
http://www.facebook.com/share.php?u=http://www.microsoftpressstore.com/title/9780735643383
http://twitter.com/?status=RT: download a free sample chapter http://www.microsoftpressstore.com/title/9780735643383
https://plusone.google.com/share?url=http://www.microsoftpressstore.com/title/9780735643383
http://www.linkedin.com/shareArticle?mini=true&url=http://www.microsoftpressstore.com/title/9780735643383
http://www.stumbleupon.com/submit?url=http://www.microsoftpressstore.com/title/9780735643383/Free-Sample-Chapter

Programming
Microsoft® ASP.NET 4

Dino Esposito

Table of Contents
Acknowledgments. xvii

Introduction .xix
Who Should Read This Book? . xx
System Requirements . xx
Code Samples .xxi
Errata & Book Support .xxi
We Want to Hear from You . xxii
Stay in Touch . xxii

The ASP.NET Runtime Environment

ASP.NET Web Forms Today . 3
The Age of Reason of ASP.NET Web Forms . 4

The Original Strengths . 4
Today’s Perceived Weaknesses . 8
How Much Is the Framework and How Much Is It You?. 11

The AJAX Revolution . 14
Moving Away from Classic ASP.NET. 15
AJAX as a Built-in Feature of the Web. 19

ASP.NET of the Future . 20
ASP.NET MVC. 21
ASP.NET Web Pages . 25

Summary. 26

ASP.NET and IIS . 27
The Web Server Environment . 28

A Brief History of ASP.NET and IIS . 28
The Journey of an HTTP Request in IIS . 31
Some New Features in IIS 7.5 . 37

Deploying ASP.NET Applications . 39
XCopy Deployment for Web Sites . 40
Packaging Files and Settings. 43
Site Precompilation. 52
Configuring IIS for ASP.NET Applications . 55
Application Warm-up and Preloading . 59

ASP.NET Configuration . 63
The ASP.NET Configuration Hierarchy. 63

Configuration Files . 64
The <location> Section . 68
The <system.web> Section . 71
Other Top-Level Sections. 105

Managing Configuration Data . 110
Using the Configuration API . 110
Encrypting a Section . 113

Summary. 117

HTTP Handlers, Modules, and Routing . 119
Writing HTTP Handlers . 121

The IHttpHandler Interface . 121
The Picture Viewer Handler. 128
Serving Images More Effectively . 133
Advanced HTTP Handler Programming . 141

Writing HTTP Modules. 149
The IHttpModule Interface . 149
A Custom HTTP Module. 151
Examining a Real-World HTTP Module. 154

URL Routing . 156
The URL Routing Engine . 157
Routing in Web Forms . 160

Summary. 165

ASP.NET Pages and
Server Controls

Anatomy of an ASP.NET Page . 169
Invoking a Page. 170

The Runtime Machinery. 170
Processing the Request . 174
The Processing Directives of a Page . 179

The Page Class . 190
Properties of the Page Class . 191
Methods of the Page Class . 194
Events of the Page Class. 198
The Eventing Model . 199
Asynchronous Pages. 201

The Page Life Cycle . 209
Page Setup . 209
Handling the Postback . 212
Page Finalization . 214

Summary. 215

ASP.NET Core Server Controls . 217
Generalities of ASP.NET Server Controls . 218

Properties of the Control Class . 218
Methods of the Control Class . 228
Events of the Control Class . 229
Other Features . 230

HTML Controls. 235
Generalities of HTML Controls . 236
HTML Container Controls . 239
HTML Input Controls . 246
The HtmlImage Control . 252

Web Controls . 253
Generalities of Web Controls . 253
Core Web Controls . 256
Miscellaneous Web Controls. 262

Summary. 268

Working with the Page . 269
Dealing with Errors in ASP.NET Pages . 269

Basics of Exception Handling . 270
Basics of Page Error Handling. 272
Mapping Errors to Pages . 278
Error Reporting . 283

Page Personalization . 285
Creating the User Profile . 285
Interacting with the Page . 292
Profile Providers . 300

Page Localization . 303
Making Resources Localizable . 304
Resources and Cultures . 308

Adding Resources to Pages . 312
Using Script Files . 312
Using Cascading Style Sheets and Images . 315

Summary. 317

Page Composition and Usability . 319
Page Composition Checklist . 319

Working with Master Pages . 320
Writing a Content Page . 323
Processing Master and Content Pages . 329
Programming the Master Page. 333
Styling ASP.NET Pages . 336

Page Usability Checklist. 344
Cross-Browser Rendering . 344
Search Engine Optimization . 348
Site Navigation . 351
Configuring the Site Map . 357
Testing the Page . 361

Summary. 364

ASP.NET Input Forms. 365
Programming with Forms . 365

The HtmlForm Class . 366
Multiple Forms. 368
Cross-Page Postings . 374

Validation Controls . 379
Generalities of Validation Controls . 379
Gallery of Controls . 382
Special Capabilities . 387

Working with Wizards . 397
An Overview of the Wizard Control. 397
Adding Steps to a Wizard . 402
Navigating Through the Wizard. 405

Summary. 409

Data Binding. 411
Foundation of the Data Binding Model . 411

Feasible Data Sources. 412
Data-Binding Properties . 415

Data-Bound Controls . 421
List Controls . 421
Iterative Controls. 427
View Controls. 432

Data-Binding Expressions . 434
Simple Data Binding . 434
The DataBinder Class . 436

Managing Tables of Data. 438
The GridView’s Object Model . 439
Binding Data to the Grid . 443
Working with the GridView. 451

Data Source Components . 456
Internals of Data Source Controls . 456
The ObjectDataSource Control . 459

Summary. 469

The ListView Control . 471
The ListView Control. 471

The ListView Object Model . 472
Defining the Layout of the List . 479
Building a Tabular Layout . 480
Building a Flow Layout . 485
Building a Tiled Layout . 487
Styling the List . 493

Working with the ListView Control . 496
In-Place Editing . 496
Conducting the Update . 499
Inserting New Data Items . 501
Selecting an Item . 505
Paging the List of Items . 507

Summary. 511

Custom Controls . 513
Extending Existing Controls . 514

Choosing a Base Class. 514
A Richer HyperLink Control . 515

Building Controls from Scratch . 518
Base Class and Interfaces . 518
Choosing a Rendering Style . 520
The SimpleGaugeBar Control . 522
Rendering the SimpleGaugeBar Control . 527

Building a Data-Bound Control . 533
Key Features. 533
The GaugeBar Control . 535

Building a Composite Templated Control. 543
Generalities of Composite Data-Bound Controls 544
The BarChart Control . 547
Adding Template Support . 556

Summary. 561

Design of the Application

Principles of Software Design . 565
The Big Ball of Mud . 566

Reasons for the Mud . 566

Alarming Symptoms . 567
Universal Software Principles . 569

Cohesion and Coupling . 569
Separation of Concerns . 571

SOLID Principles . 573
The Single Responsibility Principle . 573
The Open/Closed Principle . 575
Liskov’s Substitution Principle. 576
The Interface Segregation Principle . 579
The Dependency Inversion Principle . 580

Tools for Dependency Injection . 583
Managed Extensibility Framework at a Glance 584
Unity at a Glance . 587

Summary. 591

Layers of an Application . 593
A Multitiered Architecture . 594

The Overall Design . 594
Methodologies . 595

The Business Layer . 596
Design Patterns for the BLL. 596
The Application Logic. 602

The Data Access Layer . 605
Implementation of a DAL . 605
Interfacing the DAL. 608
Using an Object/Relational Mapper . 610
Beyond Classic Databases . 613

Summary. 614

The Model-View-Presenter Pattern . 615
Patterns for the Presentation Layer . 615

The MVC Pattern . 616
The MVP Pattern . 619
The MVVM Pattern . 621

Implementing Model View Presenter . 623
Abstracting the View . 624
Creating the Presenter . 626
Navigation . 632

Testability in Web Forms with MVP. 636
Writing Testable Code . 637
Testing a Presenter Class . 639

Summary. 642

Infrastructure of the Application

The HTTP Request Context . 645
Initialization of the Application . 645

Properties of the HttpApplication Class . 645
Application Modules . 646
Methods of the HttpApplication Class. 647
Events of the HttpApplication Class . 648

The global.asax File. 651
Compiling global.asax . 652

Syntax of global.asax . 653
The HttpContext Class . 656

Properties of the HttpContext Class. 656
Methods of the HttpContext Class . 658

The Server Object . 660
Properties of the HttpServerUtility Class . 660
Methods of the HttpServerUtility Class . 660

The HttpResponse Object . 663
Properties of the HttpResponse Class . 664
Methods of the HttpResponse Class. 667

The HttpRequest Object. 670
Properties of the HttpRequest Class . 670
Methods of the HttpRequest Class . 673

Summary. 674

ASP.NET State Management . 675
The Application’s State. 676

Properties of the HttpApplicationState Class . 676
Methods of the HttpApplicationState Class . 677
State Synchronization. 678
Tradeoffs of Application State . 679

The Session’s State . 680
The Session-State HTTP Module. 680
Properties of the HttpSessionState Class. 685
Methods of the HttpSessionState Class . 686

Working with a Session’s State . 686
Identifying a Session. 687
Lifetime of a Session. 693
Persist Session Data to Remote Servers . 695
Persist Session Data to SQL Server . 699

Customizing Session State Management . 704
Building a Custom Session State Provider . 704
Generating a Custom Session ID . 708

The View State of a Page . 710
The StateBag Class . 711
Common Issues with View State. 712
Programming the View State . 715

Summary. 720

ASP.NET Caching . 721
Caching Application Data . 721

The Cache Class . 722
Working with the ASP.NET Cache . 725
Practical Issues. 732
Designing a Custom Dependency . 737
A Cache Dependency for XML Data. 739
SQL Server Cache Dependency. 743

Distributed Cache . 744
Features of a Distributed Cache . 745
AppFabric Caching Services . 747
Other Solutions . 753

Caching ASP.NET Pages . 755
ASP.NET and the Browser Cache. 756
Making ASP.NET Pages Cacheable . 758
The HttpCachePolicy Class. 763
Caching Multiple Versions of a Page . 765

Caching Portions of ASP.NET Pages. 768
Advanced Caching Features . 774

Summary. 777

ASP.NET Security . 779
 Where the Threats Come From . 779
The ASP.NET Security Context . 781

Who Really Runs My ASP.NET Application? . 781
Changing the Identity of the ASP.NET Process 784
The Trust Level of ASP.NET Applications. 786
ASP.NET Authentication Methods . 789

Using Forms Authentication . 791
Forms Authentication Control Flow. 792
The FormsAuthentication Class . 796
Configuration of Forms Authentication . 798
Advanced Forms Authentication Features . 801

The Membership and Role Management API . 806
The Membership Class . 807
The Membership Provider . 812
Managing Roles. 817

Quick Tour of Claims-Based Identity . 821
Claims-Based Identity. 822
Using Claims in ASP.NET Applications . 824

Security-Related Controls . 825
The Login Control . 826
The LoginName Control. 828
The LoginStatus Control. 829
The LoginView Control . 830
The PasswordRecovery Control. 832
The ChangePassword Control . 833
The CreateUserWizard Control . 834

Summary. 835

The Client Side

Ajax Programming. 839
The Ajax Infrastructure . 840

The Hidden Engine of Ajax . 840
JavaScript and Ajax . 845

Partial Rendering in ASP.NET . 851
The ScriptManager Control . 852
The UpdatePanel Control. 860

Considerations Regarding Partial Rendering . 865
Configuring for Conditional Refresh . 866
Giving Feedback to the User. 870
The Ins and Outs of Partial Rendering. 876

REST and Ajax . 879
Scriptable Services . 880
JSON Payloads . 890
JavaScript Client Code . 893

Summary. 897

jQuery Programming . 899
Power to the Client . 899

Programming within the Browser . 900
The Gist of jQuery . 903

Working with jQuery . 905
Detecting DOM Readiness. 906
Wrapped Sets. 908
Operating on a Wrapped Set . 915
Manipulating the DOM . 920
The jQuery Cache . 923
Ajax Capabilities . 925
Cross-Domain Calls . 929

Summary. 932

Index . 933

About the Author. 965

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2011 by Dino Esposito

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2011920853
ISBN: 978-0-7356-4338-3

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor mation about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International
directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to mspinput@
microsoft.com.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions Editor: Devon Musgrave
Developmental Editor: Devon Musgrave
Project Editor: Roger LeBlanc
Editorial Production: Waypoint Press
Technical Reviewer: Scott Galloway
Cover: Tom Draper Design

Body Part No. X17-45994

http://www.microsoft.com/mspress
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/

To Silvia, with love

 v

Contents at a Glance

Part I The ASP.NET Runtime Environment
 1 ASP.NET Web Forms Today . 3
 2 ASP.NET and IIS . 27
 3 ASP.NET Configuration. 63
 4 HTTP Handlers, Modules, and Routing . 119

Part II ASP.NET Pages and Server Controls
 5 Anatomy of an ASP.NET Page . 169
 6 ASP.NET Core Server Controls . 217
 7 Working with the Page . 269
 8 Page Composition and Usability. 319
 9 ASP.NET Input Forms . 365
 10 Data Binding . 411
 11 The ListView Control. 471
 12 Custom Controls . 513

Part III Design of the Application
 13 Principles of Software Design . 565
 14 Layers of an Application . 593
 15 The Model-View-Presenter Pattern . 615

Part IV Infrastructure of the Application
 16 The HTTP Request Context . 645
 17 ASP.NET State Management . 675
 18 ASP.NET Caching . 721
 19 ASP.NET Security . 779

Part V The Client Side
 20 Ajax Programming . 839
 21 jQuery Programming . 899

 vii

Table of Contents
Acknowledgments . xvii

Introduction .xix

Part I The ASP.NET Runtime Environment
 1 ASP.NET Web Forms Today . 3

The Age of Reason of ASP.NET Web Forms . 4
The Original Strengths . 4
Today’s Perceived Weaknesses . 8
How Much Is the Framework and How Much Is It You?. 11

The AJAX Revolution . 14
Moving Away from Classic ASP.NET. 15
AJAX as a Built-in Feature of the Web. 19

ASP.NET of the Future . 20
ASP.NET MVC. 21
ASP.NET Web Pages . 25

Summary. 26

 2 ASP.NET and IIS . 27
The Web Server Environment . 28

A Brief History of ASP.NET and IIS . 28
The Journey of an HTTP Request in IIS . 31
Some New Features in IIS 7.5 . 37

Deploying ASP.NET Applications . 39
XCopy Deployment for Web Sites . 40
Packaging Files and Settings. 43
Site Precompilation. 52
Configuring IIS for ASP.NET Applications . 55
Application Warm-up and Preloading . 59

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

http://www.microsoft.com/learning/booksurvey/

viii Table of Contents

 3 ASP.NET Configuration. 63
The ASP.NET Configuration Hierarchy. 63

Configuration Files . 64
The <location> Section . 68
The <system.web> Section . 71
Other Top-Level Sections. 105

Managing Configuration Data . 110
Using the Configuration API . 110
Encrypting a Section . 113

Summary. 117

 4 HTTP Handlers, Modules, and Routing . 119
Writing HTTP Handlers . 121

The IHttpHandler Interface . 121
The Picture Viewer Handler. 128
Serving Images More Effectively . 133
Advanced HTTP Handler Programming . 141

Writing HTTP Modules. 149
The IHttpModule Interface . 149
A Custom HTTP Module. 151
Examining a Real-World HTTP Module. 154

URL Routing . 156
The URL Routing Engine . 157
Routing in Web Forms . 160

Summary. 165

Part II ASP.NET Pages and Server Controls
 5 Anatomy of an ASP.NET Page . 169

Invoking a Page. 170
The Runtime Machinery. 170
Processing the Request . 174
The Processing Directives of a Page . 179

The Page Class . 190
Properties of the Page Class . 191
Methods of the Page Class . 194
Events of the Page Class. 198
The Eventing Model . 199
Asynchronous Pages. 201

 Table of Contents ix

The Page Life Cycle . 209
Page Setup . 209
Handling the Postback . 212
Page Finalization . 214

Summary. 215

 6 ASP.NET Core Server Controls . 217
Generalities of ASP.NET Server Controls . 218

Properties of the Control Class . 218
Methods of the Control Class . 228
Events of the Control Class . 229
Other Features . 230

HTML Controls. 235
Generalities of HTML Controls . 236
HTML Container Controls . 239
HTML Input Controls . 246
The HtmlImage Control . 252

Web Controls . 253
Generalities of Web Controls . 253
Core Web Controls . 256
Miscellaneous Web Controls. 262

Summary. 268

 7 Working with the Page . 269
Dealing with Errors in ASP.NET Pages . 269

Basics of Exception Handling . 270
Basics of Page Error Handling. 272
Mapping Errors to Pages . 278
Error Reporting . 283

Page Personalization . 285
Creating the User Profile . 285
Interacting with the Page . 292
Profile Providers . 300

Page Localization . 303
Making Resources Localizable . 304
Resources and Cultures . 308

Adding Resources to Pages . 312
Using Script Files . 312
Using Cascading Style Sheets and Images . 315

Summary. 317

x Table of Contents

 8 Page Composition and Usability. 319
Page Composition Checklist . 319

Working with Master Pages . 320
Writing a Content Page . 323
Processing Master and Content Pages . 329
Programming the Master Page. 333
Styling ASP.NET Pages . 336

Page Usability Checklist. 344
Cross-Browser Rendering . 344
Search Engine Optimization . 348
Site Navigation . 351
Configuring the Site Map . 357
Testing the Page . 361

Summary. 364

 9 ASP.NET Input Forms . 365
Programming with Forms . 365

The HtmlForm Class . 366
Multiple Forms. 368
Cross-Page Postings . 374

Validation Controls . 379
Generalities of Validation Controls . 379
Gallery of Controls . 382
Special Capabilities . 387

Working with Wizards . 397
An Overview of the Wizard Control. 397
Adding Steps to a Wizard . 402
Navigating Through the Wizard. 405

Summary. 409

 10 Data Binding . 411
Foundation of the Data Binding Model . 411

Feasible Data Sources. 412
Data-Binding Properties . 415

Data-Bound Controls . 421
List Controls . 421
Iterative Controls. 427
View Controls. 432

Data-Binding Expressions . 434

 Table of Contents xi

Simple Data Binding . 434
The DataBinder Class . 436

Managing Tables of Data. 438
The GridView’s Object Model . 439
Binding Data to the Grid . 443
Working with the GridView. 451

Data Source Components . 456
Internals of Data Source Controls . 456
The ObjectDataSource Control . 459

Summary. 469

 11 The ListView Control. 471
The ListView Control. 471

The ListView Object Model . 472
Defining the Layout of the List . 479
Building a Tabular Layout . 480
Building a Flow Layout . 485
Building a Tiled Layout . 487
Styling the List . 493

Working with the ListView Control . 496
In-Place Editing . 496
Conducting the Update . 499
Inserting New Data Items . 501
Selecting an Item . 505
Paging the List of Items . 507

Summary. 511

 12 Custom Controls . 513
Extending Existing Controls . 514

Choosing a Base Class. 514
A Richer HyperLink Control . 515

Building Controls from Scratch . 518
Base Class and Interfaces . 518
Choosing a Rendering Style . 520
The SimpleGaugeBar Control . 522
Rendering the SimpleGaugeBar Control . 527

Building a Data-Bound Control . 533
Key Features. 533
The GaugeBar Control . 535

xii Table of Contents

Building a Composite Templated Control. 543
Generalities of Composite Data-Bound Controls 544
The BarChart Control . 547
Adding Template Support . 556

Summary. 561

Part III Design of the Application
 13 Principles of Software Design . 565

The Big Ball of Mud . 566
Reasons for the Mud . 566
Alarming Symptoms . 567

Universal Software Principles . 569
Cohesion and Coupling . 569
Separation of Concerns . 571

SOLID Principles . 573
The Single Responsibility Principle . 573
The Open/Closed Principle . 575
Liskov’s Substitution Principle. 576
The Interface Segregation Principle . 579
The Dependency Inversion Principle . 580

Tools for Dependency Injection . 583
Managed Extensibility Framework at a Glance 584
Unity at a Glance . 587

Summary. 591

 14 Layers of an Application . 593
A Multitiered Architecture . 594

The Overall Design . 594
Methodologies . 595

The Business Layer . 596
Design Patterns for the BLL. 596
The Application Logic. 602

The Data Access Layer . 605
Implementation of a DAL . 605
Interfacing the DAL. 608
Using an Object/Relational Mapper . 610
Beyond Classic Databases . 613

Summary. 614

 Table of Contents xiii

 15 The Model-View-Presenter Pattern . 615
Patterns for the Presentation Layer . 615

The MVC Pattern . 616
The MVP Pattern . 619
The MVVM Pattern . 621

Implementing Model View Presenter . 623
Abstracting the View . 624
Creating the Presenter . 626
Navigation . 632

Testability in Web Forms with MVP. 636
Writing Testable Code . 637
Testing a Presenter Class . 639

Summary. 642

Part IV Infrastructure of the Application
 16 The HTTP Request Context . 645

Initialization of the Application . 645
Properties of the HttpApplication Class . 645
Application Modules . 646
Methods of the HttpApplication Class. 647
Events of the HttpApplication Class . 648

The global.asax File. 651
Compiling global.asax . 652
Syntax of global.asax . 653

The HttpContext Class . 656
Properties of the HttpContext Class. 656
Methods of the HttpContext Class . 658

The Server Object . 660
Properties of the HttpServerUtility Class . 660
Methods of the HttpServerUtility Class . 660

The HttpResponse Object . 663
Properties of the HttpResponse Class . 664
Methods of the HttpResponse Class. 667

The HttpRequest Object. 670
Properties of the HttpRequest Class . 670
Methods of the HttpRequest Class . 673

Summary. 674

xiv Table of Contents

 17 ASP.NET State Management . 675
The Application’s State. 676

Properties of the HttpApplicationState Class . 676
Methods of the HttpApplicationState Class . 677
State Synchronization. 678
Tradeoffs of Application State . 679

The Session’s State . 680
The Session-State HTTP Module. 680
Properties of the HttpSessionState Class. 685
Methods of the HttpSessionState Class . 686

Working with a Session’s State . 686
Identifying a Session. 687
Lifetime of a Session. 693
Persist Session Data to Remote Servers . 695
Persist Session Data to SQL Server . 699

Customizing Session State Management . 704
Building a Custom Session State Provider . 704
Generating a Custom Session ID . 708

The View State of a Page . 710
The StateBag Class . 711
Common Issues with View State. 712
Programming the View State . 715

Summary. 720

 18 ASP.NET Caching . 721
Caching Application Data . 721

The Cache Class . 722
Working with the ASP.NET Cache . 725
Practical Issues. 732
Designing a Custom Dependency . 737
A Cache Dependency for XML Data. 739
SQL Server Cache Dependency. 743

Distributed Cache . 744
Features of a Distributed Cache . 745
AppFabric Caching Services . 747
Other Solutions . 753

Caching ASP.NET Pages . 755
ASP.NET and the Browser Cache. 756

 Table of Contents xv

Making ASP.NET Pages Cacheable . 758
The HttpCachePolicy Class. 763
Caching Multiple Versions of a Page . 765
Caching Portions of ASP.NET Pages. 768
Advanced Caching Features . 774

Summary. 777

 19 ASP.NET Security . 779
 Where the Threats Come From . 779
The ASP.NET Security Context . 781

Who Really Runs My ASP.NET Application? . 781
Changing the Identity of the ASP.NET Process 784
The Trust Level of ASP.NET Applications. 786
ASP.NET Authentication Methods . 789

Using Forms Authentication . 791
Forms Authentication Control Flow. 792
The FormsAuthentication Class . 796
Configuration of Forms Authentication . 798
Advanced Forms Authentication Features . 801

The Membership and Role Management API . 806
The Membership Class . 807
The Membership Provider . 812
Managing Roles. 817

Quick Tour of Claims-Based Identity . 821
Claims-Based Identity. 822
Using Claims in ASP.NET Applications . 824

Security-Related Controls . 825
The Login Control . 826
The LoginName Control. 828
The LoginStatus Control. 829
The LoginView Control . 830
The PasswordRecovery Control. 832
The ChangePassword Control . 833
The CreateUserWizard Control . 834

Summary. 835

xvi Table of Contents

Part V The Client Side
 20 Ajax Programming . 839

The Ajax Infrastructure . 840
The Hidden Engine of Ajax . 840
JavaScript and Ajax . 845

Partial Rendering in ASP.NET . 851
The ScriptManager Control . 852
The UpdatePanel Control. 860

Considerations Regarding Partial Rendering . 865
Configuring for Conditional Refresh . 866
Giving Feedback to the User. 870
The Ins and Outs of Partial Rendering. 876

REST and Ajax . 879
Scriptable Services . 880
JSON Payloads . 890
JavaScript Client Code . 893

Summary. 897

 21 jQuery Programming . 899
Power to the Client . 899

Programming within the Browser . 900
The Gist of jQuery . 903

Working with jQuery . 905
Detecting DOM Readiness. 906
Wrapped Sets. 908
Operating on a Wrapped Set . 915
Manipulating the DOM . 920
The jQuery Cache . 923
Ajax Capabilities . 925
Cross-Domain Calls . 929

Summary. 932

 Index . 933

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

http://www.microsoft.com/learning/booksurvey/

 xvii

Acknowledgments
As is usual for a book, the cover of this book shows only the name of the author, but in no
way can an author produce a book all alone. In fact, a large ensemble of people made this
book happen. First, I want to thank Devon Musgrave for developing the idea and scheduling
new books for me to author at an amazingly quick pace for the next two years!

Next comes Roger LeBlanc, whom I’ve had the pleasure to have as a copy editor on previous
books of mine—including the first edition of this Programming ASP.NET book (Microsoft
Press, 2003). This time, Roger assisted me almost every day—not just as the copy editor,
but also as the development manager. I dare to say that as my English gets a little bit better
 every year, the amount of copy editing required does not amount to much for a diligent
 editor like Roger. So he decided to take on extra tasks.

In the middle of this project, I had to take a short break to have back surgery. The surgery
increased the number of lengths I could swim and improved my tennis game, especially
the penetration of my first serve and my top-spin backhand, but it put a temporary stop to
my progress on the book. As a result, Roger and I had to work very hard to get the book
 completed on a very tight schedule.

Steve Sagman handled the production end of the book—things like layout, art, indexing,
proofreading, prepping files for printing, as well as the overall project management. Here,
too, the tight schedule required a greater effort than usual. Steve put in long days as well as
weekends to keep everything on track and to ensure this edition equals or exceeds the high
standards of previous editions.

Scott Galloway took the responsibility of ensuring that this book contains no huge technical
mistakes or silly statements. As a technical reviewer, Scott provided me with valuable insights,
especially about the rationale of some design decisions in ASP.NET. Likewise, he helped me
understand the growing importance JavaScript (and unobtrusive JavaScript) has today for
Web developers. Finally, Scott woke me up to the benefits of Twitter, as tweeting was often
the quickest way to get advice or reply to him.

To all of you, I owe a monumental “Thank you” for being so kind, patient, and accurate.
Working with you is a privilege and a pleasure, and it makes me a better author each time.
And I still have a long line of books to author.

My final words are for Silvia, Francesco, and Michela, who wait for me and keep me busy.
But I’m happy only when I’m busy.

—Dino

 xix

Introduction
In the fall of 2004, at a popular software conference I realized how all major component
vendors were advertising their ASP.NET products using a new word—Ajax. Only a few weeks
later, a brand new module in my popular ASP.NET master class made its debut—using Ajax
to improve the user experience. At its core, Ajax is a little thing and fairly old too—as I
 presented the engine of it (XmlHttpRequest) to a C++ audience at TechEd 2000, only four
weeks before the public announcement of the .NET platform.

As emphatic as it may sound, that crazy little thing called Ajax changed the way we approach
Web development. Ajax triggered a chain reaction in the world of the Web. Ajax truly repre-
sents paradigm shift for Web applications. And, as the history of science proves, a paradigm
shift always has a deep impact, especially in scenarios that were previously stable and con-
solidated. We are now really close to the day we will be able to say “the Web” without feeling
the need to specify whether it contains Ajax or not. Just the Web—which has a rich client
component, a made-to-measure layer of HTTP endpoints to call, and interchangeable styles.

Like it or not, the more we take the Ajax route, the more we move away from ASP.NET
Web Forms. In the end, it’s just like getting older. Until recently, Web Forms was a fantastic
 platform for Web development. The Web, however, is now going in a direction that Web
Forms can’t serve in the same stellar manner.

No, you didn’t pick up the wrong book, and you also did not pick up the wrong technology
for your project.

It’s not yet time to cease ASP.NET Web Forms development. However, it’s already time for
you to pay a lot more attention to aspects of Web development that Web Forms specifically
and deliberately shielded you from for a decade—CSS, JavaScript, and HTML markup.

In my ASP.NET master class, I have a lab in which I first show how to display a data-bound
grid of records with cells that trigger an Ajax call if clicked. I do that in exactly the way one
would do it—as an ASP.NET developer. Next, I challenge attendees to rewrite it without inline
script and style settings. And yes—a bit perversely—I also tell anyone who knows jQuery
not to use it. The result is usually a thoughtful and insightful experience, and the code I
come up with gets better every time. ASP.NET Web Forms is not dead, no matter what
ASP.NET MVC—the twin technology—can become. But it’s showing signs of age. As a
 developer, you need to recognize that and revive it through robust injections of patterns,
JavaScript and jQuery code, and Ajax features.

In this book, I left out some of the classic topics you found in earlier versions, such as
ADO.NET and even LINQ-to-SQL. I also reduced the number of pages devoted to controls.
I brought in more coverage of ASP.NET underpinnings, ASP.NET configuration, jQuery, and
 patterns and design principles. Frankly, not a lot has changed in ASP.NET since version 2.0.

xx Introduction

Because of space constraints, I didn’t cover some rather advanced aspects of ASP.NET
 customization, such as expression builders, custom providers, and page parsers. For coverage
of those items, my older book Programming Microsoft ASP.NET 2.0 Applications: Advanced
Topics (Microsoft Press, 2006) is still a valid reference in spite of the name, which targets the
2.0 platform. The new part of this book on principles of software design is a compendium
of another pretty successful book of mine (actually coauthored with Andrea Saltarello)—
Microsoft .NET: Architecting Applications for the Enterprise (Microsoft Press, 2008).

Who Should Read This Book?
This is not a book for novice developers and doesn’t provide a step-by-step guide on how
to design and code Web pages. So the book is not appropriate if you have only a faint idea
about ASP.NET and expect the book to get you started with it quickly and effectively. Once
you have grabbed hold of ASP.NET basic tasks and features and need to consolidate them,
you enter the realm of this book.

You won’t find screen shots here illustrating Microsoft Visual Studio wizards, nor any
 mention of options to select or unselect to get a certain behavior from your code. Of course,
this doesn’t mean that I hate Visual Studio or that I’m not recommending Visual Studio
for developing ASP.NET applications. Visual Studio is a great tool to use to write ASP.NET
 applications but, judged from an ASP.NET perspective, it is only a tool. This book, instead, is
all about the ASP.NET core technology.

I do recommend this book to developers who have knowledge of the basic steps required to
build simple ASP.NET pages and easily manage the fundamentals of Web development. This
book is not a collection of recipes for cooking good (or just functional) ASP.NET code. This
book begins where recipes end. It explains to you the how-it-works, what-you-can-do, and
why-you-should-or-should-not aspects of ASP.NET. Beginners need not apply, even though
this book is a useful and persistent reference to keep on the desk.

System Requirements
You’ll need the following hardware and software to build and run the code samples for
this book:

■ Microsoft Windows 7, Microsoft Windows Vista, Microsoft Windows XP with Service
Pack 2, Microsoft Windows Server 2003 with Service Pack 1, or Microsoft Windows
2000 with Service Pack 4.

■ Any version of Microsoft Visual Studio 2010.

 Introduction xxi

■ Internet Information Services (IIS) is not strictly required, but it is helpful for testing
sample applications in a realistic runtime environment.

■ Microsoft SQL Server 2005 Express (included with Visual Studio 2008) or Microsoft SQL
Server 2005, as well as any newer versions.

■ The Northwind database of Microsoft SQL Server 2000 is used in most examples in this
book to demonstrate data-access techniques throughout the book.

■ 766-MHz Pentium or compatible processor (1.5-GHz Pentium recommended).

■ 256 MB RAM (512 MB or more recommended).

■ Video (800 x 600 or higher resolution) monitor with at least 256 colors (1024 x 768 High
Color 16-bit recommended).

■ CD-ROM or DVD-ROM drive.

■ Microsoft Mouse or compatible pointing device.

Code Samples
All of the code samples discussed in this book can be downloaded from the book’s
 Companion Content page accessible via following address:

http://www.microsoftpressstore.com/title/9780735643383.

Errata & Book Support
We’ve made every effort to ensure the accuracy of this book and its companion content. If
you do find an error, please report it on our Microsoft Press site:

 1.

 2. In the Search box, enter the book’s ISBN or title.

 3. Select your book from the search results.

 4.

 5. Click View/Submit Errata.

You’ll find additional information and services for your book on its catalog page. If you need
additional support, please e-mail Microsoft Press Book Support at mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

Go	to	www.microsoftpressstore.com.

On your book’s catalog page, find the Errata & Updates tab

http://www.microsoftpressstore.com/title/9780735643383
http://microsoftpressstore.com
mailto:mspinput@microsoft.com

xxii Introduction

We Want to Hear from You
At Microsoft Press, your satisfaction is our top priority, and your feedback our most
 valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey.

The survey is short, and we read every one of your comments and ideas. Thanks in advance
for your input!

Stay in Touch
Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress

 119

Chapter 4

HTTP Handlers, Modules, and
Routing

Advice is what we ask for when we already know the answer but wish we didn’t.

—Erica Jong

HTTP handlers and modules are truly the building blocks of the ASP.NET platform. Any
 requests for a resource managed by ASP.NET are always resolved by an HTTP handler and
pass through a pipeline of HTTP modules. After the handler has processed the request, the
request flows back through the pipeline of HTTP modules and is finally transformed into
markup for the caller.

The Page class—the base class for all ASP.NET runtime pages—is ultimately an HTTP handler
that implements internally the page life cycle that fires the well-known set of page events,
 including postbacks, Init, Load, PreRender, and the like. An HTTP handler is designed to pro-
cess one or more URL extensions. Handlers can be given an application or machine scope,
which means they can process the assigned extensions within the context of the current
application or all applications installed on the machine. Of course, this is accomplished by
making changes to either the site’s web.config file or a local web.config file, depending on the
scope you desire.

HTTP modules are classes that handle runtime events. There are two types of public events
that a module can deal with. They are the events raised by HttpApplication (including asyn-
chronous events) and events raised by other HTTP modules. For example, SessionStateModule
is one of the built-in modules provided by ASP.NET to supply session-state services to an
 application. It fires the End and Start events that other modules can handle through the
 familiar Session_End and Session_Start signatures.

In Internet Information Services (IIS) 7 integrated mode, modules and handlers are resolved
at the IIS level; they operate, instead, inside the ASP.NET worker process in different runtime
configurations, such as IIS 7 classic mode or IIS 6.

HTTP modules and handlers are related to the theme of request routing. Originally
 developed for ASP.NET MVC, the URL routing engine has been incorporated into the over-
all ASP.NET platform with the .NET Framework 3.5 Service Pack 1. The URL routing engine
is a system-provided HTTP module that hooks up any incoming requests and attempts to
match the requested URL to one of the user-defined rewriting rules (known as routes). If a
match exists, the module locates the HTTP handler that is due to serve the route and goes
with it. If no match is found, the request is processed as usual in Web Forms, as if no URL
routing engine was ever in the middle. What makes the URL routing engine so beneficial to

120 Part I The ASP.NET Runtime Environment

 applications? It actually enables you to use free-hand and easy-to-remember URLs that are
not necessarily bound to physical files in the Web server.

In this chapter, we’ll explore the syntax and semantics of HTTP handlers, HTTP modules, and
the URL routing engine.

The ISAPI Extensibility Model of IIS
A Web server generally provides an application programming interface (API) for
 enhancing and customizing the server’s capabilities. Historically speaking, the first of
these extension APIs was the Common Gateway Interface (CGI). A CGI module is a new
application that is spawned from the Web server to service a request. Nowadays, CGI
applications are almost never used because they require a new process for each HTTP
request, and this approach poses severe scalability issues and is rather inadequate for
high-volume Web sites.

More recent versions of Web servers supply an alternate and more efficient model to
extend the capabilities of the server. In IIS, this alternative model takes the form of the
ISAPI interface. When the ISAPI model is used, instead of starting a new process for
each request, the Web server loads a made-to-measure component—namely, a Win32
dynamic-link library (DLL)—into its own process. Next, it calls a well-known entry
point on the DLL to serve the request. The ISAPI component stays loaded until IIS is
shut down and can service requests without any further impact on Web server activ-
ity. The downside to such a model is that because components are loaded within the
Web server process, a single faulty component can tear down the whole server and all
installed applications. Some effective countermeasures have been taken over the years
to smooth out this problem. Today, IIS installed applications are assigned to application
pools and each application pool is served by a distinct instance of a worker process.

From an extensibility standpoint, however, the ISAPI model is less than optimal because
it requires developers to create Win32 unmanaged DLLs to endow the Web server with
the capability of serving specific requests, such as those for ASPX resources. Until IIS 7
(and still in IIS 7 when the classic mode is configured), requests are processed by IIS and
then mapped to some ISAPI (unmanaged) component. This is exactly what happens
with plain ASPX requests, and the ASP.NET ISAPI component is aspnet_isapi.dll. In IIS 7.x
integrated mode, you can add managed components (HTTP handlers and HTTP mod-
ules) directly at the IIS level. More precisely, the IIS 7 integrated mode merges the
ASP.NET internal runtime pipeline with the IIS pipeline and enables you to write Web
server extensions using managed code. This is the way to go.

Today, if you learn how to write HTTP handlers and HTTP modules, you can use such
skills to customize how any requests that hit IIS are served, and not just requests that
would be mapped to ASP.NET. You’ll see a few examples in the rest of the chapter.

 Chapter 4 HTTP Handlers, Modules, and Routing 121

Writing HTTP Handlers
As the name suggests, an HTTP handler is a component that handles and processes a
 request. ASP.NET comes with a set of built-in handlers to accommodate a number of system
tasks. The model, however, is highly extensible. You can write a custom HTTP handler when-
ever you need ASP.NET to process certain types of requests in a nonstandard way. The list of
useful things you can do with HTTP handlers is limited only by your imagination.

Through a well-written handler, you can have your users invoke any sort of functionality via
the Web. For example, you could implement click counters and any sort of image manipula-
tion, including dynamic generation of images, server-side caching, or obstructing undesired
linking to your images. More in general, an HTTP handler is a way for the user to send a
 command to the Web application instead of just requesting a particular page.

In software terms, an HTTP handler is a relatively simple class that implements the
IHttpHandler interface. An HTTP handler can either work synchronously or operate in an
asynchronous way. When working synchronously, a handler doesn’t return until it’s done
with the HTTP request. An asynchronous handler, on the other hand, launches a potentially
lengthy process and returns immediately after. A typical implementation of asynchronous
handlers is asynchronous pages. An asynchronous HTTP handler is a class that implements a
different interface—the IHttpAsyncHandler interface.

HTTP handlers need be registered with the application. You do that in the application’s web.
config file in the <httpHandlers> section of <system.web>, in the <handlers> section of
 <system.webServer> as explained in Chapter 3, “ASP.NET Configuration,” or in both places. If
your application runs under IIS 7.x in integrated mode, you can also configure HTTP handlers
via the Handler Mappings panel of the IIS Manager.

The IHttpHandler Interface
Want to take the splash and dive into HTTP handler programming? Well, your first step is
getting the hang of the IHttpHandler interface. An HTTP handler is just a managed class
that implements that interface. As mentioned, a synchronous HTTP handler implements the
IHttpHandler interface; an asynchronous HTTP handler, on the other hand, implements the
IHttpAsyncHandler interface. Let’s tackle synchronous handlers first.

The contract of the IHttpHandler interface defines the actions that a handler needs to take to
process an HTTP request synchronously.

Members of the IHttpHandler Interface
The IHttpHandler interface defines only two members: ProcessRequest and IsReusable, as
shown in Table 4-1. ProcessRequest is a method, whereas IsReusable is a Boolean property.

122 Part I The ASP.NET Runtime Environment

TABLE 4-1 Members of the IHttpHandler Interface
Member Description
IsReusable This property provides a Boolean value indicating whether the HTTP

runtime can reuse the current instance of the HTTP handler while serving
another request.

ProcessRequest This method processes the HTTP request from start to finish and is
 responsible for processing any input and producing any output.

The IsReusable property on the System.Web.UI.Page class—the most common HTTP handler
in ASP.NET—returns false, meaning that a new instance of the HTTP request is needed to
serve each new page request. You typically make IsReusable return false in all situations
where some significant processing is required that depends on the request payload. Handlers
used as simple barriers to filter special requests can set IsReusable to true to save some CPU
cycles. I’ll return to this subject with a concrete example in a moment.

The ProcessRequest method has the following signature:

void ProcessRequest(HttpContext context);

It takes the context of the request as the input and ensures that the request is serviced. In
the case of synchronous handlers, when ProcessRequest returns, the output is ready for
 forwarding to the client.

A Very Simple HTTP Handler
The output for the request is built within the ProcessRequest method, as shown in the
 following code:
using System.Web;
namespace AspNetGallery.Extensions.Handlers
{
 public class SimpleHandler : IHttpHandler
 {
 public void ProcessRequest(HttpContext context)
 {
 const String htmlTemplate = "<html><head><title>{0}</title></head><body>" +
 "<h1>Hello I'm: " +
 "{1}</h1>" +
 "</body></html>";

 var response = String.Format(htmlTemplate,
 "HTTP Handlers", context.Request.Path);
 context.Response.Write(response);
 }
 public Boolean IsReusable
 {
 get { return false; }
 }
 }
}

 Chapter 4 HTTP Handlers, Modules, and Routing 123

You need an entry point to be able to call the handler. In this context, an entry point into the
handler’s code is nothing more than an HTTP endpoint—that is, a public URL. The URL must
be a unique name that IIS and the ASP.NET runtime can map to this code. When registered,
the mapping between an HTTP handler and a Web server resource is established through the
web.config file:

<configuration>
 <system.web>
 <httpHandlers>
 <add verb="*"
 path="hello.axd"
 type="Samples.Components.SimpleHandler" />
 </httpHandlers>
 </system.web>
 <system.webServer>
 <validation validateIntegratedModeConfiguration="false" />
 <handlers>
 <add name="Hello"
 preCondition="integratedMode"
 verb="*"
 path="hello.axd"
 type="Samples.Components.SimpleHandler" />
 </handlers>
 </system.webServer>
</configuration>

The <httpHandlers> section lists the handlers available for the current application. These
 settings indicate that SimpleHandler is in charge of handling any incoming requests for an
endpoint named hello.axd. Note that the URL hello.axd doesn’t have to be a physical resource
on the server; it’s simply a public resource identifier. The type attribute references the class
and assembly that contain the handler. Its canonical format is type[,assembly]. You omit the
assembly information if the component is defined in the App_Code or other reserved folders.

Important As noted in Chapter 3, you usually don’t need both forms of an HTTP handler
 declaration in <system.web> and <system.webServer>. You need the former only if your applica-
tion runs under IIS 6 (Windows Server 2003) or if it runs under IIS 7.x but is configured in classic
mode. You need the latter only if your application runs under IIS 7.x in integrated mode. If you
have both sections, you enable yourself to use a single web.config file for two distinct deploy-
ment scenarios. In this case, the <validation> element is key because it prevents IIS 7.x from
strictly parsing the content of the configuration file. Furthermore, as discussed in Chapter 3, the
<httpHandlers> and <httpModules> sections help in testing handlers and modules within Visual
Studio if you’re using the embedded ASP.NET Development Server (also known as, Cassini).

If you invoke the hello.axd URL, you obtain the results shown in Figure 4-1.

124 Part I The ASP.NET Runtime Environment

FIGURE 4-1 A sample HTTP handler that answers requests for hello.axd.

The technique discussed here is the quickest and simplest way of putting an HTTP handler to
work, but there is more to know about the registration of HTTP handlers and there are many
more options to take advantage of.

Note It’s more common to use the ASHX extension for a handler mapping. The AXD extension
is generally reserved for resource handlers that inject embedded content such as images, scripts,
and so forth.

Registering the Handler
An HTTP handler is a class and must be compiled to an assembly before you can use it. The
assembly must be deployed to the Bin directory of the application. If you plan to make this
handler available to all applications, you can copy it to the global assembly cache (GAC). The
next step is registering the handler with an individual application or with all the applications
running on the Web server.

You already saw the script you need to register an HTTP handler. Table 4-2 expands a bit
more on the attributes you can set up.

TABLE 4-2 Attributes Required to Register an HTTP Handler in <system.web>
Attribute Description
path A wildcard string, or a single URL, that indicates the resources the handler will

work on—for example, *.aspx.

type Specifies a comma-separated class/assembly combination. ASP.NET searches
for the assembly DLL first in the application’s private Bin directory and then in
the system global assembly cache.

validate If this attribute is set to false, ASP.NET loads the assembly with the handler on
demand. The default value is true.

verb Indicates the list of the supported HTTP verbs—for example, GET, PUT, and
POST. The wildcard character (*) is an acceptable value and denotes all verbs.

 Chapter 4 HTTP Handlers, Modules, and Routing 125

All attributes except for validate are mandatory. When validate is set to false, ASP.NET
 delays as much as possible loading the assembly with the HTTP handler. In other words, the
 assembly will be loaded only when a request for it arrives. ASP.NET will not try to preload the
assembly, thus catching earlier any errors or problems with it.

Additional attributes are available if you register the handler in <system.webServer>. They are
listed in Table 4-3.

TABLE 4-3 Attributes Required to Register an HTTP Handler in <system.webServer>
Attribute Description
allowPathInfo If this attribute is set to true, the handler processes full path information

in the URL or just the last section. It is set to false by default.

modules Indicates the list of HTTP modules (comma-separated list of names) that
are enabled to intercept requests for the current handler. The standard
list contains only the ManagedPipelineHandler module.

name Unique name of the handler.

path A wildcard string, or a single URL, that indicates the resources the
 handler will work on—for example, *.aspx.

preCondition Specifies conditions under which the handler will run. (More information
appears later in this section.)

requireAccess Indicates the type of access that a handler requires to the resource,
 either read, write, script, execute, or none. The default is script.

resourceType Indicates the type of resource to which the handler mapping applies: file,
directory, or both. The default option, however, is Unspecified, meaning
that the handler can handle requests for resources that map to physical
entries in the file system as well as to plain commands.

responseBufferLimit Specifies the maximum size, in bytes, of the response buffer. The default
value is 4 MB.

scriptProcessor Specifies the physical path of the ISAPI extension or CGI executable that
processes the request. It is not requested for managed handlers.

type Specifies a comma-separated class/assembly combination. ASP.NET
searches for the assembly DLL first in the application’s private Bin
 directory and then in the system global assembly cache.

verb Indicates the list of the supported HTTP verbs—for example, GET, PUT,
and POST. The wildcard character (*) is an acceptable value and denotes
all verbs.

The reason why the configuration of an HTTP handler might span a larger number of
 attributes in IIS is that the <handlers> section serves for both managed and unman-
aged handlers. If you configure a managed handler written using the ASP.NET API, you
need only preCondition and name in addition to the attributes you would specify in the
<httpHandlers> section.

126 Part I The ASP.NET Runtime Environment

Preconditions for Managed Handlers
The preCondition attribute sets prerequisites for the handler to run. Prerequisites touch
on three distinct areas: bitness, ASP.NET runtime version, and type of requests to respond.
Table 4-4 lists and explains the various options:

TABLE 4-4 Preconditions for an IIS 7.x HTTP Handler
Precondition Description
bitness32 The handler is 32-bit code and should be loaded only in 64-bit worker

processes running in 32-bit emulation.

bitness64 The handler is 64-bit and should be loaded only in native 64-bit
worker processes.

integratedMode The handler should respond only to requests in application pools
 configured in integrated mode.

ISAPIMode The handler should respond only to requests in application pools
 configured in classic mode.

runtimeVersionv1.1 The handler should respond only to requests in application pools
 configured for version 1.1 of the ASP.NET runtime.

runtimeVersionv2.0 The handler should respond only to requests in application pools
 configured for version 2.0 of the ASP.NET runtime.

Most of the time you use the integratedMode value only to set preconditions on a managed
HTTP handler.

Handlers Serving New Types of Resources
In ASP.NET applications, a common scenario when you want to use custom HTTP handlers is
that you want to loosen yourself from the ties of ASPX files. Sometimes you want to place a
request for a nonstandard ASP.NET resource (for example, a custom XML file) and expect the
handler to process the content and return some markup.

More in general, you use HTTP handlers in two main situations: when you want to custom-
ize how known resources are processed and when you want to introduce new resources. In
the latter case, you probably need to let IIS know about the new resource. Again, how you
achieve this depends on the configuration of the application pool that hosts your ASP.NET
applications.

Suppose you want your application to respond to requests for .report requests. For example,
you expect your application to be able to respond to a URL like /monthly.report?year=2010.
Let’s say that monthly.report is a server file that contains a description of the report your han-
dler will then create using any input parameters you provide.

In integrated mode, you need to do nothing special for this request to go successfully.
Moreover, you don’t even need to add a .report or any other analogous extension. You

 Chapter 4 HTTP Handlers, Modules, and Routing 127

can specify any custom URL (much like you do in ASP.NET MVC) and as long as you have a
 handler properly configured, it will work.

In classic mode, instead, two distinct pipelines exist in IIS and ASP.NET. The extension, in this
case, is mandatory to instruct IIS to recognize that request and map it to ASP.NET, where the
HTTP handler actually lives. As an example, consider that when you deploy ASP.NET MVC
in classic mode you have to tweak URLs so that each controller name has an .mvc suffix. To
force IIS to recognize a new resource, you must add a new script map via the IIS Manager, as
shown in Figure 4-2.

FIGURE 4-2 Adding an IIS script map for .report requests.

The executable is the ISAPI extension that will be bridging the request from the IIS world
to the ASP.NET space. You choose the aspnet_isapi DLL from the folder that points to the
 version of the .NET Framework you intend to target. In Figure 4-2, you see the path for
ASP.NET 4.

Note In Microsoft Visual Studio, if you test a sample .report resource using the local embedded
Web server, nothing happens that forces you to register the .report resource with IIS. This is just
the point, though. You’re not using IIS! In other words, if you use the local Web server, you have
no need to touch IIS; you do need to register any custom resource you plan to use with IIS before
you get to production.

Why didn’t we have to do anything special for our first example, hello.axd? Because AXD is
a system extension that ASP.NET registers on its own and that sometimes also can be used
for registering custom HTTP handlers. (AXD is not the recommended extension for custom
 handlers, however.)

Now let’s consider a more complex example of an HTTP handler.

128 Part I The ASP.NET Runtime Environment

The Picture Viewer Handler
To speed up processing, IIS claims the right to personally serve some typical Web resources
without going down to any particular ISAPI extensions. The list of resources served directly
by IIS includes static files such as images and HTML files.

What if you request a GIF or a JPG file directly from the address bar of the browser? IIS
 retrieves the specified resource, sets the proper content type on the response buffer, and
writes out the bytes of the file. As a result, you’ll see the image in the browser’s page. So far
so good.

What if you point your browser to a virtual folder that contains images? In this case, IIS
doesn’t distinguish the contents of the folder and returns a list of files, as shown in Figure 4-3.

FIGURE 4-3 The standard IIS-provided view of a folder.

Wouldn’t it be nice if you could get a preview of the contained pictures instead?

Designing the HTTP Handler
To start out, you need to decide how to let IIS know about your wishes. You can use a
 particular endpoint that, when appended to a folder’s name, convinces IIS to yield to
ASP.NET and provide a preview of contained images. Put another way, the idea is to bind
your picture viewer handler to a particular endpoint—say, folder.axd. As mentioned earlier in
the chapter, a fixed endpoint for handlers doesn’t have to be an existing, deployed resource.
You make the folder.axd endpoint follow the folder name, as shown here:

http://www.contoso.com/images/folder.axd

http://www.contoso.com/images/folder.axd

 Chapter 4 HTTP Handlers, Modules, and Routing 129

The handler processes the URL, extracts the folder name, and selects all the contained
pictures.

Note In ASP.NET, the .axd extension is commonly used for endpoints referencing a special
 service. Trace.axd for tracing and WebResource.axd for script and resources injection are
 examples of two popular uses of the extension. In particular, the Trace.axd handler implements
the same logic described here. If you append its name to the URL, it will trace all requests for
pages in that application.

Implementing the HTTP Handler
The picture viewer handler returns a page composed of a multirow table showing as many
images as there are in the folder. Here’s the skeleton of the class:

class PictureViewerInfo
{
 public PictureViewerInfo() {
 DisplayWidth = 200;
 ColumnCount = 3;
 }
 public int DisplayWidth;
 public int ColumnCount;
 public string FolderName;
}

public class PictureViewerHandler : IHttpHandler
{
 // Override the ProcessRequest method
 public void ProcessRequest(HttpContext context)
 {
 PictureViewerInfo info = GetFolderInfo(context);
 string html = CreateOutput(info);

 // Output the data
 context.Response.Write("<html><head><title>");
 context.Response.Write("Picture Web Viewer");
 context.Response.Write("</title></head><body>");
 context.Response.Write(html);
 context.Response.Write("</body></html>");
 }

 // Override the IsReusable property
 public bool IsReusable
 {
 get { return true; }
 }
 ...
}

130 Part I The ASP.NET Runtime Environment

Retrieving the actual path of the folder is as easy as stripping off the folder.axd string from
the URL and trimming any trailing slashes or backslashes. Next, the URL of the folder is
mapped to a server path and processed using the .NET Framework API for files and folders to
retrieve all image files:

private static IList<FileInfo> GetAllImages(DirectoryInfo di)
{
 String[] fileTypes = { "*.bmp", "*.gif", "*.jpg", "*.png" };
 var images = new List<FileInfo>();
 foreach (var files in fileTypes.Select(di.GetFiles).Where(files => files.Length > 0))
 {
 images.AddRange(files);
 }
 return images;
}

The DirectoryInfo class provides some helper functions on the specified directory; for
 example, the GetFiles method selects all the files that match the given pattern. Each file is
wrapped by a FileInfo object. The method GetFiles doesn’t support multiple search patterns;
to search for various file types, you need to iterate for each type and accumulate results in an
array list or equivalent data structure.

After you get all the images in the folder, you move on to building the output for the
 request. The output is a table with a fixed number of cells and a variable number of rows to
accommodate all selected images. For each image file, a new tag is created through
the Image control. The width attribute of this file is set to a fixed value (say, 200 pixels),
 causing browsers to automatically resize the image. Furthermore, the image is wrapped by
an anchor that links to the same image URL. As a result, when the user clicks on an image,
the page refreshes and shows the same image at its natural size.

private static String CreateOutputForFolder(PictureViewerInfo info, DirectoryInfo di)
{
 var images = GetAllImages(di);

 var t = new Table();
 var index = 0;
 var moreImages = true;

 while (moreImages)
 {
 var row = new TableRow();
 t.Rows.Add(row);

 for (var i = 0; i < info.ColumnCount; i++)
 {
 var cell = new TableCell();
 row.Cells.Add(cell);

 Chapter 4 HTTP Handlers, Modules, and Routing 131

 var img = new Image();
 var fi = images[index];
 img.ImageUrl = fi.Name;
 img.Width = Unit.Pixel(info.DisplayWidth);

 var a = new HtmlAnchor {HRef = fi.Name};
 a.Controls.Add(img);
 cell.Controls.Add(a);

 index++;
 moreImages = (index < images.Count);
 if (!moreImages)
 break;
 }
 }
}

You might want to make the handler accept some optional query string parameters, such
as the width of images and the column count. These values are packed in an instance of the
helper class PictureViewerInfo along with the name of the folder to view. Here’s the code to
process the query string of the URL to extract parameters if any are present:

var info = new PictureViewerInfo();
var p1 = context.Request.Params["Width"];
var p2 = context.Request.Params["Cols"];
if (p1 != null)
 info.DisplayWidth = p1.ToInt32();
if (p2 != null)
 info.ColumnCount = p2.ToInt32();

ToInt32 is a helper extension method that attempts to convert a numeric string to the
 corresponding integer. I find this method quite useful and a great enhancer of code readabil-
ity. Here’s the code:

public static Int32 ToInt32(this String helper, Int32 defaultValue = Int32.MinValue)
{
 Int32 number;
 var result = Int32.TryParse(helper, out number);
 return result ? number : defaultValue;
}

Figure 4-4 shows the handler in action.

132 Part I The ASP.NET Runtime Environment

FIGURE 4-4 The picture viewer handler in action with a given number of columns and a specified width.

Registering the handler is easy too. You just add the following script to the <httpHandlers>
section of the web.config file:

<add verb="*"
 path="folder.axd"
 type="PictureViewerHandler, AspNetGallery.Extensions" />

You place the assembly in the GAC and move the configuration script to the global
web.config to extend the settings to all applications on the machine. If you’re targeting IIS 7
integrated mode, you also need the following:

<system.webServer>
 <handlers>
 <add name="PictureFolder"
 preCondition="integratedMode"
 verb="*"

 Chapter 4 HTTP Handlers, Modules, and Routing 133

 path="folder.axd"
 type="PictureViewerHandler, AspNetGallery.Extensions" />
 </handlers>
</system.webServer>

Serving Images More Effectively
Any page you get from the Web these days is topped with so many images and is so well
conceived and designed that often the overall page looks more like a magazine advertise-
ment than an HTML page. Looking at the current pages displayed by portals, it’s rather hard
to imagine there ever was a time—and it was only a decade ago—when one could create
a Web site by using only a text editor and some assistance from a friend who had a bit of
 familiarity with Adobe PhotoShop.

In spite of the wide use of images on the Web, there is just one way in which a Web page can
reference an image—by using the HTML tag. By design, this tag points to a URL. As
a result, to be displayable within a Web page, an image must be identifiable through a URL
and its bits should be contained in the output stream returned by the Web server for that
URL.

In many cases, the URL points to a static resource such as a GIF or JPEG file. In this case, the
Web server takes the request upon itself and serves it without invoking external components.
However, the fact that many tags on the Web are bound to a static file does not mean
there’s no other way to include images in Web pages.

Where else can you turn to get images aside from picking them up from the server file
 system? One way to do it is to load images from a database, or you can generate or modify
images on the fly just before serving the bits to the browser.

Loading Images from Databases
The use of a database as the storage medium for images is controversial. Some people have
good reasons to push it as a solution; others tell you bluntly they would never do it and that
you shouldn’t either. Some people can tell you wonderful stories of how storing images in a
properly equipped database was the best experience of their professional life. With no fear
that facts could perhaps prove them wrong, other people will confess that they would never
use a database again for such a task.

The facts say that all database management systems (DBMS) of a certain reputation and
volume have supported binary large objects (BLOB) for quite some time. Sure, a BLOB field
doesn’t necessarily contain an image—it can contain a multimedia file or a long text file—
but overall there must be a good reason for having this BLOB supported in Microsoft SQL
Server, Oracle, and similar popular DBMS systems!

134 Part I The ASP.NET Runtime Environment

To read an image from a BLOB field with ADO.NET, you execute a SELECT statement on the
column and use the ExecuteScalar method to catch the result and save it in an array of bytes.
Next, you send this array down to the client through a binary write to the response stream.
Let’s write an HTTP handler to serve a database-stored image:

public class DbImageHandler : IHttpHandler
{
 public void ProcessRequest(HttpContext ctx)
 {
 // Ensure the URL contains an ID argument that is a number
 var id = -1;
 var p1 = context.Request.Params["id"];
 if (p1 != null)
 id = p1.ToInt32(-1);
 if (id < 0)
 {
 context.Response.End();
 return;
 }

 var connString = "...";
 const String cmdText = "SELECT photo FROM employees WHERE employeeid=@id";

 // Get an array of bytes from the BLOB field
 byte[] img = null;
 var conn = new SqlConnection(connString);
 using (conn)
 {
 var cmd = new SqlCommand(cmdText, conn);
 cmd.Parameters.AddWithValue("@id", id);
 conn.Open();
 img = (byte[])cmd.ExecuteScalar();
 }

 // Prepare the response for the browser
 if (img != null)
 {
 ctx.Response.ContentType = "image/jpeg";
 ctx.Response.BinaryWrite(img);
 }
 }

 public bool IsReusable
 {
 get { return true; }
 }
}

 Chapter 4 HTTP Handlers, Modules, and Routing 135

There are quite a few assumptions made in this code. First, we assume that the field named
photo contains image bits and that the format of the image is JPEG. Second, we assume that
images are to be retrieved from a fixed table of a given database through a predefined con-
nection string. Finally, we assume that the URL to invoke this handler includes a query string
parameter named id.

Notice the attempt to convert the value of the id query parameter to an integer before
 proceeding. This simple check significantly reduces the surface attack area for malicious users
by verifying that what is going to be used as a numeric ID is really a numeric ID. Especially
when you’re inoculating user input into SQL query commands, filtering out extra characters
and wrong data types is a fundamental measure for preventing attacks.

The BinaryWrite method of the HttpResponse object writes an array of bytes to the output
stream.

Note If the database you’re using is Northwind, an extra step might be required to ensure that
the images are correctly managed. For some reason, the SQL Server version of the Northwind
database stores the images in the photo column of the Employees table as OLE objects. This is
probably because of the conversion that occurred when the database was upgraded from the
Microsoft Access version. As a matter fact, the array of bytes you receive contains a 78-byte
 prefix that has nothing to do with the image. Those bytes are just the header created when the
image was added as an OLE object to the first version of Access.

Although the preceding code works like a champ with regular BLOB fields, it must undergo the
following modification to work with the photo field of the Northwind.Employees database:

Response.OutputStream.Write(img, 78, img.Length-78);

Instead of using the BinaryWrite call, which doesn’t let you specify the starting position, use the
code shown here.

A sample page to test BLOB field access is shown in Figure 4-5. The page lets users select an
employee ID and post back. When the page renders, the ID is used to complete the URL for
the ASP.NET Image control.

var url = String.Format("photo.axd?id={0}", DropDownList1.SelectedValue);
Image1.ImageUrl = url;

136 Part I The ASP.NET Runtime Environment

FIGURE 4-5 Downloading images stored within the BLOB field of a database.

An HTTP handler must be registered in the web.config file and bound to a public endpoint. In
this case, the endpoint is photo.axd and the script to enter in the configuration file is shown
next (in addition to a similar script in <system.webServer>:

<httpHandlers>
 <add verb="*"
 path="photo.axd"
 type=" NorthwindPhotoImageHandler, AspNetGallery.Extensions" />
</httpHandlers>

Note The preceding handler clearly has a weak point: it hard-codes a SQL command and the
related connection string. This means that you might need a different handler for each different
command or database to access. A more realistic handler would probably use an external and
configurable database-specific provider. Such a provider can be as simple as a class that imple-
ments an agreed-upon interface. At a minimum, the interface will supply a method to retrieve
and return an array of bytes.

Alternatively, if you want to keep the ADO.NET code in the handler itself, the interface will just
supply members that specify the command text and connection string. The handler will figure
out its default provider from a given entry in the web.config file.

 Chapter 4 HTTP Handlers, Modules, and Routing 137

Serving Dynamically Generated Images
Isn’t it true that an image is worth thousands of words? Many financial Web sites offer charts
and, more often than not, these charts are dynamically generated on the server. Next, they
are served to the browser as a stream of bytes and travel over the classic response out-
put stream. But can you create and manipulate server-side images? For these tasks, Web
 applications normally rely on ad hoc libraries or the graphic engine of other applications
(for example, Microsoft Office applications). ASP.NET applications are different and, to some
extent, luckier. ASP.NET applications, in fact, can rely on a powerful and integrated graphic
engine integrated in the .NET Framework.

In ASP.NET, writing images to disk might require some security adjustments. Normally, the
ASP.NET runtime runs under the aegis of the NETWORK SERVICE user account. In the case of
anonymous access with impersonation disabled—which are the default settings in ASP.NET—
the worker process lends its own identity and security token to the thread that executes the
user request of creating the file. With regard to the default scenario, an access-denied excep-
tion might be thrown if NETWORK SERVICE (or the selected application pool identity) lacks
writing permissions on virtual directories—a pretty common situation.

ASP.NET provides an interesting alternative to writing files on disk without changing security
settings: in-memory generation of images. In other words, the dynamically generated image
is saved directly to the output stream in the needed image format or in a memory stream.

Writing Copyright Notes on Images
The .NET Framework graphic engine supports quite a few image formats, including JPEG, GIF,
BMP, and PNG. The whole collection of image formats is in the ImageFormat structure of the
System.Drawing namespace. You can save a memory-resident Bitmap object to any of the
supported formats by using one of the overloads of the Save method:

Bitmap bmp = new Bitmap(file);
...
bmp.Save(outputStream, ImageFormat.Gif);

When you attempt to save an image to a stream or disk file, the system attempts to locate
an encoder for the requested format. The encoder is a module that converts from the native
format to the specified format. Note that the encoder is a piece of unmanaged code that
lives in the underlying Win32 platform. For each save format, the Save method looks up the
right encoder and proceeds.

The next example wraps up all the points we’ve touched on. This example shows how to load
an existing image, add some copyright notes, and serve the modified version to the user. In
doing so, we’ll load an image into a Bitmap object, obtain a Graphics for that bitmap, and use
graphics primitives to write. When finished, we’ll save the result to the page’s output stream
and indicate a particular MIME type.

138 Part I The ASP.NET Runtime Environment

The sample page that triggers the example is easily created, as shown in the following listing:

<html>
<body>

</body>
</html>

The page contains no ASP.NET code and displays an image through a static HTML
tag. The source of the image, though, is an HTTP handler that loads the image passed
through the query string and then manipulates and displays it. Here’s the source code for the
ProcessRequest method of the HTTP handler:

public void ProcessRequest (HttpContext context)
{
 var o = context.Request["url"];
 if (o == null)
 {
 context.Response.Write("No image found.");
 context.Response.End();
 return;
 }

 var file = context.Server.MapPath(o);
 var msg = ConfigurationManager.AppSettings["CopyrightNote"];
 if (File.Exists(file))
 {
 Bitmap bmp = AddCopyright(file, msg);
 context.Response.ContentType = "image/jpeg";
 bmp.Save(context.Response.OutputStream, ImageFormat.Jpeg);
 bmp.Dispose();
 }
 else
 {
 context.Response.Write("No image found.");
 context.Response.End();
 }
}

Note that the server-side page performs two different tasks indeed. First, it writes copyright
text on the image canvas; next, it converts whatever the original format was to JPEG:

Bitmap AddCopyright(String file, String msg)
{
 // Load the file and create the graphics
 var bmp = new Bitmap(file);
 var g = Graphics.FromImage(bmp);

 // Define text alignment
 var strFmt = new StringFormat();
 strFmt.Alignment = StringAlignment.Center;

 // Create brushes for the bottom writing
 // (green text on black background)
 var btmForeColor = new SolidBrush(Color.PaleGreen);
 var btmBackColor = new SolidBrush(Color.Black);

 Chapter 4 HTTP Handlers, Modules, and Routing 139

 // To calculate writing coordinates, obtain the size of the
 // text given the font typeface and size
 var btmFont = new Font("Verdana", 7);
 var textSize = g.MeasureString(msg, btmFont);

 // Calculate the output rectangle and fill
 float x = (bmp.Width-textSize.Width-3);
 float y = (bmp.Height-textSize.Height-3);
 float w = (x + textSize.Width);
 float h = (y + textSize.Height);
 var textArea = new RectangleF(x, y, w, h);
 g.FillRectangle(btmBackColor, textArea);

 // Draw the text and free resources
 g.DrawString(msg, btmFont, btmForeColor, textArea);
 btmForeColor.Dispose();
 btmBackColor.Dispose();
 btmFont.Dispose();
 g.Dispose();

 return bmp;
}

Figure 4-6 shows the results.

FIGURE 4-6 A server-resident image has been modified before being displayed.

140 Part I The ASP.NET Runtime Environment

Note that the additional text is part of the image the user downloads on her client browser.
If the user saves the picture by using the Save Picture As menu from the browser, the text (in
this case, the copyright note) is saved along with the image.

Important All examples demonstrating programmatic manipulation of images take advantage
of the classes in the System.Drawing assembly. The use of this assembly is not recommended in
ASP.NET and is explicitly not supported in ASP.NET Web services. (See http://msdn.microsoft.com/
en-us/library/system.drawing.aspx.) This fact simply means that you are advised not to use classes
in System.Drawing because Microsoft can’t guarantee it is always safe to use them in all possible
scenarios. If your code is currently using System.Drawing—the GDI+ subsystem—and it works
just fine, you’re probably OK. In any case, if you use GDI+ classes and encounter a malfunction,
Microsoft will not assist you. Forewarned is forearmed.

You might be better off using an alternative to GDI+, especially for new applications. Which
one? For both speed and reliability, you can consider the WPF Imaging API. Here’s an interesting
post that shows how to use Windows Presentation Foundation (WPF) for resizing images: http://
weblogs.asp.net/bleroy/archive/2010/01/21/server-side-resizing-with-wpf-now-with-jpg.aspx.

Controlling Images via an HTTP Handler
What if the user requests the JPG file directly from the address bar? And what if the image
is linked by another Web site or referenced in a blog post? By default, the original image is
served without any further modification. Why is this so?

For performance reasons, IIS serves static files, such as JPG images, directly without involving
any external module, including the ASP.NET runtime. In this way, the HTTP handler that does
the trick of adding a copyright note is therefore blissfully ignored when the request is made
via the address bar or a hyperlink. What can you do about it?

In IIS 6, you must register the JPG extension as an ASP.NET extension for a particular
 application using IIS Manager. In this case, each request for JPG resources is forwarded to
your application and resolved through the HTTP handler.

In IIS 7, things are even simpler for developers. All you have to do is add the following lines to
the application’s web.config file:

<system.webServer>
 <handlers>
 <add name="Jpeg"
 preCondition="integratedMode"
 verb="*"
 path="*.jpg"
 type="DynImageHandler, AspNetGallery.Extensions" />
 </handlers>
</system.webServer>

http://msdn.microsoft.com/
http://weblogs.asp.net/bleroy/archive/2010/01/21/server-side-resizing-with-wpf-now-with-jpg.aspx
http://weblogs.asp.net/bleroy/archive/2010/01/21/server-side-resizing-with-wpf-now-with-jpg.aspx

 Chapter 4 HTTP Handlers, Modules, and Routing 141

You might want to add the same setting also under <httpHandlers>, which will be read in
cases where IIS 7.x is configured in classic mode:

<httpHandlers>
 <add verb="*" path="*.jpg" type="DynImageHandler, AspNetGallery.Extensions"/>
</httpHandlers>

This is yet another benefit of the unified runtime pipeline we experience when the ASP.NET
application runs under IIS 7 integrated mode.

Note An HTTP handler that needs to access session-state values must implement the
IRequiresSessionState interface. Like INamingContainer, it’s a marker interface and requires no
method implementation. Note that the IRequiresSessionState interface indicates that the HTTP
handler requires read and write access to the session state. If read-only access is needed, use the
IReadOnlySessionState interface instead.

Advanced HTTP Handler Programming
HTTP handlers are not a tool for everybody. They serve a very neat purpose: changing the
way a particular resource, or set of resources, is served to the user. You can use handlers to
filter out resources based on runtime conditions or to apply any form of additional logic to
the retrieval of traditional resources such as pages and images. Finally, you can use HTTP
handlers to serve certain pages or resources in an asynchronous manner.

For HTTP handlers, the registration step is key. Registration enables ASP.NET to know about
your handler and its purpose. Registration is required for two practical reasons. First, it serves
to ensure that IIS forwards the call to the correct ASP.NET application. Second, it serves to
instruct your ASP.NET application on the class to load to handle the request. As mentioned,
you can use handlers to override the processing of existing resources (for example,
hello.aspx) or to introduce new functionalities (for example, folder.axd). In both cases, you’re
invoking a resource whose extension is already known to IIS—the .axd extension is registered
in the IIS metabase when you install ASP.NET. In both cases, though, you need to modify the
web.config file of the application to let the application know about the handler.

By using the ASHX extension and programming model for handlers, you can also save
 yourself the web.config update and deploy a new HTTP handler by simply copying a new file
in a new or existing application’s folder.

Deploying Handlers as ASHX Resources
An alternative way to define an HTTP handler is through an .ashx file. The file contains a
special directive, named @WebHandler, that expresses the association between the HTTP

142 Part I The ASP.NET Runtime Environment

handler endpoint and the class used to implement the functionality. All .ashx files must begin
with a directive like the following one:

<%@ WebHandler Language="C#" Class="AspNetGallery.Handlers.MyHandler" %>

When an .ashx endpoint is invoked, ASP.NET parses the source code of the file and figures
out the HTTP handler class to use from the @WebHandler directive. This automation removes
the need of updating the web.config file. Here’s a sample .ashx file. As you can see, it is the
plain class file plus the special @WebHandler directive:

<%@ WebHandler Language="C#" Class="MyHandler" %>

using System.Web;

public class MyHandler : IHttpHandler {

 public void ProcessRequest (HttpContext context) {
 context.Response.ContentType = "text/plain";
 context.Response.Write("Hello World");
 }

 public bool IsReusable {
 get {
 return false;
 }
 }
}

Note that the source code of the class can either be specified inline or loaded from any of the
assemblies referenced by the application. When .ashx resources are used to implement an
HTTP handler, you just deploy the source file and you’re done. Just as for XML Web services,
the source file is loaded and compiled only on demand. Because ASP.NET adds a special en-
try to the IIS metabase for .ashx resources, you don’t even need to enter changes to the Web
server configuration.

Resources with an .ashx extension are handled by an HTTP handler class named
SimpleHandleFactory. Note that SimpleHandleFactory is actually an HTTP handler factory
class, not a simple HTTP handler class. We’ll discuss handler factories in a moment.

The SimpleHandleFactory class looks for the @WebHandler directive at the beginning of the
file. The @WebHandler directive tells the handler factory the name of the HTTP handler class
to instantiate when the source code has been compiled.

Important You can build HTTP handlers both as regular class files compiled to an assembly and
via .ashx resources. There’s no significant difference between the two approaches except that
.ashx resources, like ordinary ASP.NET pages, will be compiled on the fly upon the first request.

 Chapter 4 HTTP Handlers, Modules, and Routing 143

Prevent Access to Forbidden Resources
If your Web application manages resources of a type that you don’t want to make publicly
available over the Web, you must instruct IIS not to display those files. A possible way to
 accomplish this consists of forwarding the request to aspnet_isapi and then binding the
 extension to one of the built-in handlers—the HttpForbiddenHandler class:

<add verb="*" path="*.xyz" type="System.Web.HttpForbiddenHandler" />

Any attempt to access an .xyz resource results in an error message being displayed. The same
trick can also be applied for individual resources served by your application. If you need to
deploy, say, a text file but do not want to take the risk that somebody can get to it, add the
following:

<add verb="*" path="yourFile.txt" type="System.Web.HttpForbiddenHandler" />

Should It Be Reusable or Not?
In a conventional HTTP handler, the ProcessRequest method takes the lion’s share of
the overall set of functionality. The second member of the IHttpHandler interface—the
IsReusable property—is used only in particular circumstances. If you set the IsReusable
 property to return true, the handler is not unloaded from memory after use and is repeat-
edly used. Put another way, the Boolean value returned by IsReusable indicates whether the
 handler object can be pooled.

Frankly, most of the time it doesn’t really matter what you return—be it true or false. If you
set the property to return false, you require that a new object be allocated for each request.
The simple allocation of an object is not a particularly expensive operation. However, the
initialization of the handler might be costly. In this case, by making the handler reusable, you
save much of the overhead. If the handler doesn’t hold any state, there’s no reason for not
making it reusable.

In summary, I’d say that IsReusable should be always set to true, except when you have
 instance properties to deal with or properties that might cause trouble if used in a concur-
rent environment. If you have no initialization tasks, it doesn’t really matter whether it re-
turns true or false. As a margin note, the System.Web.UI.Page class—the most popular HTTP
 handler ever—sets its IsReusable property to false.

The key point to determine is the following: Who’s really using IsReusable and, subsequently,
who really cares about its value?

Once the HTTP runtime knows the HTTP handler class to serve a given request, it simply
 instantiates it—no matter what. So when is the IsReusable property of a given handler
taken into account? Only if you use an HTTP handler factory—that is, a piece of code that
 dynamically decides which handler should be used for a given request. An HTTP handler

144 Part I The ASP.NET Runtime Environment

factory can query a handler to determine whether the same instance can be used to service
multiple requests and thus optionally create and maintain a pool of handlers.

ASP.NET pages and ASHX resources are served through factories. However, none of these
factories ever checks IsReusable. Of all the built-in handler factories in the whole ASP.NET
platform, very few check the IsReusable property of related handlers. So what’s the bottom
line?

As long as you’re creating HTTP handlers for AXD, ASHX, or perhaps ASPX resources, be
aware that the IsReusable property is blissfully ignored. Do not waste your time trying to
figure out the optimal configuration. Instead, if you’re creating an HTTP handler factory to
serve a set of resources, whether or not to implement a pool of handlers is up to you and
IsReusable is the perfect tool for the job.

But when should you employ an HTTP handler factory? You should do it in all situations in
which the HTTP handler class for a request is not uniquely identified. For example, for ASPX
pages, you don’t know in advance which HTTP handler type you have to use. The type might
not even exist (in which case, you compile it on the fly). The HTTP handler factory is used
whenever you need to apply some logic to decide which handler is the right one to use. In
other words, you need an HTTP handler factory when declarative binding between endpoints
and classes is not enough.

HTTP Handler Factories
An HTTP request can be directly associated with an HTTP handler or with an HTTP handler
factory object. An HTTP handler factory is a class that implements the IHttpHandlerFactory
interface and is in charge of returning the actual HTTP handler to use to serve the request.
The SimpleHandlerFactory class provides a good example of how a factory works. The factory
is mapped to requests directed at .ashx resources. When such a request comes in, the factory
determines the actual handler to use by looking at the @WebHandler directive in the source
file.

In the .NET Framework, HTTP handler factories are used to perform some preliminary tasks
on the requested resource prior to passing it on to the handler. Another good example of a
handler factory object is an internal class named PageHandlerFactory, which is in charge of
serving .aspx pages. In this case, the factory handler figures out the name of the handler to
use and, if possible, loads it up from an existing assembly.

HTTP handler factories are classes that implement a couple of methods on the
IHttpHandlerFactory interface—GetHandler and ReleaseHandler, as shown in Table 4-5.

 Chapter 4 HTTP Handlers, Modules, and Routing 145

TABLE 4-5 Members of the IHttpHandlerFactory Interface
Method Description
GetHandler Returns an instance of an HTTP handler to serve the request.

ReleaseHandler Takes an existing HTTP handler instance and frees it up or pools it.

The GetHandler method has the following signature:

public virtual IHttpHandler GetHandler(
 HttpContext context,
 String requestType,
 String url,
 String pathTranslated);

The requestType argument is a string that evaluates to GET or POST—the HTTP verb of the
request. The last two arguments represent the raw URL of the request and the physical path
behind it. The ReleaseHandler method is a mandatory override for any class that implements
IHttpHandlerFactory; in most cases, it will just have an empty body.

The following listing shows a sample HTTP handler factory that returns different handlers
based on the HTTP verb (GET or POST) used for the request:

class MyHandlerFactory : IHttpHandlerFactory
{
 public IHttpHandler GetHandler(HttpContext context,
 String requestType, String url, String pathTranslated)
 {
 // Feel free to create a pool of HTTP handlers here
 if(context.Request.RequestType.ToLower() == "get")
 return (IHttpHandler) new MyGetHandler();
 else if(context.Request.RequestType.ToLower() == "post")
 return (IHttpHandler) new MyPostHandler();
 return null;
 }

 public void ReleaseHandler(IHttpHandler handler)
 {
 // Nothing to do
 }
}

When you use an HTTP handler factory, it’s the factory (not the handler) that you want to
register in the ASP.NET configuration file. If you register the handler, it will always be used to
serve requests. If you opt for a factory, you have a chance to decide dynamically and based
on runtime conditions which handler is more appropriate for a certain request. In doing so,
you can use the IsReusable property of handlers to implement a pool.

146 Part I The ASP.NET Runtime Environment

Asynchronous Handlers
An asynchronous HTTP handler is a class that implements the IHttpAsyncHandler interface.
The system initiates the call by invoking the BeginProcessRequest method. Next, when the
method ends, a callback function is automatically invoked to terminate the call. In the .NET
Framework, the sole HttpApplication class implements the asynchronous interface. The
 members of the IHttpAsyncHandler interface are shown in Table 4-6.

TABLE 4-6 Members of the IHttpAsyncHandler Interface
Method Description
BeginProcessRequest Initiates an asynchronous call to the specified HTTP handler

EndProcessRequest Terminates the asynchronous call

The signature of the BeginProcessRequest method is as follows:

IAsyncResult BeginProcessRequest(
 HttpContext context,
 AsyncCallback cb,
 Object extraData);

The context argument provides references to intrinsic server objects used to service
HTTP requests. The second parameter is the AsyncCallback object to invoke when the
 asynchronous method call is complete. The third parameter is a generic cargo variable that
contains any data you might want to pass to the handler.

Note An AsyncCallback object is a delegate that defines the logic needed to finish processing
the asynchronous operation. A delegate is a class that holds a reference to a method. A
 delegate class has a fixed signature, and it can hold references only to methods that match that
 signature. A delegate is equivalent to a type-safe function pointer or a callback. As a result,
an AsyncCallback object is just the code that executes when the asynchronous handler has
 completed its job.

The AsyncCallback delegate has the following signature:

public delegate void AsyncCallback(IAsyncResult ar);

It uses the IAsyncResult interface to obtain the status of the asynchronous opera-
tion. To illustrate the plumbing of asynchronous handlers, I’ll show you what the HTTP
 runtime does when it deals with asynchronous handlers. The HTTP runtime invokes the
BeginProcessRequest method as illustrated here:

// Sets an internal member of the HttpContext class with
// the current instance of the asynchronous handler
context.AsyncAppHandler = asyncHandler;

// Invokes the BeginProcessRequest method on the asynchronous HTTP handler
asyncHandler.BeginProcessRequest(context, OnCompletionCallback, context);

 Chapter 4 HTTP Handlers, Modules, and Routing 147

The context argument is the current instance of the HttpContext class and represents
the context of the request. A reference to the HTTP context is also passed as the cus-
tom data sent to the handler to process the request. The extraData parameter in the
BeginProcessRequest signature is used to represent the status of the asynchronous operation.
The BeginProcessRequest method returns an object of type HttpAsyncResult—a class that
implements the IAsyncResult interface. The IAsyncResult interface contains a property named
AsyncState that is set with the extraData value—in this case, the HTTP context.

The OnCompletionCallback method is an internal method. It gets automatically triggered
when the asynchronous processing of the request terminates. The following listing illustrates
the pseudocode of the HttpRuntime private method:

// The method must have the signature of an AsyncCallback delegate
private void OnHandlerCompletion(IAsyncResult ar)
{
 // The ar parameter is an instance of HttpAsyncResult
 HttpContext context = (HttpContext) ar.AsyncState;

 // Retrieves the instance of the asynchronous HTTP handler
 // and completes the request
 IHttpAsyncHandler asyncHandler = context.AsyncAppHandler;
 asyncHandler.EndProcessRequest(ar);

 // Finalizes the request as usual
 ...
}

The completion handler retrieves the HTTP context of the request through the AsyncState
property of the IAsyncResult object it gets from the system. As mentioned, the actual
 object passed is an instance of the HttpAsyncResult class—in any case, it is the return value
of the BeginProcessRequest method. The completion routine extracts the reference to the
 asynchronous handler from the context and issues a call to the EndProcessRequest method:

void EndProcessRequest(IAsyncResult result);

The EndProcessRequest method takes the IAsyncResult object returned by the call to
BeginProcessRequest. As implemented in the HttpApplication class, the EndProcessRequest
method does nothing special and is limited to throwing an exception if an error occurred.

Implementing Asynchronous Handlers
Asynchronous handlers essentially serve one particular scenario—a scenario in which the
generation of the markup is subject to lengthy operations, such as time-consuming database
stored procedures or calls to Web services. In these situations, the ASP.NET thread in charge
of the request is stuck waiting for the operation to complete. Because threads are valuable
resources, lengthy tasks that keep threads occupied for too long are potentially the perfect
scalability killer. However, asynchronous handlers are here to help.

148 Part I The ASP.NET Runtime Environment

The idea is that the request begins on a thread-pool thread, but that thread is released as
soon as the operation begins. In BeginProcessRequest, you typically create your own thread
and start the lengthy operation. BeginProcessRequest doesn’t wait for the operation to
 complete; therefore, the thread is returned to the pool immediately.

There are a lot of tricky details that this bird’s-eye description just omitted. In the first place,
you should strive to avoid a proliferation of threads. Ideally, you should use a custom thread
pool. Furthermore, you must figure out a way to signal when the lengthy operation has
terminated. This typically entails creating a custom class that implements IAsyncResult and
returning it from BeginProcessRequest. This class embeds a synchronization object— typically
a ManualResetEvent object—that the custom thread carrying the work will signal upon
completion.

In the end, building asynchronous handlers is definitely tricky and not for novice developers.
Very likely, you are more interested in having asynchronous pages than in generic
 asynchronous HTTP handlers. With asynchronous pages, the “lengthy task” is merely the
ProcessRequest method of the Page class. (Obviously, you configure the page to execute
asynchronously only if the page contains code that starts I/O-bound and potentially lengthy
operations.)

ASP.NET offers ad hoc support for building asynchronous pages more easily and more
 comfortably than through HTTP handlers.

Caution I’ve seen several ASP.NET developers use an .aspx page to serve markup other than
HTML markup. This is not a good idea. An .aspx resource is served by quite a rich and sophis-
ticated HTTP handler—the System.Web.UI.Page class. The ProcessRequest method of this class
entirely provides for the page life cycle as we know it—Init, Load, and PreRender events, as well
as rendering stage, view state, and postback management. Nothing of the kind is really required
if you only need to retrieve and return, say, the bytes of an image. HTTP handlers are an excellent
way to speed up particular requests. HTTP handlers are also a quick way to serve AJAX requests
without writing (and spinning up) the whole machinery of Windows Communication Foundation
(WCF) services. At the very end of the day, an HTTP handler is an endpoint and can be used to
serve data to AJAX requests. In this regard, the difference between an HTTP handler and a WCF
service is that the HTTP handler doesn’t have a free serialization engine for input and output
values.

 Chapter 4 HTTP Handlers, Modules, and Routing 149

Writing HTTP Modules
So you’ve learned that any incoming requests for ASP.NET resources are handed over to
the worker process for the actual processing. The worker process is distinct from the Web
server executable so that even if one ASP.NET application crashes, it doesn’t bring down the
whole server.

On the way to the final HTTP handler, the request passes through a pipeline of special
 runtime modules—HTTP modules. An HTTP module is a .NET Framework class that imple-
ments the IHttpModule interface. The HTTP modules that filter the raw data within the
request are configured on a per-application basis within the web.config file. All ASP.NET
 applications, though, inherit a bunch of system HTTP modules configured in the global
web.config file. Applications hosted under IIS 7.x integrated mode can configure HTTP
 modules that run at the IIS level for any requests that comes in, not just for ASP.NET-related
resources.

An HTTP module can pre-process and post-process a request, and it intercepts and handles
system events as well as events raised by other modules.

The IHttpModule Interface
The IHttpModule interface defines only two methods: Init and Dispose. The Init method
 initializes a module and prepares it to handle requests. At this time, you subscribe to receive
notifications for the events of interest. The Dispose method disposes of the resources (all but
memory!) used by the module. Typical tasks you perform within the Dispose method are
closing database connections or file handles.

The IHttpModule methods have the following signatures:

void Init(HttpApplication app);
void Dispose();

The Init method receives a reference to the HttpApplication object that is serving the request.
You can use this reference to wire up to system events. The HttpApplication object also fea-
tures a property named Context that provides access to the intrinsic properties of the
ASP.NET application. In this way, you gain access to Response, Request, Session, and the like.

Table 4-7 lists the events that HTTP modules can listen to and handle.

150 Part I The ASP.NET Runtime Environment

TABLE 4-7 HttpApplication Events in Order of Appearance
Event Description
BeginRequest Occurs as soon as the HTTP pipeline begins to process the request.

AuthenticateRequest,
PostAuthenticateRequest

Occurs when a security module has established the identity of the user.

AuthorizeRequest,
PostAuthorizeRequest

Occurs when a security module has verified user authorization.

ResolveRequestCache,
PostResolveRequestCache

Occurs when the ASP.NET runtime resolves the request through the
output cache.

MapRequestHandler,
PostMapRequestHandler

Occurs when the HTTP handler to serve the request has been found. It
is fired only to applications running in classic mode or under IIS 6.

AcquireRequestState,
PostAcquireRequestState

Occurs when the handler that will actually serve the request acquires
the state information associated with the request.

PreRequestHandlerExecute Occurs just before the HTTP handler of choice begins to work.

PostRequestHandlerExecute Occurs when the HTTP handler of choice finishes execution. The
 response text has been generated at this point.

ReleaseRequestState,
PostReleaseRequestState

Occurs when the handler releases the state information associated with
the current request.

UpdateRequestCache,
PostUpdateRequestCache

Occurs when the ASP.NET runtime stores the response of the current
request in the output cache to be used to serve subsequent requests.

LogRequest,
PostLogRequest

Occurs when the ASP.NET runtime is ready to log the results of the
 request. Logging is guaranteed to execute even if errors occur. It is fired
only to applications running under IIS 7 integrated mode.

EndRequest Occurs as the last event in the HTTP pipeline chain of execution.

Another pair of events can occur during the request, but in a nondeterministic order. They
are PreSendRequestHeaders and PreSendRequestContent.

The PreSendRequestHeaders event informs the HttpApplication object in charge of the
 request that HTTP headers are about to be sent. The PreSendRequestContent event tells the
HttpApplication object in charge of the request that the response body is about to be sent.
Both these events normally fire after EndRequest, but not always. For example, if buffering
is turned off, the event gets fired as soon as some content is going to be sent to the client.
Speaking of nondeterministic application events, it must be said that a third nondeterministic
event is, of course, Error.

All these events are exposed by the HttpApplication object that an HTTP module receives as
an argument to the Init method. You can write handlers for such events in the global.asax file
of the application. You can also catch these events from within a custom HTTP module.

 Chapter 4 HTTP Handlers, Modules, and Routing 151

A Custom HTTP Module
Let’s come to grips with HTTP modules by writing a relatively simple custom module named
Marker that adds a signature at the beginning and end of each page served by the applica-
tion. The following code outlines the class we need to write:

using System;
using System.Web;

namespace AspNetGallery.Extensions.Modules
{
 public class MarkerModule : IHttpModule
 {
 public void Init(HttpApplication app)
 {
 // Register for pipeline events
 }

 public void Dispose()
 {
 // Nothing to do here
 }
 }
}

The Init method is invoked by the HttpApplication class to load the module. In the Init
 method, you normally don’t need to do more than simply register your own event handlers.
The Dispose method is, more often than not, empty. The heart of the HTTP module is really
in the event handlers you define.

Wiring Up Events
The sample Marker module registers a couple of pipeline events. They are BeginRequest
and EndRequest. BeginRequest is the first event that hits the HTTP application object when
the request begins processing. EndRequest is the event that signals the request is going to
be terminated, and it’s your last chance to intervene. By handling these two events, you
can write custom text to the output stream before and after the regular HTTP handler—the
Page-derived class.

The following listing shows the implementation of the Init and Dispose methods for the
sample module:

public void Init(HttpApplication app)
{
 // Register for pipeline events
 app.BeginRequest += OnBeginRequest;
 app.EndRequest += EndRequest;
}

public void Dispose()
{
}

152 Part I The ASP.NET Runtime Environment

The BeginRequest and EndRequest event handlers have a similar structure. They obtain a
 reference to the current HttpApplication object from the sender and get the HTTP context
from there. Next, they work with the Response object to append text or a custom header:

public void OnBeginRequest(Object sender, EventArgs e)
{
 var app = (HttpApplication) sender;
 var ctx = app.Context;

 // More code here
 ...

 // Add custom header to the HTTP response
 ctx.Response.AppendHeader("Author", "DinoE");

 // PageHeaderText is a constant string defined elsewhere
 ctx.Response.Write(PageHeaderText);
}

public void OnEndRequest(Object sender, EventArgs e)
{
 // Get access to the HTTP context
 var app = (HttpApplication) sender;
 var ctx = app.Context;

 // More code here
 ...

 // Append some custom text
 // PageFooterText is a constant string defined elsewhere
 ctx.Response.Write(PageFooterText);
}

OnBeginRequest writes standard page header text and also adds a custom HTTP header.
OnEndRequest simply appends the page footer. The effect of this HTTP module is visible in
Figure 4-7.

FIGURE 4-7 The Marker HTTP module adds a header and footer to each page within the application.

 Chapter 4 HTTP Handlers, Modules, and Routing 153

Registering with the Configuration File
You register a new HTTP module by adding an entry to the <httpModules> section of the
configuration file. The overall syntax of the <httpModules> section closely resembles that of
HTTP handlers. To add a new module, you use the <add> node and specify the name and
type attributes. The name attribute contains the public name of the module. This name is
used to select the module within the HttpApplication’s Modules collection. If the module fires
custom events, this name is also used as the prefix for building automatic event handlers in
the global.asax file:

<system.web>
 <httpModules>
 <add name="Marker"
 type="MarkerModule, AspNetGallery.Extensions" />
 </httpModules>
</system.web>

The order in which modules are applied depends on the physical order of the modules in
the configuration list. You can remove a system module and replace it with your own that
provides a similar functionality. In this case, in the application’s web.config file you use the
<remove> node to drop the default module and then use <add> to insert your own. If you
want to completely redefine the order of HTTP modules for your application, you can clear
all the default modules by using the <clear> node and then re-register them all in the order
you prefer.

Note HTTP modules are loaded and initialized only once, at the startup of the application.
Unlike HTTP handlers, they apply to any requests. So when you plan to create a new HTTP mod-
ule, you should first wonder whether its functionality should span all possible requests in the
application. Is it possible to choose which requests an HTTP module should process? The Init
method is called only once in the application’s lifetime, but the handlers you register are called
once for each request. So to operate only on certain pages, you can do as follows:

public void OnBeginRequest(object sender, EventArgs e)
{
 HttpApplication app = (HttpApplication) sender;
 HttpContext ctx = app.Context;
 if (!ShouldHook(ctx))
 return;
 ...
}

OnBeginRequest is your handler for the BeginRequest event. The ShouldHook helper function
returns a Boolean value. It is passed the context of the request—that is, any information that is
available on the request. You can code it to check the URL as well as any HTTP content type and
headers.

154 Part I The ASP.NET Runtime Environment

Accessing Other HTTP Modules
The sample just discussed demonstrates how to wire up pipeline events—that is, events
fired by the HttpApplication object. But what about events fired by other modules? The
HttpApplication object provides a property named Modules that gets the collection of
 modules for the current application.

The Modules property is of type HttpModuleCollection and contains the names of
the modules for the application. The collection class inherits from the abstract class
NameObjectCollectionBase, which is a collection of pairs made of a string and an object.
The string indicates the public name of the module; the object is the actual instance of the
module. To access the module that handles the session state, you need code like this:

var sessionModule = app.Modules["Session"];
sessionModule.Start += OnSessionStart;

As mentioned, you can also handle events raised by HTTP modules within the global.asax file
and use the ModuleName_EventName convention to name the event handlers. The name of
the module is just one of the settings you need to define when registering an HTTP module.

Examining a Real-World HTTP Module
The previous example gave us the gist of an HTTP module component. It was a simple (and
kind of pointless) example, but it was useful to demonstrate what you can do with HTTP
modules in a real application. First and foremost, not all applications need custom HTTP
modules. ASP.NET comes with a bunch of built-in modules, which are listed in Table 4-8.

TABLE 4-8 Native HTTP Modules
Event Description
AnonymousIdentificationModule Manages anonymous identifiers for the ASP.NET application

DefaultAuthenticationModule Ensures that the User object is always bound to some
 identity

FileAuthorizationModule Verifies that the user has permission to access the given file.

FormsAuthenticationModule Manages Forms authentication

OutputCacheModule Implements output page caching

ProfileModule Implements the data retrieval for profile data

RoleManagerModule Manages the retrieval of role information

ScriptModule Manages script requests placed through ASP.NET AJAX

SessionStateModule Manages session state

UrlAuthorizationModule Verifies that the user has permission to access the given URL

UrlRoutingModule Implements URL routing

WindowsAuthenticationModule Manages Windows authentication

 Chapter 4 HTTP Handlers, Modules, and Routing 155

All these HTTP modules perform a particular system-level operation and can be customized
by application-specific code. Because an HTTP module works on any incoming request, it
usually doesn’t perform application-specific tasks. From an application perspective, an HTTP
module is helpful when you need to apply filters on all requests for profiling, debugging, or
functional reasons.

Let’s dissect one of the system-provided HTTP modules, which will also slowly move us
 toward the next topic of this chapter. Enter the URL-routing HTTP module.

The UrlRoutingModule Class
In ASP.NET 3.5 Service Pack 1, Microsoft introduced a new and more effective API for
URL rewriting. Because of its capabilities, the new API got a better name—URL routing.
URL routing is built on top of the URL rewriting API, but it offers a richer and higher level
 programming model. (I’ll get to URL rewriting and URL routing in a moment.)

The URL routing engine is a system-provided HTTP module that wires up the
PostResolveRequestCache event. In a nutshell, the HTTP module matches the requested URL
to one of the user-defined rewriting rules (known as routes) and finds the HTTP handler that
is due to serve that route. If any HTTP handler is found, it becomes the actual handler for the
current request. Here’s the signature of the module class:

public class UrlRoutingModule : IHttpModule
{
 public virtual void PostResolveRequestCache(HttpContextBase context)
 {
 ...
 }

 void IHttpModule.Dispose()
 {
 ...
 }

 void IHttpModule.Init(HttpApplication application)
 {
 ...
 }
}

The class implements the IHttpModule interface implicitly, and in its initialization phase it
registers a handler for the system’s PostResolveRequestCache event.

The PostResolveRequestCache Event
The PostResolveRequestCache event fires right after the runtime environment (IIS or ASP.
NET, depending on the IIS working mode) has determined whether the response for the cur-
rent request can be served from the output cache or not. If the response is already cached,

156 Part I The ASP.NET Runtime Environment

there’s no need to process the request and, subsequently, no need to analyze the content
of the URL. Any system events that follow PostResolveRequestCache are part of the request
 processing cycle; therefore, hooking up PostResolveRequestCache is the optimal moment for
taking control of requests that require some work on the server.

The first task accomplished by the HTTP module consists of grabbing any route data
 contained in the URL of the current request. The module matches the URL to one of the reg-
istered routes and figures out the handler for the route.

The route handler is not the HTTP handler yet. It is simply the object responsible for handling
the route. The primary task of a route handler, however, is returning the HTTP handler to
serve the request.

In the end, HTTP modules are extremely powerful tools that give you control over every little
step taken by the system to process a request. For the same reason, however, HTTP modules
are delicate tools—every time you write one, it will be invoked for each and every request.
An HTTP module is hardly a tool for a specific application (with due exceptions), but it is
 often a formidable tool for implementing cross-cutting, system-level features.

URL Routing
The whole ASP.NET platform originally developed around the idea of serving requests for
physical pages. Look at the following URL:

http://northwind.com/news.aspx?id=1234

It turns out that most URLs used within an ASP.NET application are made of two parts: the
path to the physical Web page that contains the logic to apply, and some data stuffed in the
query string to provide parameters. In the URL just shown, the news.aspx page incorporates
the logic required to retrieve and display the data; the ID for the specific news to retrieve is
provided, instead, via a parameter on the query string.

This is the essence of the Page Controller pattern for Web applications. The request targets a
page whose logic and graphical layout are saved to disk. This approach has worked for a few
years and still works today. The content of the news is displayed correctly, and everybody is
generally happy. In addition, you have just one page to maintain, and you still have a way to
identify a particular piece of news via the URL.

A possible drawback of this approach is that the real intent of the page might not be clear to
users. And, more importantly, search engines usually assign higher ranks to terms contained
in the URL. Therefore, an expressive URL provides search engines with an effective set of
keywords that describe the page. To fix this, you need to make the entire URL friendlier and
more readable. But you don’t want to add new Web pages to the application or a bunch

http://northwind.com/news.aspx?id=1234

 Chapter 4 HTTP Handlers, Modules, and Routing 157

of made-to-measure HTTP handlers. Ideally, you should try to transform the request in a
 command sent to the server rather than having it be simply the virtual file path name of the
page to display.

Note The advent of Content Management Systems (CMS) raised the need to have friendlier
URLs. A CMS is an application not necessarily written for a single user and that likely manages
several pages created using semi-automatic algorithms. For these tools, resorting to pages
with an algorithmically editable URL was a great help. But, alas, it was not a great help for users
and search engines. This is where the need arises to expose user-friendly URLs while managing
 cryptic URLs internally. A URL rewriter API attempts to bridge precisely this gap.

The URL Routing Engine
To provide the ability to always expose friendly URLs to users, ASP.NET has supported a
 feature called URL rewriting since its inception. At its core, URL rewriting consists of an
HTTP module (or a global.asax event handler) that hooks up a given request, parses its
 original URL, and instructs the HTTP runtime environment to serve a “possibly related but
different” URL.

URL rewriting is a powerful feature; however, it’s not free of issues. For this reason, Microsoft
more recently introduced a new API in ASP.NET. Although it’s based on the same underlying
URL rewriting, the API offers a higher level of programmability and more features overall—
and the URL routing engine in particular.

Originally devised for ASP.NET MVC, URL routing gives you total freedom to organize the
layout of the URL recognized by your application. In a way, the URL becomes a command for
the Web application; the application is the only entity put in charge of parsing and validat-
ing the syntax of the command. The URL engine is the system-provided component that
validates the URL. The URL routing engine is general enough to be usable in both ASP.NET
MVC and ASP.NET Web Forms; in fact, it was taken out of the ASP.NET MVC framework and
 incorporated in the general ASP.NET system.web assembly a while ago.

URL routing differs in ASP.NET MVC and ASP.NET Web Forms only with regard to how you
express the final destination of the request. You use a controller-action pair in ASP.NET MVC;
you use an ASPX path in ASP.NET Web Forms.

Original URL Rewriting API
URL rewriting helps you in two ways. It makes it possible for you to use a generic front-end
page such as news.aspx and then redirect to a specific page whose actual URL is read from a
database or any other container. In addition, it also enables you to request user-friendly URLs
to be programmatically mapped to less intuitive, but easier to manage, URLs.

158 Part I The ASP.NET Runtime Environment

Here’s a quick example of how you can rewrite the requested URL as another one:

protected void Application_BeginRequest(object sender, EventArgs e)
{
 // Get the current request context
 var context = HttpContext.Current;

 // Get the URL to the handler that will physically handle the request
 var newURL = ParseOriginalUrl(context);

 // Overwrite the target URL of the current request
 context.RewritePath(newURL);
}

The RewritePath method of HttpContext lets you change the URL of the current request on
the fly, thus performing a sort of internal redirect. As a result, the user is provided the con-
tent generated for the URL you set through RewritePath. At the same time, the URL shown in
the address bar remains as the originally requested one.

In a nutshell, URL rewriting exists to let you decouple the URL from the physical Web form
that serves the requests.

Note The change of the final URL takes place on the server and, more importantly, within the
context of the same call. RewritePath should be used carefully and mainly from within the
global.asax file. In Web Forms, for example, if you use RewritePath in the context of a postback
event, you can experience some view-state problems.

One drawback of the URL rewriting API is that as the API changes the target URL of the
 request, any postbacks are directed to the rewritten URL. For example, if you rewrite
news.aspx?id=1234 to 1234.aspx, any postbacks from 1234.aspx are targeted to the same
1234.aspx instead of to the original URL.

This might or might not be a problem for you and, for sure, it doesn’t break any page
 behavior. However, the original URL has just been fully replaced while you likely want to use
the same, original URL as the front end. If this is the case (and most of the time, this is exactly
the case), URL rewriting just created a new problem.

In addition, the URL rewriting logic is intrinsically monodirectional because it doesn’t offer
any built-in mechanism to go from the original URL to the rewritten URL and then back.

URL Patterns and Routes
The URL routing module is a system component that intercepts any request and attempts to
match the URL to a predefined pattern. All requested URLs that match a given pattern are
processed in a distinct way; typically, they are rewritten to other URLs.

The URL patterns that you define are known as routes.

 Chapter 4 HTTP Handlers, Modules, and Routing 159

A route contains placeholders that can be filled up with values extracted from the URL. Often
referred to as a route parameter, a placeholder is a name enclosed in curly brackets { }. You
can have multiple placeholders in a route as long as they are separated by a constant or
 delimiter. The forward slash (/) character acts as a delimiter between the various parts of the
route. Here’s a sample route:

Category/{action}/{categoryName}

URLs that match the preceding route begin with the word “Category” followed by two
 segments. The first segment will be mapped to the action route parameter; the second
 segment will be mapped to the categoryName route parameter. As you might have guessed,
action and categoryName are just arbitrary names for parameters. A URL that matches the
preceding route is the following:

/Category/Edit/Beverages

The route is nothing more than a pattern and is not associated with any logic of its own.
Invoked by the routing module, the component that ultimately decides how to rewrite the
matching URL is another one entirely. Precisely, it is the route handler.

Technically speaking, a route handler is a class that implements the IRouteHandler interface.
The interface is defined as shown here:

public interface IRouteHandler
{
 IHttpHandler GetHttpHandler(RequestContext requestContext);
}

In its GetHttpHandler method, a route handler typically looks at route parameters to figure
out if any of the information available needs to be passed down to the HTTP handler (for
example, an ASP.NET page) that will handle the request. If this is the case, the route handler
adds this information to the Items collection of the HTTP context. Finally, the route handler
obtains an instance of a class that implements the IHttpHandler interface and returns that.

For Web Forms requests, the route handler—an instance of the PageRouteHandler class—
resorts to the ASP.NET build manager to identify the dynamic class for the requested page
resource and creates the handler on the fly.

Important The big difference between plain URL rewriting and ASP.NET routing is that with
ASP.NET routing, the URL is not changed when the system begins processing the request.
Instead, it’s changed later in the life cycle. In this way, the runtime environment can perform
most of its usual tasks on the original URL, which is an approach that maintains a consistent and
robust solution. In addition, a late intervention on the URL also gives developers a big chance to
extract values from the URL and the request context. In this way, the routing mechanism can be
driven by a set of rewriting rules or patterns. If the original URL matches a particular pattern, you
rewrite it to the associated URL. URL patterns are an external resource and are kept in one place,
which makes the solution more maintainable overall.

160 Part I The ASP.NET Runtime Environment

Routing in Web Forms
To introduce URL routing in your Web Forms application, you start by defining routes. Routes
go in the global.asax file to be processed at the very beginning of the application. To define
a route, you create an instance of the Route class by specifying the URL pattern, the handler,
and optionally a name for the route. However, you typically use helper methods that save
you a lot of details and never expose you directly to the API of the Route class. The next
 section shows some code that registers routes.

Note The vast majority of examples that illustrate routing in both ASP.NET MVC and Web Forms
explicitly register routes from within global.asax. Loading route information from an external file
is not be a bad idea, though, and will make your application a bit more resilient to changes.

Defining Routes for Specific Pages
In Application_Start, you invoke a helper method inside of which new routes are created and
added to a static route collection object. Here’s a sample global.asax class:

public class Global : System.Web.HttpApplication
{
 void Application_Start(object sender, EventArgs e)
 {
 RegisterRoutes(RouteTable.Routes);
 }

 public static void RegisterRoutes(RouteCollection routes)
 {
 routes.MapPageRoute("Category",
 "Category/{action}/{categoryName}",
 "~/categories.aspx",
 true,
 new RouteValueDictionary
 {
 { "categoryName", "beverages" },
 { "action", "edit" }
 });
 }
}

All routes for the application are stored in a global container: the static Routes property
of the RouteTable class. A reference to this property is passed to the helper RegisterRoutes
method invoked upon application start.

The structure of the code you just saw is optimized for testability; nothing prevents you from
stuffing all the code in the body of Application_Start.

 Chapter 4 HTTP Handlers, Modules, and Routing 161

The MapPageRoute method is a helper method that creates a Route object and adds it to the
Routes collection. Here’s a glimpse of its internal implementation:

public Route MapPageRoute(String routeName,
 String routeUrl,
 String physicalFile,
 Boolean checkPhysicalUrlAccess,
 RouteValueDictionary defaults,
 RouteValueDictionary constraints,
 RouteValueDictionary dataTokens)
{
 if (routeUrl == null)
 {
 throw new ArgumentNullException("routeUrl");
 }

 // Create the new route
 var route = new Route(routeUrl,
 defaults, constraints, dataTokens,
 new PageRouteHandler(physicalFile, checkPhysicalUrlAccess));

 // Add the new route to the global collection
 this.Add(routeName, route);
 return route;
}

The MapPageRoute method offers a simplified interface for creating a Route object. In
 particular, it requires you to specify the name of the route, the URL pattern for the route, and
the physical ASP.NET Web Forms page the URL will map to. In addition, you can specify a
Boolean flag to enforce the application of current authorization rules for the actual page. For
example, imagine that the user requests a URL such as customers/edit/alfki. Imagine also that
such a URL is mapped to customers.aspx and that this page is restricted to the admin role
only. If the aforementioned Boolean argument is false, all users are allowed to view the page
behind the URL. If the Boolean value is true, only admins will be allowed.

Finally, the MapPageRoute method can accept three dictionaries: the default values for URL
parameters, additional constraints on the URL parameters, plus custom data values to pass
on to the route handler.

In the previous example, we aren’t using constraints and data tokens. Instead, we are specify-
ing default values for the categoryName and action parameters. As a result, an incoming URL
such as /category will be automatically resolved as if it were /category/edit/beverages.

Programmatic Access to Route Values
The MapPageRoute method just configures routes recognized by the application. Its job
ends with the startup of the application. The URL routing HTTP module then kicks in for each
 request and attempts to match the request URL to any of the defined routes.

162 Part I The ASP.NET Runtime Environment

Routes are processed in the order in which they have been added to the Routes collection,
and the search stops at the first match. For this reason, it is extremely important that you list
your routes in decreasing order of importance—stricter rules must go first.

Beyond the order of appearance, other factors affect the process of matching URLs to routes.
One is the set of default values that you might have provided for a route. Default values are
simply values that are automatically assigned to defined placeholders in case the URL doesn’t
provide specific values. Consider the following two routes:

{Orders}/{Year}/{Month}
{Orders}/{Year}

If you assign the first route’s default values for both {Year} and {Month}, the second route will
never be evaluated because, thanks to the default values, the first route is always a match
regardless of whether the URL specifies a year and a month.

The URL-routing HTTP module also uses constraints (which I’ll say more about in a moment)
to determine whether a URL matches a given route. If a match is finally found, the routing
module gets the HTTP handler from the route handler and maps it to the HTTP context of
the request.

Given the previously defined route, any matching requests are mapped to the categories.aspx
page. How can this page know about the route parameters? How can this page know about
the action requested or the category name? There’s no need for the page to parse (again)
the URL. Route parameters are available through a new property on the Page class—the
RouteData property.

RouteData is a property of type RouteData and features the members listed in Table 4-9.

TABLE 4-9 Members of the RouteData Class
Member Description
DataTokens List of additional custom values that are passed to the route handler

GetRequiredString Method that takes the name of a route parameter and returns its value

Route Returns the current Route object

RouteHandler Returns the handler for the current route

Values Returns the dictionary of route parameter values

The following code snippet shows how you retrieve parameters in Page_Load:

protected void Page_Load(object sender, EventArgs e)
{
 var action = RouteData.GetRequiredString("action");
 ...
}

 Chapter 4 HTTP Handlers, Modules, and Routing 163

The only difference between using GetRequiredString and accessing the Values dictionary
is that GetRequiredString throws if the requested value is not found. In addition,
GetRequiredString uses protected access to the collection via TryGetValue instead of a
direct reading.

Structure of Routes
A route is characterized by the five properties listed in Table 4-10.

TABLE 4-10 Properties of the Route Class
Property Description
Constraints List of additional constraints the URL should fulfill to match the route.

DataTokens List of additional custom values that are passed to the route handler.
These values, however, are not used to determine whether the route
matches a URL pattern.

Defaults List of default values to be used for route parameters.

RouteHandler The object responsible for retrieving the HTTP handler to serve the
 request.

Url The URL pattern for the route.

Constraints, DataTokens, and Defaults are all properties of type RouteValueDictionary. In spite
of the fancy name, the RouteValueDictionary type is a plain <String, Object> dictionary.

Most of the time, the pattern defined by the route is sufficient to decide whether a given
URL matches or not. However, this is not always the case. Consider, for example, the situation
in which you are defining a route for recognizing requests for product details. You want to
make sure of the following two aspects.

First, make sure the incoming URL is of the type http://server/{category}/{productId}, where
{category} identifies the category of the product and {productId} indicates the ID of the
 product to retrieve.

Second, you also want to be sure that no invalid product ID is processed. You probably don’t
want to trigger a database call right from the URL routing module, but at the very least, you
want to rule out as early as possible any requests that propose a product ID in an incompat-
ible format. For example, if product IDs are numeric, you want to rule out anything passed in
as a product ID that is alphanumeric.

http://server/

164 Part I The ASP.NET Runtime Environment

Regular expressions are a simple way to filter requests to see if any segment of the URL
is acceptable. Here’s a sample route that keeps URLs with a string product ID off the
application:

routes.MapPageRoute(
 "ProductInfo",
 "Category/{category}/{productId}/{locale}",
 "~/categories.aspx",
 true,
 new { category = "Beverages", locale="en-us" },
 new { productId = @"\d{8}",
 locale = ""[a-z]{2}-[a-z]{2}" }
);

The sixth parameter to the MapPageRoute method is a dictionary object that sets regular
 expressions for productId and locale. In particular, the product ID must be a numeric
 sequence of exactly eight digits, whereas the locale must be a pair of two-letter strings
 separated by a dash. The filter doesn’t ensure that all invalid product IDs and locale codes are
stopped at the gate, but at least it cuts off a good deal of work. An invalid URL is presented
as an HTTP 404 failure and is subject to application-specific handling of HTTP errors.

More in general, a route constraint is a condition that a given URL parameter must fulfill
to make the URL match the route. A constraint is defined via either regular expressions or
 objects that implement the IRouteConstraint interface.

Preventing Routing for Defined URLs
The ASP.NET URL routing module gives you maximum freedom to keep certain URLs off the
routing mechanism. You can prevent the routing system from handling certain URLs in two
steps. First, you define a pattern for those URLs and save it to a route. Second, you link that
route to a special route handler—the StopRoutingHandler class.

Any request that belongs to a route managed by a StopRoutingHandler object is processed
as a plain ASP.NET Web Forms endpoint. The following code instructs the routing system to
ignore any .axd requests:

// In global.asax.cs
protected void Application_Start(Object sender, EventArgs e)
{
 RegisterRoutes(RouteTable.Routes);
}

public static void RegisterRoutes(RouteCollection routes)
{
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");
 ...
}

 Chapter 4 HTTP Handlers, Modules, and Routing 165

All that IgnoreRoute does is associate a StopRoutingHandler route handler to the route built
around the specified URL pattern, thus preventing all matching URLs from being processed.

A little explanation is required for the {*pathInfo} placeholder in the URL. The token pathInfo
simply represents a placeholder for any content following the .axd URL. The asterisk (*),
though, indicates that the last parameter should match the rest of the URL. In other words,
anything that follows the .axd extension goes into the pathInfo parameter. Such parameters
are referred to as catch-all parameters.

Note Earlier in this chapter, I presented HTTP handlers as a way to define your own commands
for the application through customized URLs. So what’s the difference between HTTP handlers
and URL routing? In ASP.NET, HTTP handlers remain the only way to process requests; URL rout-
ing is an intermediate layer that pre-processes requests and determines the HTTP handler for
them. In doing so, the routing module decides whether the URL meets the expectations of the
application or not. In a nutshell, URL routing offers a more flexible and extensible API; if you just
need one specially formatted URL, though, a direct HTTP handler is probably a simpler choice.

Summary
HTTP handlers and HTTP modules are the building blocks of the ASP.NET platform. ASP.NET
includes several predefined handlers and HTTP modules, but developers can write handlers
and modules of their own to perform a variety of tasks. HTTP handlers, in particular, are
faster than ordinary Web pages and can be used in all circumstances in which you don’t need
state maintenance and postback events. To generate images dynamically on the server, for
example, an HTTP handler is more efficient than a page.

Everything that occurs under the hood of the ASP.NET runtime environment occurs because
of HTTP handlers. When you invoke a Web page or an ASP.NET Web service method, an
 appropriate HTTP handler gets into the game and serves your request.

HTTP modules are good at performing a number of low-level tasks for which tight
 interaction and integration with the request/response mechanism is a critical factor. Modules
are sort of interceptors that you can place along an HTTP packet’s path, from the Web server
to the ASP.NET runtime and back. Modules have read and write capabilities, and they can
filter and modify the contents of both inbound and outbound requests.

In ASP.NET 4, a special HTTP module has been introduced to simplify the management of
application URLs and make the whole process more powerful. The URL routing HTTP module
offers a programmer-friendly API to define URL patterns, and it automatically blocks calls

166 Part I The ASP.NET Runtime Environment

for nonmatching URLs and redirects matching URLs to specific pages. It’s not much different
from old-fashioned URL rewriting, but it offers a greater level of control to the programmer.

With this chapter, our exploration of the ASP.NET and IIS runtime environment terminates.
With the next chapter, we’ll begin a tour of the ASP.NET page-related features.

Programming Microsoft® ASP.NET 4

 167

Part II

ASP.NET Pages and
Server Controls

In this part:
Chapter 5: Anatomy of an ASP.NET Page . 169
Chapter 6: ASP.NET Core Server Controls . 217
Chapter 7: Working with the Page . 269
Chapter 8: Page Composition and Usability . 319
Chapter 9: ASP.NET Input Forms. 365
Chapter 10: Data Binding. 411
Chapter 11: The ListView Control . 471
Chapter 12: Custom Controls . 513

 169

Chapter 5

Anatomy of an ASP.NET Page
The wise are instructed by reason; ordinary minds by experience; the stupid, by
necessity; and brutes by instinct.

—Cicero

ASP.NET pages are dynamically compiled on demand when first requested in the context of
a Web application. Dynamic compilation is not specific to ASP.NET pages alone (.aspx files);
it also occurs with services (.svc and asmx files), Web user controls (.ascx files), HTTP handlers
(.ashx files), and a few more ASP.NET application files such as the global.asax file. A pipeline of
run-time modules takes care of the incoming HTTP packet and makes it evolve from a simple
protocol-specific payload up to the rank of a server-side ASP.NET object—whether it’s an
 instance of a class derived from the system’s Page class or something else.

The ASP.NET HTTP runtime processes the page object and causes it to generate the markup
to insert in the response. The generation of the response is marked by several events handled
by user code and collectively known as the page life cycle.

In this chapter, we’ll review how an HTTP request for an .aspx resource is mapped to a page
object, the programming interface of the Page class, and how to control the generation of
the markup by handling events of the page life cycle.

Note By default in release mode, application pages are compiled in batch mode, meaning that
ASP.NET attempts to stuff as many uncompiled pages as possible into a single assembly. The
attributes maxBatchSize and maxBatchGeneratedFileSize in the <compilation> section let you
limit the number of pages packaged in a single assembly and the overall size of the assembly. By
default, you will have no more than 1000 pages per batched compilation and no assembly larger
than 1 MB. In general, you don’t want users to wait too long when a large number of pages are
compiled the first time. At the same time, you don’t want to load a huge assembly in memory to
serve only a small page, or to start compilation for each and every page. The maxBatchSize and
maxBatchGeneratedFileSize attributes help you find a good balance between first-hit delay and
memory usage.

170 Part II ASP.NET Pages and Server Controls

Invoking a Page
Let’s start by examining in detail how the .aspx page is converted into a class and then
 compiled into an assembly. Generating an assembly for a particular .aspx resource is a
 two-step process. First, the source code of the resource file is parsed and a corresponding
class is created that inherits either from Page or another class that, in turn, inherits from Page.
Second, the dynamically generated class is compiled into an assembly and cached in an
ASP.NET-specific temporary directory.

The compiled page remains in use as long as no changes occur to the linked .aspx source
file or the whole application is restarted. Any changes to the linked .aspx file invalidate the
 current page-specific assembly and force the HTTP runtime to create a new assembly on the
next request for the page.

Note Editing files such as web.config and global.asax causes the whole application to restart. In
this case, all the pages will be recompiled as soon as each page is requested. The same happens
if a new assembly is copied or replaced in the application’s Bin folder.

The Runtime Machinery
Most of the requests that hit Internet Information Services (IIS) are forwarded to a particular
run-time module for actual processing. The only exception to this model is made for static
resources (for example, images) that IIS can quickly serve on its own. A module that can
 handle Web resources within IIS is known as an ISAPI extension and can be made of man-
aged or unmanaged code. The worker process that serves the Web application in charge of
the request loads the pinpointed module and commands it through a contracted program-
ming interface.

For example, old-fashioned ASP pages are processed by an ISAPI extension named asp.dll
whereas files with an .aspx extension—classic Web Forms pages—are assigned to an ISAPI
extension named aspnet_isapi.dll, as shown in Figure 5-1. Extension-less requests like those
managed by an ASP.NET MVC application are intercepted at the gate and redirected to
 completely distinct runtime machinery. (At least this is what happens under IIS 7 in integrated
mode. In older configurations, you still need to register a specific extension for the requests
to be correctly handled by IIS.)

 Chapter 5 Anatomy of an ASP.NET Page 171

FIGURE 5-1 Setting the handler for resources with an .aspx extension.

Resource Mappings
IIS stores the list of recognized resources in the IIS metabase. Depending on the version of IIS
you are using, the metabase might be a hidden component or a plain configuration file that
an administrator can freely edit by hand. Regardless of the internal implementation, the IIS
manager tool provides a user interface to edit the content of the metabase.

Upon installation, ASP.NET modifies the IIS metabase to make sure that aspnet_isapi.dll can
handle some typical ASP.NET resources. Table 5-1 lists some of these resources.

TABLE 5-1 IIS Application Mappings for aspnet_isapi.dl
Extension Resource Type
.asax ASP.NET application files. Note, though, that any .asax file other than global.asax is

 ignored. The mapping is there only to ensure that global.asax can’t be requested directly.

.ascx ASP.NET user control files.

.ashx HTTP handlers—namely, managed modules that interact with the low-level request and
response services of IIS.

.asmx Files that represent the endpoint of old-fashioned .NET Web services.

.aspx Files that represent ASP.NET pages.

.axd Extension that identifies internal HTTP handlers used to implement system features such
as application-level tracing (trace.axd) or script injection (webresource.axd).

.svc Files that represent the endpoint of a Windows Communication Foundation (WCF)
 service.

172 Part II ASP.NET Pages and Server Controls

In addition, the aspnet_isapi.dll extension handles other typical Microsoft Visual Studio
 extensions such as .cs, .csproj, .vb, .vbproj, .config, and .resx.

As mentioned in Chapter 2, “ASP.NET and IIS,” the exact behavior of the ASP.NET ISAPI
 extension depends on the process model selected for the application—integrated pipe-
line (the default in IIS 7 and superior) or classic pipeline. Regardless of the model, at the
end of the processing pipeline the originally requested URL that refers to an .aspx resource
is mapped to, and served through, an instance of a class that represents an ASP.NET Web
Forms page. The base class is the System.Web.UI.Page class.

Representing the Requested Page
The aforementioned Page class is only the base class. The actual class being used by the
IIS worker process is a dynamically created derived class. So the ASP.NET HTTP runtime
 environment first determines the name of the class that will be used to serve the request.
A particular naming convention links the URL of the page to the name of the class. If the
requested page is, say, default.aspx, the associated class turns out to be ASP.default_aspx.
The transformation rule applies a fixed ASP namespace and replaces any dot (.) with an
underscore (_). If the URL contains a directory name, any slashes are also replaced with an
underscore.

If no class exists with the specified name in any of the assemblies currently loaded in the
AppDomain, the HTTP runtime orders that the class be created and compiled on the fly. This
step is often referred to as the dynamic compilation of ASP.NET pages.

The source code for the new class is created by parsing the source code of the .aspx resource,
and it’s temporarily saved in the ASP.NET temporary folder. The parser attempts to create
a class with an initializer method able to create instances of any referenced server controls
found in the ASPX markup. A referenced server control results from tags explicitly decorated
with the runat=server attribute and from contiguous literals, including blanks and carriage
returns. For example, consider the following short piece of markup:

<html>
<body>
<asp:button runat="server" ID="Button1" text="Click" />
</body>
</html>

When parsed, it sparks three distinct server control instances: two literal controls and a
Button control. The first literal comprehends the text “<html><body>” plus any blanks and
carriage returns the editor has put in. The second literal includes “</body></html>”.

 Chapter 5 Anatomy of an ASP.NET Page 173

Next, the Page-derived class is compiled and loaded in memory to serve the request. When
a new request for the same page arrives, the class is ready and no compile step will ever take
place. (The class will be re-created and recompiled only if the source code of the .aspx source
changes at some point.)

The ASP.default_aspx class inherits from Page or, more likely, from a class that in turn
 inherits from Page. More precisely, the base class for ASP.default_aspx will be a combina-
tion of the code-behind, partial class you created through Visual Studio and a second partial
class dynamically arranged by the ASP.NET HTTP runtime. The second, implicit partial class
 contains the declaration of protected properties for any explicitly referenced server controls.
This second partial class is the key that allows you to write the following code successfully:

// No member named Button1 has ever been explicitly declared in any code-behind
// class. It is silently added at compile time through a partial class.
Button1.Text = ...;

Partial classes are a hot feature of .NET compilers. When partially declared, a class has its
source code split over multiple source files, each of which appears to contain an ordinary
class definition from beginning to end. The keyword partial, though, informs the compiler
that the class declaration being processed is incomplete. To get full and complete source
code, the compiler must look into other files specified on the command line.

Partial Classes in ASP.NET Projects
Partial classes are a compiler feature originally designed to overcome the brittleness of
 tool-generated code back in Visual Studio 2003 projects. Ideal for team development, partial
classes simplify coding and avoid manual file synchronization in all situations in which many
authors work on distinct segments of the class logical class.

Generally, partial classes are a source-level, assembly-limited, non-object-oriented way to
extend the behavior of a class. A number of advantages are derived from intensive use of
partial classes. As mentioned, you can have multiple teams at work on the same component
at the same time. In addition, you have a neat and elegant way to add functionality to a class
incrementally. In the end, this is just what the ASP.NET runtime does.

The ASPX markup defines server controls that will be handled by the code in the code-
behind class. For this model to work, the code-behind class needs to incorporate references
to these server controls as internal members—typically, protected members. In Visual Studio,
the code-behind class is a partial class that just lacks members’ declaration. Missing declara-
tions are incrementally added at run time via a second partial class created by the ASP.NET
HTTP runtime. The compiler of choice (C#, Microsoft Visual Basic .NET, or whatever) will then
merge the two partial classes to create the real parent of the dynamically created page class.

174 Part II ASP.NET Pages and Server Controls

Processing the Request
So to serve a request for a page named default.aspx, the ASP.NET runtime gets or creates a
reference to a class named ASP.default_aspx. Next, the HTTP runtime environment invokes
the class through the methods of a well-known interface—IHttpHandler. The root Page class
implements this interface, which includes a couple of members: the ProcessRequest method
and the Boolean IsReusable property. After the HTTP runtime has obtained an instance of the
class that represents the requested resource, invoking the ProcessRequest method—a public
method—gives birth to the process that culminates in the generation of the final response
for the browser. As mentioned, the steps and events that execute and trigger out of the call
to ProcessRequest are collectively known as the page life cycle.

Although serving pages is the ultimate goal of the ASP.NET runtime, the way in which the
resultant markup code is generated is much more sophisticated than in other platforms and
involves many objects. The IIS worker process passes any incoming HTTP requests to the
 so-called HTTP pipeline. The HTTP pipeline is a fully extensible chain of managed objects
that works according to the classic concept of a pipeline. All these objects form what is often
referred to as the ASP.NET HTTP runtime environment.

This ASP.NET-specific pipeline is integrated with the IIS pipeline in place for any requests
when the Web application is configured to work in IIS 7 Integrated mode. Otherwise, IIS
and ASP.NET use distinct pipelines—an unmanaged pipeline for IIS and a managed pipeline
for ASP.NET.

A page request passes through a pipeline of objects that process the original HTTP payload
and, at the end of the chain, produce some markup code for the browser. The entry point in
this pipeline is the HttpRuntime class.

The HttpRuntime Class
The ASP.NET worker process activates the HTTP pipeline in the beginning by creating a new
instance of the HttpRuntime class and then calling its ProcessRequest method for each incom-
ing request. For the sake of clarity, note that despite the name, HttpRuntime.ProcessRequest
has nothing to do with the IHttpHandler interface.

The HttpRuntime class contains a lot of private and internal methods and only three public
static methods: Close, ProcessRequest, and UnloadAppDomain, as detailed in Table 5-2.

 Chapter 5 Anatomy of an ASP.NET Page 175

TABLE 5-2 Public Methods in the HttpRuntime Class
Method Description
Close Removes all items from the ASP.NET cache, and terminates the Web

 application. This method should be used only when your code implements its
own hosting environment. There is no need to call this method in the course of
normal ASP.NET request processing.

ProcessRequest Drives all ASP.NET Web processing execution.

UnloadAppDomain Terminates the current ASP.NET application. The application restarts the next
time a request is received for it.

Note that all the methods shown in Table 5-2 have limited applicability in user applications.
In particular, you’re not supposed to use ProcessRequest in your own code, whereas Close
is useful only if you’re hosting ASP.NET in a custom application. Of the three methods in
Table 5-2, only UnloadAppDomain can be considered for use if, under certain run-time
conditions, you realize you need to restart the application. (See the sidebar “What Causes
Application Restarts?” later in this chapter.)

Upon creation, the HttpRuntime object initializes a number of internal objects that will
help carry out the page request. Helper objects include the cache manager and the file
system monitor used to detect changes in the files that form the application. When the
ProcessRequest method is called, the HttpRuntime object starts working to serve a page
to the browser. It creates a new empty context for the request and initializes a specialized
text writer object in which the markup code will be accumulated. A context is given by an
 instance of the HttpContext class, which encapsulates all HTTP-specific information about the
request.

After that, the HttpRuntime object uses the context information to either locate or create a
Web application object capable of handling the request. A Web application is searched using
the virtual directory information contained in the URL. The object used to find or create
a new Web application is HttpApplicationFactory—an internal-use object responsible for
 returning a valid object capable of handling the request.

Before we get to discover more about the various components of the HTTP pipeline, a look
at Figure 5-2 is in order.

176 Part II ASP.NET Pages and Server Controls

default.aspx

ASP.NET Work Process — AppDomain

Based on the URL,
creates/selects the application
object to serve the request

Determines the type of the
request and invokes the proper
handler factory

Determines the page class
required to serve the request
and creates it if it doesn’t exist

HttpApplicationFactory

HttpApplication

PageHandlerFactory

ASP.default_aspx

HttpRuntime
Initializes the ASP.NET cache and HTTP context

Cache
HTTP

Context

IHttpHandler

HttpRuntime invokes ProcessRequest
on ASP.default_aspx

FIGURE 5-2 The HTTP pipeline processing for a page.

The Application Factory
During the lifetime of the application, the HttpApplicationFactory object maintains a pool
of HttpApplication objects to serve incoming HTTP requests. When invoked, the application
 factory object verifies that an AppDomain exists for the virtual folder the request targets.
If the application is already running, the factory picks an HttpApplication out of the pool
of available objects and passes it the request. A new HttpApplication object is created if an
 existing object is not available.

If the virtual folder has not yet been called for the first time, a new HttpApplication object
for the virtual folder is created in a new AppDomain. In this case, the creation of an
HttpApplication object entails the compilation of the global.asax application file, if one is

 Chapter 5 Anatomy of an ASP.NET Page 177

present, and the creation of the assembly that represents the actual page requested. This
event is actually equivalent to the start of the application. An HttpApplication object is used
to process a single page request at a time; multiple objects are used to serve simultaneous
requests.

The HttpApplication Object
HttpApplication is the base class that represents a running ASP.NET application. A derived
HTTP application class is dynamically generated by parsing the contents of the global.asax
file, if any is present. If global.asax is available, the application class is built and named after
it: ASP.global_asax. Otherwise, the base HttpApplication class is used.

An instance of an HttpApplication-derived class is responsible for managing the entire
 lifetime of the request it is assigned to. The same instance can be reused only after the
 request has been completed. The HttpApplication maintains a list of HTTP module objects
that can filter and even modify the content of the request. Registered modules are called
during various moments of the elaboration as the request passes through the pipeline.

The HttpApplication object determines the type of object that represents the resource
being requested—typically, an ASP.NET page, a Web service, or perhaps a user control.
HttpApplication then uses the proper handler factory to get an object that represents the
requested resource. The factory either instantiates the class for the requested resource from
an existing assembly or dynamically creates the assembly and then an instance of the class.
A handler factory object is a class that implements the IHttpHandlerFactory interface and is
responsible for returning an instance of a managed class that can handle the HTTP request—
an HTTP handler. An ASP.NET page is simply a handler object—that is, an instance of a class
that implements the IHttpHandler interface.

Let’s see what happens when the resource requested is a page.

The Page Factory
When the HttpApplication object in charge of the request has figured out the proper handler,
it creates an instance of the handler factory object. For a request that targets a page, the
 factory is a class named PageHandlerFactory. To find the appropriate handler, HttpApplication
uses the information in the <httpHandlers> section of the configuration file as a complement
to the information stored in the IIS handler mappings list, as shown in Figure 5-3.

178 Part II ASP.NET Pages and Server Controls

FIGURE 5-3 The HTTP pipeline processing for a page.

Bear in mind that handler factory objects do not compile the requested resource each time
it is invoked. The compiled code is stored in an ASP.NET temporary directory on the Web
server and used until the corresponding resource file is modified.

So the page handler factory creates an instance of an object that represents the particular
page requested. As mentioned, the actual object inherits from the System.Web.UI.Page class,
which in turn implements the IHttpHandler interface. The page object is returned to the
 application factory, which passes that back to the HttpRuntime object. The final step accom-
plished by the ASP.NET runtime is calling the IHttpHandler’s ProcessRequest method on the
page object. This call causes the page to execute the user-defined code and generate the
markup for the browser.

In Chapter 17, “ASP.NET State Management,” we’ll return to the initialization of an ASP.NET
application, the contents of global.asax, and the information stuffed into the HTTP context—
a container object, created by the HttpRuntime class, that is populated, passed along the
pipeline, and finally bound to the page handler.

 Chapter 5 Anatomy of an ASP.NET Page 179

What Causes Application Restarts?
There are a few reasons why an ASP.NET application can be restarted. For the most
part, an application is restarted to ensure that latent bugs or memory leaks don’t affect
the overall behavior of the application in the long run. Another reason is that too many
changes dynamically made to deployed ASPX pages might have caused too large a
number of assemblies (typically, one per page) to be loaded in memory.

Note that any applications that consume more than a certain share of virtual memory
are automatically killed and restarted by IIS. In IIS 7, you can even configure a periodic
recycle to ensure that your application is always lean, mean, and in good shape.

Furthermore, the hosting environment (IIS or ASP.NET, depending on the configuration)
implements a good deal of checks and automatically restarts an application if any the
following scenarios occur:

■ The maximum limit of dynamic page compilations is reached. This limit is
 configurable through the web.config file.

■ The physical path of the Web application has changed, or any directory under
the Web application folder is renamed.

■ Changes occurred in global.asax, machine.config, or web.config in the
 application root, or in the Bin directory or any of its subdirectories.

■ Changes occurred in the code-access security policy file, if one exists.

■ Too many files are changed in one of the content directories. (Typically, this
happens if files are generated on the fly when requested.)

■ You modified some of the properties for the application pool hosting the Web
application.

In addition to all this, in ASP.NET an application can be restarted programmatically by
calling HttpRuntime.UnloadAppDomain.

The Processing Directives of a Page
Processing directives configure the run-time environment that will execute the page. In
ASP.NET, directives can be located anywhere in the page, although it’s a good and common
practice to place them at the beginning of the file. In addition, the name of a directive is case
insensitive and the values of directive attributes don’t need to be quoted. The most impor-
tant and most frequently used directive in ASP.NET is @Page. The complete list of ASP.NET
directives is shown in Table 5-3.

180 Part II ASP.NET Pages and Server Controls

TABLE 5-3 Directives Supported by ASP.NET Pages
Directive Description
@ Assembly Links an assembly to the current page or user control.

@ Control Defines control-specific attributes that guide the behavior of the control
compiler.

@ Implements Indicates that the page, or the user control, implements a specified .NET
Framework interface.

@ Import Indicates a namespace to import into a page or user control.

@ Master Identifies an ASP.NET master page. (See Chapter 8, “Page Composition and
Usability.”)

@ MasterType Provides a way to create a strongly typed reference to the ASP.NET master
page when the master page is accessed from the Master property. (See
Chapter 8.)

@ OutputCache Controls the output caching policies of a page or user control. (See
Chapter 18, “ASP.NET Caching.”)

@ Page Defines page-specific attributes that guide the behavior of the page
 compiler and the language parser that will preprocess the page.

@ PreviousPageType Provides a way to get strong typing against the previous page, as accessed
through the PreviousPage property.

@ Reference Links a page or user control to the current page or user control.

@ Register Creates a custom tag in the page or the control. The new tag (prefix and
name) is associated with the namespace and the code of a user-defined
control.

With the exception of @Page, @PreviousPageType, @Master, @MasterType, and @Control,
all directives can be used both within a page and a control declaration. @Page and @Control
are mutually exclusive. @Page can be used only in .aspx files, while the @Control directive
can be used only in user control .ascx files. @Master, in turn, is used to define a very special
type of page—the master page.

The syntax of a processing directive is unique and common to all supported types of
 directives. Multiple attributes must be separated with blanks, and no blank can be placed
around the equal sign (=) that assigns a value to an attribute, as the following line of code
demonstrates:

<%@ Directive_Name attribute="value" [attribute="value"...] %>

Each directive has its own closed set of typed attributes. Assigning a value of the wrong type
to an attribute, or using a wrong attribute with a directive, results in a compilation error.

 Chapter 5 Anatomy of an ASP.NET Page 181

Important The content of directive attributes is always rendered as plain text. However,
 attributes are expected to contain values that can be rendered to a particular .NET Framework
type, specific to the attribute. When the ASP.NET page is parsed, all the directive attributes
are extracted and stored in a dictionary. The names and number of attributes must match the
 expected schema for the directive. The string that expresses the value of an attribute is valid as
long as it can be converted into the expected type. For example, if the attribute is designed to
take a Boolean value, true and false are its only feasible values.

The @Page Directive
The @Page directive can be used only in .aspx pages and generates a compile error if used
with other types of ASP.NET files such as controls and Web services. Each .aspx file is allowed
to include at most one @Page directive. Although not strictly necessary from the syntax
point of view, the directive is realistically required by all pages of some complexity.

@Page features over 40 attributes that can be logically grouped in three categories:
 compilation (defined in Table 5-4), overall page behavior (defined in Table 5-5), and page
output (defined in Table 5-6). Each ASP.NET page is compiled upon first request, and the
HTML actually served to the browser is generated by the methods of the dynamically
 generated class. The attributes listed in Table 5-4 let you fine-tune parameters for the
 compiler and choose the language to use.

TABLE 5-4 @Page Attributes for Page Compilation
Attribute Description
ClassName Specifies the name of the class that will be dynamically compiled when the

page is requested. It must be a class name without namespace information.

CodeFile Indicates the path to the code-behind class for the current page. The source
class file must be deployed to the Web server.

CodeBehind Attribute consumed by Visual Studio, indicates the path to the code-behind
class for the current page. The source class file will be compiled to a deployable
assembly.

CodeFileBaseClass Specifies the type name of a base class for a page and its associated code-
behind class. The attribute is optional, but when it is used the CodeFile attribute
must also be present.

CompilationMode Indicates whether the page should be compiled at run time.

CompilerOptions A sequence of compiler command-line switches used to compile the page.

Debug A Boolean value that indicates whether the page should be compiled with
 debug symbols.

Explicit A Boolean value that determines whether the page is compiled with the Visual
Basic Option Explicit mode set to On. Option Explicit forces the programmer to
explicitly declare all variables. The attribute is ignored if the page language is
not Visual Basic .NET.

182 Part II ASP.NET Pages and Server Controls

Attribute Description
Inherits Defines the base class for the page to inherit. It can be any class derived from

the Page class.

Language Indicates the language to use when compiling inline code blocks (<% … %>)
and all the code that appears in the page <script> section. Supported languag-
es include Visual Basic .NET, C#, JScript .NET, and J#. If not otherwise specified,
the language defaults to Visual Basic .NET.

LinePragmas Indicates whether the run time should generate line pragmas in the source
code to mark specific locations in the file for the sake of debugging tools.

MasterPageFile Indicates the master page for the current page.

Src Indicates the source file that contains the implementation of the base class
specified with Inherits. The attribute is not used by Visual Studio and other
Rapid Application Development (RAD) designers.

Strict A Boolean value that determines whether the page is compiled with the Visual
Basic Option Strict mode set to On. When this attribute is enabled, Option Strict
permits only type-safe conversions and prohibits implicit conversions in which
loss of data is possible. (In this case, the behavior is identical to that of C#.) The
attribute is ignored if the page language is not Visual Basic .NET.

Trace A Boolean value that indicates whether tracing is enabled. If tracing is enabled,
extra information is appended to the page’s output. The default is false.

TraceMode Indicates how trace messages are to be displayed for the page when tracing is
enabled. Feasible values are SortByTime and SortByCategory. The default, when
tracing is enabled, is SortByTime.

WarningLevel Indicates the compiler warning level at which you want the compiler to abort
compilation for the page. Possible values are 0 through 4.

Attributes listed in Table 5-5 allow you to control to some extent the overall behavior of the
page and the supported range of features. For example, you can set a custom error page,
disable session state, and control the transactional behavior of the page.

Note The schema of attributes supported by @Page is not as strict as for other directives. In
particular, any public properties defined on the page class can be listed as an attribute, and
 initialized, in a @Page directive.

TABLE 5-5 @Page Attributes for Page Behavior
Attribute Description
AspCompat A Boolean attribute that, when set to true, allows the page to

be executed on a single-threaded apartment (STA) thread. The
setting allows the page to call COM+ 1.0 components and com-
ponents developed with Microsoft Visual Basic 6.0 that require
access to the unmanaged ASP built-in objects. (I’ll return to this
topic in Chapter 16, “The HTTP Request Context.”)

Async If this attribute is set to true, the generated page class derives
from IHttpAsyncHandler rather than having IHttpHandler add
some built-in asynchronous capabilities to the page.

 Chapter 5 Anatomy of an ASP.NET Page 183

Attribute Description
AsyncTimeOut Defines the timeout in seconds used when processing

 asynchronous tasks. The default is 45 seconds.

AutoEventWireup A Boolean attribute that indicates whether page events are
 automatically enabled. It’s set to true by default. Pages devel-
oped with Visual Studio .NET have this attribute set to false, and
page events for these pages are individually tied to handlers.

Buffer A Boolean attribute that determines whether HTTP response
buffering is enabled. It’s set to true by default.

Description Provides a text description of the page. The ASP.NET page
parser ignores the attribute, which subsequently has only a
documentation purpose.

EnableEventValidation A Boolean value that indicates whether the page will emit
a hidden field to cache available values for input fields that
 support event data validation. It’s set to true by default.

EnableSessionState Defines how the page should treat session data. If this attribute
is set to true, the session state can be read and written to. If
it’s set to false, session data is not available to the application.
Finally, if this attribute is set to ReadOnly, the session state can
be read but not changed.

EnableViewState A Boolean value that indicates whether the page view state is
maintained across page requests. The view state is the page call
context—a collection of values that retain the state of the page
and are carried back and forth. View state is enabled by default.
(I’ll cover this topic in Chapter 17.
“ASP.NET State Management.”)

EnableTheming A Boolean value that indicates whether the page will support
themes for embedded controls. It’s set to true by default.

EnableViewStateMac A Boolean value that indicates ASP.NET should calculate a
machine- specific authentication code and append it to the view
state of the page (in addition to Base64 encoding). The Mac
in the attribute name stands for machine authentication check.
When the attribute is true, upon postbacks ASP.NET will check
the authentication code of the view state to make sure that it
hasn’t been tampered with on the client.

ErrorPage Defines the target URL to which users will be automatically
 redirected in case of unhandled page exceptions.

MaintainScrollPositionOnPostback A Boolean value that indicates whether to return the user to the
same position in the client browser after postback.

SmartNavigation A Boolean value that indicates whether the page supports the
Microsoft Internet Explorer 5 or later smart navigation feature.
Smart navigation allows a page to be refreshed without losing
scroll position and element focus.

Theme, StylesheetTheme Indicates the name of the theme (or style-sheet theme) selected
for the page.

184 Part II ASP.NET Pages and Server Controls

Attribute Description
Transaction Indicates whether the page supports or requires transactions.

Feasible values are Disabled, NotSupported, Supported, Required,
and RequiresNew. Transaction support is disabled by default.

ValidateRequest A Boolean value that indicates whether request validation
should occur. If this attribute is set to true, ASP.NET checks all
input data against a hard-coded list of potentially dangerous
values. This functionality helps reduce the risk of cross-site
scripting attacks for pages. The value is true by default.

Attributes listed in Table 5-6 allow you to control the format of the output being generated
for the page. For example, you can set the content type of the page or localize the output to
the extent possible.

TABLE 5-6 @Page Directives for Page Output
Attribute Description
ClientTarget Indicates the target browser for which ASP.NET server controls should

render content.

ClientIDMode Specifies the algorithm to use to generate client ID values for server
controls. This attribute requires ASP.NET 4.

CodePage Indicates the code page value for the response. Set this attribute only
if you created the page using a code page other than the default code
page of the Web server on which the page will run. In this case, set the
attribute to the code page of your development machine. A code page
is a character set that includes numbers, punctuation marks, and other
glyphs. Code pages differ on a per-language basis.

ContentType Defines the content type of the response as a standard MIME type.
Supports any valid HTTP content type string.

Culture Indicates the culture setting for the page. Culture information includes
the writing and sorting system, calendar, and date and currency for-
mats. The attribute must be set to a non-neutral culture name, which
means it must contain both language and country/region information.
For example, en-US is a valid value, unlike en alone, which is considered
country/region neutral.

LCID A 32-bit value that defines the locale identifier for the page. By default,
ASP.NET uses the locale of the Web server.

MetaDescription Sets the “description” meta element for the page. The value set through
the @Page directive overrides any similar values you might have
 specified as literal text in the markup. This attribute requires ASP.NET 4.

MetaKeywords Sets the “keywords” meta element for the page. The value set through
the @Page directive overrides any similar values you might have speci-
fied as literal text in the markup. This attribute requires ASP.NET 4.

ResponseEncoding Indicates the character encoding of the page. The value is used to set
the CharSet attribute on the content type HTTP header. Internally,
ASP.NET handles all strings as Unicode.

 Chapter 5 Anatomy of an ASP.NET Page 185

Attribute Description
UICulture Specifies the default culture name used by Resource Manager to look

up culture-specific resources at run time.

ViewStateEncryptionMode Determines how and if the view state is encrypted. Feasible values are
Auto, Always, or Never. The default is Auto, meaning that view state will
be encrypted only if an individual control requests that.

ViewStateMode Determines the value for the page’s ViewStateMode property that
 influences the way in which the page treats the view state of child
 controls. (More details are available in Chapter 17.) This attribute
 requires ASP.NET 4.

As you can see, many attributes discussed in Table 5-6 are concern with page localization.
Building multilanguage and international applications is a task that ASP.NET, and the .NET
Framework in general, greatly simplify.

The @Assembly Directive
The @Assembly directive adds an assembly to a collection of assembly names that are used
during the compilation of the ASP.NET page so that classes and interfaces in the assembly are
available for early binding to the code. You use the @Assembly directive when you want to
reference a given assembly only from a specific page.

Some assemblies are linked by default for any ASP.NET application. The complete list can be
found in the root web.config file of the Web server machine. The list is pretty long in
ASP.NET 4, but it no longer includes the System.Web.Mobile assembly that was there for older
versions of ASP.NET. The mobile assembly is now deprecated, but if you’re trying to upgrade
an existing application to ASP.NET 4 that uses the assembly, you are required to add the
 assembly explicitly via an @Assembly directive or via a custom <compilation> section in the
application.

Table 5-7 lists some of the assemblies that are automatically provided to the compiler for an
ASP.NET 4 application.

TABLE 5-7 Assemblies Linked by Default in ASP.NET 4
Assembly File Name Description
mscorlib Provides the core functionality of the .NET Framework,

 including types, AppDomains, and run-time services

System.dll Provides another bunch of system services, including regular
expressions, compilation, native methods, file I/O, and
 networking

System.Configuration.dll Defines classes to read and write configuration data.

System.Core.dll Provides some other core functionality of the .NET Framework,
including LINQ-to-Objects, the time-zone API, and some
 security and diagnostic classes

186 Part II ASP.NET Pages and Server Controls

System.Data.dll Defines data container and data access classes, including the
whole ADO.NET framework

System.Data.DataSetExtensions.dll Defines additional functions built over the ADO.NET DataSet
object

System.Drawing.dll Implements the GDI+ features

System.EnterpriseServices.dll Provides the classes that allow for serviced components and
COM+ interaction

System.Web.dll Indicates the assembly implements the core ASP.NET services,
controls, and classes

System.Web.ApplicationServices.dll Provides classes that enable you to access ASP.NET
 authentication, roles, and profile functions via a bunch of
 built-in WCF services

System.Web.DynamicData.dll Provides classes behind the ASP.NET Dynamic Data framework

System.Web.Entity.dll Contains the code for the EntityDataSource component that
supports Entity Framework

System.Web.Extensions.dll Contains the code for AJAX extensions to ASP.NET

System.Web.Services.dll Contains the core code that makes Web services run

System.Xml.dll Implements the .NET Framework XML features

System.Xml.Linq.dll Contains the code for the LINQ-to-XML parser

Note that you can modify, extend, or restrict the list of default assemblies by editing the
global settings in the root web.config file under

%Windows%\Microsoft.NET\Framework\v4.0.30319\Config

If you do so, changes will apply to all ASP.NET applications run on that Web server.
Alternatively, you can modify the assembly list on a per-application basis by editing the
 <assemblies> section under <compilation> in the application’s specific web.config file. Note
also that the <compilation> section should be used only for global assembly cache (GAC)
resident assemblies, not for the private assemblies that you deploy to the Bin folder.

By default, the <compilation> section in the root web.config file contains the following entry:

<add assembly="*" />

It means that any assembly found in the binary path of the application should be treated as
if it were registered through the @Assembly directive. To prevent all assemblies found in the
Bin directory from being linked to the page, remove the entry from the root configuration
file. To link a needed assembly to the page, use the following syntax:

<%@ Assembly Name="AssemblyName" %>
<%@ Assembly Src="assembly_code.cs" %>

 Chapter 5 Anatomy of an ASP.NET Page 187

The @Assembly directive supports two mutually exclusive attributes: Name and Src. Name
indicates the name of the assembly to link to the page. The name cannot include the path or
the extension. Src indicates the path to a source file to dynamically compile and link against
the page. The @Assembly directive can appear multiple times in the body of the page. In
fact, you need a new directive for each assembly to link. Name and Src cannot be used in the
same @Assembly directive, but multiple directives defined in the same page can use either.

Note In terms of performance, the difference between Name and Src is minimal, although
Name points to an existing and ready-to-load assembly. The source file referenced by Src
is compiled only the first time it is requested. The ASP.NET runtime maps a source file with
a dynamically compiled assembly and keeps using the compiled code until the original file
 undergoes changes. This means that after the first application-level call, the impact on the page
performance is identical whether you use Name or Src.

Any assemblies you register through the @Assembly directive are used by the compiler at
compile time, which allows for early binding. After the compilation of the requested ASP.NET
file is complete, the assembly is loaded into the application domain, thus allowing late bind-
ing. In the end, any assemblies listed through the directive (implicitly through the root con-
figuration or explicitly through the application configuration) is loaded into the AppDomain
and referenced on demand.

Important Removing an assembly from the Visual Studio project doesn’t help much to keep
the AppDomain lean and mean. To ensure you load all the assemblies you want and only the
ones you want, you should insert the following code in your configuration file:

<assemblies>
 <clear />
 <add assembly="..." />
 ...
 <add assembly="*" />
</assemblies>

The <clear /> tag removes all default configurations; the subsequent tags add just the assemblies
your application needs. As you can verify for yourself, the default list will likely load assemblies
you don’t need.

In debug mode, you can track the list of assemblies actually loaded in the AppDomain for the
site using the following code:

var assemblies1 = Assembly.GetExecutingAssembly().GetReferencedAssemblies();
var assemblies2 = AppDomain.CurrentDomain.GetAssemblies();

The size of the two arrays can vary quite a bit. The former counts just the dynamically refer-
enced assemblies at the current stage of execution. The latter counts the number of assemblies
 physically loaded in the AppDomain (which can’t be unloaded unless you recycle the application).

188 Part II ASP.NET Pages and Server Controls

The @Import Directive
The @Import directive links the specified namespace to the page so that all the types defined
can be accessed from the page without specifying the fully qualified name. For example,
to create a new instance of the ADO.NET DataSet class, you either import the System.Data
namespace or specify the fully qualified class name whenever you need it, as in the following
code:

System.Data.DataSet ds = new System.Data.DataSet();

After you’ve imported the System.Data namespace into the page, you can use more natural
coding, as shown here:

DataSet ds = new DataSet();

The syntax of the @Import directive is rather self-explanatory:

<%@ Import namespace="value" %>

@Import can be used as many times as needed in the body of the page. The @Import
 directive is the ASP.NET counterpart of the C# using statement and the Visual Basic .NET
Imports statement. Looking back at unmanaged C/C++, we could say the directive plays
a role nearly identical to the #include directive. For example, to be able to connect to a
Microsoft SQL Server database and grab some disconnected data, you need to import the
following two namespaces:

<%@ Import namespace="System.Data" %>
<%@ Import namespace="System.Data.SqlClient" %>

You need the System.Data namespace to work with the DataSet and DataTable classes,
and you need the System.Data.SqlClient namespace to prepare and issue the command. In
this case, you don’t need to link against additional assemblies because the System.Data.dll
 assembly is linked by default.

Note @Import helps the compiler only to resolve class names; it doesn’t automatically link
required assemblies. Using the @Import directive allows you to use shorter class names, but as
long as the assembly that contains the class code is not properly referenced, the compiler will
generate a type error. In this case, using the fully qualified class name is of no help because the
compiler lacks the type definition. You might have noticed that, more often than not, assembly
and namespace names coincide. The latest version of Visual Studio (as well as some commercial
products such as JetBrains ReSharper) is able to detect when you lack a reference and offers
to import the namespace and reference the assembly with a single click. This is pure tooling
 activity—namespaces and assemblies are totally different beasts.

 Chapter 5 Anatomy of an ASP.NET Page 189

The @Implements Directive
The directive indicates that the current page implements the specified .NET Framework
 interface. An interface is a set of signatures for a logically related group of functions. An
 interface is a sort of contract that shows the component’s commitment to expose that group
of functions. Unlike abstract classes, an interface doesn’t provide code or executable func-
tionality. When you implement an interface in an ASP.NET page, you declare any required
methods and properties within the <script> section. The syntax of the @Implements directive
is as follows:

<%@ Implements interface="InterfaceName" %>

The @Implements directive can appear multiple times in the page if the page has to
 implement multiple interfaces. Note that if you decide to put all the page logic in a separate
class file, you can’t use the directive to implement interfaces. Instead, you implement the
 interface in the code-behind class.

The @Reference Directive
The @Reference directive is used to establish a dynamic link between the current page and
the specified page or user control. This feature has significant implications for the way you
set up cross-page communication. It also lets you create strongly typed instances of user
controls. Let’s review the syntax.

The directive can appear multiple times in the page. The directive features two mutually
exclusive attributes: Page and Control. Both attributes are expected to contain a path to a
source file:

<%@ Reference page="source_page" %>
<%@ Reference control="source_user_control" %>

The Page attribute points to an .aspx source file, whereas the Control attribute contains the
path of an .ascx user control. In both cases, the referenced source file will be dynamically
compiled into an assembly, thus making the classes defined in the source programmatically
available to the referencing page. When running, an ASP.NET page is an instance of a .NET
Framework class with a specific interface made of methods and properties. When the refer-
encing page executes, a referenced page becomes a class that represents the .aspx source file
and can be instantiated and programmed at will. For the directive to work, the referenced
page must belong to the same domain as the calling page. Cross-site calls are not allowed,
and both the Page and Control attributes expect to receive a relative virtual path.

190 Part II ASP.NET Pages and Server Controls

Note Cross-page posting can be considered as an alternate approach to using the @Reference
directive. Cross-page posting is an ASP.NET feature through which you force an ASP.NET button
control to post the content of its parent form to a given target page. I’ll demonstrate cross-page
posting in Chapter 9, “Input Forms.”

The Page Class
In the .NET Framework, the Page class provides the basic behavior for all objects that an
ASP.NET application builds by starting from .aspx files. Defined in the System.Web.UI
namespace, the class derives from TemplateControl and implements the IHttpHandler
interface:

public class Page : TemplateControl, IHttpHandler
{
 ...
}

In particular, TemplateControl is the abstract class that provides both ASP.NET pages and
user controls with a base set of functionality. At the upper level of the hierarchy, you find the
Control class. It defines the properties, methods, and events shared by all ASP.NET server-side
elements—pages, controls, and user controls.

Derived from a class—TemplateControl—that implements INamingContainer, the Page
class also serves as the naming container for all its constituent controls. In the .NET
Framework, the naming container for a control is the first parent control that implements the
INamingContainer interface. For any class that implements the naming container interface,
ASP.NET creates a new virtual namespace in which all child controls are guaranteed to have
unique names in the overall tree of controls. (This is a very important feature for iterative
data-bound controls, such as DataGrid, and for user controls.)

The Page class also implements the methods of the IHttpHandler interface, thus qualifying it
as the handler of a particular type of HTTP requests—those for .aspx files. The key element
of the IHttpHandler interface is the ProcessRequest method, which is the method the ASP.NET
runtime calls to start the page processing that will actually serve the request.

Note INamingContainer is a marker interface that has no methods. Its presence alone, though,
forces the ASP.NET runtime to create an additional namespace for naming the child controls of
the page (or the control) that implements it. The Page class is the naming container of all the
page’s controls, with the clear exception of those controls that implement the INamingContainer
interface themselves or are children of controls that implement the interface.

 Chapter 5 Anatomy of an ASP.NET Page 191

Properties of the Page Class
The properties of the Page class can be classified in three distinct groups: intrinsic objects,
worker properties, and page-specific properties. The tables in the following sections
 enumerate and describe them.

Intrinsic Objects
Table 5-8 lists all properties that return a helper object that is intrinsic to the page. In other
words, objects listed here are all essential parts of the infrastructure that allows for the page
execution.

TABLE 5-8 ASP.NET Intrinsic Objects in the Page Class
Property Description
Application Instance of the HttpApplicationState class; represents the state of the application.

It is functionally equivalent to the ASP intrinsic Application object.

Cache Instance of the Cache class; implements the cache for an ASP.NET applica-
tion. More efficient and powerful than Application, it supports item priority and
 expiration.

Profile Instance of the ProfileCommon class; represents the user-specific set of data
 associated with the request.

Request Instance of the HttpRequest class; represents the current HTTP request.

Response Instance of the HttpResponse class; sends HTTP response data to the client.

RouteData Instance of the RouteData class; groups information about the selected route (if
any) and its values and tokens. (Routing in Web Forms is covered in Chapter 4,
“xxx.”) The object is supported only in ASP.NET 4.

Server Instance of the HttpServerUtility class; provides helper methods for processing
Web requests.

Session Instance of the HttpSessionState class; manages user-specific data.

Trace Instance of the TraceContext class; performs tracing on the page.

User An IPrincipal object that represents the user making the request.

I’ll cover Request, Response, and Server in Chapter 16; Application and Session are covered
in Chapter 17; Cache will be the subject of Chapter 19. Finally, User and security will be the
 subject of Chapter 19, “ASP.NET Security.”

Worker Properties
Table 5-9 details page properties that are both informative and provide the foundation
for functional capabilities. You can hardly write code in the page without most of these
properties.

192 Part II ASP.NET Pages and Server Controls

TABLE 5-9 Worker Properties of the Page Class
Property Description
AutoPostBackControl Gets a reference to the control within the page that caused the postback

event.

ClientScript Gets a ClientScriptManager object that contains the client script used on
the page.

Controls Returns the collection of all the child controls contained in the current
page.

ErrorPage Gets or sets the error page to which the requesting browser is redirected
in case of an unhandled page exception.

Form Returns the current HtmlForm object for the page.

Header Returns a reference to the object that represents the page’s header. The
object implements IPageHeader.

IsAsync Indicates whether the page is being invoked through an asynchronous
handler.

IsCallback Indicates whether the page is being loaded in response to a client script
callback.

IsCrossPagePostBack Indicates whether the page is being loaded in response to a postback
made from within another page.

IsPostBack Indicates whether the page is being loaded in response to a client
 postback or whether it is being loaded for the first time.

IsValid Indicates whether page validation succeeded.

Master Instance of the MasterPage class; represents the master page that
 determines the appearance of the current page.

MasterPageFile Gets and sets the master file for the current page.

NamingContainer Returns null.

Page Returns the current Page object.

PageAdapter Returns the adapter object for the current Page object.

Parent Returns null.

PreviousPage Returns the reference to the caller page in case of a cross-page postback.

TemplateSourceDirectory Gets the virtual directory of the page.

Validators Returns the collection of all validation controls contained in the page.

ViewStateUserKey String property that represents a user-specific identifier used to hash
the view-state contents. This trick is a line of defense against one-click
 attacks.

In the context of an ASP.NET application, the Page object is the root of the hierarchy. For
this reason, inherited properties such as NamingContainer and Parent always return null. The
Page property, on the other hand, returns an instance of the same object (this in C# and Me
in Visual Basic .NET).

The ViewStateUserKey property deserves a special mention. A common use for the user key
is to stuff user-specific information that is then used to hash the contents of the view state

 Chapter 5 Anatomy of an ASP.NET Page 193

along with other information. A typical value for the ViewStateUserKey property is the name
of the authenticated user or the user’s session ID. This contrivance reinforces the security
level for the view state information and further lowers the likelihood of attacks. If you employ
a user-specific key, an attacker can’t construct a valid view state for your user account unless
the attacker can also authenticate as you. With this configuration, you have another barrier
against one-click attacks. This technique, though, might not be effective for Web sites that
allow anonymous access, unless you have some other unique tracking device running.

Note that if you plan to set the ViewStateUserKey property, you must do that during
the Page_Init event. If you attempt to do it later (for example, when Page_Load fires), an
 exception will be thrown.

Context Properties
Table 5-10 lists properties that represent visual and nonvisual attributes of the page, such as
the URL’s query string, the client target, the title, and the applied style sheet.

TABLE 5-10 Page-Specific Properties of the Page Class
Property Description
ClientID Always returns the empty string.

ClientIDMode Determines the algorithm to use to generate the ID of HTML
elements being output as part of a control’s markup. This prop-
erty requires ASP.NET 4.

ClientQueryString Gets the query string portion of the requested URL.

ClientTarget Set to the empty string by default; allows you to specify the
type of browser the HTML should comply with. Setting this
property disables automatic detection of browser capabilities.

EnableViewState Indicates whether the page has to manage view-state data. You
can also enable or disable the view-state feature through the
EnableViewState attribute of the @Page directive.

EnableViewStateMac Indicates whether ASP.NET should calculate a machine-specific
authentication code and append it to the page view state.

EnableTheming Indicates whether the page supports themes.

ID Always returns the empty string.

MetaDescription Gets and sets the content of the description meta tag. This
 property requires ASP.NET 4.

MetaKeywords Gets and sets the content of the keywords meta tag. This
 property requires ASP.NET 4.

MaintainScrollPositionOnPostback Indicates whether to return the user to the same position in the
client browser after postback.

SmartNavigation Indicates whether smart navigation is enabled. Smart navigation
exploits a bunch of browser-specific capabilities to enhance the
user’s experience with the page.

194 Part II ASP.NET Pages and Server Controls

Property Description
StyleSheetTheme Gets or sets the name of the style sheet applied to this page.

Theme Gets and sets the theme for the page. Note that themes can be
programmatically set only in the PreInit event.

Title Gets or sets the title for the page.

TraceEnabled Toggles page tracing on and off.

TraceModeValue Gets or sets the trace mode.

UniqueID Always returns the empty string.

ViewStateEncryptionMode Indicates if and how the view state should be encrypted.

ViewStateMode Enables the view state for an individual control even if the view
state is disabled for the page. This property requires ASP.NET 4.

Visible Indicates whether ASP.NET has to render the page. If you set
Visible to false, ASP.NET doesn’t generate any HTML code for
the page. When Visible is false, only the text explicitly written
using Response.Write hits the client.

The three ID properties (ID, ClientID, and UniqueID) always return the empty string from a
Page object. They make sense only for server controls.

Methods of the Page Class
The whole range of Page methods can be classified in a few categories based on the tasks
each method accomplishes. A few methods are involved with the generation of the markup
for the page; others are helper methods to build the page and manage the constituent
 controls. Finally, a third group collects all the methods related to client-side scripting.

Rendering Methods
Table 5-11 details the methods that are directly or indirectly involved with the generation of
the markup code.

TABLE 5-11 Methods for Markup Generation
Method Description
DataBind Binds all the data-bound controls contained in the page to their

data sources. The DataBind method doesn’t generate code itself but
prepares the ground for the forthcoming rendering.

RenderControl Outputs the HTML text for the page, including tracing information if
tracing is enabled.

VerifyRenderingInServerForm Controls call this method when they render to ensure that they are
included in the body of a server form. The method does not return a
value, but it throws an exception in case of error.

 Chapter 5 Anatomy of an ASP.NET Page 195

In an ASP.NET page, no control can be placed outside a <form> tag with the runat attribute
set to server. The VerifyRenderingInServerForm method is used by Web and HTML controls to
ensure that they are rendered correctly. In theory, custom controls should call this method
during the rendering phase. In many situations, the custom control embeds or derives an
 existing Web or HTML control that will make the check itself.

Not directly exposed by the Page class, but strictly related to it, is the GetWebResourceUrl
method on the ClientScriptManager class. (You get a reference to the current client script
manager through the ClientScript property on Page.) When you develop a custom control,
you often need to embed static resources such as images or client script files. You can make
these files be separate downloads; however, even though it’s effective, the solution looks
poor and inelegant. Visual Studio allows you to embed resources in the control assembly, but
how would you retrieve these resources programmatically and bind them to the control? For
example, to bind an assembly-stored image to an tag, you need a URL for the im-
age. The GetWebResourceUrl method returns a URL for the specified resource. The URL refers
to a new Web Resource service (webresource.axd) that retrieves and returns the requested
 resource from an assembly.

// Bind the tag to the given GIF image in the control's assembly
img.ImageUrl = Page.GetWebResourceUrl(typeof(TheControl), GifName));

GetWebResourceUrl requires a Type object, which will be used to locate the assembly that
contains the resource. The assembly is identified with the assembly that contains the defini-
tion of the specified type in the current AppDomain. If you’re writing a custom control, the
type will likely be the control’s type. As its second argument, the GetWebResourceUrl method
requires the name of the embedded resource. The returned URL takes the following form:

WebResource.axd?a=assembly&r=resourceName&t=timestamp

The timestamp value is the current timestamp of the assembly, and it is added to make the
browser download resources again if the assembly is modified.

Controls-Related Methods
Table 5-12 details a bunch of helper methods on the Page class architected to let you
 manage and validate child controls and resolve URLs.

TABLE 5-12 Helper Methods of the Page Object
Method Description
DesignerInitialize Initializes the instance of the Page class at design time, when the

page is being hosted by RAD designers such as Visual Studio.

FindControl Takes a control’s ID and searches for it in the page’s naming
 container. The search doesn’t dig out child controls that are naming
containers themselves.

196 Part II ASP.NET Pages and Server Controls

Method Description
GetTypeHashCode Retrieves the hash code generated by ASP.xxx_aspx page objects at

run time. In the base Page class, the method implementation sim-
ply returns 0; significant numbers are returned by classes used for
actual pages.

GetValidators Returns a collection of control validators for a specified validation
group.

HasControls Determines whether the page contains any child controls.

LoadControl Compiles and loads a user control from an .ascx file, and returns
a Control object. If the user control supports caching, the object
 returned is PartialCachingControl.

LoadTemplate Compiles and loads a user control from an .ascx file, and returns
it wrapped in an instance of an internal class that implements the
ITemplate interface. The internal class is named SimpleTemplate.

MapPath Retrieves the physical, fully qualified path that an absolute or
 relative virtual path maps to.

ParseControl Parses a well-formed input string, and returns an instance of the
control that corresponds to the specified markup text. If the string
contains more controls, only the first is taken into account. The
runat attribute can be omitted. The method returns an object of
type Control and must be cast to a more specific type.

RegisterRequiresControlState Registers a control as one that requires control state.

RegisterRequiresPostBack Registers the specified control to receive a postback han-
dling notice, even if its ID doesn’t match any ID in the col-
lection of posted data. The control must implement the
IPostBackDataHandler interface.

RegisterRequiresRaiseEvent Registers the specified control to handle an incoming postback
event. The control must implement the IPostBackEventHandler
 interface.

RegisterViewStateHandler Mostly for internal use, the method sets an internal flag that causes
the page view state to be persisted. If this method is not called in
the prerendering phase, no view state will ever be written. Typically,
only the HtmlForm server control for the page calls this method.
There’s no need to call it from within user applications.

ResolveUrl Resolves a relative URL into an absolute URL based on the value of
the TemplateSourceDirectory property.

Validate Instructs any validation controls included in the page to validate
their assigned information. If defined in the page, the method
 honors ASP.NET validation groups.

 Chapter 5 Anatomy of an ASP.NET Page 197

The methods LoadControl and LoadTemplate share a common code infrastructure but return
different objects, as the following pseudocode shows:

public Control LoadControl(string virtualPath)
{
 Control ascx = GetCompiledUserControlType(virtualPath);
 ascx.InitializeAsUserControl();
 return ascx;
}
public ITemplate LoadTemplate(string virtualPath)
{
 Control ascx = GetCompiledUserControlType(virtualPath);
 return new SimpleTemplate(ascx);
}

Both methods differ from the ParseControl method in that the latter never causes compila-
tion but simply parses the string and infers control information. The information is then used
to create and initialize a new instance of the control class. As mentioned, the runat attribute
is unnecessary in this context. In ASP.NET, the runat attribute is key, but in practice, it has no
other role than marking the surrounding markup text for parsing and instantiation. It does
not contain information useful to instantiate a control, and for this reason it can be omitted
from the strings you pass directly to ParseControl.

Script-Related Methods
Table 5-13 enumerates all the methods in the Page class related to HTML and script code to
be inserted in the client page.

TABLE 5-13 Script-Related Methods
Method Description
GetCallbackEventReference Obtains a reference to a client-side function that, when invoked,

initiates a client callback to server-side events.

GetPostBackClientEvent Calls into GetCallbackEventReference.

GetPostBackClientHyperlink Appends javascript: to the beginning of the return string received
from GetPostBackEventReference. For example:
javascript:__doPostBack(‘CtlID’,’’)

GetPostBackEventReference Returns the prototype of the client-side script function that
causes, when invoked, a postback. It takes a Control and an
 argument, and it returns a string like this:
__doPostBack(‘CtlID’,’’)

IsClientScriptBlockRegistered Determines whether the specified client script is registered with
the page. It’s marked as obsolete.

IsStartupScriptRegistered Determines whether the specified client startup script is
 registered with the page. It’s marked as obsolete.

198 Part II ASP.NET Pages and Server Controls

Method Description
RegisterArrayDeclaration Use this method to add an ECMAScript array to the client page.

This method accepts the name of the array and a string that will
be used verbatim as the body of the array. For example, if you
call the method with arguments such as theArray and “’a’, ‘b’”,
you get the following JavaScript code:
var theArray = new Array(‘a’, ‘b’);
It’s marked as obsolete.

RegisterClientScriptBlock An ASP.NET page uses this method to emit client-side script
blocks in the client page just after the opening tag of the HTML
<form> element. It’s marked as obsolete.

RegisterHiddenField Use this method to automatically register a hidden field on the
page. It’s marked as obsolete.

RegisterOnSubmitStatement Use this method to emit client script code that handles the client
OnSubmit event. The script should be a JavaScript function call to
client code registered elsewhere. It’s marked as obsolete.

RegisterStartupScript An ASP.NET page uses this method to emit client-side script
blocks in the client page just before closing the HTML <form>
element. It’s marked as obsolete.

SetFocus Sets the browser focus to the specified control.

As you can see, some methods in Table 5-13, which are defined and usable in ASP.NET 1.x,
are marked as obsolete. In ASP.NET 4 applications, you should avoid calling them and resort
to methods with the same name exposed out of the ClientScript property.

// Avoid this in ASP.NET 4
Page.RegisterArrayDeclaration(...);

// Use this in ASP.NET 4
Page.ClientScript.RegisterArrayDeclaration(...);

The ClientScript property returns an instance of the ClientScriptManager class and represents
the central console for registering script code to be programmatically emitted within the
page.

Methods listed in Table 5-13 let you emit JavaScript code in the client page. When you use
any of these methods, you actually tell the page to insert that script code when the page is
rendered. So when any of these methods execute, the script-related information is simply
cached in internal structures and used later when the page object generates its HTML text.

Events of the Page Class
The Page class fires a few events that are notified during the page life cycle. As Table 5-14
shows, some events are orthogonal to the typical life cycle of a page (initialization, postback,

 Chapter 5 Anatomy of an ASP.NET Page 199

and rendering phases) and are fired as extra-page situations evolve. Let’s briefly review the
events and then attack the topic with an in-depth discussion of the page life cycle.

TABLE 5-14 Events a Page Can Fire
Event Description
AbortTransaction Occurs for ASP.NET pages marked to participate in an automatic transaction

when a transaction aborts

CommitTransaction Occurs for ASP.NET pages marked to participate in an automatic transaction
when a transaction commits

DataBinding Occurs when the DataBind method is called on the page to bind all the child
controls to their respective data sources

Disposed Occurs when the page is released from memory, which is the last stage of
the page life cycle

Error Occurs when an unhandled exception is thrown.

Init Occurs when the page is initialized, which is the first step in the page life
cycle

InitComplete Occurs when all child controls and the page have been initialized

Load Occurs when the page loads up, after being initialized

LoadComplete Occurs when the loading of the page is completed and server events have
been raised

PreInit Occurs just before the initialization phase of the page begins

PreLoad Occurs just before the loading phase of the page begins

PreRender Occurs when the page is about to render

PreRenderComplete Occurs just before the pre-rendering phase begins

SaveStateComplete Occurs when the view state of the page has been saved to the persistence
medium

Unload Occurs when the page is unloaded from memory but not yet disposed of

The Eventing Model
When a page is requested, its class and the server controls it contains are responsible for
 executing the request and rendering HTML back to the client. The communication between
the client and the server is stateless and disconnected because it’s based on the HTTP proto-
col. Real-world applications, though, need some state to be maintained between successive
calls made to the same page. With ASP, and with other server-side development platforms
such as Java Server Pages and PHP, the programmer is entirely responsible for persisting the
state. In contrast, ASP.NET provides a built-in infrastructure that saves and restores the state
of a page in a transparent manner. In this way, and in spite of the underlying stateless proto-
col, the client experience appears to be that of a continuously executing process. It’s just an
illusion, though.

200 Part II ASP.NET Pages and Server Controls

Introducing the View State
The illusion of continuity is created by the view state feature of ASP.NET pages and is based
on some assumptions about how the page is designed and works. Also, server-side Web
controls play a remarkable role. In brief, before rendering its contents to HTML, the page en-
codes and stuffs into a persistence medium (typically, a hidden field) all the state information
that the page itself and its constituent controls want to save. When the page posts back, the
state information is deserialized from the hidden field and used to initialize instances of the
server controls declared in the page layout.

The view state is specific to each instance of the page because it is embedded in the HTML.
The net effect of this is that controls are initialized with the same values they had the last
time the view state was created—that is, the last time the page was rendered to the cli-
ent. Furthermore, an additional step in the page life cycle merges the persisted state with
any updates introduced by client-side actions. When the page executes after a postback, it
finds a stateful and up-to-date context just as it is working over a continuous point-to-point
connection.

Two basic assumptions are made. The first assumption is that the page always posts to itself
and carries its state back and forth. The second assumption is that the server-side controls
have to be declared with the runat=server attribute to spring to life when the page posts
back.

The Single Form Model
ASP.NET pages are built to support exactly one server-side <form> tag. The form must
 include all the controls you want to interact with on the server. Both the form and the
 controls must be marked with the runat attribute; otherwise, they will be considered plain
text to be output verbatim.

A server-side form is an instance of the HtmlForm class. The HtmlForm class does not ex-
pose any property equivalent to the Action property of the HTML <form> tag. The reason is
that an ASP.NET page always posts to itself. Unlike the Action property, other common form
 properties such as Method and Target are fully supported.

Valid ASP.NET pages are also those that have no server-side forms and those that run HTML
forms—a <form> tag without the runat attribute. In an ASP.NET page, you can also have
both HTML and server forms. In no case, though, can you have more than one <form> tag
with the runat attribute set to server. HTML forms work as usual and let you post to any page
in the application. The drawback is that in this case no state will be automatically restored. In
other words, the ASP.NET Web Forms model works only if you use exactly one server <form>
element. We’ll return to this topic in Chapter 9.

 Chapter 5 Anatomy of an ASP.NET Page 201

Asynchronous Pages
ASP.NET pages are served by an HTTP handler like an instance of the Page class. Each request
takes up a thread in the ASP.NET thread pool and releases it only when the request com-
pletes. What if a frequently requested page starts an external and particularly lengthy task?
The risk is that the ASP.NET process is idle but has no free threads in the pool to serve incom-
ing requests for other pages. This happens mostly because HTTP handlers, including page
classes, work synchronously. To alleviate this issue, ASP.NET has supported asynchronous
handlers since version 1.0 through the IHTTPAsyncHandler interface. Starting with
ASP.NET 2.0, creating asynchronous pages was made easier thanks to specific support from
the framework.

Two aspects characterize an asynchronous ASP.NET page: a tailor-made attribute on the
@Page directive, and one or more tasks registered for asynchronous execution. The asyn-
chronous task can be registered in either of two ways. You can define a Begin/End pair of
asynchronous handlers for the PreRenderComplete event or create a PageAsyncTask object to
represent an asynchronous task. This is generally done in the Page_Load event, but any time
is fine provided that it happens before the PreRender event fires.

In both cases, the asynchronous task is started automatically when the page has progressed
to a well-known point. Let’s dig out more details.

Note An ASP.NET asynchronous page is still a class that derives from Page. There are no special
base classes to inherit for building asynchronous pages.

The Async Attribute
The new Async attribute on the @Page directive accepts a Boolean value to enable or disable
asynchronous processing. The default value is false.

<%@ Page Async="true" ... %>

The Async attribute is merely a message for the page parser. When used, the page parser
implements the IHttpAsyncHandler interface in the dynamically generated class for the
.aspx resource. The Async attribute enables the page to register asynchronous handlers for
the PreRenderComplete event. No additional code is executed at run time as a result of the
attribute.

Let’s consider a request for a TestAsync.aspx page marked with the Async directive attribute.
The dynamically created class, named ASP.TestAsync_aspx, is declared as follows:

public class TestAsync_aspx : TestAsync, IHttpHandler, IHttpAsyncHandler
{
 ...
}

202 Part II ASP.NET Pages and Server Controls

TestAsync is the code file class and inherits from Page or a class that in turn inherits from
Page. IHttpAsyncHandler is the canonical interface that has been used for serving resources
asynchronously since ASP.NET 1.0.

The AddOnPreRenderCompleteAsync Method
The AddOnPreRenderCompleteAsync method adds an asynchronous event handler for the
page’s PreRenderComplete event. An asynchronous event handler consists of a Begin/End pair
of event handler methods, as shown here:

AddOnPreRenderCompleteAsync (
 new BeginEventHandler(BeginTask),
 new EndEventHandler(EndTask)
);

The call can be simplified as follows:

AddOnPreRenderCompleteAsync(BeginTask, EndTask);

BeginEventHandler and EndEventHandler are delegates defined as follows:

IAsyncResult BeginEventHandler(
 object sender,
 EventArgs e,
 AsyncCallback cb,
 object state)
void EndEventHandler(
 IAsyncResult ar)

In the code file, you place a call to AddOnPreRenderCompleteAsync as soon as you can, and
always earlier than the PreRender event can occur. A good place is usually the Page_Load
event. Next, you define the two asynchronous event handlers.

The Begin handler is responsible for starting any operation you fear can block the underlying
thread for too long. The handler is expected to return an IAsyncResult object to describe the
state of the asynchronous task. When the lengthy task has completed, the End handler final-
izes the original request and updates the page’s user interface and controls. Note that you
don’t necessarily have to create your own object that implements the IAsyncResult interface.
In most cases, in fact, to start lengthy operations you just use built-in classes that already
implement the asynchronous pattern and provide IAsyncResult ready-made objects.

The page progresses up to entering the PreRenderComplete stage. You have a pair of asyn-
chronous event handlers defined here. The page executes the Begin event, starts the lengthy
operation, and is then suspended until the operation terminates. When the work has been
completed, the HTTP runtime processes the request again. This time, though, the request
processing begins at a later stage than usual. In particular, it begins exactly where it left
off—that is, from the PreRenderComplete stage. The End event executes, and the page finally

 Chapter 5 Anatomy of an ASP.NET Page 203

completes the rest of its life cycle, including view-state storage, markup generation, and
unloading.

Important The Begin and End event handlers are called at different times and generally on
different pooled threads. In between the two methods calls, the lengthy operation takes place.
From the ASP.NET runtime perspective, the Begin and End events are similar to serving distinct
requests for the same page. It’s as if an asynchronous request is split in two distinct steps: a Begin
step and End step. Each request is always served by a pooled thread. Typically, the Begin and
End steps are served by threads picked up from the ASP.NET thread pool. The lengthy operation,
instead, is not managed by ASP.NET directly and doesn’t involve any of the pooled threads. The
lengthy operation is typically served by a thread selected from the operating system completion
thread pool.

The Significance of PreRenderComplete
So an asynchronous page executes up until the PreRenderComplete stage is reached and
then blocks while waiting for the requested operation to complete asynchronously. When the
operation is finally accomplished, the page execution resumes from the PreRenderComplete
stage. A good question to ask would be the following: “Why PreRenderComplete?” What
makes PreRenderComplete such a special event?

By design, in ASP.NET there’s a single unwind point for asynchronous operations (also
familiarly known as the async point). This point is located between the PreRender and
PreRenderComplete events. When the page receives the PreRender event, the async point
hasn’t been reached yet. When the page receives PreRenderComplete, the async point has
passed.

Building a Sample Asynchronous Page
Let’s roll a first asynchronous test page to download and process some RSS feeds. The page
markup is quite simple indeed:

<%@ Page Async="true" Language="C#" AutoEventWireup="true"
 CodeFile="TestAsync.aspx.cs" Inherits="TestAsync" %>
<html>
<body>
 <form id="form1" runat="server">
 <% = RssData %>
 </form>
</body>
</html>

204 Part II ASP.NET Pages and Server Controls

The code file is shown next, and it attempts to download the RSS feed from my personal
blog:

public partial class TestAsync : System.Web.UI.Page
{
 const String RSSFEED = "http://weblogs.asp.net/despos/rss.aspx";
 private WebRequest req;

 public String RssData { get; set; }

 void Page_Load (Object sender, EventArgs e)
 {
 AddOnPreRenderCompleteAsync(BeginTask, EndTask);
 }

 IAsyncResult BeginTask(Object sender,
 EventArgs e, AsyncCallback cb, Object state)
 {
 // Trace
 Trace.Warn("Begin async: Thread=" +
 Thread.CurrentThread.ManagedThreadId.ToString());

 // Prepare to make a Web request for the RSS feed
 req = WebRequest.Create(RSSFEED);

 // Begin the operation and return an IAsyncResult object
 return req.BeginGetResponse(cb, state);
 }

 void EndTask(IAsyncResult ar)
 {
 // This code will be called on a(nother) pooled thread

 using (var response = req.EndGetResponse(ar))
 {
 String text;
 using (var reader = new StreamReader(response.GetResponseStream()))
 {
 text = reader.ReadToEnd();
 }

 // Process the RSS data
 rssData = ProcessFeed(text);
 }

 // Trace
 Trace.Warn("End async: Thread=" +
 Thread.CurrentThread.ManagedThreadId.ToString());

 // The page is updated using an ASP-style code block in the ASPX
 // source that displays the contents of the rssData variable
 }

http://weblogs.asp.net/despos/rss.aspx

 Chapter 5 Anatomy of an ASP.NET Page 205

 String ProcessFeed(String feed)
 {
 // Build the page output from the XML input
 ...
 }
}

As you can see, such an asynchronous page differs from a standard one only for the
 aforementioned elements—the Async directive attribute and the pair of asynchronous event
handlers. Figure 5-4 shows the sample page in action.

FIGURE 5-4 A sample asynchronous page downloading links from a blog.

It would also be interesting to take a look at the messages traced by the page. Figure 5-5
provides visual clues of it. The Begin and End stages are served by different threads and take
place at different times.

Note the time elapsed between the Exit BeginTask and Enter EndTask stages. It is much
 longer than intervals between any other two consecutive operations. It’s in that interval that
the lengthy operation—in this case, downloading and processing the RSS feed—took place.
The interval also includes the time spent to pick up another thread from the pool to serve the
second part of the original request.

206 Part II ASP.NET Pages and Server Controls

FIGURE 5-5 The traced request details clearly show the two steps needed to process a request
asynchronously.

The RegisterAsyncTask Method
The AddOnPreRenderCompleteAsync method is not the only tool you have to register an
asynchronous task. The RegisterAsyncTask method is, in most cases, an even better solu-
tion. RegisterAsyncTask is a void method and accepts a PageAsyncTask object. As the name
 suggests, the PageAsyncTask class represents a task to execute asynchronously.

The following code shows how to rework the sample page that reads some RSS feed and
make it use the RegisterAsyncTask method:

void Page_Load (object sender, EventArgs e)
{
 PageAsyncTask task = new PageAsyncTask(
 new BeginEventHandler(BeginTask),
 new EndEventHandler(EndTask),
 null,
 null);
 RegisterAsyncTask(task);
}

 Chapter 5 Anatomy of an ASP.NET Page 207

 The constructor accepts up to five parameters, as shown in the following code:

public PageAsyncTask(
 BeginEventHandler beginHandler,
 EndEventHandler endHandler,
 EndEventHandler timeoutHandler,
 object state,
 bool executeInParallel)

The beginHandler and endHandler parameters have the same prototype as the corresponding
handlers you use for the AddOnPreRenderCompleteAsync method. Compared to the
AddOnPreRenderCompleteAsync method, PageAsyncTask lets you specify a timeout function
and an optional flag to enable multiple registered tasks to execute in parallel.

The timeout delegate indicates the method that will get called if the task is not completed
within the asynchronous timeout interval. By default, an asynchronous task times out if it’s
not completed within 45 seconds. You can indicate a different timeout in either the configu-
ration file or the @Page directive. Here’s what you need if you opt for the web.config file:

<system.web>
 <pages asyncTimeout="30" />
</system.web>

The @Page directive contains an integer AsyncTimeout attribute that you set to the desired
number of seconds.

Just as with the AddOnPreRenderCompleteAsync method, you can pass some state to the
 delegates performing the task. The state parameter can be any object.

The execution of all tasks registered is automatically started by the Page class code just be-
fore the async point is reached. However, by placing a call to the ExecuteRegisteredAsyncTasks
method on the Page class, you can take control of this aspect.

Choosing the Right Approach
When should you use AddOnPreRenderCompleteAsync, and when is RegisterAsyncTask a
 better option? Functionally speaking, the two approaches are nearly identical. In both cases,
the execution of the request is split in two parts: before and after the async point. So where’s
the difference?

The first difference is logical. RegisterAsyncTask is an API designed to run tasks
 asynchronously from within a page—and not just asynchronous pages with
Async=true. AddOnPreRenderCompleteAsync is an API specifically designed for
 asynchronous pages. That said, a couple of further differences exist.

One is that RegisterAsyncTask executes the End handler on a thread with a richer context
than AddOnPreRenderCompleteAsync. The thread context includes impersonation and

208 Part II ASP.NET Pages and Server Controls

HTTP context information that is missing in the thread serving the End handler of a classic
 asynchronous page. In addition, RegisterAsyncTask allows you to set a timeout to ensure that
any task doesn’t run for more than a given number of seconds.

The other difference is that RegisterAsyncTask makes the implementation of multiple calls
to remote sources significantly easier. You can have parallel execution by simply setting a
Boolean flag, and you don’t need to create and manage your own IAsyncResult object.

The bottom line is that you can use either approach for a single task, but you should opt for
RegisterAsyncTask when you have multiple tasks to execute simultaneously.

Async-Compliant Operations
Which required operations force, or at least strongly suggest, the adoption of an asynchro-
nous page? Any operation can be roughly labeled in either of two ways: CPU bound or I/O
bound. CPU bound indicates an operation whose completion time is mostly determined by
the speed of the processor and amount of available memory. I/O bound indicates the oppo-
site situation, where the CPU mostly waits for other devices to terminate.

The need for asynchronous processing arises when an excessive amount of time is spent
getting data in and out of the computer in relation to the time spent processing it. In such
situations, the CPU is idle or underused and spends most of its time waiting for something to
happen. In particular, I/O-bound operations in the context of ASP.NET applications are even
more harmful because serving threads are blocked too, and the pool of serving threads is a
finite and critical resource. You get real performance advantages if you use the asynchronous
model on I/O-bound operations.

Typical examples of I/O-bound operations are all operations that require access to some sort
of remote resource or interaction with external hardware devices. Operations on non-local
databases and non-local Web service calls are the most common I/O-bound operations for
which you should seriously consider building asynchronous pages.

Important Asynchronous operations exist to speed up lengthy operations, but the benefits
they provide are entirely enjoyed on the server side. There’s no benefit for the end user in adopt-
ing asynchronous solutions. The “time to first byte” doesn’t change for the user in a synchronous
or asynchronous scenario. Using AJAX solutions would give you at least the means to (easily)
 display temporary messages to provide information about the progress. However, if it’s not
coded asynchronously on the server, any lengthy operation that goes via AJAX is more harmful
for the system than a slow-but-asynchronous classic Web Forms page.

 Chapter 5 Anatomy of an ASP.NET Page 209

The Page Life Cycle
A page instance is created on every request from the client, and its execution causes itself
and its contained controls to iterate through their life-cycle stages. Page execution begins
when the HTTP runtime invokes ProcessRequest, which kicks off the page and control life
cycles. The life cycle consists of a sequence of stages and steps. Some of these stages can be
controlled through user-code events; some require a method override. Some other stages—
or more exactly, substages—are just not public, are out of the developer’s control, and are
mentioned here mostly for completeness.

The page life cycle is articulated in three main stages: setup, postback, and finalization. Each
stage might have one or more substages and is composed of one or more steps and points
where events are raised. The life cycle as described here includes all possible paths. Note that
there are modifications to the process depending upon cross-page posts, script callbacks,
and postbacks.

Page Setup
When the HTTP runtime instantiates the page class to serve the current request, the page
constructor builds a tree of controls. The tree of controls ties into the actual class that the
page parser created after looking at the ASPX source. Note that when the request processing
begins, all child controls and page intrinsics—such as HTTP context, request objects, and
 response objects—are set.

The very first step in the page lifetime is determining why the run time is processing the page
request. There are various possible reasons: a normal request, postback, cross-page post-
back, or callback. The page object configures its internal state based on the actual reason,
and it prepares the collection of posted values (if any) based on the method of the request—
either GET or POST. After this first step, the page is ready to fire events to the user code.

The PreInit Event
This event is the entry point in the page life cycle. When the event fires, no master page or
theme has been associated with the page as yet. Furthermore, the page scroll position has
been restored, posted data is available, and all page controls have been instantiated and
default to the properties values defined in the ASPX source. (Note that at this time controls
have no ID, unless it is explicitly set in the .aspx source.) Changing the master page or the
theme programmatically is possible only at this time. This event is available only on the page.
IsCallback, IsCrossPagePostback, and IsPostback are set at this time.

210 Part II ASP.NET Pages and Server Controls

The Init Event
The master page, if one exists, and the theme have been set and can’t be changed anymore.
The page processor—that is, the ProcessRequest method on the Page class—proceeds and
iterates over all child controls to give them a chance to initialize their state in a context-
sensitive way. All child controls have their OnInit method invoked recursively. For each control
in the control collection, the naming container and a specific ID are set, if not assigned in the
source.

The Init event reaches child controls first and the page later. At this stage, the page and
controls typically begin loading some parts of their state. At this time, the view state is not
restored yet.

The InitComplete Event
Introduced with ASP.NET 2.0, this page-only event signals the end of the initialization
 substage. For a page, only one operation takes place in between the Init and InitComplete
events: tracking of view-state changes is turned on. Tracking view state is the operation
that ultimately enables controls to really persist in the storage medium any values that are
 programmatically added to the ViewState collection. Simply put, for controls not tracking
their view state, any values added to their ViewState are lost across postbacks.

All controls turn on view-state tracking immediately after raising their Init event, and the
page is no exception. (After all, isn’t the page just a control?)

Important In light of the previous statement, note that any value written to the ViewState
 collection before InitComplete won’t be available on the next postback.

View-State Restoration
If the page is being processed because of a postback—that is, if the IsPostBack property is
true—the contents of the __VIEWSTATE hidden field is restored. The __VIEWSTATE hidden
field is where the view state of all controls is persisted at the end of a request. The overall
view state of the page is a sort of call context and contains the state of each constituent
 control the last time the page was served to the browser.

At this stage, each control is given a chance to update its current state to make it identical to
what it was on last request. There’s no event to wire up to handle the view-state restoration.
If something needs be customized here, you have to resort to overriding the LoadViewState
method, defined as protected and virtual on the Control class.

 Chapter 5 Anatomy of an ASP.NET Page 211

Processing Posted Data
All the client data packed in the HTTP request—that is, the contents of all input fields defined
with the <form> tag—are processed at this time. Posted data usually takes the following
form:

TextBox1=text&DropDownList1=selectedItem&Button1=Submit

It’s an &-separated string of name/value pairs. These values are loaded into an internal-use
collection. The page processor attempts to find a match between names in the posted col-
lection and ID of controls in the page. Whenever a match is found, the processor checks
whether the server control implements the IPostBackDataHandler interface. If it does, the
methods of the interface are invoked to give the control a chance to refresh its state in light
of the posted data. In particular, the page processor invokes the LoadPostData method on
the interface. If the method returns true—that is, the state has been updated—the control is
added to a separate collection to receive further attention later.

If a posted name doesn’t match any server controls, it is left over and temporarily parked in a
separate collection, ready for a second try later.

Note As mentioned, during the processing of posted data, posted names are matched against
the ID of controls in the page. Which ID? Is it the ClientID property, or rather, is it the UniqueID
property? Posted names are matched against the unique ID of page controls. Client IDs are
 irrelevant in this instance because they are not posted back to the server.

The PreLoad Event
The PreLoad event merely indicates that the page has terminated the system-level
 initialization phase and is going to enter the phase that gives user code in the page a chance
to further configure the page for execution and rendering. This event is raised only for pages.

The Load Event
The Load event is raised for the page first and then recursively for all child controls. At this
time, controls in the page tree are created and their state fully reflects both the previous
state and any data posted from the client. The page is ready to execute any initialization
code related to the logic and behavior of the page. At this time, access to control properties
and view state is absolutely safe.

Handling Dynamically Created Controls
When all controls in the page have been given a chance to complete their initialization
before display, the page processor makes a second try on posted values that haven’t been
matched to existing controls. The behavior described earlier in the “Processing Posted Data”

212 Part II ASP.NET Pages and Server Controls

section is repeated on the name/value pairs that were left over previously. This apparently
weird approach addresses a specific scenario—the use of dynamically created controls.

Imagine adding a control to the page tree dynamically—for example, in response to a certain
user action. As mentioned, the page is rebuilt from scratch after each postback, so any in-
formation about the dynamically created control is lost. On the other hand, when the page’s
form is submitted, the dynamic control there is filled with legal and valid information that is
regularly posted. By design, there can’t be any server control to match the ID of the dynamic
control the first time posted data is processed. However, the ASP.NET framework recognizes
that some controls could be created in the Load event. For this reason, it makes sense to give
it a second try to see whether a match is possible after the user code has run for a while.

If the dynamic control has been re-created in the Load event, a match is now possible and
the control can refresh its state with posted data.

Handling the Postback
The postback mechanism is the heart of ASP.NET programming. It consists of posting form
data to the same page using the view state to restore the call context—that is, the same state
of controls existing when the posting page was last generated on the server.

After the page has been initialized and posted values have been taken into account, it’s
about time that some server-side events occur. There are two main types of events. The first
type of event signals that certain controls had the state changed over the postback. The sec-
ond type of event executes server code in response to the client action that caused the post.

Detecting Control State Changes
The whole ASP.NET machinery works around an implicit assumption: there must be a one-to-
one correspondence between some HTML input tags that operate in the browser and some
other ASP.NET controls that live and thrive in the Web server. The canonical example of this
correspondence is between <input type=”text”> and TextBox controls. To be more technically
precise, the link is given by a common ID name. When the user types some new text into an
input element and then posts it, the corresponding TextBox control—that is, a server control
with the same ID as the input tag—is called to handle the posted value. I described this step
in the “Processing Posted Data” section earlier in the chapter.

For all controls that had the LoadPostData method return true, it’s now time to execute the
second method of the IPostBackDataHandler interface: the RaisePostDataChangedEvent
method. The method signals the control to notify the ASP.NET application that the state of
the control has changed. The implementation of the method is up to each control. However,
most controls do the same thing: raise a server event and give page authors a way to kick

 Chapter 5 Anatomy of an ASP.NET Page 213

in and execute code to handle the situation. For example, if the Text property of a TextBox
changes over a postback, the TextBox raises the TextChanged event to the host page.

Executing the Server-Side Postback Event
Any page postback starts with some client action that intends to trigger a server-side action.
For example, clicking a client button posts the current contents of the displayed form to
the server, thus requiring some action and a new, refreshed page output. The client button
 control—typically, a hyperlink or a submit button—is associated with a server control that
implements the IPostBackEventHandler interface.

The page processor looks at the posted data and determines the control that caused the
postback. If this control implements the IPostBackEventHandler interface, the processor
 invokes the RaisePostBackEvent method. The implementation of this method is left to the
control and can vary quite a bit, at least in theory. In practice, though, any posting con-
trol raises a server event letting page authors write code in response to the postback. For
 example, the Button control raises the onclick event.

There are two ways a page can post back to the server—by using a submit button (that is,
<input type=”submit”>) or through script. A submit HTML button is generated through the
Button server control. The LinkButton control, along with a few other postback controls, in-
serts some script code in the client page to bind an HTML event (for example, onclick) to the
form’s submit method in the browser’s HTML object model. We’ll return to this topic in the
next chapter.

Note The UseSubmitBehavior property exists on the Button class to let page developers control
the client behavior of the corresponding HTML element as far as form submission is concerned.
By default, a Button control behaves like a submit button. By setting UseSubmitBehavior to
false, you change the output to <input type=”button”>, but at the same time the onclick prop-
erty of the client element is bound to predefined script code that just posts back. In the end,
the output of a Button control remains a piece of markup that ultimately posts back; through
UseSubmitBehavior, you can gain some more control over that.

The LoadComplete Event
The page-only LoadComplete event signals the end of the page-preparation phase. Note that
no child controls will ever receive this event. After firing LoadComplete, the page enters its
rendering stage.

214 Part II ASP.NET Pages and Server Controls

Page Finalization
After handling the postback event, the page is ready for generating the output for the
browser. The rendering stage is divided in two parts: pre-rendering and markup generation.
The pre-rendering substage is in turn characterized by two events for pre-processing and
post-processing.

The PreRender Event
By handling this event, pages and controls can perform any updates before the output
is rendered. The PreRender event fires for the page first and then recursively for all con-
trols. Note that at this time the page ensures that all child controls are created. This step is
 important, especially for composite controls.

The PreRenderComplete Event
Because the PreRender event is recursively fired for all child controls, there’s no way for the
page author to know when the pre-rendering phase has been completed. For this reason,
ASP.NET supports an extra event raised only for the page. This event is PreRenderComplete.

The SaveStateComplete Event
The next step before each control is rendered out to generate the markup for the page
is saving the current state of the page to the view-state storage medium. Note that every
 action taken after this point that modifies the state could affect the rendering, but it is not
persisted and won’t be retrieved on the next postback. Saving the page state is a recur-
sive process in which the page processor walks its way through the whole page tree, call-
ing the SaveViewState method on constituent controls and the page itself. SaveViewState
is a protected and virtual (that is, overridable) method that is responsible for persisting the
 content of the ViewState dictionary for the current control. (We’ll come back to the ViewState
 dictionary in Chapter 19.)

ASP.NET server controls can provide a second type of state, known as a “control state.” A
control state is a sort of private view state that is not subject to the application’s control. In
other words, the control state of a control can’t be programmatically disabled, as is the case
with the view state. The control state is persisted at this time, too. Control state is another
state storage mechanism whose contents are maintained across page postbacks much like
the view state, but the purpose of the control state is to maintain necessary information for
a control to function properly. That is, state behavior property data for a control should be
kept in the control state, while user interface property data (such as the control’s contents)
should be kept in the view state.

The SaveStateComplete event occurs when the state of controls on the page have been
 completely saved to the persistence medium.

 Chapter 5 Anatomy of an ASP.NET Page 215

Note The view state of the page and all individual controls is accumulated in a unique
memory structure and then persisted to storage medium. By default, the persistence medium
is a hidden field named __VIEWSTATE. Serialization to, and deserialization from, the per-
sistence medium is handled through a couple of overridable methods on the Page class:
SavePageStateToPersistenceMedium and LoadPageStateFromPersistenceMedium. For example, by
overriding these two methods you can persist the page state in a server-side database or in the
session state, dramatically reducing the size of the page served to the user. Hold on, though. This
option is not free of issues, and we’ll talk more about it in Chapter 19.

Generating the Markup
The generation of the markup for the browser is obtained by calling each constituent control
to render its own markup, which will be accumulated in a buffer. Several overridable methods
allow control developers to intervene in various steps during the markup generation—begin
tag, body, and end tag. No user event is associated with the rendering phase.

The Unload Event
The rendering phase is followed by a recursive call that raises the Unload event for each
control, and finally for the page itself. The Unload event exists to perform any final clean-
up before the page object is released. Typical operations are closing files and database
connections.

Note that the unload notification arrives when the page or the control is being unloaded but
has not been disposed of yet. Overriding the Dispose method of the Page class—or more
simply, handling the page’s Disposed event—provides the last possibility for the actual page
to perform final clean up before it is released from memory. The page processor frees the
page object by calling the method Dispose. This occurs immediately after the recursive call to
the handlers of the Unload event has completed.

Summary
ASP.NET is a complex technology built on top of a substantially thick—and, fortunately,
solid and stable—Web infrastructure. To provide highly improved performance and a richer
 programming toolset, ASP.NET builds a desktop-like abstraction model, but it still has to rely
on HTTP and HTML to hit the target and meet end-user expectations.

It is exactly this thick abstraction layer that has been responsible for the success of Web
Forms for years, but it’s being questioned these days as ASP.NET MVC gains acceptance
and prime-time use. A thick abstraction layer makes programming quicker and easier, but it
 necessarily takes some control away from developers. This is not necessarily a problem, but
its impact depends on the particular scenario you are considering.

216 Part II ASP.NET Pages and Server Controls

There are two relevant aspects in the ASP.NET Web Forms model: the process model and
the page object model. Each request of a URL that ends with .aspx is assigned to an applica-
tion object working within the CLR hosted by the worker process. The request results in a
dynamically compiled class that is then instantiated and put to work. The Page class is the
base class for all ASP.NET pages. An instance of this class runs behind any URL that ends with
.aspx. In most cases, you won’t just build your ASP.NET pages from the Page class directly,
but you’ll rely on derived classes that contain event handlers and helper methods, at the very
 minimum. These classes are known as code-behind classes.

The class that represents the page in action implements the ASP.NET eventing model based
on two pillars: the single form model (page reentrancy) and server controls. The page life
cycle, fully described in this chapter, details the various stages (and related substages) a page
passes through on the way to generate the markup for the browser. A deep understand-
ing of the page life cycle and eventing model is key to diagnosing possible problems and
 implementing advanced features quickly and efficiently.

In this chapter, I mentioned controls several times. Server controls are components that get
input from the user, process the input, and output a response as HTML. In the next chapter,
we’ll explore the internal architecture of server controls and other working aspects of Web
Forms pages.

	 	 933

Symbols
$.ajax function, 926
$.getScript function, 930
$.parseJSON function, 928
@xxx syntax, 25–26

A
absolute expiration, 731
abstraction, 575–576

ASP.NET MVC and, 24
importance of, 19
of views, 624–626

Accept-Charset attribute, 82
access

rules for, 818–819
securing with roles, 358

access control lists (ACLs),
790–791

AcquireRequestState event, 32,
650

.acsx files, @Control directive for,
180

actions in ASP.NET MVC
applications, 22

Active Record pattern, 599–600
DAL and, 606

Active Server Pages (ASP), 3
Adapter property, 231
adapters, 605

control, 230–231
CSS-friendly, 232
writing, 232

adaptive rendering, 230–232
AdCreated event, 263
Add Managed Modules dialog

box, 37
Add method, 726
<add> tag, 287
AddOnPreRenderCompleteAsync

method, 202–203, 207–208
AddValidationCallback method,

764
ADO.NET

classes, binding data to,
413–414

images, reading, 134
AdRotator controls, 262–263, 268
advertisement banners, 262–263
AggregateCacheDependency

class, 738–739
aggregates, 600–601

AJAX, 14–20, 313, 337, 839–840
advent of, 8
ASP.NET support for, 3
benefits of, 840
Browser-Side Templating

pattern, 840
as built-in part of Web, 19
cross-domain calls, 850–851
Data-for-Data model, 17
events, jQuery handlers for, 927
HTML Message pattern,

839–840
HTTP façade, 881. See also HTTP

façade
infrastructure, 840–851
interaction model, 17
JavaScript and, 845–851
jQuery support, 925–928
JSON for, 892–893
Module Pattern, 849
out-of-band HTTP requests,

841–842
page methods, 895–897
partial rendering, 851–879
remote validation via, 385
REST and, 879–897
scriptable services, 880–889
ScriptManager control, 852–860
SEO and, 351
SOP and, 929
server controls and, 267–268
UpdatePanel control, 860–865
WCF services, hosting, 881
XMLHttpRequest object and,

840, 845
AJAX calls, replacing with

postbacks, 10
AJAX-enabled services, 883

configuration settings, 107–108
ajax function, 926
AJAX HTML helpers, 20
AJAX postbacks, 868
AlachiSoft NCache, 755
allowAnonymous attribute, 294
allowDefinition attribute, 67
AllowDirectoryBrowsing property,

43
allowLocation attribute, 67–68, 71
allowOverride attribute, 70–71
AllowPartiallyTrustedCallers

attribute, 789
allowPolicy attribute, 109

AlternatingItemTemplate
property, 483

AltSerialization class, 696
Amazon RDS, 613
Amazon SimpleDB, 613
anchor controls, 243–244
animations, 916–917
anonymous access, 781–782
anonymous accounts,

impersonating through, 785
anonymous functions, 846
anonymous ID, 294, 671
anonymous identification feature,

73–74
anonymous users. See also user

profiles
user profiles for, 294–295

<anonymousIdentification>
section, 73–74, 76

AOP, 571
Apache Web servers, 27
AppDomain, ASP.page_aspx class,

obtaining, 35
AppendDataBoundItems property,

419–420
appendTo function, 921
AppFabric, 747–748
AppFabric Caching Services

(ACS), 748–753
architecture of, 748–751
client-side configuration,

751–752
programming, 752–753
storing output caching in, 777
unnamed caches, 751

AppFabric Hosting Services, 748
App_GlobalResources folder, 304
Application Controller pattern,

632
application data, caching,

721–744
application deployment, 39–62

application warm-up and
preloading, 59–62

files and settings, packaging,
43–51

IIS configuration, 55–59
mode settings, 81–82
site precompilation, 52–55
with XCopy, 40–43

@Application directive, 653–654
application directives for global.

asax, 653–654

Index

934

application events,
nondeterministic, 33

application factory, 176–177
application logic, 596, 602–605

remote deployment, 603–604
Application object, 721

writing to, 679
application pages. See pages
application pools

defined, 29
identity of, custom, 38–39
identity of, modifying, 39
initialization of, 59
process recycling, 55–56
warmup of, 59–62
working mode for, 30

<applicationPool> section, 95
Application Request Routing, 37
application restarts, 38, 56–58,

170
causes of, 179

application root folder, 786
application state, 675–679. See

also HttpApplicationState
class

global state, storing, 679
synchronization of operations,

678–679
application warm-up, 59–62

application pools, configuring,
60–61

autostart provider, 61
behavior of, 59
specifying actions, 61–62

Application_End event handler,
648

Application_Error event handler,
283–284

Application_Error stub, 275
applicationHost.config file

editing, 60, 93
mappings in, 37

application-hosting environment
configuration settings, 84

application-level configuration
settings, 111

accessing, 111–112
changing, 65
processing of, 65
updating, 112–113

application-level tracing, 100–101
ApplicationManager class, 34
application scope, 119
application services,

centralization of, 30

applications. See also ASP.
NET applications; Web
applications

binding pages to master, 326
claims-based identity,

configuring for, 825
composable parts, 585
cookies, sharing, 801–802
data storage, 923
debugging, 284–285
domain logic, 596
error handling, 275–277
global.asax file, 651–655
inactive, unloading, 84
initialization code, 905–906
initialization of, 645–651
isolation between, 29
maintainability, 565
object-oriented design, 599
permissions for, 788–789
plugin-based, 584
resources embedded in,

659–660
security features of, 780. See

also security
symptoms of deterioration,

567–569
theme settings, 340
trust level of, 786–789
virtual folder for, 645

Application_Start event, 32
route definitions in, 160

Application_Start event handler,
648

Application_Xxx notation, 36
ApplyAppPathModifier method,

690
AppSettings collection, accessing,

111–112
<appSettings> section, 67,

105–106
App_Themes folder, 339
ArtOfTest, 363
.ascx extension, 768
ASHX extension and resources

for handler mappings, 124
for HTTP handlers, 141–142

.asmx ASP.NET Web services, 881
ASP pages. See also pages

processing of, 170
<asp:Content> tag, 325, 329–330
aspect-oriented programming

(AOP), 571
ASP.global_asax class, 652
ASP.NET

adoption of, 3
authentication API, 108

authentication methods, 789–
791. See also authentication

browser information storage,
230

configuration hierarchy, 63–110
configuration in, 63. See

also configuration files
HTTP modules built-in, 154. See

also HTTP modules
and IIS, history of, 28–31
improvements to, 3
introduction of, 3
membership API, 88
perfect framework,

characteristics of, 18–19
programming model, 19
runtime environment, 27. See

also runtime environment
site navigation API, 352–358
stateful behavior, 6–7
vulnerability patch, 64
worker process, standalone,

28–29
writing files on disk, 137

ASP.NET 4, 20–21
ASP.NET applications. See

also Web applications
custom configuration data,

105–106
deploying, 39–62
error-handling settings, 80–81
health monitoring, 83
HTTP modules, registering, 37
identity of, 87
IIS, configuring for, 55–59
installing, 40
partial-trust applications, 103
preloading, 59–62
restarts of, 56–58
session-state information,

98–100
site-level settings, 108–110
termination tracking, 57
trust levels, 101–104
warmup of, 59–62

ASP.NET cache. See Cache object;
caching

ASP.NET compiler tool, 53–54
parameters of, 54
target directory support, 53

ASP.NET Development Server
<webServer> section and,
109

ASP.NET HTTP runtime, 174
page processing, 169, 174. See

also page life cycle; pages

application events, nondeterministic

 935

ASP.NET MVC, 4, 21–25
abstraction, building with,

18–19
control over markup, 24
features of, 21–22
language, changing on the fly,

311
localizing applications in, 306
new paradigm of, 14
opting out of built-in features,

25
request processing, 24–25, 170
requests, 22
runtime environment, 22–24, 27
runtime stack, 23
Selective Update model, 20
separation of concerns, 23
simplicity, 24–25
state, maintaining, 23
testing code-behind, 363
URL patterns, 23
URL routing in, 157
visual components, 24

ASP.NET pages. See pages
ASP.Net permission set, 103
ASP.NET requests. See also HTTP

requests
processing, 34–35
responses, building, 35–36

ASP.NET security context,
781–791

ASP.NET site administration tool,
302

ASP.NET temporary directory, 172
compiled code in, 178

ASP.NET Web Forms, 3–4. See
also Web Forms

culture, setting, 309
HTML rendering, 9
localized text, 306–307
processing and rendering,

separating, 9–10
request processing, 9
SEO and, 350–351
testing, 363
URL routing in, 157, 160–166

ASP.NET Web Pages, 25–26
audience of, 25
@xxx syntax, 25–26

ASP.NET Web services, 885–887
aspnet_client directory, 104
AspNetCompatibilityRequirements

attribute, 889
aspnet_compiler –v command, 53
aspnet.config file, 95
aspnetdb.mdf file, 293–294

structure of, 302
AspNetInternalProvider provider,

79

aspnet_isapi.dll, 28–30, 92, 170
mapping to resources, 30,

171–172
aspnet_regiis.exe, connection

strings, encrypting with, 114
aspnet_regsql.exe, 80
AspNetSqlProfileProvider, 301
aspnet_state.exe, 697–699
AspNetXmlSiteMapProvider class,

100
ASP.page_aspx class, 35
ASPState database, 701–702
ASPStateTempApplications table,

702
ASPStateTempSessions table, 702
<asp:substitution> control, 775
.aspx files

in ASP.NET MVC projects, 22
compiling, 284–285
handler for, 190
@Page directive for, 180, 181
serving markup with, 148

.aspx pages. See also pages
URLs, mapping to, 36

.aspx source files, changes in,
170, 173

ASPX templates, 217. See
also markup

ASPXANONYMOUS cookie, 74
ASPXROLES, 97
assemblies

business logic, 596
debug mode, 284
default linked assemblies,

185–186
early and late binding and, 187
generating, 170
loading, 187
modifying list of, 186
number of pages in, 169
referencing, 188
referencing from pages, 185
unloading vs. recompiling, 56

@Assembly directive, 185–187,
653–654

attributes of, 187
AssociatedControlID property,

260–261
Async attribute, 201–202
AsyncCallback objects, 146
asynchronous handlers, 121,

146–147, 201. See also HTTP
handlers

adding to page, 202
implementing, 147–148

Asynchronous JavaScript and
XML. See AJAX

asynchronous pages, 121,
201–209

AddOnPreRenderCompleteAsync
method, 202–203

Async attribute, 201–202
building, 203–206
operations for, 208
PreRenderComplete stage,

202–203
RegisterAsyncTask method,

206–207
asynchronous postbacks, 868,

869
concurrent, 877–878
events of, 872–874
triggers for, 872

asynchronous requests, 95
asynchronous tasks

registering, 201–203, 206–207
within pages, 207

AsyncPostBackError event, 857
AsyncPostBackTrigger class, 869
attr function, 922–923
attribute filters, 912–913
AttributeCollection class, 238
attributes, directive, 181
Attributes collection, 237
AuthenticateRequest event, 32,

650, 820
AuthenticateUser function, 794
AuthenticateUser method, 794
authentication, 789–791

Basic authentication, 782
claims-based identity, 821–825
configuration settings, 74–76
Digest authentication, 782
Forms authentication, 783,

791–806
of HTTP requests, 32
integrated Windows

authentication, 782
login pages, 792
LoginStatus control, 829–830
LoginView control, 830–832
None authentication, 789
password changes and,

833–834
principal objects, custom,

804–806
over secured sockets, 803–804
sign-outs, 795–796
state of, 829
user authentication, 784,

794–795
of view state, 713
Windows authentication,

790–791
Windows CardSpace, 791

authentication API, 108
authentication modules, 650

authentication modules

936

<authentication> section, 74–76,
790, 792

authentication tickets, 792–793
encoding of, 800
getting and setting, 798
securing, 803–804
storage in cookies, 799–800

authorization, 76–77
file authorization, 790–791
of HTTP requests, 32
reauthorization, forcing, 663
URL authorization, 791

<authorization> section, 76–77
AuthorizationStoreRoleProvider,

821
AuthorizeRequest event, 32, 650
AutoDetect, 801
AutoMapper, 605
automated test frameworks, 638
autonomous views, 616
AutoPostBack property, 258
autostart providers, 61

Preload method, 62
autostarting Web applications,

38–39
.axd extension, 127, 129

for handler mappings, 124

B
Balsamiq Mockups, 624
BarChart control, 547–556

BarChartItem class, 550
control hierarchy, 549
events of, 553–554
item object, 548–551
Items property, 550
properties of, 547
style properties, 548
using, 555–556

base classes, 513
choosing, 514–515
extending, 515
inheriting from, 514–515
unit testing and, 656

BaseCompareValidator class, 381
BaseDataBoundControl class, 514
BaseDataList class, 514
BaseValidator class, 379–380,

380–381
Basic authentication, 782
basicHttpBinding model, 885
batch mode compilation, 169
Begin/End asynchronous

handlers, 201–203
BeginProcessRequest method,

147–148

signature of, 146
beginRequest event, 873, 874
BeginRequest event, 32, 151, 649
BeginRequest event handler,

151–152
BeginXxx methods, 94
behaviorConfiguration attribute,

884
big ball of mud (BBM), 566
BigTable (Google), 614
binary large objects (BLOBs),

database support for, 133
BinaryFormatter class, 539,

696–697
BinaryWrite method, 135, 669
bind function, 918–919
bind method, 907
binding containers, 226–227
BindingContainer property, 226
BLL, 593, 596–605

application logic, 602–605
design patterns for, 596–602

bound data
adding to controls, 551–553
getting, 540–544
tracking and caching, 536–538

bound fields, 445
BoundField class, 445
browser cache, 316, 755

behavior of, 756
browser capabilities, 671–672
<browserCaps> section, 77–78,

347
browser definition files, 345–346
.browser extension, 77, 230–232,

328
editing files, 346

browser IDs, detecting, 344
browser information

reading, 345
repository for, 344
storage of, 230–231, 328

Browser property, 77, 344
browser providers, 78
browser-led processing model,

840–841
browsers

browser-capabilities providers,
346–348

bypassing, 20
characteristics and capabilities

of, enumerating, 77, 671–672
cross-browser rendering,

344–348
data storage and, 923
definition files, 345–346

device-specific master pages
and, 327–329

DOM and DHTML support, 842
geo-location capabilities, 312
Google Chrome, 902
IDs of, 328
JavaScript background

compiler, 901
JavaScript engines, 902
programming in, 900–903
Same-Origin Policy, 929
script downloads, 313
scripting engines, 901–902
up-level browsers, 393
uploading files from, 249–251
XMLHttpRequest object

support, 843
browser-sensitive rendering,

234–235
Browser-Side Templating (BST),

840
BulletedList control, 426–427
business logic, 596

modeling, 597
business logic layer, 593, 596–605
Button class UseSubmitBehavior

property, 213
button clicks, processing of, 6
button controls, 257–258

command buttons, 247, 259
command name, 498
for JavaScript event handlers,

917–918
rendering as images, 447

button fields, 445–447
Button1_Click function, 5

C
cache, jQuery, 923–925
Cache class, 722–725

Cache object, working with,
725–732

methods of, 723–724
properties of, 722–723

cache items
attributes of, 725–726
dependencies of, 725, 728. See

also dependencies
expiration policy, 731–732
priority of, 730–731

cache manager, 175
Cache object, 676, 721, 722. See

also cache items; caching
cache synchronization, 736
callback function, 732
clearing, 735

<authentication> section

 937

Cache object (continued)
data expiration, 731–732
dependencies, 728
dependencies, broken, 740
for globally shared information,

679
inserting new items, 725–727
limitations of, 744
memory pressure statistics, 732
priority of items, 730–731
removal callbacks, 729–730
removing items from, 727
scavenging, 731
session state expiration policy,

694
cache settings, 78–80
Cache-Control header, 757, 761
CacheControl property, 665
cached pages, returning, 32
CacheDependency class, 728, 737

constructors, 728
deriving from, 737
members of, 737

CacheDependency object, 725,
728

aggregate dependencies,
738–739

change notifications, 738
custom, 737–739
for SQL Server, 743–745
testing, 742
for XML data, 739–742

caching, 463–464, 721–778
of application data, 721–744
cacheability of pages, 758–762
Cache class, 722–725
custom dependency, designing,

737–739
DAL, relation to, 734–735
database dependency, creating,

743–745
dependencies, 722, 738–739.

See also dependencies
distributed cache, 744–755
vs. fetching, 733
hashtable, 724–725
internal structure of, 724
isolating caching layer, 734–735
of multiple versions of pages,

765–768
of page output, 721, 755–777
pages, 665–666
and performance, 733
per request, 737
of portions of pages, 768–774
removal callbacks, 726

sliding expiration, 723, 726,
731–732

update callbacks, 726
Web cache, 755
Windows Server AppFabric,

747–753
XML data, cache dependency

for, 739–742
caching profiles, 774–775
<caching> section, 73, 78–80
caching services

AppFabric, 747–753
architecture of, 748–751
client-side configuration,

751–752
programming, 752–753

CacheItemPriority enumeration,
730

CacheItemRemovedReason
enumeration, 727

CacheMultiple class, 724
CacheProfile attribute, 774
CacheSingle class, 724
Calendar control, 263–264, 267
Cancel buttons, 876
CAS, 101
CAS policies, 103
cascading style sheets. See CSS
Cassandra, 614
Cassini, 48

<webServer> section and, 109
Castle Active Record, 600
catalogs, 585–586
catch blocks, 270–271
CausesValidation property, 248,

394
CDNs, 313–314
CGI, 120
ChangePassword control,

833–834
ChangePassword method, 812,

834
Chatty anti-pattern, 604
check box fields, 448
check boxes, 259–260
CheckBoxList control, 422–424
child controls

hierarchy of, 544–545
initialization, 210
managing, methods for,

195–197
postbacks, detecting from,

866–868
for rendering, 528–532
state of, persisting, 6–7
storage of, 229
unique names for, 190

child filters, 912
child requests, free threads for,

86
ChildrenAsTriggers, 867–869
Chirpy, 314
claims, 822, 823–824
claims-based identity, 821–825

using, 824–825
workflow, 822–823

claims-based Windows Identity
Foundation (WIF), 76

class names, resolving, 188
classes

adapters, 605
closed for modification,

575–576
code-behind classes, 12. See

also code-behind classes
coupling, 570–571
dynamically generated, 170
hierarchy of, 13
inports and exports, 585
page classes, 12–13
partial classes, 173
preconditions, 578
responsibilities of, 573–574
splitting, 574
system classes, 12

classic ASP, 4
classic ASP.NET, 4. See also Web

Forms
moving away from, 15–19

cleanup code in exception
handling, 272

click-throughs, 515
client behavior, controlling, 213
client cache, 748–753
client certificates, 782
client data, processing, 211
client IDs of controls, 220
client script files, storage of,

104–105
client script manager, reference

to, 195
client side, 839. See also AJAX

events for user feedback,
872–874

JSON representations on, 890
powering, 899–905

client Web programming, 3
clientIDMode attribute, 91
ClientIDMode property, 223

Predictable option, 224–225
Static option, 224

ClientID property, 211, 220
ClientIDRowSuffix property, 226
ClientScript object, 856

ClientScript object

938

ClientScript property, methods
explosed by, 198

ClientScriptManager class
GetWebResourceUrl method,
195

clientScriptsLocation attribute,
104

client-side behavior, testing,
361–363

client-side message boxes, 501
client-side validation, 393–394
closures in JavaScript, 847–848
cloud databases, 613
CLR exceptions, 270. See also error

handling
CLR security zones, 786
CMS, 157
code

sandboxing, 789
testability, 636–642
for Web pages, 3

code access secruity (CAS), 101,
103

code blocks in server-side
<head> sections, 243

Code Contracts API, 578
code declaration blocks, 654
code-behind classes, 217

defined, 12
hierarchy of, 13
removing, 627–628
server control references, 173
testing, 361
WebMethod attribute, 895–896

cohesion, 569–571
collections

binding data to, 412–413
in profiles, 289

COM, 843
command buttons, 247, 259,

498–499
custom, 499

command names, 498
Common Gateway Interface (CGI),

120
common language runtime (CLR),

270, 786
CompareValidator control, 380,

382–383, 386
compiled pages, 170

master pages, 329
Component Object Model (COM),

843
composable parts, 585
composite controls, 521. See also

controls; server controls

child controls, hierarchy of,
544–545

collections of items, 547
defined, 519

composite data-bound controls.
See also controls; server
controls

adding bound data, 551–553
building, 543–561
data item object and collection

support, 547
hierarchy and data separation,

546–547
receiving data, 545
template support, 556–561

CompositeControl class, 514
as base class, 519

CompositeDataBoundControl
class, 514

deriving from, 544
compressed responses, 79
concerns, separation of, 571–572
concurrent calls, 877–878
conditional refreshes, 866–870
CONFIG directory, 64
<configProtectedData> section,

107
<configSections> element, 67
configuration, declarative,

589–590
<configuration> element, 50, 66

main children of, 66
configuration errors, 269
configuration files, 64–68. See

also individual section names
accessing, 63
add, remove, and clear

elements, 68
<anonymousIdentification>

section, 73–74
application-level settings, 111
<appSettings> section, 67,

105–106
<authentication> section, 74–76
<authorization> section, 76–77
<browserCaps> section, 77–78,

347
<caching> section, 78–80
changes to, 63
<configProtectedData> section,

107
<configSections> element, 67
<configuration> element, 66
<connectionStrings> section,

106
creation of, 63

<customErrors> section, 80–81,
278–279

custom sections, creating,
116–117

custom sections, registering,
117

<deployment> section, 81–82
<EncryptedData> section, 114
encrypting, 107, 113–116
<globalization> section, 82, 309
handler factories, registering,

145
<handlers> section, 125
<healthMonitoring> section, 83
<hostingEnvironment> section,

84
<httpCookies> section, 84–85
<httpHandlers> section, 82, 123
HTTP modules, registering with,

153
<httpModules> section, 82, 153
<httpRuntime> section, 85–87
<identity> section, 87
<location> section, 68–71
<machineKey> section, 87–88
machine-level settings, 111
machinewide settings, 70
managing, 110–117
<membership> section, 88–89
opening, 111
<pages> section, 89–92
<processModel> section, 92–95
<profile> section, 96–97,

286–287
<properties> section, 286
protection of, 64
<providers> section, 301
<roleManager> section, 97
<section> element, 67
<sectionGroup> element, 67–68
sections, declaring, 67
<securityPolicy> section, 97–98
<sessionState> section, 98–100
<siteMap> section, 100
<system.serviceModel> section,

67
<system.web.extensions>

section, 107–108
<system.web> section, 71–73
<system.webServer> section,

108–110
<trace> section, 100–101
tree of, 64–65
<trust> section, 101–104
unmodifiable settings, 70–71
<urlMappings> section, 104

ClientScript property, methods explosed by

 939

configuration files (continued)
user names and passwords in,

87
<webControls> section,

104–105
<xhtmlConformance> section,

105
configuration management API,

110–113

configuration section handlers,
116

ConfigurationManager class, 111
OpenMachineConfiguration

method, 112
ConfigurationProperty attribute,

117 connectionString
attribute, 106

connection strings
configuration settings, 106
encrypting, 114
for out-of-process session

state, 700
from profile providers to

database engine, 301
connectionStringName attribute,

80
ConnectionStrings collection,

accessing, 111–112
<connectionStrings> section, 106
constructors, overloaded, 583
container controls, 239–240
Container keyword, 560
content. See also data

default content, 323–324
downloading cross-domain,

929–930
inline content, 316–317

Content controls, 324–326
content delivery networks

(CDNs), 313–314
content filters, 912
Content Management Systems

(CMS), fiendly URLs and, 157
content pages

binding definitions, 327
binding to master pages, 326
Content controls, 324–326
content placeholders, 320–321,

323
defined, 320
@MasterType directive, 335–336
processing, 329–334
serving to user, 329–330
source code of, 325
title of, 326
writing, 323–328

ContentPlaceHolder controls,
320–323

ContentTemplate property, 863
contract attribute, 884
contracts, MEF, 585
control adapters, 230–231

writing, 232
Control class, 190, 218, 514. See

also controls; server controls
ClientIDMode property, 223
deriving controls from, 513
events of, 229–230
extending, 515
IComponent interface, 218
IDisposable interface, 218
interfaces of, 218
methods of, 228–229
properties of, 218–228
RenderingCompatibility

property, 233
vs. WebControl class, 519

@Control directive, 180
control IDs

matching to posted names,
211

retrieving, 915
control properties

persistence modes, 558
varying output caching by,

770–772
control skins, 235
control state, 214, 718

programming, 718–719
ControlAdapter class, 230
controllers

in ASP.NET MVC, 21–22
defined, 616–617
role of, 618

ControlParameter class, 462
controlRenderingCompatibility-

Version attribute, 232
controls

data-bound controls, 421–434.
See also data-bound controls

dynamically created, handling,
211–212

and input tags, correspondence
between, 212

naming container for, 190
Page class methods related to,

195–197
prerendering stage, 214
state changes, detecting,

212–213
unloading, 215
validating groups of, 394–395
validation, support of, 382

view-state tracking, 210
Controls collection, 229

adding controls to, 521
dynamically added controls,

266
<controls> section, 91
ControlStyle property, 254, 255
ControlToValidate property, 381
cookieless attribute, 74, 800–801
cookieless sessions, 688–691

CreateUninitialized method,
706

issues with, 689–690
Search-Engine Optimization

and, 691
security and, 690–691

cookies, 675, 687–688
configuration settings, 84–85
cookieless sessions, 688–691
customizing, 804–806
Forms authentication through,

799–800
for HTTP façade, 887–888
for role information, 97
sharing between applications,

801–802
usage of, 74

Copy Web Site function (Visual
Studio), 40–42

CopyFrom method, 255
CouchDB, 614
coupling, 569–571

between modules, 575
between presentation and

business layers, 604
C++ server programming, 3
CPU bound operations, 208
CreateChildControls method

binding and nonbinding
modes, 545

overloaded version, 545–547
overriding, 521, 544
pseudocode, 544

CreateUninitialized method, 706
CreateUser method, 811
CreateUserWizard control,

834–835
credentials

collecting, 794
getting, 822

cross-browser rendering,
344–348

cross-domain calls
in AJAX, 850–851
jQuery and, 929–932

Cross-Origin Resource Sharing
(CORS), 929

Cross-Origin Resource Sharing (CORS)

940

cross-page communication,
189–190

cross-page posting, 365, 374–379
detecting, 377–378
@PreviousPageType directive,

376–377
redirecting to another page,

378
validation and, 395–396
view state information, 374–375

cross-site scripting (XSS), 780
GET and, 886–887

CSS, 319
applying to elements, 917
ASP.NET support for, 3
embedded vs. inline, 316
for ListView styling, 474, 480,

482, 494–497
minimizing impact of, 315–317
style sheets, 339
vs. themes, 220, 343, 357
use of, 255

CSS Control Adapter Toolkit
(CSSCAT), 232

css function, 917
CSS-based selectors, 909–910
CssClass property, 493–494
CSS-friendly markup code,

232–234
CssStyleCollection class, 254
culture

changing, 310–312
names of, 82, 309
resource assemblies, creating,

308
setting, in ASP.NET Web Forms,

309
setting, in .NET, 308–309

Culture attribute, 860
Culture property, 860
Cunningham wiki, 570
Current property, 657, 897
CurrentCulture property, 308–309
CurrentUICulture property,

308–317
custom controls, 513–561. See

also server controls
building from scratch, 518–533
control state, 718–719
control tree, building, 521–522
Control vs. WebControl, 519
correct rendering of, 195
data-bound composite

controls, building, 543–561
data-bound controls, building,

533–543

embedded resources, 195
extending existing controls,

514–518
interfaces for, 519
markup, writing to HTML text

writer object, 527–528
object model definition, 523
object model implementation,

523–526
rendering style, 520–522
template support, 556–561
usage scenario, defining,

515–516
custom object caching, 463
custom resources, HTTP handlers

for, 126–127
custom types in profiles, 289–290
Customer Relationship

Management (CRM) systems,
613

<customErrors> section, 80–81,
278–279, 857

customization themes, 338
CustomValidator control, 380,

383–385, 395–396, 504

D
DAL, 593, 596, 598, 605–614

Active Record pattern and, 606
alternatives to, 613–614
caching, relation to, 734–735,

747
conceptual view of, 608
database independence,

608–609
domain model organization,

602
Domain Model pattern and,

607–608
implementation of, 605–608
interfacing, 608–610
O/RM implementation,

610–613
Repository pattern for, 609–610
responsibilities of, 607
Table Module pattern and, 606

data
deleting, 465–468
editing, 454–455
paging, 451–453
retrieving, 460–461
sorting, 453–454
storing on server, 65
updating, 465–468

data access layer. See DAL

data binding
application-level, 326
class diagram, 415
customizing controls for,

533–543
DataBinder class, 436–438
data source controls, 456–468
data sources, 412–415
defined, 411
Eval method, 436–438
to GridView control, 443–451
HtmlSelect control support of,

245
with ListView control, 477–479
ObjectDataSource class,

459–469
page-level, 326
parent controls, identifying, 226
process of, 411
separating from control-

building code, 551–553
for server control RAD

designers, 218
simple, 434–436, 533
syntax, 434–435
Web pages vs. desktop

applications, 414
data contracts

for AJAX-enabled WCF services,
885

preservation of, 892
data controls, binding to data

source controls, 474
data eviction, 747
data expiration in cache, 731–732
data function, 923
data item classes, defining,

536–538
data item containers, 227
data keys containers, 227
data models

for WAP projects, defining,
290–292

for Web site projects, defining,
286–287

data paging with ListView control,
507–511

data representation, JSON for,
890–893

data source controls, 456–468
data controls, binding to, 474
defined, 456
hierarchical controls, 457–458
ID of, 417
named views, 456–458
parameters, using, 462–463
tabular controls, 456

cross-page communication

 941

data source objects
interface implementation, 534
mapping to control properties,

535–536
data sources, 412–415, 721

adding items to, 501–505
ADO.NET classes, 413–414
collection classes, 412–413
key fields, setting, 420
queryable objects, 414–415
specifying, 416
updates to, 454–455
viewing records, 432–433

data tables, managing, 438–455
data transfer objects (DTOs), 605
data validation. See also

validation
configuration settings, 87
for cookies, 799

database dependencies, 80
for caching, 743–745

database management systems
(DBMS), BLOB support, 133

databases
cloud databases, 613
images, loading from, 133–136
session state, storing in,

699–704
sharding, 612

DataBind method, 411
calling, 414, 561

DataBinder class, 436–438, 541
DataBinding event, 556
data-binding expressions,

434–438
evaluation of, 435
generating and parsing, 437
implementing, 436

data-binding properties, 411,
415–421

AppendDataBoundItems
property, 419–420

DataKeyField property, 420
DataMember property, 417–418
DataSourceID property, 417
DataSource property, 416–417
DataTextField property, 418
DataValueField property, 419

data-bound controls, 421–434
bound data, getting, 540–544
bound fields, 445
building, 533–543
composite, 543–544
data-bound properties, adding,

534
data item classes, 534–535
DataPager control for, 507–508

data source fields to control
properties, mapping,
535–536

defined, 411
events of, 556
iterative controls, 427–432
key features of, 533–534
list controls, 421–427
receiving data, 545
types of, 411
view controls, 432–434

DataBound event, 556
DataBoundControl class, 514
DataBoundLiteralControl class,

434
DataContract attribute, 891–892
DataContractJsonSerializer class,

891
Data-for-Data model, 17
DataGrid control, 431–432

autoreverse sorting, 718
DataItemContainer property, 227
DataKeyField property, 420
DataKeyNames property, 421,

467–468, 474, 500
DataKeysContainer property, 227
DataList control, 430–431
DataMember property, 417–418
DataPager control, 507–511

embedding, 508–509
properties of, 508
types of, 509

DataPagerField class, 509
DataSet class, 414, 598
DataSource property, 416–417,

474
DataSourceID property, 417, 442,

474, 477
DataSourceView class, 457

methods of, 458
DataTextField property, 418
DataTextFormatString property,

418
DataValueField property, 419
Db4O, 614
debug mode, 284–285
debug script files, 859–860
debugging pages, 284–285
declarative authorization, 77
decryption attribute, 87
decryption keys, specifying,

87–88
decryptionKey attribute, 87
default ASP.NET account

changing, 784–786
privileges of, 785–786

default.aspx skeleton, 625

defaultProvider attribute, 79, 88,
97, 100

defaultRedirect attribute, 81
defaultUrl attribute, 799
delegate classes, 146
delete operations, in ListView

control, 500–501
DeleteUser method, 811
denial of service (DoS), 780
dependencies, 568

aggregate, 738
broken, 740
of cached items, 722, 725, 728
database dependencies,

743–745
decreasing number of, 570
isolating, 572
polling, 739, 742
resolving, 588–589

Dependency Injection, 582–591
Dependency Inversion principle,

572, 580–583
dependency-changed event, 730
deploy packages

building, 45–47
contents of, 45
running, 44

deployment. See application
deployment

deployment precompilation,
53–55

update support, 54–55
<deployment> section, 81–82
derived classes

generating, 177
naming convention for, 172
substitution principle and,

576–578
URLs, linking to, 172

description attribute, 349
description meta tag, 349
deserialization of session state,

695–697, 710
design patterns

Active Record pattern, 599–600
for BLL, 596–602
Browser-Side Templating, 840
Domain Model pattern,

600–602
HTML Message, 839–840
Module Pattern, 849
MVC pattern, 616–618
MVP pattern, 619–621, 623–636
MVVM pattern, 621–623
for presentation layer, 615–623
Repository pattern, 609–610
Service Layer pattern, 602

design patterns

942

design patterns (continued)
Table Module pattern, 598
Transaction Script pattern,

597–598
Design Patterns: Elements of

Reusable Object-Oriented
Software (Gamma, Helm,
Johnson, and Vlissides), 575

design principles, 569–572
detach function, 922
detach method, 921
DetailsView control, 432

DataKeyNames property, 467
vs. ListView control, 476

development environment, web.
config file for, 51

development frameworks,
characteristics of, 18–19

device-specific content, ignoring,
92

die function, 919
Digest authentication, 782
Dijkstra, Edsger W., 571
direct scripting, 19–20
directives

location of, 179
processing directives, 179–190

DirectoryInfo class, 130
disabled attribute, 875
disableExpiration attribute, 79
DisplayIndex property, 493
Dispose method, 149, 648

for custom HTTP modules, 151
overriding, 215

Disposed event, handling, 215
distributed cache, 744–755

of ACS, 748–751
AlachiSoft NCache, 755
data eviction, 747
design of, 745
features of, 745–747
freshness of data, 747
high availability, 746
Memcached, 753–754
NorthScale Memcached

Server, 755
read-through and write-

through capabilities, 747
ScaleOut StateServer, 755
SharedCache, 754
storing output caching in, 777
topology of, 746

distributed caching system, 745
DOM (Document Object Model)

adding elements to, 920–922
assumptions about, 8
elements, accessing, 91

evolution of, 842
functional approach combined

with, 903
manipulating in jQuery,

920–923
modifying elements in, 922–923
queries, running over, 904, 908
readiness for scripting,

detecting, 906–907
readyState property, 906
removing elements from, 922
updating content with, 842–843

DOM trees
adding to DOM, 920–922
creating, 920, 922
toggling, 921–922

domain attribute, 84, 802
domain logic, 596
domain model, defined, 600
Domain Model pattern, 600–602

DAL and, 607–608
Domain-Driven Design (DDD),

601
DOMContentLoaded event, 906
DoPostBackWithOptions function,

374
download experience, optimizing,

312–317
DPAPI protection provider, 107,

115
DropDownList control, 421–422

binding data to, 534
HTML server control for, 245

DTOs, 605
dummy objects, 640
Duration attribute, 759, 761
dynamic compilation, 52, 169
dynamic controls, handling,

211–212
Dynamic HTML (DHTML), 839,

842
dynamic keyword, 334
Dynamic Language Runtime

(DLR) component, 335
dynamic resources. See pages
dynamic type, 375–376
dynamic user interfaces, 18–19

E
each function, 908–909
eavesdropping, 780
ECMAScript, 900
edit template

defining, 497–498
predefined buttons, 498–499

editing data, 454–455

Eich, Brendan, 900
ELMAH, 284
empty fields, 387
empty function, 922
EnableClientScript property, 393
enableKernelCacheForVaryByStar

attribute, 79
EnablePageMethods property,

896–897
EnablePaging property, 464
EnablePartialRendering property,

863
EnableScriptGlobalization

property, 860
EnableScriptLocalization property,

315
EnableTheming property, 235, 342
EnableViewState attribute, 715
EnableViewStateMac attribute,

713
EnableViewState property, 227
enableWebScript attribute, 883–

884, 893
encapsulation, 572
encoders, 137
encoding, 82, 661
<EncryptedData> section, 114
encryption

of configuration files, 113–116
for cookies, 799
key containers, 115
of view state, 712–713
XML encryption, 107

encryption keys, specifying,
87–88

encryption providers, 107
choosing, 115–116

Enctype property, 249
endpoints, JSONP-enabled, 930
EndProcessRequest method, 147
EndRequest event, 33, 651, 874,

875
EndRequest event handler, 32,

151–152
EndRequestEventArgs control, 875
EnsureChildControls method, 522
Entity Framework, 458, 611–612
error codes, 64, 81
Error event handler, defining, 274
Error events, 33, 274, 651
error handling, 269–285

configuration settings, 80–81
Error event handler, 651
error pages, 273–274
error reporting, 283–285
errors, mapping to pages,

278–282

Design Patterns: Elements of Reusable Object-Oriented Software

 943

error handling (continued)
exception handling, 270–272
exception logging, 277
for fatal errors, 283–285
global, 275–277
handler precedence, 277
HTTP errors, 280–281
page error handling, 272–278
page-level, 274–275
partial rendering, 857
reporting in e-mail messages,

276
robustness of, 278

Error Logging Modules And
Handlers, 284

error messages
custom, 278–279
displaying, 275, 388–389
summary and display of,

391–392
error pages, 273–274

code-behind, 281
context-sensitive, 282
custom, 279–280
custom, specifying, 81
for local and remote users, 279
sensitive information on, 275,

278
error reporting, 283–285
<error> tag, 280
ErrorMessage property, 388,

392–393
errors

HTTP 500 errors, 277
mapping to pages, 278–282
session state and, 695
types of, 269

Esposito, Dino, 26
Eval method, 436–438

syntax, 437
Event object, 919
events

of BarChart control, 553–554
canceling, 407–408
of Control class, 229–230
of data-bound controls, 556
of GridView, 442–443
handling, 151–152. See

also HTTP handlers
for health monitoring, 83
of HttpApplication class, 150,

648–651
in IIS messaging pipeline, 32–33
of ListView control, 474–476
order of firing, 649–650
of Page class, 198–199

personalization events,
298–299

of ScriptManager control, 856
Exception class, 272
exception handling, 270–272

ASP.NET-specific facilities for,
270

cleanup code, 272
finally blocks, 271–272
guidelines for, 271–272
in .NET, 270–272
try/catch blocks, 270

exceptions
built-in types, 271
function of, 270–271
getting information about, 282
retrieving, 276
self-logging, 284
unhandled, 272

Execute method, 661–663
overloads of, 662

ExecuteRequestHandler event,
33, 650

handler for, registering, 34
ExecuteScalar method, 134
expiration callbacks, 706
expiration policies

for cached items, 726, 731–732,
747

for session-state items, 694
expired cache items, automatic

scavenging, 79
Expires HTTP header, 756
Expires property, 665
ExpiresAbsolute property, 665
exports, 585–587
extensions, aspnet_isapi.dll

handling of, 171–172
external style sheet files, linking

to, 242

F
Factory attribute, 884
fakes, 640
fatal exceptions, 283–285
feedback

client-side events for, 872–874
for partial page updates, 875
progress screen, 871–872
for users, 870–876

fetching vs. caching, 733
ffSite.master file, 327
Fiddler, 363
fields, defined, 413
file authorization, 790–791
file system monitor, 175

file types, searching for, 130
FileAuthorizationModule HTTP

module, 790
files

copying to target site, 42
packaging, 43–51

FileSystemWatcher object, 738,
742

FileUpload control, 261–262
filter function, 914
filters, 911–914
finally blocks, 271
FindControl method, 375
find function, 914
Firebug Web development tool,

317
Firesheep, 803
fixed identities, impersonating,

785
fixednames parameter, 55
flow layouts, 485–487

item layout, 486–487
Foote, Brian, 566
forbidden resources, blocking

access to, 652–653
ForeColor property, 381
form filters, 913–914
form submissions, 6

client behavior, controlling, 213
<form> tags, 365

multiple, 368–373
runat, visibility of, 371–373

format strings, defined, 556
Forms authentication, 783,

791–806
advanced features, 801–806
attributes of, 798–799
configuration of, 75, 798–801
control flow, 792–796
cookie-based, 799–800
cookieless, 800–801
cookies, sharing among

applications, 801–802
custom types of, 76
encryption and decryption

keys, 87
external applications for, 803
FormsAuthentication class,

796–798
<forms> section, 798–799
with HTTPS, 889
Login control, 826–828
resources protected by, 792
security concerns, 793, 804
setting up, 792
user credentials, collecting, 794

<forms> element, 74–75

<forms> element

944

<forms> section, 798–799
FormsAuthentication class,

796–798
methods of, 797–798
properties of, 796–797
SignOut method, 795–796

FormView control, 432, 433
vs. ListView control, 476

FTP, copying files to target with,
42

FullTrust permission set, 103
functional programming,

845–846
JQuery and, 905

functions
closures, 847–848
defined, 846

G
GAC

assemblies in, 786
HTTP handlers in, 124

Gamma, Erich, 575
gauge control, 523–533
GaugeBar control, 535–544

data item object, 536–538
mapping fields to properties,

535–536
PerformDataBinding method,

540–544
GDI+ subsystem, 140
geo-location capabilities, 312
get accessor, 538
get function, 909
GET verb, 365

enabling, 886–887
kernel caching and, 762
posting forms with, 367

GetAuthCookie method, 798
GetConfig method, 658
GetDataItem function, 438
GetEnumerator method, 678
GetFiles method, 130
GetGlobalResourceObject method,

307, 659–660
GetHandler method, 145
getJSON function, 927–928
GetLastError, 276
GetLocalResourceObject method,

660
GetPropertyValue method, 541
GetPropertyValue property,

290–291
GetRequiredString method, 163
getScript function, 927
GetUser method, 811

GetVaryByCustomString method,
767

GetWebApplicationSection
method, 658

GetWebResourceUrl method, 195,
315

global assembly cache (GAC)
assemblies in, 786
HTTP handlers in, 124

global error handling, 275–277
global resources, 304–305, 307

retrieving, 659–660
global themes, 339
global.asax file, 651–655

aliasing file name, 655
application directives, 653–654
Application_Error stub, 275
blocking access to, 652–653
C# code skeleton, 652
changes to, 653
code declaration blocks, 654
compiling, 652–653
contents of, 645
editing, 170
extending, 36–37
in precompiled assembly, 652
routes in, 160
server-side <object> tags,

654–655
static properties in, 655
syntax of, 653–655

globalization, 860
configuration settings, 82

<globalization> section, 82, 860
culture settings, 309

Google Chrome browser, 902
Google Gears, 312
GridView control, 433

accessibility properties, 440
appearance properties, 440
behavior properties, 439
binding data to, 443–451
bound fields, 445
button fields, 445–447
check box fields, 448
columns, configuraing,

444–445
DataKeyNames property, 467
default user interface, 452
editing data, 454–455
events of, 442–443
hyperlink fields, 447–448
image fields, 448–449
interaction with host page, 451
vs. ListView control, 477,

482–483
object model, 439–443

paging data, 451–453
predefined types, 440
Predictable algorithm

implementation, 225–226
sorting data, 453–454
state properties, 441
style properties, 440
templated fields, 450–451
templating properties, 441–442

GroupItemCount property, 488,
489

GroupPlaceholderID property, 473
GroupSeparatorTemplate

property, 489
GroupTemplate property, 487
Guthrie, Scott, 57
Gzip compression, 314

H
handler factories, 142, 144–145

IsReusable property and, 144
handler factory objects, 177
handlers, 5–6

for page requests, 177–178
<handlers> section, 125
hashAlgorithmType attribute, 88
hashing algorithms, specifying,

87
<head> section, code blocks in,

243
HeadContent placeholder, 326
health monitoring system, 83
<healthMonitoring> section, 83
heartbeat event, interval for, 83
heartbeatInterval attribute, 83
Helm, Richard, 575
hidden fields

creating, control for, 261–262
tracking values in, 7
view state information, saving

in, 200
HiddenField control, 261–262
hidden-field tampering, 780
hide function, 915–917
HierarchicalDataBound-

Controlclass, 514
HierarchicalDataSourceView class,

458
high availability of distributed

cache, 746
<hostingEnvironment> section,

84
HostSecurityManager object, 103
hostSecurityPolicyResolverType

attribute, 104

<forms> section

 945

HTML
ASP.NET MVC control over, 24
control over, 8
downloading, 928
literal strings, 7
syntax, 3

HTML attributes, setting, 237–238
HTML controls, correct rendering

of, 195
HTML elements

ID of, 16
predictable IDs, 91

HTML encoding, 661
HTML forms, 200
HTML input controls, 246–252

command buttons, 247
HtmlImage controls, 252
state changes, detecting,

248–249
for uploading files, 249–251
validation of input fields, 248

HTML markup. See also markup
adaptive rendering of, 230–232
client ID, 220–223
control over, 234

HTML Message (HM) pattern, 19,
839–840

HTML output, layout of, 8
HTML pages, JavaScript code

in, 16
HTML responses, arranging, 5
HTML server controls, 217, 235–

252. See also server controls
base class, 237
container controls, 239–240
external style sheet files,

linking, 242
generic controls, 237
header information, 241–242
hierarchy of, 239
HTML attributes, mappings to,

237–238
HTML syntax support, 236
meta information, managing,

243
namespace definition, 237
page postbacks with, 244
predefined controls, 236
properties of, 237
runat=server attribute, 235
state changes, detecting,

248–249
HTML tables, 484–485
HTML text writer object, 520

writing markup to, 527–528
HtmlAnchor class, 243–244

HtmlButton class CausesValidation
property, 248

HtmlButton controls, 240
HtmlContainerControl class, 239,

366
HtmlControl class, 236–237
HtmlForm class, 200, 365–367

methods of, 367
properties of, 366–367
Visible property, 371

HtmlForm controls, 240
HtmlGenericControl class, 237
HtmlHead controls, 241
HtmlImage controls, 252
HtmlInputButton class, 247

CausesValidation property, 248
HtmlInputCheckBox controls, 260
HtmlInputControl class, 246
HtmlInputFile controls, 249–251
HtmlInputImage controls, 247
HtmlInputRadioButton control

s, 260
HtmlInputReset controls, 247
HtmlInputSubmit controls, 247
HtmlLink controls, 242–243
HtmlMeta controls, 243
HtmlSelect controls, 244–245

data binding support, 245
HtmlTextArea control, 245
HTTP access error 403

(forbidden), 64
HTTP endpoints, 123

binding handlers to, 128–129
HTTP errors

handling, 280–281
HTTP 302, 280, 349
HTTP 403, 64
HTTP 404, 280–281
HTTP 500, 277

HTTP façade, 880–881
ASP.NET Web services, 885–887
JSON content, 890
protecting services in, 887–888
proxy for, 893–895
trusting, 888–889
WCF services, 881–885

HTTP GET, enabling, 886–887
HTTP handlers, 11

for AJAX presentation layer, 881
for AJAX requests, 148
allowPolicy attribute, 109
alternate, specifying, 36
ASHX resources, defining as,

141–142
asynchronous handlers,

146–148
binding to endpoints, 136

calling, 123
declaring, 123
determining, 32, 35
forbidden resources,

preventing access to, 143
functionality of, 33, 119
handler factories, 142, 144–145
IHttpAsyncHandler interface,

121
IHttpHandler interface, 121,

121–127
images, controlling with,

140–141
images, database-stored,

serving, 134–135
images, dynamically generated,

serving, 137
images, serving, 128–133
loading, 125
mapping, 124
for new types of resources,

126–127
picture viewer handler, 128–133
precondition attribute, 109, 126
preconditions on, 126
ProcessRequest method, 138
query string parameters,

accepting, 131
registering, 82, 121, 124–125,

132, 141
reusing, 143–144
ScriptResource.axd, 859
session state, access to, 141
synchronous or asynchronous

mode, 121, 201
<system.webServer> section

and, 108–109
vs. URL routing, 165
uses of, 141
writing, 36, 121–148

HTTP headers
fresh and stale resources,

determining, 756
programmatically setting,

763–764
sending, 33
for static resources, 758
varying output caching by, 767

HTTP modules, 646–647
built-in, 154
for current application, 154
custom modules, 151–154
Dispose method, 151
events handled by, 149–154
events raised by, 119
functionality of, 119
Init method, 151

HTTP modules

946

HTTP modules (continued)
loading and initialization of, 153
order of application, 153
pre- and post-processing of

requests, 149
registering, 37, 82, 153
role management, 97
system modules, inheritance

of, 149
<system.webServer> section

and, 108–109
URL routing engine, 119–120,

155, 157–159
writing, 149–156

HTTP pipeline, 176. See also page
life cycle

activation of, 174
HTTP requests, parsing to, 174
HttpRuntime class, 174–176

HTTP protocol stack, 29
HTTP requests

anonymous ID, 671
asynchronous requests, 95
authentication of, 650
authorization of, 650
client data, 671
delays caused by, 59
filtering, 155, 164
free threads and, 86
handling of, 645
HTTP module processing of,

149
IIS processing of, 30–37
information about,

encapsulation of, 656
information about connection,

672
information about request,

670–672
input validation, 674
logging, 33, 651
out-of-band, 841–842
output for, 122, 130–131
parsing to HTTP pipeline, 174
processing, 5, 9–10, 11, 27
processing with IIS worker

process, 29
processing with standalone

worker process, 28–29
queuing, 95
reducing number of, 316–317
routing, 24
saving to disk, 673
script-led requests, 890
sending, 844
serving from cache, 650
URL rewriting, 658–659

HTTP responses
cache policy, 665–666
compressed responses, 79
encapsulation of, 663
HttpResponse object, 663–670
large file transmission, 669
response filters, 666–667

HTTP runtime
page request processing, 174
reason for processing pages,

209
HTTP verbs, 879
HttpApplication class

events of, 648–651
IIS pipeline events and, 34
methods, 647–648
properties of, 645–646

HttpApplication object, 177, 645
Error event handler, 275–276
events raised by, 119
handling events from, 151–153
pooling of, 645

HttpApplicationFactory, 175–177
HttpApplicationState class, 676

methods of, 677–678
properties of, 676–677
synchronization of operations,

678–679
HttpBrowserCapabilities class,

77, 345
HttpBrowserCapabilitiesBase

class, 345
HttpCachePolicy class, 666

methods of, 763–764
properties of, 763

HttpCapabilitiesDefaultProvider
class, 347

HttpCapabilitiesProvider class, 78
HttpContext class, 656–660, 676

methods of, 658–660
properties of, 656–657

HttpContext object, role of, 645
HttpCookie object, 688
HttpCookieMode enumerated

type, 688–689
<httpCookies> section, 84–85
HttpForbiddenHandler class, 143
<httpHandlers> section, 82

handler information in, 177–178
handlers list, 123

<httpModules> section, 82
registering modules in, 153

HttpOnly cookie attribute, 84–85
httpOnlyCookies attribute, 84
HttpPostedFile class, 250
HttpRequest class

methods of, 673–674

properties of, 670–673
HttpRequest object, 670–674
HttpResponse class

methods of, 667–670
properties of, 664–667

HttpResponse object, 663–670
BinaryWrite method, 135
large file transmission, 669
output caching, 669
response filters, 666–667
WriteSubstitution method, 776

HttpRuntime class, 174–176
public static methods, 174–175
UnloadAppDomain, 179

HttpRuntime object, 30
<httpRuntime> section, 85–87

maxRequestLength attribute,
251

HTTPS, Forms authentication
with, 889

HttpServerUtility class
methods of, 660–663
properties of, 660

HttpSessionState class, 676, 680
methods of, 686
properties of, 685–686
synchronization mechanism,

685–686
HttpSessionState object, creating,

682–683
http.sys, 29
HttpValidationStatus

enumeration, 764
HttpWatch, 363
HyperLink control, 258

customizing, 515–518
hyperlink fields, 447–448

I
IAsyncResult interface, 146
IButtonControl interface, 257, 374
ICollection interface, 412, 685
IComponent interface, 218
IControlBuilderAccessor interface,

218
IControlDesignerAccessor

interface, 218
ICustomTypeDescriptor interface,

413
ID autogeneration mechanism,

220–222
ID selectors, 909
IDataBindingsAccessor interface,

218
identity providers, 823

HTTP pipeline

 947

<identity> section, 87
worker process identity

information, 784
Identity Selector, 791
IDictionary interface, 413
IDisposable interface, 218
idleTimeout attribute, 84
IEditableTextControl interface, 260
IEnumerable interface, 412, 417,

724
ieSite.master file, 327
IExpressionsAccessor interface,

218
<iframe> tags, 929–930
<ignoreDeviceFilters> section, 92
IHttpAsyncHandler interface, 121,

146, 201
implementing, 201

IHttpHandler interface, 11, 36,
121–127, 174

members of, 121–122
ProcessRequest method, 174

IHttpHandlerFactory interface,
144, 177

IHttpModule interface, 37,
149–150

module implementation of, 646
IIS

administrator-level extensions,
37

ASP.NET applications,
configuring for, 55–59

and ASP.NET, history of, 28–31
authentication tasks, 790
Classic mode, 31
handler mappings list, 177–178
HTTP request processing, 31–37
Integrated Pipeline mode,

30–31
ISAPI interface, 120
messaging pipeline, 32–35
new features, 37–39
process model and, 95
resources served by, 128, 140
runtime environment, 28
settings, propagating to

destination, 48–49
unified architecture of, 30
warm-up feature, 59–62
worker process, 29

IIS 7 integrated mode
HTTP handlers, registering, 132
HTTP handlers and modules

and, 108–110
module and handler resolution,

119

IIS Application Warm-up module,
59–62

IIS Express, 25
IIS kernel caching, 761–762, 766
IIS Manager

Add Managed Modules dialog
box, 37

applicationHost.config file,
editing in, 93

Application Pool Identity dialog
box, 39

Handler Mappings panel, 121
IIS Application Warm-up

feature, 60
mapping HTTP modules, 37

IIS metabase, 171
IIS pipeline, 174
IIS script maps, 127
IIS SEO Toolkit, 351–352
IIS Web projects, defined, 48
IList interface, 412
Image controls, 259
image fields, 448–449
image inlining, 316
image URLs, 259
ImageButton controls, 259
ImageFormat structure, 137
ImageMap controls, 259
images

advertisements, 262–263
buttons, rendering as, 447
controlling with HTTP handler,

140–141
copyright notes, writing on,

137–140
databases, loading from,

133–136
display of, 259
display of, configuring, 252
dynamically generated, serving,

137
grouping into sprites, 315–316
hyperlinks displayed as, 258
minimizing impact of, 315–317
referencing on Web pages, 133
saving, 137
serving, 128–133
skin-compliant, 340
writing to disk, 137

 tag, 133
immobility, 568
impersonate attribute, 87
impersonation

through anonymous account,
785

of fixed identities, 785
per-request, 785

thread identity and, 783–785
@Implements directive, 189
@Import directive, 188, 653–654
imports, 585–587
INamingContainer interface, 190,

221, 519, 558
information hiding, 571–572
inheritance

from base class, 515
prototype feature and, 849

Inherits attribute, 96
Init events, 210
Init method, 149, 648

for custom HTTP modules, 151
InitComplete events, 210
initialization

of applications, 38, 645–651
of child controls, 210
completion of, 210
modules, 646–647
of page, 210

initialization code, placement of,
905–906

Initialize method, 808
InitializeCulture method, 310
initializeRequest event, 873
inline content, 316–317
in-memory generation of images,

137
InnerException property, 276
innerHTML property, 842–843,

920
in-place precompilation, 53
InProc session state, 682, 694–

695, 705
in-process calls, 603
input controls

accessing, 375
multiple validators for, 390–391
and validation controls, linking,

381–382
Wizard control, 374

<input> element, 246
input field filters, 914
input fields, validation of, 248
input forms

cross-page posting, 374–379
HtmlForm class, 366–367
logical forms, 368
login capabilities, 368–369
multiple forms, 368–374
MultiView control, 373–374
mutually exclusive, 371–373
nesting, 370
parent objects, 367
single-form model, 365–366,

368

input forms

948

input forms (continued)
unique name, 367
validation controls, 379–396
wizards, 397–409

input tags and controls,
correspondence between,
212

input validation, 674
validation controls, 379–396
in wizards, 404

Insert method, 726
insert templates, 501–505

position of, 502–503
validation for, 504–505

insertAfter function, 921
insertBefore function, 921
InsertItemPosition property, 502
InsertItemTemplate property, 501
installer files, deployment with,

42–43
Integrated Pipeline mode (IIS),

30–31
integrated Windows

authentication, 782
integration testing, 566

defined, 49
Interface Segregation principle,

579–580
interfaces, 319

for custom controls, 519–520
defined, 189
implementing, 189
in MVP pattern, 625

intermediate page classes, 13
Internet Explorer

IE9 Developer toolbar, 317
JavaScript engine, 902
XMLHttpRequest object

instantiation, 843
Internet Information Services.

See IIS
intrinsic objects, 191
invalid input, 386
inversion of control (IoC), 582

frameworks, 584
vs. MEF, 584–585
Unity, 587–592

I/O bound operations, 208
I/O threads, 94–95
IPageableItemContainer interface

definition of, 510
IParserAccessor interface, 218
IPostBackDataHandler interface,

211, 245, 519–520
implementing, 249

IPostBackEventHandler interface,
213, 520

IRepeatInfoUser interface, 430
IRequiresSessionState interface,

141
IRouteHandler interface,

definition of, 159
ISAPI extensions, 170
ISAPI filters for cookieless

authentication, 800
ISAPI interface, 120
IsAuthenticated property, 829
IsCrossPagePostBack property,

377–378
ISessionIDManager interface, 708

methods of, 709
IsInPartialRendering property,

862
ISO/IEC 9126 paper, 565
isolation, testing in, 641–642
IsReusable property, 121–122, 174

handler pooling, 143
IStateManager interface, 534, 711
IsValid property, 379, 387–388
IsViewStateEnabled property, 228
ItemCanceling event, 503
ItemCommand event, 476
ItemDataBound event, 491–492
ItemEditing event, 498
ItemInserted event, 504
ItemPlaceholderID property, 473
Item property, 723, 726
item templates

selected item template,
505–507

setting up, 501–503
ITemplate type, 557
Items property, 423, 657
ItemTemplate property, 472, 483
iterative controls, 411, 427–432

DataGrid control, 431–432
DataList control, 430–431
vs. list controls, 427–428
Repeater control, 428–430

ITextControl interface, 260
IUrlResolutionService interface,

218

J
Java Server Pages (JSP), 3
JavaScript

AJAX and, 845–851
in browsers, 899–900
in client pages, 198
client-side code, 903
closures in, 847–848
drawbacks of, 902–903

functional programming in,
845–846

goals of, 900
in HTML pages, 16
initialization code, 905–906
introduction of, 900
JSON and, 890
libraries, 899
message boxes, 501
for navigation systems, 352
object model for, 903
Object type, 846
OOP in, 846–847
prototypes in, 848–849
proxy class, generating,

893–894
ready event, 906
scripting engine, 901–902
skills with, 3
unobtrusive, 918
writing and importing, 899

JavaScript background compiler,
901

JavaScript Object Notation.
See JSON

JavaScriptSerializer class, 890–891
JetBrains ReSharper, 188, 270
Johnson, Ralph, 575
jQuery function, 905
jQuery library, 18–19, 313, 422,

846, 877, 899, 903–905,
905–931

AJAX support, 925–928
benefits of, 904
binding and unbinding

functions, 918–919
cache, 923–925
chainability, 909, 915
cross-domain calls and,

929–932
Data Link plug-in, 931
DOM manipulation, 920–923
DOM readiness, detecting,

906–907
DOM tree, adding to DOM,

920–922
DOM tree, creating, 920
filters, 911–914
functional programming and,

905
Globalization plug-in, 931
HTML, downloading, 928
IntelliSense support, 904
JSON, getting, 927–928
linking, 903
live binding, 919
load function, 907

input tags and controls

 949

jQuery library (continued)
Microsoft support, 931
naming convention, 904
query capabilities, 908
ready function, 906–907
root object, 904–905
selectors, 909–911
Templates plug-in, 931
UI, 18, 877
wrapped sets, 905, 908–919

.js file, 903
/js suffix, 893
JScript, 900
JSON, 890–893

DataContract attribute,
891–892

format, 890
getting, 927–928
vs. XML, 892–893

JSON format, 20
JSON object, 890
JSON serialization, 108
JSON with Padding (JSONP),

929–931
json2.js file, 890

K
kernel caching, 58–59, 761–762,

766
enabling, 79

key, cached item, 725
key containers, 115
keywords attribute, 349
keywords meta tag, 349
Kuhn, Thomas, 15

L
Label control, accessibility

feature, 260
LABjs, 313
language, changing on the fly,

310–312
language attribute, 654
large file transmission, 669
Law of Demeter, 377
layers, 593

business logic layer, 596–605
data access layer, 605–614
page and database coupling

and, 762
service layer, 602–603
SoC and, 593
in three-tiered architecture, 593

layouts, 320. See also master
pages

flow layouts, 485–487
multicolumn layouts, 485
tabular layouts, 480–485
tiled layouts, 487–493

LayoutTemplate property, 472
legacyCasModel attribute, 103
length property, 909
lengthy tasks, asynchronous

operation for, 201–209
lifetime managers, 590–592
LinkButton control, 213
LINQ, 414–415
LINQ-to-SQL, 458, 610–611

linking to design patterns with,
599

Liskov’s substitution principle,
576–578

list controls, 411, 421–427
BulletedList control, 426–427
CheckBoxList control, 422–424
DataTextField property, 418
DataValueField property, 419
DropDownList control, 421–422
Items property, 423
vs. iterative controls, 427–428
ListBox control, 425
RadioButtonList control, 424–

425, 427
receiving data, 545
SelectedIndexChanged event,

425
ListBox control, 425

HTML server control for, 245
ListControlclass, 514
listeners, 101
ListItemCollection class, 423
ListView control, 433–434,

471–512
alternate item rendering,

483–484
buttons in layout, 496–511
CSS styling, 480, 482, 494–497
data-based operations, 496
data binding, 471, 477–479
data-binding properties, 474
data-related properties,

492–493
editing, in-place, 496–499
events of, 474–476, 498–499
flow layout, 485–487
vs. GridView control, 482–483
ItemTemplate property, 472
layout template, 479
LayoutTemplate property, 472
list layout, 479–480

new data items, adding,
501–505

object model, 472–479
vs. other view controls, 476–477
paging capabilities, 507–512
populating dynamically,

491–493
Predictable algorithm

implementation, 225
properties of, 472–474
rendering capabilities, 471
selecting items, 505–507
sorting items, 511
style properties, 494
styling the list, 493–496
tabular layout, 480–485
template properties, 473, 480
tiled layout, 487–493
updates, conducting, 499–501
user-interface properties, 474

literal controls, 252
literals, 260
live binding, 919
live function, 919
Load events, 211
load function, 907, 928
LoadComplete event, 213
LoadControl method, 197
LoadControlState method, 719
loadFromCache function, 925
loadFromSource function, 925
LoadPageStateFromPersistence-

Medium method, 215
LoadPostData method, 211
LoadTemplate method, 197
LoadViewState method, 540

overriding, 539
Local Security Authority (LSA), 88
local storage, 923
local themes, 339
local users, error pages for,

273–274
localization, 303–312

culture, changing, 310–312
culture, setting in .NET,

308–309
culture, setting in Web Forms,

309
global resources, 307
localized text, 306–307
local resources, 304–305, 308
of navigation system, 360
resources, localizable, 304–308
of script files, 314–315
of site map information,

359–361

localization

950

<location> section, 68–71
allowLocation attribute, 71
allowOverride attribute, 70–71
Path attribute, 69–70

Locator attribute, 50
locking mechanisms on Cache

object, 736
logging

of HTTP requests, 651
of request results, 33

logging exceptions, 277
logic of pages, testing, 361
logical forms, 368. See also input

forms
login capabilities of input forms,

368–369
Login control, 826–828

appearance of, 827
customizing, 827
events of, 828
membership API and, 826

login pages, 792–793
for AJAX-enabled pages,

887–888
credentials, collecting through,

794
in external applications, 803
layout of, 826

login templates, 831
LoginName control, 828–829
LoginStatus control, 829–830

properties of, 830
LoginView control, 830–832

properties of, 830
LogRequest event, 33, 651
low coupling, interface-based

programming, 572

M
machine scope, 119
machine.config file

for configuration, 63
configuring, 65
default modules list, 647
<location> element, 68, 69
location of, 64
<processModel> section, 92

machine.config.comments file, 64
machine.config.default file, 64
<machineKey> section, 87–88
machine-level configuration

settings, 70, 111
MailDefinition element, 832–833
maintainability, 565

importance of, 569
maintenance, 565

Managed Extensibility Framework
(MEF), 584–587

managed HTTP modules, defined,
37

MapPageRoute method, 161
mappedUrl attribute, 104
mappings

between fake URLs and real
endpoints, 104

between HTTP handlers and
Web server resources, 123

between properties and section
attributes, 117

between security levels and
policy files, 97

MapRequestHandler event,32,
650

markup
ASPX templates, 217
CSS-friendly, 232–234
generating, 194–195, 215
graphical aspects, configuring,

422
server-side programming, 839
style-ignorant, 255
writing, 520–521
writing to HTML text writer

object, 527–528
markup files (ASPX), compilation

of, 52
markup mix, 3
Martin, Robert, 573
Master attribute, 327
@Master directive, 180, 320–323

attributes of, 322
master page properties, 333

exposing, 333
invoking, 334–335

master pages, 180, 319–324
ASPX markup for, 222, 225
binding content pages to, 326
changing, 209
compiling, 329
ContentPlaceHolder controls,

320–322
default content, defining,

323–324
device-specific, 327–329
dynamic changes to, 336–337
@Master directive, 320–323
nested forms and, 370–371
nesting, 330–333
processing, 329–334
programming, 333–336
sample page, 321
UpdatePanel controls in,

864–865

Master property, 333, 336
MasterPage class, 321, 329
MasterPageFile attribute, 326, 327,

336–337
@MasterType directive, 335–336
max-age HTTP header, 756
maxBatchGeneratedFileSize

attribute, 169
maxBatchSize attribute, 169
maxPageStateFieldLength

attribute, 90
maxRequestLength attribute, 251
MEF, 584–587
membership API, 88, 806–821

data stores, integrating with,
812

login controls and, 826
Membership class, 807–812
membership provider, 812–817

Membership class, 806–812
advanced functionality of, 808
methods of, 808–809
properties of, 807–808

membership providers, 300,
812–817

choosing, 809
configuration settings, 88–89
configuring, 816–817
custom, 815–816
extending, 815
key issues of, 816
list of, 808
MembershipProvider base class,

813–814
ProviderBase class, 813

<membership> section, 88–89
MembershipProvider class,

813–814
MembershipUser object, 811–812
Memcached, 614, 753–754
memory usage, polling for, 79
MergeWith method, 255
meta tags, 349
MethodName property, 775
methods

of Control class, 228–229
page methods, transforming

into, 895–896
testing, 641
of Web controls, 255–256

Meyer, Bertrand, 575
Microsoft Dynamics CRM,

613–614
Microsoft Internet Explorer. See

Internet Explorer
Microsoft Internet Information

Services. See IIS

<location> section

 951

Microsoft .NET Framework. See
.NET Framework

Microsoft Silverlight. See
Silverlight

Microsoft SQL Express, 284
Microsoft SQL Server. See SQL

Server
Microsoft Visual Basic, 3
Microsoft Visual Studio. See

Visual Studio
Microsoft.Practices.Unity

assembly, 587
Microsoft.Practices.Unity.

Configuration assembly, 590
Microsoft.Web.Administration

assembly, 112
Microsoft.XmlHttp object, 843
MigrateAnonymous event,

299–300
minifiers, 314
MobileCapabilities class, 77
mocks, 640
mode attribute, 74–75
Mode attribute, 81
model

defined, 616
role in MVC, 617
role in MVP, 620

Model-View-Controller, 616–618,
620

Model-View-ViewModel, 615,
621–623

mod_mono module, 27
modular code, 571–572
Module Pattern, 849
modules, 646–647
Modules property, 154, 646
MongoDB, 614
Moq, 640
.msi files, 43
MSUnit, 638
multicolumn layouts, 485
multipart/form-data submissions,

249–251
multiserver environments

<machineKey> settings, 88
multitiered architecture, 594–

595. See also three-tiered
architecture

MultiView control, 266–268,
373–374

MVC pattern, 616–618
vs. MVP pattern, 620

MVP pattern, 14, 619–621
implementing, 623–636
interface, 625
vs. MVC pattern, 620

navigation, 632–636
presenter, creating, 626–632
presenter isolation, 641
testability of code, 636–642
view, abstracting, 624–626

MVVM pattern, 615, 621–623
myHandler function, 930

N
name conflicts, avoiding, 221
NameObjectCollectionBase class,

154, 676
namespaces, linking to pages,

188
<namespaces> section, 91
naming containers, 221, 226–227
NamingContainer property,

226–227
native requests, defined, 37
NavigateUrl property, 517
navigation

implementing, 632–636
linear and nonlinear, 397
through wizards, 405–409

navigation system, 351–357
localizing, 360
SiteMap class, 355–356
site map configuration, 357–360
site map information, 352–353
SiteMapPath controls, 356–358
site map providers, 354–355

navigation workflow, defining,
633–634

nesting
forms, 370–371
master pages, 330–333

.NET Framework
ASP.NET modules, 646–647
Code Contracts API, 578
configuration scheme, 63
culture, setting, 308–309
Dynamic Language Runtime

component, 335
exception handling, 270–272
graphic engine, 137
Managed Extensibility

Framework, 584–587
predefined server controls, 236

.NET Framework root folder, 786
NetFrameWorkConfigurationKey

container, 115
Netscape, 900
NETWORK SERVICE account, 38,

783
privileges of, 785–786

NHibernate, 612

None authentication, 789
NorthScale Memcached

Server, 755
NoSQL solutions, 614, 745
Nothing permission set, 103
NotifyDependencyChanged

method, 738, 741
null identities, 32
null reference exceptions, 270
numRecompilesBeforeAppRestart

attribute, 56

O
object caching, 463
object model. See also DOM

defined, 600
updatable, 842

<object> tags, server-side,
654–655

Object type, 846
ObjectCreating event, 463
ObjectDataSource control, 458,

459–469
caching support, 463
data retrieval, 460–461
deleting data, 465–468
existing business and data

layers and, 463
paging, setting up, 464–465
properties of, 459–460
updating data, 465–468

ObjectDisposing event, 464
object-oriented design, 599
object-oriented programming.

See OOP
object/relational mapper,

610–613
OCP, 575–576
omitVaryStar attribute, 79
OnClientClick property, 258
OnCompletionCallback method,

147
one-click attacks, 780

security against, 193
onload event, 906

order of running, 907
OOP, 4, 569

in JavaScript, 846–847
substitution principle and, 576

Open Authorization (oAuth), 20
Open Data (oData), 20
Open/Closed Principle (OCP),

575–576
OpenID, 76
OpenMachineConfiguration

method, 112

OpenMachineConfiguration method

952

OpenWebConfiguration method,
111

OperationContract attribute, 884
optimized internal serializer, 696
originUrl attribute, 102, 787
O/RM, 610–613

Code-Only mode, 611
Entity Framework, 611–612
Linq-to-SQL, 610–611
NHibernate, 612
SQL code of, 612

out-of-band HTTP requests,
841–842

output cache
execute now capabilities, 32
saving pages to, 33

output cache profiles, 79–80
output cache providers, 79,

776–777
output caching, 28, 33, 58–59,

669, 721, 755–777. See also
caching

caching profiles, 774–775
capabilities of, 758–759
configuration settings, 79
configuring, 58
dependency object, adding,

762–763
IIS kernel caching, 761–762
of multiple versions of page,

765–768
@OutputCache directive,

759–760
page output duration, 761
page output location, 760–761
of portions of page, 768–774
postbacks, dealing with, 766
post-cache substitution,

775–776
server-side caching, 761
sharing output of user controls,

772–773
of static vs. interactive pages,

766
of user controls, 770–775
validation of page, 764–765
varying by control, 770–772
varying by custom string,

767–768
varying by headers, 767
varying by parameters, 765

@OutputCache directive, 759–760
CacheProfile attribute, 774
Shared attribute, 773
VaryByCustom attribute,

767–768

VaryByParam attribute,
765–766

<outputCacheProfiles> section,
774

OutputCacheProvider class, 79
overloaded constructors, 583

P
packaging

files, 43–51
settings, 43–51

page caching, 665–666. See also
caching

output caching, 669
Page class, 36, 119, 190–208

AddOnPreRenderCompleteAsync
method, 202–203

Async attribute, 201–202
context properties, 193–194
controls-related methods,

195–197
Dispose method, 215
eventing model, 199
events of, 198–199
intrinsic objects, 191
LoadPageStateFromPersistence-

Medium method, 215
as naming container for

controls, 190
ProcessRequest method, 210
rendering methods, 194–195
SavePageStateToPersistence-

Medium method, 215
script-related methods,

197–198
ViewStateUserKey property,

192–193
worker properties, 191–193

page classes
derived, 12
intermediate, 13

page composition, 319–345
content pages, processing,

329–334
content pages, writing, 323–328
master pages, 320–324
master pages, processing,

329–334
master pages, programming,

333–336
styling pages, 336–344

page controller entities
code-behind classes, 12–13. See

also code-behind classes
implementation of, 5

Page Controller pattern, 11–14,
156, 618

effectiveness of, 14
HTTP handler components, 11
revisiting, 14
server-side definitions, 5

page development
error handling, 269–285
page localization, 303–312
page personalization, 285–303
resources, adding to pages,

312–317
@Page directive, 180–185

Async attribute, 201–202
configuration settings, 89–92
EnableViewStateMac attribute,

713, 715
page behavior attributes,

182–184
page compilation attributes,

181–182
page output attributes,

184–185
page execution

external page, embedding,
661–662

helper methods, 660–663
server-side redirection, 663

page handler factory, 177–179
page life cycle, 11–12, 119, 169,

174, 209–215
in ASP.NET MVC, 22
client data, processing, 211
finalization, 214–215
InitComplete events, 210
Init events, 210
LoadComplete event, 213
Load events, 211
managing, 177
markup, generating, 215
Page class events, 198–200
postback, 212–213
PreInit event, 209
PreLoad event, 211
PreRenderComplete event, 214
PreRender event, 214
restructuring, 14
setup, 209–212
Unload event, 215

page localization, 185, 303–312
page methods, 895–897

objects accessable from, 897
page objects, creation of, 178
page output, dependency object,

762–763
page personalization, 285–303

OpenWebConfiguration method

 953

page processing. See also partial
rendering

browser-led model, 840–841
page requests

context information, 175
processing, 174–179
reason for processing, 209

page usability, 344–364
PageAsyncTask object,

creating, 201
pageBaseType attribute, 90
PageHandlerFactory class, 144,

177–178
Page_Load event

profile properties, initializing,
295

presenter instance in, 626–627
pageLoaded event, 873
pageLoading event, 873
PageMethods class, 896
page-output caching. See output

caching
PageRequestManager client

object, 872
PagerSettings class, 441
pages, 6

advertisement banners on,
262–263

asynchronous pages, 121,
201–209

batch mode compilation, 169
behavior of, 757
cacheability of, 757, 758–762
content pages. See content

pages
culture, setting, 309
debugging, 284–285
download experience,

optimizing, 312–317
dynamic compilation, 52
embedding external pages in

current page, 661–663
error handling for, 272–278
errors, mapping to, 278–282
header information, 241
heaviness of, 10, 17
HTML forms on, 200
initialization code, 905–906
interaction model, 17
invoking, 170–173
layout of, 320. See also master

pages
life cycle of. See page life cycle
master pages. See master pages
namespaces, linking to, 188
page behavior, 182–184

partial rendering, 865. See
also partial rendering

passing values between, 379
performance and quality

analysis, 317
placeholders on, 265–266
postbacks. See postbacks
processing directives, 179–190
protecting access to, 784
recompilation of, 170
rendering, 214–215
requested, representation of,

172–173
resources, adding, 312–317
run-time modules, 170–171
script files, linking to, 312–314
scripts, adding to, 858–859
serving to user, 329–330
sharing of output, 773
single server-side form

support, 200
size thresholds, 714
styling, 336–344
testing for usability, 361–364
themes, applying to, 340–341
titles of, 348
unloading, 215
updating asynchronously, 16
usability, 319, 344–364
user controls, converting to,

769
user controls, linking to,

189–190
view state, enabling and

disabling, 227
view state, persisting, 200
XML documents, injecting into,

264–265
Pages-for-Forms model, 16–17
<pages> section, 89–92

child sections, 91–92
controlRenderingCompatibility-

Version attribute, 232
paging data, 451–453

setting up for, 464–465
paradigm shifts, 15
parameters, varying output

caching by, 765
ParseControl method, 197
parser errors, 269
partial caching, 768–774
partial classes, 173

code-behind classes, 173
partial rendering, 19–20, 851–879

asynchronous postbacks,
concurrent, 877–878

benefits and limitations of,
876–877

error handling, 857
example of, 861
migrating pages to, 865
polling and, 872, 878–879
vs. postbacks, 860, 878–879
postbacks, detecting from child

controls, 866–868
postbacks, triggering, 868–869
refresh conditions, 866
script loading, 858–859
ScriptManager control, 852–860
ScriptManagerProxy control,

857–858
UpdatePanel control, 860–866

partial trust permission set
changing name of, 103

PartialCaching attribute, 770
partial-trust applications, 103
partition resolvers, 704
partitioned cache topologies, 746
partitioned cache with H/A, 746
Passport authentication, 76
PasswordRecovery control,

832–833
passwords

changing, 833–834
managing, 812
retrieving or resetting, 832–833

Path attribute, 69
path property, 895
pathInfo placeholder, 165
patterns. See design patterns
Patterns & Practices group, 587
pending operations, canceling,

876
percentagePhysicalMemory-

UsedLimit attribute, 78
performance

analyzing pages for, 317
caching and, 733, 759, 761
closures and prototypes and,

849
DHTML and, 843
download experience,

optimizing, 312–317
exception handling and, 270
nesting pages and, 330
site precompilation and, 52
Substitution control calls and,

776
view state size and, 713–715

PerformDataBinding method,
overriding, 535, 540

permission sets, configuring, 103

permission sets, configuring

954

permissions, for applications,
788–789

PermissionSetName attribute, 103
per-request impersonation, 785
PersistenceMode attribute, 558
personalization, 285–303

anonymous user information,
migrating, 299–300

anonymous user profiles,
294–295

interaction with page, 292–300
personalization events,

298–299
profile database, creating,

292–294
profile providers, 300–303
user profiles, creating, 285–292
user-specific information, 299

Personalize event, 298
picture viewer handler, 128–133
PictureViewerInfo class, 129
pipeline events, wiring up,

151–153
PipelineRuntime objects,

invoking, 34
PlaceHolder controls, 265–266,

557
placeholders, 320–321, 323, 333

contents of, 326
default content, 323–324

POCO code generator, 601
policy files and security levels,

mappings between, 97–98
polling, 739, 742

partial rendering and, 872,
878–879

timer-based, 878–879
pollTime attribute, 80
port 80, 27
port numbers, changing, 100
positional filters, 911
PostAcquireRequestState event,

33, 650
PostAuthenticateRequest event,

32, 650
PostAuthorizeRequest event, 32,

650
postback controls, 387
postBackElement property, 873
postbacks, 4–6, 766

destination of, 365
detecting from child controls,

866–868
full, 869–870
handling, 5, 212–213
HTML server controls for, 244
partial rendering and, 860, 865

replacing with AJAX calls, 10
via scripts, 374
SEO and, 350
through submit buttons, 374
to target page, 374–376. See

also cross-page posting
Timer control for, 878–879
triggering, 258, 868–869
user interface, disabling,

874–875
PostBackTrigger object, 870
PostBackUrl property, 374
post-cache substitution, 775–776
posted data

processing, 211
retrieving, 369
saving, 250–251
testing, 363

posted names, matching to
control IDs, 211

posting acceptor, 250
PostLogRequest event, 33, 651
PostMapRequestHandler event,

32, 650
POST method, 365

posting forms with, 367
PostReleaseRequestState event,

33, 651
PostRequestHandlerExecute event,

33, 650
PostResolveRequestCache event,

32, 155–156, 650
PostUpdateRequestCache event,

33, 651
precedence of themes, 341
precondition attribute, 109, 126
preconditions, 578
predictable IDs, 91
PreInit events, 209
PreLoad event, 211
Preload method, 62
prependTo function, 921
PreRender event, 214, 230
PreRenderComplete event, 214

asynchronous handlers for, 201
Begin/End asynchronous

handlers for, 201
page processing, 202, 203

PreRequestHandlerExecute event,
33, 650

PreSendRequestContent event,
33, 150

PreSendRequestHeaders event,
33, 150

presentation layer, 269, 593, 596.
See also pages

in AJAX, 880

DAL, invoking from, 608
design patterns for, 615–623
navigation workflow, binding

to, 636
presentation logic, 217
Presentation Model (PM) pattern,

621
presenter

creating, 626–632
data retrieval, 628–629
defined, 619
instance of, getting, 626–627
navigation and, 632–636
Refresh method, 628
role in MVVM pattern, 622
role of, 621
service layer, connecting to,

629–630
sharing with Windows

applications, 631–632
testing, 639–642
testing in isolation, 641–642

__PREVIOUSPAGE hidden field,
374

PreviousPage property, 375
@PreviousPageType directive,

376–377
principal objects, custom,

804–806
priority, cached item, 726,

730–731
privateBytesLimit attribute, 78
process model

configuration settings, 92–95
IIS integrated mode and, 95
optimizing, 94

process recycling, 28, 55–56
configuration file changes and,

65
event log entries for, 57
unexpected restarts and, 56–58

processing, 14
separating from rendering,

9–10
processing directives, 179–190

@Assembly directive, 185–187
@Implements directive, 189
@Import directive, 188
@Page directive, 181–185
@Reference directive, 189–190
syntax, 180
typed attributes, 180–181

<processModel> section, 92–95
processRequestInApplicationTrust

attribute, 102

permissions, for applications

 955

ProcessRequest method, 36, 121–
122, 138, 210

HttpRuntime, 174–175
IHttpHandler, 174, 178, 190

profile API, 108
access layer, 300
storage layer, 300
for Web site projects, 286–287

profile class, 291–292
defining, 287–289

Profile property, 288, 295
attributes of, 96

profile providers, 300–303
configuring, 300–302
connection strings, 301
custom, 302–303
functionality of, 96
SQL Express, 286

<profile> section, 96–97, 286–287
ProfileEventArgs class, 299
ProfileModule, 298–299
Programming Microsoft ASP.NET

MVC (Esposito), 26, 268
ProgressTemplate property, 871
properties

of Control class, 218–228
defined, 413
of Web controls, 253–254

<properties> section, 286
property values, varying output

caching by, 770
protected members, 173
protection providers, choosing,

115–116
ProtectSection method, 114
protocol stack, 29
prototype object, 848–849
prototype property, 847
prototypes, 848–849
Provider property, 808
ProviderBase class, 813
providerName attribute, 106
providers

browser-capabilities providers,
346–348

browser providers, 77, 78
defined, 300
encryption providers, 107,

115–116
membership providers, 88
output cache providers, 79
profile providers, 96, 300–303
registering, 347
role providers, 97
site map providers, 100,

354–355
store providers, 99

Providers property, 815
<providers> section, 99, 301
proxy cache, 755–756
proxy classes, PageMethods class,

896
proxy methods, JavaScript,

893–895
public methods, invoking, 886

Q
queries

filter function, 914
filters, 911–914
find function, 914
selectors, 909–911
visibility operators, 915–917

query results. See wrapped sets
queryable objects, 414–415

R
RAD, 4, 437

designer data bindings, 218
paradigm, 569, 615
RadioButtonList control, 424–

425, 427
radio buttons, 259–260
RaisePostBackEvent method, 213,

387
RaisePostDataChangedEvent

method, 212, 245
Random Number Generator

(RNG) cryptographic
provider, 687

RangeValidator control, 380, 386
Rapid Application Development.

See RAD
Raven, 614
raw data, passing, 17
reader/writer locking

mechanisms, 683–684
reading methods,

synchronization mechanism,
678

ready function, 906–907
multiple calls to, 907
order of running, 907

readyState property, 906
readyStateChange event, 906
reauthorization, 663
Red Gate SmartAssembly, 284
redirect attribute, 81
RedirectFromLoginPage method,

794, 796
redirects, 634–635

RedirectToLoginPage method, 796
@Reference directive, 189–190
refreshing. See updating

conditional, 866–870
RegisterAsyncTask method,

206–208
RegisterHiddenField method, 261
RegisterInstance method, 588
RegisterRoutes method, 160
RegisterType method, 587
RegisterXXX methods, 855–856
regular expressions, validating,

385
RegularExpressionValidator

control, 380, 385
release script files, 859–860
ReleaseHandler method, 145
ReleaseRequestState event, 33,

650
Remote Scripting (RS), 841
removal callbacks, 726

defining, 729–730
Remove method, 727
Render method, 231, 520–521

overriding, 528
RenderControl method, 230
Renderer class, 575
rendering

browser-sensitive, 234–235
child controls for, 528–532
cross-browser rendering,

344–348
custom controls, 520–522,

527–533
legacy and CSS-friendly modes,

232–234
separating from processing,

9–10
SimpleGaugeBar control,

527–533
templates, 560–561

rendering engine, entry point
into, 231

rendering methods, 194–195
RenderingCompatibility property,

233
Repeater control, 221, 416,

428–430
RepeaterItem class, 429
RepeaterItemCollection class, 429
replay attacks, 803, 804
replicated cache topologies, 746
Repository pattern, 609–610
Representational State Transfer

(REST), 879–897
request handlers, determining, 32

request handlers, determining

956

request life cycle, 22
events in, 32–34
handlers, writing, 36–37

Request object Browser property,
77

request property, 873
request routing, 119–120
Request.Headers collection, 275
RequiredFieldValidator control,

380, 382, 386–387
RequireJS, 313
requirements churn, 567
RequirementsMode property, 889
requireSSL attribute, 84, 803–804
reset buttons, 247
ResetPassword method, 812
Resolve method, 588–589
ResolveRequestCache event, 32,

650
resolver types, 103
resource assemblies, defined, 304
resources

adding to pages, 312–317
custom resources, 126–127
declarative vs. programmatic,

306
defined, 304
embedding, 195
forbidden, preventing access

to, 143
global resources, 304–305, 307
lifetime of, 648
localizable, 304–308
local resources, 304–305, 308
mapping to handlers, 171–172
retrieving, 659–660
served by IIS, 128

$Resources expression builder,
307

$Resources expressions, 359
ResourceUICultures property, 315
response bodies, sending, 33
response filters, 651, 666–667
Response.Redirect method, 275,

663
REST, 879–897

consuming, 893
HTTP verbs and, 879
JavaScript proxy for, 893–895
webHttpBinding model, 883

RESX files, 304
culture information in, 308
editing, 306
site map information in,

359–360
ReturnUrl parameter, 799

RewritePath method, 104, 158,
658–659

Rich Internet Application (RIA)
services, 20

rigid software, 567–568
Rijndael encryption, 799
role management, 97, 817–821

LoginView control, 830–832
role management API, 108,

817–819
role manager HTTP module, 820
role manager providers, 300
<roleManager> section, 97
RoleProvider class, 820–821
role providers, 820–821

built-in, 821
custom, 821
role management, 97

roles
defined, 817
login templates based on,

831–832
securing access with, 358

Roles class, 806, 807, 819–820
methods of, 819
properties of, 820

Route class, 160
route handlers, 159

tasks of, 156
route parameters, 159

accessing programmatically,
162

RouteData property, 162
routes, 158–159

default values, 162
defining, 160
HTTP handler for, 155
processing order, 162
storing, 160
structure of, 163–164

RouteTable class, 160
RouteValueDictionary type, 163
routing API, 104
RowUpdating event, 443, 455
RSA-based protection provider,

107, 115
runAllManagedModulesForAll-

Requests attribute, 109
runat attribute, 7, 197, 217
runat=”server” attribute, 200

for HTML controls, 235
for Web controls, 253

runManagedModulesForWebDav-
Requests attribute, 109

runtime compilation, 52
runtime environment, 27

ASP.NET MVC, 22–24

asynchronous handlers, dealing
with, 146–147

configuration settings for,
71–73, 85–87, 89–92

of early ASP.NET, 28–29
of early IIS, 29
of IIS, 30
IIS 5.0, 28
Windows 2000, 28

runtime errors, 269. See also error
handling

runtime event handling, 119. See
also HTTP handlers

runtime page processing
modules, 170–173

S
Same Origin Policy (SOP), 850,

881, 929
sandboxing, 789
SaveAs method, 251
SaveControlState method, 719
SavePageStateToPersistence-

Medium method, 215
SaveViewState method, 214

overriding, 539
saving posted files, 250
scalability, 744. See

also distributed cache
ScaleOut StateServer, 755
scavenging, 731
schema-less storage, 614
scope

application scope, 119
machine scope, 119

script code
emitting in client pages, 198
for page postbacks, 213

script files
aggregating, 315
embedded vs. inline, 316–317
linking to pages, 312–314
localized, 314–315
minifying, 314
moving to bottom of page,

312–313
script interceptors, 20
script maps, 127
script resource management, 852
<script> tags, 312, 858, 929–930

defer attribute, 313
scriptable services, 880–889
scripting engines, 901–902
script-led requests, JSON for,

890–893

request life cycle

 957

ScriptManager control, 315, 851,
852–860

events of, 856
on master pages, 865
methods of, 854–855
properties of, 852–854

ScriptManagerProxy control, 852,
857–858, 865

ScriptModule HTTP module, 897
ScriptReference class, 859
ScriptResource.axd HTTP handler,

859
scriptResourceHandler element,

107
scripts

composite, 859
debug files, 859–860
globalization, 860
loading, 858–859
Page class methods related to,

197–198
postbacks via, 374
release files, 859–860

Scripts collection, 858
ScriptService attribute, 886
search

for files, 130
on input forms, 368–369

search engine optimization.
See SEO

search engines, expressive URLs
and, 156

<section> element, 67
section handlers, specifying, 116
<sectionGroup> element, 67–68
SectionInformation object

ProtectSection method, 114
UnprotectSection method, 114

Secure Sockets Layer (SSL), 782
authentication tickets, securing

with, 803–804
secured sockets, authentication

over, 803–804
security

application trust levels and,
786–789

ASP.NET pipeline level, 781, 784
ASP.NET security context,

781–791
authentication methods,

789–791
claims-based identity, 821–825
cookieless sessions and,

690–691
default ASP.NET account,

changing, 784–786
error handling, 81

filtering user input, 135
Forms authentication, 791–806
HTTP error handling and, 281
HttpOnly attribute and, 85
IIS level, 781–783
input validation, 674
JavaScript callers and, 880
membership API, 806–821
planning for, 779
role management, 817–821
server controls for, 825–835
of session state data, 699
threats, types of, 779–780
trust level and policy file

mappings, 97–98
of view state, 192–193, 712–713
worker process level, 781,

783–784
Security Token Service (STS), 824
security trimming, 358

implementing, 354
security zones, 786
<securityPolicy> section, 97–98
Select buttons, 505–506
selected item templates, 505–507
SelectedIndexChanged event, 425
SelectedItem property, 424
SelectedItemTemplate property,

505
selection in ListView control,

505–507
selective updates, 19–20
selectors, 909–911

compound, 910–911
SelectParameters collection, 462
Selenium, 363
self-logging exceptions, 284
semi-dynamic content, caching,

58
sendCacheControlHeader

attribute, 79
sensitive data, securing, 780
SEO, 348–351

ASP.NET Web Forms and,
350–351

cookieless sessions and, 691
measuring, 351–352
meta tags, 349
page titles, 348
query strings, 349
redirects, 349
Server.Transfer and, 275
subdomains, 349

separation of concerns (SoC). See
SoC

serialization
of session state, 695–697, 710

XML format, 890
server attacks, 779
server caching, 761

post-cache substitution and,
776

server controls, 4–5, 7–8. See
also Control class; controls

adaptive rendering, 230–232
in AJAX, 267–268, 851
browser-sensitive rendering,

234–235
control containers, 226–227
control state, 214, 718–719
CSS-friendly markup, 232–234
ctIXX string IDs, 223
custom controls, 513–562
data-bound, 411. See also data

binding
data source controls, 456–468
HTML and CSS friendly, 337
HTML server controls, 217,

235–252
identifying, 220–226
instances of, 172
literal controls, 252
name conflicts, avoiding, 221
naming containers, 221
programming, 7
RAD designer data bindings,

218
role of, 217
security-related, 825–835
skins for, 220, 340–342
Static option, 224
template definitions for, 340
themes, 220, 235, 337, 340–341
validation of, 381–382
view state, 227–228
view state, enabling or

disabling for, 715–717
visibility of, 228
Web controls, 217, 253–268

server forms, 365
Server object, 660–663
server processes, memory limits,

94
server transfers, 378–379
server variables, 673
ServerChange event, 245, 248–249
ServerClick event, 247
servers

machinewide settings, 70
view state, storing on, 719–720

server-side controls
runat=server attribute, 200
view state information, 200

server-side events, 212–213

server-side events

958

server-side expressions, syntax,
690

server-side forms, 240
server-side <form> tags, single,

200
server-side handlers, 6
server-side programming, 839
server-side redirection, 663
server-side validation, 387–388

in wizards, 405
Server.Transfer method, 275, 378
ServerValidate event, 384
service layer

defined, 602
methods in, 604
presenter, connecting to,

629–630
Service Layer pattern, 602
Service Locator pattern, 582
services, scriptable, 880–889
session cookies, 687–688. See

also cookies
session hijacking, 690, 780
session ID, 687–692

custom, 708–710
default generation behavior,

708
encrypting, 690
generating, 687

session ID managers, 708–710
Session object, 680–681

behavior and implementation,
98

removal of values from,
694–695

session providers, out-of-process,
753

session state, 680–704. See
also HttpSessionState class

access to, 680, 699
best practices for, 710
concurrent access, 684
configuring, 98–100, 691–692
customizing management of,

704–710
errors on page and, 695
expiration of, 706
extensibility model for, 680
HTTP handler access to, 141
InProc mode issues, 694–695
lifetime of, 693–695
loss of, 694–695
management timeline, 683
persisting data to remote

servers, 695–699
persisting data to SQL Server,

699–704

remote, 695–699
serialization and deserialization,

695–697
Session_End event, 693–694
session ID, assigning, 687–692
Session_Start event, 693
session-state HTTP module,

680–684
state client manager, 681–682
synchronizing access to,

683–686
Web farm/garden scenarios,

703
session state store, 705. See

also state providers
Session_End event, 686, 693–694
SessionIDManager class, 708

deriving from, 709
sessions

abandoning, 686
cookieless, 688–691
identifying, 687–692
lifetime of, 693
out-of-process, 695–697

Session_Start event, 693
<sessionState> section, 98–100,

691–692
attributes of, 692
SQL Server, setting as state

provider, 700–701
SessionStateModule, 119, 680–684
SessionStateStoreData class, 707
SessionStateStoreProviderBase

class, 705–706
SessionStateUtility class, 707
SetAuthCookie method, 798
SetCacheability method, 666
SetExpires method, 666
SetPropertyValue property, 290
settings

inheritance, 63, 90
packaging, 43–51

SetVaryByCustom method, 768
shadow-copy feature, 84
shadowCopyBinAssemblies

attribute, 84
sharding, 612
Shared attribute, 773
SharedCache, 754
ShouldHook helper function, 153
show function, 915–917
shutdownTimeout attribute, 84
SignOut method, 795
sign-outs, 795–796
Silverlight

compatibility with other
applications, 632

WCF service configuration in,
885

SimpleGaugeBar control, 522–527
color support, 526–527
extending, 533–543
object model definition, 523
object model implementation,

523–526
output of, 529
properties of, 523
rendering, 527–533
ruler, 526, 530–531
using, 532–533

SimpleHandlerFactory class, 142,
144

Single Responsibility Principle
(SRP), 573–574

single-form model, 365–366, 368.
See also input forms

site map providers, 100, 354–355
default, 352

<siteMap> section, 100
site maps

configuring, 357–360
defining, 352–353
localizing, 359–361
multiple, 357–358
securing access with roles, 358

site navigation API, 352–358
configuration settings, 100

site precompilation, 52–55
benefits of, 52
deployment precompilation,

53–55
in-place precompilation, 53
target directory support, 53, 54

site replication tools, advantages
of, 42

site-level configuration settings,
108–110

SiteMap class, 355–356
<siteMapNode> elements, 353
SiteMapPath controls, 356–358
SiteMapProvider class, 354
SkinID property, 342
skins, 338–341

applying, 341–342
for server controls, 220

sliding expirations, 723, 726,
731–732

SoC, 10, 571–573
in ASP.NET MVC, 23
favoring, 14
layers and, 593
MVC pattern and, 617

Socket class, 102
software, rigid, 567–568

server-side expressions, syntax

 959

software dependencies, 568
software design, 565

abstraction, 575–576
big ball of mud, 566–567
cohesion and coupling,

569–571
mainatainability, 565
methodologies, 595
object-oriented design, 599
principles of, 569–572
requirements churn, 567
security planning, 779
separation of concerns,

571–573
SOLID principles, 573–583
structured writing, 615
symptoms of deterioration,

567–569
test-driven development, 638
three-tiered architecture,

593–595
from use-case, 624

software design team
limited skills, 566–567
member turnover, 567

software modules
cohesion of, 570
coupling of, 570–571
low coupling between, 575

software reuse, 568
software workarounds, 568–569
SOLID principles, 573–583

Dependency Inversion
principle, 580–583

Interface Segregation principle,
579–580

Liskov’s principle, 576–578
Open/Closed Principle, 575–576
Single Responsibility Principle,

573–574
Sort buttons, 511
sorting

data, 453–454
expressions, 453
lists, 511

source code
of content pages, 325
deploying, 40
for derived classes, generating,

172
parsing, 170

source files
dynamic compilation of, 189
generating, 611

 tags, 388
sprites, 315–316
SQL Azure, 613

SQL Express, 286
SQL injection, 780
SQL Server

cache dependency, 743–745,
762

hosting identity access, 703
persisting session state to,

699–704
session state data store,

creating, 701–703
SqlCacheDependency class, 80,

743–745
SqlCommand object, 744
SqlDependency attribute, 762
SqlRoleProvider, 821
SQLServer mode, 99
SQLServer provider, 695, 705
src attribute, 858
SRP, 573–574

canonical example, 574
SSL, 782

authentication tickets, securing
with, 803–804

StackOverflow site, 267
startMode attribute, 60
state client managers, 681–682
state information. See also view

state
detecting changes, 212–213,

248–249
persisting, 33
releasing, 33
retrieving, 32

state management . See also view
state

application state, 676–679
best practices, 710
cookies, 675
levels of, 675
session state, 680–710
view state, 710–720

state providers
ASP.NET, 697–699
custom, 704–708
expiration callback support, 706
expiration mechanisms, 706
locking mechanisms, 706
out-of-process, 695–699
partition resolvers, 704
registering, 707
SQL Server, 700–704
writing, 707

StateBag class, 711–712
methods of, 711–712
properties of, 711

stateful behavior
postbacks for, 6

view state and, 6–7
StateServer mode, 100
StateServer provider, 695, 705
static files, IIS serving of, 128
Static option, 224
static properties in global.asax

file, 655
static requests, processing, 29
static resources

behavior of, 757–758
images, 133

StaticSiteMapProvider class, 354
statusCode attribute, 81
S3, 613
StopRoutingHandler class, 164
storage

of HTTP requests, 673
intermediate, 721
local, 923
of output caching, 776–777
schema-less storage, 614

store providers, 692
for session-state settings, 99

stored procedures, 612
stream classes, creating, 666–667
strings, lengths of, 696
stubs, 640
Style class, 254–255
style information

adding to pages, 337–345
themes, 337

style properties, 357
of Web controls, 254–255

style sheet files, external, linking
to, 242

style sheets, 339. See also CSS
defined, 338

style sheet themes, 338, 340
StyleSheetTheme attribute, 340,

341
styling pages, 336–344
submit buttons, 213, 247
SubSonic, 600
Substitution control, 775–776
.svc resources, 881–882
swapText function, 921
synchronization

of application state operations,
678–679

of cache, 736
with Copy Web Site feature, 42

synchronous handlers, 121–127.
See also HTTP handlers

SYSTEM account, 781
system classes, 12
System.ApplicationException class,

272

System.ApplicationException class

960

System.Configuration namespace,
63

configuration management
classes in, 110

<system.diagnostics> section, 101
System.Drawing namespace, use

of classes in, 140
<system.serviceModel> section,

67
<system.web.extensions> section,

107–108
<system.web> section, 71–105

<Caching> subgroup, 73
HTTP handlers, registering in,

124
important sections in, 71–73

<system.webServer> section,
108–110

HTTP handlers, registering in,
125

reading and writing in, 112
System.Web.UI.HtmlControls

namespace, 237
System.Web.UI.Page class, 12, 36,

172
ProcessRequest method, 36

System.Web.UI.WebControls
namespace, 253

T
T4 templates, 600
Table Module pattern, 597, 598

DAL and, 606
<table> tag, 232
table-based interfaces, 480–485
tables, for multicolumn layouts,

485
tabular layouts, 480–485

alternate item rendering,
483–484

HTML tables, 484–485
item template, 481–483
layout template, 480–481

tag-based selectors, 910
<tagMapping> section, 91–92
tasks, asynchronous execution,

201
TDD, 23, 638
Telerik JustCode, 270
template containers, defining,

558–559
template definitions, for controls,

340
template properties

attributes, 557–558
defining, 557–558

setting, 559–560
TemplateControl class, 190

Eval method, 438
templated fields, 450–451
templates

for custom controls, 556–561
defined, 434
insulating in separate file, 557
ListView support of, 473
login templates, 831
rendering, 560–561
role-based, 831–832
T4 templates, 600
for wizards, 400

temporary ASP.NET files folder,
786

permissions on, 784
test doubles, 640
test harnesses, 638
testability of Web Forms,

636–642
test-driven development (TDD),

638
with ASP.NET MVC, 23

testing
CacheDependency objects, 742
code-behind classes, 361
DAL interfacing and, 609
presenter classes, 639–642
test names, 639
unit testing, 637–638
for usability, 361–364
writing tests, 637

text
inserting as literals, 260
localized text, 306–307

text boxes, multiline, 245
text controls, 260–261
TextBox class, interfaces of, 260
theme attribute, 340
Theme attribute, 341
Themeable attribute, 235
ThemeList controls, 343
themes, 319, 337–341

applying, 340–341
changing, 209
vs. CSS, 357
customization themes, 338
defined, 337
enabling and disabling,

342–343
loading dynamically, 343
precedence of, 341
for server controls, 220, 235
skins, 341–342
structure of, 339–340
style sheet themes, 338

thread pool, free threads in, 86
threads

asynchronous handlers and,
147–148

impersonation and, 784–785
minimum settings for, 94–95

three-tiered architecture,
593–595

business logic layer, 596–605
design model, 595

tickets, authentication, 792–793
getting and setting, 798
securiing, 803–804
storage in cookies, 799–800

tiled layouts, 487–493
grouping items, 487–489
group item count, 489–491
group separators, 489
populating dynamically,

491–493
Timer control, 878–879
ToInt32 method, 131
topology of distributed cache,

746
<trace> section, 100–101
Trace.axd handler, 129
tracing, 100–101
Transaction Script (TS) pattern,

597–598
Transfer method, 663
Transform attribute, 50
transformation files, 50–51
transition events, defined, 404
TransmitFile method, 669
tree of controls

building, 209
unique names in, 190

trigger function, 918
Triggers collection, 869
triggers of postbacks, 868–869
trust levels, 786–789

configuration settings, 101–104
and policy files, mappings

between, 97–98
<trust> section, 101–104

code access security
permissions, 787

<trustLevel> elements, 97
try/catch/finally blocks, 270

wrapping code in, 278
typed attributes, 180–181
TypeName attribute, 376

U
UICulture property, 315
unbind function, 918–919

System.Configuration namespace

 961

UniqueID property, 211, 220
unit testing, 637–638

base classes and, 656
unit test classes, 639

Unity, 587–592
declarative configuration,

589–590
dependencies, resolving,

588–589
lifetime managers, 590–592
types and instances,

registering, 587–588
Unload event, 215
unobtrusive JavaScript, 918
UnprotectSection method, 114
update callbacks, 726
Update method

exceptions thrown in, 868
signature, 868

update operations, 466–468
in ListView control, 499–501
modifying objects, 468
parameters for, 466

UpdateMode property, 866–867
UpdatePanel control, 851,

860–865
conditional refreshes, 866–870
contents of, 865
example of, 861
feedback during updates,

870–876
full postbacks from, 869–870
in master pages, 864–865
vs. panel controls, 860–861
populating, 863–864
postbacks, triggering, 868–869
properties of, 862
UpdateProgress control for, 871

UpdateProgress control, 870–872
events of, 872–873

UpdateRequestCache event, 33,
651

updating
concurrent calls, 877–878
conditional refreshes, 866–870
pending operations, aborting,

876
progress screen, 871–872
refresh conditions, 866
user interface, disabling,

874–875
Updating event, 468
uploading files control, 261–262
Uri class, 673
url attribute, 104
URL authorization, 791
URL encoding, 661
URL Rewrite Module, 37

URL rewriting, 155, 157–158, 349,
658–659

drawback of, 158
vs. URL routing, 159

URL routing, 155–165
constraints on, 162, 164
vs. HTTP handlers, 165
preventing for defined URLs,

164–165
vs. URL rewriting, 159
in Web Forms, 36, 160–165

URL routing engine, 119–120,
155, 157–159

URLAuthorizationModule HTTP
module, 791

<urlMappings> section, 104
urlMetadataSlidingExpiration

attribute, 84
UrlRoutingModule class, 155
URLs

for advertisements, 262–263
derived classes, linking to, 172
for embedded resources, 195
and endpoints, mappings

between, 104
expressive URLs, 156–157
for hyperlinks, 447
for images, 133, 259
logic and parameters in, 156
mangling, 690
mapping to ASPX pages, 36
navigating to, 243–244
preventing routing for, 164–165
resolving, methods for, 195–197
route data in, 156

usability, 344–364
cross-browser rendering,

344–348
navigation system, 351–357
SEO, 348–351
site map configuration, 357–360
testing for, 361–364

UseDeviceProfile, 691, 801
useHostingIdentity attribute, 703
user account management, 806
user authentication, 784, 794–795

configuration settings, 74–76
user controls

cacheability of, 770
caching in cacheable pages,

773–774
caching output of, 770
vs. custom controls, 513
description of, 768–769
dynamically loading, 557
inserting into pages, 769
master pages, 329. See

also master pages

pages, linking to, 189–190
sharing output of, 772–773
Static option, 224
strongly typed instances of, 189

user credentials, collecting, 794
user input

filtering, 135
validation of, 379–396

user interface
disabling, 874–875
dynamic, 18–19
iterative controls for, 427–432
table-based interfaces,

480–485
for Web pages, 3

user profiles
in action, 296–298
for anonymous users, 294–295,

299–300
automatically saving, 97
configuration settings, 96–97
creating, 285–292
grouping properties, 290
interaction with page, 292–300
profile database, creating,

292–294
profile providers, 300–303
properties, accessing, 295–296
storage of data, 286
user-specific information in,

299
for Web Application Projects,

defining, 286
for Web site projects, 285

UserControl class, 321
user-defined code, invoking, 245
userIsOnlineTimeWindow

attribute, 88
UserIsOnlineTimeWindow

property, 808
user-mode caching, 58
users

adding and creating, 806, 809–
810, 834–835

anonymous identification
feature and, 73–74

authenticating, 793, 810–811.
See also authentication

authentication state, 829
authorization of, 76–77
feedback for, 870–876
information about, storing, 106
managing, 811–812
reauthorization of, 663
roles, 817

UseSubmitBehavior property, 213,
258

users

962

V
val function, 923
Validate method, 379, 388
ValidateRequest attribute, 674
ValidateUser function, 810–811
validation

of input fields, 248
of new records, 504–505
of cached pages, 764–765

validation attribute, 87
validation controls, 379–396

BaseValidator class, 380–381
client-side validation, 393–394
CompareValidator control,

382–383
cross-page posting and,

395–396
CustomValidator control,

383–385
error information, displaying,

388–389
ForeColor property, 381
generalities of, 379–382
and input controls, linking,

381–382
multiple controls, 380
multiple validators, 390–391
properties of, 380–381
RangeValidator control, 386
RegularExpressionValidator

control, 385
RequiredFieldValidator control,

386–387
server-side validation, 387–388
validation groups, 394–395
validation summary, 391–393

<validation> element, 109
ValidationGroup property,

394–395
validationKey attribute, 87
[ValidationProperty] attribute, 385
ValidationSummary control, 380,

391–393
Validators collection, 379
value, cached item, 725
VaryByControl attribute, 770–772
VaryByCustom attribute, 767
VaryByHeader attribute, 767
VaryByHeaders property, 767
VaryByParam attribute, 759–760,

765
VaryByParams property, 765
verbs attribute, 76
VerifyRenderingInServerForm

method, 195, 365
view

abstracting, 624–626

in ASP.NET MVC, 21–22
autonomous views, 616
defined, 616
role in MVC, 618
role in MVP, 620
XAML-based, 623

view controls, 266–268, 411,
432–434

DataKeyNames property, 421
DetailsView control, 432
FormView control, 433
GridView control, 433
ListView control, 433–434
programmatic control in, 476

view state, 4–7, 710–720
authentication checks for, 713
of controls, 227–228
control state, 718–719
cross-page posting and,

374–375
disabling, 715–717
encrypting, 712–713
encryption and decryption

keys, 87
functionality of, 716
information stored in, 710
issues with, 712–715
methods of, 711–712
page performance and,

713–715
persisting, 200
programming, 715–720
properties of, 711
restoring, 210
saving to storage medium, 214
security of, 192–193, 712–713
SEO and, 350
on server, 719–720
size of, 7, 10, 227, 713–715
StateBag class, 711–712
tracking, 210
truncation of, 90–91
when to use, 717
writing, 711

ViewState class, 676
ViewState container

classes, saving in, 539
control proeprties in, 536–538
property values, storing, 539

__VIEWSTATE hidden field, 215,
712

restoring contents of, 210
ViewState property, 710–712
ViewStateEncryptionMode

property, 713
ViewStateMode property, 227–

228, 716

ViewStateUserKey property,
192–193, 713

Virtual Accounts, 39
virtual directories, configuring

properties, 43
virtual folders for running

applications, 645
virtual members, safe use of, 578
VirtualPath attribute, 376
viscosity, 569
visibility operators, 915–917
Visual Basic, 3
Visual Studio

Add Config Transform option,
51

adding content pages to
projects, 324

Build|ASP.NET Configuration
menu item, 302

deploy packages, building,
45–46

designers, 615
exception handling, 270
Mark As IIS Application On

Destination check box, 47
MSUnit, 638
Package/Publish SQL tab, 46
Package/Publish Web tab,

45–46
resources files, adding, 304
site precompilation, 52, 55
T4 templates, 600
Table Module pattern and, 598
web.config transformations,

49–51
Web Deployment Tool, 44–45
Web project deployment, 40
Web setup applications,

creating, 42–43
Web Site Administration Tool

(WSAT), 809
XCopy capabilities, 40–41

Visual Studio Development
Server, 48

Visual Studio Publish Wizard, 48
Visual Studio 2010, 20
Visual Studio 2010 Coded UI

Tests, 363
Visual Studio 2010 Ultimate, 615
Vlissides, John, 575
VSDOC file, 904

W
WAPs, 40

data model definition, 290–292
personalization data in,

295–296

val function

 963

WAPs (continued)
user profiles, building, 286
web.config transformations, 49

warm-up. See application
warm-up

WatiN, 362–364
WCF services, 882

in AJAX pages, 881–885
ASP.NET compatibility mode,

887, 889
DataContract attribute,

891–892
method execution requests,

887
WDT, 44–45

building, 45–47
capabilities of, 45
contents of, 47
installing, 44

Web application folders,
configuring, 43

Web Application Projects.
See WAPs

Web applications. See also
applications

autostarting, 38–39
grouping, 29
IIS settings, specifying, 48
initialization tasks, 38
installing, 39
machinewide settings, 69, 70
per-directory settings, 68
presentation layer, 269. See

also pages
publishing in Visual Studio,

46–47
responsiveness of, 8
root web.config file, 69

Web attacks
common types of, 779–780
fending off, 779. See

also security
Web browsers. See browsers
Web cache, 755–756
Web controls, 217, 253–268. See

also controls
AdRotator controls, 262–263
AJAX and, 267–268
base class, 253
button controls, 257–258
Calendar controls, 263–264
check box controls, 259–260
core controls, 256–257
correct rendering of, 195
file upload control, 261–262
hidden field control, 261–262
hyperlink controls, 258–259
image button controls, 259
image controls, 259

methods of, 255–256
PlaceHolder control, 265–266
properties of, 253–254
radio button controls, 259–260
runat=”server” attribute for, 253
styling, 254–255
text controls, 260–261
user interface, 527
view controls, 266–267
Xml control, 264–265

Web deployment, 40. See
also application deployment

Web Deployment Tool or Web
Deploy (WDT), 44–47

Web development
ASP.NET for, 3
ASP.NET MVC for, 4
tools for, 19

Web farms/gardens, session state
and, 703

Web Forms, 3–14
in action, 5
alternatives to, 21–26
base class, 36
code testability, 636–642
vs. Data-for-Data model, 17
effectiveness of, 11, 14
HTTP handlers, determining, 35
moving away from, 15–19
MVC pattern and, 618
MVP pattern and, 621
MVVM pattern and, 622
navigation in, 634–636
opting out of built-in features,

25
Page Controller pattern, 11–14,

618
page postbacks, 4–5
page weights, 10
postback events, 5
presentation layer patterns,

615–623
abstraction layer, 14
runtime environment, 27
runtime stack, 23
Selective Updates model, 20
server controls, 4–5
strengths of, 4–8
testability of, 10
UI focus, 26,
usability of, 11
view state, 4–5
weaknesses of, 8–10

Web frameworks, 18–19
AJAX built into, 19–20

Web methods, defining, 896
Web pages. See also ASP.NET

pages
image references, 133

markup mix, 3
Web Platform Installer, 44
Web servers, 27. See also IIS

extensions of, 120
functionality of, 27
redesign of, 29
uploading files to, 249–251

Web Setup Projects
creating, 42–43
Web application folders, 43

Web Site Administration Tool
(WSAT), 292–293, 809

for role management, 818
Web site projects (WSPs), 40

Copy Web Site function, 40–41
data model definition, 286–287
personalization data in,

295–296
user profiles, defining, 285

Web site root folder, 786
Web sites

development skill set for, 3
integration testing, 49
interface elements, 319
JSONP-enabled, 930
navigation system, 351–357
page composition, 319–345
rich client sides, 839
root web.config file, 69
testing for usability, 361–364
usability, 344–364
visual idea for, 319

Web user controls, use of, 557
web.config file. See also individual

section names
additional files, 64
assemblies, editing, 186
centralized files, 69
for classic and integrated IIS 7

working modes, 109
for configuration, 63
current environment settings

in, 49
custom build configurations, 51
debug, release, and test

versions, 49–51
editing, 50, 116–117, 170
global settings, replicating in,

70
<identity> section, encrypting,

87
<location> section, 68
numRecompilesBeforeAppRestart

attribute, 56

<outputCacheProfiles> section,
774

processing of, 64–65

web.config file

964

web.config file (continued)
remote session state, enabling in, 698
root file, 64
sections in, declaring, 68
writing to, 65

WebConfigurationManager class, 110, 111
WebControl class, 253, 514

vs. Control class, 519
deriving controls from, 513

<webControls> section, 104–105
web.debug.config file, 49–50
WebGet attribute, 882
@WebHandler directive, 141–142
webHttpBinding model, 883
WebInvoke attribute, 883
WebMatrix IDE, 25
WebMethod attribute, 886, 895
web.release.config file, 49–50, 51
WebRequest class, 102
WebResource.axd handler, 859
web.sitemap file, 352
WIF, 76

claims and, 822
downloading, 824

Windows authentication, 76, 782, 790–791
limitations of, 791

Windows CardSpace, 791
Windows Communication Foundation (WCF), 603
Windows event log, logging exceptions in, 277
Windows Identity Foundation, (WIF), 76, 822, 824
Windows Server AppFabric, 747–753
Windows service always running, 38
Windows System folder, 786
WindowsTokenRoleProvider, 821
Wizard control, 266, 374, 397–402

events of, 401
main properties, 400
style properties, 399–400
suffixes, 400–401
templates for, 400

WizardNavigationEventArgs structure, 406, 407
WizardNavigationEventHandler delegate, 406
wizards, 397–409

adding steps to, 402–405
canceling navigation events, 407–408
finalizing, 408–409
headers, 398
input steps, 403–404
input validation, 404
jumping to steps, 401
navigating through, 405–409
navigation bar, 398
programming interface, 400–402
server-side validation, 405
sidebar, 398, 404–405
steps, types of, 402–403
structure of, 397–399
style of, 399–400
templates, 400

view, 398
WizardStep class, 402
WizardStepType enumeration, 402
workarounds, 568–569
worker process

ASP.NET standalone, 28–29
identity of, 781, 783
identity of, changing, 784–786
IIS native, 29
incoming requests, fielding, 149
recycling, 55, 59

worker properties, of Page class, 191–193
worker threads, number of, 94–95
World Wide Web Consortium (W3C), 339

proxy component standard, 842
updatable DOM standard, 842

wrapped sets, 905, 908–914
CSS classes, working with, 917
enumerating content, 908–909
operating on, 908–909, 915–919
visibility operators, 915–917

WriteFile method, 669
WriteSubstitution method, 776
WSPs, 40–41, 286–287, 295–296
w3wp.exe, 29
WWW publishing service, 29

X
XCopy, 40–43

Visual Studio capabilities, 40–41
xdt elements, 50
XHTML, ASP.NET support for, 3
XHTML rendering mode, designating, 105
<xhtmlConformance> section, 105
XML

advertisement files, 262–263
data, cache dependency for, 739–742
vs. JSON, 892–893
as serialization format, 890

Xml controls, 264
XML documents, embedding in pages, 264–265
XML encryption, 107

for <identity> section, 87
XmlDataCacheDependency class, 739–740

implementing, 740–741
XmlHttpRequest object, 16, 840–843

Same Origin Policy, 850
using, 844–845

XmlSiteMapProvider class, 352, 358
XslTransform class, 264, 265

Y
Yooder, Joseph, 566
YSlow, 317
YSOD (yellow screen of death), 272

WebConfigurationManager class

 965

About the Author
Dino Esposito is a software architect and trainer
 living near Rome and working all around the world.
Having started as a C/C++ developer, Dino has
 embraced the ASP.NET world since its beginning
and has contributed many books and articles on
the subject, helping a generation of developers and
 architects to grow and thrive.

More recently, Dino shifted his main focus to
 principles and patterns of software design as

the typical level of complexity of applications—most of which were, are, and will be Web
 applications—increased beyond a critical threshold. Developers and architects won’t go
far today without creating rock-solid designs and architectures that span from the browser
presentation all the way down to the data store, through layers and tiers of services and
workflows. Another area of growing interest for Dino is mobile software, specifically cross-
platform mobile software that can accommodate Android and iPhone, as well as Microsoft
Windows Phone 7.

Every month, at least five different magazines and Web sites in one part of the world or
another publish Dino’s articles, which cover topics ranging from Web development to
data access and from software best practices to Android, Ajax, Silverlight, and JavaScript.
A prolific author, Dino writes the monthly “Cutting Edge” column for MSDN Magazine,
the “CoreCoder” columns for DevConnectionsPro Magazine, and the Windows news-
letter for Dr.Dobb’s Journal. He also regularly contributes to popular Web sites such as
DotNetSlackers—http://www.dotnetslackers.com.

Dino has written an array of books, most of which are considered state-of-the-art in their
respective areas. His more recent books are Programming ASP.NET MVC 3 (Microsoft Press,
2011) and Microsoft .NET: Architecting Applications for the Enterprise (Microsoft Press, 2008),
which is slated for an update in 2011.

Dino regularly speaks at industry conferences worldwide (such as Microsoft TechEd,
Microsoft DevDays, DevConnections, DevWeek, and Basta) and local technical conferences
and meetings in Europe and the United States.

In his spare time (so to speak), Dino manages software development and training activities at
Crionet and is the brains behind some software applications for live scores and sporting clubs.

If you would like to get in touch with Dino for whatever reason (for example, you’re running
a user group, company, community, portal, or play tennis), you can tweet him at @despos or
reach him via Facebook.

http://www.dotnetslackers.com

For Visual Basic Developers
Microsoft®
Visual Basic® 2010
Step by Step
Michael Halvorson
ISBN 9780735626690

Teach yourself the essential tools and techniques for
Visual Basic 2010—one step at a time. No matter what
your skill level, you’ll fi nd the practical guidance and
examples you need to start building applications for
Windows and the Web.

Microsoft Visual Studio® Tips
251 Ways to Improve Your
Productivity
Sara Ford
ISBN 9780735626409

This book packs proven tips that any developer,
regardless of skill or preferred development language,
can use to help shave hours off everyday development
activities with Visual Studio.

Programming Windows®
Services with Microsoft
Visual Basic 2008
Michael Gernaey
ISBN 9780735624337

The essential guide for developing powerful,
customized Windows services with Visual Basic
2008. Whether you’re looking to perform network
monitoring or design a complex enterprise solution,
you’ll fi nd the expert advice and practical examples
to accelerate your productivity.

Inside the Microsoft Build
Engine: Using MSBuild and
Team Foundation Build,
Second Edition
Sayed Ibrahim Hashimi,
William Bartholomew
ISBN 9780735645240

Your practical guide to using, customizing, and
extending the build engine in Visual Studio 2010.

Parallel Programming
with Microsoft
Visual Studio 2010
Donis Marshall
ISBN 9780735640603

The roadmap for developers wanting to maximize
their applications for multicore architecture using
Visual Studio 2010.

microsoft.com/mspress

Dev Visual Basic_ResPg_eVer_02.indd 1 8/23/10 9:19 PM

Collaborative Technologies—
Resources for Developers

Programming for
Unifi ed Communications
with Microsoft Offi ce
Communications
Server 2007 R2
Rui Maximo, Kurt De Ding,
Vishwa Ranjan, Chris Mayo,
Oscar Newkerk, and the
Microsoft OCS Team
ISBN 9780735626232

Direct from the Microsoft Offi ce Communications
Server product team, get the hands-on guidance
you need to streamline your organization’s real-time,
remote communication and collaboration solutions
across the enterprise and across time zones.

Inside Microsoft®
SharePoint® 2010
Ted Pattison, Andrew Connell,
and Scot Hillier
ISBN 9780735627468

Get the in-depth architectural insights, task-
oriented guidance, and extensive code samples
you need to build robust, enterprise content-
management solutions.

Programming
Microsoft
Dynamics® CRM 4.0
Jim Steger, Mike Snyder,
Brad Bosak, Corey O’Brien,
and Philip Richardson
ISBN 9780735625945

Apply the design and coding practices that
leading CRM consultants use to customize,
integrate, and extend Microsoft Dynamics
CRM 4.0 for specifi c business needs.

Microsoft
.NET and SAP
Juergen Daiberl,
Steve Fox, Scott Adams,
and Thomas Reimer
ISBN 9780735625686

Develop integrated, .NET-SAP solutions—
and deliver better connectivity, collaboration,
and business intelligence.

microsoft.com/mspress

Dev CollabTech_ResPg_eVer_02.indd 1 8/23/10 9:16 PM

microsoft.com/mspress

Best Practices for Software Engineering

ALSO SEE

Code Complete,
Second Edition
Steve McConnell
ISBN 9780735619678

Widely considered one of the best practical guides to
programming—fully updated. Drawing from research,
academia, and everyday commercial practice, McConnell
synthesizes must-know principles and techniques into
clear, pragmatic guidance. Rethink your approach—and
deliver the highest quality code.

Software Estimation:
Demystifying the Black Art
Steve McConnell
ISBN 9780735605350

Amazon.com’s pick for “Best Computer Book of 2006”!
Generating accurate software estimates is fairly straight-
forward—once you understand the art of creating them.
Acclaimed author Steve McConnell demystifi es the
process—illuminating the practical procedures, formulas,
and heuristics you can apply right away.

Agile Portfolio Management
Jochen Krebs
ISBN 9780735625679

Agile processes foster better collaboration, innovation,
and results. So why limit their use to software projects—
when you can transform your entire business? This book
illuminates the opportunities—and rewards—of applying
agile processes to your overall IT portfolio, with best
practices for optimizing results.

The Enterprise and Scrum
Ken Schwaber
ISBN 9780735623378

Extend Scrum’s benefi ts—greater agility, higher-quality
products, and lower costs—beyond individual teams to
the entire enterprise. Scrum cofounder Ken Schwaber
describes proven practices for adopting Scrum principles
across your organization, including that all-critical
component—managing change.

Simple Architectures for
Complex Enterprises
Roger Sessions
ISBN 9780735625785

Why do so many IT projects fail? Enterprise consultant
Roger Sessions believes complex problems require
simple solutions. And in this book, he shows how to
make simplicity a core architectural requirement—as
critical as performance, reliability, or security—to achieve
better, more reliable results for your organization.

Software Requirements,
Second Edition
Karl E. Wiegers
ISBN 9780735618794

More About Software
Requirements:
Thorny Issues and
Practical Advice
Karl E. Wiegers
ISBN 9780735622678

Software Requirement
Patterns
Stephen Withall
ISBN 9780735623989

Agile Project
Management
with Scrum
Ken Schwaber
ISBN 9780735619937

Solid Code
Donis Marshall, John Bruno
ISBN 9780735625921

Dev BestPrac_ResPg_eVer_03.indd 1 8/23/10 9:11 PM

Microsoft® ASP.NET 4
Step by Step
George Shepherd
ISBN 9780735627017
George Shepherd

Ideal for developers with fundamental programming
skills—but new to ASP.NET—who want hands-on
guidance for developing Web applications in the
Microsoft Visual Studio® 2010 environment.

For C# Developers
Microsoft®
Visual C#® 2010
Step by Step
John Sharp
ISBN 9780735626706

Teach yourself Visual C# 2010—one step at a time.
Ideal for developers with fundamental programming
skills, this practical tutorial delivers hands-on guidance
for creating C# components and Windows–based
applications. CD features practice exercises, code
samples, and a fully searchable eBook.

Microsoft
XNA® Game Studio 3.0:
Learn Programming Now!
Rob Miles
ISBN 9780735626584

Now you can create your own games for Xbox 360®
and Windows—as you learn the underlying skills and
concepts for computer programming. Dive right into
your fi rst project, adding new tools and tricks to your
arsenal as you go. Master the fundamentals of XNA
Game Studio and Visual C#—no experience required!

Programming Windows®
Identity Foundation
Vittorio Bertocci
ISBN 9780735627185

Get practical, hands-on guidance for using WIF to
solve authentication, authorization, and customization
issues in Web applications and services.

Windows via C/C++,
Fifth Edition
Jeffrey Richter, Christophe Nasarre
ISBN 9780735624245

Get the classic book for programming Windows at
the API level in Microsoft Visual C++®—now in its
fi fth edition and covering Windows Vista®.

CLR via C#,
Third Edition
Jeffrey Richter
ISBN 9780735627048

Dig deep and master the intricacies of the common
language runtime (CLR) and the .NET Framework.
Written by programming expert Jeffrey Richter, this
guide is ideal for developers building any kind of
application—ASP.NET, Windows Forms, Microsoft
SQL Server®, Web services, console apps—and
features extensive C# code samples.

microsoft.com/mspress

Dev C#_ResPg_eVer_02.indd 1 8/23/10 9:13 PM

Stay in touch!
To subscribe to the Microsoft Press® Book Connection Newsletter—for news on upcoming
books, events, and special offers—please visit:

What do
you think of
this book?
We want to hear from you!
To participate in a brief online survey, please visit:

Tell us how well this book meets your needs —what works effectively, and what we can
do better. Your feedback will help us continually improve our books and learning
resources for you.

Thank you in advance for your input!

microsoft.com/learning/booksurvey

microsoft.com/learning/books/newsletter

	Cover
	Title page
	Copyright
	Contents at a Glance
	Table of Contents
	Acknowledgments
	Introduction
	Who Should Read This Book?
	System Requirements
	Code Samples
	Errata & Book Support
	We Want to Hear from You
	Stay in Touch

	Chapter 4:HTTP Handlers, Modules, and Routing
	Writing HTTP Handlers
	The IHttpHandler Interface
	The Picture Viewer Handler
	Serving Images More Effectively
	Advanced HTTP Handler Programming

	Writing HTTP Modules
	The IHttpModule Interface
	A Custom HTTP Module
	Examining a Real-World HTTP Module

	URL Routing
	The URL Routing Engine
	Routing in Web Forms

	Summary

	Chapter 5:Anatomy of an ASP.NET Page
	Invoking a Page
	The Runtime Machinery
	Processing the Request
	The Processing Directives of a Page

	The Page Class
	Properties of the Page Class
	Methods of the Page Class
	Events of the Page Class
	The Eventing Model
	Asynchronous Pages

	The Page Life Cycle
	Page Setup
	Handling the Postback
	Page Finalization

	Summary

	Index
	About the Author
	Feedback

