
So if there is an existing set that contains some colors you want (or even colors similar
to those you want), you can save time by applying that color set before you begin.

	 2.	 At the bottom of the Theme Colors gallery, click Create New Theme Colors (Create
Theme Colors in PowerPoint 2011).

Find this gallery on the Page Layout tab in Word 2010 or Excel 2010, the Design tab in
PowerPoint 2010, and the Themes tab in PowerPoint 2011.

	 3.	 Set the colors as desired for each of the 12 colors included in the theme.

	 4.	 Type a name for your custom theme colors and then click OK.

If you are creating a complete custom theme, it’s customary (for ease of use by others)
to use the same name for your theme elements as you do for the complete theme.

http://msdn.microsoft.com/en-us/library/cc964302.aspx
http://msdn.microsoft.com/en-us/library/cc964302.aspx
http://aka.ms/651999/files

122	 Chapter 5  Doing More with Less Work: Key Cross-Program Features

In Office 2010, after you have created a custom theme color set, you can right-click that
entry in the Theme Colors gallery at any time to edit those theme colors. In PowerPoint 2011,
to edit those theme colors, apply them in a document and then create a new set of custom
theme colors based on them. You can then delete the original from the folder where the
theme color XML file is stored, if you no longer need it.

See Also  For theme file locations, see Chapter 22, “The Many Faces of Microsoft Office
Templates.”

Create Custom Theme Fonts
You can create custom theme fonts from within the Office 2010 programs Word, PowerPoint,
or Excel. To do this, follow these steps:

	 1.	 At the bottom of the Theme Fonts gallery in Word, PowerPoint, or Excel, click Create
New Theme Fonts.

By default, when just one editing language is enabled for Microsoft Office, the dialog
box that opens will show space for just one heading and one body font. For example,
when English is your editing language, you can change the heading and body fonts for
Latin text languages.

To set theme fonts for East Asian languages or Complex Script languages as well,
enable a language that uses those options and then restart the applicable Microsoft
Office program. To do this:

	 1.	 Click the File tab and then click Options.

	 2.	 On the Language tab, under Choose Editing Languages, select additional lan-
guages as needed and then click Add.

	 3.	 Click OK and then restart the program.

	 2.	 In the dialog box (shown in Figure 5-12 with theme fonts enabled for Latin, East Asian,
and Complex Script languages), select the fonts that you want to include in your theme
font set.

	 Customizing Themes	 123

Figure 5-12  The Create New Theme Fonts dialog box with Latin,
East Asian, and Complex Script fonts enabled.

Also notice in Figure 5-12 how the arrows to the right of the previews for Latin text and
Complex Script text are enabled, but the arrows to the right of the East Asian text pre-
view are not. This is because multiple Latin text and Complex Script languages are cur-
rently enabled, but only one East Asian language. Where you have multiple languages
enabled, you can scroll through previews to see your selected fonts previewed in each
language.

The drop-down list under each section provides only fonts that support the specified
type of scripts. For example, the East Asian font list will include fonts such as Meiryo
and MS Mincho that are designed for use with Asian fonts (Japanese, in the case of
both examples).

Note that you don’t have to have a font installed to save a theme font set that utilizes
that font (for example, if you are creating a theme for others to use and you do not
have a license for their proprietary font). However, if the font is not installed on your
system, Microsoft Office will substitute another font when you apply that theme, and
the results might not be desirable.

	 3.	 Name your theme fonts and then click OK.

See Also  If you want to customize scripts for specific languages, keep in mind that you can only
do this in Office Open XML (or using the Theme Builder tool). However, you can copy a built-in
theme font set that includes some script definitions and use a text editor to do this much more
easily than you might expect. To learn how, see Chapter 24.

124	 Chapter 5  Doing More with Less Work: Key Cross-Program Features

For Mac Users
All of the built-in theme font sets are installed on your computer. So, even though you
can’t create your own theme fonts from within the Office 2011 programs, you can eas-
ily edit an existing theme font file using any text editor—such as the Mac OS utility
TextEdit. Sound scary and complicated? Don’t worry. You might be amazed at just how
easy it is.

See Also  For a tip that walks you through customizing theme fonts, see Chapter 24.

Share Custom Themes
You already know that you can apply the theme from any Office Open XML document to
any other document using the Browse For Themes feature. However, you can also share the
custom themes and theme elements that you create with other people or with your other
computers by sharing the actual theme files.

Themes use the file extension .thmx. You can find the built-in themes for Office 2010 or
Office 2011, and your own custom themes, in .thmx files that are saved on your computer.
When you create custom theme colors or custom theme fonts, they are stored in separate
shareable files as well (.xml files). And if you use Office Open XML and create your own cus-
tom theme effects, you can also save those as a separate file for use in Office 2010 (a theme
effects file uses the .eftx file extension).

See Also  To learn about where to find the files for built-in and custom themes, and how to
share them, see Chapter 22.

Exploring the Advanced Picture Formatting Tools
Okay, so picture formatting can be useful in many types of documents. But when it comes to
complex document creation, the importance of picture formatting is hardly on par with that
of a pervasive set of tools like themes. So why include a section on picture formatting here?
Well, picture formatting is much improved in both Office 2010 and Office 2011. But it’s also
one of the best examples of consistency in tools across the Microsoft Office programs and
even across platforms.

While it’s true that a picture can be worth 10,000 words, it’s only useful to include that
picture (or any graphic) in your document if it helps you express the right 10,000 words.
Using graphics just for the sake of it detracts from your points rather than enhancing them.
And unless you are a photographer, it’s unlikely that the picture itself is the point of your
document.

	 Exploring the Advanced Picture Formatting Tools	 125

However, when you have the right image that helps convey your message, the ability to
customize that image can potentially add to both its relevance and its impact. So, let’s
take a look through the greatly improved tools for customizing images in Office 2010 and
Office 2011.

To find picture editing tools, just select an image in your document. In Office 2010, this
enables the Picture Tools Format tab. In Office 2011, it enables the Format Picture tab. Figure
5-13 displays both. As with any contextual tabs, they appear only when you select applicable
content and provide easy access to most of the available feature-specific tools. However, we’ll
also venture into the Format Picture dialog box a few times in this section for a look at sev-
eral advanced options.

Office 2010

Office 2011

Figure 5-13  The Picture Tools Format tab (Office 2010) and the Format Picture tab (Office 2011) contain
nearly identical options across Word, PowerPoint, and Excel.

Adjusting Images
By using a mix of new and improved tools, you can do much more than just tweak brightness
and contrast. All of the tools addressed in the list that follows are available on the Picture
Tools Format tab (Format Picture tab in Office 2011) in the Adjust group:

n	 Click Corrections for Sharpen, Soften, Brightness, and Contrast options.

Sharpen and Soften are new; Brightness and Contrast are not. For even more options,
you can click Picture Correction Options at the bottom of the gallery to open the
Format Picture dialog box, where you can set precise Sharpen, Soften, Brightness, and
Contrast values—giving you far more control over brightness and contrast than you’ve
had in previous versions.

Note that, when you open the dialog box in Office 2011, it takes you to the Adjust
Picture tab, which includes both correction and color settings. This tab also contains a
Mac-exclusive setting—the ability to set a specific level of transparency for the entire

126	 Chapter 5  Doing More with Less Work: Key Cross-Program Features

image. This setting is supported in Office 2010 (which means if it’s set for an image in
a document you open, you can see the transparency), but it cannot be set from within
the Office 2010 programs.

Tip  Office 2010 users can insert a shape and then fill the shape with the desired picture to
apply transparency to the picture. To do this, right-click the shape, click Format Shape, and
then, on the Fill tab, click Picture Or Texture Fill to browse for your image. After you select
your image, you can find the transparency setting on the same Fill tab.

Note that inserting an image into a shape doesn’t constrain the image proportions, so if
the shape has different proportions than the image, the picture will be distorted. If this
occurs, on the Picture Tools Format tab, in the Size group, click to expand the Crop option,
and then click Fill. This action turns on the crop tool and fills the shape with your image
proportionally. You can then drag or resize the image within the shape for the desired
result. Note that doing this will not, however, turn on Lock Aspect Ratio. To enable this
setting, on the Size tab of the Format Shape dialog box (or the Layout dialog box in Word
2010), select Lock Aspect Ratio.

See Also  Do you Office 2010 users feel adventurous and want a simple approach to
adding transparency on your images without inserting them into shapes? Use Office
Open XML—it just takes one setting. To learn how, see the sidebar “For Windows Users:
Set Picture Transparency” in Chapter 24. For more information on using the improved
cropping tools, see the “Cropping Images” section of this chapter.

n	 Click Color for new Color Saturation and Color Tone tools, as well as Recolor options.

You can use the range of presets in the gallery or, at the bottom of the gallery, click
Picture Color Options for the Format Picture dialog box, where you can set specific
tone and saturation values.

At the bottom of this gallery, also find the Set Transparent Color option, which is not
new but is one of the most useful picture editing tools in Microsoft Office. With this
tool, you can set one color in the active picture (and only one—don’t get greedy!) to
transparent (that is, remove the color from the image entirely). It’s particularly handy
for bitmap images (such as a logo in JPG or TIF format) where you have an object on
a solid white or single-color background and want to remove the background so that
your document content shows through. Just select Set Transparent Color and then click
anywhere in the image on the color that you want to remove.

Recolor isn’t new either, but it offers an improved range of variations that can be very
useful in some circumstances. Essentially, it enables you to provide a monochrome
wash in any of your active theme colors (or a color that you specify) on a selected
image. A color wash might not seem like the most powerful tool you could ask for, but
it might be handier than it seems at first glance. See the sidebar “Use the Recolor Tool
to Make Custom Graphics Theme-Aware,” at the end of this section, to learn how to use
this tool to coordinate custom graphics with your theme.

	 Exploring the Advanced Picture Formatting Tools	 127

n	 The new Remove Background tool sounds fantastic—just drag to remove unwanted
elements from a picture and leave only those you want.

With simple images that have a clearly defined, clean background, this tool can be as
great as it sounds. Unfortunately, with most images, it’s likely to be less friendly than
you might hope. So, if you try to use this feature and find that results are not what you
expected, it’s probably not something that you’re doing. The feature just has its limits.

When you click Remove Background, it guesses at what you might want removed.
Again, if the image has a very clearly defined background, you might be in luck.
Otherwise, it’s probably not accurate, but it does get you started. You can then drag
the mouse pointer across parts of the image that were removed or left behind to add
or remove them from your image.

Remove Background works a bit differently in Office 2010 and Office 2011:

❑	 In Office 2010, you get a new contextual tab on the Ribbon from which you can
select options to add or remove elements from the background, or remove exist-
ing marks for additions or deletions. After you select add or remove, you then
drag your mouse pointer across the image where you want to execute that action.

❑	 In Office 2011, the tool is a bit more intuitive because it just knows what to add
or remove based on what you’re dragging over (that is, it can tell whether what
you’re dragging over is currently part of the visible image). There is no contextual
tab, so you just click or drag to execute the actions you want. For example, to
delete an existing mark, just click the center icon on that mark where you see it
on the image.

In either version, definitely give it a try. You might find it much more effective for your
particular image than what is described here. But if you don’t get the results you’re
looking for right away, you probably shouldn’t spin your wheels with this one.

n	 Artistic Effects (called Filters in Office 2011) are very cool. You’re not likely to use them
in all of your documents, or even in many. But it’s good to know what they are and
what they can do, because they might just provide the edge you need for one particu-
lar image to make the exact visual impact you want in your document.

The Artistic Effects (Filters) gallery provides a broad range of effects from subtle to dra-
matic, as shown in the examples in Figure 5-14. There are 22 effects in all. You can also
click Artistic Effect Options (Artistic Filter Options in Office 2011) at the bottom of the
gallery to open the corresponding tab of the Format Picture dialog box, where you can
access adjustment settings for any effect. The adjustment settings vary by effect, and
you can make them more subtle or intense as desired. (Note that there is a transpar-
ency setting for effect options, but it refers to the transparency of the effect, not the
image.)

128	 Chapter 5  Doing More with Less Work: Key Cross-Program Features

Original

Plastic Wrap

Mosaic bubblesGlow edges

CementCutout

Figure 5-14  An image shown with several different artistic effects applied.

Use the Recolor Tool to Make Custom Graphics Theme-Aware
If you insert a photo and apply a color wash using the Recolor gallery, you might not
think the results are that impressive. But a talented graphic designer recently gave me a
tip about how to make better use of this tool, and I think it’s one worth sharing.

If you create custom graphics in another application (such as Adobe Illustrator), you
might have previously tried exporting those graphics as a Windows enhanced meta-
file image that (in Office for Windows) you can convert to Office Art shapes and then
recolor to match your theme. In many cases, this is a good approach. But if the graphic
is very complex, converting the image to shapes might be overwhelming for the docu-
ment and diminish performance (of either the graphic or the document overall).

Instead, if the graphic can easily be exported as one or a few PNG images (one PNG
image for each element that uses a given color), you can recolor each PNG in Office
2010 or Office 2011, layer the recolored images to reconstruct the appearance of your
original graphic, and group the images together.

Of course, this solution is not ideal if you need a dozen or more colors because layering
tons of images is not likely to make things easy to work with. But when your graphic

	 Exploring the Advanced Picture Formatting Tools	 129

requires just one or even a few colors, this can be a nice way to save file size, preserve
document performance, and still have your graphics coordinate with your theme. If
you’d like to give it a try, note the following tips when preparing your graphics for
export as PNG images:

n	 Do not export graphic objects with the color applied that you want to use in
Microsoft Office, because the Recolor tool results will be affected by the original
color of the object.

n	 When you use the Recolor tool, solid (no transparency) medium to light gray fill
for your PNGs is likely to give you the best results.

n	 Filling the original graphic with solid black before exporting will cause only the
light variations in Recolor to be available. Filling the graphic with pure white
before exporting is likely to make any Recolor option appear washed-out.

n	 The results with this approach tend to work best with mid-range colors. Extremely
bright, dense colors (such as fluorescents) are difficult, if not impossible, to match.

Be sure to export your graphic as a PNG with a transparent background, so that only
the elements of the object that should get fill are recolored in Microsoft Office. For
graphics with large solid areas and broad strokes, exporting your PNG at a medium
resolution is likely sufficient. For graphics with fine strokes and delicate drawing detail,
you’ll get the best results with a high resolution.

See Also  To learn about converting metafile images to shapes, see the section “Getting
Your Vector Graphics into Microsoft Office” in Chapter 14.

Cropping Images
The cropping tools in Office 2010 and Office 2011 are probably the best improvements in
picture editing (and maybe one of the best improvements overall in these Microsoft Office
releases). Yes, picture cropping is generally pretty simple, but it can cause a lot of stress when
it’s cumbersome to do.

In Office 2010 and Office 2011, you can now see the entire image in shadow while you crop,
and you can drag and resize the image within the crop area. Here are a couple of prime
examples of where these improvements can help simplify your work with Microsoft Office:

n	 Have you ever inserted a picture into a picture placeholder on a PowerPoint slide and
it didn’t automatically crop the way you wanted? If you’ve ever inserted a picture into a
picture placeholder, there’s a good chance that your answer is yes. And in previous ver-
sions, the solution usually meant cropping the image and then manually resizing and repo-
sitioning the placeholder (often defeating the purpose of the placeholder and the layout).

130	 Chapter 5  Doing More with Less Work: Key Cross-Program Features

n	 If you’ve used Publishing Layout view in Word 2008 for Mac to lay out documents, or
you’ve created complex layout pages with floating images in Word 2007 or earlier for
Windows, you know that cropping an image can require a lot of fussing and fighting
to resize and reposition the object after it’s cropped. This is easier in Publishing Layout
view than anywhere else in Word, but it’s never before been actually easy.

Regardless of whether you use Office 2010 or Office 2011 and regardless of whether you
need to work with images in PowerPoint, Word, or Excel, you no longer have to mess with
your layout at all to get the perfect crop every time. Just turn on the cropping tool, shown in
Figure 5-15, and then resize or drag the image as needed within the crop area until you get
exactly the results you need. Turn off the cropping tool when you’re done, and the results are
perfect—no trial, error, or torn hair follicles required.

Figure 5-15 When the improved Crop tool is active, you can drag or resize an image
within the crop boundaries without affecting your layout.

Notice in Figure 5-15 that the crop handles are available around the visible part of the image.
But you also see the entire image in shadow and note that the round image sizing handles
are also available. This means that if I want to show a different part of the Trevi Fountain in
this image, I can just leave the crop handles alone (thus leaving my page layout unaffected)
and drag the image (up or down, in this case) to change which part is displayed. I can also
drag to resize the image within the crop area—for example, if I wanted to zoom right in on
the figure of Oceanus in the center of the fountain.

	 Exploring the Advanced Picture Formatting Tools	 131

In addition to this generally much-improved crop functionality, when you click the arrow
beneath the Crop command on the Picture Tools Format tab (Format Picture tab in Office
2011), you get some very nice options, including Crop To Shape (essentially a renaming of
the Picture Shape feature from earlier versions), crop to a specified aspect ratio, or shortcuts
to fit or fill the image within the crop area.

Note  This improved crop functionality is also available in Microsoft Publisher 2010.

For Mac Users
When you insert a picture into a picture placeholder or an object placeholder in
PowerPoint 2011, you automatically see shortcuts below the placeholder to turn on the
crop tool or to apply the fit and fill crop shortcuts.

Using Picture Styles and Effects
Picture styles and effects are not new to Office 2010 and Office 2011. The current Office Art
effects that you also see for shapes, SmartArt graphics, and charts were introduced in Office
2007 and Office 2008 for Mac. However, there are a few things that are important to point
out about these features:

n	 Unlike shape styles, SmartArt styles, and chart styles, picture styles do not coordinate
with theme effects. Regardless of the active document theme, you get the same set of
available picture styles.

However, picture styles can be very helpful, particularly because a few of them include
formatting you can’t recreate from within the Office 2010 or Office 2011 applications.
For example, the picture style applied in Figure 5-16 uses a shadow that requires set-
tings not available from within the applications. If you were to copy all of the shadow
settings from the dialog box and input them for another image, the results would not
be the same. This is because additional properties are set under the hood, in the XML
markup for the image formatting.

Figure 5-16  An image using the Relaxed Perspective, White picture style.

132	 Chapter 5  Doing More with Less Work: Key Cross-Program Features

n	 If you like some aspects of a picture style, apply the style before applying individual
formatting or effects (such as the Crop To Shape feature or a gradient border) because
applying the style will remove direct formatting and effects.

n	 If your image contains some transparent areas and you want to use a color fill on the
image, you see that the Picture Styles group on the Picture Tools Format (Format
Picture) tab doesn’t include a fill option. However, you can apply a color fill in the
Format Picture dialog box, on the Fill tab.

n	 If you apply several different types of formatting or effects on an image and then
later want to use the same formatting on other images, remember that you can copy
formatting for images and any Office Art object just as you can copy text. To do so,
just select the image containing the formatting to copy and then press Ctrl+Shift+C
(Command+Shift+C in Office 2011). Then select the object to which you want to apply
the formatting and press Ctrl+Shift+V (Command+Shift+V). Notice that these shortcuts
are just the standard copy and paste shortcuts with the Shift key added.

Tip  You can also use this method to copy and paste Office Art formatting effects be-
tween some different types of Office Art objects. For example, copy the formatting of a
picture and apply it to a shape. This is particularly handy when you’re customizing picture
placeholders on PowerPoint slide layouts, since the Picture Styles are not available to
shapes such as picture placeholders.

See Also  In Office 2010, you see a new Picture Layout option on the Picture Tools Format tab,
in the Picture Styles group. This option converts selected images to SmartArt graphics. To learn
about working with SmartArt graphics, as well as to learn about using the various Office Art
formatting effects available to images (such as shadows, reflections, and bevels), see Chapter 14.

Replacing and Managing Images
In the Adjust group on the Picture Tools Format (Format Picture) tab, you also see options
to compress pictures and reset the selected picture. Additionally, in Office 2010, you see the
option to change the selected picture.

n	 The compress feature can be invaluable in documents containing many pictures, or
when you have very high-resolution images that tremendously increase the document
file size. In both Office 2010 and Office 2011 (new to Office 2011, and a very welcome
addition), this feature enables you to reduce picture resolution to a level that will still
provide good quality for your purposes but might substantially reduce file size. It also
gives you the option to permanently delete cropped areas of images to reduce file size.

	 Sharing Content Across Programs	 133

n	 If you experiment with the various Adjust formatting tools and then decide you don’t
like what you’ve done, just click Reset to return your image to its original state (that is,
its state when you inserted it). (Note that this tool does not reset cropping actions.)

n	 Although the Change Picture command is available on the Ribbon in Office 2010, you
can also access this feature in both Office 2010 and Office 2011 when you right-click an
image. With Change Picture (introduced in the previous versions of Office for Windows
and Office for Mac), you can swap out the image and retain all of your formatting. It
can be an incredible timesaver.

See Also  For more on working with images, see the following:

For best practices when working with graphics in Word, see Chapter 10.

To learn about Word 2010 picture placeholder content controls, see Chapter 12, “Dynamic
Content.”

For working with all Office Art objects in PowerPoint and across the suite, see Chapter 14.

For a tip about using pictures as chart data series or data point fills, see Chapter 20, “Charts.”

Sharing Content Across Programs
Because there are so many of the same tools for creating and formatting objects across the
Microsoft Office programs today, reusing content across Word, PowerPoint, and Excel is
much easier than ever before. For example, create a SmartArt graphic or an Excel chart in
one program and then paste it into another and continue to edit it just as easily in the desti-
nation program.

In previous versions, I often recommended creating presentation graphics in PowerPoint and
charts in Excel, regardless of the program in which your document lived, for ease of editing.
But in many cases, this is no longer necessary. As long as you are aware of the editable con-
tent you’re sharing in your documents (such as the source data that travels with a live Excel
chart)—and as long as you don’t mind giving recipients who have electronic access to your
documents the option to edit that content—creating or editing graphics in the program in
which your document lives can save you time and make it easier to keep all content visually
coordinated (by using themes, for example).

Additionally, remember that when you share your documents online using Microsoft
SharePoint 2010 or Windows Live SkyDrive, you and those you share with can edit those
documents using Office Web Apps. So you can even update content such as SmartArt graph-
ics in a PowerPoint presentation or charts in an Excel workbook right online.

134	 Chapter 5  Doing More with Less Work: Key Cross-Program Features

When copying content between programs, keep the following points in mind to keep things
simple in your documents:

n	 Remember that you have the Paste Special command—as well as Paste With Live
Preview in Office 2010 and Paste SmartTags in Office 2011—which gives you choices
about how your content will look (and in some cases, about what its behavior will be,
such as the difference between pasting an Office Art drawing object, a picture, or an
embedded object).

n	 Some types of content provide different options depending on whether they’re pasted
within the source application or in another Microsoft Office application. For example,
consider the following:

❑	 If you copy an image that resides in a picture placeholder in PowerPoint, when
you paste that picture on another PowerPoint slide, it will not include the place-
holder formatting (such as the picture style). However, if you paste that same
image in Word or Excel, it will carry formatting from the placeholder, such as pic-
ture styles and effects.

❑	 Similarly, if you copy a chart that you create in Excel, you’ll get different options
in Excel for how to paste the data than if you paste it into Word or PowerPoint
(when pasting into Word or PowerPoint, the data will be linked to the source
workbook by default).

❑	 If you paste a Word 2010 table into PowerPoint 2010, it pastes by default as a
PowerPoint table (regardless of whether you paste it into a content placeholder
or directly on a slide), and will apply the default formatting. However, when you
paste the same table into Excel, it becomes Excel cell content by default and car-
ries along some of the Word table formatting (such as borders and shading) by
default.

This is one example where behavior differs by platform. In Office 2011, if you
copy a Word table and paste it into PowerPoint, it pastes as a linked document
object by default. However, when you paste that table into Excel, the behavior is
the same as in Office 2010—the table pastes as cell content.

When you need to share content across programs, it’s important to be aware of your options
so that if the result is not what you expect, you know which tools to use to help you easily
get the results you wanted.

	 Using Microsoft Office As Your Toolbox	 135

See Also  For more information about Paste With Live Preview and other paste options, see
Chapter 1. For more on what you can do with Office Web Apps, see Chapter 2, “Collaborating
and Sharing When and Where You Choose.” To learn about linking and embedding objects in
Word, see Chapter 10. To learn about formatting layouts and placeholders in PowerPoint, see
Chapter 13. To learn about working with Excel charts, see Chapter 20.

Using Microsoft Office As Your Toolbox
The examples in the previous section raise an important point: some programs handle cer-
tain actions better than others and have features that the others lack (even when they share
overall functionality). So, whichever program you’re working in, remember that you’ve always
got the full suite at your disposal. Consider the following examples:

n	 If you copy a table from the web, depending on its configuration, you might not get
desired results when you paste it into Word or Excel, regardless of the paste options
you use. But chances are that you can get it into a table format by pasting it into one
of those programs. So, for example, if the table will only paste into Word as text, try
pasting it into Excel and see if it takes on a table structure (that is, see if its content fits
into the cells of a worksheet as needed to create a table). If so, you can then just copy it
from Excel and paste it into Word as a table.

n	 If you create a SmartArt graphic in Word and later realize that it can’t quite do what
you need, and you really need to create a diagram using shapes, you can’t convert
that graphic to shapes in Word. But you can do so from PowerPoint. Just copy the
SmartArt graphic into PowerPoint, convert it to shapes, and then copy the shapes back
into Word. (Or, in that particular example, because a graphic made of shapes might be
easier to edit with the tools available in PowerPoint, finish your graphic in PowerPoint
and then paste it back into Word.)

n	 In the example from the preceding section for Office 2011, which noted that Word
tables paste as objects by default into PowerPoint 2011, you might actually find it quite
difficult to get that Word table into a PowerPoint table—but not if you use Excel as
a go-between. Paste the table into Excel and then copy and paste it into PowerPoint,
where it will paste as a PowerPoint table by default.

Some features, such as themes, work across the suite to help keep your formatting easy to
apply and to manage. Other features are specific to each program because each program
has its strengths. But when you use those strengths together, you can often end up with bet-
ter results for less work.

136	 Chapter 5  Doing More with Less Work: Key Cross-Program Features

Recovering Your Important Content in Office 2010
Before leaving this chapter, we have to touch on one incredible new cross-program
feature that is exclusive to Office 2010. Actually, it’s two related features—AutoSave
Versions and Recover Unsaved Documents. This is not like the AutoRecover capabilities
that you know from previous versions. You can now recover earlier versions of documents
as you work on them. You can even recover documents that you close without saving.

In Office 2010, Word, PowerPoint, and Excel save up to five AutoSave versions for a
previously-saved active document and make them accessible as you work, as shown in
Figure 5-17.

Figure 5-17  The Versions panel on the Info tab in Backstage view, shown in Word 2010.

If you close the document without saving, the program automatically saves the last
AutoSave version, and you can recover it using the Recover Unsaved Documents com-
mand that you see in Figure 5-17. (Note that this option is called Recover Unsaved
Presentations in PowerPoint and Recover Unsaved Workbooks in Excel.)

To enable the recover unsaved documents functionality, in the <Program> Options dia-
log box, on the Save tab, select the option Keep The Last AutoSaved Version If I Close
Without Saving.

Accessible unsaved versions are automatically deleted after four days. You can, how-
ever, delete them manually at any time. To do this, start in a new (unsaved) document
in Word, PowerPoint, or Excel. Click File and then, on the Info tab, under the Versions
heading, click Manage Versions. In an unsaved document, the pop-up menu shown in
Figure 5-17 includes the option to delete unsaved versions.

See Also For more detail about these features, see the Power User Tips sections in the
Office 2010 product guides for Word, PowerPoint, and Excel. You can download the Office
2010 product guides from the Microsoft Download Center at http://www.microsoft.com/
downloads/en/details.aspx?FamilyID=e690baf0-9b9a-4c47-88da-3a84f3e9b247.

http://www.microsoft.com/downloads/en/details.aspx?FamilyID=e690baf0-9b9a-4c47-88da-3a84f3e9b247
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=e690baf0-9b9a-4c47-88da-3a84f3e9b247

	 	 707

Chapter 23

VBA Primer
In this chapter, you will:

n	 Explore the benefits of working with VBA code

n	 Learn how to read and understand VBA code

n	 Discover the core basics of how to write your own macros

n	 Get tips and guidance on ways to apply VBA basics for accomplishing a wide range of tasks

If you have any concerns about venturing into this chapter, take a deep breath and relax.
You’ll be perfectly comfortable here. This thorough primer on Microsoft Visual Basic for
Applications (VBA) is written for advanced Microsoft Office users, not for programmers.

I’m not a programmer, so I won’t treat you like one. The fact is that you don’t have to be a
programmer to make effective use of VBA (or Office Open XML, as discussed in Chapter 24).
Yes, I use VBA and Office Open XML to develop solutions for clients, but that just means I’m
taking advantage of all the tools that Microsoft Word, PowerPoint, and Excel have to offer for
creating documents. If you can learn to format a table, create styles, or create fields in Word;
to write formulas or generate charts in Excel; or to customize masters in PowerPoint, you can
learn VBA.

After years of avoiding VBA because it seemed technical and scary, I fell head over heels one
day after I had no choice but to venture into the Visual Basic Editor for a client. I discovered
how easy it is and how much you can do with VBA even with just a basic level of knowledge.
But the most important discovery was how much of the VBA language I already knew just
from being an advanced Microsoft Office user. Nearly all elements of VBA that are specific to
a program are the names of features and tasks you already know from using that program.
Keep in mind that VBA is just an additional way to work with, and expand the capabilities of,
the programs you already know.

Beyond the program-specific feature and task names, most VBA language and structure is
virtually identical across Word, PowerPoint, and Excel. So, the majority of what you’ll learn in
this primer will apply to macros you may want to write in any of these programs. However,
because this chapter assumes that this is your first introduction to writing VBA (or writing any
programming language, for that matter), it uses one program for most examples, to avoid
the confusion of trying to cover too much too fast. Because Word is the primary document
production program for Microsoft Office, most examples throughout this primer use Word
VBA. Once you’re comfortable with Word VBA, you can apply all of the basics you learn
to VBA tasks in PowerPoint and Excel as well.

708	 Chapter 23  VBA Primer

Understanding When and Why to Use VBA
One of my favorite examples of when and why to use VBA if you’re not a programmer came
up one evening at dinner with a friend. She had been up until 3 A.M. the night before clean-
ing up tables for a report that was due that day. It was a Word document containing 50
tables copied from Excel that needed to be cleaned up and reformatted. The task took her,
a power user, about six hours. At just over seven minutes per table, that isn’t bad, but she
wanted to know if there was a way she could have done it more quickly. She had created a
few table styles and even recorded a macro for some of the formatting, but she still had click
into each table to apply them and then manually take care of any unique elements for each
table.

In reply to her question, I asked if she knew any VBA, and she looked at me as if I were
insane. But then I told her that if she had known some basic VBA (just part of what you’ll
learn in this primer, by the way), she could have accounted for most of the differences among
her tables in one macro and then formatted all of them at once. The task would have taken
about six minutes instead of six hours. As you can imagine, learning VBA no longer seemed
like a crazy idea to her.

Of course, this timesaving example is just one of several types of situations where you can
benefit from VBA. As you saw in a couple of simple examples in the Excel chapters of this
book, you can often use a single line of code to save substantial time or even do things you
can’t do through the features in the user interface. Or, to take things further, you might also
use VBA to create customizations or automation for your documents and templates, such as
custom dialog boxes that can help users complete form documents.

In general, the answer to the question of when to use VBA is the same as when to use any
feature in the Microsoft Office programs—use it when it’s the simplest solution for the task
at hand. In the case of VBA, however, you may also be able to use it when there doesn’t
appear to be a solution for the task at all. VBA expands the capabilities of Word, PowerPoint,
and Excel, so you might find yourself with easy answers to tasks that you didn’t even know
were possible.

In Office 2010 and Office for Mac 2011, however, it’s important to ask yourself if VBA is still
the simplest solution before you embark on a complex project. With the Office Open XML
Formats, you can do some things in today’s Microsoft Office more easily using Office Open
XML—such as automatically populating document content with data from other sources.
Also, some functionality that would have required automation in the past can now be done
with built-in features, such as using a content control in Word 2010 to display a custom build-
ing block gallery when you need a selection of boilerplate text options that can’t be deleted.
However, VBA macros are still almost exclusively the way to go when you want to use auto-
mation to save time on repetitive or cumbersome tasks.

	 Introducing the VBA Language and Code Structure	 709

Introducing the VBA Language and Code Structure
The easiest way to begin learning VBA is to record macros and then look at what you’ve
recorded in the Visual Basic Editor. In the subsections that follow, we’ll use this method to
help you become acquainted with how to read VBA code.

Note Macros can no longer be recorded in PowerPoint, but you can still write VBA macros in
PowerPoint. Macros can be recorded and written in Word and Excel.

So, what is a macro? A macro is simply a set of commands that can be executed together,
similar to a paragraph style. However, whereas a style is a collection of settings that you can
apply at once, a macro is a collection of actions.

Recording Macros
When you record a macro, every step you take is recorded, including moving your insertion
point up or down or making a selection.

Note  Experienced VBA users continue to find macro recording useful for learning how to ac-
complish new tasks in VBA. One thing we all run into at some point, however, is the fact that
there are a few commands that can’t be recorded. For example, if you record a macro while
adding items to the Quick Access Toolbar in Office 2010 or using the new Search In box above
the Ribbon in Office 2011, your steps won’t be recorded. In some cases, a macro that can’t be
recorded means that you can’t accomplish the task through VBA, but it doesn’t always. You can
do a great many things when writing VBA that can’t be done by recording macros, such as ap-
plying a document theme (or, in the preceding example from Office 2011, automating Find and
Replace tasks). Learn more about this later in this chapter, as well as how to get help for finding
commands that can’t be recorded.

To begin recording a macro, on the Developer tab, in the Code group, click Record Macro.
You can also access the Macro Recorder from the Status bar in Office 2010 or the Tools menu
in Office 2011.

Once you click Record Macro, the Developer tab (or Status bar) icon changes to indicate that
recording is in progress. The appearance of the button differs by program and where you
access it. Click Stop Recording (accessible from the same location where you accessed the
Record Macro feature) when you’ve finished recording the actions you need.

Note  The ability to pause macro recording also becomes available on the Developer tab when
macro recording is in progress.

710	 Chapter 23  VBA Primer

Let’s try one together as an example. Say that you’re starting a new, long presentation docu-
ment. Each page of the document needs to begin with Headings 1, 2, and 3, consecutively,
followed by a paragraph of Normal text. The first several pages of that document will each
begin with the text Company Overview— (including the em dash) in the Heading 1 para-
graph, followed by different text on each page.

To save a bit of time, let’s record a macro for setting up these pages.

Important  In the interest of using the simplest method for any task, set up your document as
follows before recording the macro:

n	 Set Style For Following Paragraph for Headings 1, 2, and 3 to the style that follows each
heading at the top of every page. (Heading styles are followed by Normal style by default,
so no change is needed for Heading 3.)

n	 Add Page Break Before formatting to the Heading 1 style so that new pages start auto-
matically when you apply Heading 1.

Even after taking these steps, you can still save time by setting up these pages using a macro.

See Also  For help with the Style For The Following Paragraph feature used in this setup, see
Chapter 8, "Styles." For help with line and page break options such as Page Break Before, see
Chapter 7, "Working with Text."

With your insertion point at the top of the empty document, click Record Macro and then do
the following:

	 1.	 In the Record Macro dialog box, type a name for your new macro. Macro names must
start with a letter and can include letters, numbers, and the underscore character, but
can’t include spaces or most special characters.

Notice, in the Record Macro dialog box, that recorded macros in Word are stored by
default in the global template Normal.dotm. (In Excel, recorded macros are stored by
default in the active workbook.)

In the Store Macro In list, you have the option to select any open document or tem-
plate, including currently loaded global document templates in Word. For now, leave
the default storage location and click OK to begin recording.

	 2.	 Apply Heading 1 style to the active paragraph.

	 3.	 Type Company Overview—. (To add the em dash, you can use the keyboard shortcut
Ctrl+Alt+Hyphen in Word 2010 or Command+Alt+Hyphen in Word for Mac 2011. Note
that you can only use the hyphen on the number keypad for this shortcut.)

	 4.	 Press Enter (Return) four times.

Because Style For Following Paragraph is set as needed for the first three heading
styles, these four hard returns add paragraphs with the styles Heading 2, Heading 3,
and Normal, consecutively, followed by an additional Normal paragraph. That

	 Introducing the VBA Language and Code Structure	 711

additional Normal paragraph is where your insertion point will be when the macro
starts to run again, so it will become Heading 1 style in the first step of the macro.

	 5.	 Click Stop Recording.

To run that macro, on the Developer tab, click Macros, select the macro you just recorded,
and then click Run.

You could run this particular macro each time you need to set up a page, or run it as many
times as you’ll need identical pages. Or, you could edit it to add even more functionality,
such as automatically adding the number of pages you need. But, for the moment, let’s just
look at this macro as an example to demonstrate how to read VBA code.

Reading VBA Code
To view the macro you just recorded, on the Developer tab, click Macros. Then, select your
macro from the Macro Name list and click Edit. This will open the Visual Basic Editor with
your macro open on screen. Your screen should look something like Figure 23-1.

Figure 23-1  The Record Macro dialog box, shown in Word 2010.

For now, focus on the macro itself—we’ll look at the different elements of the Visual Basic
Editor shortly.

n	 Sub stands for subroutine, which is basically just another term for macro. Every macro
begins with Sub and ends with End Sub, as you see in the preceding example.

n	 The first few lines below Sub in Figure 23-1 have an apostrophe at the beginning of
the line. These are comments. An apostrophe at the beginning of a line of VBA code
tells the macro to skip this line. When you record macros, VBA automatically adds
some comment lines, one of which includes the name of the macro, as you can see in
Figure 23-1.

You can delete any line that begins with an apostrophe without damaging the macro.
Be sure, however, not to delete the apostrophe and leave other text on the line that
you don’t want to run as a VBA command. The apostrophe is what tells VBA to skip the
line when the macro runs.

712	 Chapter 23  VBA Primer

n	 After the comment text, you see the commands that make up the steps of this macro.
If you tried this for yourself and you see more lines of code in your macro than in this
sample, ask yourself if you took other steps. If, for example, you made a typo in the
Company Overview text and went back to correct it, that could have been recorded as
a collection of several steps. Remember that when a macro is recorded, every keystroke
is recorded. So, each time you use a different arrow key to move your insertion point,
for example, you’ll get another line of code. Take a look again at the commands from
the preceding macro.

Selection.Style = ActiveDocument.Styles("Heading 1")
Selection.TypeText Text:="Company Overview—"
Selection.TypeParagraph
Selection.TypeParagraph
Selection.TypeParagraph
Selection.TypeParagraph

Notice that this code doesn’t include any unfamiliar terms, even if you’ve never seen a line of
VBA code before. Selection, style, active document, type text, and type paragraph all refer to
extremely basic Word tasks. The majority of program-specific terms in VBA will be similarly
familiar, just from your experience with the program.

As you progress through this primer, you’ll come to understand how to construct the preced-
ing lines of code and how you can write your own macros that are even simpler than record-
ed macros for accomplishing the same tasks.

Why Does My Recorded Macro Have So Many Lines of Code,
When I Did Only One Thing?
As mentioned earlier, when you record a macro, every keystroke is recorded. So, you
often end up with much more code for a simple action than you would if you wrote the
macro yourself.

In particular, if you use a dialog box to execute an action while recording a macro,
you’re likely to get far more code than you may expect. When you click OK to accept
the settings in a dialog box, you’re accepting all settings in that dialog box. VBA doesn’t
record your keystrokes while you’re in most dialog boxes, so it must record every set-
ting you accepted when you clicked OK.

	 Introducing the VBA Language and Code Structure	 713

For example, if one step in my macro was to bold a selected word, and I used the bold
icon in the Font group on the Home tab, the code for that command would look like
this:

Selection.Font.Bold = wdToggle

If, on the other hand, I opened the Font dialog box to apply bold and then clicked OK
to close the dialog box, the code for that command would include all of this:

With Selection.Font
.Name = "+Body"
.Size = 11
.Bold = True
.Italic = False
.Underline = wdUnderlineNone
.UnderlineColor = wdColorAutomatic
.StrikeThrough = False
.DoubleStrikeThrough = False
.Outline = False
.Emboss = False
.Shadow = False
.Hidden = False
.SmallCaps = False
.AllCaps = False
.Color = wdColorAutomatic
.Engrave = False
.Superscript = False
.Subscript = False
.Spacing = 0
.Scaling = 100
.Position = 0
.Kerning = 0
.Animation = wdAnimationNone
End With

Notice that, because of the limitations related to recording macros with dialog box
commands, VBA recorded a setting for every option in the Font dialog box.

If you write a macro, or edit your recorded macro, you don’t need to specify any set-
ting unless you want the macro to execute that setting. In this example, if you were to
delete everything between the lines that begin With and End With, except the Bold
setting, you’d still get the result you need.

See Also  Learn about the With…End With syntax in the section “Grouping Statements,”
later in this primer.

714	 Chapter 23  VBA Primer

Understanding Statements, Procedures, Modules,
and Projects

To begin to work in the Visual Basic Editor, you need to understand how files work in VBA—
that is, how macros are organized and stored. The following common items are the principal
components you need to know:

n	 A statement is a single command or action in a macro—that is, it’s a line of code. For
example, Selection.Font.Bold = wdToggle is a statement. As you’ll see in the section
“Writing, Editing, and Sharing Simple Macros,” later in this chapter, when you think of
VBA as a language, think of a statement as a sentence.

n	 A procedure is essentially another way of referring to a macro, although there are oth-
er types of procedures as well, such as functions. A function is a procedure that returns
a result.

n	 A module is a collection of code. Think of a module as a code document. A module
can contain several procedures. And, like documents, modules can be saved as files,
copied, and shared.

n	 A project is the collection of all modules and related VBA objects in your document,
template, or add-in. A project might have one or several modules, as well as other ele-
ments such as UserForms (dialog boxes).

Companion Content  All of the VBA elements discussed in this list are covered in this chapter,
with the exception of UserForms. You can learn about creating and working with UserForms in
the online companion content provided for this book. Once you master the VBA basics covered
in this chapter, find information about the online companion content—and other resources for
taking your work with VBA further—in the chapter conclusion.

Using the Visual Basic Editor
Before you start working with VBA code, take a few minutes to settle in to your surroundings.
To help you work more comfortably, the subsections that follow describe a bit about each
component of the Visual Basic Editor that is identified in Figures 23-2 (Word 2010) and 23-3
(Word 2011).

	 Using the Visual Basic Editor	 715

Project Explorer Properties Window Procedure List

Code WindowFull Module ViewProcedure View

Figure 23-2  The Visual Basic Editor in Word 2010.

Project Explorer Properties Window Procedure List

Code WindowFull Module ViewProcedure View

Figure 23-3  The Visual Basic Editor in Word 2011.

716	 Chapter 23  VBA Primer

Introducing the Code Window
The code window is where your procedures appear. This is where you type macros when
writing code and where you find the macros you’ve recorded. Notice that the procedure list
is at the top-right of the code window. From this list, you can quickly move to any procedure
in the active module.

Also notice the view options at the bottom of the screen. When you have several macros in
a module, it can be helpful to view them one at a time. Full Module view is the default, but
you can change this setting and many others through the Options dialog box (Preferences in
Office 2011).

See Also  For more about setting preferences for the Visual Basic Editor, see the section “Setting
Up Your Workspace,” later in this chapter.

Introducing Project Explorer
Project Explorer is where you see the list of all VBA projects that are currently open or load-
ed. All open documents, as well as open or loaded document templates, appear here, wheth-
er or not they contain macros. You can collapse or expand a project to view the modules and
objects that it contains.

Caution  Documents appear in this list whether or not they’re macro-enabled file formats. This
is important to keep in mind because, if you add code to a document using an Open XML Format
that ends with the letter x, you won’t be able to save the document with its code. Save the docu-
ment with the equivalent file format that ends in the letter m to make sure your code will be
saved along with the document or template.

A project has a Modules or Forms folder only if it contains code modules or UserForms.
However, in Word and Excel, every project contains an Objects folder, such as the Microsoft
Word Objects folder you see under each of the projects visible in Figures 23-2 and 23-3.

In Word, the Objects folder contains a document object referred to as ThisDocument. In
Excel, it contains both a ThisWorkbook object and a sheet object for each existing sheet in
the workbook. Some types of code (such as a type of procedure known as a document-level
event) are added directly in the code window for the document object rather than in a mod-
ule. However, you will often have projects that have no code added to the document objects.

See Also  Learn more about using the document objects in the section “Introduction to Using
Events,” later in this chapter.

	 Using the Visual Basic Editor	 717

Introducing the Properties Window
The Properties window shown in Figures 23-2 and 23-3 doesn’t look like much, but don’t
be fooled. For modules, the Properties window is generally used only to edit the module
name. However, for some object types (such as UserForms), the Properties window becomes
extremely important because it’s populated with many settings that you can edit directly
within it, ranging from the height and width of a UserForm to the value to display on a form
control (such as a text box or an option button).

To edit the name of a module in the Properties window:

	 1.	 Click into the name where it appears on either the Alphabetic or Categorized tabs.

	 2.	 Edit it as you would document text.

Module naming rules are the same as macro naming rules—no spaces or special char-
acters, and the name must begin with a letter.

	 3.	 Press Enter (Return) to set it.

Note  All names in VBA subscribe to a similar set of rules as the module name. Names must
always start with a letter and can’t include spaces or most special characters. Most names are
limited to 255 characters. However, module names can’t exceed 31 characters, and macro names
added in the Record Macro dialog box are limited to 80 characters.

Note that, when you record macros, they’re always added to a module named NewMacros.
You can rename that module if you like, but the next time you record a macro, a new module
will be created with the name NewMacros.

Setting Up Your Workspace
You’ll find many settings that can be customized in the Options dialog box, available on the
Tools menu in the Visual Basic Editor. (In Office 2011, this is the Preferences dialog box, avail-
able from the application name menu, such as Word.) I don’t recommend spending much
time in this dialog box just yet, because you might not be familiar with many of the settings.
However, it’s good to know that it’s there, because you are likely to need it. This primer will
point out when settings can be customized in this dialog box.

Possible settings in the Options (or Preferences) dialog box include default behavior for a
number of programming actions (such as the way you’re notified about errors in your code),
the formatting for each type of text or notification you see in the code window (such as com-
ment text or errors), and the way the window itself is arranged.

718	 Chapter 23  VBA Primer

In addition to settings in the Options dialog box, notice that you can drag to resize panes in
the Visual Basic Editor window (such as the Project Explorer or Properties window), and can
close those you don’t need. In the Visual Basic Editors for Office 2010, you can also drag to
dock or float panes.

Use the View menu to access any windows you’ve closed. If you’re unable to dock any win-
dow in an Office 2010 Visual Basic Editor, you can change the setting for that window on the
Docking tab of the Options dialog box.

For Mac Users
Although the Preferences dialog box is available in the Office 2011 Visual Basic Editors,
at the time of this writing, this dialog box does not hold custom settings beyond the
active session. By the time you read this primer, this may no longer be the case when
you try to add custom settings here. But if it is, don’t be alarmed. This glitch isn’t likely
to cause you too much inconvenience, because most of the defaults are just fine—
especially for folks who are new to VBA.

See Also  If this is still the case when you venture into Office 2011 VBA, see the section
“Declaring Variables,” later in this chapter, to learn about the Option Explicit statement,
which I strongly recommend adding when you create a new module.

Writing, Editing, and Sharing Simple Macros
Companion Content  All code samples shown throughout this section are available in
procedures in a module named PrimerSamples.bas, available in the Chapter23 sample files
folder online at http://aka.ms/651999/files.

See Also  For help importing a module into your Visual Basic Editor, see the section “Saving and
Sharing Macros,” later in this chapter.

One of the most important differences between macros you record and macros you write is
that, when you record a macro, you need to select an object to act on it. But when you write
macros, you can usually identify items to act on instead of selecting them. That apparently
simple difference gives you tremendous power and flexibility. For example, you can write a
macro to act on all tables in your document automatically, rather than recording a macro
that you run from each table.

We’ve now reached the core of this primer. From creating a macro to reading and under-
standing essential VBA language constructs, the sections that follow progress in a logical
order to help you learn in such a way that you can immediately put your knowledge into

http://aka.ms/651999/files

	 Writing, Editing, and Sharing Simple Macros	 719

practice. Review the content under each heading and try the examples for yourself in the
Visual Basic Editor. Be sure that you understand the content covered under each heading
before progressing, and you’ll be using VBA comfortably before you know it.

Note  Most of the features you’ll learn about in the following sections are programming basics.
They’re written here specifically for VBA. However, should you ever want to learn another pro-
gramming language, it’s useful to know that many of the concepts and terms used here are fairly
standard across common programming languages.

Creating Modules and Starting Procedures
To create a module:

	 1.	 Select the project (in Project Explorer) to which you want to add the module.

You can click any element contained in the project to select the project, such as the
project name or the Modules folder (if one exists).

	 2.	 On the Insert menu, click Module.

You can also insert a module from the Insert icon on the Standard toolbar. Notice that
this icon defaults to what you last inserted (such as a module or a UserForm). Click the
arrow beside the icon to select a different item from the available options, as you see in
Figure 23-4.

Office 2010 Office 2011

Figure 23-4 Quickly insert a module from the Standard toolbar in any Visual Basic Editor.

	 3.	 To rename the module, click into the name field in the Properties window, as men-
tioned earlier. Type the new module name and then press Enter.

Once you have a module in which to create your macros, you can just click in the code win-
dow and begin typing to create a macro. As you saw in the sample recorded macro, every
macro begins with the term Sub, followed by the name of the macro, and then followed
by a pair of parentheses. Those parentheses can be used to hold instructions for the macro
or information about references in the macro, but it’s rarely necessary to type anything
between them for basic document production macros. Even if you type nothing between the
parentheses, however, note that they are required.

720	 Chapter 23  VBA Primer

Notice as well that every macro ends with the line End Sub. Many types of instructions you’ll
learn throughout this section are paired (such as With and End With, demonstrated under
the upcoming heading “Grouping Statements.”).

When you type Sub plus a procedure name and then press Enter, VBA automatically adds
the parentheses at the end of the first line and adds the End Sub line. However, with most
paired terms, the end term isn’t added for you. It’s good practice to always type both ends
of a paired structure at the same time so that you don’t forget to do so later. When macros
become longer or more complex, finding the missing end portion of a paired structure can
be a frustrating use of your time.

So, to start a macro in your new module, type the following:

Sub MacroName

After you press Enter, the procedure will look like this:

Sub MacroName()
End Sub

The statements that your macro comprises will go between these two lines.

Note  The next several headings provide code samples that show only the relevant code for the
particular topic. To run that code in the Visual Basic Editor, remember that it has to appear within
a procedure, so you need to add the surrounding Sub and End Sub statements discussed here.

Learning the Language of Objects, Properties, and Methods
Just as the languages you speak comprise nouns, verbs, adjectives, and other parts of speech,
VBA comprises objects, properties, and methods. Think of objects as nouns, properties as
adjectives, and methods as verbs.

n	 An object is just that—it’s a thing that can be acted on.

n	 A property is a characteristic of an object—something that describes the object, such
as its size or style.

n	 A method is an action you can perform on an object. For example, Save and Close are
both available methods for the ActiveDocument object.

The only difference between the sentence structure in a spoken language and in VBA is that,
though a sentence always requires a noun and a verb, a VBA statement requires an object
and either a property or a method. Let’s take a look at a few examples.

n	 In the following statement, ActiveDocument is an object and Save is a method.

ActiveDocument.Save

	 Writing, Editing, and Sharing Simple Macros	 721

n	 In the following statement, Selection is the object (referring to the location of the
insertion point—the actively selected content) and Style is a property of that selec-
tion. Heading 1, in this case, is the value (the setting) for the indicated property.

Selection.Style = "Heading 1"

n	 Objects are often used as both objects and as properties of other objects, depending
on where they’re placed in a statement. In the following statement, Tables(1) refers
to the first table in the active document. Though a table is an object, it’s also used here
as a property of the active document. Style, in this statement, is a property of the
specified table.

ActiveDocument.Tables(1).Style = "Table Normal"

Even though Tables(1) in this case is a property of ActiveDocument, it’s still an
object. Notice that the style being set is a property of the specified table.

You don’t typically need to think about whether an object is being used as an object
or a property, similar to distinguishing whether an -ing word (such as creating, editing,
or dancing) is being used in a given sentence as a noun or a verb. What’s important
to note is that many objects, such as a table, require a higher-level object to make the
reference specific enough for VBA to understand. For example, you can’t write simply
Tables(1).Style to indicate the style of the first table, because VBA needs to know
what range you’re referring to when you tell it to act on the first table. Otherwise, you
might be referring to the first table in the document, the first table in the selection, or a
number of other possible ranges. Just keep in mind that many objects can also be used
as properties of other objects, because this will come in handy when you reach the
“Getting Help” section later in this chapter.

Looking at the preceding list of examples, you might be wondering how you’re supposed to
memorize every possible object, property, and method name in each program for which you
need to learn VBA. Well, relax. You hardly need to memorize anything at all when it comes to
program-specific terms. When you understand the concept of using objects, properties, and
methods to create statements, and you remember what you already know (the features of
the program you’re automating), you’ll learn the names of the particular objects, properties,
and methods the same way you learn vocabulary in a spoken language—simply by using it.

Introducing Object Models
The set of VBA vocabulary that’s specific to a given program is known as the program’s object
model. The Visual Basic Editor in each program also contains a “dictionary” of sorts for that
object model, known as the Object Browser. You can use the Object Browser (available from
the View menu) to search for the correct terminology to use for a given feature, or to see
what properties or methods are available to a given object. For example, Figure 23-5 shows
the range of results you get when you use the Object Browser in the Word Visual Basic Editor
to search for the term table.

722	 Chapter 23  VBA Primer

Office 2010

Office 2011

Figure 23-5  Despite different organization, the Object Browsers in Office 2010 and Office 2011 look and
function very much the same.

Notice in Figure 23-5 that the selected item in the search results is the table object. The
heading Classes refers to items in an object model that can have an available set of mem-
bers—such as objects or modules. Properties and methods are members of a specified
class. Notice the headings Classes and Member Of ‘Table’ in the bottom panes of the Object
Browser.

	 Writing, Editing, and Sharing Simple Macros	 723

Note  In both Office 2010 and Office 2011, the Object Browser dialog boxes are adjustable. If
you don’t see all of the panes shown in Figure 23-5, you can just drag to expand them.

Navigating the Object Browser
When searching for terms in the Object Browser, remember that multiple-word terms
don’t get spaces in VBA. Separate words in a single term are instead denoted by ini-
tial capital letters, such as the ActiveDocument object or the PageSetup property.
Searching in the Object Browser isn’t case-sensitive, but the Object Browser won’t
recognize multiple words with spaces as a single term. For example, searching for page
setup in the Object Browser will return no results, but searching for pagesetup will
return several.

Note that the Object Browser is also available from the Standard toolbar. Or, to access
the Object Browser by keyboard shortcut, use F2 in Office 2010 and Ctrl+Command+B
in Office 2011.

In the following list, also notice the icons used in the Object Browser to denote objects, prop-
erties, methods, or library. These will also be displayed while you’re writing code, as explained
under the next heading. (All of these icons are the same in Office 2010 and Office 2011.)

n	 Object

n	 Property

n	 Method

n	 Library

(An object model is a type of library. For example, results shown in the Object Browser
in Figure 23-5 are members of the Word library, which is the same as saying the Word
object model.)

Why Do I Get an Error When I Try to Set Some Properties?
The key to this question is to remember that you sometimes need to use VBA state-
ments to get information about the document as well as to apply settings or execute
actions. Many properties are read-only, meaning that you can use them only to return
information, not to apply a setting.

724	 Chapter 23  VBA Primer

For example, ActiveDocument.Name is a read-only property that tells you the name
of the active document. You can’t set the name using this property, but that doesn’t
mean you can’t name a document using VBA. For example, to change the name of the
document, you’d use the SaveAs method (that is, ActiveDocument.SaveAs). With this
method, you can specify several settings for how you want the document saved, includ-
ing its name.

To learn whether a property is read-only, select that property in the Object Browser. At
the bottom of the Object Browser is a pane where you see the hierarchy for the select-
ed item (what class and library it belongs to). This pane also indicates when a property
is read-only, as you see in Figure 23-6.

Figure 23-6 Definition for a member of the Word object model, shown in the Object Browser.

In the example shown in Figure 23-6, Word is the library and Document is the object to
which the read-only property Name belongs. You’ll learn more about ways to use read-
only properties as this primer progresses.

Using Auto Lists
One of the main reasons you don’t have to memorize the object model for the program
you’re automating is that the Visual Basic Editor often gives you the available options as you
write. When you type an object, for example, followed by a period, you automatically see a
list of properties and methods available to that object, as shown in Figure 23-7.

Figure 23-7  An Auto List in the Word 2010 Visual Basic Editor.

Notice the icons, shown earlier, that appear in this Auto List to indicate properties or meth-
ods. All the members of a given object (that is, all properties and methods available to that
object) appear in the list.

	 Writing, Editing, and Sharing Simple Macros	 725

To scroll through an Auto List, you can use the up or down arrows as well as the Page Up
and Page Down keys. You can also begin to type the item you need, if you know at least the
first characters, to move to that position in the list. For example, if you type t immediately
after the period that follows ActiveDocument, the list would move to the image you see in
Figure 23-8.

Figure 23-8  Scroll quickly through Auto Lists in Office 2010 or Office 2011 VBA.

When you select the item you need in the Auto List, press the Tab key to add the item to
your statement. (You can also press the Spacebar instead of using the Tab key. However,
doing so will add a space in your code after the selected item.) Note that, if you press Enter
once an item is selected in an Auto List, you’ll get an error unless the selected item was the
last required term in the statement.

Understanding Variables
In addition to objects, properties, and methods, most macros use other types of terms as
well, including variables and constants (the latter of which is discussed in the section “Using
Constants,” later in this chapter).

Variables are types of data that represent objects, statements, or other elements required
in your code. They’re often used to save time and make code more efficient, such as using
a single term in place of a statement that you have to reference several times. They are also
handy when you need to refer to any instance of a given object type, rather than specifying
an instance of an object. Consider the following examples.

n	 If you need to refer to the full name (the FullName property includes the file path) of
the active document in a few places within your macro, you might want to declare a
variable to represent it, as shown in the following statement:

myName = ActiveDocument.FullName

The name of the variable in this case is myName. Once you’ve typed this statement in
your macro, you can use the term myName in place of ActiveDocument.FullName
wherever you need to use the full name of the document.

n	 When you use loops (discussed in the section “Looping Code,” later in this chapter)
to execute a command for several instances of an object, you might use a variable as

726	 Chapter 23  VBA Primer

a counter to help you accomplish that. For example, say you want to apply a specific
table style to all tables in the document, as shown in the following code.

Dim myI as Integer
For myInt = 1 To ActiveDocument.Tables.Count
 ActiveDocument.Tables(myI).Style = "Table Contemporary"
Next

The preceding code uses a For…Next loop, explained in the section “Using For Each…
Next and For…Next Loops,” later in this chapter. However, notice how the variable myI
is used here.

o	 First, you declare the variable as an integer. (Declaring variable data types is dis-
cussed in the upcoming section “Declaring Variables.”)

o	 Then, the start of the loop (the line that begins with the word For) tells the code
to begin executing with the variable equal to the number 1 and run until the vari-
able equals the number of tables in the document. Each time the loop executes,
the number is automatically increased by 1.

o	 Next, notice that the variable is used to denote the table number in the statement
that applies the style to the table.

Using variables in place of a complete statement, or as counters, is a common, useful tool.
Other uses of variables are demonstrated under applicable headings later in this chapter,
including “Using Conditional Structures” as well as “Looping Code.”

Note  For code that’s easier to read, follow, and edit, use intuitive variable names. Variable
names can’t contain spaces and can’t be VBA terms used for any other purpose (such as the
name of an object, property, or method). Keeping those requirements in mind, make your vari-
able names as short as possible to save yourself work.

Introducing Variable Data Types
As you saw in the preceding examples, variables can be used to represent different types of
information, such as numbers, text strings, or objects. Several variable data types are avail-
able, and you can even create your own. However, to help you keep things simple as you
begin using variables, Table 23-1 lists commonly used variable data types.

Note  For a complete list of data types supported in VBA and their definitions, search the
topic “Data Type Summary” in Visual Basic Help, available from the menu bar in any Visual
Basic Editor.

	 Writing, Editing, and Sharing Simple Macros	 727

Table 23-1  Commonly used variable data types
Data type Possible values
Boolean True or False

Integer An integer ranging from –32,768 to 32,767

Long A long integer ranging from –2,147,483,648 to 2,147,483,647

Currency A scaled integer ranging from –922,337,203,685,477.5808 to
922,337,203,685,477.5807

String A text string, such as a VBA statement (text strings are relatively unlimited—they
can reach up to approximately two billion characters in length)

Variant A number or a text string (if you don’t specify the data type for a variable, it is a
variant by default)

You can also declare variables as specific types of objects (such as a table, a style, or a docu-
ment). Variables declared as a specific object type are called object variables, and they offer
additional benefits, discussed next.

Declaring Variables
When you specify a variable type, which is called declaring the variable, you can save time
and reduce errors. For more complex macros, declaring variables is also important because
undeclared variables default to the variant data type, which uses more storage space than
other data types and thus creates more work for the program running your macro.

Additionally, when you require that variables be declared in your modules, VBA lets you
know while you’re still working on your code if variables contain spelling errors that could
cause an error when users run your macro.

See Also  For more on this subject, see the section “Running Macros and Compiling Projects,”
later in this chapter.

When you declare an object variable—that is, a variable declared as a specific type of
object—VBA recognizes the object so that you get Auto Lists for completing statements that
include the variable.

Caution When you declare a variable as a particular data type, you must use it as that data
type. For example, if you declare myI as a string, VBA won’t understand if you use it in a state-
ment as if it were a number (such as For myI = 1 to ActiveDocument.Tables.Count, as dem-
onstrated earlier). Variables you want to use as numbers must be declared with an appropriate
numeric data type (see the preceding table for the possible values available to different numeric
data types). Similarly, to use a variable as a text string, you must set the value of that variable (the
information after the equal sign) as either a VBA statement or a text string enclosed in quotation
marks.

728	 Chapter 23  VBA Primer

To declare a variable, use a Dim statement. For example:

Dim myI as Integer
Dim myName as String

Once you type the word as in a Dim statement, you get an Auto List of available options to
help you complete the statement, as shown in Figure 23-9.

Figure 23-9  The Auto List shown here provides options for specifying a variable data type.

Declare Multiple Variables in One Statement
You can declare multiple variables on the same line; just be sure that you specify a data
type for each. For example, the following statement does not declare all three variables
as strings:

Dim myName, myPath, myStyle as String

The preceding code will seem to work, and it won’t generate any errors, as long as
myStyle is used as a string data type. That’s because myName and myPath are declared
as variants—no data type is specified for them. The correct statement to declare all
three variables as strings would read as follows:

Dim myName as String, myPath as String, myStyle as String

To require variable declaration in a module, click in the very top of the module, type the
words Option Explicit, and then press Enter. This statement is one of several that you can
place at the top of a module to apply to all procedures in your module. Notice that, when
you press Enter after typing this statement, a line appears beneath it, just as a line automati-
cally appears between macros. This part of the module is known as the General Declarations
section.

Note  You can set the Visual Basic Editor to require variable declaration automatically whenever
you create a new module, through the Options dialog box in Office 2010 or the Preferences dia-
log box in Office 2011. On the Editor tab of that dialog box, check Require Variable Declaration.

For Mac users, as mentioned earlier, the Preferences dialog box did not hold these kinds of cus-
tomizations at the time of publication. If you experience this, just get into the habit of typing
Option Explicit each time you create a module.

	 Writing, Editing, and Sharing Simple Macros	 729

Sharing Variables Throughout a Project
If you have multiple macros that need to refer to the same variables, you can declare them
publicly for the entire project so that you don’t need to type out the declarations in each
applicable macro.

To do this, type your variable declarations in the General Declarations section of any module
in the project, and use the word Public instead of the word Dim to begin the statement. For
example, the following statement makes myName a string variable, and myI an integer vari-
able, available to all procedures in the project:

Public myName as String, myI as Integer

Note, however, that you must be in a procedure to assign a value to a variable. For example,
you can declare myI as an integer variable for use throughout the project, but the statement
myI = 1 must appear inside a procedure. To use one set of variable values for multiple mac-
ros across all modules in your project, put all value assignments for public variables in one
macro, and then access that macro from any procedure where you need to use those values.

See Also  To learn how to do this, see the section “Running One Macro from Another,” later in
this chapter.

Note  You can also use the General Declarations area at the top of a module to declare variables
so that they’re available to all macros in the same module, but not other modules. To do this, use
Private or Dim instead of Public to start the variable declaration.

Never Write the Same Code Twice
One of the best pieces of advice I received when I first started learning VBA was this:
if you have to type the same statement twice, ask yourself if there’s a faster way. For
example, consider the steps discussed previously for declaring public variables to use
the same set of declarations in all procedures throughout your project. Using grouping
structures and loops (both discussed later in this chapter) is another way to avoid doing
the same work twice.

Keep in mind that writing efficient code isn’t just about typing less. As with documents,
the less work you do, the better your results will be every time—and the easier job
you’ll have when that content needs editing. What’s more, efficient code also makes it
easier for the program to run your macros, so you get macros that are easier to write,
easier to edit, and easier to run.

730	 Chapter 23  VBA Primer

What Do I Do When the Variable Type Doesn’t Work?
If you don’t know which variable type you need, you can’t find the variable type you
think you need in the Auto List that appears in your Dim statement, or you get a “Type
Mismatch” error (which means the variable type declared doesn’t match the way you’ve
used the variable), there is an easy way out.

Though it’s not good practice to do this regularly, particularly in long or complex
code, you can simply type Dim <variable name> and not specify it as a particular type.
When you do this, VBA classifies the variable as a variant data type, so you won’t get
Auto Lists when using the variable in statements. However, even if you have Option
Explicit set for the module, as I hope you do, you can declare a variable in this way
and continue on. (Alternatively, to avoid other editors of the code thinking that you’ve
accidentally omitted the data type, you can declare the variable as a variant.)

It’s a bit of a sloppy workaround—what programmers refer to as a hack—but if you’re
writing simple macros just for your own use, there’s really no harm in doing it occasion-
ally, and it can save you time while you’re still learning about variable types. Just try not
to make it a habit.

Understanding Document Variables and Data Storage Options
In addition to the variables that you use in your macros, there is an object type named
Variable in the Word object model. These are known as document variables, because you
use them to store information in the document that’s collected or created by your macros,
rather than as a place to store data just while the macro is running—such as when you need
the document to remember information from one use of a given macro to the next.

For example, in template automation projects I do for clients, I sometimes add document
variables to store user preferences that are specific to the individual document, such as which
of a selection of design choices the user wants for the active document. The document needs
to store that information after the macro runs so that the user’s preferences are remembered
the next time the design macros are used.

In Word, this type of information can be stored using either a document variable or a custom
document property (which you’re most likely familiar with from the Document Properties
dialog box). However, Excel and PowerPoint don’t offer a document variable object, so cus-
tom document properties are the way to go for storing document-level data in your work-
books and presentations.

In addition to document-level data, there are several ways to store data on the system lev-
el—that is, so that data can be accessed by your macros for use by more than an individual
document. One of the easiest and most common methods is storing data in the Windows
Registry (or, for Mac Users, in Library>Preferences).

	 Writing, Editing, and Sharing Simple Macros	 731

As you can imagine, there are many uses for storing data in variables, document proper-
ties, or system-level resources such as the Registry. To explore this topic, use the Object
Browser in your Visual Basic Editor to look up the Variable object, the property named
CustomDocumentProperties, and the GetSetting and SaveSetting functions (the last
two are functions used for storing data on the system level).

Storing Data on the System
The SaveSetting function warrants an additional mention here, particularly for Mac
users, because this information isn’t easily accessible in Help on the Mac. When you use
the SaveSetting function on either platform, you essentially create a named location
on the system where the value you indicate is stored. You can then access that value
using the GetSetting function from VBA in any Microsoft Office program.

n	 On Windows, the locations you create are added as keys in the Windows Registry
under the key: HKEY_CURRENT_USER\Software\VB and VBA Program Settings\.

n	 On Mac, the locations you create are added as files (with the file extension .plist)
in Library>Preferences (located in your Home folder). Note that earlier versions
created these files in the Microsoft subfolder within Preferences, but that is no
longer the case.

The structure of this function is as follows:

SaveSetting "AppName", "Section", "Key", "Setting"

Each of the four arguments is a value you define. For example, if you are automating
the creation of documents for a company with multiple brands, you might create an
AppName for the company name, such as NorthwindTraders, and then define a section
for storing the user’s brand preferences, as follows:

SaveSetting "NorthwindTraders", "BrandPrefs", "Department", "Marketing"
SaveSetting "NorthwindTraders", "BrandPrefs", "Title", "Marketing Manager"
SaveSetting "NorthwindTraders", "BrandPrefs", "Location", "London"
SaveSetting "NorthwindTraders", "BrandPrefs", "Paper Size", "A4"
SaveSetting "NorthwindTraders", "BrandPrefs", "LetterStyle", "Personal Letterhead"

Typically, you would collect this information from the user via a UserForm (dialog box)
or from another data source. If you ran the preceding SaveSetting functions, the data
you collected would be stored as follows:

n	 In the Windows Registry, you’d then see a key named NorthwindTraders with a
subkey BrandPrefs. Within BrandPrefs, you would see each of the five values
specified along with their data.

732	 Chapter 23  VBA Primer

n	 In your Mac Home folder Library>Preferences, you’d see one file named
NorthwindTraders.plist that includes all of the data for any sections and values
within those sections.

The most important difference between using this function on Windows and on Mac
is that you can edit the Windows Registry values you create directly in the Registry
if desired. On Mac, you can view the .plist file in Text Edit, but trying to edit that file
directly in Text Edit will destroy your data. There are tools available for editing .plist files
on Mac, or you can just replace stored values by using the SaveSetting function again
to resave the value you need. On both platforms, you can delete the setting from the
Registry or Preferences folder if they are no longer needed without affecting any other
data or functionality on the system.

See Also  Pref Setter is a user-friendly third-party tool for editing .plist files on the Mac.
Find it at www.nightproductions.net.

Working with Object Model Member Arguments
In addition to the variables that you can declare for use in your procedures, many items in
the VBA object models include elements that use the same data types as variables to specify
settings for that item. The elements, known as arguments (similar to arguments in an Excel
formula), can be required or optional.

An argument might be as simple as the index number of an object to specify it within the
collection, such as the third table in the active document, written as ActiveDocument.
Tables(3). Or, it might be a series of parameters that define how an action is to be execut-
ed, as is commonly used for VBA methods. Take a look at a few examples.

n	 When you use the FollowHyperlink method of the Document object in a statement,
you get the options shown in Figure 23-10 in the Quick Info ScreenTip that appears
after you type the open parenthesis following FollowHyperlink.

Figure 23-10  The FollowHyperlink method is available in Word, PowerPoint, and Excel.

Most of the arguments shown in Figure 23-10 are optional. Typically, optional argu-
ments appear in brackets, but as you see here, that’s not always the case. You can’t fol-
low a hyperlink without an address. This example is an exception.

In most cases, if an argument appears in parentheses but seems to be key information,
a default value is used when the parameter is omitted. For example, Selection.Move

	 Writing, Editing, and Sharing Simple Macros	 733

has parameters to define the unit and count by which to move the active selection. If
those parameters are omitted, the default for unit is a character and for count is 1. So
the insertion point is moved one character forward.

n	 When you use the Add method for a Table object, you get the arguments shown in
Figure 23-11.

Figure 23-11  Parameters for adding a table to a Word document.

The Add method is used for many objects in Word, PowerPoint, and Excel. It has differ-
ent arguments, of course, for each, depending on the type of object being added. For
the Table object, the range argument (that is, the location where you want the new
table to appear), number of rows, and number of columns are required.

Notice that the required parameters here (those not inside brackets) specify particu-
lar data types. The range is an object variable (referring to the Range object), and
the number of rows and columns both use the long data type (as noted in the Quick
Info). Note that the optional AutoFit behavior setting is a variant (default) data type,
but it requires a value from an available set of constants. Learn about constants in the
upcoming section “Using Constants.”

n	 The HomeKey method, shown in Figure 23-12, is used with the Selection object. It’s
the VBA equivalent of using the Home key on your keyboard.

Figure 23-12  The HomeKey method displaying optional parameters.

The two available arguments used here—both of which are optional and use the vari-
ant data type—determine how far your insertion point moves (Unit) and whether the
selection is extended (equivalent to holding the Shift key when you press the Home
key) or your insertion point is simply moved to the new location. Both arguments
require selections from a set of available constants, as we’ll discuss shortly in the “Using
Constants” section.

There are two ways to specify most arguments in statements such as those in the preceding
list of examples. The first approach is to type the values for the arguments between paren-
theses immediately following the method (as you saw in the Quick Info ScreenTips for the
three sample methods shown in Figures 23-10 through 23-12). When you use this approach,
type a comma after each value you add. You’ll see that the active argument (the one for
which you can add a value at your insertion point) is shown as bold in the ScreenTip. If you
don’t intend to include a value for each argument, type consecutive commas until the argu-
ment you want to specify is bolded. If you place an argument in the wrong position between

734	 Chapter 23  VBA Primer

parentheses, the method won’t work correctly. Notice, however, that this approach can be
confusing and difficult to read when you need to edit or troubleshoot a macro.

Note  Some types of arguments can be specified simply in quotation marks after the statement
name, as with the SaveSetting function demonstrated previously in the sidebar “Storing Data
on the System.”

Instead, for methods that take more than a single argument, specify each by typing the argu-
ment name, followed by a colon and an equal sign, followed by the value you want to assign.
Separate each argument you specify with a single comma, and note that argument order
doesn’t matter when you use this approach. Take a look at the following two examples:

ActiveDocument.FollowHyperlink Address:="http://office.com", NewWindow:=True
Selection.HomeKey Unit:=wdStory, Extend:=wdExtend

Using the explicit approach shown here helps to keep your code easy to read, edit, and
troubleshoot.

How Much Do You Really Need to Know About Arguments?
It’s important to know the syntax for specifying arguments or parameters, but in
most cases, you don’t need to worry about the data type or whether the argument is
required.

Of course, you typically see the data type for required arguments in the Quick Info.
But you’ll often know the type for optional arguments as well, simply from using the
program. Because you’re an experienced user of the program you’re automating, you’re
more likely to actively look for an argument that you know should be available for a
given method (such as specifying a file type or setting a password for the file when you
save a new document) than to need help understanding the ones you happen to find.

In the case of the SaveAs method to save a file with a new name or file type (SaveAs2
in Word 2010), not even the file name is a required argument because the Save As dia-
log box, as you’ve surely seen, always provides a default name. Word and PowerPoint
default either to the first phrase in the document or, for blank documents, to the docu-
ment or presentation number assigned when a new document was generated. In Excel,
the Save As dialog box always defaults to the book number assigned when the work-
book was generated.

Remember that one of the most important tools you have for working in VBA is your
knowledge of the program you’re automating. As an advanced user, you’ll likely find
that VBA is easier for you to learn than it is for a professional developer who doesn’t

	 Writing, Editing, and Sharing Simple Macros	 735

use the programs. Think of it this way: if you’re already a pretty good skier, you’ll prob-
ably learn how to snowboard much faster than someone who designs snowboards for a
living but has never set foot on a mountain.

However, there will still be times when you’ll need help determining what data type to
use for an argument’s value or knowing when an argument is required. You can find a
description of each argument for most applicable object model members, along with
its data type and whether it’s optional or required, in the help topic for that item.

See Also  Learn how to find the help you need in the section “Getting Help,” later in this
chapter.

Using Constants
As mentioned previously, many items in VBA require the use of another data type, known as
a constant. Unlike variables that can change as needed, constants are used when a defined
set of options exists for the feature. Most constants in VBA are either specific to the individu-
al program object model or are available in VBA for any Microsoft Office program.

Note  It’s possible to define your own constants in VBA as well. However, the discussion of con-
stants in this chapter is limited to built-in constants, generally referred to as intrinsic constants.

Constants specific to the Word object model start with the letters wd; those specific to the
Excel object model start with the letters xl; those specific to PowerPoint start with pp; and
those for use across the Microsoft Office programs start with mso. There are also sets of
constants that are specific to the Visual Basic language and available to VBA in all of the
Microsoft Office programs—these constants begin with the letters vb.

Because constants are defined members of an object model, you can search for them in the
Object Browser. For the purposes of searching the Object Browser, note that a set of con-
stants is considered an enumeration class, and the constants within that enumeration are the
members of that class. Sets of available constants for a given argument are also usually easy
to find through VBA help. Additionally, Auto Lists are available for many constant sets, par-
ticularly object and property constants. Take a look at a few examples.

n	 The Type property of the Field object is available as a set of constants, provided in an
Auto List when you type a valid statement for using this property. The example shown
in Figure 23-13 is the beginning of a conditional statement.

736	 Chapter 23  VBA Primer

Figure 23-13  Field type constants, shown in the Word 2010 Visual Basic Editor.

See Also  Learn about conditional statements in the section “Using Conditional
Structures,” later in this chapter.

Note that available constants might differ by platform or application. For example, the
field type list in Figure 23-13 shows Word 2010 field types. Most, but not all, field types
are available in both Word 2010 and Word 2011.

n	 Because different header or footer types are available in each section, the Header
and Footer objects have a set of constants from which to select when you use those
objects, as you see in Figure 23-14.

Figure 23-14  Available header and footer constants are the same in Word 2010 and Word 2011.

n	 The first macro you saw in this primer (in the section “Recording Macros”) recorded
four consecutive statements for adding four paragraphs to the document. If you had
written that macro instead, you could have used the constant vbCr, which is the VBA
constant to indicate a carriage return. In that case, that first macro could have been
written with the following code, in just two statements instead of six:

Selection.Style = ActiveDocument.Styles("Heading 1")
Selection.TypeText("Company Overview—" & vbCr & vbCr & vbCr & vbCr)

Note  The ampersand (&) is used to combine the text and constant portions of the text
string, just as you can do to combine text, functions, and cell references into a text string
in Excel. Learn more about using operators in VBA in the section “Using Operators,” later in
this chapter.

n	 Many arguments for different methods use the same sets of constants, which often are
not available in Auto Lists, but are still easy enough to find. For example, the HomeKey
method shown earlier uses constants for both of its arguments. The Unit argument
uses the wdUnits set of constants; the Extend argument uses the wdMovementType set
of constants.

	 Writing, Editing, and Sharing Simple Macros	 737

The easiest way to learn which constant set you need is to search VBA help for the
applicable method. This is because, in some cases, not all members of a constant set
are available to all methods that use those constants. For example, wdUnits includes
16 constants, but only 4 are available when used with the HomeKey method. (The four
available in this case are wdLine [the default if you don’t specify the argument], wdStory,
wdRow, and wdColumn—the last two of which apply only when your selection is in a
table.) If you searched for the HomeKey method in VBA help, you’d see information
about the available constants for both arguments.

See Also  Note that the upcoming ”Getting Help” section shows you how to use the
Object Browser and VBA help reference together to save time. Comprehensive VBA help
might not appear to be available in Office 2011, but Mac users, take heart—the “Getting
Help” section provides an easy solution.

VBA by the Numbers: Using Numeric Values in Place of
Constants
It doesn’t take a mathematical genius to know that a term comprising several alpha
characters, such as wdLine or msoThemeColorAccent2, is not a number, right? Actually,
it is.

A set of constants is referred to as an enumeration because each constant represents
a numeric value. When writing your code, if you know the numeric value that corre-
sponds to the constant you need, you can use that value instead. If you select a con-
stant in the Object Browser, the definition you see in the browser (below the search
results window) indicates the numeric equivalent. Similarly, when you use a constant in
your macro, you can right-click the constant and then click Quick Info to see its value,
as shown in Figure 23-15.

Figure 23-15  The numeric value of the wdLine constant.

Understanding Collection Objects
Objects for which there can be many instances of the object type within a given scope are
available as both an object and a collection object. A collection comprises all instances of a
given object type within the specified scope. This distinction is important because the object
and its collection object can have very different members (that is, a very different set of
available properties and methods). For example, compare the two statements that follow:

Documents(1).Tables.Count
Documents(1).Tables(1).AllowAutoFit = True

738	 Chapter 23  VBA Primer

The first of the two preceding statements uses the Tables collection object. The second uses
the Table object, specifying the first table in the collection. Both statements also use the
Document object, specifying the first document in the Documents collection. (Note that the
Documents collection in the Word object model refers to all currently open documents. The
first document in the collection refers to the most recently opened document.)

The Table object has a very broad set of members, as you see in Figure 23-16. It’s used
whenever a single object is being referenced from the collection. Notice that only a fraction
of this object’s member list is visible in a single screen.

Figure 23-16 Members of the Table object, shown in the Object Browser.

In contrast, the Tables collection object has very few members (shown in Figure 23-17),
including only those items that can apply to the entire collection at once.

Figure 23-17 Members of the Tables collection object, shown in the Object Browser.

	 Writing, Editing, and Sharing Simple Macros	 739

To Toggle or Not to Toggle
When you record some formatting options, such as applying bold or italics, you see the
constant wdToggle set as the property’s value. That’s because, as you’ve likely noticed
when using some types of font formatting, these settings toggle on and off—so you
could, for example, apply a style that contains bold formatting to unbold text that was
previously bolded.

However, when you write VBA macros, you can set toggle commands to absolute val-
ues where you need them, rather than using the wdToggle constant. To do that, simply
use either True or False as the value instead of wdToggle.

Writing the macro Selection.Bold = True, for example, will apply bold text regardless
of whether the selection was bolded before you ran the macro.

I Can’t Find Properties or Methods That Should Clearly Be
Available to My Object
If you can’t find a member of an object that you just know has to be there, the problem
probably isn’t a limitation in VBA; it’s syntax. More often than not, the Range object is
the solution.

For example, if you want to act on all cells in a specific table, you might be looking for
the following:

Documents(1).Tables(1).Cells…

However, when you get the Auto List after you type the C for the word Cells, you
see that Cell is an option, but the Cells collection is not. Does this mean that VBA
can’t act on all cells in a table at once? Of course not. What VBA is looking for is the
following:

Documents(1).Tables(1).Range.Cells…

The Range object is often used to specify that you’re identifying the preceding object
as the active scope of your statement. So, before you decide that you can’t do what you
need to do with a given object, try using Range in your statement, as shown in the pre-
ceding example, and see what options you get in the Auto List that follows that range.

740	 Chapter 23  VBA Primer

The Range object is also important to know because it can give you added flexibility.
People new to VBA often use the Selection object too frequently because they don’t
know how to identify objects in the document without first selecting them, but that
slows down your code and often limits what you can do. You can use the Range object
to identify any element in your document, which lets you take action without having to
first select that item in the document. So, it’s less code for you to write and less code
for the program to execute.

For example, you could use the following statement to identify the page number on
which the first table in the document ends, without having to first select that table:

ActiveDocument.Tables(1).Range.Information(wdActiveEndPageNumber)

Grouping Statements
Say that you’re in a restaurant and you need three things from the waiter. If you ask for some
ketchup, then ask for a glass of wine when the waiter drops off your ketchup, and then ask
for a glass for your friend when the waiter returns with your wine, that’s a lot of work for the
waiter (not to mention, he might be tempted to sneeze in your soup).

Instead, if you say to the waiter, “I need some ketchup, please. I’d also like another glass of
wine, and my friend will have one as well,” you’ve given the waiter three tasks that he can
execute together. That is, you’ve just grouped a set of statements (and saved yourself from a
possible cold).

Though VBA won’t sneeze in your soup, macros do run more slowly when you force the pro-
gram to execute several related tasks independently. Grouping related statements together
helps make your code more efficient (and saves you time writing code, because you’ll be
writing less).

Statements can be grouped using the With…End With structure, as you saw in the recorded
macro example in the earlier sidebar, “Why Does My Recorded Macro Have So Many Lines of
Code, When I Did Only One Thing?” You can use With…End With anywhere that two or more
statements apply to the same object, or the same combination of objects, properties, and
methods. For example, the very first macro we looked at in this chapter contains six state-
ments, all of which apply to the Selection object. So, if you had written that macro instead
of recording it, you could have typed the following:

With Selection
 .Style = "Heading 1"
 .TypeText "Company Overview—" & vbCr & vbCr & vbCr & vbCr
End With

	 Writing, Editing, and Sharing Simple Macros	 741

Note  Recorded macros will sometimes include lengthier statements than are necessary when
you write the macro. This is typically because a recorded macro often explicitly states defaults
that are assumed if omitted. For example, in the recorded version of this macro, the style was
applied with the statement Selection.Style = ActiveDocument.Styles(“Heading 1”).
However, a style is applied using the style definition in the active document by default. So when
written, as you see in the preceding code, that information can be omitted.

Though you might not be saving much by grouping statements when the macro is just two
lines long, imagine something a bit lengthier. For example, say that you wanted to do several
things to the first table in the document. Instead of starting each line with ActiveDocument.
Tables(1), you can group the statements using a With…End With structure, as follows:

With ActiveDocument.Tables(1)
 .Style = "Table Contemporary"
 .Range.Style = "Table text"
 .Columns(4).Shading.ForegroundPatternColor = wdColorLavender
 .Rows(1).Range.Style = "Table heading"
 .Rows(1).HeadingFormat = True
End With

In fact, you can take that grouping a step further. Notice that the first row of the table is
referred to more than once. You can add a nested With…End With structure for those rows as
follows:

With ActiveDocument.Tables(1)
 .Style = "Table Contemporary"
 .Range.Style = "Table text"
 .Columns(4).Shading.ForegroundPatternColor = wdColorLavender
 With .Rows(1)
 .Range.Style = "Table heading"
 .HeadingFormat = True
 End With
End With

With grouping structures, just remember that all items in the With statement must apply
to all statements between With and End With, if the statement starts with a period (which
indicates that it uses the object referred to in the With statement). For example, you can do
some things directly to the Row object that you can’t do directly to the Column object, such
as applying a style. In that case, you might want to first select the column for which you need
to apply a paragraph style, as you see here:

With ActiveDocument.Tables(1)
 .Style = "Table Contemporary"
 .Range.Style = "Table text"
 With .Columns(4)
 .Shading.ForegroundPatternColor = wdColorLavender
 .Select
 End With

742	 Chapter 23  VBA Primer

 Selection.Style = "Table Subheading"
 With .Rows(1)
 .Range.Style = "Table heading"
 .HeadingFormat = True
 End With
End With

In the preceding code, Selection.Style doesn’t have to refer to the object in the With
statement, because it isn’t using that object.

Caution  As mentioned earlier in this chapter, remember that With…End With structures (as
well as the code structures described in the upcoming section “Looping Code”) require a pair
of statements. For ease of editing and to reduce errors, whenever you type the first part of the
structure (the With statement, in this case), type its paired closing statement (End With) as well,
so that you don’t forget to do so later.

How Can I Apply Theme Fonts and Colors with Word VBA?
In the preceding examples of grouping structures, you may have noticed that an intrin-
sic constant was used to apply a shading color. The set of constants you get when you
apply colors in Word VBA code are from the standard Microsoft Office color palette
that was available in versions prior to Office 2007 and Office 2008 for Mac. These are
not theme colors.

However, the wdThemeColor… constants are available only to Office Art objects in
Word 2010 and Word 2011, such as shapes. (Note that in Excel and PowerPoint VBA,
the xlThemeColor… and msoThemeColor sets of constants, respectively, are available
to most content types.) So, how do you apply colors that will update if the document
theme changes?

If you record a macro in Word to apply a color from the Theme Colors palette (such as
to a paragraph border), you’ll see a numeric value in the resulting code that appears
to represent the color you selected. That value actually represents the position you
selected in the Theme Colors palette. So, using that value in your own macros will con-
sistently apply the theme color at that palette position.

For example, in the preceding grouping structure code sample, if you wanted to apply
the Theme Color palette position for the Accent 1 color instead of the standard color
lavender, the line of code to apply the color would read as follows:

.Shading.ForegroundPatternColor = -738131969

	 Writing, Editing, and Sharing Simple Macros	 743

But you don’t have to take the time to discover the 60 values that comprise the 10
Theme colors in the palette and their variations. I’ve done it for you.

Companion Content  Find a macro named ThemeColorReferenceTable in the file named
Sample macros.dotm that’s available in the Chapter23 sample files folder online at
http://aka.ms/651999/files. That macro will generate a new document with a
table representing the Theme Colors palette. The color and associated value number for
each position in the palette are applied to the table, so you can save that table and use it
as a reference tool whenever you need it.

Applying theme fonts in Word VBA is much simpler. Wherever you would specify the
font name, you simply specify that name as “+Headings” or “+Body” to apply the theme
heading or body font, rather than using the name of a specific font. For example, the
first line of code in the following example applies the font “Cambria.” The second line
applies the active theme’s heading font.

ActiveDocument.Paragraphs(1).Range.Font.Name = "Cambria"
ActiveDocument.Paragraphs(1).Range.Font.Name = "+Headings"

Insider Tip: Get More Flexibility for Theme Colors When
You Use VBA
The preceding sidebar provided a workaround for situations where you can’t use the
theme color constants in Word. But in cases where you can use those constants in
Word, PowerPoint, and Excel, you can also use VBA to give you more design flexibility
than you get from within the program—without sacrificing the capability for colors to
change automatically when you apply new themes.

Use the TintAndShade property with an ObjectThemeColor property to specify any
percentage for a tint or shade of the applied theme color. For example, the following
code applies the Accent 3 color to a shape and then sets it to be 35 percent lighter than
the applied theme color (a tint that is not available in the color palette for mid-range
colors):

With Documents(1).Shapes(1).Fill.ForeColor
 .ObjectThemeColor = wdThemeColorAccent3
....TintAndShade = 0.35
End With

When using the TintAndShade property, use positive percentage values for tints (to
lighten the color) and negative percentage values for shades (to darken the color).

http://aka.ms/651999/files

744	 Chapter 23  VBA Primer

See Also  You can also get more flexibility for customizing tints and shades of theme
colors for all Microsoft Office content to which theme colors can be applied when you
use Office Open XML. Learn more about using Office Open XML to customize document
content in Chapter 24, “Office Open XML Essentials.”

Looping Code
If I had to pick one feature of VBA that’s the most useful on a daily basis for document pro-
duction and document troubleshooting, it would be loops. Loops enable you to act on sev-
eral instances of a given object within one macro. Fortunately, as much as loops can do for
you, they’re also extremely easy to use.

In this primer, we’ll look at variations on two of the most common types of loops, For loops
and Do loops.

Using For Each…Next and For…Next Loops
A For Each…Next loop enables you to act on all instances of a given object within a specified
range. For example, you might use this type of loop to format all tables in your document at
once or to change the fill color of all text boxes in your document to a particular theme color.
Similarly, a For…Next loop enables you to specify a range of instances of the given object on
which you want to act. For example, say that all tables in your document other than the first
five need to have the same formatting. You can use a For…Next loop to specify that the for-
matting should apply to only those tables you want.

To use a For Each…Next loop, start by declaring a variable of the object type upon which
to act and then use that variable in your loop. Take a look at the code for the two examples
given in the preceding paragraph.

n	 Apply the style Table Contemporary to all tables in your document.

Dim atb as Table
For Each atb in ActiveDocument.Tables
 atb.Style = "Table Contemporary"
Next atb

The use of atb as the variable name for the table object is just a personal choice. As
mentioned earlier in this chapter, you can use any name for a variable that meets VBA
naming requirements (no spaces and a letter for the first character) and isn’t the name
of any member of an available object model.

	 Writing, Editing, and Sharing Simple Macros	 745

n	 Remove any user-defined styles from the active document.

Dim ast as Style
For Each ast in ActiveDocument.Styles
 If ast.BuiltIn = False Then
 ast.Delete
 End If
Next ast

Specifying the variable in the Next statement, as shown in both preceding examples, is
optional. However, it’s good practice to do this to avoid confusing the statements you
need to keep or alter when you edit a macro, particularly when you use multiple loops
in the same procedure.

To use a For…Next loop, start by declaring a numeric variable data type to use for counting
the instances upon which you want to act. Following is the code for the example given earlier
(formatting all but the first five tables in the document).

Dim myI as Integer
For myI = 6 to ActiveDocument.Tables.Count
 ActiveDocument.Tables(myI).Style = "Table Contemporary"
Next myI

Notice that I could have used a With…End With structure instead of retyping ActiveDocument
each time I needed it. Of course, that would be more helpful if I were doing more than just
applying a table style, as you see in the following example:

Dim myI as Integer
With ActiveDocument
 For myI = 6 to .Tables.Count
 With .Tables(myI)
 .Style = "Table Contemporary"
 .AutoFitBehavior (wdAutoFitWindow)
 End With
 Next myI
End With

In the preceding code, notice that I use the For…Next loop with nested With…End With struc-
tures to make this macro as efficient as possible to write, and as efficient as possible for Word
to execute.

Using Do Loops
A Do loop, aside from being fun to say, can be another useful way of creating a loop for
specified instances of an object. (Note that this type of loop is usually referred to as a Do…
Loop structure, which helps to clarify the fact that, like For…Next loops or With…End With
structures, a Do…Loop actually requires a pair of statements.)

746	 Chapter 23  VBA Primer

Do…Loop structures can either be executed while a qualification is true or until a qualification
becomes true. Similar to For…Next loops, a Do While…Loop is usually used with a numeric
variable. A Do Until…Loop may be used with a numeric variable or until a given condition is
true. Take a look at a couple of examples.

n	 Say that you’re troubleshooting a document. Using Open And Repair in Word 2010,
you find that a floating object is causing the unstable document behavior. However,
you don’t see any floating objects in the document (this would happen if floating
objects were off the page, or hidden behind opaque document elements because of
the Behind Text wrapping style). Using a Do…Loop, you can delete all floating objects in
the body of the document, as follows:

With ActiveDocument
 Do Until .Shapes.Count = 0
 .Shapes(1).Delete
 Loop
End With

In the preceding code, notice that ActiveDocument.Shapes(1) refers to the first
shape in the document. In this case, you wouldn’t use a For…Next loop with a counter,
because each time a shape is deleted, the shape object reference .Shapes(myI) would
refer to a different object. Instead, if you continually delete the first shape until there
are no more shapes, you don’t need to be concerned with the way VBA counts the
shapes in the document as their number is being reduced.

In the case of deleting all shapes in a document, you may wonder why a For Each…
Next loop wasn’t used, since we want to act on all instances of shapes in the docu-
ment. For Each…Next loops are an easy solution in most cases that require acting on
all instances of an object type. However, there are two reasons why the Do…Loop was
the better choice here. First, there’s less code with a Do…Loop in this case because you
don’t need to declare the object variable before executing the loop. Second, there’s an
anomaly when you use a For Each…Next loop specifically to delete floating graphics
(that is, members of the Shapes collection object), and one or more shapes may be left
behind. Using the Do…Loop structure instead ensures that all shapes are deleted.

n	 The following code uses a Do While…Loop instead of a For…Next loop for formatting
all tables other than the first five with the Table Contemporary style and AutoFit To
Window behavior.

Dim myI as Integer
myI = 6
With ActiveDocument
 Do While myI <=.Tables.Count
 With .Tables(myI)
 .Style = "Table Contemporary"
 .AutoFitBehavior (wdAutoFitWindow)
 End With
 myI = myI + 1
 Loop
End With

	 Writing, Editing, and Sharing Simple Macros	 747

Notice in the preceding code that the integer variable was set to start counting at six,
so the first five tables in the document would be ignored. The Do While statement says
to execute the code in the loop while the integer value is less than or equal to the num-
ber of tables in the active document. Then, at the bottom of the commands that fall
within the loop, you see a counter for the integer variable to increase the number by
one with each iteration of the loop.

In the first of the two preceding examples, a Do…Loop structure is a better choice than a For…
Next loop (as explained in the text that follows that sample code). However, in the second
example, a For…Next loop would have been the more efficient choice. Notice that, in the
second example, if you use a For…Next loop, you don’t need a separate statement for the
counter—the For statement is a built-in counter.

So, how do you decide whether to use a For…Next loop or a Do…Loop structure? You just
need to ask yourself a few simple questions, as follows (and as summarized in Figure 23-18).

Note  I wish I had conceived the questions that follow, but I can’t take the credit. Many thanks
to Beth Melton, who was the technical reviewer for the first version of this primer and for sharing
her clear and concise approach to this topic (and others).

n	 Do you know the number of repetitions you need in the loop?

As demonstrated by the preceding code samples in this section, if the answer is yes, use
a For…Next loop. If the answer is no, use a Do…Loop.

n	 If you’re using a Do…Loop structure, is the condition initially true?

If the condition is initially true, you need a Do While statement to begin your loop. If,
on the other hand, the loop needs to execute until the condition becomes true, start
your loop with a Do Until statement.

There’s one more factor to consider when deciding on the loop type you need. You can eval-
uate the condition specified in a Do…Loop structure either at the top of the loop (as shown in
the earlier example of a Do While…Loop structure) or at the bottom of the loop (with a Do…
Loop Until or Do…Loop While structure).

A top evaluation loop is structured as follows:

Do While <condition>
 <statements>
Loop

A bottom evaluation loop, on the other hand, looks like this:

Do
 <statements>
Loop While <condition>

748	 Chapter 23  VBA Primer

(Remember, in the preceding structures, to substitute Until for While if you need to execute
the code until the condition becomes true.)

So, to determine whether you need a top or bottom evaluation loop, ask the following ques-
tion: must the code execute at least once?

If the code must run at least once for your macro to do what you need, use a bottom evalu-
ation loop so that the condition isn’t evaluated until after the first time the code runs. If the
code doesn’t have to run at least once, use a top evaluation loop so that the condition is
evaluated before the first time the code runs. For example, in the sample Do…Loop structure
shown earlier—in which the loop is used to delete all shapes from the active document—a
top evaluation loop is appropriate, because the code doesn’t need to run if the document
contains no shapes from the outset.

Do you know
the number

of repetitions
you need?

Is the
condition

initially true?

Use a
For...Next

loop

Use a
Do...Loop
structure

YES NO

YES NO

YES NO

Must the
code run at
least once?

Use ‘While’ Use ‘Until’

Use a
bottom

evaluation
loop

Use a
top

evaluation
loop

Figure 23-18  A summary of the decision process for selecting the best type of loop for your macro.

	 Writing, Editing, and Sharing Simple Macros	 749

Using a Loop to Delete Objects from a Word Document Leaves
Behind Objects in the Header and Footer
If you press Ctrl+A to select the entire Word document and then press Ctrl+Shift+N to
apply Normal paragraph style to everything selected, content in headers, footers, foot-
notes, endnotes, comments, or floating text boxes remains unaffected. This is because
Select All really means selecting everything in the active Word story.

See Also  For an explanation of Word stories, see Chapter 6, “Building Easy-to-Manage,
Robust Documents.”

Similarly, when you work in VBA, there are some commands that you must execute
them separately for each story in which you want to take action. For example, deleting
all floating objects from the active document, as discussed in the preceding section,
”Using Do Loops,” won’t delete those objects in the header or footer stories. To do that,
you need to access the particular story you need. To delete floating objects in the main
header of section 1, for example, instead of ActiveDocument.Shapes, you would spec-
ify ActiveDocument.Sections(1).Headers(wdHeaderFooterPrimary).Shapes.

Keep in mind that you can nest multiple loops inside one another. For example, say
that you want to apply a paragraph style to every header in the document. You need to
loop through each header in each section, which requires two loops, as follows:

Dim asc As Section
Dim hft As HeaderFooter
For Each asc In ActiveDocument.Sections
 For Each hft In asc.Headers
 hft.Range.Style = "Heading 1"
 Next hft
Next asc

Note that some actions require that you access the story in which you want to act
before executing actions, rather than just identifying it. Also, before you try to loop
through all story ranges in a document, be sure that the type of object upon which
you’re acting is accessible to all story ranges, or you’ll get an error. For example, float-
ing objects aren’t allowed in footnotes, endnotes, comments, or other floating objects,
so including those ranges in your loop to delete shapes will throw an error.

Also note that, although a Word document is defined by stories, programmatically
accessing content in PowerPoint takes a similar approach. For example, taking action
on all slides in a presentation will not affect content on slide masters and slide layouts.
If you wanted to delete all shapes in the presentation, you would need to include code
to delete shapes from the slides, masters, and layouts (and separately include notes
pages and notes and handouts masters, if applicable). This is less applicable in Excel,
since most content resides directly on worksheets. However, note that it’s often neces-
sary to programmatically access different types of sheets or objects (such as worksheets
and chart sheets) separately.

750	 Chapter 23  VBA Primer

Using Conditional Structures
As demonstrated with For…Next and Do…Loop structures, there are several ways to apply
conditions to the commands you want to execute with VBA. Frequently, however, the condi-
tion you need may be something other than the instances of an object. Conditional struc-
tures in VBA, other than loops, are formed using either the paired If and End If statement
or the Select Case…End Select statement.

Creating If Statements
Much like the IF function in Excel and the IF field in Word, If…End If structures in VBA
are used for executing actions when specified criteria are met. Take a look at the following
examples:

n	 Say that you’re creating automation to format new business presentation documents.
Your branding specifies that any presentation of longer than three pages should use
landscape orientation. If the user clicks the button to use your formatting macro, you
may want the macro to first check the length of the document and then set the orien-
tation to landscape if the document exceeds three pages.

With ActiveDocument
 If .RangeInformation(wdActiveEndPageNumber) > 3 Then
 .PageSetup.Orientation = wdOrientLandscape
 End If
End With

n	 Say that you’re applying a template to a document that uses only built-in Word styles,
such as Normal and Headings 1–9. Once you’ve reformatted the document content as
needed, you may want to clean up the document styles to help ensure that the docu-
ment continues to be formatted with the styles you want. The following code removes
any styles from the document that are not built in:

Dim ast As Style
For Each ast In ActiveDocument.Styles
 If ast.BuiltIn = False Then
 ast.Delete
 End If
Next ast

If…End If structures are often used with multiple conditions, such as when you want to set
one value if the condition is true and another if it’s false, as you see in the following example:

With ActiveDocument
 If .Range.Information(wdActiveEndPageNumber) > 3 Then
 .PageSetup.Orientation = wdOrientLandscape
 Else
 .PageSetup.Orientation = wdOrientPortrait
 End If
End With

	 Writing, Editing, and Sharing Simple Macros	 751

The preceding example adds an extra qualifier to the similar code shown earlier, so that if
the document is three pages or shorter, your macro ensures that the document uses portrait
orientation.

If statements can also contain multiple conditions by including ElseIf statements. For
example, say that you have many tables in your document with different layouts, but all
financial tables have either four or six columns. Those financial tables with four columns
should use the custom table style named Table Financial 4, those with six columns should use
the style named Table Financial 6, and all other tables in the document should be formatted
using Table Normal style.

Dim atb As Table
For Each atb In ActiveDocument.Tables
 With atb
 If .Columns.Count = 4 Then
 .Style = "Table Financial 4"
 ElseIf .Columns.Count = 6 Then
 .Style = "Table Financial 6"
 Else
 .Style = "Table Normal"
 End If
 End With
Next atb

Notice that both If and ElseIf statements require Then at the end of the line. Also notice
that, regardless of the number of conditions in an If statement, End If is still required at the
end of the complete structure.

Note  For simple If structures where there is a single condition, you can get an exception to
the paired statement requirement. You can often add just a single statement on one line and
leave off the End If statement. For example, the If…End If statements in the first two examples
given earlier could have been written on a single line.

Dim ast As Style
For Each ast In ActiveDocument.Styles
 If ast.BuiltIn = False Then ast.Delete
Next ast

Creating Select Case Statements
Although If structures are the most common conditional structure used in VBA, Select
Case can be an extremely efficient alternative in some situations, so it is definitely worth a
look.

752	 Chapter 23  VBA Primer

Here, Select Case is used for one of the previous If statement examples:

Dim atb As Table
For Each atb In ActiveDocument.Tables
 With atb
 Select Case .Columns.Count
 Case 4
 .Style = "Table Financial 4"
 Case 6
 .Style = "Table Financial 6"
 Case Else
 .Style = "Table Normal"
 End Select
 End With
Next atb

For this code, the If structure and Select Case structure are very similar and essentially
equally good choices. Where Select Case can be more useful is when several options meet
a given condition.

For example, say that a long report document has been through a lot of hands and had con-
tent copied and pasted from several sources, and now you want to go through it and quickly
clean up the styles. Perhaps you want to replace the style for paragraphs formatted with a
number of different body text styles with Normal style, and replace the use of a few custom
heading styles with the Heading 1 style. Notice in the code that follows that multiple options
for a given case are separated by commas.

Dim myI As Integer
myI = 1
With ActiveDocument
 For myI = 1 To .paragraphs.Count
 With .paragraphs(myI)
 Select Case .Style
 Case "Body Text", "Body Text 2", "Body Text 3"
 .Style = "Normal"
 Case "Body Heading", "Document Heading", "Page Heading"
 .Style = "Heading 1"
 End Select
 End With
 Next
End With

If you used an If statement instead of Select Case here, the code would be as follows:

Dim myI As Integer

myI = 1
With ActiveDocument
 For myI = 1 To .paragraphs.Count
 With .paragraphs(myI)

	 Writing, Editing, and Sharing Simple Macros	 753

 If .Style = "Body Text" Or .Style = "Body Text 2" Or .Style = "Body Text 3" Then
 .Style = "Normal"
 ElseIf .Style = "Body Heading" Or .Style = "Document Heading" Or _
 .Style = "Page Heading" Then
 .Style = "Heading 1"
 End If
 End With
 Next
End With

The savings with Select Case is the ability to separate multiple options with just a comma
rather than repeating the entire condition for each option. As you gain experience writing
your own macros, you will run into many situations where If or Select Case is the better
choice.

The Value of Indenting Code
As you can see throughout the code samples in this chapter, code is indented to indi-
cate statements within a group, loop, or condition. Where multiple structures are nest-
ed, code is indented a bit further for each level of nesting.

Though VBA doesn’t require indenting code, it’s fairly standard practice to do so,
because it makes the code and the logic of the macro’s progression much easier to
read.

For example, consider that when structures are nested, it’s essential that the end state-
ments of paired structures fall in the correct order. So, for example, if you nest an If…
End If structure inside a For…Next loop, the End If statement needs to appear above
Next (that is, if the If structure starts inside the loop, it has to end inside the loop).
Indenting phrases can make it much easier to diagnose this type of hierarchy issue.

To indent a line of code, press the Tab key at the beginning of the line. Your indent will
remain when you press Enter. Press Backspace or Shift+Tab to remove the indent. Note
that you can customize the indent width on the Editor tab of the Options (or, for Office
2011, Preferences) dialog box. Tab width is set to four characters by default.

To indent several lines of existing text, select those lines and then press Tab. Similar to
how outline numbered lists behave, using Tab and Shift+Tab with one or more para-
graphs selected will demote or promote the text rather than deleting it. However, if
only one statement is selected, you must be sure to select the entire statement, or
pressing a keystroke will replace the existing text.

754	 Chapter 23  VBA Primer

Using Operators
VBA uses both symbols (such as &, <, >, =, +, -, /, *) and terms (such as And, Or, and To) for
operators, depending on the usage. In all cases, however, operators follow standard math-
ematical syntax rules. Take a look at a few examples.

n	 When I finish writing a chapter of this book, I need to copy all of the Heading 1 and
Heading 2 paragraphs to update the table of contents. To do that, I make a copy of
the document, from which I delete any paragraphs that don’t have those two styles
applied.

Dim apr as Paragraph
For each apr in ActiveDocument.Paragraphs
 If apr.Style <> "Heading 1" And apr.Style <> "Heading 2" Then
 apr.Range.Delete
 End If
Next apr

The less than and greater than operators are used together here to mean “is not equal
to.” Note that I could also have written the If portion of that statement as follows:

 If Not apr.Style = "Heading 1" And Not apr.Style = "Heading 2" Then

Notice that the use of Not to mean “anything other than” is repeated for each option
meeting the condition.

n	 If, instead, I wanted to delete all paragraphs that match either of those criteria, I would
have written the following code:

Dim apr as Paragraph
For each apr in ActiveDocument.Paragraphs
 If apr.Style = "Heading 1" Or apr.Style = "Heading 2" Then
 apr.Range.Delete
 End If
Next apr

n	 What if I wanted to delete all paragraphs that use Heading 1 or Heading 2 style, but
only if they don’t appear in a table?

Dim apr as Paragraph
For each apr in ActiveDocument.Paragraphs
 If (apr.Style = "Heading 1" Or apr.Style = "Heading 2") And _
 apr.Range.Information(wdWithinTable) = False Then
 apr.Range.Delete
 End If
Next apr

In the first line of the If structure, the space followed by an underscore at the end
of the line breaks a single statement of code to a second line. Breaking the line is not
required, but is used when the line of code is too wide to read in a single screen.

	 Writing, Editing, and Sharing Simple Macros	 755

Notice in the preceding code that the conditions that use the logical operator Or are
grouped in parentheses, with the And operator outside the parentheses. Just as in a
mathematical equation, that phrasing ensures that the condition within the parentheses
is evaluated first.

As you’ve seen in examples throughout the primer to this point, an ampersand combines
arguments into a text string, and typical arithmetic operators can be used on numeric values
as they are in Excel formulas, including +, - ,*, and /. The plus sign can be used in some cases
to combine text strings, but when you want to mix different types of variables in a text string,
the plus sign can cause a “Type Mismatch” error, because it tries to calculate a result rather
than combine the strings. So, using the ampersand to combine arguments into a string is
always a good practice.

Notice also throughout these examples that comparison operators can be used either indi-
vidually or together, such as < to indicate “less than” or <= to mean “less than or equal to.”

See Also  Although the operators mentioned in this section are likely to be all that you need,
they’re not an exhaustive list of every operator available in VBA. To learn about others, search
for the topic Operator Keyword Summary in VBA help.

Note  Although it’s not included in the aforementioned Operator Keyword Summary, the term
To can be used to represent a range of values (such as a more efficient alternative to using a
greater than and less than range combined), as you’ve already seen in some code examples in this
chapter. Consider the following examples, which are individual lines of a code from a For…Next
loop and a Select Case statement.

For myI = 1 to ActiveDocument.Shapes.Count
Case 2, 3 To 10, 14

Introducing Message Boxes and Input Boxes
When creating macros for others to use, you’ll likely need to either give the user informa-
tion or have the user specify information. Use message boxes to share information and input
boxes to collect it.

Using Message Boxes
A message box might simply provide information, or it might require a response, such as Yes,
No, Cancel, Abort, Retry, or Ignore.

The MsgBox command is one of several in VBA that can be used both as a statement and as a
function. Use a MsgBox statement to provide information; use MsgBox as a function when you
need a response from the user.

756	 Chapter 23  VBA Primer

n	 To create a message box statement, type MsgBox with the string of text you want the
user to see. For example, take a look at the following message box statement and the
message box it produces when run in Word, shown in Figure 23-19.

MsgBox "You’re an unstoppable VBA genius!"

Office 2010 Office 2011

Figure 23-19 Notice that message boxes and input boxes automatically coordinate with the visual
aesthetic of Microsoft Office on their respective platforms.

Even if your message box doesn’t require a reply, however, you might want to get a bit
more creative with it. The MsgBox command includes optional arguments that let you
customize the title bar and add an information icon, as shown in Figure 23-20.

MsgBox "You’re an unstoppable VBA genius!",vbInformation,"My Message Box"

 
Figure 23-20  A message box with custom title bar and information icon, shown in Office 2010 (left)
and Office 2011 (right).

The intrinsic constant vbInformation is one of a set of options in the buttons argu-
ment that enables you to add both an icon (as you see here) and response buttons. The
third argument customizes the title of the message box.

Notice that including a title in Office 2011 reduces the size of the message box body
text and places the title within the body area of the message. Also notice that the cus-
tom icons are not provided in Office 2011. Instead, the information icon is read as the
application icon (Word, in this case).

n	 To use MsgBox as a function (that is, to require a response from the user), first declare
an integer variable for your message box so that you can use the response in the mac-
ro, as you see in the following example:

Dim myRes As Integer
myRes = Msgbox("Are you an unstoppable VBA genius?", vbQuestion _
+ vbYesNo, "My Message Box")

	 Writing, Editing, and Sharing Simple Macros	 757

If myRes = vbYes Then
 Msgbox "I knew it!", vbExclamation, "You’re a genius!"
Else
 Msgbox "Hang in there.", vbCritical, "It will get easier!"
End If

The first message box in the preceding code is shown in Figure 23-21.

Figure 23-21  A message box providing options
to the user, shown in Office 2010.

Depending upon the user’s response, one of the two message boxes shown in Figure
23-22 is returned.

 
Figure 23-22 Message boxes customized in reply to a user response.

See Also  Both message box and input box functions also include optional arguments for
adding context-sensitive help files to those boxes. For additional resources where you can find
information on VBA tasks that are not covered in this primer, such as creating custom help files
for your VBA projects, see the “Getting Help” section, later in this chapter.

Using Input Boxes
Input boxes are similar to messages boxes, except that they’re always used as a function
because they always require a response. Take a look at the following example:

Dim myInp As String
myInp = InputBox("How would you score on a basic VBA exam?", _
"My Input Box", "Perfect")
Msgbox myInp & " is pretty good!", vbExclamation, "My Input Box"

The input box from this code sample is shown in Figure 23-23. Notice that the Office 2010
and Office 2011 input boxes are more similar than message boxes. For example, note that the
title bar is utilized in Office 2011 message boxes.

758	 Chapter 23  VBA Primer

 
Figure 23-23  An input box shown in Office 2010 (left) and Office 2011 (right).

The text of the message box shown in Figure 23-23 is referred to as the prompt, the title bar
text is the title argument (as in a message box), and the value you see in this image is the
default value of “Perfect” specified in the third argument. Note that input boxes also include
optional arguments for vertical and horizontal position on the screen (not shown here) for
cases where you don’t want the box to automatically appear in the center of the screen.

Because the input box was declared as a string variable, notice that the response is used
as part of a text string in a message box, as shown in the preceding code sample and in
Figure 23-24.

Figure 23-24  A message box constructed using a combination of a string variable and text string.

If, instead, you need to use a response as a numeric value, declare the variable accordingly.
In the following example, the input box asks for the number of columns to include in a new
table being created by the macro. The variable defined as the input box reply is declared
as an integer. (Notice that the input box in this case has only a prompt and a title bar—no
default value is set, so the text box within the input box appears blank to the user.)

Dim myInp As Integer
myInp = InputBox("How many columns would you like?", "My Input Box")
With Selection
.Tables.Add Range:=.Range, NumRows:=5, NumColumns:=myInp
End With

	 Writing, Editing, and Sharing Simple Macros	 759

Caution  There is a possible problem, however, with the preceding code sample. If the response
is not an integer (including if the user cancels the input box without adding a reply), the macro
will end in an error. You can, however, add what’s known as an error handler to correct for any
error that may occur. Error handlers are an important part of writing macros effectively.

Companion Content  To learn how to work with code errors and create error handlers, see
the article “Managing VBA Errors,” available in the Bonus Content folder as part of the online
companion content for this book, at http://aka.ms/651999/files. You’ll find an
example in that article of an error handler created specifically for the preceding macro.

Running One Macro from Another
When you create a solution, such as developing a set of document production macros for
yourself or creating a set of macros to help users format a template, you’re likely to have
some of the same commands repeat in multiple macros. When those duplicated commands
run to more than a few lines of code, it can be helpful to put the duplicated code into its own
macro and run it as part of each macro that needs it. That way, you don’t have to write that
code out in every macro where you need it.

Running one macro from another is also commonly done when several macros use the same
variable definitions. For example, say that you declare the following public variables in the
General Declarations section of the module:

Public myName as String, myComp as String, myIn as Integer

If several macros need to use the same values for that information, create a procedure just to
store the values of those variables. That entire macro might look something like this:

Public Sub VarDefs()
myName = Application.UserName
myComp = ActiveDocument.BuiltinDocumentProperties("Company").Value
myIn = 1
End Sub

To then use these variable definitions in any macro in the project, simply call the macro that
includes the definitions. The statement to call a macro is just the word Call plus the macro
name. If the macro exists in a different module from the macro where you’re calling it, also
specify the module name.

For example, to call the preceding macro from a macro in the same module, type the follow-
ing statement:

Call VarDefs

http://aka.ms/651999/files

760	 Chapter 23  VBA Primer

If the macro from which you want to call VarDefs is in a different module, the statement
would look like the following (assuming that VarDefs is in a module named myMod):

Call myMod.VarDefs

Note that, as long as the variables are declared as public, you don’t actually have to specify
Public in the Sub statement of the preceding macro to make the contents of that procedure
available to other macros in the project. However, if you want to allow the contents of that
procedure to be shared only by other macros in the same module (such as in cases where
macros in a different module might need to share a different set of values for the same vari-
ables), use Private Sub <procedurename>() to start the macro. Keep in mind that private
procedures don’t appear in the Macros dialog box available from the Developer tab, so iden-
tifying a procedure as private is also a good way to keep it hidden from the user.

Caution When you call one macro from another for the purpose of using variable definitions,
make sure the call to the source macro appears prior to where you use those variables in the des-
tination macro.

Note  Your macros might share many types of variables in a given project. The preceding vari-
able example is just intended to point out one place where the Microsoft Office programs may
offer you a simpler solution than VBA, depending on your particular needs. For adding docu-
ment property information to your documents and templates, you can use the built-in Document
Property Quick Parts.

See Also  For more information about Document Property Quick Parts that have information
already bound to content controls, as well as for resources where you can learn about creating
custom bound controls, see Chapter 12, “Dynamic Content.”

Setting Macros to Conditionally Stop Executing Commands
You can add a statement to end the macro under specified conditions or to exit just a part of
the macro.

To end execution of a macro, use the term Exit Sub. For example, say that you want to stop
a macro from running if no document is open. That code would look like this:

If Documents.Count = 0 Then
Exit Sub
End If

	 Writing, Editing, and Sharing Simple Macros	 761

Exit Sub, however, exits the active procedure. If you have one procedure running from
another, you might need to end code execution entirely instead of exiting the individual sub-
routine. In that case, just use the term End.

If Documents.Count = 0 Then
End
End If

To exit a loop when a condition is met, use an Exit statement specifically for the loop type,
such as Exit For or Exit Do. Following is an example of an Exit For statement:

Dim ast as Style
For each ast in ActiveDocument.Styles
 If ast.NameLocal = "Sample" Then
 ast.Delete
 Exit For
 End If
Next

Running Macros and Compiling Projects
You can run a macro directly from the Visual Basic Editor or from the Macros dialog box
available in the Microsoft Office programs, or you can customize the user interface to add
the macro to either the Quick Access Toolbar or the Ribbon (or, in Office 2011, to a toolbar or
menu). In Word 2010 or Word 2011, you can also assign a keyboard shortcut to a macro.

n	 To add a macro to the Quick Access Toolbar or the Ribbon in an Office 2010 program,
using the Customize Quick Access Toolbar and Customize Ribbon tabs of the Options
dialog box in the applicable program.

n	 To add a macro to a toolbar or menu in an Office 2011 program, on the View menu,
point to Toolbars, and then click Customize Toolbars And Menus.

n	 To assign a keyboard shortcut to a macro in Word 2010, on the Customize Ribbon
tab of the Word Options dialog box, under the heading Keyboard Shortcuts, click
Customize. To do this in Word 2011, on the Tools menu, click Customize Keyboard.

You can save keyboard shortcut assignments, Quick Access Toolbar customizations, and
Office 2011 menu and toolbar customizations either for the application as a whole or in the
individual document or template. When you customize the Ribbon through the options dia-
log box, you can customize it only for the application as a whole. To customize the Ribbon
for an individual document, template, or add-in in Office 2010, you have to use Office
Open XML.

762	 Chapter 23  VBA Primer

See Also  For more on Office Open XML, see Chapter 24. Additionally, see the article “Using
VBA to Create Add-Ins,” available on the MSDN Office Developer Center at http://msdn.
microsoft.com/en-us/library/gg597509.aspx. (This article applies to both Office 2010 and
Office 2011. Office 2010 UI customization examples are presented in the article but the
downloadable samples for the article also include an Office 2011 UI customization example.)

Do More Than You Might Imagine with One Line of Code
Depending on what you need to do with VBA, you might not need to write or run a
macro at all. The Immediate Window in the Visual Basic Editor enables you to run just
one line of code at a time. It’s simple to use and can be an incredibly powerful tool for
troubleshooting document issues or executing actions that you can’t do from within
the Microsoft Office programs.

Several chapters in this book include tips about using the Immediate Window and send
you here for more information. Those tips include such things as resetting the used
range in an Excel workbook, setting precise positioning for content on PowerPoint slide
layouts and masters, or getting information about problem content that you don’t see
in a Word document.

To use the Immediate Window, start in the Visual Basic Editor and then:

	 1.	 On the View menu, click Immediate Window. Or Press Ctrl+G (Ctrl+Command+G
in Office 2011).

The Immediate Window opens at the bottom of the Visual Basic Editor by default.

	 2.	 With your insertion point in the Immediate Window, do one of the following:

n	 To execute an action, just type the line of code that you need and then press
Enter (Return). For example, as shown in Chapter 18, “Working with Data,” to reset
the used range on the active worksheet, type the following:

ActiveSheet.UsedRange

n	 To get information, type a question mark, immediately followed by the line of
code you need (no spaces) and then press Enter (Return). For example, to count
the number of tables in the active Word document, type the following:

?ActiveDocument.Tables.Count

For an article that offers more detail about using this tool, including many examples,
see the additional resources provided in the last section of this chapter, “Working with
VBA: Next Steps.”

http://msdn.microsoft.com/en-us/library/gg597509.aspx
http://msdn.microsoft.com/en-us/library/gg597509.aspx

	 Writing, Editing, and Sharing Simple Macros	 763

Compiling Projects
As you’re writing lengthy macros, or when you’re ready to use your macros, compiling the
project is an important step. Compilers are actually used to translate source code to execut-
able code, which isn’t strictly necessary for typical VBA macros. But using the compiler in the
Visual Basic Editor is an essential way to help ensure that your code works properly.

To compile a project, just select a module or click into a procedure in the project and then,
on the Debug menu, click Compile <Project>. Depending on the size of the VBA project,
compiling might be instantaneous or it might take a few moments. If VBA recognizes errors
in your code, it will select the code containing the error and display a message box telling
you the type of error.

Companion Content  Learn about recognizing, fixing, and managing errors in the article
“Managing VBA Errors,” available in the Bonus Content folder online at http://aka.ms/651999
/files.

Getting Help
In Office 2010 VBA, you can easily search for help using the Type A Question For Help box
that appears on the right side of the Visual Basic Editor menu bar. In Office 2011, VBA help
takes you to an online index of VBA help topics.

But there are also often faster ways to get to exactly what you need:

n	 In the case of error messages, the Help button in those message boxes takes you
directly to a help article on that specific error message. If, however, you need informa-
tion on an error message any time other than right when it occurs, search for the help
topic Trappable Errors. You can then use the Find feature in the help or browser win-
dow (Ctrl+F on Windows and Command+F on Mac) to quickly locate the name or num-
ber of the particular error you need. The Trappable Errors article lists each error with a
hyperlink to its article.

n	 In the case of any object model member, right-click the name of the item where it
appears in the code and then click Definition. This opens the Object Browser to the
selected item—which might be enough information if you just need, for example, to
see the available members of a selected object.

However, in the Object Browser in Office 2010, you can right-click any item and then
click Help to open the help topic on that article. Note that some items, such as indi-
vidual constants, might not have help articles—but articles are available for most mem-
bers of the active object model.

http://aka.ms/651999/files
http://aka.ms/651999/files

764	 Chapter 23  VBA Primer

For Mac Users
If you use the Help menu in the Visual Basic Editor, you get program help—not VBA
help. If you click the Help button on the Standard toolbar in the Visual Basic Editor,
you get a link to Visual Basic Editor help. This is an index of several useful help topics
broken down by application. For example, you can see a handy list of what is different
from the Office 2010 version of the object model for that Office 2011 application. But
it’s not searchable and not nearly as comprehensive as Office 2010 VBA help. So, are
you out of luck?

By now, you know when I ask a question like that, there’s usually an easy solution. The
fact is that you have access to almost the exact VBA help that is available in Office 2010,
because the help for Office 2010 VBA is hosted on Office.com.

To get to the developer home page for Word, go to the following link (yes, it’s long and
messy but you only have to type it once and then bookmark it):

http://office.microsoft.com/client/helphome14.aspx?lcid=1033&NS=WINWORD%2ED
EV&Version=14

To get to the developer home pages for PowerPoint and Excel, just substitute the text
WINWORD in the preceding URL with POWERPNT or EXCEL. (Note that characters
are missing from PowerPoint in the preceding text; this is intentional.)

Then, to get to the help you need, either search or (as you might find more effective
in some cases) click the application Object Model Reference link and then drill down in
the object model links for what you need.

When searching the Object Model help to get to what you need, keep in mind that
many types of VBA elements (such as properties and methods) are members of an
object, so you can find help for them under the applicable object. And if you’re not
sure of the object to which an item belongs, remember that the Object Browser in
the Visual Basic Editor gives you a definition for the item that includes its membership
information.

Saving and Sharing Macros
You can export a module of code (as well as some other types of project elements), which
is the equivalent of saving a copy of the file, by right-clicking the module in the Project
Explorer pane and then clicking Export. Note that the file name you choose for the export
doesn’t need to match the module name. Notice also that VBA modules have the file exten-
sion .bas.

http://office.microsoft.com/client/helphome14.aspx?lcid=1033&NS=WINWORD%2EDEV&Version=14
http://office.microsoft.com/client/helphome14.aspx?lcid=1033&NS=WINWORD%2EDEV&Version=14

	 Writing, Editing, and Sharing Simple Macros	 765

To import a module of code, such as the samples available in the online bonus content for
this book, right-click the project in Project Explorer and then click Import.

Caution  If you export or import modules, remember that some modules refer to code outside
the module itself, such as when the project contains a UserForm (dialog box) or when one macro
calls another from a different module in the project. Be sure that you’re aware of the project
components that need to work together, so that you export or make note of everything you’ll
need when you or someone else imports that content later.

See Also  For additional resources, such as where you can learn to create and work with
UserForms, see the section “Working with VBA: Next Steps” at the end of this chapter.

Because you can share an entire VBA project by sharing the Word, Excel, or PowerPoint file
in which the project is stored, exporting is more often used as backup. This is usually a good
idea, because if you lose a document or template, you of course lose any code it contained.

In particular, if you store a module of document production macros, for example, in Normal.
dotm, exporting that module periodically for backup is an important safety measure. This
is because you might solve some Word performance issues by deleting Normal.dotm and
allowing Word to regenerate a new default template, in which case your macros would be
lost.

Sharing Projects
To share an entire project, just compile the project, save the file, and share it as you would
any file. Keep in mind that some networks block files that contain macros, so you might want
to use a different method for safely sharing the content (such as saving a document or tem-
plate containing a VBA project to a Windows Live SkyDrive folder or a Microsoft SharePoint
library).

Some macro projects need to be saved as particular file types, such as for Excel and
PowerPoint add-ins. Also, adding a digital signature to projects can help to avoid systems or
programs blocking your macros.

See Also  Learn about using VBA to create add-ins and signing your code in the MSDN Office
Developer Center article “Using VBA to Create Add-Ins,” at http://msdn.microsoft.com/en-us/
library/gg597509.aspx.

You can also protect your code when sharing projects—such as when you want others to be
able to use the macros, but not to be able to see or copy your source code. To do this, select
the project in Project Explorer. Then, on the Tools menu, click <Project> Properties.

In the <Project> Properties dialog box, you can rename the project (following VBA nam-
ing conventions), which does not affect the file name of the document, template, or add-in
where the project resides. You can also click the Protection tab to require a password to view

http://msdn.microsoft.com/en-us/library/gg597509.aspx
http://msdn.microsoft.com/en-us/library/gg597509.aspx

766	 Chapter 23  VBA Primer

the code. For this feature to work, you must enable the Lock Project For Viewing option and
provide a password. When you do, double-clicking the project in Project Explorer will display
a box where you can type the password. Without the correct password, the macros can still
be run from the user interface, but their code can’t be viewed. Note that, once you add a
password, the password protection starts the next time the project is opened.

Caution  Be sure to keep a record of the password you choose. Lost passwords might render
your code permanently locked.

Working with VBA: Next Steps
Once you’ve mastered the basics in this primer, you’re likely to find more complex VBA to be
quite easy. And there are many online resources to help you progress.

n	 The MSDN Office Developer Center (http://msdn.microsoft.com/office) is a fantastic
resource for all things related to automating Microsoft Office. The majority of content
on this site is for managed code (Microsoft Visual Studio) development (the platform
often used by professional Microsoft Office developers), but far from all of it. You can
find a growing number of resources on VBA as well as a volume of information on
Office Open XML (which is addressed in Chapter 24).

n	 The Office Developer Center also has a VBA-specific site that’s a fantastic online home
base for learning about VBA. And it has one of my all-time favorite friendly URLs:
http://iheartmacros.com.

n	 In addition, when you don’t find the information you need in VBA help, search the
MSDN library. The library’s resources are pretty amazing—I can’t tell you how much
I’ve learned there: http://msdn.microsoft.com/library.

But in addition to general resources, there’s also more VBA topic-specific content that I’d like
to point out. The online bonus content for this book includes a couple of VBA articles, and
there are also a few articles available on the Office Developer Center that might be particu-
larly handy for next steps with VBA.

Note  The list of four articles that follows was written for Office 2007 but also applies to Office
2010 and Office 2011. In the additional resources at the end of each article, find a link to a re-
lated video walk-through of tasks covered in it.

	 Working with VBA: Next Steps	 767

n	 The Immediate window in the Visual Basic Editor (discussed in the earlier sidebar "Do
More Than You Might Imagine with One Line of Code" is one of my favorite tools, and
by far one of the most valuable tools for using VBA to troubleshoot document format-
ting. Learn more about the Immediate window here: http://msdn.microsoft.com/en-us/
library/dd535470.aspx.

n	 Get tips on using VBA specifically to troubleshoot documents here: http://
msdn.microsoft.com/en-us/library/dd630112.aspx.

n	 Learn about controlling built-in Microsoft Office commands using VBA (including an
introduction to using events) here: http://msdn.microsoft.com/en-us/library/dd627337.
aspx.

n	 See examples of how to use some of what you learned in this primer to format long
documents more quickly and easily here: http://msdn.microsoft.com/en-us/library/
dd554917.aspx.

Companion Content  Find articles on how to create and use UserForms (dialog boxes) in VBA
and how to manage VBA errors, as well as a list of all links provided in this chapter and others,
in the online Bonus Content folder available online as part of the companion content for this
book, at http://aka.ms/651999/files.

Before you go, however, the next (and final) chapter in this book provides a similar primer
on the basics of using the Office Open XML Formats to edit documents and create custom
content.

http://msdn.microsoft.com/en-us/library/dd535470.aspx
http://msdn.microsoft.com/en-us/library/dd535470.aspx
http://msdn.microsoft.com/en-us/library/dd630112.aspx.
http://msdn.microsoft.com/en-us/library/dd630112.aspx.
http://msdn.microsoft.com/en-us/library/dd627337.aspx
http://msdn.microsoft.com/en-us/library/dd627337.aspx
http://msdn.microsoft.com/en-us/library/dd554917.aspx
http://msdn.microsoft.com/en-us/library/dd554917.aspx
http://aka.ms/651999/files

	 	 813

Index

A
AAT (Apple Advanced Typography)  166
active window  238
Add Animation gallery  510
Add Color command  465
add-ins  697
Adjacency Report template  682
Adjust List Indents dialog box  207, 210
Adobe Creative Suite programs  436
Align action  375, 474, 476
alignment

Arrange tools support  474, 476
best practices for lists  206–211
best practices for tables  231–232
for financial table numbers  251–254
header/footer content  306–307
smart guides and  436

ampersand  755
angle brackets  772
Animation Painter  12, 505, 514
Animation pane  512–514
animations

about  509–514
bookmarks and  514–515
motion paths and  511–512
replacing effect on selected objects  510–511
timeline elements  513
triggering  505, 514–515
using effectively  515–516

apostrophe in VBA code  711
Apple Advanced Typography (AAT)  166
Apply Object Style command  472
Apply Style command  472
Apply Styles pane  184
app.xml file  783
Archive utility  779
area charts  620
arguments

defined  732
for MsgBox command  756
object models and  732–735

arithmetic operators  755
Arrange tools  474–477
Articulate Presenter tool  501
Artistic Effects (Filters) gallery  127
aspect ratio  381–382, 419, 473
audio files. See media files
auditing formulas  570–571
AutoComplete feature  338
AutoCorrect feature  375, 379
AutoFilter feature  575–576
AutoFit feature  378
AutoFormat As You Type feature  205

Auto Lists
about  724–725
for constant sets  735
declaring data types  728

AutoText feature  338, 339, 343
AutoText gallery  337, 338
axes. See chart axes

B
Background Styles gallery  369, 399, 466
Backstage view

about  7–8
Print environment  9
private information and  74

bar charts  620
base styles

document defaults and  194
table style  219
usage considerations  195–197

Bibliography document element  339
Bibliography gallery  337, 341
binding content controls to custom data  336
.bin file extension  783
bitmaps  275
bookmarks

animations and  514–515
navigating media via  504

book-style page layout  313–314
Boolean data type  727
borders, spacing and  235
BPOS (Business Productivity Online Suite)  33
brand identity

creating  439
design considerations  94–95
themes and  117–118

Breaks gallery  303
Bring Forward action  474
Bring To Front action  474
Broadcast Slide Show feature  46, 500
Browse For Themes feature  119, 124
browsers

multiple windows  39
Office Web Apps and  38

bubble charts  620, 635–637
building block galleries  346
building block gallery controls

about  320
default gallery  323
editing properties  325
enabling access  333
Filling In Forms protection mode  333

814	 building blocks

building blocks
about  317, 337–340
creating  343–347, 689–692
inserting entries  341–343
managing  347–348

Building Blocks.dotx file  345, 347
Building Blocks Organizer  347–348
building block templates  345, 690–691
Built-in Building Blocks.dotx file  692
Bulleted gallery  215
Bullets And Numbering dialog box  208, 415
bullets/bulleted lists

disappearing  213–214
levels supported  414
in slide presentations  407
SmartArt graphics and  442, 450–452

business diagrams
creating easily  455–458
SmartArt support  439–454
usage considerations  437–439

Business Productivity Online Suite (BPOS)  33

C
Calculated Columns feature  553
calculated fields  662–663
Call statement  759–760
Camtasia tool  499
Cap Style  467
carriage return  326, 736
category axis  620, 623
category-value charts  620
Cell Options dialog box  229, 239
cell ranges

adding sparklines  599–601
consolidating in PivotTables  654
formatting as tables  537–541
naming  565–568

cell styles
about  525
deleting  536
modifying  536
worksheet formatting and  533–537

Cell Styles gallery  533
Chanel, Coco  90, 462
Change Chart Type dialog box  611, 638
Change Picture command  133
Change Quick Style Settings command  693
Change Shape tool  478, 479
character spacing/positioning  176–177
character styles

base styles and  196
benefits of  193
built-in  190, 191
Quick Style Sets  182, 201
viewing  190

chart axes
about  620–625
creating custom number formats  640–641

customizing  604–605
secondary axes  627–628
titles for  626–627

chart data
connecting line chart gaps  634
manipulating  631–633
reordering data series  633
retrieving lost  633–634
setting display options  633

chart elements
axes  620–625
chart text  618–620
customizing  616–618
deleting  616
gridlines  625
pasting pictures as fill options  630
selecting  618

chart formatting
about  612
adding drawing objects to charts  629–630
combining chart types  626–627
customizing  614
customizing chart elements  616–626
using Chart Quick Styles  613–616
using secondary axes  627–628

Chart Layouts gallery  613
Chart Quick Layouts gallery  609, 613
charts. See Excel charts
chart styles

right-click options  615
theme effects and  615

Chart Styles gallery  110, 112, 613
chart text  618–620
chart titles  626
chart types

changing  611
combining  626
creating advanced  635–641
default  610
viewing ScreenTips  611

check box controls
about  321
editing properties  325

Choose a Movie or Choose Audio dialog box  492–493
Choose a SmartArt Graphic dialog box  439–440, 452
CITATION field  356
Clear Type fonts  167, 170
Clip Art drawings  486
cloud

content controls and  322
data visualization and  606
moving documents into  25–34
Office Mobile support  53
PivotTables and  675
saving content to  6
saving presentations to  365

clustered column charts  610
coauthoring  28, 50–52

	 Custom Shows dialog box	 815

codecs
defined  489
installing  490
working with  490

code window (Visual Basic Editor)  716
collection objects  737–740
color. See also theme colors

branding and  95
controlling tint/shade percentages  108
manually applying in SmartArt  446
organizing content and  97

color palettes  531–532
Color Saturation tool  126
color scales  586
color schemes  369
Color Tone tool  126
column charts  620, 652
Column Labels area (PivotTable)

about  649, 655–656
fields in  674

column sparklines  599
Combine feature  774
Combine Shapes feature  480–481
combo box controls  320, 323
commands, conditionally executing  760–761
comments in VBA code  711
Compare And Merge feature  366, 427–430
Compare Changes pane  427
comparison operators  755
Compatibility Checker  562
Compatibility Mode  18
compiling

documents  793
projects  763

compressing
media files  495–498
pictures in documents  132

CONCATENATE function  559–560
conditional formatting

common rules  585–588
improvements in  525, 582–585
managing rules  597–598
troubleshooting  588

Conditional Formatting Rules Manager  597–598
conditionally executing commands  760–761
conditional structures

If statement  750–751
Select Case statement  752–753

constants  735–737
Content Control Properties dialog box

about  325
creating multiple paragraphs  326
custom galleries in  346
restricting editing options  333
Style command  328
Use A Style To Format Contents option  329

content controls
about  317, 319
binding to custom data  336

cloud and  322
creating  322–324
document protection options  331–333
editing properties  324–330
floating graphics in  327
formatting  324–330
grouping  331
nesting  330
placeholder content and  323, 327–330
recognizing  319
restrict editing options  331–333
types of  320–321
usage considerations  321–322
XML tags and  326, 329

content planning
making choices about content  96
organizing content  97–99

content sharing  133–135
content templates  685
ContentType definition  785
content types  794
Content_Types file  792
contextual alternatives  170
contextual tabs  10
Continuous section break  304
Convert to Shapes feature  454
core.xml file  783
corruption

document  155–159, 215
table  246

counters
For statement as  747
variables as  726

Cover Page document element  339
Cover Page gallery  337, 341, 342
Create A Video feature  366
Create Names dialog box  567
Create Names From Selection dialog box  567
Create New Building Block dialog box

accessing  338
adding entries  690
custom galleries and  346
options supported  344, 347

Create New Style From Formatting dialog box  185, 198,
218

Create New Theme Colors dialog box  106
Create New Theme Fonts dialog box  123
Create PivotTable dialog box  647, 648, 674
Create Sparklines dialog box  600
Create Theme Colors dialog box  106
Crop tool  129–131, 285
.csv file extension  578
currency data type  727
Custom Animation pane  511–513
Custom Cover Page gallery  342
CustomDocumentProperties property  731
Customize Ribbon dialog box  9
Custom Shows dialog box  518

816	 data bars

Developer tab
about  11
creating content controls  322–323
editing control properties  324
Group command  331
Macros dialog box  760
recording macros  709
working in Design Mode  326–327
XML tools  771

Diagram And Organization chart tool  424
dialog boxes. See also specific dialog boxes

formatting for Office Art  470
opening  9
recording macros and  712–713

dialog launch icon  9
digital signatures  765
Dim statement  728
Distribute action  375, 474, 476
DivX format  490
docProps folder  781, 783
document defaults

about  194–195
Normal style and  191, 195
paragraph spacing and  203

document elements. See building blocks
Document Inspector  73–74
document layout

character spacing/positioning  176–177
font/paragraph formatting and  175–180
for graphics  278–287
line/page break options  179–180
line/paragraph spacing  178–179
organizing content  97
program-specific  97–99
solutions to difficult requirements  98

Document Map pane  291
document package

accessing  777–780
archiving  779
defined  774
editing  798

document parts
about  782, 784–787
adding  794
defined  774
point-size measurement  797

Document Properties dialog box  335
Document Property Quick Parts  334–336
document protection  331–333
documents. See also editing documents; electronic

documents; planning documents
building from scratch  788–796
controlling  149–154
corruption in  155–159, 215
creating  159–160
editing  796–810
formatting  798–810
formatting levels in  142–147

D
data bars

about  583–584
formatting  584, 586, 591–597
as horizontal thermometer charts  594–597
negative values  593

Data Bars gallery  592
data management

Excel table capabilities  552–558
simplifying data organization  573–577
validating data  571–573

data storage
about  731
document variables and  730

data types
declaring variables  727
defined  726
for required arguments  734
help topics for  735

data validation  571–573
data visualization

in the cloud  606
conditional formatting  525, 582–585, 585–598
creating sparklines  598–606
setting additional options  589–597

Date And Time dialog box  321
DATE field  321
date picker controls

about  321
default display  323
editing properties  325

date systems  552
Davis, Tristan  329
decimal alignment  251–254
Default Table Style dialog box  219
Define Name dialog box  566, 567
Define New Multilevel List dialog box  207, 209
deleting

accent shapes in SmartArt  453
cell styles  536
chart elements  616
floating objects  749
section breaks  301
Slicers  668
slide layouts  394
sparklines  602

design considerations
about  90
brand identity  94–95
displaying content  93–94
method of delivering documents  91–93
organizing content  97–99
for slide presentations  409

Design Mode  325, 326–327
design templates

about  686
evolution of  369–370

	 Excel 2010. See also Excel charts; formulas; workbooks/worksheets	 817

importance of construction  61–64
legacy  18
managing through Office Open XML  796–810
monitoring health of  154–159
moving into the cloud  25–34
new and improved features  5–16
redefining  4
sharing across platforms  294
sharing lists  216
tips for creating  19–20
troubleshooting  155–159, 254
working with objects and stories  147–148

document templates
adding automation to  696
sharing lists  216
updating styles  213

document themes. See themes
document variables  730
document.xml file

creating  789–792
editing text  798–800
formatting  801–803

.docx file extension  789
Do loops  745–749
.dotx file extension  345, 683
Draft view

about  153
content controls and  319
viewing section breaks  300

drawing guides  291, 477–478
drawing objects, adding to charts  629–630
drawing tools

accessing shapes  458–462
arranging content precisely  474–477
creating branding elements with  439
creating logos with  439
drawing guides and  477–478
managing shapes  458–462
positioning objects  472–474
sizing objects  472–474
usage considerations  454

drop-down list controls
about  321, 323
editing properties  325

.DS_Store file extension  779–780
dynamic content  160, 317–318. See also building blocks;

content controls; fields
dynamic guides. See smart guides
Dynamic Reordering feature  13, 291, 461–462

E
Edit In 2-D feature  449
editing

audio/video in presentations  503–504
chart data  631–634
control properties  324–330
document package  798

documents  796–810
in Excel Web App  46–48
fields in Word  357
headers and footers  306, 544
module names  717
objects  271–273
Office Open XML Formats  775–777
Office Web Apps restrictions  40
in OneNote Web App  49
online  28–29, 63–64
in PowerPoint Web App  44–46
in Print Preview  153
shapes  478–483
simultaneous  28, 50–52
slide layouts  393
slide masters  393
slides  366–368
styles.xml file  803–810
in Word Web App  41–43

Edit Points feature  478, 481–483
Edit Sparklines dialog box  602
effect formats  111
effect galleries  469
Effects menu  468–469
electronic documents

construction considerations  61–64
impact of font choices  64–71
managing hidden data  72–80
Office Open XML formats and  60
securing private information  71–72

ElseIf statement  751
embedded objects

about  77–78
converting to pictures  269–271
embedding between programs  265–269
pasting charts into presentations  411
recognizing graphic layout  282
in slide presentations  420–421

embedding fonts  68–71
embedding media files. See multimedia presentations
.emf file extension  784
EMF format  274–275, 277, 485
End If statement  750
End Sub statement  720
End With statement  720, 741
enumeration, constants as  735, 737
Equations document element  339
Equations gallery  337
equation tools  339
Error Options button  570, 571
Evaluate Formula tool  563, 571
Even Page section break  304
Excel 2010. See also Excel charts; formulas; workbooks/

worksheets
about  15, 23
common types of hidden data  75–77
conditional formatting  583
formatting ranges as tables  538

818	 Excel 2010

Excel 2010,  continued
getting graphics into  484
layout considerations  98
managing tables from  255
new features  549–550
planning documents  87–88
Slicer tool  665–670
turning off subtotals for fields  660

Excel charts. See also PivotCharts; sparklines
adding drawing objects to  629–630
creating  610–612
creating in Excel Web App  616
moving between worksheets  611
pasting into Word  266
saving as templates  694–695
selecting noncontiguous data  610
in slide presentations  266, 410–412, 424
troubleshooting  411
usage considerations  437
working with  410–412

Excel for Mac 2011. See also Excel charts; formulas;
workbooks/worksheets

about  13, 15, 23
common types of hidden data  75–77
conditional formatting  583
formatting ranges as tables  538
getting graphics into  484
layout considerations  98
managing tables from  255
new features  550–552
planning documents  87–88
Slicer tool alternative  666
turning off subtotals for fields  661

Excel Mobile  55
Excel object model  735
Excel Options dialog box  528, 654
Excel Preferences dialog box  528
Excel tables

data management capabilities  552–558
formatting ranges as  537–541
modifying table options in PivotTables  663–664
structured references  554, 565–570

Excel templates
best practices  703
creating  694–695
file extension for  683

Excel Web App
about  28, 37
creating charts  616
data visualization and  606
editing/viewing restrictions  40
editing workbooks  46–48
PivotTables and  675
Slicer tool support  666

Excel Workbook Gallery  11, 116
Exit Sub statement  760–761
external data  578–580

F
field codes  350, 357
Field dialog box

about  349
accessing  308, 349
content controls and  321
Field Names list  351, 353

Field Options dialog box  349, 353
Field Settings dialog box

about  661–662
customizing field appearance  674
turning off subtotals for fields  660

fields (PivotTable)
adding  649–654
calculated  662–663
filtering  655–656
grouping  651
moving  652
removing  652
removing subtotals  660

fields (Word)
about  348–350
construction overview  350
converting to static results  357
creating  351
customizing  349, 351–354
editing  357
nesting  358–360
updating correctly  354

File Format Converter for Mac  67
File menu. See Backstage view
file types  17–19
fill effects  464–467
Fill Effects command  464
fill formats  111, 593
Filling In Forms protection mode  333
filtering

Excel data  551, 574–576
PivotTable fields  655–656
Slicer tool support  665–670

financial tables
aligning decimals in  251–254
best practices  248–249

Five Rules template  512
Flip4Mac tools  490, 497
Flip action  475
floating objects

about  283
deleting  749
in placeholder text  327

folders, template  697–699
font color  415
Font dialog box

accessing  417
Advanced tab  167

	 Formula Builder	 819

character spacing options  176–177
macro example  713
number forms options  169
number spacing options  169

font formatting
about  142
applying  149
chart text  618–619
clearing  417
as layout tool  175–180
OpenType typography  165–171
in slide presentations  417
styles and  193
tables and  218
text effects  171–175
toggling settings on/off  739

font kerning  171
fonts. See also theme fonts

branding and  94
determining OpenType support  165
embedding options  68–71
impact in electronic documents  64–68
OpenType typography  165–171

font sizes
condensing without reducing  417
point-size measurement  797
preventing automatic changes  378
reducing for placeholders  402

Footer document element  339
Footer gallery  337, 342
Footer object  736
footers. See headers and footers
For Each...Next loops  744–745, 746
Format As Table dialog box  538
Format Axis dialog box

about  622–623
dates displaying on line charts  624

Format Background dialog box  399
Format Cells dialog box  536
Format Data Series dialog box  627–628, 633
Format dialog box

chart text  620
customizing chart elements  617–618
sizing and positioning objects  472

Format Gridlines dialog box  626
Format Painter  253
Format Picture dialog box

accessing  125
Adjust Picture tab  125
Artistic Effect Options  127
Picture Color Options  126

Format Shape dialog box
formatting shapes effectively  464–468, 470
placeholders and  379

Format Text dialog box  412, 417
Format Text Effects dialog box  172

formatting. See also chart, font, paragraph, and
worksheet formatting

color scales  586
conditional  525, 582–585, 585–598
content controls  324–330
copying between selections  253–254
correcting errors  156
data bars  584, 586, 591–597
defined  148
design considerations  90
dialog boxes for Office Art  470
difficult layouts  98
in document construction  61–63
document corruption and  155
documents  798–810
document.xml file  801–803
financial tables  248–254
icon sets  586
impact of font choices  64–71
levels of  142–147
Live Preview support  12
managing  143
objects and  147
Office Art shapes  471–472
organizing content and  97
picture  124–134, 259
PivotTables  664, 673–675
placeholder content  327–330
section  143
section breaks and  296, 301–303
shapes  462–472
slide layouts  398
SmartArt diagrams  445–450
sparklines  603
stories and  147
table  227–237
text  162–164, 412–418
text boxes  377, 414, 629
theme-aware  113–117
videos  501–502
WordArt  417

formatting marks
defined  61, 149
turning on  299
working with  150–152

Formatting toolbar  184
Forms folder  716
form templates  687–689
Formula Arguments dialog box  560
Formula AutoComplete feature  558, 561–562
Formula bar

about  551, 559–561
troubleshooting formulas  570

Formula Builder
about  560
accessing  559
evaluating formulas with  564–565

820	 formulas

formulas
auditing  570–571
creating  558–573
defined  558
managing  570–573
nesting  563–565
structured references  554, 565–570
working with functions  558–573

For...Next loops  726, 744–745, 747
For statement  747
4Media Video Converter Ultimate  498
frames, usage considerations  225, 286
freeform objects  435–436
Freeze Panes feature  574
Full Module view  716
Full Screen view  13, 154
Function Arguments dialog box  559–561
Function Library  559, 560
functions

about  559–563
accessing  559
as arguments  563–565
checking compatibility  562
defined  558, 714
help topics for  560–561
input boxes as  757
MsgBox command as  755, 756
storing data  731
working with  558–573

funnel icon  668

G
Gabriola font  169
General Declarations section (modules)  728, 729
Get Info tool  80
GetSetting function  731
GIF format  275
global templates  696–697
gradient fills  465–466
gradient line settings  466
gradient styles  465
gradient types  465
graphic effects. See also theme effects

branding and  95
exploring theme effects  110–113
organizing content and  97

graphic layout
graphic placeholders in  282
In Line With Text option  279, 279–282
recognizing  280–282
simplifying  278–279
text wrapping and  282–287

graphics. See also Office Art graphics; presentation
graphics; SmartArt graphics

converting picture types  276
cropping  285
determining best picture type  273–278

determining programs to use  261
differences working with objects  264–278
differences working with pictures  264–278
legacy files and  262–264
relative positioning  285
tool improvements  258–260
vector  484–486, 486–486

gridlines in charts  625
Group action  277, 474
grouping

category axis  623
content controls  331
content precisely with Arrange tools  474–475
fields in PivotTables  651
sparklines  601
statements  740–744

H
H.264 format  490
Header And Footer dialog box  387, 388
Header document element  339
Header gallery  337, 342
Header object  736
headers and footers

about  305–307
adding  306
aligning content  306–307
creating watermarks  315
different for odd/even pages  310
disabling  311
editing  306, 544
floating objects in  749
Link To Previous feature  312–313
Publishing Layout view and  297
in slide layouts  386–390
troubleshooting  390
undoing changes  313
working with page numbers  308–309
worksheet formatting and  544–545

Hidden And Empty Cell Settings dialog box  605, 634
hidden data

common types of  75–77
defined  72
embedded objects  77–78
managing with Document Inspector  72–74
PDF/XPS formats and  78–79

hidden files  786
hidden values for secondary axes  628
Hide command  652
hiding

background graphics  402
PivotTable records  652
section breaks  300
styles  202, 220

horizontal axis  621–622
horizontal thermometer charts  594–597
host tables  243–245

	 lists	 821

Hotmail  28
HTML format  63
hyperlink fields  350, 352
hyperlinks

in function arguments  561
in slide presentations  385–386

I
Icon Set gallery  583
icon sets

about  583
customizing  589–591
formatting  586

ID reference  787
IF field  750
IF function  750
If statement  750–751
Illustrator (Adobe)  436
image editing. See picture formatting
Immediate window  405, 767
importing external data  578–580
indenting

lists  206–211
macro code  753
paragraphs  233
tables  239

indexes, inserting  298
INDEX field  356
INDEX function  658
InfoPath forms  689
Information Rights Management (IRM)  39, 332, 700
In Line With Text option  279, 279–282
input boxes  757–759
Insert Calculated Field dialog box  663
Insert Chart dialog box  610, 611
Insert Function dialog box  559, 561
Insert Hyperlink dialog box  385
Insert Page Numbers dialog box  308
Insert Slicers dialog box  667
Insert Video or Insert Audio dialog box  491
integer data type  727
iPhone, OneNote support  55–56
IRM (Information Rights Management)  39, 332, 700

J
Join Style  467
JPG (JPEG) format  275, 784

K
Keep Source Formatting feature  423
Keep With Next command  180
kerning  171

keyboard shortcuts
assigning to macros  761
formatting additional shapes  472
working with shapes  456–458

KeyTips  9

L
laser pointers  517
Layout dialog box  472
Layout gallery

custom layouts  403
reapplying layouts  377

layouts. See also document layout; page layouts; slide
layouts

customizing  403, 453–454
graphic  278–287
reapplying  377

legacy files
AutoText entries  338
Compatibility Mode and  18
equation tools and  340
graphics considerations  262–264
sharing documents and  60
for slide presentations  409
troubleshooting styles  199

libraries
defined  723
Object Browser icon for  723

ligatures  168–169
line breaks

content controls and  323
managing layouts with  179–180

line charts  620, 624, 634
line formats  111
line spacing  178–179
line sparklines  599
line styles  467
Linked Notes feature  99–100
linked objects

converting to pictures  269–271
editing  271–273
linking between programs  265–269

linked styles  198
linked tables  250
Link To Previous feature  312–313
List Bullet style  206, 213
ListGal.dat file  215
list galleries, resetting  215
List Number style  206, 213
LISTNUM field  349, 354–356
List Paragraph style  205, 212
lists

about  204–206
Auto Lists  724–725, 728
best practices  206–211
common points of confusion  211–216
disappearing bullets/numbering  213–214
sharing  216

822	 list styles

list styles
about  206
base styles and  196
built-in  190, 191
copying  216
Manage Styles dialog box bug  192
multilevel lists and  206, 216
section breaks and  297
viewing  190

Live Preview feature
formatting options  12
templates and  682

logos, creating  439
long data type  727
looping code

about  744–749
Do loops  745–749
For Each...Next loops  744–745, 746
For...Next loops  726, 744–745, 747
troubleshooting issues in  749
variables in  725

M
Mac OS Finder  80, 778–779
macros

actions in dialog boxes and  712
assigning keyboard shortcuts to  761
Auto Lists  724–725
collection objects  737–740
commenting  711
compiling projects  763
conditionally executing commands  760–761
conditional structures in  750–753
constants in  735–737
creating modules  719–720
declaring variables  727
defined  709
getting help  763–764
grouping statements  740–744
indenting code in  753
input boxes and  757–759
looping code  744–749
message boxes and  755–757
object models  721–724
operators in  754–755
parentheses in  719–720, 733
reading code  711–713
recording  709–711
running  761–763
running duplicated code  759–760
saving  764–766
sharing  764–766
starting procedures  719–720
variables in  725–735
VBA sentence structure  720–721
viewing  716

Macros dialog box  760

Manage Styles dialog box
about  220
best practices  699, 701
document defaults and  194
document templates and  213

markup languages, reading  771–774
Master Elements command  398
Master Layout command  398
master layout elements  398–399
masters. See slide masters
MATCH function  658
measurement, document  797
Media Browser

about  11
dragging objects from  629
inserting objects  493

media files
bookmarks to navigate  504
compressing  495–498
extracting embedded  498
formats supported  490
improving media compatibility  497–498
inserting into presentations  488–493
inserting into presentations from websites  494–495
linked  493–495
performance considerations  489
size considerations  489

Merge feature  774
message boxes  755–757
metadata

defined  71
managing with Document Inspector  73–74
PDF/XPS formats and  78–79

Metafile format  277
methods

Auto Lists  724–725
defined  720
difficulty finding  739
Object Browser icon for  723
syntax for multiple arguments  734–735
VBA sentence structure for  720–721
working with constants  737

Microsoft Exchange Online  34
Microsoft Office Compatibility Pack  67
Microsoft Office programs. See specific programs
mobile devices, Office Web Apps and  53–58
Modify Building Block dialog box  344, 346
Modify Style dialog box  192, 198, 213
modules

creating  719–720
declaring variables in  727, 728
defined  714
editing names of  717
General Declarations section  728, 729
running duplicated code in macros  759–760

Modules folder  716
motion path animation  511–512
MOV format  490
MSDN Office Developer Center  766
MsgBox command  755–757

	 Office 2010. See also specific programs	 823

Multilevel List gallery
about  190, 212
copying list styles  217
resetting  215

multilevel lists
about  204
common points of confusion  211–212
list styles and  206, 216
section breaks and  297

multimedia presentations
compressing media files  495–498
creating videos of slide presentations  499–501
dynamic backgrounds in  491
editing audio/video  503–504
embedding media files  488–491
formatting videos  501–502
improving media compatibility  497–498
inserting audio/video  491–493
inserting videos from websites  494–495
linked media files  493–495
managing media files  488–491

N
Name Manager dialog box  566–567
namespaces  785, 791
naming

Excel cell ranges  565–568
styles  191
variables  726

Navigation Pane  14
Negative Value And Axis Setting dialog box  593
nesting

controls  330
fields in Word  358–360
formulas  563–565
paired statements  753
structures  753
tables  226, 245–256

New Cell Style dialog box  535
New Formatting Rule dialog box

accessing  586–587
data bar options  591, 593

NewMacros module  717
New Name dialog box  566
New Presentation dialog box  683
New Style dialog box  218
New Table Quick Style dialog box  539
New Table Style command  217
New Table Style dialog box  539
New Workbook dialog box  683
Next Page section break  304
Next statement  745
nonprinting characters. See formatting marks
Normal.dotm file  345, 347
Normal style

document defaults and  191, 195
usage considerations  189

Notepad  790
number alignment for lists  206–211
number calculations  548–552
Numbered gallery  215
Number Format styles  534
number forms  170
number spacing  170

O
Object Browser

about  721–724
icons used by  723
identifying read-only properties  724
storing data  731
working with constants  735

Object Linking and Embedding (OLE)  39
object models

about  721–724
getting help  763
member arguments  732–735
Object Browser icon for  723
working with constants  735–737

objects. See also embedded objects; linked objects
Auto Lists  724–725
collection objects and  737–740
defined  148
drawing  629–630
floating  283, 327, 749
freeform  435–436
identifying without selecting  740
inserting into placeholders  377, 378
methods and  720
Object Browser icon for  723
pictures vs.  264–265
positioning  472–474
properties of  720–721
sizing  472–474
VBA sentence structure for  720–721
working with  147–148

Objects folder  716
ObjectThemeColor property  743
object variables

code example  733
declaring  727

ODBC (Open Database Connectivity)  579
Odd Page section break  304
Office 365  33–34
Office 2010. See also specific programs

choosing file formats  17
exclusive features  11–12
font support  65–66
getting vector graphics into  484–486
leveraging tools across  135
prefixes for constants  735
Ribbon overview  6–9
Selection And Visibility pane  459–461
SharePoint process  31–32

824	 Office Art graphics

Office Art graphics
about  258, 433
expressing values  798
formatting charts  612
formatting shapes  471–472
Metafile pictures and  277
Office Open XML Formats and  772
PowerPoint support  86
recognizing graphic layout  281
theme effects and  110
usage considerations  436–437

Office for Mac 2011. See also specific programs
choosing file formats  17
exclusive features  12–14
font support  65–66
getting vector graphics into  484–486
leveraging tools across  135
OneNote and  90
prefixes for constants  735
Ribbon overview  9–11
SharePoint process  32–33

Office Mobile  53–55
Office Mobile Viewers  56
Office Open XML Formats

about  4, 16–19, 774
accessing document package  777–780
adding custom color gallery entry  446
building documents from scratch  788–796
customizing SmartArt  450
editing  775–777
embedding media  488
equation functionality  340
extracting data using  688
extracting embedded media files  498
graphics and  276
key document parts  784–787
list styles and  216
managing documents  796–810
managing hidden data  79
sharing documents  60
slide presentations and  409
storing content  148
structure overview  781–784
theme support  115–116
troubleshooting  794–796
troubleshooting documents  157
usage examples  811–812
when to use  708
XML basics overview  771–777

Office Web Apps
about  34–36
browsers and  38
content placeholders  35, 39
editing/viewing restrictions  40
font considerations  68
getting started with  36–41
graphics and  263
Office Mobile Viewers  56

Ribbon support  38
SkyDrive support  28

OLE (Object Linking and Embedding)  39
OneNote 2010

linking notes  99–100
planning documents  89–90
Ribbon support  6

OneNote for iPhone  55–56
OneNote Mobile  55
OneNote Web App

about  28, 37
editing notebooks  49
editing/viewing restrictions  40

Open And Repair feature  158–159
Open Database Connectivity (ODBC)  579
OpenType typography

contextual alternatives  170
determining support  165–166
exploring supported features  166–168
font kerning  171
ligatures  168–169
number forms  170
number spacing  170
stylistic sets  169

Open XML File Format Converter  68
Open XML Package Editor Power Tool  775, 778
Open XML Theme Builder  110, 468
Operator Keyword Summary  755
operators  754–755
Option Explicit statement  728, 730
Options dialog box

adding macros  761
changing default file formats  17
Customize Ribbon tab  7
Proofing tab  379
variable declaration requirement  728
Visual Basic Editor settings  716, 717

Order action  375, 474–475
organization charts  438, 447
Organizer dialog box  213, 216
Org Chart command  447
.otf file extension  165
Outline feature (Excel)  574
Outline view (Word)  153

P
Page Break Before formatting

applying  298
tables and  225
usage example  176, 180, 297

page breaks
managing layouts with  179–180
paragraph styles and  298
Publishing Layout view and  294

page layouts
book-style  313–314
creating with tables  241–248

	 PivotTable pane	 825

managing in worksheets  541–545
section breaks and  224

Page Layout view  543
page number fields  350
Page Number gallery  308, 337, 341
page numbers

different for first pages  310
different for odd/even pages  310
working with  308–309

Page Numbers dialog box  309
Page Setup dialog box

book-style page layout and  314
section formatting and  143
slide size considerations  382, 383

Paragraph dialog box
accessing  415
Don’t Add Space Between Paragraphs Of The Same

Style setting  213
Line And Page Breaks tab  179

paragraph formatting
about  142, 149
best practices  237
errors in  155
as layout tool  175–180
in slide presentations  413–417
tables and  218, 225

paragraph marks
section breaks and  300
tables and  224

paragraph spacing
about  178–179
document defaults and  203
lists and  213
table cell alignment and  231–232
table cell margins vs.  229
table row height vs.  228
usage example  177

paragraph styles
built-in  190, 191
creating  195
linked styles and  199
lists and  210
page breaks and  298
Quick Style Sets  182, 201
tables and  225, 236
viewing  190

parentheses in macros
about  719–720
arguments in  733

password protection for projects  766
Paste SmartTags command  134
Paste Special tool

about  529
Formatted Text option  256
Paste As options  269
viewing paste options  265

Paste With Live Preview command  134, 265

pasting content
charts into presentations  266, 410
charts into Word  266
choices in  134
embedded objects into presentations  420
legacy content  424
Live Preview support  12
pictures as data points  630
ScreenTips  12
tables into presentations  418

pattern fills  466, 614
PDF format

embeddable fonts and  68
saving to  78–79

PERCENTILE.INC function  562
period, hidden files and  786
Photoshop (Adobe)  436
Pick Up Object Style command  472
Pick Up Style command  472
picture controls

about  320
editing properties  325
placeholder content and  323

picture fills  466
picture formatting

about  124–125
adjusting images  125–129
cropping images  129–131
improved tools  259
managing images  132–133
picture styles and effects  131–132
replacing images  132–133

Picture Manager  276
pictures

converting embedded objects to  269–271
converting linked objects to  269–271
objects vs.  264–265
pasting as data points  630
recognizing graphic layout  281

picture transparency  810
picture types  273–278
Picture With Caption layout  404
PivotCharts

about  670–673
creating  672–673
importing external data  578
managing connections with PivotTables  673
pasting into PowerPoint  411

PivotDiagrams  437
PivotTable and PivotChart Wizard  654
PivotTable Builder  644
PivotTable Connections dialog box  670
PivotTable Field dialog box  653, 661
PivotTable Field List pane  672
PivotTable Options dialog box  674
PivotTable pane  649

826	 PivotTables

PivotTables
about  612
adding fields to  649–654
calculated fields  662–663
cloud and  675
consolidating ranges with  654
creating  645–656, 673–675
creating PivotCharts from  672–673
creating the table  647–654
field areas  649, 655, 674
filtering fields  655–656
formatting  664, 673–675
grouping fields in  651
hiding records  652
importing external data  578
managing  657–664
managing connections with PivotCharts  673
modifying table options  663–664
moving fields in  652
placement recommendations  647
reasons for using  645
removing fields from  652
setting up data  645–646
Slicer tool support  665–670
working with field settings  657–663

PivotTable Wizard  644
Placeholder Text character style  327
plain text controls

about  320
creating multiple paragraphs in  326
Document Property Quick Parts  334–336
editing properties  325
line breaks and  323

planning documents
about  21
content considerations  96–99
design considerations  90–95
linking notes  99–100
tool considerations  82–90

.plist file extension  732
PNG format  128, 274, 484–486
.potx file extension  683
PowerPivot add-in  550
PowerPoint 2010. See also multimedia presentations;

presentation graphics; slide presentations
about  12, 15, 23
common types of hidden data  75–77
drawing tool support  454–478
layout considerations  98
new features  364–368
planning documents  84–86
Word comparison  374
working with tables  418–419

PowerPoint for Mac 2011. See also multimedia
presentations; presentation graphics; slide
presentations

about  15, 23
common types of hidden data  75–77

drawing tool support  454–478
dynamic reordering  461–462
layout considerations  98
new features  364–368
planning documents  84–86
Word comparison  374
working with tables  418–419

PowerPoint Mobile  54
PowerPoint object model  735
PowerPoint Options dialog box  472, 480
PowerPoint Presentation Gallery  682

about  11, 117
accessing  116
selecting aspect ratio  382

PowerPoint tables  418–419
PowerPoint templates  683, 702
PowerPoint Web App

about  28, 37
editing presentations  44–46
editing/viewing restrictions  40

ppt folder  782
.pptx file extension  788
Preferences dialog box

changing default file formats  17
variable declaration requirement  728
Visual Basic Editor settings  717

Prepare For Sharing pane  74
presentation graphics. See also Office Art graphics;

SmartArt graphics
drawing tools support  454–478
editing shapes  478–483
getting into other programs  484
getting vector graphics into Office  484–486
new features  434–436
usage considerations  437–439

Presenter view  13, 519–520
price/volume charts  637–641
Print Layout view

about  153
managing graphics  258
overlapping pages  294
tables and  226

Print Preview
adding  9
editing in  153

private information
managing hidden data  72–80
securing in documents  71–72

private procedures  760
Private statement  729
.prn file extension  578
procedures

defined  714
private  760
starting  719–720

Project Explorer
about  716
protecting projects  765

	 secondary axes	 827

projects
compiling  763
defined  714
sharing  765–766
sharing variables in  729–730
viewing list of  716

properties
Auto Lists  724–725
defined  720
difficulty finding  739
Object Browser icon for  723
read-only  724
troubleshooting setting  723
VBA sentence structure for  720–721

Properties window (Visual Basic Editor)  717
Public statement  729, 760
Publishing Layout view

about  13, 144
headers and footers  297
sharing documents  293
Styles gallery and  188
tables and  226
usage considerations  152, 287–294

pushpin icon  8

Q
Quick Access Toolbar

about  8
adding galleries to  346
adding macros to  761

Quick Info  734
Quick Parts  160
Quick Parts gallery  337
Quick Style Sets

about  182
creating  692–694
working with  201–204

Quick Style Set templates  693
Quick Time player  489–490
quotation marks  785

R
radar charts  620
RANDBETWEEN function  557
Range object  739
Reading view  36, 367
read-only properties  724
Recolor Picture feature  421–422
Recolor tool  128–129
Record Macro dialog box  710–711
recovering unsaved files  11
reference fields  356
reference tables  298
Regroup action  474
Rehearse command  518
Rehearse Timings command  518

relationship files  781–782, 787, 793
relative positioning  285
.rels file extension  781–782, 787, 793
_rels folder  781, 782, 793
Remove Background tool  127
Remove Color command  465
Remove Duplicates dialog box  555
Replace dialog box  156
Report Filter area (PivotTable)  649, 655, 656, 674
reporting. See PivotCharts; PivotTables
Reset To Match Style command  614
reshape tool  478–479
Restrict Editing command  332–333
Reveal Formatting task pane  144–147, 149
revision identifiers  773–774
Revisions pane  427
Ribbon

adding galleries to  346
adding macros to  761
Change Picture command  133
Developer tab  11
Office 2010 overview  6–9
Office for Mac 2011 overview  9–11
Office Web Apps support  38
Print Preview environment  9
SmartArt support  446

rich text controls
about  320
creating multiple paragraphs in  326
editing properties  325
formatting placeholder content  327

Right To Left tool  447
Rotate action  475
rotate transitions  508
Row Labels area (PivotTable)

about  649, 655–656
fields in  674

RSID attributes  773–774
run, defined  772

S
Same As Previous feature  312
Save As dialog box  780
Save Quick Style Set dialog box  693
SaveSetting function  731
scatter charts  620, 635–636
ScreenTips

about  9
on chart types  611
for functions  558, 559, 561
paste methods  12
for slide layouts  392
SmartArt diagram categories  441
troubleshooting  344

SDI (single document interface)  367
secondary axes  627–628

828	 section breaks

section breaks
deleting  301
determining need for  296–299
displaying  299
formatting and  301–303
hidden  300
Publishing Layout view and  294
tables and  224
types of  303–305
viewing  300

section formatting  143
Section Header layout  402
SECTIONPAGES field  350
securing private information  71–72
Segoe fonts  168
Select Case statement  752–753
Select Data Source dialog box  632, 633
Selection And Visibility pane  459–461, 542
Selection object  740–741
Selection pane  286
Send Backward action  474
Send To Back action  474
SERIES function  632
Set Up Show dialog box  517
Set Up Slide Show dialog box  517
Shape Effects menu  468–469
shapes

accessing  458–462
changing  479–481
converting diagrams to  448
converting to freeform objects  435
creating branding elements  439
creating logos  439
custom actions  435–436
deleting accent shapes  453
editing  478–483
formatting effectively  462–472
formatting in Office Art  471–472
keyboard shortcuts  456–458, 472
managing  458–462
new features  435–436
organization charts  438
as page backgrounds  285

Shapes gallery  455
Shape Styles gallery  110, 111, 463
SharePoint 2010

about  30–34
coauthoring support  50

sharing documents. See electronic documents
Show Repairs dialog box  158
Sidebar tool  14
simultaneous editing  28, 50–52
single document interface (SDI)  367
single-level lists  205
SkyDrive service

about  27–30
charting support  616
coauthoring support  50

slash character  772
Slicers

about  665–666, 667–669
connecting multiple PivotTables to  669–670
creating  667
deleting  668

Slicer Settings dialog box  669
Slicer Styles gallery  668
slide background fills  467
slide background styles  259
Slide Background Styles gallery  285
Slide Layout gallery  391
slide layouts

built-in  396
controlling  376–380
creating  400–406
creating effective  406–409
customizing  400–406
custom objects in  377
deleting  394
formatting  398
formatting bullets  414
headers and footers in  386–390
managing  393–397
placeholders in  376, 395, 404
renaming  394
replacing deleted built-in  394
replacing using VBA  394, 396–397
slide masters and  390–392, 395, 398
troubleshooting  390
vertical text  403

slide masters
best practices  375
customizing  398–400
formatting bullets  414
headers and footers in  388
managing  393–397
master layout elements  398–399
placeholders in  399
Preserve Master setting  395
slide layouts and  390–392, 395, 398
themes and  370, 371

Slide Master view
about  392
accessing  393
customizing layouts  400
vertical text layouts  404

slide presentations. See also multimedia presentations;
presentation graphics

adding hyperlinks to  385–386
animations in  505, 509–515, 515–516
applying themes partially  395
charts in  266, 410–412, 424
cleaning up  424
converting aspect ratio  381–382
copying  394
creating  373–376, 406–409
creating videos of  499–501

	 styles. See also specific types of styles	 829

delivering  516–520
design templates and  369–370
editing  366–368
font formatting  417
laser pointers  517
legacy  409
managing  421–430
managing orientation  384–386
new features  364–368
page setup  380–386
paragraph formatting  413–417
screen size vs. slide size  382–384
setting up  376–390, 516–520
simplifying slide editing  366–368
slide resolution  380–382
text box formatting  377
themes and  368–373
transitions in  506–509, 515–516
troubleshooting  423
vertical text layouts in  403
working with embedded objects  420–421
working with tables  418–419
working with text  412–418

slide resolution  380–382
Slide Sections feature  365, 426–427
Slide Show view  519
Slide Sorter view  422–423, 518
Slides pane  392, 421–422, 518
slide timings  518
slide transitions. See transitions
SmartArt graphics

about  16, 131, 259, 439
converting to text  435, 448
creating diagrams  439–440
customizing layouts  453–454
deleting accent shapes  453
editing diagram content  450–454
formatting and  445–450
new features  434–435
organization charts  438
pasting  267
recognizing  281
selecting diagram layout  440–445
style considerations  445–450
usage considerations  135

SmartArt Graphics Styles gallery  446
SmartArt Styles gallery  110, 112, 446
SmartArt text pane  444–445, 451–452
smart guides

about  15, 290, 436
disabling  436
slide editing and  366
viewing  291

SmartTags
pasting charts into presentations  411
placeholders and  379

Solver add-in  549
Sort dialog box  575

sorting data (Excel)  551, 574–576
spacing. See also paragraph spacing

borders and  235
character  176–177
line  178–179
paragraph borders and  235
table cells and  229–231
worksheets with shaded cells  536

sparklines
about  598
adding to data  599–601
customizing  602–606
customizing axes  604–605
deleting  602
formatting  603
managing  601–602
types of  599

spin boxes  177
statements

declaring multiple variables  728
defined  714
grouping  740–744
MsgBox command as  755
nesting paired  753
specifying arguments in  733
variables substituting for  726
VBA sentence structure for  720–721

static guides  291, 477–478
Status bar, customizing  8
stock charts  620
stories

defined  148
working with  147–148, 749

storing data
about  731
document variables and  730

string data type  727
structured references

about  554, 565
working with  565–570

style aliases  191, 192–193
Style dialog box  535
style for the following paragraph  197
Style Inspector  146, 221
STYLEREF field  349, 356
styles. See also specific types of styles

about  181
adding to gallery  183
best practices  200
built-in  189–192, 206, 534
common errors  188
custom  189–192
editing in styles.xml file  803–810
environment overview  182–188
font formatting and  193
hiding  202, 220
inspecting  221
managing  219–222

830	 styles

styles,  continued
naming  191
prioritizing  220
removing from gallery  183
SmartArt diagrams and  445–450
troubleshooting  197, 199
updating in document templates  213
worksheet formatting and  532

Styles command  185
style sets

defined  188
Quick Style Sets  201–204

Styles gallery
about  182–183, 190
accessing  185
adding styles  183

Styles pane  186–188, 190
styles.xml file  803–810
stylistic sets  169
Sub statement  719, 760
SUBTOTAL function  553, 557–558
SUM function  568, 590
surface charts  620
SWF file extension  491

T
table cells

alignment and  231–233
borders and  234–236
as graphic placeholders  282
indents vs. cell margins  233–234
spacing and  229–231

table formatting
considerations  227
paragraph borders vs. cell borders  234–236
paragraph indents vs. cell margins  233–234
paragraph spacing and cell alignment  231–233
paragraph spacing vs. cell margins  229
paragraph spacing vs. row height  228
paragraph styles vs. table styles  236
spacing between cells  229–231

Table Grid style  219
Table Normal table style  219, 256
table of contents  298
Table Of Contents document element  339
Table Of Contents gallery  337, 341
Table Options dialog box  229, 241
table properties

indenting tables  239
setting cell options  239
setting column widths  238
setting table widths  238, 241

Table Properties dialog box
about  237
Column tab  238
Table tab  239

tables. See Excel tables; PowerPoint tables; Word tables
Tables gallery  337
Table Style gallery  539
table styles

about  217–218
base styles and  196
built-in  190, 191, 538
clearing directing formatting  556
copying between workbooks  540
creating  217
duplicating  539
paragraph styles and  225, 236
setting default  219
troubleshooting  218
viewing  190

Table Styles gallery  190, 217
Table Tools Design contextual tab  553
Tabs dialog box  416, 418
tab stops  416, 418
TC field  356
template folders  697–699
template galleries

accessing  116
opening by default  11
themes and  116

templates. See also specific types of templates
about  680–683
benefits of  684–685
best practices  699–703
choreographed animation  512
creating  683–699
global  696–697
sharing themes  704
SmartArt layouts as  453

Templates And Add-Ins dialog box  691
text boxes

defined  147
formatting  413, 414, 629
in presentations  377
placeholders and  399

Text Boxes gallery  337
TextEdit utility  124, 790
Text Effect dialog box  172
text effects  171–175
Text Effects gallery  171
text formatting

new features  162–164
in slide presentations  412–418

text styles  171–175
text/text strings

converting SmartArt to  435, 448
as data type  727
editing in document.xml  798–800
formatting in charts  618–620
slide presentations and  412–418

text wrapping
around tables  245–247
dynamically  292
usage considerations  282–287

	 units of measure	 831

theme1.xml file  370
theme colors

applying with VBA  742, 743
creating  121
exploring  106–136
slide masters and  372
SmartArt support  445, 446
troubleshooting charts  411
worksheet formatting and  531–532

Theme Colors palette  108, 742
theme effects

chart styles and  615
customizing  120
exploring  110–136
slide masters and  372
SmartArt support  445
worksheet formatting and  532–533

Theme Effects gallery  110
theme folder  782
theme fonts

applying with VBA  742
creating  122–136
creating custom  808–809
exploring  108–136
slide masters and  371
worksheet formatting and  531–532

themes
about  102–105, 160
applying  113–117, 119
applying as design templates  687
applying partially to presentations  395
branding and  94
chart templates and  695
customizing  117–124
customizing text box formatting  377
design templates and  369–370
importance of  105
presentations and  368–373
sharing  124
SmartArt support  445
templates and  704
underlying structure  370–373
worksheet formatting and  530–532

Themes gallery
accessing  103
applying custom themes  687
Print Layout view and  104
slide masters and  390

Then keyword  751
thermometer charts, horizontal  594–597
.thmx file extension  124, 704
3-D Rotation feature  174–175
3-D slide transitions  506–508
TIF format  275
time-scale axis  620
timings, slide  518
TinkerTool program  780
TintAndShade property  743

Title And Content layout
about  395
placeholders in  399
usage example  379

Title And Vertical Text layout  399, 403
Title Only slide layout  369, 375
titles, chart and axes  626
TOC field  356
toggle commands  739
Transform feature  173–175
transitions

about  506–509
rotate  508
3-D  506–508
using effectively  515–516

Transitions gallery  507
transparency, picture  810
Trim Video or Trim Audio dialog box  503
troubleshooting

charts  411
conditional formatting  588
date displays on charts  624
disappearing list bullets/numbering  213–214
documents  155–159, 254
exiting from Design Mode  327
fields updating correctly  354
formulas  570–571
hidden values for secondary axes  628–629
looping code and  744, 746
Manage Styles dialog box  192
Office Open XML Formats  794–796
pattern cell fills  536
removing subtotals from fields  660
ScreenTips  344
setting properties  723
slide layouts  390
slide presentations  423
styles  197, 199
table issues  250
table styles  218
theme color  411
VBA support  157, 767

TrueType fonts  165
.ttf file extension  165
.txt file extension  578
Type reference  787
Types tag  785–786
typography tools  165–171

U
Undo command

about  20
media compression  496
number of actions allowed  21

Ungroup action  277, 474
units of measure  797

832	 user-edited content controls

user-edited content controls  327–330
UserForms  731
USERPROPERTY field  334

V
validating data  571–573
value axis  620
Values area (PivotTable)  649, 655, 674
value-value charts  620
variable data types  727–728
Variable object type  730
variables

as counters  726
declaring  727–728
declaring multiple  728
defined  725
document  730
in loops  725
naming  726
sharing in projects  729–730
substituting for statements  726

variant data type
about  730
code example  728
defined  727
undeclared variables as  727

VBA (Visual Basic for Applications)
additional information  766
apostrophe in code  711
Auto Lists  724–725
benefits of using  705
collection objects  737–740
commenting code  711
compiling projects  763
conditionally executing commands  760–761
conditional structures  750–753
constants  735–737
creating modules  719–720
getting help  763–764
grouping statements  740–744
Immediate window  405, 767
indenting code  753
input boxes  757–759
looping code  744–749
message boxes  755–757
object models  721–724
operators  754–755
principal components  714
reading macro code  711–713
recording macros  709–711
replacing layouts using  394, 396–397
running duplicated code in macros  759–760
running macros  761–763
saving macros  764–766
sentence structure  720–721

sharing macros  764–766
starting procedures  719–720
style aliases and  192
support for  3
troubleshooting support  157, 767
variables  725–735
when to use  708
WorksheetFunction object  561
writing efficient code  729

vector graphics  484–486, 486–486
vertical axis  621–622
Vertical Title And Text layout  403
video files. See media files
video poster frame  502
views, using effectively  152–154
Visio 2010

Office 2010 interface  6
usage considerations  437

Visio Organization Chart Wizard  438
Visual Basic Editor

about  714–715
applying slide layouts  397
Auto Lists  724–725
code window  716
collection objects  737–740
compiling projects  763
conditionally executing commands  760–761
conditional structures  750–753
constants  735–737
creating modules  719–720
getting help  763–764
getting size/position for objects  405
grouping statements  740–744
Immediate window  405, 767
input boxes  757–759
looping code  744–749
message boxes  755–757
object models  721–724
operators  754–755
Project Explorer  716, 765
Properties window  717
resetting active view  577
running duplicated code in macros  759–760
running macros  761–763
saving macros  764–766
setting up workspace  717–718
sharing macros  764–766
starting procedures  719–720
understanding principal components  714
value of indenting code  753
variables  725–735
VBA sentence structure  720–721

Visual Studio 2010  775, 778
visual styles  14, 222
VLOOKUP function  658
Voltaire  96
Vonnegut, Kurt  97

	 worksheet formatting	 833

W
Watch Window  574
Watermark gallery  337, 341
watermarks, creating  315
webpages, managing content from  256
websites, inserting videos into presentations  494–495
Windows 7, managing personal information  79
Windows Media Components for Quick Time tool  490
Windows Phone 7  53–55
Windows Registry  731
win/loss sparklines  599
With...End With structure  740
With statement  720, 741
WMA format  490
WMF format  485, 784
WMV format  490
Word 2010

about  14, 22
common types of hidden data  75–77
creating page number field  309
formatting as layout tools  175–180
getting graphics into  484
layout considerations  97
levels of formatting  142–147
managing graphics  258–260
managing tables from other sources  255–256
OpenType typography  165–171
planning documents  82–84
PowerPoint comparison  374
text effects  171–175
text formatting  162–164
toggling formatting marks  151

WordArt
about  171–175, 259
applying formatting  417
chart text and  619–620

Word Document Gallery
accessing  334
customization pane  682
opening by default  11, 116

Word for Mac 2011
about  22
common types of hidden data  75–77
content controls and  318, 323
creating page number field  309
document elements and  339
formatting as layout tools  175–180
getting graphics into  484
layout considerations  97
levels of formatting  142–147
managing graphics  258–260
managing tables from other sources  255–256
OpenType typography  165–171
planning documents  84
PowerPoint comparison  374

Sidebar tool  14
text formatting  162–164
text styles  171–175
toggling formatting marks  151

Word Mobile  54
Word object model  735
Word Options dialog box  761
Word tables

about  224
Autofit settings  240
best practices  225–226
collaborating online  227
common misconceptions  224–225
corruption in  246
creating page layouts with  241–248
financial  248–254
formatting errors  155
host  243–245
indenting  239
linked  250
managing from other sources  255–256
nesting  226, 245–247
organizing complex layouts  149
setting up  237–240
text wrap around  245–247
troubleshooting  250

Word templates  683, 699–701. See also document
templates

Word Web App
about  28, 37
editing documents  41–43
editing/viewing restrictions  40
Mac user considerations  43

workbooks/worksheets
copying table styles between  540
creating formulas  558–573
function compatibility  562–563
importing external data  578–580
managing conditional formatting rules  597–598
managing formulas  570–573
managing page layout in  541–545
moving charts  611
nesting formulas  563–565
with shaded cells  536
simplifying data organization  573–577
tables as data tools  552–558

workflow diagrams  438–439
worksheet formatting

about  526–527
cell styles and  533–537
clearing unique  530
headers and footers  544–545
key changes  525
to multiple worksheets  545
ranges as tables  537–541
streamlining  527–530
working with themes  530–532

834	 Xcode developer tools

X
Xcode developer tools  775
XE field  356
xl folder  782
.xlsx file extension  788
.xltx file extension  683
XML editors  775–777
XML file formats. See Office Open XML Formats
XML markup language

about  771
case sensitivity  783
reading  771–774

XML namespaces  785, 791
xmlns reference  785

XML schema  785
XML schemas  774
XML tags, content controls and  326, 329
XPS format  78–79

Y
yellow diamond reshape tool  478–479

Z
.zip file extension  777–780
Z Order position  491

	Copyright
	Dedication
	Introduction
	Companion Content
	Support for This Book
	Acknowledgments

	5-Doing More with Less Work: Key Cross-Program Features
	23-VBA Primer
	Index

