
 i

Praise for

Inside the Microsoft Build Engine: Using MSBuild
and Team Foundation Build, Second Edition

“Inside the Microsoft Build Engine: Using MSBuild and Team Foundation Build is a practical book
covering all the essentials of MSBuild and the Team Foundation Server build system. But what
makes the book extra valuable is its focus on real-life scenarios that often are hard to find a good,
working solution for. In fact there is information in the book you’re unlikely to find anywhere else.
With the second edition of the book, the authors fill the gaps again, this time by covering the
new TFS build workflow technology as well as MSBuild 4.0. It is an invaluable book that saves lots
of time whenever you work with any aspect of automated builds in Visual Studio and TFS. This is
a book I’ll make sure to have with me all the time!”
-Mathias Olausson, ALM Consultant, QWise/Callista, Sweden

“As an ALM Consultant I come across many teams that are struggling with their build tools and
processes. The second edition of Sayed and William’s book is the perfect answer for these teams.
Not only will it show you how to get your builds back on track, I challenge anyone not to be able
to use the information in this book to improve their existing builds. It includes updated content
focusing on the new Visual Studio 2010 release and is packed with practical examples you could start
using straight away. You simply must include it in your technical library.”
-Anthony Borton, Microsoft Visual Studio ALM MVP, Senior ALM trainer/consultant,
Enhance ALM Pty Ltd, Australia

“The first edition of Inside the Microsoft Build Engine was a brilliant look at the internals of MSBuild,
so it’s fantastic to see Sayed and William updating it with all the new features in MSBuild 4.0 and also
delving into the Team Foundation Server 2010 workflow based build process. It’s also a real pleasure
to see deployment with MSDeploy covered so that you can learn not only how to automate your
builds, but also how to automate your deployments. A great book. Go out and get a copy now.”
-Richard Banks, Visual Studio ALM MVP and Principal Consultant with Readify, Australia

“Did you know about the TaskFactory in MSBuild? If not, you’re not alone - but you will know
 after reading this book. This book provides insights into the current technologies of the Microsoft
Build Engine. Starting with background information about MSBuild, it covers also the necessary
basics of Workflow Foundation which are applied during the description of advanced topics
of Team Foundation Build. The level of detail is targeted to experienced build masters having
a development background - even the overview is stuffed with new information, references, hints
and best practices about MSBuild. Samples are provided as step-by-step guidance easy to follow
inside Visual Studio. What I found astonishing is the practical focus of the samples such as web
project deployment. I could have used at least half of them in my development projects! Simply
put: A must read for all build experts that have to deal with MSBuild and the Team Foundation
Server build engine who are not only interested in solutions but also background information!”
-Sven Hubert, AIT TeamSystemPro Team, Consultant, MVP Visual Studio ALM – www.tfsblog.de

ii Praise for

“The reason that I only own one MSBuild/Team Build book is because there is no need for another.
This book covers both topics from soup to nuts and is written in a way that allows new users to ramp
up quickly. The real-world code examples used to illustrate the topics are useful in their own right.
The Second Edition covers all of the changes in MSBuild 4.0 and all of the newness that is Team Build
2010. This is my ‘go to’ guide, and the only book on these topics that I recommend to my clients.”
-Steve St Jean, Visual Studio ALM MVP, DevProcess (ALM) Consultant with Notion
Solutions, an Imaginet Company

“Whether you consider yourself experienced or you are taking your first steps in the build and
automation arena, this 2nd edition will prove a valuable read. Skilled MSBuild users will do well
to remind themselves of the intricacies of MSBuild and learn of the new 4.0 features whilst
novices are taken on a steady paced journey to quickly acquire the knowledge and confidence
in developing successful solutions. This edition brings additional value to our ever changing
profession in discussing MSDeploy and the new Windows Workflow 4.0 based Team Foundation
Build. Regardless of your experience, I wholeheartedly recommend this book.”
-Mike Fourie, Visual Studio ALM MVP and ALM Ranger, United Kingdom

“The first edition of this book had a perfect balance between a tutorial and a reference book.
I say this as I used the book first to kick start my MS Build knowledge and then as reference
whenever I needed information on some advanced topic. My main interest is Team Foundation
Server and I learned MS Build more from necessity than an urge, hence I was very curious to
see the 2nd edition. Sayed and William did not disappoint me - the four chapters on Team Build
cover all points needed to customize builds. As a bonus there are three whole chapters on web
 deployment which is a recurrent request I hear during my consulting and presentations on TFS.
If I had to summarize my opinion in a single sentence, I would just say `Buy the book, you won’t
regret it’.”
-Tiago Pascoal, Visual Studio ALM MVP and Visual Studio ALM Ranger, Portugal

“Reliable and repeatable build processes are often the Achilles’ heel of development teams. Often
this is down to a lack of understanding of the underlying technologies and how they fit together.
No matter which Continuous Integration (CI) tool you may be using, this book provides the
 fundamental information you need to establish solid build and deployment engineering practices
and demystifies the various Microsoft technologies used along the way. This book is the essential
reference for any team building software on the Microsoft.NET platform.”
-Stuart Preston, Visual Studio ALM Ranger and Chief Technology Officer at RippleRock

“Successfully deploying application is one of the big challenges in today’s modern software
 development. As applications become more complex to develop, they also become more complex
to deploy. This well-written book provides us a deep-dive on how developers can improve
their productivity and accomplish the business needs using Microsoft deployment technology:
MSBuild, Web Deploy and Team Build. Microsoft provides us the right tools, and this book
 provides us the information we need to extract real value from these tools.”
-Daniel Oliveira, MVP, Visual Studio ALM Ranger and ALM Consultant at TechResult

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2010 by Sayed Hashimi and William Bartholomew

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2010940848
ISBN: 978-0-7356-4524-0

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor mation
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press
International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments
to mspinput@microsoft.com.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property
of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions Editor: Devon Musgrave
Developmental Editor: Devon Musgrave
Project Editor: Iram Nawaz
Editorial Production: S4Carlisle Publishing Services
Technical Reviewer: Marc H. Young
Cover: Tom Draper Design

Body Part No. X17-29997

I would like to dedicate this book to my parents, Sayed A. Hashimi and Sohayla Hashimi, as well as my

college advisor, Dr. Ben Lok. My parents have, over the course of the years, sacrificed a lot to give us the

opportunity for us to be able to achieve our dreams. I can only hope that they are proud of the person

that I have become. When I first met Ben, I wanted to get into a research program that he had going.

Thankfully, he was willing to accept me. Ben helped show me how rewarding hard work can be, and he

has enabled me to succeed in my career. When I look back on influences in my life, who are not relatives,

he ranks at the top of my list. I am sure that I wouldn’t be where I am had it not been for him.

—Sayed Ibrahim Hashimi

To my mother, Rosanna O’Sullivan, and my father, Roy Bartholomew, for their unfaltering support in all

my endeavors.

—William Bartholomew

I would like to dedicate this book to my parents, Syama Mohana Rao Adharapurapu and Nalini

Adharapurapu, my brother, Raghavendra Adharapurapu, my sister, Raga Sudha Vijjapurapu, and my

wife, Deepti Ramakrishna.

—Pavan Adharapurapu

I dedicate this book to my wife, Samantha, and my daughters, Amelie and Madeline, as well as my

parents, Leonea and Craig. Their love has no boundaries and their support has made me believe that

I can accomplish anything.

—Jason Ward

 vii

Contents at a Glance

Part I Overview
 1 MSBuild Quick Start . 3
 2 MSBuild Deep Dive, Part 1 . 23
 3 MSBuild Deep Dive, Part 2 . 53

Part II Customizing MSBuild
 4 Custom Tasks . 87
 5 Custom Loggers . 129

Part III Advanced MSBuild Topics
 6 Batching and Incremental Builds . 163
 7 External Tools . 193

Part IV MSBuild Cookbook
 8 Practical Applications, Part 1 . 223
 9 Practical Applications, Part 2 . 245

Part V MSBuild in Visual C++ 2010
 10 MSBuild in Visual C++ 2010, Part 1 . 267
 11 MSBuild in Visual C++ 2010, Part 2 . 289
 12 Extending Visual C++ 2010 . 317

Part VI Team Foundation Build
 13 Team Build Quick Start . 347
 14 Team Build Deep Dive . 395
 15	 Workflow	Foundation	Quick	Start . 423
 16 Process Template Customization . 455

viii Contents at a Glance

Part VII Web Development Tool
 17 Web Deployment Tool, Part 1 . 489
 18 Web Deployment Tool, Part 2 . 521
 19 Web Deployment Tool Practical Applications 545
 Appendix A New	Features	in	MSBuild	4.0	

(available online) . 569
 Appendix B Building Large Source Trees

(available online) . 579
 Appendix C Upgrading	from	Team	Foundation	

Build 2008 (available online) . 585

 ix

Table of Contents
Foreword .xix

Introduction .xxi

Part I Overview
 1 MSBuild Quick Start . 3

Project	File	Details . 3
Properties and Targets . 4
Items . 9
Item Metadata . 11
Simple Conditions . 15
Default/Initial Targets . 17
MSBuild .exe Command-Line Usage . 18
Extending the Build Process . 21

 2 MSBuild Deep Dive, Part 1 . 23
Properties . 24
Environment Variables . 26

Reserved Properties . 27
Command-Line Properties . 30
Dynamic Properties . 32

Items . 34
Copy Task . 36

Well-Known	Item	Metadata . 41
Custom Metadata . 44
Item Transformations . 47

What	do	you	think	of	this	book?	We	want	to	hear	from	you!	
Microsoft	is	interested	in	hearing	your	feedback	so	we	can	continually	improve	our	
books and learning resources for you . To participate in a brief online survey, please visit:

microsoft .com/learning/booksurvey

x Table of Contents

 3 MSBuild Deep Dive, Part 2 . 53
Dynamic Properties and Items . 53

Dynamic Properties and Items: MSBuild 3 .5 . 53
Property and Item Evaluation . 60
Importing	Files . 64
Extending the Build Process . 69
Property	Functions	and	Item	Functions . 77

Property	Functions . 77
String	Property	Functions . 78
Static	Property	Functions . 79
MSBuild	Property	Functions . 80
Item	Functions . 82

Part II Customizing MSBuild
 4 Custom Tasks . 87

Custom Task Requirements . 87
Creating	Your	First	Task . 88
Task Input/Output . 91
Supported Task Input and Output Types . 95
Using	Arrays	with	Task	Inputs	and	Outputs . 97
Inline Tasks . 101
TaskFactory . 111
Extending ToolTask . 116

ToolTask Methods . 118
ToolTask Properties . 119

Debugging Tasks . 124

 5 Custom Loggers . 129
Overview . 129
Console Logger . 130
File	Logger . 132
ILogger Interface . 134
Creating Custom Loggers . 135
Extending the Logger Abstract Class . 140
Extending Existing Loggers . 146
FileLoggerBase and XmlLogger . 151
Debugging Loggers . 157

 Table of Contents xi

Part III Advanced MSBuild Topics
 6 Batching and Incremental Builds . 163

Batching	Overview	 . 163
Task Batching . 166
Target Batching . 170
Combining Task and Target Batching . 172
Multi-batching . 175
Using	Batching	to	Build	Multiple	Configurations	 . 177
Batching Using Multiple Expressions . 181
Batching Using Shared Metadata . 183
Incremental Building . 188

Partially Building Targets . 190

 7 External Tools . 193
Exec Task . 193
MSBuild Task . 197
MSBuild	and	Visual	Studio	Known	Error	
Message	Formats . 203

Creating Reusable Build Elements . 204
NUnit . 206
FxCop . 215

Part IV MSBuild Cookbook
 8 Practical Applications, Part 1 . 223

Setting the Assembly Version . 223
Building Multiple Projects . 225
Attaching	Multiple	File	Loggers . 231

Creating a Logger Macro . 232
Custom Before/After Build Steps in the Build Lab . 233
Handling Errors . 235
Replacing	Values	in	Config	Files . 237
Extending the Clean . 239

 9 Practical Applications, Part 2 . 245
Starting and Stopping Services . 245
Web	Deployment	Project	Overview . 246
Zipping	Output	Files,	Then	Uploading	to	an	FTP	Site . 252

xii Table of Contents

Compressing	JavaScript	Files . 254
Encrypting	web.config . 256
Building Dependent Projects . 258
Deployment Using Web Deployment Projects . 260

Part V MSBuild in Visual C++ 2010
 10 MSBuild in Visual C++ 2010, Part 1 . 267

The	New	.vcxproj	Project	File	 . 267
Anatomy of the Visual C++ Build Process . 269
Diagnostic Output . 271
Build Parallelism . 272

Configuring	Project-	and	File-Level	Build	
Parallelism . 273

File	Tracker–Based	Incremental	Build	 . 279
Incremental Build . 279
File	Tracker . 279
Trust Visual C++ Incremental Build . 281
Troubleshooting . 281

Property Sheets . 281
System Property Sheets and User Property

Sheets . 284
Visual C++ Directories . 285

 11 MSBuild in Visual C++ 2010, Part 2 . 289
Property Pages . 289

Reading and Writing Property Values . 289
Build Customizations . 294
Platforms and Platform Toolsets . 297
Native and Managed Multi-targeting . 300

Native Multi-targeting . 300
How	Does	Native	Multi-targeting	Work? . 301
Managed Multi-targeting . 301

Default Visual C++ Tasks and Targets . 302
Default Visual C++ Tasks . 303
Default Visual C++ Targets . 303
ImportBefore,	ImportAfter,	ForceImportBeforeCppTargets,	
and	ForceImportAfterCppTargets . 306

Default Visual C++ Property Sheets . 307

 Table of Contents xiii

Migrating from Visual C++ 2008 and Earlier to Visual C++ 2010 311
IDE Conversion . 311
Command-Line Conversion . 314

Summary . 315

 12 Extending Visual C++ 2010 . 317
Build Events, Custom Build Steps, and the Custom

Build Tool . 317
Build Events . 317
Custom Build Step . 319
Custom Build Tool . 322

Adding a Custom Target to the Build . 324
Creating	a	New	Property	Page . 326

Troubleshooting . 331
Creating a Build Customization . 332
Adding	a	New	Platform	and	Platform	Toolset . 338
Deploying Your Extensions . 342

Part VI Team Foundation Build
 13 Team Build Quick Start . 347

Introduction to Team Build . 347
Team	Build	Features	 . 347
High-Level Architecture . 348

Preparing for Team Build . 350
Team Build Deployment Topologies . 350
What Makes a Good Build Machine? . 351
Installing	Team	Build	on	the	Team	Foundation	

Server . 352
Setting Up a Build Controller . 352
Setting Up a Build Agent . 355
Drop	Folders . 359

Creating	a	Build	Definition . 360
General . 360
Trigger . 361
Workspace . 365
Build Defaults . 367
Process . 368
Retention Policy . 369

xiv Table of Contents

Working	with	Build	Queues	and	History . 371
Visual Studio . 372
Working	with	Builds	from	the	Command	Line . 383

Team Build Security . 388
Service Accounts . 388
Permissions . 391

 14 Team Build Deep Dive . 395
Process Templates . 395
Default Template . 396

Logging . 396
Build Number . 397
Agent Reservation . 398
Clean . 399
Sync . 400
Label . 400
Compile and Test . 401
Source Indexing and Symbol Publishing . 404
Associate Changesets and Work Items . 407
Copy	Files	to	the	Drop	Location . 407
Revert	Files	and	Check	in	Gated	Changes . 409
Create	Work	Items	for	Build	Failure . 409

Configuring	the	Team	Build	Service . 409
Changing Communications Ports . 409
Requiring SSL . 410
Running Interactively . 411
Running Multiple Build Agents . 412
Build Controller Concurrency . 413

Team Build API . 414
Creating a Project . 414
Connecting to Team Project Collection . 415
Connecting to Team Build . 416
Working	with	Build	Service	Hosts . 416
Working	with	Build	Definitions . 417
Working	with	Builds . 419

 15	 Workflow	Foundation	Quick	Start . 423
Introduction	to	Workflow	Foundation . 423

Types	of	Workflows . 423

 Table of Contents xv

Building	a	Simple	Workflow	Application . 424
Workflow	Design . 426

Built-in Activities . 426
Working	with	Data	 . 428
Exception Handling . 430
Custom Activities . 433

Workflow	Extensions	 . 437
Persistence . 437
Tracking . 437

Putting	It	All	Together—Workflow	Foundation	Image	Resizer	Sample	
Application . 438
Overview . 438
Building the Application . 438
Running the Application . 452
Debugging the Application . 452
Summary . 453

 16 Process Template Customization . 455
Getting Started . 455

Creating a Process Template Library . 455
Creating a Custom Activity Library . 460

Process Parameters . 461
Defining . 461
Metadata . 463
User Interface . 466
Supported Reasons . 468
Backward	and	Forward	Compatibility . 469

Team Build Activities . 469
AgentScope . 469
CheckInGatedChanges . 470
ConvertWorkspaceItem/ConvertWorkspaceItems 470
ExpandEnvironmentVariables . 470
FindMatchingFiles . 470
GetBuildAgent . 471
GetBuildDetail . 471
GetBuildDirectory . 471
GetBuildEnvironment . 471
GetTeamProjectCollection . 471
InvokeForReason . 471

xvi Table of Contents

InvokeProcess . 471
MSBuild . 472
SetBuildProperties . 472
SharedResourceScope . 473
UpdateBuildNumber . 473

Custom Activities . 473
BuildActivity Attribute . 473
Extensions . 474

Logging . 475
Logging Verbosity . 475
Logging Activities . 476
Logging Programmatically . 477
Adding Hyperlinks . 478
Exceptions . 482

Deploying . 482
Process Templates . 482
Custom Assemblies . 483
Downloading	and	Loading	Dependent	

Assemblies . 485

Part VII Web Development Tool
 17 Web Deployment Tool, Part 1 . 489

Web	Deployment	Tool	Overview . 490
Working	with	Web	Packages . 490

Package Creation . 492
Installing Packages . 494

msdeploy .exe Usage Options . 498
MSDeploy Providers . 500
MSDeploy Rules . 504
MSDeploy Parameters . 510

–declareParam . 513
–setParam . 515

MSDeploy Manifest Provider . 517

 18 Web Deployment Tool, Part 2 . 521
Web	Publishing	Pipeline	Overview . 521
XML Document Transformations . 521

 Table of Contents xvii

Web Publishing Pipeline Phases . 530
Excluding	Files . 533
Including	Additional	Files . 536
Database . 539

 19 Web Deployment Tool Practical Applications 545
Publishing Using MSBuild . 545
Parameterizing Packages . 550
Using	–setParamFile . 554
Using the MSDeploy Temp Agent . 556
Deploying Your Site from Team Build . 557
Deploying to Multiple Destinations Using Team Build 560
Excluding ACLs from the Package . 565
Synchronizing an Application to Another Server . 566

Index . 589

Appendix A New	Features	in	MSBuild	4.0	
(available online) . 569

Appendix B Building Large Source Trees
(available online) . 579

Appendix C Upgrading	from	Team	Foundation	
Build 2008 (available online) . 585

What	do	you	think	of	this	book?	We	want	to	hear	from	you!	
Microsoft	is	interested	in	hearing	your	feedback	so	we	can	continually	improve	our	
books and learning resources for you . To participate in a brief online survey, please visit:

microsoft .com/learning/booksurvey

 xix

Foreword
Often when people think about build, they think just about the act of compiling some source
code – when I hit F5 in the IDE, it builds, right? Well yes, kind of. In a real production build
system, there is so much more to it than that. There are many kinds of builds – F5, desktop,
nightly, continuous, rolling, gated, buddy etc. The variety of build types is reflective of the
important role build plays in the software development process and the varied ways it
does so. Build is a key integration point in the process. It is where developers’ work comes
 together; it is where developers hand off to test and where release hands off to operations.
No wonder there are so many requirements on it.

As I mentioned, build is about a lot more than compiling the code. It can include making sure
the right code is assembled, compiling, testing, version stamping, packaging, deployment
and more. Of course, because software systems are all different and organizations are
 different, many of the activities need to be completely different. As a result, extensibility
plays a major role. In TFS 2010, we increased the extensibility options by including a build
workflow engine (based on the .NET Workflow Foundation) on top of the existing msbuild
capabilities. Unfortunately, as flexibility increases, so does the amount you need to know to
make sound decisions and fully automate your build workflow.

This book is a great resource to help you understand the variety of roles build plays in
 software development and how you can leverage msbuild and TFS. It will show you how
to use “out of the box” solutions, provide guidance on when to customize, what the best
 customization approaches are and details on and examples of how to actually do it. I think
it will be an invaluable resource to keep on your reference shelf.

Brian Harry

Technical Fellow

Team Foundation Server, Microsoft

 xxi

Introduction
Build has historically been kind of like a black art, in the sense that there are just a few
people who know and understand build, and are passionate about it. But in today’s evolving
 environment that is changing. Now more and more people are becoming interested in
build, and making it a part of their routine development activities. Today’s applications are
 different from those that we were building five to ten years ago. Along with that the process
by which we write software is different as well. Nowadays it is not uncommon for a project
to have sophisticated build processes which include such things as code generation, code
 analysis, unit testing, automated deployment, etc. To deal with these changes developers are
no longer shielded from the build process. Developers have to understand the build process
so that they can leverage it to meet their needs.

Back in 2005 Microsoft released MSBuild, which is the build engine used to build most Visual
Studio projects. That release was MSBuild 2.0. Since that release Microsoft has released two
major versions of MSBuild—MSBuild 3.5 and MSBuild 4.0. In MSBuild 3.5 Microsoft released
such goodness as multi-processor support, multi-targeting, items and properties being
 defined inside of targets and a few other things which brought MSBuild to where it needed
to be. In MSBuild 4.0 there were a lot of really great features delivered. The feature which
stands out the most is the support for building Visual C++ projects. Starting with Visual
Studio 2010 your Visual C++ project files are in MSBuild format. Modifying MSBuild to be
able to support building Visual C++ projects was a big effort on Microsoft’s part, but they
understood that the value they were delivering to customers would be worth it. Along with
support for Visual C++ there were a number of significant feature add ons, such as support
for BeforeTargets/AfterTargets, inline tasks, property functions, item functions and a new
 object model to name a few. During that same period Team Build has undergone a number
of big changes.

Team Foundation Build (or Team Build as it is more commonly known) is now in its third
 version. Team Build 2005 and 2008 were entirely based on MSBuild using it for both build
 orchestration as well as the build process itself. While this had the advantage of just needing
to learn one technology MSBuild wasn’t suited for tasks such as distributing builds across
multiple machines and performing complex branching logic. Team Build 2010 leverages the
formidable combination of Workflow Foundation (for build orchestration) and MSBuild (for
build processes) to provide a powerful, enterprise-capable, build automation tool. Team Build
2010 provides a custom Workflow Foundation service host that runs on the build servers
that allows the build process to be distributed across multiple machines. The Workflow
Foundation based process template can perform any complex branching and custom logic
that is supported by Workflow Foundation, including the ability to call MSBuild based
project files.

Table of Contents
Introduction

Who	This	Book	Is	For
Assumptions

Organization of This Book
System Requirements
Code Samples
Acknowledgements

Sayed Ibrahim Hashimi
William	Bartholomew
Pavan Adharapurapu
Jason Ward

Errata and Book Support
We Want to Hear from You
Stay in Touch

xxii Introduction

A common companion to build is deployment. In many cases the same script which builds your
application is used to deploy it. This is why in this updated book we have a section, Part VII Web
Deployment Tool, in which we dedicate three chapters to the topic. MSDeploy is a tool which
was first released in 2009. It can be used to deploy websites, and other applications, to local
and remote servers. In this section we will show you how to leverage MSDeploy and the Web
Publishing Pipeline (WPP) in order to deploy your web applications. Two chapters are devoted
to the theory of both MSDeploy and the WPP. There is also a cookbook chapter which shows
real world examples of how to use these new technologies. Once you’ve automated your build
and deployment process for the first time you will wonder why you didn’t do that for all of your
projects.

Who This Book Is For
This book is written for anyone who uses, or is interested in using, MSBuild or Team Build.
If you are using Visual Studio to your applications then you are already using MSBuild.
Inside the Microsoft Build Engine is for all developers and build masters using Microsoft
 technologies. If you are interested in learning more about how your applications are being
built and how you can customize this process then you need this book. If you are using
Team Build, or thinking of using it tomorrow, then this book is a must read. It will save you
 countless hours.

This book will help the needs of enterprise teams as well as individuals. You should be
 familiar with creating applications using Visual Studio. You are not required to be familiar
with the build process, as this book will start from the basics and build on that. Because one
of the most effective methods for learning is through examples, this book contains many
examples.

Assumptions
To get the most from this book, you should meet the following profile:

n You should be an familiar with Visual Studio
n You should have experience with the technologies you are interested in building
n You should have a solid grasp of XML.

Organization of This Book
Inside the Microsoft Build Engine is divided into seven parts:

Part I, “Overview,” describes all the fundamentals of creating and extending MSBuild project
files. Chapter 1, “MSBuild Quick Start,” is a brief chapter to get you started quickly with
MSBuild. If you are already familiar with MSBuild then you can skip this chapter; its content

 Introduction xxiii

will be covered in more detail within chapters 2 and 3. Chapter 2, “MSBuild Deep Dive,
Part 1,” discusses such things as static properties, static items, targets, tasks, and msbuild
.exe usage. Chapter 3, “MSBuild Deep Dive, Part 2,” extends on Chapter 2 with dynamic
 properties, dynamic items, how properties and items are evaluated, importing external files,
extending the build process, property functions, and item functions.

Part II, “Customizing MSBuild,” covers the two ways that MSBuild can be extended: custom
tasks and custom loggers. Chapter 4, “Custom Tasks,” covers all that you need to know to
create your own custom MSBuild tasks. Chapter 5, “Custom Loggers,” details how to create
custom loggers and how to attach them to your build process.

Part III, “Advanced MSBuild Topics,” discusses advanced MSBuild concepts. Chapter 6,
“Batching and Incremental Builds,” covers two very important topics, MSBuild batching
and supporting incremental building. Batching is the process of categorizing items and
 processing them in batches. Incremental building enables MSBuild to detect when a target
is up-to-date and can be skipped. Incremental building can drastically reduce build times for
most developer builds. Chapter 7, “External Tools,” provides some guidelines for integrating
external tools into the build process. It also shows how NUnit and FXCop can be integrated in
the build process in a reusable fashion.

Part IV, “MSBuild Cookbook,” consists of two chapters that are devoted to real-world
 examples. Chapter 8, “Practical Applications, Part 1,” contains several examples, including:
 setting the assembly version, customizing the build process in build labs, handling errors, and
replacing values in configuration files. Chapter 9, “Practical Applications, Part 2,” covers more
examples, most of which are targeted toward developers who are building Web applications
using .NET. It includes Web Deployment Projects, starting and stopping services, zipping
 output files, compressing Javascript file, and encrypting the web.config file.

Part V, “MSBuild in Visual C++ 2010” discusses how MSBuild powers various features
of Visual C++ in light of Visual C++ 2010’s switch to MSBuild for its build engine. Chapter 10,
“MSBuild in Visual C++ 2010, Part 1” introduces the reader to the new .vcxproj file format
for Visual C++ projects and illustrates the Visual C++ build process with a block diagram.
Then it continues describing its features such as Build Parallelism, Property Sheets, etc. and
how MSBuild enables these features. Of particular interest are the new File Tracker based
Incremental Build and movement of Visual C++ Directories settings to a property sheet from
the earlier Tools > Option page. Chapter 11, “MSBuild in Visual C++ 2010, Part 1” continues
the theme of Chapter 10 by describing more Visual C++ features and the underlying
MSBuild implementation. This includes Property Pages, Build Customizations, Platform and
Platform Toolsets, project upgrade, etc. It also includes a discussion of all the default tasks,
targets and property sheets that are shipped with Visual C++ 2010. Of particular interest
is the section on multi-targeting which explains the exciting new feature in Visual C++
2010 which allows building projects using older toolsets such as Visual C++ 2008 toolset.
We describe both how to use this feature as well as how this feature is implemented using

xxiv Introduction

MSBuild. Chapter 12, “Extending Visual C++ 2010” describes how you can extend the build
system in various ways by leveraging the underlying MSBuild engine. Discussed in this chapter
are authoring Build Events, Custom Build Steps, Custom Build Tool to customize Visual C++
build system in a simple way when the full power of MSBuild extensibility is not needed. This is
 followed by a discussion of adding a custom target and creating a Build Customization which
allows you to use the full set of extensibility features offered by MSBuild. One of the important
topics in this chapter deals with adding support for a new Platform or a Platform Toolset. The
example of using the popular GCC toolset to build Visual C++ projects is used to drive home
the point that extending platforms and platform toolsets is easy and natural in Visual C++ 2010.

Part VI, “Team Foundation Build,” introduces Team Foundation Build (Team Build) in
Chapter 13, “Team Build Quick Start”. In this chapter we discuss the architectural components
of Team Foundation Build and walkthrough the installation process and the basics
of configuring it. In Chapter 14, “Team Build Deep Dive”, we examine the process templates
that ship with Team Build as well the Team Build API. Chapter 15, “Workflow Foundation
Quick Start”, introduces the basics of Workflow Foundation to enable customizing the build
process. Chapter 16, “Process Template Customization”, then leverages this knowledge and
explains how to create customized build processes.

Part VII, “Web Deployment Tool” first introduces the Web Deployment Tool (MSDeploy) in
Chapter 17 “Web Deployment Tool, Part 1”. In that chapter we discuss what MSDeploy is,
and how it can be used. We describe how MSDeploy can be used for “online deployment”
in which you deploy your application to the target in real time and we discuss “offline
 deployments” in which you create a package which gets handed off to someone else for the
actual deployment. In Chapter 18 “Web Deployment Tool, Part 2” we introduce the Web
Publishing Pipeline (WPP). The WPP is the process which your web application follows to go
from build output to being deployed on your remote server. It’s all captured in a few MSBuild
scripts, so it is very customizable and extensible. In that chapter we cover how you can
 customize and extend the WPP to suit your needs. Then in Chapter 19 “Web Deploy Practical
Applications” we show many different examples of how you can use MSDeploy and WPP to
deploy your packages. We cover such things as Publishing using MSBuild, parameterizing
packages, deploying with Team Build, and a few others.

For Appendices A, B, and C please go to http://aka.ms/645240/files.

System Requirements
The following list contains the minimum hardware and software requirements to run the
code samples provided with the book.

n .NET 4.0 Framework

n Visual Studio 2010 Express Edition or greater

n 50 MB of available space on the installation drive

http://aka.ms/645240/files

 Introduction xxv

For Team Build chapters:

n Visual Studio 2010 Professional

n Some functionality (such as Code Analysis) requires Visual Studio 2010 Premium or
Visual Studio 2010 Ultimate

n Access to a server running Team Foundation Server 2010

n Access to a build machine running Team Foundation Build 2010 (Chapter 13 walks you
through installing this)

n A trial Virtual PC with Microsoft Visual Studio 2010 and Team Foundation Server 2010
RTM is available from http://www.microsoft.com/downloads/en/details
.aspx?FamilyID=509c3ba1-4efc-42b5-b6d8-0232b2cbb26e

Code Samples
Download the sample code files from this book's page online:

http://aka.ms/645240/files

Acknowledgements
The authors are happy to share the following acknowledgments.

Sayed Ibrahim Hashimi
Before I wrote my first book I thought that writing a book involved just a few people, but
now having written my third book I realize how many different people it takes to successfully
launch a book. Unfortunately with books most of the credit goes to the authors, but the
 others involved deserve much more credit than they are naturally given. As an author, the
most we can do is thank them and mention their names here in the acknowledgements
 section. When I reflect on the writing of this book there are a lot of names, but there is one
that stands out in particular, Dan Moseley. Dan is a part of the MSBuild team. He has gone
way above and beyond what I could have ever imagined. I’ve never seen someone peer
review a chapter as good, or as fast, as Dan has. Without Dan’s invaluable insight the book
would simply not be what it is today. In my whole career I’ve only encountered a few people
who are as passionate about what they do as Dan. I hope that I can be as passionate about
 building products as he is.

http://aka.ms/645240/files

xxvi Introduction

Besides Dan I would like to first thank my co-authors and technical editor. William
Bartholomew, who wrote the Team Build chapters, is a wonderful guy to work with. He is
recognized as a Team Build expert, and I think his depth of knowledge shows in his work.
Pavan Adharapurapu wrote the chapters covering Visual C++. When we first started talking
about updating the book to cover MSBuild 4.0 to be honest I was a bit nervous. I was
 nervous because I had not written any un-managed code in more than 5 years, and because
of that I knew that I could not write the content on Visual C++ and do it justice. Then we
found Pavan. Pavan helped build the Visual C++ project system, and he pours his heart into
everything that he does. Looking back I am confident that he was the best person to write
those chapters and I am thankful that he was willing. Also I’d like to thank Jason Ward, who
wrote a chapter on Workflow Foundation. Jason who has a great background in Workflow
Foundation as well as Team Build was an excellent candidate to write that chapter. I started
with the authors, but the technical editor, Marc Young deserves the same level of recognition.
This having been my third book I was familiar with what a technical editor is responsible for
doing. Their primary job is essentially to point out the fact that I don’t know what I’m talking
about, which Marc did very well. But Marc went beyond his responsibilities. Marc was the one
who suggested that we organize all the sample code based on the chapters. At first I didn’t
really think it was a good idea, but he volunteered to reorganize the content and even redo
a bunch of screen shots. I really don’t think he knew what he was volunteering for! Now that
it is over I wonder if he would volunteer again. I can honestly say that Marc was the best
technical editor that I’ve ever worked with. His attention to detail is incredible, to the point
that he was reverse engineering the code to validate some statements that I was making (and
some were wrong). Before this book I knew what a technical editor was supposed to be, and
now I know what a technical editor can be. Thanks to all of you guys!

As I mentioned at the beginning of this acknowledgement there are many others who
came together to help complete this book besides those of us writing it. I’d like to thank
Microsoft Press and everyone there who worked on it. I know there were some that were
involved that I didn’t even know of. I’d like to thank those that I do know of by name. Devon
Musgrave, who also worked with us on the first edition, is a great guy to work with. This book
really started with him. We were having dinner one night a while back and he said to me
 something along the lines of “what do you think of updating the book?” I knew that it would
be a wonderful project and it was. Iram Nawaz who was the Project Editor of the book was
just fantastic. She made sure that we stayed on schedule (sorry for the times I was late J)
and was a great person to work with. The book wouldn’t have made it on time if it was not
for her. Along with these guys from Microsoft Press I would like to than the editors; Susan
McClung and Nicole Schlutt for their perseverance to correct my bad writing.

There are several people who work on either the MSBuild/MSDeploy/Visual Studio product
groups that I would like to thank as well. When the guys who built the technologies you
are writing about help you, it brings the book to a whole new level. I would like to thank
the following people for giving their valued assistance (in no particular order, and sorry if

 Introduction xxvii

I missed anyone); Jay Shrestha, Chris Mann, Andrew Arnott, Vishal Joshi, Bilal Aslam, Faith
Allington, Ming Chen, Joe Davis and Owais Shaikh.

William	Bartholomew
Firstly I’d like to thank my co-authors, Sayed, Pavan, and Jason, because without their
 contributions this book would not be as broad as it is. From Microsoft Press I’d like to thank
Devon Musgrave, Ben Ryan, Iram Nawaz, Susan McClung, and the art team, for their efforts
in converting our ideas into a publishable book. Thanks must go to Marc Young for his
 technical review efforts in ensuring that the procedures are easily followed, the samples
work, and the book makes sense. Finally, I’d like to thank the Team Build Team, in particular
Aaron Hallberg and Buck Hodges, for the tireless support.

Pavan Adharapurapu
A large number of people helped make this book happen. I would like to start off by
 thanking Dan Moseley, my manager at Microsoft who encouraged me to write the book
and for providing thorough and detailed feedback for the chapters that I wrote. Brian Tyler,
the architect of my team provided encouragement and great feedback. Many people from
the Visual C and the project system teams here at Microsoft helped make the book a better
one by providing feedback on their areas of expertise. In alphabetical order they are: Olga
Arkhipova, Andrew Arnott, Ilya Biryukov, Felix Huang, Cliff Hudson, Renin John, Sara Joiner,
Marian Luparu, Chris Mann, Bogdan Mihalcea, Kieran Mockford, Amit Mohindra, Li Shao.
Any mistakes that remain are mine.

I would like to thank Devon Musgrave, Iram Nawaz, Susan McClung and Marc Young from
Microsoft Press for their guidance and patience.

Finally, I would like to thank my wonderful wife Deepti who provided great support and
 understanding throughout the many weekends I spent locked up writing and revising the
book. Deepti, I promise to make it up to you.

Jason Ward
First of all, I’d like to thank William Bartholomew for giving me the opportunity to contribute
to this book. William displays an amazing amount of talent, passion and integrity in all his
work. I’m honored to have his friendship as well as the opportunity to work with him on
a daily basis.

I’d also like to thank Avi Pilosof and Rich Lowry for giving me the wonderful opportunity
to work at Microsoft. From the moment I met them it was clear that moving my family
half way around the world was the right thing to do. Their mentorship, passion, friendship

xxviii Introduction

and overarching goal of ‘doing the right thing’ has only further reinforced that working at
Microsoft was everything I had hoped it would be. They are the embodiment of all things
good at Microsoft.

Finally I’d like to thank the thousands of people working at Microsoft for producing the
 wonderful applications and experiences that millions of people around the world use and
enjoy on a daily basis. It is truly an honor to work with you as we change the world.

Errata and Book Support
We’ve made every effort to ensure the accuracy of this book and its companion content.
If you do find an error, please report it on our Microsoft Press site:

 1. Go to www.microsoftpressstore.com.

 2. In the Search box, enter the book’s ISBN or title.

 3. Select your book from the search results.

 4. On your book’s catalog page, find the Errata & Updates tab

You’ll find additional information and services for your book on its catalog page. If you need
additional support, please e-mail Microsoft Press Book Support at mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the addresses
above.

We Want to Hear from You
At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in advance
for your input!

Stay in Touch
Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

www.microsoftpressstore.com

 1

Part I

Overview
In this part:
Chapter 1: MSBuild Quick Start . 3
Chapter 2: MSBuild Deep Dive, Part 1 . 23
Chapter 3: MSBuild Deep Dive, Part 2 . 53

Part I

Overview

Chapter 1

MSBuild Quick Start
Project	File	Details
Properties and Targets
Items
Item Metadata
Simple Conditions
Default/Initial Targets
MSBuild .exe Command-Line Usage
Extending the Build Process

Chapter 2

MSBuild Deep Dive, Part 1
Properties
Environment Variables

Reserved Properties
Command-Line Properties
Dynamic Properties

Items
Copy Task

Well-Known	Item	Metadata
Custom Metadata
Item Transformations

Chapter 3

MSBuild Deep Dive, Part 2
Dynamic Properties and Items

Dynamic Properties and Items: MSBuild 3 .5
Property and Item Evaluation
Importing	Files
Extending the Build Process
Property	Functions	and	Item	Functions

Property	Functions
String	Property	Functions
Static	Property	Functions
MSBuild	Property	Functions
Item	Functions

Part II

Customizing MSBuild

Chapter 4

Custom Tasks
Custom Task Requirements
Creating	Your	First	Task
Task Input/Output
Supported Task Input and Output Types
Using	Arrays	with	Task	Inputs	and	Outputs
Inline Tasks
TaskFactory
Extending ToolTask

ToolTask Methods
ToolTask Properties

Debugging Tasks

Chapter 5

Custom Loggers
Overview
Console Logger
File	Logger
ILogger Interface
Creating Custom Loggers
Extending the Logger Abstract Class
Extending Existing Loggers
FileLoggerBase and XmlLogger
Debugging Loggers

Part III

Advanced MSBuild Topics

Chapter 6

Batching and Incremental Builds
Batching	Overview
Task Batching
Target Batching
Combining Task and Target Batching
Multi-batching
Using	Batching	to	Build	Multiple	Configurations
Batching Using Multiple Expressions
Batching Using Shared Metadata
Incremental Building

Partially Building Targets

 3

Chapter 1

MSBuild Quick Start
When you are learning a new subject, it’s exciting to just dive right in and get your hands
dirty. The purpose of this chapter is to enable you to do just that. I’ll describe all the key
elements you need to know to get started using MSBuild. If you’re already familiar with
MSBuild, feel free to skip this chapter—all of the material presented here will be covered
in later areas in the book as well, with the exception of the msbuild.exe usage details.

The topics covered in this chapter include the structure of an MSBuild file, properties, targets,
items, and invoking MSBuild. Let’s get started.

Project File Details
An MSBuild file—typically called an “MSBuild project file”—is just an XML file. These XML
files are described by two XML Schema Definition (XSD) documents that are created by
Microsoft: Microsoft.Build.Commontypes.xsd and Microsoft.Build.Core.xsd. These files
are located in the %WINDIR%\Microsoft.NET\Framework\vNNNN\MSBuild folder, where
vNNNN is the version folder for the Microsoft .NET Framework 2.0, 3.5, or 4.0. If you have
a 64-bit machine, then you will find those files in the Framework64 folder as well. (In this
book, I’ll assume you are using .NET Framework 4.0 unless otherwise specified. As a side
note, a new version of MSBuild was not shipped with .NET Framework 3.0.) Microsoft
.Build.Commontypes.xsd describes the elements commonly found in Microsoft Visual
 Studio-generated project files, and Microsoft.Build.Core.xsd describes all the fixed elements
in an MSBuild project file. The simplest MSBuild file would contain the following:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
</Project>

This XML fragment will identify that this is an MSBuild file. All your content will be placed
inside the Project element. Specifically, we will be declaring properties, items, targets, and a
few other things directly under the Project element. When building software applications,
you will always need to know two pieces of information: what is being built and what build
parameters are being used. Typically, files are being built, and these would be contained in
MSBuild items. Build parameters, like Configuration or OutputPath, are contained in MSBuild
properties. We’ll now discuss how to declare properties as well as targets, and following that
we’ll discuss items.

4	 Part	I	 Overview

Properties and Targets
MSBuild properties are simply key-value pairs. The key for the property is the name that you
will use to refer to the property. The value is its value. When you declare static properties,
they are always contained in a PropertyGroup element, which occurs directly within
the Project element. We will discuss dynamic properties (those declared and generated
 dynamically inside targets) in the next chapter. The following snippet is a simple example
of declaring static properties:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup>
 <AppServer>\\sayedApp</AppServer>
 <WebServer>\\sayedWeb</WebServer>
 </PropertyGroup>
</Project>

As previously stated, the PropertyGroup element, inside the Project element, will contain
all of our properties. The name of a property is the XML tag name of the element, and the
value of the property is the value inside the element. In this example, we have declared
two properties, AppServer and WebServer, with the values \\sayedApp and \\sayedWeb,
 respectively. You can create as many PropertyGroup elements under the Project tag as you
want. The previous fragment could have been defined like this:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup>
 <AppServer>\\sayedApp</AppServer>
 </PropertyGroup>
 <PropertyGroup>
 <WebServer>\\sayedWeb</WebServer>
 </PropertyGroup>
</Project>

The MSBuild engine will process all elements sequentially within each PropertyGroup in the
same manner. If you take a look at a project created by Visual Studio, you’ll notice that many
properties are declared. These properties have values that will be used throughout the build
process for that project. Here is a region from a sample project that I created:

<Project DefaultTargets="Build"
 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup>
 <Configuration Condition=" '$(Configuration)' == '' ">Debug</Configuration>
 <Platform Condition=" '$(Platform)' == '' ">AnyCPU</Platform>
 <ProductVersion>8.0.50727</ProductVersion>
 <SchemaVersion>2.0</SchemaVersion>
 <ProjectGuid>{A71540FD-9949-4AC4-9927-A66B84F97769}</ProjectGuid>
 <OutputType>WinExe</OutputType>
 <AppDesignerFolder>Properties</AppDesignerFolder>
 <RootNamespace>WindowsApplication1</RootNamespace>
 <AssemblyName>WindowsApplication1</AssemblyName>
 </PropertyGroup>

Chapter 7

External Tools
Exec Task
MSBuild Task
MSBuild	and	Visual	Studio	Known	Error	Message	Formats
Creating Reusable Build Elements
NUnit
FxCop

Part IV

MSBuild Cookbook

Chapter 8

Practical Applications, Part 1
Setting the Assembly Version
Building Multiple Projects
Attaching	Multiple	File	Loggers

Creating a Logger Macro
Custom Before/After Build Steps in the Build Lab
Handling Errors
Replacing	Values	in	Config	Files
Extending the Clean

Chapter 9

Practical Applications, Part 2
Starting and Stopping Services
Web	Deployment	Project	Overview
Zipping	Output	Files,	Then	Uploading	to	an	FTP	Site
Compressing	JavaScript	Files
Encrypting	web.config
Building Dependent Projects
Deployment Using Web Deployment Projects

Part V

MSBuild in Visual C++ 2010

Chapter 10

MSBuild in Visual C++ 2010, Part 1
The	New	.vcxproj	Project	File	

 Chapter 1 MSBuild Quick Start 5

 <PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Debug|AnyCPU' ">
 <DebugSymbols>true</DebugSymbols>
 <DebugType>full</DebugType>
 <Optimize>false</Optimize>
 <OutputPath>bin\Debug\</OutputPath>
 <DefineConstants>DEBUG;TRACE</DefineConstants>
 <ErrorReport>prompt</ErrorReport>
 <WarningLevel>4</WarningLevel>
 </PropertyGroup>

</Project>

You can see that values for the output type, the name of the assembly, and many others
are defined in properties. Defining properties is great, but we also need to be able to utilize
them, which is performed inside targets. We will move on to discuss Target declarations.

MSBuild fundamentally has two execution elements: tasks and targets. A task is the smallest
unit of work in an MSBuild file, and a target is a sequential set of tasks. A task must always
be contained within a target. Here’s a sample that shows you the simplest MSBuild file that
contains a target:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <Target Name="HelloWorld">
 </Target>
</Project>

In this sample, we have created a new target named HelloWorld, but it doesn’t perform
any work at this point because it is empty. When MSBuild is installed, you are given many
tasks out of the box, such as Copy, Move, Exec, ResGen, and Csc. You can find a list of these
tasks at the MSBuild Task Reference (http://msdn2.microsoft.com/en-us/library/7z253716.
aspx). We will now use the Message task. This task is used to send a message to the logger(s)
that are listening to the build process. In many cases this means a message is sent to the
 console executing the build. When you invoke a task in an MSBuild file, you can pass its input
 parameters by inserting XML attributes with values. These attributes will vary from task to
task depending on what inputs the task is able to accept. From the documentation of the
Message task (http://msdn2.microsoft.com/en-us/library/6yy0yx8d.aspx) you can see that
it accepts a string parameter named Text. The following snippet shows you how to use the
Message task to send the classic message “Hello world!”

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <Target Name="HelloWorld">
 <Message Text="Hello world!" />
 </Target>
</Project>

Now we will verify that this works as expected. To do this, place the previous snippet into
a file named HelloWorld.proj. Now open a Visual Studio command prompt, found in the
Visual Studio Tools folder in the Start menu for Visual Studio. When you open this prompt,

6	 Part	I	 Overview

the path to msbuild.exe is already on the path. The command you will be invoking to start
MSBuild is msbuild.exe. The basic usage for the command is as follows:

msbuild [INPUT_FILE] /t:[TARGETS_TO_EXECUTE]

So the command in our case would be

msbuild HelloWorld.proj /t:HelloWorld

This command says to execute the HelloWorld target, which is contained in the HelloWorld
.proj file. The result of this invocation is shown in Figure 1-1.

FIGURE 1-1 Result of HelloWorld target

Note In this example, as well as all others in the book, we specify the /nologo switch. This
 simply avoids printing the MSBuild version information to the console and saves space in the
book. Feel free to use it or not as you see fit.

We can see that the HelloWorld target is executed and that the message “Hello world!” is
displayed on the console. The Message task also accepts another parameter, Importance. The
possible values for this parameter are high, normal, or low. The Importance value may affect
how the loggers interpret the purpose of the message. If you want the message logged no
matter the verbosity, use the high importance level. We’re discussing properties, so let’s take
a look at how we can specify the text using a property. I’ve extended the HelloWorld.proj file
to include a few new items. The contents are shown here:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <Target Name="HelloWorld">
 <Message Text="Hello world!" />
 </Target>

 <PropertyGroup>
 <HelloMessage>Hello from property</HelloMessage>
 </PropertyGroup>
 <Target Name="HelloProperty">
 <Message Text="$(HelloMessage)" />
 </Target>
</Project>

I have added a new property, HelloMessage, with the value “Hello from property”, as well as
a new target, HelloProperty. The HelloProperty target passes the value of the property using

Anatomy of the Visual C++ Build Process
Diagnostic Output
Build Parallelism

Configuring	Project-	and	File-Level	Build	Parallelism
File	Tracker–Based	Incremental	Build

Incremental Build
File	Tracker
Trust Visual C++ Incremental Build
Troubleshooting

Property Sheets
System Property Sheets and User Property Sheets

Visual C++ Directories

Chapter 11

MSBuild in Visual C++ 2010, Part 2
Property Pages

Reading and Writing Property Values
Build Customizations
Platforms and Platform Toolsets
Native and Managed Multi-targeting

Native Multi-targeting
How	Does	Native	Multi-targeting	Work?
Managed Multi-targeting

Default Visual C++ Tasks and Targets
Default Visual C++ Tasks
Default Visual C++ Targets
ImportBefore,	ImportAfter,	ForceImportBeforeCppTargets,	and	
ForceImportAfterCppTargets

Default Visual C++ Property Sheets
Migrating from Visual C++ 2008 and Earlier to Visual C++ 2010

IDE Conversion
Command-Line Conversion

Summary

Chapter 12

Extending Visual C++ 2010
Build Events, Custom Build Steps, and the Custom
Build Tool

Build Events
Custom Build Step
Custom Build Tool

Adding a Custom Target to the Build
Creating	a	New	Property	Page

Troubleshooting
Creating a Build Customization
Adding	a	New	Platform	and	Platform	Toolset
Deploying Your Extensions

 Chapter 1 MSBuild Quick Start 7

the $(PropertyName) syntax. This is the syntax you use to evaluate a property. We can see
this in action by executing the command msbuild HelloWorld.proj /t:HelloProperty.
The result is shown in Figure 1-2.

FIGURE 1-2 Result of HelloProperty target

As you can see, the value of the property was successfully passed to the Message
task. Now that we have discussed targets and basic property usage, let’s move on to
 discuss how we can declare properties whose values are derived from other
properties.

To see how to declare a property by using the value of an existing property, take a look at
the project file, NestedProperties.proj:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup>
 <Configuration Condition=" '$(Configuration)' == '' ">Debug</Configuration>
 <Platform Condition=" '$(Platform)' == '' ">AnyCPU</Platform>
 <DropLocation>
 \\sayedData\MSBuildExamples\Drops\$(Configuration)\$(Platform)\
 </DropLocation>
 </PropertyGroup>
 <Target Name="PrepareFilesForDrop">
 <Message Text="DropLocation : $(DropLocation)" />
 </Target>
</Project>

We can see here that three properties have been declared. On both the Configuration
and Platform properties, a Condition attribute appears. We’ll discuss this attribute later in
this chapter. The remaining property, DropLocation, is defined using the values of the two
 previously declared items. The DropLocation property has three components: a constant
value and two values that are derived from the Configuration and Platform properties.
When the MSBuild engine sees the $(PropertyName) notation, it will replace that with the
value of the specified property. So the evaluated value for DropLocation would be
\\sayedData\MSBuildExamples\Drops\Debug\AnyCPU\. You can verify that by executing the
PrepareFilesForDrop target with msbuild.exe. The reference for properties can be found at
http://msdn.microsoft.com/en-us/library/ms171458.aspx.

When you use MSBuild, a handful of properties are available to you out of the box that
 cannot be modified. These are known as reserved properties. Table 1-1 contains all the
 reserved properties.

8	 Part	I	 Overview

TABLE 1-1 Reserved Properties
Name Description
MSBuildExtensionsPath The full path where MSBuild extensions are located. By

default, this is stored under %programfiles%\msbuild.

MSBuildExtensionsPath32 The full path where MSBuild 32-bit extensions are located. This
typically is located under the Program Files folder. For 32-bit
machines, this value will be the same as MSBuildExtensionsPath.

MSBuildExtensionsPath64* The full path where MSBuild 64-bit extensions are located. This
typically is under the Program Files folder. For 32-bit machines,
this value will be empty.

MSBuildLastTaskResult* This value holds the return value from the previous task. It will
be true if the task completed successfully, and false otherwise.

MSBuildNodeCount The number of nodes (processes) that are being used to build the
projects. If the /m switch is not used, then this value will be 1.

MSBuildProgramFiles32* This points to the 32-bit Program Files folder.

MSBuildProjectDefaultTargets Contains the list of the default targets.

MSBuildProjectDirectory The full path to the directory where the project file is located.

MSBuildProjectDirectoryNoRoot The full path to the directory where the project file is located,
excluding the root directory.

MSBuildProjectExtension The extension of the project file, including the period.

MSBuildProjectFile The name of the project file, including the extension.

MSBuildProjectFullPath The full path to the project file.

MSBuildProjectName The name of the project file, without the extension.

MSBuildStartupDirectory The full path to the folder where the MSBuild process is invoked.

MSBuildThisFile* The name of the file, including the extension but excluding the
path, which contains the target that is currently executing.

MSBuildThisFileDirectory* This is the full path to the directory that contains the file that is
currently being executed.

MSBuildThisFileDirectoryNoRoot* The same as MSBuildThisFileDirectory, except with the root
removed.

MSBuildThisFileExtension* The extension of the file that is currently executing.

MSBuildThisFileFullPath* The full path to the file that is currently executing.

MSBuildThisFileName* The name of the file, excluding the extension and path, of the
currently executing file.

MSBuildToolsPath
(MSBuildBinPath)

The full path to the location where the MSBuild binaries are
located.
For MSBuild 2.0, this property is named MSBuildBinPath; in
MSBuild 3.5, it is deprecated.

MSBuildToolsVersion The version of the tools being used to build the project.
Possible values include 2.0, 3.5, and 4.0. The default value for
this is 2.0.

* Denotes parameters new with MSBuild 4.0.

Part VI

Team	Foundation	Build

Chapter 13

Team Build Quick Start
Introduction to Team Build

Team	Build	Features
High-Level Architecture

Preparing for Team Build
Team Build Deployment Topologies
What Makes a Good Build Machine?
Installing	Team	Build	on	the	Team	Foundation	Server
Setting Up a Build Controller
Setting Up a Build Agent
Drop	Folders

Creating	a	Build	Definition
General
Trigger
Workspace
Build Defaults
Process
Retention Policy

Working	with	Build	Queues	and	History
Visual Studio
Working	with	Builds	from	the	Command	Line

Team Build Security
Service Accounts
Permissions

Chapter 14

Team Build Deep Dive
Process Templates
Default Template

Logging
Build Number
Agent Reservation
Clean
Sync
Label
Compile and Test
Source Indexing and Symbol Publishing

 Chapter 1 MSBuild Quick Start 9

You would use these properties just as you would properties that you have declared in
your own project file. To see an example of this, look at any Visual Studio–generated
 project file. When you create a new C# project, you will find the import statement <Import
Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" /> located near the
 bottom. This import statement uses the MSBuildToolsPath reserved property to resolve the
full path to the Microsoft.CSharp.targets file and insert its content at this location. This is
the file that drives the build process for C# projects. We will discuss its content throughout
the remainder of this book. In Chapter 3, “MSBuild Deep Dive, Part 2,” we discuss specifically
how the Import statement is processed.

Items
Building applications usually means dealing with many files. Because of this, you use
a specific construct when referencing files in MSBuild: items. Items are usually file-based
 references, but they can be used for other purposes as well. If you create a project
 using Visual Studio, you may notice that you see many ItemGroup elements as well as
PropertyGroup elements. The ItemGroup element contains all the statically defined items.
Static item definitions are those declared as a direct child of the Project element. Dynamic
items, which we discuss in the next chapter, are those defined inside a target. When you
 define a property, you are declaring a key-value pair, which is a one-to-one relationship.
When you declare items, one item can contain a list of many values. In terms of code,
a property is analogous to a variable and an item to an array. Take a look at how an item
is declared in the following snippet taken from the ItemsSimple.proj file:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <ItemGroup>
 <SolutionFile Include="..\InsideMSBuild.sln" />
 </ItemGroup>
 <Target Name="PrintSolutionInfo">
 <Message Text="SolutionFile: @(SolutionFile)" />
 </Target>
</Project>

In this file, there is an ItemGroup that has a subelement, SolutionFile. ItemGroup is the
 element type that all statically declared items must be placed within. The name of the
 subelement, SolutionFile in this case, is actually the item type of the item that is
created. The SolutionFile element has an attribute, Include. This determines what values
the item contains. Relating it back to an array, SolutionFile is the name of the variable that
 references the array, and the Include attribute is used to populate the array’s values. The
Include attribute can contain the following types of values (or any combination thereof): one
distinct value, a list of values delimited with semicolons, or a value using wildcards. In this
sample, the Include attribute contains one value. When you need to evaluate the contents of
an item, you would use the @(ItemType) syntax. This is similar to the $(PropertyName) syntax
for properties. To see this in action, take a look at the PrintSolutionInfo target. This target

10	 Part	I	 Overview

passes the value of the item into the Message task to be printed to the console. You can see
the result of executing this target in Figure 1-3.

FIGURE 1-3 PrintSolutionInfo result

In this case, the item SolutionFile contains a single value, so it doesn’t seem very different
from a property because the single value was simply passed to the Message task. Let’s take
a look at an item with more than one value. This is an extended version of the ItemsSimple
.proj file shown earlier:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <ItemGroup>
 <SolutionFile Include="..\InsideMSBuild.sln" />
 </ItemGroup>
 <Target Name="PrintSolutionInfo">
 <Message Text="SolutionFile: @(SolutionFile)" />
 </Target>

 <ItemGroup>
 <Compile
 Include="Form1.cs;Form1.Designer.cs;Program.cs;Properties\AssemblyInfo.cs" />
 </ItemGroup>
 <Target Name="PrintCompileInfo">
 <Message Text="Compile: @(Compile)" />
 </Target>
</Project>

In the modified version, I have created a new item, Compile, which includes four values that
are separated by semicolons. The PrintCompileInfo target passes these values to the Message
task. When you invoke the PrintCompileInfo target on the MSBuild file just shown, the result
will be Compile: Form1.cs;Form1.Designer.cs;Program.cs;Properties
\AssemblyInfo.cs. It may look like the Message task simply took the value in the Include
attribute and passed it to the Message task, but this is not the case. The Message task has
a single input parameter, Text, as discussed earlier. This parameter is a string property.
Because an item is a multivalued object, it cannot be passed directly into the Text property.
It first has to be converted into a string. MSBuild does this for you by separating each value
with a semicolon. In Chapter 2, I will discuss how you can customize this conversion process.

An item definition doesn’t have to be defined entirely by a single element. It can span multiple
elements. For example, the Compile item shown earlier could have been declared like this:

<ItemGroup>
 <Compile Include="Form1.cs" />

Associate Changesets and Work Items
Copy	Files	to	the	Drop	Location
Revert	Files	and	Check	in	Gated	Changes
Create	Work	Items	for	Build	Failure

Configuring	the	Team	Build	Service
Changing Communications Ports
Requiring SSL
Running Interactively
Running Multiple Build Agents
Build Controller Concurrency

Team Build API
Creating a Project
Connecting to Team Project Collection
Connecting to Team Build
Working	with	Build	Service	Hosts
Working	with	Build	Definitions
Working	with	Builds

Chapter 15

Workflow Foundation Quick Start
Introduction	to	Workflow	Foundation

Types	of	Workflows
Building	a	Simple	Workflow	Application

Workflow	Design
Built-in Activities
Working	with	Data
Exception Handling
Custom Activities

Workflow	Extensions
Persistence
Tracking

Putting	It	All	Together—Workflow	Foundation	Image	Resizer	Sample	Application	
Overview
Building the Application
Running the Application
Debugging the Application
Summary

Chapter 16

Process Template Customization
Getting Started

Creating a Process Template Library
Creating a Custom Activity Library

 Chapter 1 MSBuild Quick Start 11

 <Compile Include="Form1.Designer.cs" />
 <Compile Include="Program.cs" />
 <Compile Include="Properties\AssemblyInfo.cs" />
 </ItemGroup>

In this version, each file is placed into the Compile item individually. These Compile elements
could also have been contained in their own ItemGroup as well, as shown in the next snippet.

<ItemGroup>
 <Compile Include="Form1.cs" />
</ItemGroup>
<ItemGroup>
 <Compile Include="Form1.Designer.cs" />
</ItemGroup>
<ItemGroup>
 <Compile Include="Program.cs" />
</ItemGroup>
<ItemGroup>
 <Compile Include="Properties\AssemblyInfo.cs" />
</ItemGroup>

The end result of these declarations would all be the same. You should note that an item is
an ordered list, so the order in which values are added to the item is preserved and may in
some context affect behavior based on usage. When a property declaration appears after
a previous one, the previous value is overwritten. Items act differently from this in that the
value of the item is simply appended to instead of being overwritten. We’ve now discussed
two of the three ways to create items. Let’s look at using wildcards to create items.

Many times, items refer to existing files. If this is the case, you can use wildcards to
 automatically include files that meet the constraints of the wildcards. You can use three
 wildcard elements with MSBuild: ?, *, and **. The ? descriptor is used to denote that exactly
one character can take its place. For example, the include declaration of b?t.cs could
 include values such as bat.cs, bot.cs, bet.cs, b1t.cs, and so on. The * descriptor can be
 replaced with zero or more characters (not including slashes), so the declaration b*t.cs
could include values such as bat.cs, bot.cs, best.cs, bt.cs, etc. The ** descriptor tells MSBuild
to search directories recursively for the pattern. In effect, “*” matches any characters except
for “/” while “**” matches any characters, including “/”. For example, Include=“src***.cs”
would include all files under the src folder (including subfolders) with the .cs extension.

Item Metadata
Another difference between properties and items is that items can have metadata associated
with them. When you create an item, each of its elements is a full-fledged .NET object, which
can have a set of values (metadata) associated with it. The metadata that is available on every
item, which is called well-known metadata, is summarized in Table 1-2.

12	 Part	I	 Overview

TABLE 1-2 Well-Known Metadata
Name Description
Identity The value that was specified in the Include attribute of the item after it was

evaluated.

FullPath Full path of the file.

RootDir The root directory to which the file belongs, such as C:\.

Filename The name of the file, not including the extension.

Extension The extension of the file, including the period.

RelativeDir Contains the path specified in the Include attribute, up to the final backslash (\).

Directory Directory of the item, without the root directory.

RecursiveDir This is the expanded directory path starting from the first ** of the include
 declaration. If no ** is present, then this value is empty. If multiple ** are present,
then RecursiveDir will be the expanded value starting from the first **. This may
sound peculiar, but it is what makes recursive copying possible.

ModifiedTime The last time the file was modified.

CreatedTime The time the file was created.

AccessedTime The last time the file was accessed.

To access metadata values, you have to use this syntax:

@(ItemType->'%(MetadataName)')

ItemType is the name of the item, and MetadataName is the name of the metadata that you
are accessing. This is the most basic syntax. To examine what types of values the well-known
metadata returns, take a look at the file, WellKnownMetadata.proj, shown here:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">
 <ItemGroup>
 <src Include="src\one.txt" />
 </ItemGroup>
 <Target Name="PrintWellKnownMetadata">

 <Message Text="===== Well known metadata ====="/>
 <!-- %40 = @ -->
 <!-- %25 = % -->
 <Message Text="%40(src->'%25(FullPath)'): @(src->'%(FullPath)')"/>
 <Message Text="%40(src->'%25(RootDir)'): @(src->'%(RootDir)')"/>
 <Message Text="%40(src->'%25(Filename)'): @(src->'%(Filename)')"/>
 <Message Text="%40(src->'%25(Extension)'): @(src->'%(Extension)')"/>
 <Message Text="%40(src->'%25(RelativeDir)'): @(src->'%(RelativeDir)')"/>
 <Message Text="%40(src->'%25(Directory)'): @(src->'%(Directory)')"/>
 <Message Text="%40(src->'%25(RecursiveDir)'): @(src->'%(RecursiveDir)')"/>
 <Message Text="%40(src->'%25(Identity)'): @(src->'%(Identity)')"/>
 <Message Text="%40(src->'%25(ModifiedTime)'): @(src->'%(ModifiedTime)')"/>
 <Message Text="%40(src->'%25(CreatedTime)'): @(src->'%(CreatedTime)')"/>
 <Message Text="%40(src->'%25(AccessedTime)'): @(src->'%(AccessedTime)')"/>

 </Target>
</Project>

Process Parameters
Defining
Metadata
User Interface
Supported Reasons
Backward	and	Forward	Compatibility

Team Build Activities
AgentScope
CheckInGatedChanges
ConvertWorkspaceItem/ConvertWorkspaceItems
ExpandEnvironmentVariables
FindMatchingFiles
GetBuildAgent
GetBuildDetail
GetBuildDirectory
GetBuildEnvironment
GetTeamProjectCollection
InvokeForReason
InvokeProcess
MSBuild
SetBuildProperties
SharedResourceScope
UpdateBuildNumber

Custom Activities
BuildActivity Attribute
Extensions

Logging
Logging Verbosity
Logging Activities
Logging Programmatically
Adding Hyperlinks
Exceptions

Deploying
Process Templates
Custom Assemblies
Downloading	and	Loading	Dependent	Assemblies

 Chapter 1 MSBuild Quick Start 13

Note In order to use reserved characters, such as the % and @, you have to escape them.
This is accomplished by the syntax %HV, where HV is the hex value of the character. This is
 demonstrated here with %25 and %40.

Note In this example, we have specified the ToolsVersion value to be 4.0. This determines
which version of the MSBuild tools will be used. Although not needed for this sample, we will be
 specifying this version number from this point forward. The default value is 2.0.

This MSBuild file prints the values for the well-known metadata for the src item. The result of
executing the PrintWellKnownMetadata target is shown in Figure 1-4.

FIGURE 1-4 PrintWellKnownMetadata result

The figure gives you a better understanding of the well-known metadata’s usage. Keep in
mind that this demonstrates the usage of metadata in the case where the item contains only
a single value.

To see how things change when an item contains more than one value, let’s examine
MetadataExample01.proj:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">
 <ItemGroup>
 <Compile Include="*.cs" />
 </ItemGroup>

 <Target Name="PrintCompileInfo">
 <Message Text="Compile fullpath: @(Compile->'%(FullPath)')" />
 </Target>
</Project>

In this project file we simply evaluate the FullPath metadata on the Compile item. From the
examples with this text, the directory containing this example contains four files: Class1.cs,
Class2.cs, Class3.c, and Class4.cs. These are the files that will be contained in the Compile
item. Take a look at the result of the PrintCompileInfo target in Figure 1-5.

14	 Part	I	 Overview

FIGURE 1-5 PrintCompileInfo result

You have to look carefully at this output to decipher the result. What is happening here
is that a single string is created by combining the full path of each file, separated by
a semicolon. The @(ItemType->'. . .%(). . .') syntax is an “Item Transformation.” We
will cover transformations in greater detail in Chapter 2. In the next section, we’ll discuss
 conditions. Before we do that, take a minute to look at the project file for a simple Windows
application that was generated by Visual Studio. You should recognize many things.

<Project DefaultTargets="Build"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003" ToolsVersion="4.0">
 <PropertyGroup>
 <Configuration Condition=" '$(Configuration)' == '' ">Debug</Configuration>
 <Platform Condition=" '$(Platform)' == '' ">AnyCPU</Platform>
 <ProductVersion>8.0.50727</ProductVersion>
 <SchemaVersion>2.0</SchemaVersion>
 <ProjectGuid>{0F34CE5D-2AB0-49A9-8254-B21D1D2EFFA1}</ProjectGuid>
 <OutputType>WinExe</OutputType>
 <AppDesignerFolder>Properties</AppDesignerFolder>
 <RootNamespace>WindowsApplication1</RootNamespace>
 <AssemblyName>WindowsApplication1</AssemblyName>
 </PropertyGroup>
 <PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Debug|AnyCPU' ">
 <DebugSymbols>true</DebugSymbols>
 <DebugType>full</DebugType>
 <Optimize>false</Optimize>
 <OutputPath>bin\Debug\</OutputPath>
 <DefineConstants>DEBUG;TRACE</DefineConstants>
 <ErrorReport>prompt</ErrorReport>
 <WarningLevel>4</WarningLevel>
 </PropertyGroup>
 <PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Release|AnyCPU' ">
 <DebugType>pdbonly</DebugType>
 <Optimize>true</Optimize>
 <OutputPath>bin\Release\</OutputPath>
 <DefineConstants>TRACE</DefineConstants>
 <ErrorReport>prompt</ErrorReport>
 <WarningLevel>4</WarningLevel>
 </PropertyGroup>
 <ItemGroup>
 <Reference Include="System" />
 <Reference Include="System.Data" />
 <Reference Include="System.Deployment" />
 <Reference Include="System.Drawing" />
 <Reference Include="System.Windows.Forms" />
 <Reference Include="System.Xml" />
 </ItemGroup>

Part VII

Web Development Tool

Chapter 17

Web Deployment Tool, Part 1
Web	Deployment	Tool	Overview
Working	with	Web	Packages

Package Creation
Installing Packages

msdeploy .exe Usage Options
MSDeploy Providers
MSDeploy Rules
MSDeploy Parameters

–declareParam
–setParam

MSDeploy Manifest Provider

Chapter 18

Web Deployment Tool, Part 2
Web	Publishing	Pipeline	Overview
XML Document Transformations
Web Publishing Pipeline Phases

Excluding	Files
Including	Additional	Files
Database

Chapter 19

Web Deployment Tool Practical Applications
Publishing Using MSBuild
Parameterizing Packages
Using	–setParamFile
Using the MSDeploy Temp Agent
Deploying Your Site from Team Build
Deploying to Multiple Destinations Using Team Build
Excluding ACLs from the Package
Synchronizing an Application to Another Server

Appendix A

New Features in MSBuild 4.0
Support for Visual C++

 Chapter 1 MSBuild Quick Start 15

 <ItemGroup>
 <Compile Include="Form1.cs">
 <SubType>Form</SubType>
 </Compile>
 <Compile Include="Form1.Designer.cs">
 <DependentUpon>Form1.cs</DependentUpon>
 </Compile>
 <Compile Include="Program.cs" />
 <Compile Include="Properties\AssemblyInfo.cs" />
 <EmbeddedResource Include="Properties\Resources.resx">
 <Generator>ResXFileCodeGenerator</Generator>
 <LastGenOutput>Resources.Designer.cs</LastGenOutput>
 <SubType>Designer</SubType>
 </EmbeddedResource>
 <Compile Include="Properties\Resources.Designer.cs">
 <AutoGen>True</AutoGen>
 <DependentUpon>Resources.resx</DependentUpon>
 </Compile>
 <None Include="Properties\Settings.settings">
 <Generator>SettingsSingleFileGenerator</Generator>
 <LastGenOutput>Settings.Designer.cs</LastGenOutput>
 </None>
 <Compile Include="Properties\Settings.Designer.cs">
 <AutoGen>True</AutoGen>
 <DependentUpon>Settings.settings</DependentUpon>
 <DesignTimeSharedInput>True</DesignTimeSharedInput>
 </Compile>
 </ItemGroup>
 <Import Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" />
 <!-- To modify your build process, add your task
inside one of the targets below and uncomment it.
 Other similar extension points exist,
see Microsoft.Common.targets.
 <Target Name="BeforeBuild">
 </Target>
 <Target Name="AfterBuild">
 </Target>
 -->
</Project>

Simple Conditions
When you are building, you often have to make decisions based on conditions. MSBuild
 allows almost every XML element to contain a conditional statement within it. The statement
would be declared in the Condition attribute. If this attribute evaluates to false, then the
element and all its child elements are ignored. In the sample Visual Studio project that was
shown at the end of the previous section, you will find the statement <Configuration
Condition=“ '$(Configuration)' == '' ”>Debug</Configuration>. In this declaration,
the condition is checking to see if the property is empty. If so, then it will be defined;
 otherwise, the statement will be skipped. This is a method to provide a default overridable
value for a property. Table 1-3 describes a few common types of conditional operators.

16	 Part	I	 Overview

TABLE 1-3 Simple Conditional Operators
Symbol Description
== Checks for equality; returns true if both have the same value.

!= Checks for inequality; returns true if both do not have the same value.

Exists Checks for the existence of a file. Returns true if the provided file exists.

!Exists Checks for the nonexistence of a file. Returns true if the file provided is not found.

Because you can add a conditional attribute to any MSBuild element (excluding the Otherwise
element), this means that we can decide to include entries in items as necessary. For example,
when building ASP.NET applications, in some scenarios, you might want to include files that
will assist debugging. Take a look at the MSBuild file, ConditionExample01.proj:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">
 <PropertyGroup>
 <Configuration>Release</Configuration>
 </PropertyGroup>
 <ItemGroup>
 <Content Include="script.js"/>
 <Content Include="script.debug.js" Condition="$(Configuration)=='Debug'" />
 </ItemGroup>

 <Target Name="PrintContent">
 <Message Text="Configuration: $(Configuration)" />
 <Message Text="Content: @(Content)" />
 </Target>
</Project>

If we execute the command msbuild ConditionExample01.proj /t:PrintContent, the
result would be what is shown in Figure 1-6.

FIGURE 1-6 PrintContent target result

As you can see, because the Configuration value was not set to Debug, the script.debug.js file
was not included in the Content item. Now we will examine the usage of the Exists function.
To do this, take a look at the target _CheckForCompileOutputs, taken from the Microsoft
.Common.targets file, a file included with MSBuild that contains most of the rules for building
VB and C# projects:

<Target
 Name="_CheckForCompileOutputs">

New	Command-Line	Switches
New	Reserved	Properties
BeforeTargets and AfterTargets
ImportGroup
Import Wildcard
Solution	Import	Files
Property	Functions
Item	Functions
Inline Tasks
Cancellable Builds
YieldDuringToolExecution
New	Object	Model
Debugger

Appendix B

Building Large Source Trees

Appendix C

Upgrading from Team Foundation Build 2008
Upgrade Process
Upgrade Template

About the Author

 Chapter 1 MSBuild Quick Start 17

 <!--Record the main compile outputs.-->
 <ItemGroup>
 <FileWrites
 Include="@(IntermediateAssembly)"
 Condition="Exists('@(IntermediateAssembly)')" />
 </ItemGroup>

 <!-- Record the .xml if one was produced. -->
 <PropertyGroup>
 <_DocumentationFileProduced
 Condition="!Exists('@(DocFileItem)')">false</_DocumentationFileProduced>
 </PropertyGroup>

 <ItemGroup>
 <FileWrites
 Include="@(DocFileItem)"
 Condition="'$(_DocumentationFileProduced)'=='true'" />
 </ItemGroup>

 <!-- Record the .pdb if one was produced. -->
 <PropertyGroup>
 <_DebugSymbolsProduced
 Condition="!Exists('@(_DebugSymbolsIntermediatePath)')">false
 </_DebugSymbolsProduced>
 </PropertyGroup>

 <ItemGroup>
 <FileWrites
 Include="@(_DebugSymbolsIntermediatePath)"
 Condition="'$(_DebugSymbolsProduced)'=='true'" />
 </ItemGroup>
</Target>

From the first FileWrites item definition, the condition is defined as Exists
(@(IntermediateAssembly)). This will determine whether the file referenced by the
IntermediateAssembly item exists on disk. If it doesn’t, then the declaration task is
skipped. This was a brief overview of conditional statements, but it should be enough to
get you started. Let’s move on to learn a bit more about targets.

Default/Initial Targets
When you create an MSBuild file, you will typically create it such that a target, or a set of
targets, will be executed most of the time. In this scenario, these targets can be specified
as default targets. These targets will be executed if a target is not specifically chosen to be
 executed. Without the declaration of a default target, the first defined target in the logical
project file, after all imports have been resolved, is treated as the default target. A logical
project file is one with all Import statements processed. Using default target(s) is how Visual

18	 Part	I	 Overview

Studio builds your managed project. If you take a look at Visual Studio–generated project
files, you will notice that the Build target is specified as the default target:

<Project DefaultTargets="Build"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003" ToolsVersion="4.0">
...
</Project>

As mentioned previously, you can have either one target or many targets be your default
target(s). If the declaration contains more than one, the target names need to be separated
by a semicolon. When you use a command such as msbuild ProjectFile.proj, because
you have not specified a target to execute, the default target(s) will be executed. It’s
 important to note that the list of DefaultTargets will be preserved, not modified, through
an Import, provided that a project previously processed hasn’t had a DefaultTargets list.
This is one difference between DefaultTargets and InitialTargets. Values for InitialTargets are
 aggregated for all imports because each file may have its own initialization checks.

These targets listed in InitialTargets will always be executed even if the project file is
 imported by other project files. Similar to default targets, the initial targets list
is declared as an attribute on the Project element with the name InitialTargets. If
you take a look at the Microsoft.Common.targets file, you will notice that the
target _CheckForInvalidConfigurationAndPlatform is declared as the initial target. This target
will perform a couple sanity checks before allowing the build to continue. I would strongly
 encourage the use of default targets. InitialTargets should be used to verify initial conditions
before the build starts and raises an error or warning if applicable. Next, we will discuss the
command-line usage of the msbuild.exe command.

MSBuild.exe Command-Line Usage
In this section, we’ll discuss the most important options when invoking msbuild.exe. When
you invoke the msbuild.exe executable, you can pass many parameters to customize the
 process. We’ll first take a look at the options that are available with MSBuild 2.0, and then
we’ll discuss what differences exist for MSBuild 3.5 and MSBuild 4.0. Table 1-4 summarizes
the parameters you can pass to msbuild.exe. Many commands include a short version that
can be used; these versions are listed in the table within parentheses.

TABLE 1-4 MSBuild.exe Command-Line Switches
Switch Description
/help (/?) Displays the usage information for msbuild.exe.

/nologo Suppresses the copyright and startup banner.

/version (/ver) Displays version information.

@file Used to pick up response file(s) for parameters.

 Chapter 1 MSBuild Quick Start 19

Switch Description
/noautoresponse (/noautoresp) Used to suppress automatically, including msbuild.rsp as a

 response file.

/target (/t) Used to specify which target(s) should be built. If specifying more
than one target, they should each be separated by a semicolon.
Commas are valid separators, but semicolons are the ones most
commonly used.

/property:<n>=<v> (/p) Used to specify properties. If providing more than one property,
they should each be separated by a semicolon. Property values
should be specified in the format: name=value. These values
would supersede any static property definitions. Commas are
valid separators, but semicolons are the ones most
 commonly used.

/verbosity (/v) Sets the verbosity of the build. The options are quiet (q), minimal
(m), normal (n), detailed (d), and diagnostic (diag). This is passed
to each logger, and the logger is able to make its own decision
about how to interpret it.

/validate (/val) Used to ensure that the project file is in the correct format
 before the build is started.

/logger (/l) Attaches the specified logger to the build. This switch can be
 provided multiple times to attach any number of loggers. Also,
you can pass parameters to the loggers with this switch.

/consoleloggerparameters (/clp) Used to pass parameters to the console logger.

/noconsolelogger (/noconlog) Used to suppress the usage of the console logger, which is
 otherwise always attached.

/filelogger (/fl) Attaches a file logger to the build.

/fileloggerparameters (/flp) Passes parameters to the file logger. If you want to attach
 multiple file loggers, you do so by specifying additional
 parameters in the switches /flp1, /flp2, /flp3, and so on.

/distributedFileLogger (/dl) Used to attach a distributed logger. This is an advanced switch
that you will most likely not use and that could have been
 excluded altogether.

/maxcpucount (/m) Sets the maximum number of processes that should be used by
msbuild.exe to build the project.

/ignoreprojectextensions
(/ignore)

Instructs MSBuild to ignore the extensions passed.

/toolsversion (/tv) Specifies the version of the .NET Framework tools that should be
used to build the project.

/nodeReuse (/nr) Used to specify whether nodes should be reused or not.
Typically, there should be no need to specify this; the default value
is optimal.

20	 Part	I	 Overview

Switch Description
/preprocess (/pp)* This will output the complete logical file to either the console or

to a specified file. To have the result written out to the file, use the
syntax /pp:file.
Usually, this file will build just as if you were building the original
project (there are exceptions though, such as $(MSBuildThisFile)).
The real purpose of this is to help diagnose a problem with the
build by avoiding the need to jump between many different
files. For example, if a particular property is getting overwritten
 somewhere, it is much easier to search for it in the single
“preprocessed” file than it is to search for it in the many
 imported files.

/detailedSummary (/ds)* It displays information about how the projects were scheduled to
different CPUs. You can use this to help figure out how to make
the build faster. For example, you can use this to determine which
project was stalling other projects.

* Denotes parameters new with MSBuild 4.0.

From Table 1-4, the most commonly used parameters are target, property, and logger.
You might also be interested in using the FileLogger switch. To give you an example, I will
use an MSBuild file that we discussed earlier, the ConditionExample01.proj file. Take a look
at the following command that will attach the file logger to the build process: msbuild
ConditionExample01.proj /fl. Because we didn’t specify the name of the log file to be
written to, the default, msbuild.log, will be used. Using this same project file, let’s see how
to override the Configuration value. From that file, the Configuration value would be set to
Release, but we can override it from the command line with the following statement:
msbuild ConditionExample01.proj /p:Configuration=Debug /t:PrintContent. In
this command, we are using the /p (property) switch to provide a property value to the build
 engine, and we are specifying to execute the PrintContent target. The result is shown in
Figure 1-7.

FIGURE 1-7 Specifying a property from the command line

The messages on the console show that the value for Configuration was indeed Debug,
and as expected, the debug JavaScript file was included in the Content item. Now that
you know the basic usage of the msbuild.exe command, we’ll move on to the last topic:
 extending the build process.

 Chapter 1 MSBuild Quick Start 21

Extending the Build Process
With versions of Visual Studio prior to 2005, the build was mostly a black box. The process by
which Visual Studio built your applications was internal to the Visual Studio product itself. The
only way you could customize the process was to use execute commands for pre- and post-build
events. With this, you were able to embed a series of commands to be executed. You were not
able to change how Visual Studio built your applications. With the advent of MSBuild, Visual
Studio has externalized the build process and you now have complete control over it. Since
MSBuild is delivered with the .NET Framework, Visual Studio is not required to build applications.
Because of this, we can create build servers that do not need to have Visual Studio installed. We’ll
examine this by showing how to augment the build process. Throughout the rest of this book, we
will describe how to extend the build process in more detail.

The pre- and post-build events mentioned earlier are still available, but you now have other
options. The three main ways to add a pre- or post-build action are:

n Pre- and post-build events
n Override BeforeBuild/AfterBuild target
n Extend the BuildDependsOn list

The pre- and post-build events are the same as described previously. This is a good approach
for backward compatibility and ease of use. Configuring this using Visual Studio doesn’t require
knowledge of MSBuild. Figure 1-8 shows the Build Events tab on the ProjectProperties page.

Here, you can see the two locations for the pre- and post-build events toward the center of
the image. The dialog that is displayed is the post-build event command editor. This helps you
construct the command. You define the command here, and MSBuild executes it for you at the
appropriate time using the Exec task (http://msdn2.microsoft.com/en-us/library/x8zx72cd.aspx).
Typically, these events are used to copy or move files around before or after the build.

Using the pre- and post-build event works fairly well if you want to execute a set of
 commands. If you need more control over what is occurring, you will want to manually
modify the project file itself. When you create a new project using Visual Studio, the project
file generated is an MSBuild file, which is an XML file. You can use any editor you choose, but
if you use Visual Studio, you will have IntelliSense when you are editing it! With your solution
loaded in Visual Studio, you can right-click the project, select Unload Project, right-click
the project again, and select Edit. If you take a look at the project file, you will notice this
 statement toward the bottom of the file.

<!-- To modify your build process, add your task inside one
 of the targets below and uncomment it.
 Other similar extension points exist, see Microsoft.Common.targets.
 <Target Name="BeforeBuild">
 </Target>
 <Target Name="AfterBuild">
 </Target>
 -->

22	 Part	I	 Overview

FIGURE 1-8 Build Events tab

From the previous snippet, we can see that there are predefined targets designed to handle
these types of customizations. We can simply follow the directions from the project file, by
 defining the BeforeBuild or AfterBuild target. You will want to make sure that these definitions
are after the Import element for the Microsoft.*.targets file, where * represents the language
of the project you are editing. For example, you could insert the following AfterBuild target:

<Target Name="AfterBuild">
 <Message Text="Build has completed!" />
</Target>

When the build has finished, this target will be executed and the message ‘Build has
completed!’ will be passed to the loggers. We will cover the third option, extending the
BuildDependsOn list, in Chapter 3.

In this chapter, we have covered many features of MSBuild, including properties, items,
 targets, and tasks. Now you should have all that you need to get started customizing your
build process. From this point on, the remainder of the book will work on filling in the details
that were left out here so that you can become an MSBuild expert!

 347

Chapter 13

Team Build Quick Start
MSBuild is a build engine rather than a build automation tool, which is where Team
Foundation Build (which we will refer to as Team Build for short) comes into the picture.
Team Build is a component of Microsoft Visual Studio Application Lifecycle Management.
Team Build provides build automation that integrates tightly with the other Visual Studio
Application Lifecycle Management components, such as version control, work-item tracking,
testing, and reporting.

Why discuss Team Build in a book about MSBuild? Apart from the fact that both are build
tools, the good news is that Team Build uses MSBuild to build solutions and projects, so the
MSBuild knowledge that you’ve gained in the previous chapters will be put to good use.

Team Build changed significantly between Visual Studio Team System 2008 and Visual Studio
2010 by moving the build process orchestration from being MSBuild-based to Workflow
Foundation–based. This change enables scenarios that were difficult to implement using
MSBuild (such as distributing builds across multiple machines), provides a graphical build
process designer, and provides a customizable user interface for queuing builds and editing
build definitions.

Introduction to Team Build
This section discusses the features and architecture of Team Build to familiarize you with
its key components and how they relate to each other. These features and components are
 covered in more depth in later sections.

Team	Build	Features
Team Build 2010 has a comprehensive set of features that should meet the needs of almost
all build automation requirements, and even if it doesn’t, it is highly configurable and
extensible.

Some of the key features in Team Build 2010 are as follows:

n Provides a default build process suitable for building most Microsoft .NET Framework
applications

n Build process is based on Workflow Foundation and is highly configurable and
extensible

348	 Part	VI	 Team	Foundation	Build

n Supports the queuing of builds and multiple build machines

n Supports manual, scheduled, continuous integration, and gated check-in builds

n Private builds (also known as buddy builds)

n Retention policies for removing old builds

n Integrates with reporting, testing, version control, and work item–tracking components
of Visual Studio Application Lifecycle Management

n Includes an API for automating, extending, and integrating with Team Build

High-Level Architecture
A high-level diagram of Team Build’s architecture is shown in Figure 13-1.

FIGURE 13-1 High-level architecture

The Team Build architecture includes:

n Team Build client Visual Studio provides a number of built-in clients for Team Build,
including Team Explorer, which is an add-in for Visual Studio; TfsBuild.exe, which is a
command-line client for Team Build (and is described in detail in the section entitled
“Working with Build Queues and History,” later in this chapter); and Team Foundation

 Chapter 13 Team Build Quick Start 349

Server Web Access, which is a Web interface for Team Build (and other components of
the Visual Studio Application Lifecycle Management). Team Build also has an API that
can be used to develop your own clients for Team Build, and that will be discussed in
Chapter 14, “Team Build Deep Dive.”

n Build controllers This Windows Service orchestrates the overall build process and
is responsible for initializing the build, reserving build agents, delegating parts of the
build process to one or more build agents, and finalizing the build. A Team Project
Collection can have one or more build controllers associated with it, but each build
controller can be associated with only a single Team Project Collection and a machine
can have only a single build controller installed on it.

n Build agents This Windows Service is responsible for executing the bulk of the
build process. A build controller can have multiple build agents associated with it, but
each build agent can be associated with only a single build controller. Unlike build
 controllers, a machine can have multiple build agents installed on it. Because builds are
CPU- and I/O-intensive, this is generally not recommended, but if you have sufficiently
powerful hardware or your build process isn’t resource-intensive, you may be able to
increase build throughput by running multiple build agents on each physical build
machine.

n Team Project Collection Team Project Collections are a new concept in Team
Foundation Server 2010, and as you might expect, they are collections of Team
Projects. The Team Projects in a Team Project Collection share a database on the
 database tier and can be backed up, restored, and managed as a single entity. Each
Team Project Collection is completely independent, and this is the reason that a build
controller can be associated with only a single Team Project Collection.

n Team Foundation Server application tier Any Team Build client that wants to
 communicate with a build controller does so through the Team Foundation Server’s
 application tier. The application tier is implemented as a number of web services hosted
using IIS. Communication from the application tier to build agents is always done via
the controller.

n Team Foundation Server data tier The data tier for Team Foundation Server
is hosted as a configuration database (TFS_Configuration), a warehouse database
(TFS_Warehouse), and a database for each Team Project Collection (for
example, TFS_DefaultCollection) in Microsoft SQL Server.

n Team Project Collection database This database stores operational build data such
as the list of build controllers and agents, build definitions, build queues, build history,
and so on.

n TFS_Warehouse database This database stores historical build data for reporting
even after it has been purged from the Team Project Collection database.

350	 Part	VI	 Team	Foundation	Build

n Cube This multidimensional online analytic processing (OLAP) cube is implemented
in SQL Server Analysis Services and is populated regularly from the TFS_Warehouse
 database for high-performance reporting.

n Drop folder When a build completes the build logs, build outputs (if the build is
 successful or partially successful) and test results are copied to a shared network folder.
Public and private builds for the same build definition can be dropped to separate root
drop folders.

Preparing for Team Build
In this section, we’re going to look at the preparations that you’ll need to make to set up the
necessary infrastructure before you start automating your build processes using Team Build.
Assuming that you’ve already set up your Team Foundation Server, the first step is to set up
at least one build controller and agent to execute your builds. A build controller or build
agent is simply a machine that has the Team Build service installed on it and is configured as
a build controller, one or more build agents, or both.

Team Build Deployment Topologies
The ability to have multiple build controllers per Team Project Collection and multiple build
agents per build controller provides a lot of flexibility, but it also raises questions about when
and why you’d want to do this.

Reasons for wanting to have multiple build controllers include:

n Build agent pooling Build controllers are a grouping of build agents so that you
can use multiple build controllers to segregate your build agents into pools. You may
want to do this to dedicate certain agents for certain types of builds [for example,
 release builds or continuous integration (CI) builds] or to group build agents by physical
 location for performance.

n Using different custom workflow activities or extensions Build controllers
specify a version control path from where custom workflow activities and extensions
are downloaded. Having multiple controllers allows you to have a controller use a
 different set of custom workflow activities or extensions. For example, you might
have a controller dedicated to testing new versions of custom workflow activities or
 extensions before you roll them out for production builds.

Reasons for wanting to have multiple build agents include:

n Redundancy Having more than one build agent will allow developers to continue to
process builds in the event of a build agent failure.

n Ability to scale out Multiple build agents will allow builds to be processed
concurrently.

 Chapter 13 Team Build Quick Start 351

n Distributed builds By customizing the build process template (which is discussed in
Chapters 15 and 16), you could enable a single build to be distributed across multiple
build agents to reduce build time.

n Mutually exclusive dependencies Different versions of the software that you’re
building may have dependencies on different versions of third-party software that
can’t be installed side by side on your build agents. Having multiple build agents
 enables you to have different versions installed on different build agents. Later in this
chapter, we discuss agent tags, which can be used to identify which agents have which
 dependencies installed.

The other topological consideration is whether you should install build controllers and build
agents on the same machine. This is a very valid topology and is especially useful in smaller
environments (for example, the build controller has only a single agent) because it requires
only one machine. If your build controller is going to manage multiple build agents, then it is
recommended to be on its own machine.

What Makes a Good Build Machine?
You should take the following factors into account when selecting and configuring hardware
to run Team Build (these factors apply to both build controllers and agents):

n Build machines should be kept as simple as possible. Even minor changes on a build
machine can affect the outcome of a build, and if the configuration of a build machine
is complex, then it increases the chance of discrepancies if a build agent needs to be
rebuilt, when adding additional build machines, or when reproducing an old build.

n Builds usually have to read a large amount of data (the source files) from the Team
Foundation Server and write a large amount of data (the build outputs) to the drop
folder. Because of this, the build agent should have fast network access to both of
these locations. In Chapter 14, we look at how to configure Team Build to use the Team
Foundation Proxy to improve performance when the build agent has limited bandwidth
to the Team Foundation Server.

n Builds are typically I/O-bound rather than CPU-bound (although there can be
 exceptions to this), so investing in fast disk and network infrastructure will have a large
impact on the performance of your builds.

n Build machines should only be build machines—nothing else. Running other services
on the build machine results in Team Build having to compete with them for resources.
In particular, avoid disk-intensive services such as the Indexing Service and antivirus
software. Many corporate environments require antivirus software; in this case, you
should disable scanning for the build agent’s working folders to improve performance
and reduce the chance that locking issues will cause spurious build failures.

352	 Part	VI	 Team	Foundation	Build

n The build agent needs sufficient disk space to store a copy of the source code and build
outputs for each build definition. You should also allow additional disk space for any
temporary files produced during the build process.

n The TEMP directory should be located on the same logical drive as the Team Build
working directory. The get process is more efficient in this configuration because it can
perform move rather than copy operations.

n Team Build 2008 and later have the ability to take advantage of the parallel build
functionality introduced in MSBuild 3.5 so multiple processors can improve the
 performance of your builds.

There might be circumstances where Team Build needs to be installed on developers’
 workstations. This can be particularly useful when developing, testing, and debugging build
customizations or to allow developers to run full end-to-end builds on their local machines.

Installing	Team	Build	on	the	Team	Foundation	Server
Although it’s technically possible to install a build controller, a build agent, or both on the
same machine as the Team Foundation Server, this is not recommended for a number of
reasons:

n Compiling software is particularly resource-intensive, and this could be detrimental to
the performance of the Team Foundation Server.

n Build scripts and unit tests might be written by people who aren’t Team Foundation
Server administrators, and having these running on the Team Foundation Server could
compromise its security, integrity, and stability.

n Build scripts and the projects being compiled often require third-party software or
 libraries to be installed on the build agent, and installing these on the Team Foundation
Server could also compromise its security, integrity, and stability.

Tip The only time you should consider installing a build controller, a build agent, or both on the
same machine as Team Foundation Server is when building a virtual machine for demonstration
or testing purposes where it is not practical to have a separate virtual machine acting as the build
controller and agent.

Setting Up a Build Controller
The Team Build installation process is quite simple, but it is recommended that you
 document the process that you use to set up your first build controller and agent so that
the process can be repeated if you add additional build controllers or agents to your
 environment in the future.

 Chapter 13 Team Build Quick Start 353

Note When installing any Team Foundation Server component, you should download and
 refer to the latest version of the Team Foundation Installation Guide for Visual Studio 2010 from
http://go.microsoft.com/fwlink/?LinkId=127730.

Installing Prerequisites
Before installing a build controller, you will need a domain account for the Team Build service
to run if you choose not to use the NT AUTHORITY\NETWORK SERVICE account. This account
doesn’t need to be, and shouldn’t be, that of an administrator on either the build server or
the Team Foundation Server, but it does need to be added to the Project Collection Build
Service Accounts group of the Team Project Collection for which it will execute builds. See
the section entitled “Team Build Security,” later in this chapter, for more information about
securing Team Build.

Installing a Build Controller
The installation process for build controllers is as follows:

 1. Insert the installation media.

 2. Run setup.exe from either the TFS-x86 or TFS-x64 directory (for 32-bit or 64-bit
 machines, respectively).

 3. Click Next on the Welcome To The Microsoft Team Foundation Server 2010 Installation
Wizard page.

 4. Accept the license terms and click Next.

 5. Select Team Foundation Build Service on the Select Features To Install page and
click Install.

 6. Make sure that the Launch Team Foundation Server Configuration Tool check box is
selected on the last page of the wizard, and then click Configure.

 7. Select the Configure Team Foundation Build Service wizard and click Start Wizard.

 8. Click Next on the Welcome To The Build Service Configuration Wizard page.

 9. Select the Team Project Collection to which you want to connect the build controller
and click Next.

 10. On the Build Services page, choose how many build agents that you want to run on
the build controller machine (this can be none if it’s a dedicated controller machine),
choose the Create New Build Controller option, and click Next.

 11. On the Settings page, enter the account details for your Team Build service account
and click Next.

 12. On the Review page, review the settings that you’ve entered, and then click Next.

354	 Part	VI	 Team	Foundation	Build

 13. On the Readiness Checks page, resolve any errors and then click Configure.

 14. On the Complete page, click Finish.

Configuring	a	Build	Controller	After	Installation.
Once a build controller has been installed, you can configure it either from Visual Studio
on any computer (as described here) or from the Team Foundation Server Administration
Console on the build controller itself.

 1. Open Visual Studio 2010.

 2. Open Team Explorer.

 3. Expand a Team Project.

 4. Right-click Builds, and click Manage Build Controllers. This will open the Manage Build
Controllers dialog shown in Figure 13-2.

FIGURE 13-2 Manage Build Controllers dialog

 5. Select the build controller that you want to configure and click Properties to open the
Build Controller Properties dialog shown in Figure 13-3.

The Display Name and Description fields are used to describe the build controller.

The Computer Name field is the host name of the build controller. This will be used by Team
Build to communicate with the build controller so the Computer Name should be resolvable
from the Team Foundation Server.

The Version Control Path To Custom Assemblies is a server path to a folder containing any
custom workflow activities or extensions. The build controller and its agents will download
any custom assemblies from the location as required. Creating custom activities is discussed
in detail in Chapters 15 and 16.

 Chapter 13 Team Build Quick Start 355

FIGURE 13-3 Build Controller Properties dialog

Tip To make it easier to test changes to your custom workflow activities and extensions,
 consider having two separate version control folders for custom workflow activities and
 extensions (one for production and one for testing), and then set up a dedicated controller for
testing that uses the testing version control folder.

Setting Up a Build Agent
The build agent installation process is quite similar to the build controller installation process,
but because the majority of the build process is run on the build agent, the prerequisites are
more complex.

Installing Prerequisites
Before installing a build agent, the following prerequisites need to be met:

n You will need a domain account for the Team Build service to run if you choose not to
use the NT AUTHORITY\NETWORK SERVICE account. This account can, and usually is,
the same account used to run the build controller.

n You will need any other software or libraries required by your build process or the
software you’re building. This would include any utilities or MSBuild tasks called by
your build process (such as the MSBuild Extension Pack), as well as any global assembly
cache (GAC) references required by the projects you’re building (such as the Microsoft
Office primary interop assemblies).

356	 Part	VI	 Team	Foundation	Build

n You will need the appropriate version of Visual Studio to use any of the features listed
in Table 13-1 as part of your build process.

TABLE 13-1 Team Build Prerequisites
Feature Required	Software
Code Analysis Visual Studio Premium

Code Coverage Visual Studio Premium

Coded UI Tests Visual Studio Premium

Database Projects Visual Studio Premium

Lab Management Visual Studio Lab Management

Layer Diagram and Dependency
Validation

Visual Studio Ultimate

Load Testing Visual Studio Ultimate

MSBuild Project Types .NET Framework SDK

Non-MSBuild Project Types (for
 example, Deployment Projects)

Any edition of Visual Studio able to build the specific
 project type

Test Impact Analysis Visual Studio Premium

Third-Party Build Dependencies The corresponding third-party software

Third-Party GAC References The corresponding third-party software

Unit Testing Visual Studio Professional

Visual C++ Projects Visual Studio Professional

Web Testing Visual Studio Ultimate

Installing a Build Agent
The installation process for a build agent is as follows:

 1. Insert the installation media.

 2. Run setup.exe from either the TFS-x86 or TFS-x64 directory (for 32-bit or 64-bit
 machines, respectively).

 3. Click Next on the Welcome To The Microsoft Team Foundation Server 2010 Installation
Wizard page.

 4. Accept the license terms and click Next.

 5. Select Team Foundation Build Service on the Select Features To Install page and click
Install.

 6. Make sure that the Launch Team Foundation Server Configuration Tool check box is
selected on the last page of the wizard, and then click Configure.

 7. Select the Configure Team Foundation Build Service wizard and click Start Wizard.

 8. Click Next on the Welcome To The Build Service Configuration Wizard page.

 Chapter 13 Team Build Quick Start 357

 9. Select the Team Project Collection to which you want to connect the build controller
and click Next.

 10. On the Build Services page, choose how many build agents you want to run on the build
agent machine, choose the build controller to which you want to attach them, and click Next.

 11. On the Settings page, enter the account details for your Team Build service account
and click Next.

 12. On the Review page, review the settings that you’ve entered and then click Next.

 13. On the Readiness Checks page, resolve any errors and then click Configure.

 14. On the Complete page, click Finish.

Configuring	a	Build	Agent	After	Installation
A build agent can also be configured either from Visual Studio on any computer (as
 described here) or from the Team Foundation Server Administration Console on the build
agent itself, as follows:

 1. Open Visual Studio 2010.

 2. Open Team Explorer.

 3. Expand a Team Project.

 4. Right-click Builds, and then click Manage Build Controllers.

 5. Select the build agent that you want to configure and click Properties to open the Build
Agent Properties dialog box shown in Figure 13-4.

FIGURE 13-4 Build Agent Properties dialog

358	 Part	VI	 Team	Foundation	Build

The Display Name and Description fields are used to describe the build agent.

The Tags allow you to apply arbitrary strings to the agent that can be used to select agents
meeting certain criteria. Build definitions can define the tags that they require their agents
to have, and then Team Build will automatically select the appropriate agent. Common uses
for tags include specifying what operating system and other software the build agent has
installed on it, as well as the bit-ness of the build agent. Chapter 14 discusses how you can
configure build definitions to require agents with certain tags.

The Controller field allows you to select the build controller that the build agent is associated
with.

The Computer Name field is the host name of the build agent. This will be used by Team
Build to communicate with the build agent, so the Computer Name should be resolvable
from the build controller.

The Working Directory field allows you to specify which directory on the build agent
will be used as the working directory during the build. This default working directory
is $(SystemDrive)\Builds\$(BuildAgentId)\$(BuildDefinitionPath). For example, if you
have a Team Project called Contoso with a build definition called HelloWorldManual
 running on build agent 12, then the working directory would be C:\Builds\12\Contoso\
HelloWorldManual.

You might want to modify the working directory in these scenarios:

n If your build agent has multiple disk partitions, you might want to change the working
directory to use one of the additional disk partitions—for example, E:\$(BuildAgentId)\
$(BuildDefinitionPath).

n If the source code or build outputs have a particularly deep directory structure or
 particularly long file names, you may want to use a shorter path—for example,
E:\$(BuildAgentId)\$(BuildDefinitionId). This is particularly important when building
 database projects whose naming conventions result in very long file names.

You should usually include $(BuildAgentId) or $(BuildAgentName) and $(BuildDefinitionPath)
or $(BuildDefinitionId) in your working directory so that multiple build agents and definitions
can exist side by side in the build agent’s working directory. The variables available in the
Working Directory field are listed in Table 13-2.

TABLE 13-2 Working Directory Variables
Variable Name Description
BuildAgentId Contains the integer identifier for the Build Agent in the Team

Build database.

BuildAgentName Contains the Build Agent name.

BuildDefinitionId Contains the integer identifier for the Build Definition in the
Team Build database.

 Chapter 13 Team Build Quick Start 359

Variable Name Description
BuildDefinitionPath Contains the Team Project Name and the Build Definition

Name; for example, Contoso\HelloWorldManual.

Environment Variables Each environment variable on the build agent is available as
a property. For example, $(Temp) expands to C:\Documents
and Settings\TFSBUILD\Local Settings\Temp\ if the Team Build
service account is TFSBUILD.

You can toggle whether or not the build agent is enabled using the Build Agent Service Is
Enabled check box. When the agent is disabled, builds can still be queued on it, but they
won’t be processed until it’s enabled.

Clicking Test Connection will verify connectivity from the Team Foundation Server to the
build controller and from the build controller to the build agent. If the build controller
 detects that the build agent is offline, then it will automatically disable the build agent. Team
Build will automatically enable the agent when it comes back online, but you can force this to
occur earlier by clicking Test Connection.

Note Chapter 14 discusses the advanced configuration options that are available for build
 controllers and build agents.

Drop	Folders
The final piece of infrastructure that needs to be in place before you create a build definition
is a drop folder, where the build agent puts the build logs and outputs.

Because a Team Build environment may have multiple build agents, drop folders are
 typically located on a separate network share that all the build agents use. This means that
 developers, testers, and other users can access drop folders from a single central location.

The drop folder is typically a share on a file server of some description, but it could just as
easily be a Network Attached Storage device or some other shared storage device. There are
only a few requirements for the drop folder:

n It must be accessible via a UNC path from all of the build agents.

n The Team Build service account must have Full Control permission to it. This is required
for the build agent to be able to drop the build logs and outputs.

n It must have sufficient space available to store the number of builds retained by the
retention policies that you define.

360	 Part	VI	 Team	Foundation	Build

Tip There is nothing worse than builds failing simply because there is not enough space
 available in the drop location, especially because you don’t find this out until the very end of the
build process. It is recommended that you set up monitoring of the available space in the drop
location so that you are alerted if it falls below a threshold.

Creating a Build Definition
Now that the necessary infrastructure is in place, you can create your first build definition.
Build definitions define the information required to execute a build, such as what should be
built, what triggers a build, and how long these builds should be retained.

To create a new build definition, perform the following steps:

 1. Open Visual Studio 2010.

 2. Open Team Explorer.

 3. Expand a Team Project.

 4. Right-click Builds, and click New Build Definition.

 5. Enter the desired information on each of the tabs, as described in the remainder of this
section.

 6. Click Save.

General
The General tab shown in Figure 13-5 allows you to name the build definition and optionally
describe it. The description is displayed when a developer queues the build, so this can be
useful to communicate additional information about what the build definition is for.

You can also temporarily disable the build definition from here as well, which can be used to
prevent developers from queuing builds for obsolete or archived build definitions without
having to delete the build definition. If using gated check-ins (as discussed in the section
entitled “Gated Check-in,” later in this chapter) and if the build definition is disabled, then
developers will be able to check in without running a validation build.

Tip Be aware that the build definition name is often used from the command line and as a part
of the build agent’s working directory path, so you should minimize the length of the name (to
avoid exceeding maximum path lengths) and avoid unnecessary special characters, including
spaces.

 Chapter 13 Team Build Quick Start 361

FIGURE 13-5 Build Definition: General

Trigger
Team Build 2005 only provided the ability for builds to be triggered manually, either from
within Team Explorer, using the TfsBuild.exe start command, from Team Foundation Server
Web Access, or using the Team Build API. These methods of starting builds provided build
 administrators and developers with a large amount of flexibility in how they started builds,
but common requirements, such as scheduled builds and continuous integration, required
additional programming, scripting, or third-party solutions to implement.

These are now implemented in Team Build 2010 by allowing build administrators to specify
what triggers a build in the build definition. The triggers implemented are:

n Manual

n Continuous integration

n Rolling builds

n Gated check-in

n Scheduled

362	 Part	VI	 Team	Foundation	Build

These triggers are configured on the Trigger tab of the Build Definition window, shown in
Figure 13-6.

FIGURE 13-6 Build Definition: Trigger

Manual
The simplest (and default) trigger is that builds need to be started manually. This trigger
 provides exactly the same experience that was available in Team Build 2005, with the
 exception that in Team Build 2008 and later, builds can be queued rather than failing if a
build is already in progress.

Continuous Integration
Continuous integration (CI) is a set of practices from the agile community that provides early
warning of bugs and broken code. By building and testing each changeset that has been
checked in, any issues can be identified and resolved quickly, minimizing the disruption
caused to other developers.

When Team Build 2005 was released, many saw the lack of a CI capability as a huge
 oversight, especially given its popularity at the time. Microsoft rectified this oversight in Team
Build 2008 by adding a CI trigger that removes the need to rely on third-party CI solutions.

The CI trigger causes each check-in to the build definition‘s workspace to queue a new build,
as shown in Figure 13-7.

 Chapter 13 Team Build Quick Start 363

FIGURE 13-7 Changeset to queued build mapping for CI rolling builds

For long-running builds or workspaces that have a large number of check-ins, the CI trigger
may result in unacceptably long build queues. The Rolling Builds trigger minimizes this issue by
accumulating any check-ins to the build definition’s workspace until the currently running build
completes; once the build completes, a single build will be queued to build the changesets.

FIGURE 13-8 Changeset to queued build mapping for rolling builds

Even this trigger may result in build queues being dominated by a few build definitions. To
add a lag between the builds to allow builds from other build definitions to be executed,
you can enable the Build No More Than Every X Minutes option of this trigger, shown in
Figure 13-9, to ensure that the builds are not executed back to back.

FIGURE 13-9 Build Definition: Trigger (with lag)

364	 Part	VI	 Team	Foundation	Build

Gated Check-in
Team Build 2010 introduces a new trigger called Gated Check-in. This trigger behaves
 similarly to the CI trigger, except that it intercepts the developer’s changes before they’re
checked into version control, builds them, and then, if they build successfully, checks them in
on the developer’s behalf.

Tip If you think of CI as something that detects bad changes that have made it into version control,
then think of Gated Check-in as a mechanism to stop them getting in there in the first place.

Whenever a developer checks changes into a file or folder that is part of the workspace of a
build definition that uses the gated check-in trigger, they will be presented with the dialog
shown in Figure 13-10.

FIGURE 13-10 Gated Check-in dialog

This dialog informs the developer that their changes need to pass a validation build before
they’re checked in. At this point, the developer’s changes have been automatically shelved,
and they can choose whether they want to preserve their changes locally or not.

If they’ve been granted the Override Check-in Validation By Build permission, they also have
the option of bypassing the validation build and checking their changes in directly. See the
section entitled “Team Build Security,” later in this chapter, for more information about this
and other Team Build permissions.

Once a gated check-in build completes, the developer will be alerted via the Build Notifications
tray to either reconcile their workspace (if the build succeeds) or unshelve their changes (if the
build fails). You can also explicitly perform these actions when the build completes by right-
clicking the build in the Build Explorer or from the build’s Build Details window.

If you did not keep pending changes, then reconciling your workspace is unnecessary,
 although you should perform a get to bring your workspace up to date. If you did keep your

 Chapter 13 Team Build Quick Start 365

pending changes, then the Reconcile Workspace dialog (shown in Figure 13-11) can be used
to undo any redundant pending changes and bring these files up to date with the changeset
that was checked in.

FIGURE 13-11 Reconcile Workspace dialog

Schedule
The Schedule trigger allows builds to be scheduled to run on specific days at a certain time
rather than having to use third-party scheduling applications. By default, scheduled builds
will be skipped if no changes have been checked in since the previous build. However, this
behavior can be overridden by selecting the Build Even If Nothing Has Changed Since The
Previous Build check box.

Note One limitation of the scheduling functionality is that you can’t schedule a build to be
run multiple times a day. If you need this capability, you can either create a new build definition
for each time you’d like the build to be run or use a scheduler (such as the built-in Windows
Scheduler) to call the TfsBuild.exe command-line client to queue builds.

Workspace
The Workspace tab shown in Figure 13-12 allows you to define which version control folders
Team Build will get to execute the build. You can specify multiple folders to get by adding
additional working folder mappings with a status of Active, or you can prevent Team Build
from getting a folder by changing the status of the mapping from Active to Cloak, as
 demonstrated in Figure 13-13, which shows that the HelloWorld folder will download but not
the HelloWorld/HelloWorld.Tests folder.

366	 Part	VI	 Team	Foundation	Build

Tip If you create a build definition while you have a solution open, then the build definition’s
workspace mappings will default to the workspace mappings for the workspace containing the
solution.

FIGURE 13-12 Build Definition: Workspace tab

FIGURE 13-13 Build Definition: Workspace tab (multiple working folders)

 Chapter 13 Team Build Quick Start 367

By default, any other mapping that you add will be mapped to a local folder with the same
name as the source control folder. You can override the default by changing the value in the
Build Agent Folder column.

If one of the developers already has a workspace that contains the necessary working folder
mappings, you can click Copy Existing Workspace to copy the mappings from that workspace
into the build definition.

Tip The default working folder mapping on the Workspace tab will download all of the files
in the Team Project (or, if you have a solution open when you create the build definition, the
 workspace containing that solution). If these contain a large number of files and folders that
aren’t needed by a build definition, you can significantly improve its performance by mapping
only the required folders or by cloaking folders that aren’t required.

Build Defaults
The Build Defaults tab, shown in Figure 13-14, allows you to specify the default build
 controller that the build will be queued on and, optionally, where the build outputs will
be dropped when the build completes. These are defaults and can be overridden by the
 developer when they queue the build.

FIGURE 13-14 Build Definition: Build Defaults tab

368	 Part	VI	 Team	Foundation	Build

Process
Build definitions are linked to a Build Process Template that defines the build workflow
that will be used. In fact these Build Process Templates are implemented using Workflow
Foundation workflows. Chapters 15 and 16 discuss in detail how to customize existing Build
Process Templates, as well as how to create your own.

A default Build Process Template will be selected when you create your build definition,
but by clicking Show Details, you can select a different Build Process Template, as shown in
Figure 13-15.

FIGURE 13-15 Build Definition: Process tab

In addition to selecting the Build Process Template, this tab is where you specify the Build
Process Parameters. Each Build Process Template defines its own Build Process Parameters,
so if you select a different Build Process Template, then you will see different Build Process
Parameters selected.

In this section, we’ll cover the minimum Build Process Parameters for the Default Template
that are needed to get your new build definition working. Chapter 14 will cover all of
the Build Process Parameters for the Default Template and the Upgrade Template; and
Chapter 16, “Process Template Customization,” will cover how to customize Build Process
Templates and define your own Build Process Parameters.

 Chapter 13 Team Build Quick Start 369

The only Build Process Parameter that we need to provide to get our first build definition
working is Projects To Build. To provide this parameter, select Items To Build and click the
 ellipsis to open the Items To Build dialog. Now click Add, browse to the solution or project
that you want to build, and then repeat this for each additional solution or project that you
want to build. If the solutions or projects have a build order dependency, then you can use
the Move Up and Move Down buttons to arrange them in the order they need to be built.

Tip When you create a new build definition, if you have a solution open that’s in a
 version-controlled folder, then the path to that solution will be automatically placed into the
Projects To Build build process parameter.

If you don’t specify any configurations, then each solution’s default configuration will be
built, the Configurations tab shown in Figure 13-16 allows you to specify configurations
and platforms to be built for the selected solutions. If you specify multiple entries, then the
 solutions will be built multiple times (once per entry) and the build outputs placed in separate
subfolders of the drop folder. In this example, the solution will be built four times, and the
build outputs will be placed in the subfolders Release, Debug, Release\x86, and Debug\x86.

FIGURE 13-16 Configurations tab

Tip If the configuration or platform that you would like to build isn’t listed, you can type the
name of it into the appropriate combo box.

Retention Policy
In Team Build 2005, build administrators often ran out of disk space in their drop folder.
The reason for this is that Team Build 2005 did not provide a solution to automatically
 remove builds that were no longer required.

370	 Part	VI	 Team	Foundation	Build

Enterprising build administrators worked around this by either scripting the TfsBuild.exe
delete command or by using third-party solutions (such as the Build Clean-up service, written
by Mitch Denny).

Team Build 2008 and later solve this problem by introducing retention policies that allow
you to specify which builds should be retained based on criteria in the build definition. The
current version of this functionality is limited to retaining builds based on the type of build
(Manual And Triggered or Private), the outcome of the build (that is, successful, partially
succeeded, stopped, and failed) and the number of builds (for example, retain the last two
successful builds). If your requirements are more complex, such as wanting to retain builds
based on number of days or on build quality, then you will still need to implement your own
solution.

The Retention Policy tab, shown in Figure 13-17, allows you to configure how many builds will
be retained for each build outcome.

FIGURE 13-17 Build Definition: Retention Policy tab

Tip It’s easy to think that you wouldn’t want to retain any failed builds, but when builds are
removed by the retention policy, everything associated with them, including the build log, is
removed. If you don’t retain at least one failed build, it might be very difficult to determine the
cause of a build failure so that it can be resolved.

 Chapter 13 Team Build Quick Start 371

When a build is removed by the retention policy, the following items are also removed by
default:

n Build details

n Drop folder, including the build logs and binaries

n Test results

n Version control label

n Symbols

Note Although the build details are removed, they are still available for reporting in the
TFSWarehouse database and OLAP cube if the warehouse was updated between when the build
completed and when it was deleted.

In the What To Delete column, you can override this default for a particular build type and
outcome using the Build Delete Options dialog shown in Figure 13-18.

FIGURE 13-18 Build Delete Options dialog

Even if retention policies are enabled for a build definition, individual builds can still be
 explicitly retained or deleted as discussed in the next section.

Working with Build Queues and History
Congratulations—you’ve now created your first build definition. Once you have a build
 definition, you can use Team Build clients such as Visual Studio or the TfsBuild.exe command
line to queue builds and work with the build queues and history.

372	 Part	VI	 Team	Foundation	Build

Visual Studio
Developers spend the majority of their time in Visual Studio, so it is logical to be able to
work with builds from there. Team Explorer is the entry point to Team Foundation Server
 functionality within Visual Studio, and Team Build is no exception to this. The Builds node
within a Team Project allows build administrators and developers to queue builds and view
and manage build queues and individual builds.

Queuing a Build
To queue a build, you right-click the Builds node in Team Explorer and choose Queue New
Build to open the Queue Build dialog shown in Figure 13-19. Alternatively, you can right-click
a specific build definition and choose Queue New Build, which opens the same dialog but
will automatically select that build definition.

FIGURE 13-19 Queue Build dialog: General tab

The What Do You Want To Build? drop-down list will default to Latest Sources, but
 developers can change this to Latest Sources With Shelveset to queue a private build against
a shelveset containing the changes they’d like to validate. This is discussed in more detail in
the section entitled “Queuing a Private Build,” later in this chapter.

 Chapter 13 Team Build Quick Start 373

The Build Controller and Drop Folder For This Build will default to the values selected when
you created the new build definition, but developers can override these if desired.

The Position setting indicates where this build will be in the queue if queued on the selected
build controller. This is refreshed whenever a different build controller is selected, but there
can be a small delay while the position is calculated. You can also change the priority that the
build is queued with. As you might expect, the higher the priority, the higher in the queue it
will be placed.

On the Parameters tab, shown in Figure 13-20, the developer can override the parameters
specified in the build definition for this build process template. Chapter 14 discusses the
parameters available for the templates that ship with Team Build, and Chapter 16 discusses
how you can define parameters and custom parameter user interfaces for your custom build
process templates.

FIGURE 13-20 Queue Build dialog: Parameters tab

If developers always have to override certain parameters, they could create specific build
definitions specifying these parameters so they can just queue these build definitions instead.

Clicking Queue will then queue the build on the selected build controller and open the Build
Explorer window so you can monitor the progress of your build.

374	 Part	VI	 Team	Foundation	Build

Queuing a Private Build
Private builds (also known as buddy builds) allow developers to run a build based on the
 contents of a shelveset and, optionally, check in the shelveset after a successful build. This
can be used to detect compilation errors and test failures before changes are checked in and
can affect other developers.

In Team Build 2008, private builds were done by running MSBuild on the TFSBuild.proj in
the developer’s local workspace. This approach was simple, but it suffered from a number of
drawbacks:

n Private builds could be done only from the command prompt.

n The developer’s workspace could be out of date, and as such, the build and test results
would be inconsistent with the results of building and testing against the latest source code.

n Developers’ workstations needed all the prerequisites of the end-to-end build process
installed on them.

n Configuration differences between the developer’s workstation and the build machines
would reduce confidence in the changes actually building successfully when checked in.

n The desktop build process and the end-to-end build process had significant differences
that would further reduce confidence in the changes building successfully.

n The build outputs weren’t dropped in the same way as the end-to-end build process
and couldn’t be easily shared with others.

Team Build 2010 takes a different approach and allows developers to shelve their changes
and queue an end-to-end build against this shelveset and optionally check the changes in
automatically if the build completes successfully.

Note The only shipping template that supports private builds is the Default Template.

Private builds are queued against a build controller, just like triggered and manual builds
are, and as such, they use the same hardware, software, configuration, and build process as a
triggered or manual build. This increases a developer’s confidence that the changes will build
and test successfully when checked in.

In some circumstances, it can be seen as a negative that private builds no longer support
building on the developer’s workstation, but this can be enabled by installing a Team Build
controller and agent and choosing that controller when queuing the build. You should be
aware of the drawbacks discussed previously of using a developer’s workstation for validating
changes before check-in.

To enable a build definition to drop the build outputs for private builds, you must configure a
Private Drop Location. If you do not do this, then the build will still validate that the shelveset
compiles and passes tests, but the build outputs will not be dropped.

 Chapter 13 Team Build Quick Start 375

Tip You should drop private builds to a separate location from your triggered and manual builds
so they aren’t accidentally shipped or used as production builds. Private builds contain changes
that aren’t checked into version control, are based on non-versioned and auditable shelvesets,
and as such, they are not reproducible.

To set the Private Drop Location, edit the build definition, and in the Advanced category
of the Process tab, enter a UNC path in the Private Drop Location parameter, as shown in
Figure 13-21.

FIGURE 13-21 Private Drop Location parameter

The developer can queue a private build by performing the following steps:

 1. Right-click the build definition in Team Explorer and choose Queue New Build.

 2. In the What Do You Want To Build? drop-down list, select Latest Sources With
Shelveset.

 3. Click the ellipsis button and choose the shelveset containing the changes they want to
validate. Alternatively, you can create a shelveset based on the pending changes in the
workspace by clicking Create.

376	 Part	VI	 Team	Foundation	Build

 4. Choose the Check In Changes After Successful Build check box if you want your
 changes checked into version control if the build completes successfully.

 5. Click Queue.

Figure 13-22 shows the Queue Build dialog when queuing a private build of Hello World
Main for the shelveset Increase Exclamation.

FIGURE 13-22 Queue Private Build dialog

Note In the Team Build 2010 RTM, there is a bug such that the What Do You Want To Build
drop-down list sometimes becomes disabled and you won’t be able to select Latest Sources With
Shelveset. Restarting Visual Studio will usually resolve this.

Private builds need to strike the right balance between speed and completeness to ensure
that developers can validate their changes in a reasonable amount of time and still have
a high level of confidence that a successful private build will typically mean a successful
 triggered or manual build.

If private builds take too long or have too much friction, then developers will bypass them
and check in without validating their changes (although this can be prevented with the

 Chapter 13 Team Build Quick Start 377

gated check-in trigger discussed in the section entitled “Trigger,” earlier in this chapter). For
this reason, it can be beneficial to have a dedicated build definition for private builds that
is configured to reduce build times (such as doing incremental gets and builds, running a
smaller set of tests, and so on). Chapter 14 discusses the different properties that can be set
to modify the default build process provided by Team Build.

Build Explorer
The Build Explorer window, shown in Figure 13-23, is the main way to manage build queues
and view the build history. The Build Explorer can be opened by right-clicking the Builds
node in Team Explorer and choosing View Builds. You can also double-click a build definition,
which will open the Build Explorer and automatically filter it to builds of that build definition.

FIGURE 13-23 Build Explorer window

When first opened, the Build Explorer window will show only queued builds, which can be
confusing if you expect to see the completed builds as well (as was the case in Team Build
2005). To see completed builds, you need to click the Completed tab at the top of the
window.

Note Queued builds will remain on the Queued tab for up to five minutes after they complete.

378	 Part	VI	 Team	Foundation	Build

The Queued build list can be filtered by selecting the filter criteria from the Build Definition,
Status Filter, and Controller Filter lists at the top of the window. The Completed build list can
be filtered as well, but by Build Definition, Quality, Date, and to builds requested by you.

Cancelling, Stopping, Postponing, and Reprioritizing Builds
If a build is queued but isn’t running yet, you can right-click it and choose Cancel to remove
it from the queue. Similarly, if a build is currently running, you can stop it by right-clicking
the build in the Queued tab of the Build Explorer and choosing Stop.

More Info The actions described in this section are significantly easier to do than they were
in Team Build 2005, which required builds to be stopped using the TfsBuild.exe command-line
client (which is still possible, as described in the section entitled “Working with Builds from the
Command Line,” later in this chapter).

Rather than cancelling a queued build, you can postpone it by right-clicking it and choosing
Postpone. This places the build on hold, and it won’t be built until you right-click the build
again and clear the Postpone option.

Builds can be reprioritized to change their position in the queue by right-clicking the build,
choosing Set Priority, and then choosing the new priority; the queue will then be refreshed to
display the new queue order.

Important The ability to manage the build queue can be restricted via permissions. See the
section entitled “Team Build Security,” later in this chapter, for details.

Viewing	Build	Details
Double-clicking a running or completed build in the Build Explorer will open the Build Details
window. Note that you can’t open the Build Details window for a queued build.

This window has two main views: the Activity Log view, which shows an activity hierarchy
for the build; and the Summary view, which summarizes the build results. As shown in
Figure 13-24, both views show the build number, latest result, build quality, build history
graph, information about how the build was triggered and by whom, how long the build
ran, on which controller it ran, and when it completed. You can also change the build quality,
open the build’s drop folder, toggle retain indefinitely, and delete the build.

FIGURE 13-24 Build Details header

 Chapter 13 Team Build Quick Start 379

The build history graph provides an “at a glance” view of the build definition’s history. The
current build is indicated with a small triangle, the relative height of the bars indicates how
long the build ran, and the color indicates the build’s outcome (green for successful, orange
for partially succeeded, and red for failed). Clicking a bar will take you to the build details for
that particular build.

While the build is running, you can only see the Activity Log view (and it will automatically
refresh until the build completed) but once the build has completed, you will be shown the
Summary view by default. You can toggle between the views using the View Summary and
View Log hyperlinks at the top of the window.

The Activity Log view (shown in Figure 13-25) shows a tree of the activities being executed
and how long the activity took, which provides an easy way of monitoring the progress of
the build and allows you to quickly see what step caused the build to fail.

FIGURE 13-25 Build Details window: Activity Log

In Figure 13-26, you can see that the activities preceding compilation succeeded but the
compilation itself failed, and you can see exactly what project or configuration caused the
build failure. In addition, you can click that project’s MSBuild log file to open it.

380	 Part	VI	 Team	Foundation	Build

FIGURE 13-26 Build details for a failed build

The Summary view, shown in Figure 13-27, shows the latest activity on the build, a summary
of the build results for each configuration and platform (including compilation warnings
and errors, test results, and code coverage data), associated changesets and work items, and
 impacted tests. If the build fails, the Latest Activity section will link to the build failure work
item that is created automatically and show its current status, as well as to whom it’s assigned.

FIGURE 13-27 Build Details window: Summary

 Chapter 13 Team Build Quick Start 381

The Associated Changesets and Associated Work Items sections list the changesets and work
items that are associated with this build, but not earlier builds of the same build definition.
This information is extremely useful for providing traceability and in identifying what change
caused a build failure or to guide the testing of specific builds. Clicking the changeset
 number opens the changeset in the standard Changeset dialog, and clicking the work item
number opens the work item in the standard Work Item window.

Changing Build Qualities
Once a build has completed, it often goes through a number of other processes before it is
released. For example, a build might be installed in a testing environment, pass testing, and
then be released.

To provide the ability to track the status of a build, Team Build allows you to flag builds with
a build quality. The first step is to define the list of build qualities with which you’d like to
be able to flag builds. You can open the Edit Build Qualities dialog, shown in Figure 13-28,
by right-clicking the Builds node of Team Explorer and choosing Manage Build Qualities.
Figure 13-28 shows the default list of build qualities provided with Team Build, but these can
be customized to meet your requirements.

FIGURE 13-28 Edit Build Qualities dialog box

Once the list of build qualities has been defined, you can assign a build quality to a build
by opening the build’s Build Detail window and changing the drop-down list at the top, as
shown in Figure 13-29. You can also change the build quality from the Build Explorer by
right-clicking the build and choosing Edit Build Quality. Assigning or changing a build’s build
quality requires the user to be assigned the Edit Build Quality permission.

382	 Part	VI	 Team	Foundation	Build

FIGURE 13-29 Changing a build’s quality

Retaining Builds
There are situations where you may want to retain builds that otherwise would be removed
by the build definition’s retention policy, such as builds that you are in the process of testing
or that you have released to customers.

You can flag a build to be retained indefinitely by opening the build’s Build Details
 window and clicking Retain Indefinitely at the top. In addition, you can turn this flag on by
 right-clicking the build in the Completed tab of the Build Explorer window and choosing
Retain Indefinitely. If in the future you decide that you no longer want to retain the build, you
can repeat this process to turn off the Retain Indefinitely flag.

Deleting Builds
Sometimes you might want to explicitly remove a build even though retention policies
haven’t been enabled for the build definition or before the retention policy would have
 removed the build automatically. One reason you might want to do this could be to recover
disk space or to remove extraneous builds from the build history.

You can explicitly remove a build by opening the build’s Build Details window and clicking
Delete Build at the top. You can also delete the build by right-clicking the build on the

 Chapter 13 Team Build Quick Start 383

Completed tab of the Build Explorer window and choosing Delete. You will be prompted to
choose which build artifacts you want to delete, as shown in Figure 13-30.

FIGURE 13-30 Delete build options

Working	with	Builds	from	the	Command	Line
Build administrators (and most developers) are command-line fans at heart, and Team Build
provides a command-line client for queuing, stopping, and deleting builds. Even if you’re
not overly fond of using the command line, it also provides a simple way to script Team Build
commands as part of a larger process.

The command-line client is called TfsBuild.exe and is installed in the %ProgramFiles%\
Microsoft Visual Studio 10.0\Common7\IDE directory as part of the Team Foundation Client.
The easiest way to run it is from the Visual Studio 2010 command prompt, which includes this
directory in its default path.

The first parameter to TfsBuild.exe is the command to execute. The available commands are
listed in Table 13-3.

TABLE 13-3 TfsBuild.exe Commands
Command Description
Help Prints general help for the TfsBuild.exe command-line client as well as

command-specific help

Start Starts a new build either synchronously or asynchronously

Stop Stops one or more running builds

Delete Deletes one or more completed builds and their artifacts

Destroy Destroys (purges) previously deleted builds permanently

384	 Part	VI	 Team	Foundation	Build

To print general help and a list of available commands, run TfsBuild.exe help.

To print help for a specific command, run the following code:

TfsBuild.exe help <command>

where <command> is the command in question (for example, TfsBuild.exe help start).

Note Any arguments containing a space should be enclosed in double-quotation marks.

Queuing a Build
The TfsBuild.exe command line provides two variations of the start command. The first has
the following syntax, and its parameters are described in Table 13-4:

TfsBuild start /collection:<teamProjectCollectionUrl> /buildDefinition:<definitionSpec>
 [/dropLocation:dl] [/getOption:go] [/priority:p]
 [/customGetVersion:versionSpec] [/requestedFor:userName]
 [/msBuildArguments:args] [/queue] [/shelveset:name [/checkin]] [/silent]

TABLE 13-4 TfsBuild.exe Start Parameters
Parameter Description
/collection:<teamProjectCollection
Url>

The full URL of the Team Project Collection (for example,
http://TFSRTM10:8080/tfs/defaultcollection).

/buildDefinition:<definitionSpec> The full path of the build definition in the format \<Team
Project>\<BuildDefinitionName> (for example, \Contoso\
HelloWorldManual).

/dropLocation:<dl> If specified, overrides the drop location in the build definition.

/getOption:<go> If specified, states what version of the source code Team Build
will get. Table 13-5 lists the available get options.

/priority:<p> Set to either Low, BelowNormal, Normal, AboveNormal, or
High. This parameter will default to Normal if not provided.

/customGetVersion:<versionSpec> If /getOption:Custom is specified, this parameter must be
 supplied and specifies the version of the source code that
Team Build should get. The available versionspec options are
listed in Table 13-6.

/requestedFor:<userName> By default, the build will be requested for the user that runs
the TfsBuild.exe command line, or if you wish, you can pass
this parameter to request a build on behalf of another user if
you have sufficient permissions.

/msBuildArguments:<args> Quoted arguments to be passed to MSBuild when executing
TFSBuild.proj. For example, to enable optimizations and
 increase the logging verbosity to diagnostic, you would
specify /msBuildArguments:"/p:Optimize=true
/v:diag".

 Chapter 13 Team Build Quick Start 385

Parameter Description
/queue By default, the TfsBuild.exe command line will return an error

immediately if the build won’t be processed immediately by a
build controller (that is, if it needs to be queued). If the build
is processed immediately by a build controller, TfsBuild.exe
won’t return until the build has completed. If this parameter
is used, TfsBuild.exe will return as soon as the build has been
queued on the build controller.

/shelveset:name Includes a shelveset in the build by unshelving it after the get
has completed.

/checkin Specifies that the shelveset should be checked in if the build
completes successfully.

/silent If specified, suppresses any output from the TfsBuild.exe
 command line other than the logo information.

TABLE 13-5 Get Options
Option Description
LatestOnQueue Builds the latest version of the source code at the time the build is

queued.

LatestOnBuild Builds the latest version of the source code at the time the build starts
(this is the default).

Custom Builds the version specified by the /customGetVersion parameter.

TABLE 13-6 Versionspec Options
Name Prefix Example Description
Date/Time D D07/22/2010 or

D07/22/2010T18:00
Builds the source code at a specific date
and time. Any string that can be parsed
into a System.DateTime structure by the
.NET Framework is supported.

Changeset Version C C1133 Builds the source code at a specific
 changeset number.

Label L Lcheckpoint2label Builds the source code at the version
 specified by the label.

Latest Version T T Builds the latest version of the source code.

Workspace Version W Wmyworkspace; my-
username

Builds the version of the source code
 currently in the specified workspace.

The second variation of the start command provides the same functionality as the first but
mimics the syntax of the start command in Team Build 2005:

TfsBuild start <teamProjectCollectionUrl> <teamProject> <definitionName>
 [/dropLocation:dl] [/getOption:go] [/priority:p]
 [/customGetVersion:versionSpec] [/requestedFor:userName]
 [/msBuildArguments:args] [/queue]
 [/shelveset:name [/checkin]] [/silent]

386	 Part	VI	 Team	Foundation	Build

Stopping a Build
You can also stop a running build from the TfsBuild.exe command line by using the stop
command.

There are three variations of the stop command, and their parameters are described in
Table 13-7:

TfsBuild stop [/noPrompt] [/silent] /collection:<teamProjectCollectionUrl>
 /buildDefinition:<definitionSpec> <buildNumbers> ...

TfsBuild stop [/noPrompt] [/silent] /collection:<teamProjectCollectionUrl>
 <buildUris> ...

TfsBuild stop [/noPrompt] [/silent] <teamProjectCollectionUrl> <teamProject>
 <buildNumbers> ...

TABLE 13-7 TfsBuild.exe Stop Parameters
Parameter Description
/noPrompt If specified, suppresses TfsBuild.exe confirming you want

to stop the build

/silent If specified, suppresses any output from the TfsBuild.exe
 command line other than the logo information

/collection:<teamProjectCollectionUrl> The full URL of the Team Project Collection (for example,
http://TFSRTM10:8080/tfs/defaultcollection)

/buildDefinition:<definitionSpec> The full path of the build definition in the format \<Team
Project>\<BuildDefinitionName> (for example, \Contoso\
HelloWorldManual)

buildNumbers Space-separated list of build numbers to be stopped

buildUris Space-separated list of build Uniform Resource Identifiers
(URIs) to be stopped

Deleting a Build
You can also delete a build from the TfsBuild.exe command line by using the delete
command.

There are five variations of the delete command, and their parameters are described in
Table 13-8:

TfsBuild delete [/noPrompt] [/silent] [/preview] [deleteOptions:do]
 /collection:<teamProjectCollectionUrl> /buildDefinition:<definitionSpec>
 <buildNumbers> ...

TfsBuild delete [/noPrompt] [/silent] [/preview] [deleteOptions:do]
 /collection:<teamProjectCollectionUrl> <buildUris> ...

 Chapter 13 Team Build Quick Start 387

TfsBuild delete [/noPrompt] [/silent] [/preview] [deleteOptions:do]
 <teamProjectCollectionUrl> <teamProject> <buildNumbers> ...

TfsBuild delete [/noPrompt] [/silent] [/preview] [deleteOptions:do]
 /collection:<teamProjectCollectionUrl>
 /buildDefinition:<definitionSpec>
 /dateRange:<fromDate>~<toDate>

TfsBuild delete [/noPrompt] [/silent] [/preview] [deleteOptions:do]
 /collection:<teamProjectCollectionUrl>
 /dateRange:<fromDate>~<toDate> <teamProject>

TABLE 13-8 TfsBuild.exe Delete Parameters
Parameter Description
/noPrompt If specified, suppresses TfsBuild.exe confirming that you want to

delete the build.

/silent If specified, suppresses any output from the TfsBuild.exe
 command line other than the logo information.

/preview Outputs a list of the artifacts that would be deleted without
 actually deleting them.

/collection:<teamProjectCollecti
onUrl>

The full URL of the Team Foundation Server (for example,
http://TFSRTM10:8080/tfs/defaultcollection).

/buildDefinition:<definitionSpec> The full path of the build definition in the format \<Team
Project>\<BuildDefinitionName> (for example, \Contoso\
HelloWorldManual).

/deleteOptions:<do> If specified, specifies which build artifacts should be deleted.
Table 13-9 lists the available delete options. Multiple delete
 options can be comma-separated (for example, /deleteOptions:
Details,DropLocation). The delete command can be run multiple
times on the same builds if different delete options are specified.

/dateRange:<fromDate>~<toDate> The date range of builds that should be deleted. Dates can be
specified in any .NET-parsable date format.

buildNumbers Space-separated list of build numbers to be deleted.

buildUris Space-separated list of build URIs to be deleted.

TABLE 13-9 Delete Options
Option Description
All Deletes all the build artifacts listed in this table.

Details Marks the build as deleted so that it is hidden in the Team Foundation
Client. The build will be permanently deleted only if purged.

DropLocation Deletes the build outputs from the build’s drop location.

Label Deletes the build’s version control label.

TestResults Deletes the build’s test results.

Symbols Deletes the build’s symbols from the symbol store.

388	 Part	VI	 Team	Foundation	Build

Team Build Security
Securing Team Build is a critical part of configuring Team Foundation Server and installing
new build agents. Even if your Team Foundation Server environment is safely contained
 within your corporate firewall, this is still important to prevent inadvertent changes to your
build agents and the builds that they produce.

Service Accounts
The first consideration when installing Team Build is to decide under what account to run the
Team Build service. There are two options:

n NT AUTHORITY\NETWORK SERVICE This built-in Windows account is a
limited-privilege account that can access network resources using the computer
 account’s credentials. The account does not have a password and cannot be used to
log on to the computer interactively or remotely. For more information about the
NETWORK SERVICE account, refer to http://www.microsoft.com/technet/security/
guidance/serversecurity/serviceaccount/sspgch02.mspx#EBH.

n Domain Account Team Build can also run as an arbitrary domain account. Using
a domain account allows you to log on to the build machine using this account to
 install or configure applications that use per-user settings (which you can’t do with the
NETWORK SERVICE account because you can’t log on interactively with it). This can
also be useful to debug build problems related to permissions on the build machine or
other network resources.

To change the service account used by a build agent or build controller, you should use the
Team Foundation Server Administration Console rather than the Services MMC snap-in because
it will correctly configure the permissions required by Team Build. The steps are as follows:

 1. Log on to the build agent or controller for which you want to change the service
account.

 2. Open the Team Foundation Server Administration Console (shown in Figure 13-31).

 3. Click Stop at the top of the console to stop the build service.

 4. Click Properties (shown in Figure 13-32).

 5. Enter new credentials for the build service.

 6. Click Start.

Note The Team Build service account should not need to be a member of the build machine’s
Administrators security group. The account should be granted the specific permissions needed
by your build processes rather than granting it administrator access to the build machine. This is
to minimize the damage of malicious or badly written build scripts.

 Chapter 13 Team Build Quick Start 389

FIGURE 13-31 Team Foundation Server Administration Console

FIGURE 13-32 Configure Team Build service account

390	 Part	VI	 Team	Foundation	Build

The account also needs to be added to the Project Collection Build Service Accounts group
for the Team Project Collection for which it will execute builds, as shown in Figure 13-33.
This group grants Team Build access to the source, as well as the Team Project Collection
 permissions required to execute builds. To do this, perform the following steps:

 1. Open Visual Studio 2010.

 2. Open Team Explorer.

 3. Right-click the Team Project Collection.

 4. Click Team Project Collection Settings.

 5. Click Group Membership.

 6. Select the Project Collection Build Service Accounts security group.

 7. Click Properties.

 8. Click Windows User Or Group.

 9. Click Add.

 10. Select the domain account that the Team Build service is running as, or the build
 machine’s computer account if it is running as NT AUTHORITY\NETWORK SERVICE.

 11. Click OK.

 12. Click OK.

 13. Click Close.

FIGURE 13-33 Build Services Security Group Properties dialog

 Chapter 13 Team Build Quick Start 391

Note The Team Build service account should not be the Team Foundation Server service
 account or a member of the Project Collection Administrators, Project Collection Service
Accounts, or [Team Project]\Project Administrators security groups. If the Team Build service
account is a member of any of these groups, then malicious or badly written build scripts could
cause irreparable damage to the Team Foundation Server.

The Team Build service account also requires Full Control file system permission to the drop
location.

Permissions
Permissions to both Team Foundation Server or Windows users and groups can be allowed
or denied (or left unset). When there is a conflict between allow and deny permissions for a
user, deny will take precedence. For more information about how permissions are granted
and evaluated in Team Foundation Server, refer to http://msdn.microsoft.com/en-us/library/
ms252587.aspx.

Team Build provides a number of Team Project Collection–level permissions for controlling
access to Team Build functionality. These permissions are detailed in Table 13-10.

TABLE 13-10 Team Project Collection–Level Permissions
Permission Description Granted by Default To
Manage Build
Resources

Permits the user to manage the build controllers
and build agents associated with the Team Project
Collection, as well as managing the Use Build
Resources and View Build Resources permissions.

Project Collection
Administrators; Project
Collection Build
Administrators; Project
Collection Build Service
Accounts

Use Build
Resources

Permits the user to reserve and allocate build
agents. This permission should be granted only to
build service accounts.

Project Collection
Administrators; Project
Collection Build Service
Accounts

View Build
Resources

Permits the user to see the build controllers and
build agents associated with the Team Project
Collection.

Project Collection
Administrators; Project
Collection Build
Administrators; Project
Collection Build Service
Accounts; Project
Collection Valid Users

The permissions in Table 13-11 can be managed at either the Team Project level (by
 right-clicking Builds in Team Explorer and clicking Security) or at the build definition level
(by right-clicking the build definition in Team Explorer and clicking Security). Permissions
that haven’t been overridden at the build definition level will inherit the Team Project level
permissions.

392	 Part	VI	 Team	Foundation	Build

Certain Team Build operations (such as creating build definitions and modifying permissions)
are limited to users that have the Destroy Builds, Manage Build Queue, and Delete Build
Definition permissions.

TABLE 13-11 Team Project– and Build Definition–Level Permissions
Permission Description Granted by Default To
Delete Build
Definition

Permits the user to delete build definitions. Project Collection
Administrators; [Team
Project]\Builders;
[Team Project]\Project
Administrators

Delete Builds Permits the user to delete completed builds. Project Collection
Administrators; [Team
Project]\Builders;
[Team Project]\Project
Administrators

Destroy Builds Permits the user to permanently
delete completed builds.

Project Collection
Administrators; [Team
Project]\Builders;
[Team Project]\Project
Administrators

Edit Build
Definition

Permits the user to create new build definitions
(only if applied at the Team Project level) or to
edit existing build definitions.

Project Collection
Administrators; [Team
Project]\Builders;
[Team Project]\Project
Administrators

Edit Build Quality Permits the user to set or change the build
quality for an individual build.

Project Collection
Administrators; Project
Collection Build Service
Accounts; [Team Project]\
Builders; [Team Project]\
Contributors;
[Team Project]\Project
Administrators

Manage Build
Qualities

Permits the user to maintain the list of build
 qualities.

Project Collection
Administrators; [Team
Project]\Builders;
[Team Project]\Project
Administrators

Manage Build
Queue

Permits the user to cancel, postpone, or change
the priority of queued builds. Users without this
permission can still cancel their own builds, but
they won’t be able to postpone or change the
priority of any builds, including their own.

Project Collection
Administrators; [Team
Project]\Builders;
[Team Project]\Project
Administrators

 Chapter 13 Team Build Quick Start 393

Permission Description Granted by Default To
Override Check-In
Validation By Build

Permits the user to bypass gated check-in by
checking changes in directly without running a
gated check-in build.

Project Collection
Administrators; Project
Collection Build Service
Accounts

Queue Builds Permits the user to queue a new build. Project Collection
Administrators; Project
Collection Build Service
Accounts; [Team Project]\
Builders; [Team Project]\
Contributors;
[Team Project]\Project
Administrators

Retain Indefinitely Permits the user to exclude builds from the reten-
tion policy.

Project Collection
Administrators; [Team
Project]\Builders;
[Team Project]\Project
Administrators

Stop Builds Permits the user to stop a build that’s in progress.
Users without this permission can still stop their
own builds.

Project Collection
Administrators; [Team
Project]\Builders;
[Team Project]\Project
Administrators

Update Build
Information

Permits the user to add arbitrary information to
the build. This permission should be granted only
to build service accounts.

Project Collection Build
Service Accounts

View Build
Definition

Permits the user to view the details of a build
definition.

Project Collection
Administrators; Project
Collection Build Service
Accounts; Project
Collection Test Service
Accounts; [Team
Project]\Builders; [Team
Project]\Contributors;
[Team Project]\Project
Administrators; [Team
Project]\Readers

View Builds Permits the user to view queued and completed
builds.

Project Collection
Administrators; Project
Collection Build Service
Accounts; Project
Collection Test Service
Accounts; [Team
Project]\Builders; [Team
Project]\Contributors;
[Team Project]\Project
Administrators; [Team
Project]\Readers

394	 Part	VI	 Team	Foundation	Build

The Team Project–level permissions in Table 13-12 are not specific to Team Build but are
granted to build service accounts by default.

TABLE 13-12 Other Build-Related Permissions

Permission Description Granted By Default To
Create Test Runs Permits the user to publish test results against any

build. Also permits the user to modify test runs or
remove test results from any build. Note that this
permission can be set only at the Team Project
level.

Project Collection
Administrators; Project
Collection Build Service
Accounts; Project
Collection Test Service
Accounts; [Team
Project]\Builders; [Team
Project]\Contributors;
[Team Project]\Project
Administrators

View Project-Level
Information

Permits the user to view Team Project–level group
membership and permissions.

Project Collection
Administrators; Project
Collection Build Service
Accounts; Project
Collection Test Service
Accounts; [Team
Project]\Builders; [Team
Project]\Contributors;
[Team Project]\Project
Administrators; [Team
Project]\Readers;

View Test Runs Permits the user to view test runs for the Team
Project.

Project Collection
Administrators; Project
Collection Build Service
Accounts; Project
Collection Test Service
Accounts; [Team
Project]\Builders; [Team
Project]\Contributors;
[Team Project]\Project
Administrators; [Team
Project]\Readers

 589

Index

Symbols and Numbers
!= conditional operator, 16
!Exists conditional operator, 16
$(Property Name) syntax, 6, 26–27
$* symbol, 233
% (percent sign), 13, 42, 317
%HV syntax, 13, 42, 317
" escape sequence, 340
(UserRootDir)\Microsoft.Cpp.$(Platform).user.props, 311
* (asterisk), 22
* descriptor, 37–38
** descriptor, 37–38, 41
** wildcard declaration, 43–44
, (comma), 30
.bak files, 49
.cmd files, 194
.cpp files, 294
.sln file, 298
.targets file, 270, 295, 325–26
.vcxproj project file, 267–69
.wpp.targets, 295, 534, 551, 561–62, 565–66
.zip file package, 493
/ (slash), 39
/consoleloggerparameters (/clp) switch, 19
/distributedFileLogger (/dl) switch, 19
/filelogger (/fl) switch, 19, 132
/fileloggerparameters (/flp) switch, 19, 132–33
/help (/–), 18
/ignoreprojectextensions (/ignore), 19
/logger (/l) switch, 19, 132
/maxcpucount (/m) switch, 19, 197, 274
/MP option, 274
/noautoresponse (/noautoresp), 19
/noconsolelogger (/noconlog), 19
/nodeReuse (/nr), 19
/nologo switch, 6, 18
/preprocess (/pp) switch, 20, 64, 205, 283
/property

<n>=<v> (/p) switch, 19–20, 30, 197
/target (/t) switch, 19, 198
/toolsversion (/tv) switch, 19
/validate (/val) switch, 19
/verbosity (/v) switch, 19, 134
/version (/ver) switch, 18
; (semicolon), 14, 18, 30, 35–36, 47, 235
? descriptor, 37
@ reserved character, 42
@(ItemType) syntax, 9, 14, 34, 36, 42
@file, 18
_ (underscore), 205, 238
_CheckForCompileOutputs, 16–17

_CheckForInvalidConfigurationAndPlatform, 18
== conditional operator, 16
32-bit program folder, 28

A
abstract classes, 90, 140–46
AccessedTime metadata, 12, 41
Activity Libraries, 455, 460–61
Activity Log view, 378–79
AddAttributeTaskAction, 239
AddElement, 239
adding

activities to Workflow Foundation (WF), 439–40
an empty Activity to process template library, 459–60
build agents, 412
custom targets, 324–26
custom tools, 294–97
docx2HTML tool, 337–38
hyperlinks, 478
parameters, 461–62, 511–12, 550–53
platform toolsets, 338–42
platforms, 298, 338–42
references, 440–44, 461
steps to build process, 233–35

Additional Dependencies field, 321
AdditionalProperties metadata, 197, 202, 226–31
adjustability, 271
AdminContact metadata, 55–59
AfterBuild target, 21–22, 71–72, 228–30, 233–35
AfterClean target, 71, 241–42
AfterCompile target, 71
AfterPublish target, 71
AfterRebuild target, 71
AfterResGen target, 71
AfterResolveReferences target, 71
AfterTargets attribute, 72–73, 320, 325
agent reservation, 398–99
AgentScope, 469–70, 476
Alias parameter, 261
All target, 49, 54
AllConfigurations target, 178, 180
Analyze Test Impact process parameter, 404
AnyEventRaised build event, 135
AnyHaveMetadataValue item function, 82
AppDomainIsolatedTask class, 90
Append parameter, 133
Append property, 152
appHostConfig, 501
Application property sheets, 282
appSettings node, 526
archiveDir provider, 501

590 arguments

arguments
command-line, 128, 158
-declareParam, 513–15
Workflow Foundation (WF), 428–29

Arguments Designer, 428–29, 444, 447–48
array variables, 24, 34, 97–101
aspnet_regiis.exe, 256–57
AspNetCompiler, 259
assemblies

deployment of custom, 483–84
loading dependent, 485
setting version, 223–25, 231

Assemblies property, 206
AssemblyFile attribute, 89, 126
AssemblyName attribute, 89
AssemblyName property, 31–33
AssignTargetPathsDependsOn property, 76
Associated Changesets and Work Items, 381, 407
asterisk (*), 22
attrib command, 195–96
attributes, 5, 529–30
authentication, 411, 415
auto provider, 501

B
batch files, 232, 317
BatchFileTask, 112–15
BatchFileTaskFactory.cs file, 112–14
batching, 45, 338

building multiple configurations using, 177–80
over multiple values, 175–77
overview, 163–65
qualified statements, 175
target, 163, 176, 179–80
task, 163–65, 176–79
using multiple expressions, 181–83
using shared multidata, 183–88

BeforeBuild target, 21–22, 71, 228–30, 233–35, 258–60
BeforeClean target, 71, 241–42
BeforeCompile target, 71
BeforePublish target, 71
BeforeRebuild target, 71
BeforeResolveReferences target, 71
BeforeTargets attribute, 72–73, 320, 325
BerforeResGen target, 71
binaries, 28
bold fonts, 291
buddy builds, 348, 374–77, 400, 407
build agents, 471

configuring, 357–59
in Team Build architecture, 349
installing, 356–57
running multiple, 412
setting up, 355–56

build controllers, 349, 373, 484
concurrency, 413
configuring, 354–55

in Team Build architecture, 349
installing, 353–54
multiple, 350
setting up, 352–53

Build Customization
architecture, 294–97
converting, 313
creating, 332–38
targets files, 326
usage, 324
user interface, 296

Build Defaults tab, 367
build definitions

creating, 358, 360–67, 418
deployment, 558–59
process parameters, 461–62
querying, 417–18

Build Deployment Package, 490–91
build details, 378–81, 471
Build directory, 471
build events

IEventSource, 135–36
Visual C++ 2010, 317–19

Build Explorer, 377–78
build files, master, 200–2, 228–30
build history, 379, 421–22

querying, 421–22
Build Log File property, 271–72
build machines, 351–52
Build Manager, 270–71, 274
Build number, 397–98, 473
build operation, 270
build parallelism, 273–78
build process

adding custom targets, 324–26
adding custom tools to, 294–97
adding steps into, 233–35
C# projects, 64
command-line, 268, 271
command-line switches for maximum, 19
extending, 21–22, 69–77
Integrated Development Environment (IDE),

268, 270–71
multiple project, 225–31
updating configuration files, 237–39
Visual C++, 269

build process parameters, 368–69
build process template, 351, 368–69
build qualities, 381
build queues

calling, 371–73
cancelling, 378
command-line, 384–85
deleting, 386
postponing, 378
process parameters, 461
querying, 420–21
reprioritizing, 378

	 configuring	 591

stopping, 378, 386
using API, 419–20

build scripts
creating reusable elements, 204–6
invoking reusable target files by calling, 213–14
on Team Foundation Server, 352

build service hosts, 416–17
BuildActivity attribute, 473–74
Buildagents, 350–51
BuildAll target, 171
BuildDependsOn list, 21
BuildDependsOn property, 56, 74–76, 243, 257
BuildEngine property, 88
BuildEnvironment object, 471
BuildEventArgs, 136
BuildFinished build event, 135, 144–46
BuildinParallel property, 197
BuildInParallel property, 231–32
BuildMessageEventArgs, 146
builds

cancellable, 378
deleting, 382–83
distributed, 351
incremental. See incremental builds
retaining, 382
working with, from the command line, 383

BuildStarted build event, 135, 144–46
BuildSuffix property, 319
BuildWarningEventArgs object, 136
BuiltProjectOutputGroupDependsOn property, 76
business logic, 423

C
C#

deleting files, 59
extending the build process, 73
importing files and targets, 64
inline task in, 101–2
OnError element, 235

CallCompile, 235
Cancel method, 118
cancellable builds, 378
category error message component, 204
category field, 465
certificates, 411
chaining, property function, 78–79
changesets, 381, 400, 407
CheckInGatedChanges activity, 470
CL task, 273–74, 279–80
classes

inline task generation, 108
static property function for, 79–80

ClCompile type, 294
clean process

custom files, 190, 241–43
FileWrites item list, 239–41
implementation, 56–60

manual, 241
Visual Studio, 241

Clean target, 341, 399
Clean Workspace type values, 399
CleanDependsOn property, 76, 242–43
CleanDestFolder target, 189–90
CleanupTask method, 112
ClearMetadata item function, 82
code activities, 433
code element, 101
code error message component, 204
CodeActivity, 477–78
CodeDOM, 108
Collect phase, 530–36
comma (,), 30
Command Line Arguments, 128, 158
Command Line category, 335–36
Command parameter, 195
Command property, 193
command-line build, 268, 271, 274, 276
command-line conversion, 314–15
command-line field, 320, 322
command-line parameters, 33
command-line properties, 30–32
command-line switches, 18–20, 132
communications ports, changing, 409–10
Compilation page, 248
compilations, concurrent, 275–76
Compile item, 68
CompileDependsOn property, 76
CompileLicxFilesDependsOn property, 76
compiler switches, 310
compiler tool, 294
composite activities, 433
compress tool, 321
CompressedFiles parameter

DNZip, 252
JSCompress task, 255

CompressionLevel parameter, 252
CompressJavaScript target, 255
compressor, 254–56
CompressPath parameter, 252
ComputeIntermediateSatelliteAssembliesDependsOn

property, 76
condition attribute, 7, 15–17, 64, 224
conditional operators, 16
configuration files, 177–80, 237–39
Configuration Manager, 297–98
Configuration metadata, 171
Configuration property, 7, 24–26, 55, 207, 308
Configurations tab, 369
Configurations To Build process

parameter, 401
configuring

build agents, 357–59
build controllers, 354–55
Clean Workspace type values, 399
project level build parallelism, 273–74

592 connection strings

configuring, continued
Team Build Service, 409–13
verbosity in IDE, 271

connection strings, 258
Connections pane, 494
connectivity verification, 359
console loggers, 130–32

command-line switch, 19
parameters, 131
properties, 147
verbosity setting, 232

ConsoleLogger class, 146
content type elements, 329
ContentFilesProjectOutputGroupDependsOn

property, 76
contentPath provider, 501
ContentType elements, 329
context, 290–92
continuous integration (CI), 348, 362–63
contracts, 205, 212
Control flow tab, 447
Controller field, 358
conversion

Build Customization, 313
command-line, 314–15
file, 311–15
Integrated Development Environment (IDE), 311–15
microsoft.Cpp.$(platform).user.props, 313
project file, 311–15
property sheet, 313
solution file, 311–15
upgrade log file, 314

conversion, file, 311–15
ConvertWorkspaceItems, 470
CopiedFiles property, 38
Copy Existing Workspace, 367
Copy Local property, 458
Copy task, 36–41, 56–59, 195
Copy To Output Directory, 126–27
CopyBeforeBuild target, 250
CopyFilesToDest target, 189–92
copying

files, 39
files to another location, 56–59
process templates to output directories, 460
to another location, 188–89
to directories, 168–70
to drop location, 407
Web Deployment Project (WDP) files, 251
working folder mappings, 367

CopyOutputFiles target, 56
CopyPipelinesFiles task, 251
CopyToOutputDirectory metadata, 167, 184–85
Core Windows Libraries property sheets, 282
CoreBuild property, 76
CoreBuild target, 217, 229
CoreCleanDependsOn property, 76
CoreFxCop, 218–19

CoreResGenDependsOn property, 76
CoreTest, 235
CppClean target, 325
Create Test Runs Permission, 394
createApp provider, 501
CreateCustomManifestResourceNamesDependsOn

property, 76
CreatedTime metadata, 12, 41
CreateProperty task, 32–33
CreateSatelliteAssembliesDependsOn property, 76
CreateTask method, 114–15
CreateVirtualDirectory task, 261–62
creating

Build Customization, 332–38
build definitions, 358, 360–67, 418
custom activities, 434–37, 473–75
custom activity libraries, 460–61
dynamic items, 55–56
dynamic properties, 53–55
reusable elements, 204–6
work items, 409
work items for build failure, 409
Workflow projects, 438–39

custom activities, 434–37, 473–75
Custom Build Rule, 333
Custom Build Step, 319–22
Custom Build Tool, 322–24
custom tasks

creating, 88–90
requirements, 87
versus executables, 116

CustomActivitiesAndExtensions.xml, 428
CustomAfterBuild target, 75–76
CustomAfterFxCop target, 217
CustomAfterMicrosoftCommonTargets, 233–35
CustomBeforeBuild target, 240–41
CustomBeforeMicrosoftCommonTargets, 233–35
CustomClean target, 243
CustomCopyOutput target, 72
CustomErrorRegularExpression property, 194, 203
CustomEventRaised build event, 136
CustomFileLogger, 148–51, 158
CustomWarningRegularExpression property, 194, 203
Cygwin, 338

D
Database Scripting Options, 540
databases

deployment of, 493, 502, 539–42
Team Project Collection, 349

DateUnformatted property, 94
DateValue property, 94
dbFullSql provider, 501–2, 543–44
Debug mode, 229
Debug symbols, 493
Debugger.Launch() method, 125–26, 158
debugging loggers, 157–59

 Exec command 593

debugging tasks, 124–28, 453
DebugSymbolsProjectOutputGroupDependsOn

property, 76
DebugView tool, 332
-declareParam, 205, 511, 513–15, 551
default targets, 17–18, 28
DefaultTargets element, 269
defaultValue argument, -declareParam, 515
Delete Build Definition Permission, 392
Delete Builds Permission, 392
delete verb option, 499
DeleteSomeRandomFiles target, 191
DeleteTempFile method, 118
dependent projects

build parallelism, 274
in project file, 313
mutually exclusive, 351
predefined target, 76
project-level, 274
Web Application Project (WAP), 258–60

DependsOn properties, 205
DependsOnTargets attribute, 74, 76
deployment

database, 493, 502, 539
of extensions, 342–43
of web applications, 490
to multiple destinations, 560–64
using Web Deployment Project (WDP), 260–63

DeployOnBuild, 549
DeployTarget, 549
DeployToServer target, 261
description field, 322, 465
design-time experience, 295, 326–27
DesignTimeResolveAssemblyReferencesDependsOn

property, 76
DestFolder property, 49
DestinationFiles property, 38–41, 51
DestinationFolder property, 38–40
destinaton targets, 500
Destinaton targets, 490
Destroy Builds Permission, 392
detailed verbosity setting, 131, 133
detailedSummary (/ds), 20
devenv.exe, 314
diagnostic output, 271
diagnostic verbosity setting, 131, 133
directories, 28, 285–87, 352
Directory metadata, 12, 41
DirectoryName item function, 82
dirPath provider, 501
dirs.proj file, 131
DisableConsoleColor parameter, 131
DisableMPLogging parameter, 131
disabling

changeset analysis, 407
msdeploy.exe rules, 504
source indexing, 405
tests, 404

disk space, 352
Distinct item function, 82
DistinctWithCase item function, 82
distributed loggers, 159
DNZip, 252
DocumentationProjectOutputGroupDependsOn

property, 76
Docx2HTML tool, 327–28, 333–35, 337–38
Domain Account, 388
DoNotDeleteRule, 505
DOS macros, 232–33
DoWhile activity, 426
drop folders, 350, 359–60, 373
drop location, 407–8
DropLocation property, 7
dump verb option, 499–500

E
EchoOff property, 119
Edit Build Definition Permission, 392
Edit Build Quality Permission, 392
editors

expression, 446
metadata, 464–66
property, 292
user interface, 466–68

EnableMPLogging parameter, 131
EnablePackageProcessLoggingAndAssert, 533, 536, 538
enabling

msdeploy.exe rules, 504
native multi-targeting, 300
source service support, 405
trace messages, 332

Encoding parameter, 133, 255–58
EncryptWebConfig target, 257
environment variables, 119, 195, 317

expansion, 470
extracting values from, 26–27

error messages, 203–4, 271
Error task, 235–37
ErrorOutputFile property, 207
ErrorRaised build event, 135
errors, 144, 203–4

handling, 235–37, 444–45
logging, 144–46
metadata batching, 185
property page, 331

ErrorsOnly parameter, 131
evaluation, 60–63, 291–93
EventSource, 135
exception handling, 430–33, 482
ExcludeApp_Data, 533–34
ExcludeCategory property, 207
ExcludeFromBuild, 250, 252
ExcludeFromPackageFolders, 535
ExcludeGeneratedDebugSymbol, 533–34
Exec command, 245

594 Exec task

Exec task, 21, 116, 193–96, 340
executables

benefits of, 116
writing, 120–24

Execute After targets, 320–22
Execute Before targets, 320–22
Execute method, 88, 90
ExecuteTargets parameter, 235
ExecuteTool method, 118
Exists conditional operator, 16
Exists function, 16–17
ExitCode property, 119, 193
ExpandEnvironmentVariables, 470
Expression editor, 446
expressions, batching using multiple, 181–83
extensiblity, 205, 213, 306–7
Extension metadata, 12, 41, 49
Extension types, 474–75
extensions, 28

command-line switch for, 19
deployment of, 342–43
property, 29

ExtensionTargets, 325–26
ExtensionTasksPath property, 224
external tools

error messages, 203–4
Exec task, 193–96
FxCop, 215–19
MSBuild task, 197–202
NUnit, 206–14
reusable build elements, 204–6

ExtractPath parameter, 252

F
FactoryName property, 112
file extensions, 267–69, 295
file loggers

attachment, 132–34
command-line switch, 19
multiple, attachment of, 231–32

file name, 29
File tracker, 279–81
FileExtension type, 329
file-level build parallelism, 273–78
FileLogger class, 146
FileLoggerBase class, 152–53
Filename metadata, 12, 41, 49
FileNames parameter, 252
filePath provider, 501, 507
files. See also Project files

Custom Build Tool, 322
deleting, 59–60
importing, 64–68
supported input and output types, 95–97
transfering, using FTP, 253–54

Files parameter, 255
FilesForPackagingFromProject, 537–38

FileWrites item list, 59, 225, 239–41
Filter property, 399
filters, 420
FindMatchingFiles, 470
flattening items, 36
Flowchart activity, 423
ForceImportAfterCppTargets, 307
ForceImportBeforeCppTargets, 307
ForceNoAlign parameter, 131
ForEach<T> activity, 448–49
ForeceImportAfterCppTarget, 307
ForeceImportBeforeCppTarget, 307
FormatErrorEvent method, 141
FormatWarningEvent method, 141
framework version, 302
FrameworkVersionXPath parameter, 257
Ftp, 252

task parameters, 252–53
transfer files using, 253–54

FtpFiles target, 254
FullBuildDependsOn property, 229
FullPath metadata, 12, 41
FxCop, 215–19

G
gacAssembly provider, 501
gated check-in builds, 348, 364–65, 409, 470
General tab, 360
GenerateCode target, 72
GenerateCommandLineCommands method, 118, 123
GenerateFullPathToTool method, 116, 118, 123
GenerateManifestsDependsOn property, 76
GenerateResource task, 190
GenerateResponseFileCommands method, 118
Get Options, 385
GetBuildAgent, 471
GetBuildDetail activity, 459, 471
GetBuildDirectory, 471
GetBuildEnvironment, 471
GetCopyToOutputDirectoryItemsDependsOn

property, 76
GetDate task, 93–95
getDependencies, 499
GetFrameworkPath task, 257–58
GetFrameworkPathsDependsOn property, 76
GetMetadata method, 98
getParameters, 499
GetProcessStartInfo method, 118
GetPropertyValue method, 115
GetRedistListsDependsOn property, 76
GetResponseFileSwitch method, 118
GetService<T> method, 416
getSystemInfo, 499
GetTargetPathDependsOn property, 76
GetTaskParameters method, 112
GetTeamProjectCollection, 471
GetWorkingDirectory method, 118

 items 595

global assembly cache (GAC), 89, 462
global exception notification, 432–33
global properties, 199, 228
GNU Compiler Collection (GCC) toolset, 338–41
Guids property, 107–9

H
HandleErrors target, 235–37
HandleTaskExecutionErrors method, 118
hardware configuration, 297, 351–52
HelloLogger, 137–40
Hex value, 42
Host parameter, 252
HostObject property, 88
hyperlinks, 478

I
IBuildServer interface, 416
identity metadata, 12, 41
IEventSource Build Events, 135–36
IEventSource interface, 154–55
If . . . Else activity, 428
IForwardingLogger interface, 159
IGeneratedTask, 115
IgnoreExitCode property, 193
IgnoreStandardErrorWarningFormat property, 194, 203
IIS 7 extension, 494–97
IIS Manager, 551–53
iisApp provider, 501, 503
ILogger interface, 134–35, 138
Image resizer sample application, 438–53
Import Application Package, 511–12
Import Applications, 495
Import element, 22, 30, 64
import statements, 9

overriding, 234–35
processing, 61

ImportAfter, 234, 306
importance parameter, 6
Importance property, 146
Importance property message task, 129–30
ImportBefore, 234, 306
ImportGroup, 326
importing

files or projects, 64–68
property sheets, 283–84

imports
hierarchy of Visual C++ target, 303–4

Imports Designer
Workflow Foundation (WF), 430

Include attribute, 34–35, 41, 110–11
Include statement, 36–37, 45
IncludeCategory property, 206
incremental builds, 188–92, 270

cleaning files, 59
Custom Build Step, 322

file tracker-based, 279–81
troubleshooting, 281
Visual C++, 281

indentation, custom logger, 148
IndentFileLogger, 137
Indexing, 404–5
inheriting project settings, 282
initial targets, 17
Initialize method, 112–14

CustomFileLogger, 148–49
HelloLogger, 137
ILogger interface, 135
XmlLogger, 153–54

InitializeParameters method, 144
InitialTargets attribute, 18
inline tasks, 106–8

authoring, 111
creating, 101–11
statements in, 109–10

in-memory representation, 65, 67
INodeLogger interface, 159
Input attribute, 188
input parameters

creating, 91–95
inline task, 103–4

Insert transformation, 526
InsertAfter elements, 526–28
InsertBefore elements, 526–28
Install Application From Gallery, 494
instance methods, 78
instance property, 78
Integrated Development Environment (IDE)

configuring verbosity in, 271
conversion, 311–15
devenv.exe, 314
enabling file-level parallelism in, 274–76
project-level check, 280

Intellisense, 22–23
InvokeForReason activity, 471
InvokeProcess activity, 471–72
IsVerbosityAtLeast method, 141
ITaskFactory interface, 111–13
ITaskItem type, 95–97, 120–23
item definition metadata. See item metadata
item functions, 82–83
item lists, 24, 36, 47
item metadata, 48, 290
Item transformations, 47–51
ItemDefinitionGroup element, 185–88
ItemGroup element, 9–11, 34–35

batching, 187–88
creating dynamic items, 53, 55–56
importing files, 64
Remove attribute, 59–60

ItemName attribute, 93
items

creating dynamic, 55–56
dynamic, 53

596 itemSpec parameter

items, continued
evaluating, 9
flattening, 36
ItemGroup element, 9–11
metadata, 11–14
MSBuild, 34–36
order of evaluation, 60–63
removing, 59–60
using wildcards to declare, 37

itemSpec parameter, 96
ItemType, 47, 329

J
JavaScript, 254–56
Jazmin, 254
JSCompress task, 255–56
JSMin, 254

K
key-value pairs, 24, 41, 45
kind argument, -declareParam, 513
known error message formats, 203

L
Lab Management default template, 395
labels, version control, 400–1
language attribute, 101–2, 111
last task result, 28
late evaluation model, 291
License Compiler (LC), 295
linear evaluation model, 291
Link task, 280
linker switches, 310
Linker tool, 289
Log property, 90
Logfile parameter, 133
LogFile property, 152
Logger abstract class

class diagram, 140
extending, 140–46
methods, 141

LoggerAssembly, 132
LoggerClassName, 132
LoggerException, 144, 154
LoggerParameters, 132–33
loggers

attaching multiple, 231–32
command-line switch, 19
console, 130–32
custom, 135–40
debugging, 125, 157–59
defined, 134
distributed, 159
exception handling in, 140

extending existing, 146–51
file, 132–34
macro creation, 232–33
overview, 129–30
Team Build, 396, 475–82
verbosity settings, 131

logical project files, 17, 20, 290, 308
LogStandardErrorAsError property, 119

M
macros, 232–33, 292
MakeDir task, 340
MakeZipExe, 120–24
Manage Build Qualities Permission, 392
Manage Build Queue Permission, 392
managed multi-targeting, 301–2
manifest provider, 501, 517–19, 543
manual triggers, 362
master build files, 200–2, 228–30
match argument, -declareParam, 514–15
Maximum Concurrent C++ Compilations, 276
Maximum Number Of Parallel Project Builds, 273
message tasks, 5, 24, 129–30, 164
MessageRaised build event, 135, 145–46
MetabaseProperties parameter, 262
metadata, 40

batching, 181–88
custom, 44–46
in custom tasks, 98–101
items, 12
overwriting, 46
process parameters, 463–66
shared, 183–88
well-known, 12, 41–44
with more than one value, 13

Metadata item function, 82
MetadataName syntax, 12–13
metaKey provider, 501
Microsoft .Net Framework, 23, 256

changing Target Framework in, 455–57
command-line switch for version specification, 19
GetFrameworkPath task, 257
managed multi-targeting, 300–2
Workflow Foundation (WF), 423

Microsoft Macro Assembler (MASM) Build
Customizations, 295

Microsoft SDC Tasks, 87
Microsoft Visual Studio. See Visual Studio
Microsoft Visual Studio Team System, 347–48
Microsoft. NETFramework.targets, 306
Microsoft.Build.Commontypes.xsd, 3, 23
Microsoft.Build.Core.xsd, 3, 23
Microsoft.Build.CppTasks.$(Platform).dll, 303
Microsoft.Build.CppTasks.Common.dll, 303, 324
Microsoft.Build.Framework.IGeneratedTask

interface, 115
Microsoft.Build.Framework.ILogger, 134

 MSBuildProjectExtension property 597

Microsoft.Build.Framework.ITask interface, 87
Microsoft.Build.Framework.ITaskFactory interface, 111
Microsoft.Build.Framework.Output attribute, 92
Microsoft.Build.Tasks.v4.0.dll, 303
Microsoft.Build.Utilities.AppDomainIsolatedTask

class, 90
Microsoft.Build.Utilities.Logger class, 152
Microsoft.Build.Utilities.Task class, 90, 104
Microsoft.Build.Utilities.TaskLoggingHelper, 90
Microsoft.Build.Utilities.ToolTask class, 90
Microsoft.Build.xsd file, 23
Microsoft.BuildSteps.targets, 305
Microsoft.Cl.Common.props, 310
Microsoft.CodeAnalysis.props, 310
Microsoft.Common.targets file, 306

_CheckForCompileOutputs, 16–17
_CheckForInvalidConfigurationAndPlatform, 18
empty targets in, 70–71
FileWrites item list, 239
import statements, 233–35
predefined target dependency properties, 76

Microsoft.Cpp.$(platform).user.props, 313
Microsoft.Cpp.Application.props, 311
Microsoft.Cpp.CoreWin.props, 311
Microsoft.Cpp.Default.props, 308
Microsoft.Cpp.props, 308
Microsoft.Cpp.targets, 305
Microsoft.Cpp.unicodesupport.props, 311
Microsoft.Cpp.Win32.User property sheet, 282, 284–86
Microsoft.CppBuild.targets, 305
Microsoft.CppClean.targets, 306
Microsoft.CppCommon.targets, 305

Custom Build Step, 320
Custom Build Tool, 324

Microsoft.CSharp.targets file, 64, 69–70, 237–38
Microsoft.Link.Common.props, 310
Microsoft.TeamFoundation.Build.Client.dll, 415
Microsoft.TeamFoundation.Build.Workflow.Activities,

477–78
Microsoft.TeamFoundation.Build.Workflow.Tracking, 480
Microsoft.TeamFoundation.Client.dll, 414
Microsoft.TeamFoundation.Common.dll, 415
Migration, 490
MinGW, 338
minimal verbosity setting, 131
ModifiedTime metadata, 12, 41
Move task, 97–98
MSBuild, 472

as an external program to debug, 126–28
batching, 163–65
command-line usage, 18–20
definition of, 23
diagnostic output, 271
file types in, 36
invoking, 5–6
known error message formats, 203–4
publishing, 545, 547–48
starting as an external program for debugging, 158

MSBuild 2.0, 18
append-only items, 59
attrib command, 195
binaries, 28
dynamic properties, 32
file logger syntax, 132–34
passing properties in, 231

MSBuild 3.5, 59–60
binaries, 28
dynamic properties and items, 53
MSBuild task, 225–28
OverwriteReadOnlyFiles property, 195
property creation, 33
remove function, 59–60

MSBuild 4.0
/preprocess (/pp) switch, 64
before/after builds in, 234
binaries, 28
file logger, 132
File tracker, 279–81
import files, 64, 234
item functions, 76
property creation, 33
property functions, 77–81
remove function, 197

MSBuild Build Manager, 270–71, 274
MSBuild Community Tasks, 87
MSBuild Extension Pack, 87

DNZip and ftp, 252
FxCop, 215–19
NUnit, 206
setting assembly version, 223
WindowsService task, 245–46
XmlFile task, 237–39

MSBuild Node, 270–71, 274
MSBuild Project Build Log File Verbosity, 271
MSBuild Project Build Output Verbosity, 271
MSBuild property functions, 77, 80–81
MSBuild task, 197–202, 225–28
msbuild.exe, 5, 250, 557
MSBuild.ExtensionPack.VersionNumber.targets, 223–24
MSBuildCommunityTasks, 254–56
MSBuildExtensions Path property, 8
MSBuildExtensions Path32 property, 8
MSBuildExtensions Path64 property, 8
MSBuildExtensionsPath property, 28, 342
MSBuildExtensionsPath32 property, 28
MSBuildExtensionsPath64, 342
MSBuildExtensionsPath64 property, 28
MSBuildLastTaskResult property, 8, 28
MSBuildNodeCount property, 8, 28
MSBuildOverrideTasksPath property, 29
MSBuildProgramDefaultTargets property, 8
MSBuildProgramFiles32 property, 8, 28
MSBuildProjectDefaultTargets property, 28
MSBuildProjectDirectory property, 8, 27
MSBuildProjectDirectoryNoRoot property, 8, 27
MSBuildProjectExtension property, 8, 28

598	 MSBuildProjectFile	property

MSBuildProjectFile property, 8, 28
MSBuildProjectFullPath property, 8, 28, 68
MSBuildProjectName property, 8, 28
MSBuildStartupDirectory property, 8, 28
MSBuildThisFile property, 8, 28, 68
MSBuildThisFileDirectory property, 8, 28, 334
MSBuildThisFileDirectoryNoRoot property, 8, 29
MSBuildThisFileExtension property, 8, 29
MSBuildThisFileFullPath property, 8, 29
MSBuildThisFileName property, 8, 29, 334
MSBuildToolsPath property, 8, 28, 64
MSBuildToolsVersion property, 8, 28
MSDeploy. See also Web Deployment Tool

manifest provider, 517–19
parameters, 510–17
providers, 500–4
rules, 504–5

MSDeploy task, 560
MSDeploy Temp Agent, 556
msdeploy.exe

installing web packages using, 497–98
location, 497
syntax, 498
usage options, 498–99
verb options, 499

MsDeployDeclareParameters, 550–51
MSDeployPublish target, 545
multi-batching, 175–77
MultiProcessorCompilation property, 275–76
multi-targeting, 300–2

N
namespaces, 109–10
native activities, 433
native multi-targeting, 300–1
NestedProperties. proj, 7
net use command, 556
network access, 351
nodes, 19, 28
NoItemAndPropertyList parameter, 131
normal verbosity setting, 131, 133
NoShadow property, 207
NoSummary parameter, 131
NoThread property, 207
notification, global exception, 432–33
NT AUTHORITY\NETWORK SERVICE, 388
NUnit, 206–14

O
objectName, 507
OnBuildBreak target, 235
OnError element, 235–37
operators, conditional, 16
origin error message component, 203–4
Output Assemblies, 248
Output attribute, 109
Output element, 32–33, 92–93

output files
deleting, 189
diagnostic, 271
zipping, 252–54

output parameters
creating, 92–95
inline task, 104–6

Output phase, 530
Output property, 32
OutputPath item, 63
OutputPath property, 31–32, 55–59, 63, 240–41

importing files, 66–67
Web Deployment Project (WDP), 250

OutputPathCopy property, 63
OutputPathItem property, 63
Outputs attribute, 170–71, 173
Outputs field

Custom Build Step, 321–22
Custom Build Tool, 322

Outputs property, 193, 200–2
OutputXmlFile property, 207
Overridable behavior, 205
Override BeforeBuild/AfterBuild target, 69–72
Override Check-In Validation by Build Permission, 393
overriding

CustomAfterMicrosoftCommonTargets, 234–35
CustomBeforeMicrosoftCommonTargets, 234–35
existing targets, 70–72
import statements, 234–35
MSBuildExtensionsPath32, 342
targets, 325–26
tasks, 29
VCTargetsPath, 342

OverwriteReadOnlyFiles property, 39, 195
overwriting custom metadata, 46

P
package provider, 501
Package/Publish SQL tab, 539–44
Package/Publish Web tab settings, 530–31
packages. See web packages
PackageUsingManifest target, 550
parallel builds, 231, 272–78, 352
ParallelForEach<T> activity, 447–48
ParameterGroup element, 103
parameters

command-line switches for, 19
console logger, 131
creating, 551–53
file logger, 133
MSDeploy, 510–17
specifying type of, 105

Parameters property
console logger, 147
ILogger interface, 134

Parameters.xml file, 553–54
ParameterType attribute, 105
ParseCustomParameters method, 148–50

 Projects property 599

partial evaluation, 291–93
participant, 437
Password parameter

DNZip, 252
Ftp, 253

Path parameter, 257, 261
-pef switch, 256
percent (%) sign, 317
PerformanceSummary parameter, 131
permissions, 391
persistence extensions, 437
Pick activity, 428
PickBranch activity, 428
PipelineCollectFilesPhase, 531
Platform property, 7
platform toolsets

adding, 338–42
changing, 297
overview, 297–300
properties, 32, 300–1
supporting multiple, 299–300
Visual C++ 2010, 300
Visual Studio 2008, 300, 338–41
Visual Studio 2010, 300, 338–41

platforms
adding, 298–300, 338–42
defined, 297
supporting multiple, 299–300

Platforms\ $(Platform)\ImportAfter*.props, 311
Platforms\ $(Platform)\ImportBefore*.props, 310
Platforms\ $(Platform)\PlatformToolsets\

$(PlatformToolset)\ImportAfter*.props, 311
Platforms\ $(Platform)\PlatformToolsets\

$(PlatformToolset)\ImportBefore*.props, 310
Platforms\ $(Platform)\PlatformToolsets\

$(PlatformToolset)\Microsoft.Cpp.$(Platform)
.$(PlatformToolset).props, 310

Platforms\ \$(Platform)\ImportAfter*.targets, 306
Platforms\ \$(Platform)\PlatformToolsets\

\$(PlatformToolset)\ImportBefore*.targets, 306
Platforms\ \$(Platform)\PlatformToolsets\

$(PlatformToolset)\Microsoft.Cpp.\$(Platform)
.$(PlatformToolset).targets, 306

Platforms\$(Platform)\Microsoft.Cpp.$(Platform), 305
Platforms\$(Platform)\Microsoft.Cpp.$(Platform).default

.props, 310
Platforms\$(Platform)\Microsoft.Cpp.$(Platform)

.props, 310
Platforms\\$(Platform)\ImportBefore*.targets, 305
Platforms\Win32\PlatformToolsets\ \$(PlatformToolset)\

ImportAfter*.targets, 306
PlatformToolset property, 300–1
Port parameter, 252
post-build events, 21, 69, 317–19
PostBuildEvent property, 69
PostBuildEvent target, 319
PostBuildEventDependsOn property, 76
pre-build events, 21, 69, 317

PreBuildEvent property, 69
PrebuildEvent target, 319
PreBuildEventDependsOn property, 76
pre-compilation, 247
pre-link events, 317
PreLinkEvent target, 319
PrepareForBuildDependsOn property, 76
PrepareForRunDependsOn property, 76
PrepareResourceNamesDependsOn property, 76
PrepareResourcesDependsOn property, 76
Primitives tab, 447
PrintCompileInfo target, 13–14
PrintConfig target, 24–26
PrintInfo, 31, 45–46, 55–59
PrintOutputPath target, 66–67
PrintSourceFIles, 49
PrintTypeEnv target, 181–83
PrintWellKnownMetadata target, 13, 42
private builds, 348, 374–77

drop location root for, 408
gated check-in, 409
sync process for, 400

Private Drop Location, 374–75
Process parameters

adding, 461–62
compatibility, backward and forward, 469
defining, 461–62
Metadata Editor, 464–66
Supported Reasons, 468–69
User interface, 466–68
verbosity, 475–76

Process Template Library, 455–60
process templates, 368–69, 395

custom, 482–85
deployment, 482–83
process parameters, 461–69

ProcessParam method, 144
ProcessVerbosity method, 144
Profile, 437
program folders, 28
Project attribute, 64
Project Collection Build Service Accounts, 353, 390
Project element, 4, 24, 64
project files

converting, 311–15
creating Team Build API, 414
detail, 3
file extension, 23
logical, 17

Project Properties user interface, 275
ProjectConfiguration, 329
ProjectFinished build event, 135
project-level build parallelism, 273–74
ProjectReference type, 274
projects

building dependent, 258–60
building multiple, 225–31

Projects property, 197–200

600 Projects target

Projects target, 178, 180
ProjectStarted build event, 135
properties, 24

command-line, 30–32
command-line switch, 19
declaring static, 4–7
dynamic, 32–34, 53–55
evaluating, 6
file extension, 23
global, 199, 228
ITaskFactory, 112
item metadata, 226–28
nested, 7
order of evaluation, 60–63
reserved, 7–9, 27–30
set build, 472
settings, 290
static, 24–32
toolset, 32
viewing, 290

Properties metadata, 202, 228
Properties parameter, 199–200, 226
Properties property, 197
Property Editor, 292
property functions

MSBuild, 77, 80–81
MSBuild 4.0, 77–81
static, 77, 79–80
string, 77–79

Property Manager tool window, 282, 290
property pages, 289, 293

creating, 326–32
post-build events using, 317–18
troubleshooting, 331

Property Pages user interface, 270
build log location, 271
Custom Build Tool, 322–23
property sheets, 283, 286–87
property values, 292
Rule file use in, 295
rules, 327–30

property sheets, 270, 287, 301
Build Customization, 333
converting, 313
system. See System property sheets
Unicode Support, 282
user, 282, 284
viewing, 290
Visual C++, 281–84, 307–11

property transform expression, 48
property values, 289–93
PropertyGroup element, 4–5, 24,

33, 53–55
PropertyName attribute, 93
providers, 490, 500–4
Publish profile, 545–50
PublishBuildDependsOn property, 76
PublishDependsOn property, 76

publishing
MSBuild, 545–50
symbol, 404–6
Web Deploy, 541–44

PublishOnlyDependsOn property, 76

Q
qualified batching statements, 175
querying, 416–17, 420–22
Queue Builds Permission, 393
Queue New Build, 372
Queuing builds using API, 419–20
quiet verbosity setting, 131
quote marks, 31

R
read-only files, overwriting, 195–96
RebaseOutputs property, 197
Rebuild target, 341
RebuildDependsOn property, 76
RecursiveDir metadata, 12, 41, 43–44, 49, 57
redirection, 342
redundancy, 350
Reference element, 110–11, 274, 461
Refresh method, 421
RelativeDir metadata, 12, 41
Release mode, 229
Remote Agent Service, 490, 503
Remove attribute, 59
remove function, 59–60, 197, 528–29
RemoveAfterBuild, 251
RemoveAll transforms, 528–29
RemoveAttributes transforms, 529–30
RemoveDirectoryName parameter, 253
RemoveProperties property, 197
RemoveRoot parameter, 252
Replace command, 505–8
ReplaceExisting parameter, 262
Required attributes, 91, 104, 109
Required process parameters, 466
ResGenDependsOn property, 76
resizing, 438–53
ResolveAssemblyReferencesDependsOn

property, 76
ResolveReferencesDependsOn property, 76
response files, 18–19
ResponseFileEncoding property, 119
Retain Indefinitely Permission, 393
retention policy, 348, 369–71
Retries property, 39
RetryDelayMilliseconds property, 39
reusable build elements, 204–6
Revert files, 409
Rolling builds trigger, 363
RootDir metadata, 12, 41

 System property sheets 601

Rule file, 293, 295, 327–32
Build Customization, 333–34
GNU Compiler Collection (GCC) toolset, 341
MSDeploy, 504–5

runCommand provider, 501
RunDependsOn property, 76
RunEachTargetSeparately property, 197
RunFxCop target, 217–18

S
SatelliteDllsProjectOutputGroupDependsOn

property, 76
scalar values, 36, 95
scalar variables, 24, 34
Schedule triggers, 365
scheduled builds, 348
scope argument, -declareParam, 514
Secure Sockets Layer (SSL), 410–11
self-containment, 204
semicolon (;), use of, 14, 18, 30, 35–36, 47, 235
separator, 47
Sequence activity, 423, 445, 447–48
ServerName parameter, 262
Service Accounts, 388–91
service-level settings, 409
services, starting and stopping, 245–46
Set Parameters.xml, 554
setACL provider, 501, 509, 565–66
SetAttributes transforms, 529–30
SetBuildBreakProperties target, 235
SetBuildProperties, 472
SetMetadata method, 98–101
-setParam, 512, 515–17
-setParamFile, 554–56
SetPropertyValue method, 115
SetTestBreakProperties target, 235
settings

service-level, 409
storing, 290
verbosity, 129–30, 134, 396

SGenFilesOutputGroupDependsOn property, 76
SharedResourceScope, 473
shelveset, 400
shelvesets, 372, 374–75
ShowCommandLine parameter, 131
ShowEventId parameter, 131
ShowSummary property

console logger, 147
FileLoggerBase, 152

ShowTimestamp parameter, 131
Shutdown method, 138–39, 144
Signing page, 248
SiteId parameter, 262
Skip command, 505, 508–10
SkipNonexistentProjects property, 198
SkipProjectStartedText property, 147
SkipTaskExecution method, 119

SkipUnchangedFiles property, 39
slash (/), 39
software configuration, 297
solution files

building, 170–71, 228–31
building multiple, 225
converting, 311–15
target batching, 171

SolutionFile element, 9
source control providers, 196
Source indexing, 404–5
Source target, 490, 500
SourceFiles property, 38–39, 49
SourceFilesProjectOutputGroupDependsOn property, 76
SourceWebPhysicalPath property, 250
spaces, in values, 31
standard location, 291
StandardErrorEncoding property, 119
StandardErrorImportance property, 119
StandardErrorImportanceToUse property, 119
StandardErrorLoggingImportance property, 119
StandardOutputEncoding property, 120
StandardOutputImportance property, 120
StandardOutputImportanceToUse property, 120
StandardOutputLoggingImportance property, 120
Start command, 384–85
Start External Program, 126–28, 158
State Machine activity, 423
statements

batching using multiple, 181–83
import, 9, 61, 233–35
include, 36–37, 45
qualified batching, 175

static property functions, 77, 79–80
StatusEventRaised build event, 136
StdErrEncoding property, 194
StdOutEncoding property, 194
Stop Builds Permission, 393
Stop command, 378, 386
StopOnFirstFailure property, 198
storage, metadata, 463
string property functions, 77–79
string values, 95
StyleCop, 215
subcategory error message component, 204
Summary parameter, 131
Summary view, 378, 380
Supported Reasons, 468–69
Switch<T> activity, 426
switches, command line, 18–20
symbol publishing, 404–6
sync verb option, 499–500
synchronization, 400, 490

database, 502
of application to a different server, 566–67
rules for, 504–10
to a remote server, 503–4

System property sheets, 282, 284, 308, 310

602 System .Design

System.Design, 467
System.Diagnostics.Debugger.Launch() method, 125
System.Drawing, 467
System.Windows.Forms, 467

T
Tag comparison operator, 399
Tags, 358
tags argument, -declareParam, 515
Tags filter property, 399
target batching, 163, 170–71, 176

combining with task batching, 172–74
to build multiple configurations, 179–80

Target element, 188
Target Framework setting, 452, 455–57
target hooks, 72–73, 76–77
target injections, 74–77, 325
TargetAndPropertyListSeparators property, 198
TargetDependsOn list, 75
TargetFinished build event, 135
TargetFrameworkVersion, 198
TargetOutputs property, 198, 200–2
targets, 5

command-line switch, 19
creating dynamic items inside, 55–56
custom, 239, 324–26
defaul Visual C++, 303–6
default, 17–18, 28
file extension, 23
incremental building, 188–90
initial, 17–18
Microsoft.Common.targets file, 71
overriding existing, 70–72
partially building, 190–92
predefined dependency properties, 76
unbatched, 164–65

Targets property, 198
TargetStarted build event, 135
Task abstract classes, 90
task batching, 163–70, 176

combining with target batching, 172–74
to build multiple configurations, 177–79

Task class, 90
task input

creating, 91–92
supported types, 95
using arrays with, 97–101
using metadata, 98–101

task output
creating, 92–93
supported types, 95
using arrays with, 97–101
using metadata, 98–101

Task property, 112
TaskAction parameter, 238–39, 246

DNZip, 252
Ftp, 252

TaskFactory attribute, 89, 111–16
TaskFinished build event, 135
TaskItem class, 96
TaskLoggingHelper class, 88
TaskName attribute, 89, 112
TaskParameter attribute, 33, 93
TaskProcessTerminationTimeout property, 120
tasks, 5

creating, 88–90
custom. See custom tasks
debugging, 124–28
defaul Visual C++, 303
file extension, 23
getting values for, 32
inline, 101–11
input/output, 91
MSBuild, 197–202
open-source repositories for, 87

TaskStarted build event, 135
Team Build

activities, 445–49, 469–75
application programming interface (API), 414
architecture, 348–50
clean process, 399
compilation and testing, 401–4
connecting to, 416
custom activities, 473–75
customization, 458
deployment, 557–59, 564
deployment topologies, 350–51
downloading and loading dependent

assemblies, 485
editors, 466–68
extension types in, 474–75
features, 347–48
hardware selection for, 351–52
installation, 352
libraries, 455–61
logging, 396, 475–82
metadata, 463–66
overview, 347
preparations needed for, 350
prerequisites, 356
running as an interactive process, 411–12
security, 388–91
source indexing, 405
SSL requirement, 410–11
symbol publishing, 404–6
sync process, 400
traceability in, 407
user interface, 466–68
version control, 482–84

Team Build 2008
OnError element, 235

Team Explorer, 348, 372
Team Foundation Build. See Team Build
Team Foundation Server, 349, 352

Administration Console, 388, 409

 VCTargetsPath 603

Team Project Collection, 349, 415, 471
permissions, 391

Team system cube, 350
Team System Web Access, 348
TEMP directory, 352
TempFile task, 96–97
Test Connection, 359
testing, 206–14, 401, 403–4
text error message component, 204
Text property, 129–30
text transform expression, 48
TFS Warehouse database, 349
TFSBuild.exe, 348, 383–84

commands, 383
delete command, 386–88
start command, 384–85
start parameters, 384–85
stop command, 386

TfsTeamProjectCollection object, 415
TfsTeamProjectCollectionFactory

class, 415
time integration, 327, 332–38
Timeout property, 120, 193
timestamps, 188, 279–80
Tlog files, 279
tokens, build number, 397–98
ToolCanceled property, 120
ToolExe property, 120
ToolName property, 116, 120
ToolPath property, 120
toolsets. See platform toolsets
ToolsVersion property, 198, 202
ToolTask class, 90

methods, 118–19
overview, 116
properties, 119–20

trace messages, 332
Traceability, 407
Tracker. exe, 270–71
Tracking attributes, 479–80
Tracking extensions, 437
TrackingParticipant base

class, 437
transform expression, 47
Transform phase, 530
transformations

item, 36, 40, 47–51
manual, 524–25
syntax, 14, 47
XDT, 524
XML configuration files, 521
XSL, 219, 239

transparency, 205, 213
triggered builds, sync process for, 400
triggers, 361–67
troubleshooting, property

page, 331
TryCatch, 431–32, 444–46

U
underscore (_), 205, 238
Unicode Support property sheets, 282
UnitTestCleanDependsOn property, 213
UnitTestDependsOn property, 213
UnloadProjectsOnCompletion property, 198
UnmanagedRegistrationDependsOn property, 76
UnmanagedUnregistrationDependsOn property, 76
Update Build Information Permission, 393
UpdateBuildNumber, 473
Upgrade log file, 314
Upgrade template, 395
uploading, 252–54
UseCommandProcessor property, 120
UseHardlinksIfPossible property, 39
User interface, 466–68
User property sheets, 282, 284
user.config file, 240–41
UseResultsCache property, 198
UserName parameter, 253
UsingTask element, 89, 96, 112

in Build Customization, 334
inline task, 101

V
ValidateFtpFilesSettings target, 254
ValidateFxCopSettings, 215–19
ValidateParameters method, 119, 123
validation, 205, 212

command-line switch, 19
FxCop, 215–17

values, 5
batching multiple, 181–83
configuration, 177–80
defining default, 336
extracting from environment variables, 26–27
input/output types, 95
locating final, 292
passing through the command line, 30–32
property, 289–93
property page, 291–92
reserved properties, 30
scalar, 36, 95
unevaluated, 292
use of spaces with, 31
vector, 36, 95, 106–7

variables, 24, 34
Variables Designer, 429
VB.NET (Visual Basic .Net)

deleting files, 59
extending the build process, 73
inline task in, 102–3
OnError element, 235

VCBuild, 267, 281, 291
VCComponents.dat, 285, 287
VCTargetsPath, 305–6, 342

604 vcupgrade .exe

vcupgrade.exe, 315
vector values, 36, 95, 106–7
verbosity, 271

command-line switch, 19
influence on log messages, 144
initialization, 144
Integrated Development Environment (IDE), 271
logger settings, 129–30, 134, 396
Team Build logging, 396, 475–76

Verbosity parameter, 131, 133
verbosity property

console logger, 147
FileLoggerBase, 152
ILogger interface, 134
with multiple loggers, 232

version
assembly, 223–25, 231
framework, 257, 302
tool, 8, 28, 198, 202

version control, 350, 355, 400–1
Version Control Path To Custom Assemblies, 354
Versionspec Options, 385
View Build Definition Permission, 393
View Builds Permission, 393
View Project-Level Information Permission, 394
View Test Runs Permission, 394
View This Parameter When, 466
Visual Basic .Net (VB.NET)

deleting files, 59
extending the build process, 73
inline task in, 102–3
OnError element, 235

Visual C++
build process, 269
directories, 285–87
incremental builds, 281
MSBuild Build Manager, 270
property sheet hierarchy, 308
property sheets, 281–84
system property sheets, 284
target hooks, 76

Visual C++ 2008
converting, 311–14
directories, 284
native multi-targeting, 300
using, to create a Build Customization, 333

Visual C++ 2010
Build Customization in, 333
build parallelism, 272–78
build process, 269–71
default property sheets, 307–11
default targets, 303–6
default tasks, 302–3
diagnostic output, 271
directories, 287
hooks, 325
import hierarchy, 303–4
migrating from Visual C++ 2008, 311–14

multiple platforms and platform toolsets, 299–300
native multi-targeting, 300–1
project file structure, 267–69
property pages, 289, 293
toolsets, 300

Visual C++ CLR, 301–2
Visual Studio, 23

accessing custom types, 462
build events in, 69
build process using, 21–22
clean process in, 241
configuring a build controller, 354–55
debugging using, 124–28
default targets, 17
deployment of web applications, 490
importing files, 65–68
Integrated Development Environment (IDE),

267, 269–71
known error message formats, 203–4
MakeZipExe, 120–24
solution file, 225
symbol file locations, 406
Web Deployment Project (WDP), 246–51

Visual Studio 2008, 338
managed multi-targeting in, 301–2
toolsets, 300, 338–41

Visual Studio 2010, 338
configuring build agents, 357–58
creating build definitions, 360
creating web packages in, 490–91
database deployment in, 539–44
directories, 285
excuting builds, 390–91
TFSBuild.exe, 383
toolsets, 300, 338–41
vcupgrade.exe, 315

Visual Studio Team System, 347–48, 372

W
WarningRaised build event, 135
warnings, 144–46, 203–4
WarningsOnly parameter, 131
Web Application Project (WAP), 258–60, 545, 550
Web Deployment Package options page, 492–93
Web Deployment Project (WDP), 246–52

creating a new, 247–52
deployment, 260–63
deployment page, 248
disabling, 248
failure, 258–60
features, 247
overview, 246
viewing files, 248–50

Web Deployment Tool. See also MSDeploy
and MSBuild, 545–50
and Team Build, 557–67
overview, 490

	 ZipOutputFiles	 605

Web Publishing Pipeline (WPP). See Web Publishing
Pipeline (WPP)

XML document transformations, 521–30
web packages

adding parameters, 511–12, 550–53
contents, 491
creating, 492–94, 510–11, 550
database, 492
encryption, 494
importing/installing, 495–97
installing, 494
items to deploy options, 493
location, 490, 494
naming, 494
overview, 490–92
path, 494

Web Publishing Pipeline (WPP)
excluding files from, 533–36
including additional files, 536–39
overview, 521
packages, 550
phases, 530

web.config
encryption, 256–58
files, 540
transformations, 521–30

web.Debug config, 521–24
web.Release config, 521
What Do You Want To Build– dropdown, 372
What To Delete column, 371
-whatif switch, 502
While activity, 428
wildcards, 37, 43–45
Windows SDK v.7.1, 269
WindowsService task, 245–46
WithMetadata item function, 82
work items, 409
Workflow Foundation (WF), 423

arguments in, 428
building an application using, 424–26
built-in activities (check with Mike), 426
custom activities, 433–37
exception handling, 430–33
extensions, 437
sample application, 438–53
variables, 429
working with data, 428–30

workflows
custom, 350, 433–37
types of, 423

Working Directory, 128, 358
debugging loggers, 158
table of variables (add each––), 358–59

Working Directory property, 193
Workspace tab, 365–67
WriteBuildError, 476–77
WriteBuildMessage, 476–77
WriteBuildWarning, 476–77
WriteHandler property, 147–48
WriteLine activity, 445–46

X
x64 operating system, 402
x86 operating system, 402
XAML activities, 433
XAML files, 295
XamlTaskFactory, 295, 333–35
XML Document Transform (XDT)

attributes, 524
transforms, 524

XML document transformations, 521
xml files, 295
-xml option, 499, 506
XML Schema definition (XSD) files, 23
XmlFile task, 237–39
XmlLogger

class diagram, 151–52
Initialize method, 153–57

XPath, 500, 527
XSL transformations, 219, 239
XslTransformation task, 219

Y
YieldDuringToolExecution, 120, 273

Z
zip task, 253–54
Zipfile property, 120–23
ZipFileName parameter, 252
ZipOutputFiles, 253–54

About the Author
Sayed Ibrahim Hashimi has a computer engineering degree from
the University of Florida. He is currently working at Microsoft as a
program manager, creating better web development tools.
Previously, he was a Microsoft Visual C# MVP. Along with this book
he is also a coauthor of Deploying .NET Application: Learning
MSBuild and Click Once (Apress, 2006), and has written several
 publications for magazines such as the MSDN Magazine. He has
 previously worked as a developer and independent consultant for
companies ranging from Fortune 500 to startups. He is an expert
in the financial, education, and collection industries.

William Bartholomew is a software development engineer at
Microsoft Corporation in Redmond, Washington. He is a member of
the Developer Division Engineering Systems group, which includes
the build lab responsible for building and shipping Microsoft Visual
Studio.

Pavan Adharapurapu is a software developer at Microsoft. He was
part of the team that was responsible for migrating Microsoft Visual
C++ over to MSBuild in Visual Studio 2010. He is currently working
in the Cloud Computing space and is part of the Azure AppFabric
Services team.

Jason Ward is a development manager at Microsoft. He has more
than two decades of experience as a software developer, having
worked in Australia and the United Kingdom before moving to
Redmond, Washington, where he currently lives with his wife and
two daughters.

microsoft.com/mspress

Best Practices for Software Engineering

ALSO SEE

Code Complete,
Second Edition
Steve McConnell
ISBN 9780735619678

Widely considered one of the best practical guides to
programming—fully updated. Drawing from research,
academia, and everyday commercial practice, McConnell
synthesizes must-know principles and techniques into
clear, pragmatic guidance. Rethink your approach—and
deliver the highest quality code.

Software Estimation:
Demystifying the Black Art
Steve McConnell
ISBN 9780735605350

Amazon.com’s pick for “Best Computer Book of 2006”!
Generating accurate software estimates is fairly straight-
forward—once you understand the art of creating them.
Acclaimed author Steve McConnell demystifi es the
process—illuminating the practical procedures, formulas,
and heuristics you can apply right away.

Agile Portfolio Management
Jochen Krebs
ISBN 9780735625679

Agile processes foster better collaboration, innovation,
and results. So why limit their use to software projects—
when you can transform your entire business? This book
illuminates the opportunities—and rewards—of applying
agile processes to your overall IT portfolio, with best
practices for optimizing results.

The Enterprise and Scrum
Ken Schwaber
ISBN 9780735623378

Extend Scrum’s benefi ts—greater agility, higher-quality
products, and lower costs—beyond individual teams to
the entire enterprise. Scrum cofounder Ken Schwaber
describes proven practices for adopting Scrum principles
across your organization, including that all-critical
component—managing change.

Simple Architectures for
Complex Enterprises
Roger Sessions
ISBN 9780735625785

Why do so many IT projects fail? Enterprise consultant
Roger Sessions believes complex problems require
simple solutions. And in this book, he shows how to
make simplicity a core architectural requirement—as
critical as performance, reliability, or security—to achieve
better, more reliable results for your organization.

Software Requirements,
Second Edition
Karl E. Wiegers
ISBN 9780735618794

More About Software
Requirements:
Thorny Issues and
Practical Advice
Karl E. Wiegers
ISBN 9780735622678

Software Requirement
Patterns
Stephen Withall
ISBN 9780735623989

Agile Project
Management
with Scrum
Ken Schwaber
ISBN 9780735619937

Solid Code
Donis Marshall, John Bruno
ISBN 9780735625921

Dev BestPrac_ResPg_03.indd 1 9/16/10 11:04 PM

Collaborative Technologies—
Resources for Developers

Programming for
Unifi ed Communications
with Microsoft Offi ce
Communications
Server 2007 R2
Rui Maximo, Kurt De Ding,
Vishwa Ranjan, Chris Mayo,
Oscar Newkerk, and the
Microsoft OCS Team
ISBN 9780735626232

Direct from the Microsoft Offi ce Communications
Server product team, get the hands-on guidance
you need to streamline your organization’s real-time,
remote communication and collaboration solutions
across the enterprise and across time zones.

Inside Microsoft®
SharePoint® 2010
Ted Pattison, Andrew Connell,
and Scot Hillier
ISBN 9780735627468

Get the in-depth architectural insights, task-
oriented guidance, and extensive code samples
you need to build robust, enterprise content-
management solutions.

Programming
Microsoft
Dynamics® CRM 4.0
Jim Steger, Mike Snyder,
Brad Bosak, Corey O’Brien,
and Philip Richardson
ISBN 9780735625945

Apply the design and coding practices that
leading CRM consultants use to customize,
integrate, and extend Microsoft Dynamics
CRM 4.0 for specifi c business needs.

Microsoft
.NET and SAP
Juergen Daiberl,
Steve Fox, Scott Adams,
and Thomas Reimer
ISBN 9780735625686

Develop integrated, .NET-SAP solutions—
and deliver better connectivity, collaboration,
and business intelligence.

microsoft.com/mspress

Dev CollabTech_ResPg_02.indd 1 8/24/10 3:36 AM

Microsoft® ASP.NET 4
Step by Step
George Shepherd
ISBN 9780735627017
George Shepherd

Ideal for developers with fundamental programming
skills—but new to ASP.NET—who want hands-on
guidance for developing Web applications in the
Microsoft Visual Studio® 2010 environment.

For C# Developers
Microsoft®
Visual C#® 2010
Step by Step
John Sharp
ISBN 9780735626706

Teach yourself Visual C# 2010—one step at a time.
Ideal for developers with fundamental programming
skills, this practical tutorial delivers hands-on guidance
for creating C# components and Windows–based
applications. CD features practice exercises, code
samples, and a fully searchable eBook.

Microsoft
XNA® Game Studio 3.0:
Learn Programming Now!
Rob Miles
ISBN 9780735626584

Now you can create your own games for Xbox 360®
and Windows—as you learn the underlying skills and
concepts for computer programming. Dive right into
your fi rst project, adding new tools and tricks to your
arsenal as you go. Master the fundamentals of XNA
Game Studio and Visual C#—no experience required!

Programming Windows®
Identity Foundation
Vittorio Bertocci
ISBN 9780735627185

Get practical, hands-on guidance for using WIF to
solve authentication, authorization, and customization
issues in Web applications and services.

Windows via C/C++,
Fifth Edition
Jeffrey Richter, Christophe Nasarre
ISBN 9780735624245

Get the classic book for programming Windows at
the API level in Microsoft Visual C++®—now in its
fi fth edition and covering Windows Vista®.

CLR via C#,
Third Edition
Jeffrey Richter
ISBN 9780735627048

Dig deep and master the intricacies of the common
language runtime (CLR) and the .NET Framework.
Written by programming expert Jeffrey Richter, this
guide is ideal for developers building any kind of
application—ASP.NET, Windows Forms, Microsoft
SQL Server®, Web services, console apps—and
features extensive C# code samples.

microsoft.com/mspress

Dev C#_ResPg_02.indd 1 8/24/10 3:28 AM

For Visual Basic Developers
Microsoft®
Visual Basic® 2010
Step by Step
Michael Halvorson
ISBN 9780735626690

Teach yourself the essential tools and techniques for
Visual Basic 2010—one step at a time. No matter what
your skill level, you’ll fi nd the practical guidance and
examples you need to start building applications for
Windows and the Web.

Microsoft Visual Studio® Tips
251 Ways to Improve Your
Productivity
Sara Ford
ISBN 9780735626409

This book packs proven tips that any developer,
regardless of skill or preferred development language,
can use to help shave hours off everyday development
activities with Visual Studio.

Programming Windows®
Services with Microsoft
Visual Basic 2008
Michael Gernaey
ISBN 9780735624337

The essential guide for developing powerful,
customized Windows services with Visual Basic
2008. Whether you’re looking to perform network
monitoring or design a complex enterprise solution,
you’ll fi nd the expert advice and practical examples
to accelerate your productivity.

Inside the Microsoft Build
Engine: Using MSBuild and
Team Foundation Build,
Second Edition
Sayed Ibrahim Hashimi,
William Bartholomew
ISBN 9780735645240

Your practical guide to using, customizing, and
extending the build engine in Visual Studio 2010.

Parallel Programming
with Microsoft
Visual Studio 2010
Donis Marshall
ISBN 9780735640603

The roadmap for developers wanting to maximize
their applications for multicore architecture using
Visual Studio 2010.

microsoft.com/mspress

Dev Visual Basic_ResPg_02.indd 1 8/24/10 3:38 AM

Stay in touch!
To subscribe to the Microsoft Press® Book Connection Newsletter—for news on upcoming
books, events, and special offers—please visit:

What do
you think of
this book?
We want to hear from you!
To participate in a brief online survey, please visit:

Tell us how well this book meets your needs —what works effectively, and what we can
do better. Your feedback will help us continually improve our books and learning
resources for you.

Thank you in advance for your input!

microsoft.com/learning/booksurvey

microsoft.com/learning/books/newsletter

SurvPage_corp.indd 1 8/14/09 4:40 AM

	Contents page
	Forward page
	Introduction
	Who This Book Is For
	Assumptions

	Organization of This Book
	System Requirements
	Code Samples
	Acknowledgements
	Sayed Ibrahim Hashimi
	William Bartholomew
	Pavan Adharapurapu
	Jason Ward

	Errata and Book Support
	We Want to Hear from You
	Stay in Touch

	Chapter 1: MSBuild Quick Start
	Project File Details
	Properties and Targets
	Items
	Item Metadata
	Simple Conditions
	Default/Initial Targets
	MSBuild.exe Command-Line Usage
	Extending the Build Process

	Chapter 13: Team Build Quick Start
	Introduction to Team Build
	Team Build Features
	High-Level Architecture

	Preparing for Team Build
	Team Build Deployment Topologies
	What Makes a Good Build Machine?
	Installing Team Build on the Team Foundation Server
	Setting Up a Build Controller
	Setting Up a Build Agent
	Drop Folders

	Creating a Build Definition
	General
	Trigger
	Workspace
	Build Defaults
	Process
	Retention Policy

	Working with Build Queues and History
	Visual Studio
	Working with Builds from the Command Line

	Team Build Security
	Service Accounts
	Permissions

	Index

