

Microsoft® Visual Basic®
2010 Developer’s
Handbook

Klaus Löffelmann
Sarika Calla Purohit

Copyright © 2011 O’Reilly Media, Inc. Authorized English translation of the German edition of Microsoft Visual
Basic 2010 - Das Entwicklerbuch: Grundlagen, Techniken, Profi-Know-how © 2010 Klaus Loffelmann and Sarika
Calla Purohit.

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by
any means without the written permission of the publisher.

ISBN: 978-0-7356-2705-5

1 2 3 4 5 6 7 8 9 TG 6 5 4 3 2 1

Printed and bound in Canada.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think
of this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property
of their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain
name, email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions and Developmental Editor: Russell Jones
Production Editor: Kristen Borg
Production Services: Octal Publishing Services.
Technical Reviewer: Evangelos Petroutsos
Copyeditor: Bob Russell
Indexer: Lucie Haskins
Cover Design: Twist Creative • Seattle
Cover Composition: Karen Montgomery

To Adriana, in love. Thanks for always letting me be myself, and taking me the way I am.

— Klaus

 v

Contents at a Glance

Part I Beginning with Language and Tools
1 Beginners All-Purpose Symbolic Instruction Code 3
2 Introduction to the .NET Framework . 65
3 Sightseeing . 75
4 Introduction to Windows Forms—Designers and Code

Editor by Example . 121
5 Introduction to Windows Presentation Foundation 191
6 The Essential .NET Data Types . 257

Part II Object-Oriented Programming
7 A Brief Introduction to Object-Oriented Programming 321
8 Class Begins . 327
9 First Class Programming . 343
10 Class Inheritance and Polymorphism . 387
11 Developing Value Types . 459
12 Typecasting and Boxing Value Types . 473
13 Dispose, Finalize, and the Garbage Collector 489
14 Operators for Custom Types . 517
15 Events, Delegates, and Lambda Expressions 535
16 Enumerations . 575
17 Developing with Generics . 583
18 Advanced Types . 601

Part III Programming with .NET Framework Data Structures
19 Arrays and Collections . 623
20 Serialization . 693
21 Attributes and Reflection . 721

vi Contents at a Glance

Part IV Development Simplifications in Visual Basic 2010
22 Using My as a Shortcut to Common Framework Functions . . . 743
23 The Application Framework . 773

Part V Language-Integrated Query—LINQ
24 Introduction to LINQ

(Language-Integrated Query) . 783
25 LINQ to Objects . 797
26 LINQ to XML . 823
27 LINQ to Entities: Programming with Entity Framework 833

Part VI Parallelizing Applications
28 Programming with the Task Parallel Library (TPL) 897

 vii

Table of Contents
Foreword .xxiii

Introduction . xxvii

Part I Beginning with Language and Tools
1 Beginners All-Purpose Symbolic Instruction Code 3

Starting Visual Studio for the First Time . 4
Console Applications . 6

Starting an Application . 8
Anatomy of a (Visual Basic) Program . 10
Starting Up with the Main Method . 12
Methods with and Without Return Values . 15

Defining Methods Without Return Values by Using Sub 16
Defining Methods with Return Values by Using Function 16

Declaring Variables . 16
Nullables . 19

Expressions and Definitions of Variables . 21
Defining and Declaring Variables at the Same Time 21
Complex Expressions . 22
Boolean Expressions . 23

Comparing Objects and Data Types . 24
Deriving from Objects and Abstract Objects . 25

Properties . 26
Type Literal for Determining Constant Types . 27
Type Safety . 29

Local Type Inference . 32
Arrays and Collections . 34

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you . To participate in a brief online survey, please visit:

microsoft .com/learning/booksurvey

viii Table of Contents

Executing Program Code Conditionally . 36
If … Then … Else … ElseIf … End If . 36
The Logical Operators And, Or, Xor, and Not . 37
Comparison Operators That Return Boolean Results 39
Short Circuit Evaluations with OrElse and AndAlso 41
Select … Case … End Select . 42

Loops . 44
For … Next Loops . 45
For … Each Loops . 47
Do … Loop and While … End While Loops . 49
Exit—Leaving Loops Prematurely . 50
Continue—Repeating Loops Prematurely . 51

Simplified Access to Object Properties and Methods Using With
… End With . 51
The Scope of Variables . 52
The += and –= Operators and Their Relatives . 54

The Bit Shift Operators << and >> . 55
Error Handling in Code . 56

Elegant Error Handling with Try/Catch/Finally 58

2 Introduction to the .NET Framework . 65
What Is .NET, and What Is It Composed Of? . 65
What Is an Assembly? . 66

What Is a Namespace? . 66
Common Language Runtime and Common Language
Infrastructure . 71
The Framework Class Library and the Base Class Library 71

3 Sightseeing . 75
Introduction . 75
Starting Visual Studio for the First Time:
Selecting the Profile . 76
The Start Page: Where Your Developing Endeavors Begin 79

Beginning Development Experience—Creating New Projects 81
Migrating from Previous Versions of Visual Studio to
Visual Studio 2010 . 85
Upgrading Projects created with Visual Studio 2003
Through 2008 . 85

 Table of Contents ix

Upgrading Visual Basic 6 .0 Applications to Visual Studio 2010 87
Multitargeting of Visual Basic Applications by Using
Visual Studio 2010 . 87

The History of Multitargeting . 87
Changing the Target Framework for Applications 90

Interesting Read for Multitargeting . 95
Limitations of Multitargeting . 95

Zooming In the New and Improved WPF-Based IDE 97
Managing Screen Real Estate . 99
Persistence of Window Layout . 103
Common Use Scenarios . 104

Searching, Understanding, and Navigating Code . 106
Navigate To . 106
Changing the Highlight Color . 109

Regions and Outlining . 110
Architecture Explorer . 112

Sequence Diagram . 112
Class Diagram . 113
Coding Bottom Up . 114

The Generate From Usage Feature . 117
Customizing Types by Using the Generate New Type Dialog 117

Extending Visual Studio . 118
Managing Visual Studio Extensions . 119
Extension Types . 120

4 Introduction to Windows Forms—Designers and Code
Editor by Example . 121

Case Example: the DVD Cover Generator . 122
Specifications for “Covers” . 123
Creating a New Project . 125

Designing Forms with the Windows Forms Designer 126
Positioning Controls . 128
Performing Common Tasks on Controls by Using Smart Tags 132
Dynamically Arranging Controls at Runtime . 133
Automatic Scrolling of Controls in Containers 143
Selecting Controls That Users Can’t Reach with the Mouse 146
Determining the Tab Order of Controls . 146
Using the Name, Text, and Caption Properties 149
Setting up Accept and Cancel Buttons for a Form 151

x Table of Contents

Adding Multiple Forms to a Project . 152
What’s Next? . 154
Naming Conventions for Controls in this Book 155
Functions for Control Layout in the Designer 155
Keyboard Shortcuts for Positioning Controls 158

The Code Editor . 159
Setting the Editor Display to the Correct Size 159
Many Roads Lead to the Code Editor . 160
IntelliSense—The Strongest Workhorse in the Coding Stable 160
Automatic Completion of Structure Keywords and Code
Indentation . 163
Error Detection in the Code Editor . 164
XML Documentation Comments for IntelliSense for
Customized Objects and Classes . 168
Adding New Code Files to the Project . 172
Refactoring Code . 174
Code Snippets Library . 178
Saving Application Settings with the Settings Designer 182
Congratulations! . 190

5 Introduction to Windows Presentation Foundation 191
What Is the Windows Presentation Foundation? . 191
What’s So New About WPF? . 193

25 Years of Windows, 25 Years of Drawn Buttons 194
How WPF Brings Designers and Developers Together 204
Extensible Application Markup Language . 207

Event Handling in WPF and Visual Basic . 214
XAML Syntax Overview . 215
ImageResizer—a Practical WPF Example . 219

6 The Essential .NET Data Types . 257
Numeric Data Types . 258

Defining and Declaring Numeric Data Types . 258
Delegating Numeric Calculations to the Processor 260
Numeric Data Types at a Glance . 264
The Numeric Data Types at a Glance . 270
Methods Common to all Numeric Types . 274
Special Functions for all Floating-Point Types 279
Special Functions for the Decimal Type . 281

 Table of Contents xi

The Char Data Type . 281
The String Data Type . 283

Strings—Yesterday and Today . 283
Declaring and Defining Strings . 284
Handling Empty and Blank Strings . 284
Automatic String Construction . 285
Assigning Special Characters to a String . 286
Memory Requirements for Strings . 287
No Strings Attached, or Are There? Strings are Immutable! 288
Iterating through Strings . 296
StringBuilder vs . String: When Performance Matters 297
Performance Comparison: String vs . StringBuilder 298

The Boolean Data Type . 302
Converting to and from Numeric Data Types 302
Converting to and from Strings . 303

The Date Data Type . 303
TimeSpan: Manipulating Time and Date Differences 304
A Library with Useful Functions for Date Manipulation 305
Converting Strings to Date Values . 308

 .NET Equivalents of Base Data Types . 312
The GUID Data Type . 313

Constants and Read-Only Fields (Read-Only Members) 315
Constants . 316
Read-Only Fields . 317

Part II Object-Oriented Programming
7 A Brief Introduction to Object-Oriented Programming 321

Using Classes and Objects: When and Why? . 323
Mini Address Book—the Procedural Version . 324

8 Class Begins . 327
What Is a Class? . 327
Instantiating Classes with New . 330

Initializing Public Fields During Instantiation 332
New or Not New: About Objects and Reference Types 332
Nothing . 336

Nothing as a Null Reference Pointer . 336
Nothing and Default Values . 337

xii Table of Contents

Using Classes . 338
Value Types . 340

Creating a Value Type with a Structure . 341
Assigning a Value Type to a Variable . 342

9 First Class Programming . 343
Using Properties . 344

Assigning Values to Properties . 346
Passing Arguments to Properties . 350
Default Properties . 351
Avoid the Ultimate Property-No-Go . 353
Public Variables or Properties—a Question of Faith? 354

Class Constructors: Defining What Happens in New 356
Parameterized Constructors . 358

Class Methods with Sub and Function . 365
Overloading Methods, Constructors, and Properties 366

Mutual Calling of Overloaded Methods . 372
Mutual Calling of Overloaded Constructors . 374
Overloading Property Procedures with Parameters 375

Specifying Variable Scope with Access Modifiers . 376
Access Modifiers and Classes . 376
Access Modifiers and Procedures (Subs, Functions, Properties) 377
Access Modifiers and Variables . 378
Different Access Modifiers for Property Accessors 378

Static Elements . 380
Static Methods . 381
Static Properties . 383

Distributing Class Code over Multiple Code Files by Using Partial 384
Partial Class Code for Methods and Properties 384

10 Class Inheritance and Polymorphism . 387
Reusing Classes Through Inheritance . 387

Initializing Field Variables for Classes Without Default
Constructors . 398

Overriding Methods and Properties . 399
Overriding Existing Methods and Properties of
 .NET Framework Classes . 402

 Table of Contents xiii

Polymorphism . 403
A Simple Example of Polymorphism . 407
Using Polymorphism in Real World Applications 410
Polymorphism and the Use of Me, MyClass, and MyBase 424

Abstract Classes and Virtual Procedures . 426
Declaring a Class as Abstract with MustInherit 427
Declaring a Method or Property of an Abstract Class as
Virtual with MustOverride . 427

Interfaces . 429
Editor Support for Abstract Classes and Interfaces 436
Interfaces that Implement Interfaces . 441
Binding Multiple Interfaces in a Class . 442

The Built-In Members of the Object Type . 443
Returning the String Representation of an Object with ToString . . . 444
Comparing Objects . 444
Equals, Is, and IsNot in Real World Scenarios . 446
The Methods and Properties of Object: An Overview 448

Shadowing of Class Procedures . 449
Shadows as Interruptor of the Class Hierarchy 450

Special Form “Module” in Visual Basic . 455
Singleton Classes and Self-Instantiating Classes . 455

11 Developing Value Types . 459
A Practical Example of Structures . 459
Passing Value and Reference Parameters . 465
Constructors and Default Instantiations of Value Types 466

No Default Constructor Code for Value Types 467
When to Use Value Types—When to Use Reference Types 468
Targeted Memory Assignment for Structure Members with the
Attributes StructLayout and FieldOffset . 469

12 Typecasting and Boxing Value Types . 473
Converting Primitive Types . 474
Converting to and from Strings . 476

Converting Strings by Using the Parse and ParseExact Method . . . 476
Converting Into Strings by Using the ToString Method 477
Catching Type Conversion Failures . 478

xiv Table of Contents

Casting Reference Types by Using DirectCast . 479
TryCast—Determining Whether Casting Is Possible 480
IsAssignableFrom—Casting on the Fly . 481

Boxing Value Types . 481
What DirectCast Cannot Do . 485
To Box or Not to Box . 485

Changing the Values of Interface-Boxed Value Types 486

13 Dispose, Finalize, and the Garbage Collector 489
The Garbage Collector in .NET . 492

How the Garbage Collector Works . 494
The Speed in Allocating Memory for New Objects 497
Finalize . 498

When Finalize Does Not Take Place . 500
Dispose . 503

Implementing a High Resolution Timer as IDisposable 504
Visual Basic Editor Support for Inserting a Disposable Pattern 511

Targeted Object Release with Using . 513

14 Operators for Custom Types . 517
Introduction to Operator Procedures . 517
Preparing a Structure or Class for Operator Procedures 519
Implementing Operators . 523

Overloading Operator Procedures . 525
Implementing Comparison Operators . 526
Implementing Type Conversion Operators for Use with CType 526
Implementing True and False Evaluation Operators 528
Problem Handling for Operator Procedures . 530

Beware When Using Reference Types! . 530
Implementable Operators: an Overview . 532

15 Events, Delegates, and Lambda Expressions 535
Consuming Events with WithEvents and Handles . 537
Raising Events . 539

Events Cannot Be Inherited—the Detour Via Onxxx 541
Providing Event Parameters . 542

The Event Source: sender . 543
Detailed Event Information: EventArgs . 545

 Table of Contents xv

Delegates . 547
Passing Delegates to Methods . 553

Lambda Expressions . 556
Single-Line Expression Lambdas and Multi-Line Statement
Lambdas . 557

Embedding Events Dynamically with AddHandler . 561
Implementing Your Own Event Handlers . 569

16 Enumerations . 575
Introduction to Enumerations . 575
Determining the Values of Enumeration Elements . 577

Duplicate Values Are Allowed! . 577
Determining the Types of Enumeration Elements . 578

Retrieving the Types of Enumeration Elements at Runtime 578
Converting Enumerations to Other Types . 578

Converting to Numeric Values and Vice Versa 579
Parsing Strings into Enumerations . 579

Flags Enumerations . 580
Querying Flags Enumerations . 581

17 Developing with Generics . 583
Introduction . 583

Generics: Using One Code Base for Different Types 583
Solution Approaches . 585
Standardizing the Code Base of a Type by Using Generics 587
Constraints . 589

Constraining Generic Types to a Specific Base Class 590
Constraining a Generic Type to Specific Interfaces 594
Constraining a Generic Type to Classes with a Default Constructor 597
Constraining a Generic Class to Value Types . 598
Combining Constraints and Specifying Multiple Type Parameters . 598

18 Advanced Types . 601
Nullable Value Types . 601

Be Careful When Using Boolean Expressions Based on Nullables . . 604
Special Characteristics of Nullable During Boxing 605
The Difference Between Nothing and Nothing as a Default Value . . 607

Generic Delegates . 608
Action(Of T) . 609
Function(Of T) . 611

xvi Table of Contents

Tuple(Of T) . 611
Type Variance . 612
Extension Methods . 616

The Main Application Area of Extension Methods 617
Using Extension Methods to Simplify Collection Initializers 619

Part III Programming with .NET Framework Data Structures
19 Arrays and Collections . 623

Array Basics . 624
Initializing Arrays . 625

Changing Array Dimensions at Runtime . 626
The Magic of ReDim . 626
Pre-Allocating Values of Array Elements in Code 629
Type Inference When Using Array Initializers 629
Multidimensional Arrays and Jagged Arrays . 631
Jagged Arrays . 632
Important Array Properties and Methods . 633
Implementing Sort and BinarySearch Custom Classes 635
Using Lambdas with Array Methods . 640

Enumerators . 642
Custom Enumerators with IEnumerable . 643

Collection Basics . 645
Initializing Collections . 650

Using Extension Methods to Simplify Collection Initializers 650
Important Collections of .NET Framework . 652

ArrayList: Universal Storage for Objects . 652
Type-Safe Collections Based on CollectionBase 655
Hashtables: Fast Lookup for Objects . 659
Using Hashtables . 659
Using Custom Classes as Key . 669
Enumerating Data Elements in a Hashtable . 673
The DictionaryBase Class . 673
Queue: the FIFO Principle . 674
Stack: the LIFO Principle . 675
SortedList: Keeping Elements Permanently Sorted 676

 Table of Contents xvii

Generic Collections . 678
List(Of) Collections and Lambda Expressions 681
KeyedCollection: Key/Dictionary Collections with
Additional Index Queries . 686
Linking Elements with LinkedList(Of) . 689

20 Serialization . 693
Introduction to Serialization Techniques . 694

Serializing with SoapFormatter and BinaryFormatter 696
Shallow and Deep Object Cloning . 702

The Universal DeepClone Method . 706
Serializing Objects with Circular References . 708

Serializing Objects of Different Versions When Using
BinaryFormatter and SoapFormatter Classes . 711

XML Serialization . 711
Checking the Version Independence of the XML File 716
Serialization Problems with KeyedCollection . 717

21 Attributes and Reflection . 721
Introduction to Attributes . 722

Using Attributes with ObsoleteAttribute . 723
Visual Basic-Specific Attributes . 724

Introduction to Reflection . 724
The Type Class as the Origin for All Type Examinations 726
Class Analysis Functions Provided by a Type Object 728
Object Hierarchy of MemberInfo and Casting to a Specific
Info Type . 732
Determining Property Values with PropertyInfo at Runtime 733

Creating Custom Attributes and Recognizing Them at Runtime 734
Determining Custom Attributes at Runtime . 738

Part IV Development Simplifications in Visual Basic 2010
22 Using My as a Shortcut to Common Framework Functions . . . 743

Visual Basic 2010 Simplifications Using the Example of the
DotNetCopy Backup Tool . 745

DotNetCopy Options: /Autostart and /Silent . 750
The Principle Functionality of DotNetCopy . 752
The My Namespace . 753

xviii Table of Contents

Calling Forms Without Instantiation . 755
Reading Command-Line Arguments with My .Application .
CommandLineArgs . 756
Targeted Access to Resources with My .Resources . 758

Creating and Managing Resource Elements . 758
Retrieving Resources with My .Resources . 759

Writing Localizable Applications with Resource Files and the My
Namespace . 761
Simplified File Operations with My .Computer .FileSystem 765
Using Application Settings with My .Settings . 768

Saving Application Settings with User Scope . 770

23 The Application Framework . 773
Application Framework Options . 774

A Windows XP Look and Feel for Your Applications—
Enabling Visual XP Styles . 774
Preventing Multiple Application Starts—Creating a Single
Instance Application . 775
Save My .Settings Automatically on Shutdown 775
Specifying the User Authentication Mode . 775
Specifying the End of Your Application—the Shutdown Mode 775
Displaying a Splash Dialog when Starting Complex
Applications—Start Screen . 776

Adding a Code File to Handle Application Events (Start, End,
Network Status, Global Exceptions) . 776

Part V Language-Integrated Query—LINQ
24 Introduction to LINQ (Language-Integrated Query) 783

Getting Started with LINQ . 785
LINQ: Based on Extension Methods . 788

The Where Method . 789
The Select Method . 790

Anonymous Types . 791
Type Inference for Generic Type Parameters . 791

Combining LINQ Extension Methods . 794
Simplified Use of LINQ Extension Methods with the LINQ Query Syntax 795

 Table of Contents xix

25 LINQ to Objects . 797
Getting Started with LINQ to Objects . 797
Anatomy of a LINQ Query . 798
LINQ Query Performance . 804
Concatenating LINQ Queries and Delayed Execution 805

Cascading Queries . 807
Parallelizing LINQ Queries with AsParallel . 808
Guidelines for Creating LINQ Queries . 810
Forcing Query Execution with ToArray or ToList 810

Combining Multiple Collections . 812
Combining Collections Implicitly . 813
Combining Collections Explicitly . 815

Grouping Collections . 816
Grouping Collections from Multiple Collections 817
Group Join . 819

Aggregate Functions . 820
Returning Multiple Different Aggregations . 820
Combining Grouped Queries and Aggregations 821

26 LINQ to XML . 823
Getting Started with LINQ to XML . 823
Processing XML Documents—Yesterday and Today 824
XML Literals: Using XML Directly in Code . 826

Including Expressions in XML Literals . 826
Creating XML Documents with LINQ . 826
Querying XML Documents with LINQ to XML . 828
IntelliSense Support for LINQ To XML Queries . 829

Using Prefixes (fleet and article) . 831

27 LINQ to Entities: Programming with Entity Framework 833
Prerequisites for Testing the Examples . 834

Downloading and Installing SQL Server 2008 R2 Express
Edition with Advanced Services . 835
Installing the AdventureWorks Sample Databases 843
The Working Principle of an Entity Data Model 846

LINQ to Entities: the First Practical Example . 848
Changing the Name of the Entity Set . 853
Changing the Entity Container Name Retroactively 854
Editing the .edmx-File as XML Outside the Designer 855

xx Table of Contents

Querying an Entity Model . 856
Querying Data with LINQ to Entities Queries . 857
How Queries Get to the Data Provider—Entity SQL (eSQL) 859
A Closer Look at Generated SQL Statements . 859
Lazy Loading and Eager Loading in Entity Framework 862
Avoiding Anonymous Result Collections in Join Queries via Select 866
Compiled Queries . 868

Modifying, Saving, and Deleting Data . 869
Saving Data Modifications to the Database by Using
SaveChanges . 870
Inserting Related Data into Data Tables . 872
Deleting Data from Tables . 874
Concurrency Checks . 876

Updating a Data Model from a Database . 878
Model-First Design . 879
Inheritance in the Conceptual Data Model . 886
Executing T-SQL Commands Directly in the Object Context 889
Working with Stored Procedures . 890
Looking Ahead . 893

Part VI Parallelizing Applications
28 Programming with the Task Parallel Library (TPL) 897

Introduction to Threading . 897
Various Options for Starting a Thread . 903

Using the Thread Class . 905
Calling Delegates Asynchronously . 907
Using the Task Class . 908
Using a Thread Pool’s Thread directly . 909

How to Access Windows Controls from Non-UI Threads 909
Parallelization with Parallel .For and Parallel .ForEach 914

Parallel .For . 915
Parallel .ForEach . 921
Using ParallelLoopStates—Exit For for Parallel .For and
Parallel .ForEach . 923
Avoiding Errors When Parallelizing Loops . 927

 Table of Contents xxi

Working with Tasks . 931
Waiting on Task Completion—WaitOne, WaitAny, and WaitAll 934
Tasks with and Without Return Values . 936
How To Avoid Freezing the User Interface While Waiting
For Tasks To Finish . 939
Cancelling Tasks by Using CancellationToken 942

Synchronizing Threads . 947
Synchronizing Threads with SyncLock . 949
The Monitor Class . 951
Synchronizing Limited Resources with Mutex 955

What’s Next? . 959

Index . 961

 xxiii

Foreword
Visual Studio 2010 is an exciting version for the Visual Basic language, which reaches a double
digit version in Visual Basic 10. This is a phenomenal achievement for a programming language,
and it demonstrates the enormous utility that the language continues to provide, year after year.
Visual Basic has always been a premier tool for making Microsoft platforms accessible and easy
to use. And even though the specific technologies and devices have changed over time, the core
mission of Visual Basic has remained the same. Starting in 1991 with Visual Basic 1 and continuing
through to Visual Basic 3, Visual Basic revolutionized Windows application development by making
it accessible in a way that simply wasn’t possible before its arrival. Moving forward to Visual Basic 4
through Visual Basic 6, the language greatly simplified component programming with the Compo-
nent Object Model (COM), Object Linking and Embedding (OLE) automation, and ActiveX controls.
Finally, with Visual Basic 7 and beyond, the language has enabled developers to take advantage
of the Common Language Runtime (CLR) and many .NET Framework technologies. This book cov-
ers examples of this, using Visual Basic to access .NET Framework data types, Language Integrated
Query (LINQ), Windows Presentation Foundation (WPF), and the Task Parallel Library. LINQ in par-
ticular has had a significant impact on the language, providing a unified way to access data from
objects, XML, or relational data sources. One of the most revolutionary features introduced as part
of LINQ is XML literals, which makes Visual Basic the most productive language for programming
with XML.

Looking ahead, there are three major development trends that we see influencing the Visual Basic
language, now and in the future: declarative, dynamic, and concurrent programming.

Declarative programming lets developers state what the program should do, rather than requir-
ing them to specify in great detail how the compiler should do it. This has always been a design
principle for Visual Basic, in which we strive to increase the expressiveness of the language so that
you can “say more with less code.” Some recent examples of this in Visual Basic 9 are LINQ and
type inference. Visual Basic 10 introduces similar efficiencies with multi-line lambdas, array literals,
collection initializers, autoimplemented properties, and implicit line continuation—all of which are
covered in this book.

Dynamic programming is another style that has influenced the design of Visual Basic. Late binding
is an important feature that has made Visual Basic a great language for Microsoft Office develop-
ment and COM programming. In Visual Basic 10, we extended Visual Basic’s late-binding support
to work with other dynamic type environments, such as JavaScript and IronPython. This was made
possible by the Dynamic Language Runtime (DLR), which was introduced in .NET Framework 4.

Finally, concurrency is an undeniable trend that we see influencing many forms of development.
Whether your application is running on a multicore machine, a clustered environment on premises,
via distributed computing in the Cloud, or even on a single-core computer performing IO-bound
operations, concurrency can help speed up its execution. .NET Framework 4 provides some great
tools for concurrent programming, such as the Task Parallel Library and Parallel LINQ. Part VI of this
book shows how to use these technologies in Visual Basic.

xxiv

Visual Basic is a vibrant environment, and we invite you to dive into it in Visual Studio 2010.
Whether you’ve used previous versions of Visual Basic or other object-oriented programming
(OOP) languages, or you are new to OOP altogether, this book has the information you need to
quickly become productive. It explains programming concepts, Visual Basic, Visual Studio, and
the .NET Framework from the bottom up, and it establishes a strong foundation. For the more
experienced reader, this book also goes deeply into these topics and includes dedicated sections
on what’s new in the 2010 release of Visual Studio. The book covers a variety of topics; some of
them are technology-specific (such as WPF), while others are application agnostic (such as gar-
bage collection and serialization). This book establishes a solid foundation that you can leverage
when developing applications for any platform that Visual Studio 2010 targets, including Microsoft
SharePoint, the Web, and the Cloud.

As Visual Studio Community Program Manager, I always enjoy meeting members of the Visual Stu-
dio community. One of the first times Klaus wrote to me, he quoted a motto he had learned from
his grandmother: “the worst attempt is the one that you’ll never make.” I knew at that point that he
was an ambitious person! Klaus has been writing computer books for more than 20 years. The sub-
jects of those books include, Commodore 16, Commodore 64, Commodore 128, Atari ST, Amiga,
Visual Basic 1, Visual Basic 3, Visual Basic 4, Visual Basic 5, Visual Basic 6, Visual Studio 2003, Visual
Studio 2005, Visual Studio 2008, and now Visual Studio 2010. I’ve met with Klaus in various cities
around the world: Antwerp, Berlin, and Seattle. His first trip to Seattle was for the Microsoft Most
Valuable Professional (MVP) Summit. The MVP program honors Microsoft technology experts for
their impact in the community, and Klaus was recognized as a Visual Basic MVP for the great sup-
port he’s provided through writing books, delivering webcasts, and reviewing German content on
MSDN. Klaus made his second trip to Seattle while writing this book. He found great inspiration in
being at the place where “the magic happens.” I took Klaus on a tour through the Microsoft offices,
where he was able to connect with other members of the Visual Basic product team. It was a really
exciting visit and I could see how passionate Klaus is about Visual Basic.

I was happy to connect Klaus with Sarika, who has been a great partner in writing this book. As
a Test Lead on the Microsoft Visual Studio Professional team, Sarika has extensive expertise in
Visual Studio. She joined the team in 2002, and has worked on the releases for Visual Studio 2003,
Visual Studio 2005, Visual Studio 2008, and Visual Studio 2010. During this time, she’s been deeply
involved in the evolution of the Visual Basic language and Integrated Development Environment
(IDE). As Test Lead, Sarika spends a lot of time thinking about how Visual Basic developers use
Visual Studio and the .NET Framework to create client, web, and other types of applications. She
also interacts with the Visual Basic community at various phases of the product cycle to gather
feedback, review bugs, and present to customers.

Sarika’s and Klaus’s backgrounds were key assets in writing this well-thought-out book. Sarika has
spent nearly a decade working on the Visual Studio IDE, which was a significant area of investment
in this release. The Visual Studio 2010 user interface was rewritten in Windows Presentation Foun-
dation, which enabled richer user experiences in Visual Studio itself as well as greater extensibility
capabilities for third-party add-ins. Sarika shares her insight on this topic in the “sightseeing tour”
of the Visual Studio 2010 IDE in Chapter 4. Klaus’s experience draws from many years of work as a
consultant on Visual Basic .NET and Visual Basic 6 migrations. He’s worked with many development

 xxv

teams on a variety of projects, and he knows which concepts can be the most challenging for
developers to pick up. He has a true passion for compiling the most useful information for his
readers and presenting it in a way that’s easy to understand. While writing a book can be an ardu-
ous task, Klaus tackles it with enthusiasm. He has a great sense of humor that shines through in the
playful writing style and makes it fun to follow along.

So as Klaus’s grandma would advise, give this book a try! I’m sure you will find that the 10th ver-
sion of Visual Basic helps you to tackle your software development projects with greater ease and
productivity than ever before.

Lisa Feigenbaum
Community Program Manager
Microsoft Visual Studio

August, 2010

Introduction
When someone asks me what I do for a living, I don’t really know what to say. That might be
because some 25 years ago I wrote my first book, Programming Graphics for the Commodore
128, (in German, and out of print) at age 16, when it was uncool, freaky, geeky, and nerdy to
even work with computers at all, much less to write about programming them. Perhaps that
feeling is etched on my memory and helps explain why the answer still causes me some em-
barrassment. “I write technical books about software development,” also sounds a bit out-of-
touch with the real world, doesn’t it?

It isn’t quite that bad nowadays, because the truth is, it’s not just about writing anymore.
The small company I own (ActiveDevelop—there are ten of us working there now, located
in the only high-rise office building in Lippstadt, Germany) doesn’t just write about devel-
oping software, it also actually develops software. We also help other companies with their
software development efforts, bringing their teams up to speed on the latest technologies
localizing software from English to German and vice versa, and helping them to migrate
from Microsoft Visual Basic 6.0 to Microsoft Visual Basic .NET (or reluctantly, and often un-
necessarily, to C#). One of us has even been the recipient of a Microsoft MVP award three
times—and, er, that would be me. And to capitalize on this promotional opportunity, if you
live in a German or English-speaking country, and need competent support for .NET, training,
and project coaching in Visual Basic or C#, localization expertise, and a motivated team with
good connections (hey, my co-author even works on the Visual Studio team), you now know
where to find us: just send an email to info@activedevelop.de. Oh, and you can always follow
me on Twitter @loeffelmann.

Because writing about software development has always been my passion, every once in
a while I write a new book. Usually, this happens when Microsoft releases new products or
new versions. That’s the only way to explain why the book you are holding right now is the
thirtieth book I have either written or co-authored. While I still find it exciting (just as it was
back in the time of the Commodore 64) to learn new technologies and to receive beta ver-
sions of the latest Microsoft software, writing books has become more of a routine. In any
case, that was true until my last book, The Visual Basic 2008 Developer Handbook, came out
in Germany.

When writing this book, however, I experienced a second spring because it fulfilled a long-
held wish. Remember? I live in a comparatively small town in the northwestern part of
Germany. And I always wanted to write a programming book in the Microsoft metropolis,
Seattle. And so I did. In June 2010 I flew about 6000 miles from Frankfurt to Seattle, where
I spent almost four weeks writing a large part of this book at the “origin location.” I wrote
most of this material in an apartment in Bellevue, in the Japanese restaurant Blue Fin, at the
Northgate Mall (I can recommend the large sushi selection); on the Boeing air field (OK,
not really on the air field); in the hundreds of Starbucks in and around Seattle; at the pier

xxviii Introduction

overlooking Puget Sound; at Pike Place Market; in pubs overlooking Lake Washington; in
the cafeteria between building 41 and 42 on the Microsoft campus; and on the lawn in front
of Microsoft’s Building 41 (home of the compiler teams and of my co-author, Sarika Calla).
I wrote everywhere. One time I even travelled to Whidbey Island, from which Visual Studio
2005 got its code name. I wrote there, too. It was a lot of fun getting to know all the talented
and competent people at Microsoft. They answered my questions even when they were re-
ally busy. I’m still impressed when I remember back to that time.

Getting the assistance of Sarika Calla was the icing on the cake; not even in my wildest
dreams did I imagine I might work with someone from the Visual Studio team. Among other
things, Sarika took care of the completely new Visual Studio user interface—and not only in
this book! I can’t think of anyone who could have done better: Sarika was the test lead for
the new WPF-supported user interface of Visual Studio 2010. And finally, at this very mo-
ment, I’m reviewing the English translation of this book, which I originally wrote in German.
All this is so exciting that I wanted to tell you about it at the beginning of this book. And in
case we ever meet in person: since you already know what I do for a living—don’t bother to
ask… I still don’t really know what to say.

Who Should Read This Book
Visual Basic has always had a special target audience. Typically, a Visual Basic programmer
expects his favorite programming language to allow him to focus primarily on domain-spe-
cific knowledge and achieve a great solution in an exceptionally short time. That’s the reason
Visual Basic 6 became so popular to begin with, and why so many great business solutions
are still programmed in older Visual Basic versions. Now, Visual Basic has grown up: what was
missing from Visual Basic 6 is here now, and is often better and easier to use than in any oth-
er .NET language. Yet the typical Visual Basic developer can still expect Visual Basic to help
him provide an architecture for his domain-specific application in a comparatively short time.
Version 2010 is—in terms of OOP and being team enabled—as powerful as C#. BASICally, it
provides developers the best of both worlds.

This book is for those developers who want to reach the high bar Visual Basic sets. The book
doesn’t start at square one, but it doesn’t require a lot of previous knowledge, either. It leads
you and teaches you the things you need to know to become as skilled in modern software
development methodologies and object-oriented programming as you already are in your
domain-specific area. You’ll get results that are as fast as is possible with Visual Basic 6, but
at the same time you’ll develop quality applications that don’t need to hide behind the C# or
C++ competitors.

 Introduction xxix

Assumptions
This book expects that you have at least a minimal understanding of procedural program-
ming concepts. If you have not yet picked up the basic principles of Visual Basic program-
ming, you might consider reading Michael Halvorson’s Microsoft Visual Basic 2010 Step by
Step (Microsoft Press, 2010).

Other than that, you’re good to go!

Who Should Not Read This Book
Not every book is aimed at every possible audience. If you don’t want to become an expert
in Visual Basic and have fun learning at the same time, this book is not for you! Just kidding.
But honestly, if you (as already stated in the previous section) don’t have a basic knowledge
about what programming is, or maybe have only had some basic (or, even better—BASIC)
classes in high school or college, you should consider starting with a book that teaches the
BASIC language from scratch. This book focuses on the Visual Basic language itself; it only
scratches the surface of topics like Windows Forms programming or Windows Presentation
Foundation. While this book provides sufficient information for you to build your first appli-
cations based on those technologies, it doesn’t focus on them; there are whole books written
about those topics alone, so don’t expect this book to cover those subjects in depth.

Organization of This Book
This book is divided into six sections.

■ Part I, Beginning with Language and Tools, provides an introduction to the Visual Basic
language and the Visual Studio Integrating Development Environment. It also shows
you how to develop applications based on Windows Forms or Windows Presentation
Foundation (WPF) in practical step-by-step lessons.

■ Part II, Object-Oriented Programming, lets you become an expert software developer
and provides you with all the tools and techniques for building professional and robust
.NET business applications that can compete with industrial standards.

■ Part III, Programming with .NET Framework Data Structures, shows the important
details that you need to hone your Visual Basic skills to perfection. It covers topics
like programming with generic data types, Nullables, Tuples, Events, Delegates, and
Lambdas. Most of all, this part provides you with the in-depth knowledge of arrays and
collections that you need.

xxx Introduction

■ Part IV, Development Simplification in Visual Basic 2010, shows you how to use features
which are unique to Visual Basic, and provides shortcuts for many of the tasks you need
to solve in your daily programming routine.

■ Part V, Language-Integrated Query—LINQ, is all about querying data stored in various
data source types. It demonstrates how to construct queries that filter, order, and group
information from internal lists and object collections, as well as from data that comes
from external data sources like SQL Server or XML documents.

■ Part VI, Parallelizing Applications, is another important part of this book. Have you no-
ticed that the clock speeds of modern processors haven’t increased much over the last
years? Well, the processor core counts certainly have. So, to really get all the perfor-
mance you need (even from smaller computers like tablet PCs or netbooks), you need
to parallelize your applications. This final section shows you how to do that—and what
pitfalls might result.

Conventions and Features in This Book
This book presents information by using conventions designed to make the information
readable and easy to follow.

■ Boxed elements with labels such as “Note” provide additional information or alternative
methods for completing a step successfully.

■ Text that you type (apart from code blocks) appears in bold.

■ A plus sign (+) between two key names means that you must press those keys at the
same time. For example, “Press Alt+Tab” means that you hold down the Alt key while
you press the Tab key.

■ When the constraints of the printed page require code lines to break where they nor-
mally wouldn’t, an arrow icon (➥) appears at the beginning of the new line.

■ A vertical bar between two or more menu items (such as File | Close), means that you
should select the first menu or menu item, then the next, and so on.

 Introduction xxxi

System Requirements
You will need the following software to complete the practice exercises in this book:

■ One of Windows XP with Service Pack 3, Windows Vista with Service Pack 2 (except
Starter Edition), Windows 7, Windows Server 2003 with Service Pack 2, Windows Server
2003 R2, Windows Server 2008 with Service Pack 2, or Windows Server 2008 R2.

■ Visual Studio 2010, any edition (multiple downloads may be required if using Express
Edition products)

■ Computer that has a 1.6GHz or faster processor (2GHz recommended)

■ 1 GB (32 Bit) or 2 GB (64 Bit) RAM (Add 512 MB if running in a virtual machine or SQL
Server Express Editions, more for advanced SQL Server editions)

■ 3.5GB of available hard disk space

■ 5400 RPM hard disk drive

■ DirectX 9 capable video card running at 1024 x 768 or higher-resolution display

■ DVD-ROM drive (if installing Visual Studio from DVD)

■ Internet connection to download software or chapter examples

Depending on your Windows configuration, you might require local administrator rights to
install or configure Visual Studio 2010 and SQL Server 2008 products.

Code Samples
Most of the chapters in this book include exercises that let you interactively try out new
material learned in the main text. All sample projects are available for download here:

http://www.microsoftpressstore.com/title/9780735627055

Follow the instructions to download the VbDevBook2010Samples.zip file.

Alternatively, you can download the files from the author’s company website:

http://www.activedevelop.de/download/VbDevBook2010Samples.zip

Note In addition to the code samples, your system should have Visual Studio 2010 and SQL
Server 2008 installed. The instructions below use SQL Server Management Studio 2008 to set up
the sample database used with the practice examples. If available, install the latest service packs
for each product.

http://www.microsoftpressstore.com/title/9780735627055

xxxii Introduction

Installing the Code Samples
Follow these steps to install the code samples on your computer so that you can use them
with the exercises in this book.

 1. Unzip the VbDevBook2010Samples.zip file that you downloaded from the book’s
website.

 2. If prompted, review the displayed license agreement. If you accept the terms, select the
accept option, and then click Next.

Using the Code Samples
The folder created by the Setup.exe program is structured by chapters. In the chapters of this
book when the text refers to a certain sample, it shows the relevant part of the folder where
you unzipped the samples to. In every sample folder you’ll find a Visual Basic solution file
with the file extension .sln. Open this solution from within Visual Studio and run the sample
according to what is stated in the text.

Acknowledgments
From Klaus Löffelmann:

First I would like to thank Lisa Feigenbaum. She put a lot of effort into the concept of this
book and not only helped me to work out the relevant topics but also to perfect the English
version. As community manager, Lisa is the primary contact for MVPs, and provides us with
first-hand information. I’m sure I can speak for all MVPs: we are lucky to work with Lisa. Lisa,
you rock!

Next I want to thank Sarika Calla, who not only agreed to reveal many aspects of the new
Visual Studio user interface but who also was always at hand with help and advice while I was
writing this book. It is great to be able to ask the real experts—those who developed Visual
Basic and Visual Studio—while researching new topics for a book this size. Thank you for co-
authoring this book!

I would also like to thank Ramona Leenings, our IT specialist trainee. Ramona not only cre-
ated more than 90 percent of the screen shots of the original book (even though she hated
it; it’s not really a great job) but also edited and converted many examples, and wrote the
practical WPF examples in Chapter 5. At age 20, Ramona is already a first-class developer,
and has a knack for aesthetics and design. She is ambitious and linguistically able. I expect
the Visual Basic and .NET communities to encounter her name more often in the upcoming
years. Ramona, I’m your fan!

 Introduction xxxiii

I want to thank the ActiveDevelop lead developer Andreas Belke (our database expert), who
helped me with the LINQ part. It is always a lot of fun to work with Andreas. We are united
by the fact that—like me—Andreas is a big fan of the Pacific Standard time zone.

Thomas Irlbeck, as the technical German editor,had the thankless task of checking the book
to ensure the content was both correct and plausible. He attacked this task bravely, and his
efforts ensured the quality of this book. His eye for detail is incredible, and he catches dis-
crepancies that the authors overlook even after reading the text ten times.

Also, thanks to the folks at Octal Publishing, Inc., who handled the production of this book.
I appreciate their commitment to get the first page proofs of this book to the printing press
on time, and I enjoyed working with you, and I really had fun playing a Word-comment
match while reviewing this book!

A big thank you also goes to Russell Jones from O’Reilly whose task was to convert my more-
German-than-English-speech into a readable form. And thanks to this book’s production edi-
tor, Kristen Borg, for giving me five more days for the review—I really needed the sleep! ;-)

And of course I want to thank my parents. First, I literally couldn’t be here without you, and
for that alone, I have to thank you! You had to put up with me while I was writing. I won‘t say
anything too personal here. Instead I‘ll give you each a big kiss on the cheek.

And finally, there is my girlfriend: Adriana, I know I can be difficult, especially when I’m swamped
with writing and contemplating chapters, screenshots, and debugging samples, and therefore,
often trapped in a parallel universe. But your patience with me seems endless, and I so appreciate
the extraordinary care you give to me. Thanks for always letting me be myself and for taking me
the way I am—I love you so much! Please know, this book is dedicated to you.

From Sarika Calla:

In co-authoring this book, I have been helped by many people. I would like to thank Manish
Jayaswal, Microsoft, and my father-in-law, Mr. R.K. Purohit for the care with which they re-
viewed my original manuscript. I am deeply indebted to Klaus Löffelmann, co-author of this
book, and to Lisa Feigenbaum, who provided invaluable advice from inception to conclusion
of this project. Last, but not least, I owe a great debt of gratitude to my husband Bhanu, my
children, Shubham and Soham, my parents (Dr. S.K. Calla and Dr. Sudha Calla), my mother-in-
law (Mrs. Sharda Purohit), and other family members (Surabhi, Nitesh, Dr. Veena, Dr. Rajesh,
Yogi) and friends for their tremendous support and encouragement.

Thanks,
Sarika

xxxiv Introduction

Errata and Book Support
We’ve made every effort to ensure the accuracy of this book and its companion content.
Any errors that have been reported since this book was published are listed on our Microsoft
Press site:

http://www.microsoftpressstore.com/title/9780735627055

If you find an error that is not already listed, you can report it to us through the same page.

If you need additional support, email Microsoft Press Book Support at mspinput@microsoft.
com.

Please note that product support for Microsoft software is not offered through the addresses
above.

We Want to Hear from You
At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in advance
for your input!

Stay in Touch
Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress
http://www.microsoftpressstore.com/title/9780735627055

1

Part I

Beginning with Language
and Tools

In this part:
Beginners All-Purpose Symbolic Instruction Code . 3
Introduction to the .NET Framework . 65
Sightseeing . 75
Introduction to Windows Forms—Designers and Code Editor by Example . . . 121
Introduction to Windows Presentation Foundation . 191
The Essential .NET Data Types . 257

 3

Chapter 1

Beginners All-Purpose Symbolic
Instruction Code

In this chapter:
Starting Visual Studio for the First Time . 4
Console Applications . 6
Anatomy of a (Visual Basic) Program . 10
Starting Up with the Main Method . 12
Methods with and Without Return Values . 15
Declaring Variables . 16
Expressions and Definitions of Variables . 21
Comparing Objects and Data Types . 24
Properties . 26
Type Literal for Determining Constant Types . 27
Type Safety . 29
Arrays and Collections . 34
Executing Program Code Conditionally . 36
Loops . 44
Simplified Access to Object Properties and Methods
Using With … End With . 51
The Scope of Variables . 52
The += and –= Operators and Their Relatives . 54
Error Handling in Code . 56

Looking at the chapter title, you’re probably thinking, “What a strange name for a chapter!”
Why this name? Well, if you take the first letter of each word in the phrase “Beginners All-
purpose Symbolic Instruction Code” they form the acronym, “BASIC.” Developed in 1964 by
John George Kemeny and Thomas Eugene Kurtz at Dartmouth College (they also came up
with the name), BASIC, as it was originally conceived, had very little to do with the program-
ming language we know today as Microsoft Visual Basic 2010. It was as far removed from the
object-oriented programming we use today as Columbus was from India at the end of his
famous voyage of discovery.

4 Part I Beginning with Language and Tools

However, the modern version of the language contains fundamental linguistic elements, such
as variable declarations and the use of structural commands, that are still very much “basic-
esque,” according to the original definition of BASIC. In this chapter, you will learn all that you
need to know about these fundamental language elements.

Don’t roll your eyes now, and say, “Oh, come on! I already know all that stuff!” It’s possible
that you really do already know everything contained in this chapter, in which case, by all
means, you can pat yourself on the back and praise yourself, saying “Man—I’m good! I’m
going to continue with object oriented-programming right away!” And then, highly moti-
vated, you apply yourself to those much more challenging topics elsewhere in the book.

Or…you can read through the following sections and maybe catch yourself once in a while
saying, “What? That works too?”

Either way, let me point out here that this chapter is not meant as a beginner’s handbook,
explaining the language at length, and it certainly doesn’t start at square one. You should
already be familiar with basic programming–preferably in BASIC; the following sections are
meant to summarize Visual Basic for you, while showing you the differences between the
BASIC dialects that you might have worked with so far—all in as concise a format as possible.
It is not the purpose of this chapter to teach Visual Basic from scratch.

Starting Visual Studio for the First Time
These days, programming in Visual Basic means that you are very likely to spend 99.999
percent of your time in Microsoft Visual Studio. The rest of the time you probably spend
searching for code files from other projects and binding them into your current project—or
rebooting Visual Studio after it has crashed, which, thankfully, has become extremely rare
after Service Pack 1 became available.

The integrated development environment (IDE) in Visual Studio 2010 provides tools in a
user interface that help you to design your programs. Sorted according to importance these
tools are:

■ The Visual Basic 2010 Compiler, which becomes active when you use a command to
start the compilation (in the Create menu or the corresponding Toolbar).

Note The compiler translates programs that you write into Microsoft Intermediate
Language (MSIL), which then is converted into processor code at runtime, taking the
specific machine characteristics into account. You will learn more about this in Chapter 2,
“Introduction to the .NET Framework.” In the interest of being thorough, Visual Studio also
provides other compilers for C++ or C#, but we’re not worried about those in this context.
Visual Basic Express provides a leaner version of Visual Studio, which only contains the
Visual Basic Compiler. Of course, you have the option of adding Visual C# Express or C++
Express. You can find the link to Express downloads at http://www.microsoft.com/Express/.

 Chapter 1 Beginners All-Purpose Symbolic Instruction Code 5

■ The Visual Studio Editor, which provides syntax highlighting support, IntelliSense, and
other aids while you are editing the source code of your program.

■ Various designers with corresponding tool dialogs, which support you as you create
forms and other visual objects.

■ The Solution Explorer, which manages and organizes the code files in your project.

However, starting Visual Studio 2010 for the first time doesn’t take you directly to this IDE.
Instead, the Choose Default Environment Settings dialog box appears, as presented in
Figure 1-1.

FIguRE 1-1 When starting the program for the first time, you need to customize the default
settings for the development environment.

In this dialog, you decide which default settings to use to configure the development envi-
ronment. Your best bet is to select General Development Settings.

Tip General Development Settings is the default for most Visual Studio 2005/2008 and 2010 in-
stallations. Visual Basic Development Settings include specific customizations, which provide the
possibility to quickly adjust certain Visual Basic commands for dialog layout, command menus,
and shortcuts. For example, the dialog for creating a new project is limited to Visual Basic proj-
ects only; some options, such as creating a solution directory along with a new project, are auto-
matically hidden when you create a new project. You are able to create projects without naming
them, and then later, at the end of your development session, you can choose whether to save them
with a specific name. The same concepts apply to commands, which you can call by using drop-
down menus: “Customized” means that many functions, which could also affect Visual Basic proj-
ects, are simply hidden.

6 Part I Beginning with Language and Tools

Try different variations to see what works best for you. If, later on, you are no longer happy with
the default settings you selected here, see Chapter 3, “Sightseeing,” for help on how to reset your
Visual Studio settings.

Console Applications
If you are developing for end users, you are probably creating programs that use the Windows
graphic user interface. In Microsoft .NET jargon, such applications are called Windows Forms
applications, or WinForms applications for short. For end users, this is currently the simplest
and most familiar way to navigate a program; however, that project type is not necessar-
ily appropriate when it comes to teaching developers, because the bells and whistles of the
Windows UI, with all its graphic elements (such as buttons, dialog boxes, mouse control, and
so on) can distract learners from focusing on each particular language element.

In .NET, you can use another project type, as well, which results in applications that older
programmers will remember fondly (I’ll leave it up to you to determine what “older” is) and
server administrators will know about, even today. They’re called console applications. These
are programs that start with a minimalistic user interface. You launch such programs directly
from the Windows command prompt and control them exclusively by using the keyboard.
The only interface between the user and the program is a character-oriented monitor output
and the keyboard.

The following sections concentrate exclusively on designing console applications. As men-
tioned before, console applications let you focus on the fundamentals. The following step-
by-step instructions show you how to set up a console application, after you have started
Visual Studio:

 1. From the File menu, select the New command, and then click Project. Visual Studio will
display the dialog box shown in Figure 1-2.

 2. Under Installed Templates, open the branch Visual Basic, and then select Windows.

 3. In the center pane, select Console Application, as shown in Figure 1-2.

 4. Enter the name of your new project. If you would like to create an explicit solution
directory, be sure to select the Create Solution Directory check box.

Note Visual Studio is designed to support anything from tiny sample programs to ex-
tremely complex and extensive projects. So extensive in fact, that on the one hand, a
single project can lose clarity and transparency, but on the other hand, by dividing a
project into parts, you can often make some of those parts available for use in other proj-
ects. This is why you would usually not simply create projects, but also a “project folder”,
called a solution (Visual Basic Express uses slightly different terminology, but in general it

 Chapter 1 Beginners All-Purpose Symbolic Instruction Code 7

manages solutions, as well). In the simplest case a solution contains only one project—your
Windows or console application. A solution directory makes sense, when you expect your
solution to contain several projects. In addition to your main application these other proj-
ects might include, for example, additional class libraries or completely different project
types, such as web services. In this case, the root directory contains only the solution file,
which, by the way, has the extension .sln.

Tip Because there are quite a lot of templates for different purposes and different pro-
gramming languages, you can always use the search box in the upper-right corner to find
the template you’re looking for in no time: simply type in keywords or keyword abbrevia-
tions like “visual basic” (“vb” works just as well) or “console” to narrow the list down to
those templates that match the keyword.

FIguRE 1-2 Use the New Project dialog box to create a new project for a console application.

 5. Click the Browse button located in the lower-right portion of the window, specify the
path to the location where you would like to save your project, and then click OK when
you are done.

8 Part I Beginning with Language and Tools

After you click OK, the Visual Basic Code Editor opens. Enter the following lines
between the commands Sub Main and End Sub.

 Sub Main()

 Dim dateOfBirth As Date
 Dim age As Integer

 Console.Write("Please enter your date of birth (mm/dd/yyyy): ")
 dateOfBirth = Date.Parse(Console.ReadLine())
 age = (Now.Subtract(dateOfBirth)).Days \ 365
 Console.Write("You are {0} years old", age)
 Console.ReadKey()
 End Sub

Your results should look similar to Figure 1-3.

FIguRE 1-3 The Visual Studio 2010 IDE showing a new console application and a few lines of code.

Starting an Application
Start your new application by either pressing F5, clicking the start icon on the Toolbar, or
clicking the Start Debugging command on the Debug menu. Upon startup, you are asked to
enter your date of birth. You can see immediately how very different console applications are

 Chapter 1 Beginners All-Purpose Symbolic Instruction Code 9

from the much more familiar Windows applications. You interact with the program solely by
using the keyboard and the text-only display on your monitor. Figure 1-4 shows you how this
first console application should look.

FIguRE 1-4 A typical console application. The user interacts with the application via the keyboard and the
text-only output.

Important When you start an application following the steps just described, the speed at
which it runs (regardless of whether it’s a console application or a Windows Forms application)
does not correspond at all to the speed at which it will run outside the Visual Studio user en-
vironment. The Visual Studio IDE can help you to check the application for errors and bugs by
using the automatically attached debugger. For example, you can insert breakpoints at certain
lines (by placing your cursor in a line and pressing F9 to automatically stop your program when it
reaches a breakpoint). You can then examine the state of your program as it runs and even step
through the program line by line (F11) or procedure by procedure (F10). This all takes time dur-
ing program execution, whether you are actually using these features or not.

You can circumvent this overhead to see your application run at a more normal speed by instead
pressing Ctrl+F5 to start it, or by selecting Start Without Debugging on the Debug menu. Of
course, you won’t be able to avail yourself of the Debugger functionality when you launch the
application this way.

Tip You can also add a toolbar to make the entire debugging functionality more easily avail-
able by right-clicking an empty space within the Visual Studio IDE Toolbar to display the context
menu and then selecting Debug, which displays the Toolbar, as shown in Figure 1-5.

10 Part I Beginning with Language and Tools

FIguRE 1-5 Open the context menu by right-clicking the empty space in the Toolbar to display
additional Toolbars. The Debug Toolbar provides easy access to many debugging functions.

Anatomy of a (Visual Basic) Program
The initial methods to store computer data weren’t magnetic; they didn’t use diskettes or
hard disks. Instead, early computers used punched tape, which was a paper tape with small
holes stamped in it in specific patterns that represented the data. The punched tapes were
fed through a special reader, and based on the configuration of these holes, the previously
punched bits and bytes found their way into the computer. Interestingly, punched-tape
devices were first used in the textile industry, not in the shape of an early computer, and
not for storing sales volume or customer information; instead, they were used in looms. The
information needed to control the loom was stored in the form of small wooden plates,
arranged behind one another in a certain order.

This early scheme corresponds to how we define what a computer should do today, and thus
to the anatomy of a program:

 1. You need something that you process: namely data (or wool, in the textile industry).

 2. You need instructions to control how something is processed: the program statements
(or the knitting pattern).

Of course, this is an extreme simplification, and it doesn’t even begin to suggest the incred-
ible variety and number of the possibilities. This first application is but the tip of the iceberg.
To demonstrate this, Figure 1-6 presents another, slightly more polished version of the first
example. This version is intended to give you a better understanding of the different aspects
of typical Visual Basic program anatomy (even though it’s still only a console application).

 Chapter 1 Beginners All-Purpose Symbolic Instruction Code 11

FIguRE 1-6 The anatomy of a small Visual Basic application.

12 Part I Beginning with Language and Tools

Figure 1-6 also demonstrates that while an application consists of data and program state-
ments, program statements can obviously have a variety of different structures. These struc-
tures are easier to understand by looking at how the example program works again (see
Figure 1-7), before focusing on its internal functions and the individual components of the
BASIC language.

FIguRE 1-7 The Professional Edition of this example has a few more features up its sleeve than
the first “lite” version.

To begin, after starting the application, you either enter a birth date or one of the commands
today or time. The program responds as shown in Figure 1-7. If you enter a date using an
invalid format, the program recognizes and catches the error and displays a corresponding
message.

Internally, this application functions rather simply. The schematic provides an admittedly
alternative glimpse into the elements used to build the application.

Starting up with the Main Method
Each console application starts with a certain method, which in Visual Basic (and many
other languages) always has the name Main, and contains statements that are encapsulated
between Sub and End Sub commands (in Visual Basic only). A Sub in Visual Basic defines a
method without return values. A console application needs at least this one Main method so
that Windows knows where your program begins. In Visual Basic, you define methods that
return values with the Function keyword and designate the return value with the Return key-
word. The following section explains this in more detail.

 Chapter 1 Beginners All-Purpose Symbolic Instruction Code 13

The History of Important Programming Languages, and the
History of Sub Main
In today’s business world, when we talk about programming languages, we essentially
only encounter two separate concepts: procedurally-structured and object-oriented
programming. As the following section shows, procedural means that the code can be
reused or used multiple times because it can be called from different points within the
program and always returns to the same place from which it was called. By the way,
another word for method is procedure, and this is where reusable code is placed, which
is why this form of conceptional structuring is called procedural programming.

The term structured programming comes from certain structural constructs, such as If
… Then … Else or Switch constructs. And object-oriented programming adds another
abstraction level on top of that, but this is not of interest to us at the moment. What we
are focusing on here is where it all started.

We need to go back to 1958; a time when developers still had to program their computers,
on foot, so to speak, in direct machine code. A programmer at IBM named John Backus
became so annoyed with this way of developing that he approached his supervisors with a
request that he be allowed to develop a utility program to alleviate the problem.

At the time, Backus worked on an IBM System 704 mainframe computer. His utility
was designed to help programmers by using commands that were a little closer to
human language, and which also permitted the analysis and calculation of mathemati-
cal functions directly. The high-falutin’ name of this project was The IBM Mathematical
Formula Translation System. However, for Backus to pronounce this name each time he
talked about the project would have probably delayed the completion of the project
by another year, so he decided on a shorter nickname made up of a couple of first syl-
lables. Thus, one of the first standard languages was born: ForTran (written here with a
capital “T” to clarify the syllable origin).

At that time, all standard languages followed the so-called imperative concept, by
which commands are handled one after the other. There were really no structures, not
to mention procedures. The few deviations from the normal program execution took
place when jump targets were reached (for example, a GOTO statement) or when one
of the three passable jump targets could be reached with an IF statement (depending
on whether the expression to be examined was less than, equal to, or greater than 0).
With each subsequent development, the programming languages slowly evolved via
various Fortran and Algol versions until eventually CPL (Combined Program Language)
was created. This was a programming language that tried to unite the best aspects of
Fortran and Algol (the languages for scientific applications) as well as Cobol (the lan-
guage for finance-mathematical applications). Unfortunately the result was a monster,
which, in spite of possessing the ideal requirements to serve as a platform for a lan-
guage compiler, was much too large and sluggish.

14 Part I Beginning with Language and Tools

Martin Richards of Cambridge University took CPL under his wing (some say the abbre-
viation stands for Cambridge Program Language, because it was developed in part at
Cambridge1). He slimmed it down and thus created the language BCPL, which could
only be used correctly on mainframe computers, but which was now suitable as a plat-
form for further compiler development.

Just as an aside, BCPL was the first programming language that marked language
structures{
 well, {
 let’s say:
 { a basic approach }
 }
 }
for the first time with curly brackets.

Around 1969, Ken Thompson and Dennis Ritchie of the famous Bell Laboratories set for
themselves the goal of getting BCPL to run on mini-computers. At the time, mini-com-
puters were also minimalists with respect to hardware, so this was an ambitious goal.
To complicate matters even further, there was only one way to do things: every element
that wasn’t absolutely vital for the language had to be removed. Thompson and Ritchie
did exactly that and more; in their eagerness to save space, they didn’t even spare the
name. Therefore, BCPL became simply “B,” which was—as you might begin to sus-
pect—the daddy of C and the grand-daddy of C++ (and eventually C#). As a point of
interest, the tutorial about B implementation by B.W. Kernighan and Murray Hill states
right away on the first page, directly below Section 2, “General Program Layout”:

main() {
 statements
 }
newfunc(arg1, arg2) {
 statements
 }

fun3(arg) {
 more statements
 }

1 To be accurate, CPL was a common project between Cambridge University and the computer department of
London University, which led to assertions that that was the reason to change the original name Cambridge
Programming Language to Combined Programming Language, rather than being a combination of two computer
language worlds.

 Chapter 1 Beginners All-Purpose Symbolic Instruction Code 15

And further:

“ All B programs consist of one or more “functions”, which are similar to the
functions and subroutines of a Fortran program, or the procedures of PL/I. main
is such a function, and in fact all B programs must have a main. Execution of the
program begins at the first statement of main, and usually ends at the last. Main
will usually invoke other functions to perform its job, some coming from the same
program, and others from libraries.”2

So now you know a little more about the evolution of the important programming lan-
guages of today as well as the historical significance of the Main function, which existed
more than 35 years ago in B, and whose name survived until today as a symbol identi-
fier for the entry point to start a program.

Methods with and Without Return Values
The Main method enjoys a special status within an application because it needs at least one
user-defined (custom) type, within which it can reside, and it defines the starting point of
the application solely by its name. A custom type is essentially a class—Visual Basic also has
a special kind of class called a module. A module is essentially just a class that has meth-
ods available to any caller who can access the module. These methods are also called static
methods.

Methods are the units into which your program is arranged. Just as the operating system calls
the Main method, you can call methods in your programs. These can be custom methods
that you write or methods exposed by objects that the .NET Framework provides.

You can assign general requirements to methods for completing their tasks—but you don’t
have to. Such general requirements are called parameters or arguments. Whether a method
can accept arguments is determined by its signature. The signature specifies which argu-
ments and which types of arguments the method expects as well as the order or sequence in
which it expects them.

Referring back to Figure 1-6, you can see several methods and how those methods are
defined in the program. For example, Console.WriteLine calls a method of the class Console.
The method displays whatever is passed as an argument in a certain format—also defined by
an argument—in the console window.

2 FTP://cm.bell-labs.com/cm/cs/who/dmr/scbref.pdf

16 Part I Beginning with Language and Tools

Defining Methods Without Return Values by Using Sub
In Visual Basic, you define methods in two ways. One way is to use the keyword Sub. These
are methods that can take arguments but will not return a result, as shown in the following:

Sub MethodName([Parameter1 As Typ1[, Parameter2 As Typ2]])
 [Statements]
 [Exit Sub|Return]
End Sub

To end method execution early, you can use either Exit Sub or Return statements—it doesn’t
matter which one you use. Exiting early makes sense only when you’re checking for a certain
condition or state, which you might do by using If … Then … Else constructs (you will learn
more about them later in this chapter).

Defining Methods with Return Values by Using Function
Methods can also return a function result. In Visual Basic, you define such a method with the
Function keyword, as follows:

Function MethodName([Parameter1 As Typ1[, Parameter2 As Typ2]]) as ReturnType
 [Statements]
 [Exit Sub]
 [Statements]
 Return FunctionResult
End Sub

The method CalcAge in Figure 1-6 is an example of this. This method receives a birth date as
an argument and returns an integer to the calling instance. The return value type is specified
with the words As Integer at the end of the method definition.

For methods that return values (Functions in Visual Basic), Return has a different meaning
than for methods, which don’t return values (Sub methods). Return not only ends execution
as it does in a Sub method, but it also specifies which value to return. The value follows the
Return keyword.

Declaring Variables
The application example declares a variable in the first line of its Main method. Variables are
places in which a method or program can store data during its lifetime. Thus, the following
line determines that the variable input can take content of the type string:

Dim input As String

The String type restricts the input variable to character strings: in other words, any kind
of text. The String keyword, therefore, represents a type that contains text. If you were to

 Chapter 1 Beginners All-Purpose Symbolic Instruction Code 17

specify Integer as the type, the variable input could save numbers between approximately
–2 billion and +2 billion, but only integers, no fractions. If you were to specify Double as the
type, the input variable could also hold fractions. However, their range of value becomes
smaller as the fractions become more accurate. Fractions are also called floating point num-
bers, because the decimal point can be moved.

Important In .NET (not just in Visual Basic), type safety is very important, because using the
wrong types is a common source of errors. For example, if you write and sort a date in the Irish
date format (dd.mm.yyyy) as a string, then 11.10.2002 is bigger than 10.11.2005, because 11 is
greater than 10. But when you look at it as a date, the second date is of course later (greater)
than the first, which is the earlier or smaller date value. One way to look at it is in the form of the
number of elapsed time units. For dates further in the past, fewer seconds have passed than for
later dates. Sorting dates as strings leads to a completely different result than sorting by date.

For a description of the different types you can use in .NET Framework, and therefore also in
your Visual Basic programs, see Chapter 6, “The Essential .NET Data Types.”

Visual Basic and the Dim Keyword: a Brief History
There are historical reasons why variables in Visual Basic are typecast by using the
keyword Dim. This process is correctly called Declaring of Variables. In early versions of
BASIC, it was possible to use a variable by simply providing a name, without defining
anything about the type of that variable beforehand. The BASIC interpreter created and
typed variables only at runtime, according to the context of their assignment. However,
this was not the case for so-called arrays (groups of variables), which could be accessed
by using one or more index values. For example, you can access individual array ele-
ments within loops by using counter variables. Of course, that is still possible, because
arrays are still a central part of all .NET languages. The point is that even in early BASIC,
you already had to define the dimensions and limits of an array (upper and lower
bounds and number of dimensions). You did that by using the DIM statement.

Simply declaring a variable doesn’t give it a value. However, when a variable type has some
kind of basic state, it automatically receives an appropriate default value; for example, all
numeric data types have the value 0, False is the default value for Boolean variables, and Null
(nothing) for strings. Here, Null can actually be a value or state of a variable (and philosophi-
cally speaking, the computer therefore creates a contradiction in terms: “the state is noth-
ing”), but just accept that for now. (You can find some good background information about
Null on Wikipedia.)

The .NET Framework—or more precisely, the Common Type System (CTS), which regulates
different data types throughout the .NET Framework—differentiates between two data

18 Part I Beginning with Language and Tools

types: value types and reference types. The essential and highly optimized value types, built
directly into .NET Framework, are, for example, Integer, Long, Single, Double, Decimal, Date,
and String. Because they are so deeply embedded into the .NET Framework and at the same
time so highly optimized and not derived from some other type, they are also called primitive
data types.

Note Technically speaking, this last statement isn’t entirely correct. For example, you might
have heard someone say correctly that all data types are based on Object. Conceptually, how-
ever, this statement is inaccurate, because all primitive data types are handled specially by the
Common Language Runtime (CLR), even if they are based on ValueType and therefore on Object.

Many different data types are required to save all the different kinds of data correctly—after
all, you wouldn’t necessarily put your coats in a drawer while hanging your socks in the closet;
that might work, but it wouldn’t be very practical. So the .NET Framework has a number of
primitive data types that are designed for various tasks, as presented in the following list:

■ Byte, Short, Integer, Long, SByte, UShort, UInteger, ULong These data types save
numerical values without decimal places. Using these types, you couldn’t save the
constant Pi with anything close to its actual value; it would end at 3 and drop the
post-decimal fractional portion. These so-called integer data types differ only by value
range and the memory space they require. For example, Long requires 8 bytes, but it
covers a wide value range, from about –9 billion to +9 billion. The Byte type, on the
other hand, needs only one byte, but only covers values between 0 and 255.

Note This value of 255, which appears so arbitrary and uneven to mere mortals, in fact
has historic underpinnings. The smallest unit of information a computer can handle is one
Bit: A stream flows or it doesn’t, which corresponds to True or False or 0 or 1. However, just
0 and 1 aren’t sufficient to represent the world around us.

During the design phase of one of the first IBM mainframe computers, a design engineer
named Werner Buchholz placed a few bits (initially 6) behind each other and thus turned
them into a Bite. However, because the terms Bite and Bit were so often mixed up, Bite
became Byte. But 6 Bits corresponds to a value range of 0–63 (26 = 64), which even back
then often didn’t cover a large enough value range. Thus, with the passing of time, 8 Bits
became the basic size unit for a Byte.

All data storage in computing is based on the byte as a size unit: a Short requires 2
bytes, and therefore covers a value range from –32768 to +32767. The UShort type (the
U before the data type name indicates that it is unsigned) does not have a sign (– or +).
Therefore, the data range changes to 0 to 65,535—negative values are not allowed for
integer data types that start with “U.” The most commonly used integer data type is
called Integer: it consists of 4 bytes, which corresponds to 32 bits, and 32 bits can natu-
rally be handled most quickly by a 32-bit processor. Typically, using Integer data types
is the fastest way to count within your programs.

 Chapter 1 Beginners All-Purpose Symbolic Instruction Code 19

■ Single and Double These data types require four and eight bytes, respectively, and
can represent decimals. They are floating-point types, which means that the accuracy
depends on the size of the value range. Rounding errors are very common with these
data types. Therefore, you should not use them for financial or mathematical applica-
tions, but rather for calculating graphs and the like, where speed is more essential than
accuracy.

■ Decimal This data type is more suitable for high accuracy. Rounding errors, such
as when converting from a base-2 to a base-10 system, cannot happen with these
because the values are saved differently internally than when using Single or Double.
However, the processor cannot calculate the data type directly, so calculations using
this type execute more slowly than those that use Single or Double. But Decimal is still
fast enough for financial calculations.

■ Date This type stores date values (calendar data). Internally, a Date is an 8-byte
floating-point number, where the pre-decimal places represent the actual date (day,
month, and year) and the post-decimal places represent the time. You will find more
details about this data type in Chapter 6.

■ Boolean This one is easy because it corresponds to one bit and saves only the num-
bers 0 and 1, which you can think of as False and True.

■ Char This data type saves a character. For modern programming purposes, characters
require 2 bytes, because 256 different characters are no longer enough.

■ String This type saves character strings (text). Strictly speaking, strings are arrays of
Char values.

In addition to these primitive value types, the .NET Framework has “normal” value types,
which are composed of primitive data types. For example, the type Size is made up of two
integer values; it provides methods and properties to define the size of objects or perform
size calculations. Another example is the Location type, which saves coordinates.

You provide a variable with a value by using an assignment statement, which is explained in
the next section.

Nullables
You can declare all value types as nullables. A nullable is unique because in addition to a
value, it can also have no stored value, which is normally not possible for a value type.

As an example, if you declare the following Integer variable, you can use it directly—
remember, that’s part of the nature of value types. They don’t need to have an initial value
assigned to them in Visual Basic:

Dim count As Integer ' Count is 0

20 Part I Beginning with Language and Tools

count = count + 1 ' Works, count is now 1

In the first line of the preceding code, the integer value type cannot support the idea that
count has not been assigned a value. This is only possible when a variable has been defined
as nullable for a specific type, which you do by appending a type literal (the question mark)
to the end of the type name (Integer, in this example), as demonstrated in the following:

Dim nullableCount As Integer? ' Count is now Nothing
nullablecount = 0 ' Assign initial value
nullablecount = nullablecount + 1 ' Works, count is now 1

An interesting and useful characteristic of the nullable value type is that you can query it
to determine if it has a value by using the HasValue property, as shown in the following
example:

Dim nullableCount As Integer?
nullableCount = 0
nullableCount = nullableCount + 1

Dim anotherNullable As Integer?

Console.WriteLine("Does nullableCount have a value: " & nullableCount.HasValue.ToString)
Console.WriteLine("Does anotherNullable have a value: " & anotherNullable.HasValue.ToString)

The preceding sample code produces the following output in the console window:

Does nullableCount have a value: True
Does anotherNullable have a value: False

To delete the value of a nullable, assign Nothing to it:

 nullableCount = Nothing

Nullables don’t cause an error when you try to access their value to perform calculations;
the result stays “Nothing, unknown, I don’t know what it contains”—in short, Nothing. The
sample code could be explained as follows:

 Dim anotherNullable As Integer? ' Doesn't have a value or value is unknown.
 anotherNullable = anotherNullable + 1 ' and that's how it stays.
 Console.WriteLine("anotherNullable is: " & anotherNullable.ToString)

When you run that code, the output is:

anotherNullable is:

There is literally no output. When trying to perform an addition, Visual Basic can determine
that there is nothing in anotherNullable. It’s not defined, and Visual Basic interprets this
state with “I don’t know what’s in anotherNullable.” The response is as follows: when Visual
Basic doesn’t know what a variable contains, and a value is supposed to be added to it, it also
doesn’t know what the result is. Therefore, the result is again Nothing.

 Chapter 1 Beginners All-Purpose Symbolic Instruction Code 21

Note Nullables are used mainly in database applications, wherein it’s customary to define data-
base tables in which the columns of some rows don’t contain values. Therefore, there’s a differ-
ence between a field in a table that contains the value 0 and one that contains no value. Nullables
in .NET accommodate such situations. You’ll find more detailed explanations about nullables in
Chapter 18, “Advanced Types.”

Expressions and Definitions of Variables
For numeric as well as date calculations or string operations, it is important to have an under-
standing of expressions. The following line (see Figure 1-6) is a String expression. The ReadLine
method returns a string (in this case, whatever text the user has entered via the keyboard)
and assigns the result to the variable input.

input = Console.ReadLine()

Another example of an expression in the code in Figure 1-6 is the static Parse method of the
Date data type, as shown here:

birthyear = Date.Parse(input)

By assigning this expression in this manner, the string, which represents the date, is converted
into a true date type. Remember, it’s important to use the correct type in the correct place.
A computer doesn’t sort a string that happens to represent a date value as a true date (refer
to the sidebar earlier in this chapter for more information). Therefore, you must instruct the
Date type to parse the string (to go through it character by character and analyze it), to
interpret the characters as a date and then convert them accordingly.

Defining and Declaring Variables at the Same Time
You can declare and assign of variables in one operation. So, instead of writing this

Dim christmas10 As Date
christmas10 = #12/24/2010#

you can condense it to the following:

Dim christmas10 As Date = #12/24/2010#

22 Part I Beginning with Language and Tools

Note Beginning with Visual Basic 2008, the As <type> portion of a variable declaration is no
longer required within procedures (for example, within methods defined with Sub or Function)
when the declaration and assignment happen at the same time. When the option Local Type
Inference is set (more about this in the section, “Local Type Inference,” later in this chapter), the
Visual Basic compiler can recognize or infer the type for the declaration from the expression type
during the expression assignment. Without Local Type Inference, you need to write an assign-
ment and declare a String variable as follows:

Dim almostGerman as String = "Bratwurst und Sauerkraut are yummy!"

Using Local Type Inference, it’s sufficient to write the statements as shown here:

Dim almostGerman = "Bratwurst und Sauerkraut are yummy!"

The compiler recognizes, that the constant expression “Bratwurst und Sauerkraut are yummy!”
is a string, and infers the correct type when assigning a type. It doesn’t recognize, though, that
the expression is fundamentally false. Bratwurst only works with French fries—NEVER with
Sauerkraut.

Complex Expressions
The result, or the return value, of a method can also serve as the operand of an operator, and
you can therefore combine the return values of multiple methods into a complex expression.
Just to make this a little more clear, first let’s review the method from the initial example:

 Function CalcAge(ByVal birthYear As Date) As Integer

 Dim retAge As Integer
 Dim today As Date = Date.Now
 Dim diffToBirthdate As TimeSpan

 diffForBirthdate = today.Subtract(bithyear)
 retAge = diffToBirthdate.Days \ 365
 Return retAge

 End Function

This is constructed in such a way that the result is calculated in several intermediate steps. It’s
possible not only to calculate the value (which is stored in the next-to-last line in retAge and
returned with Return in the last line), but also to return it at the same time. This is how the
code would look rewritten as a complex expression:

 Function CalcAge(ByVal birthyear As Date) As Integer

 Return Date.Now.Subtract(birthYear).Days \ 365

 End Function

The preceding condensed code and the longer form shown in the prior example provide the
exact same result.

 Chapter 1 Beginners All-Purpose Symbolic Instruction Code 23

It’s not too hard to understand numeric expressions. Most of us were probably confronted
with them for the first time in grade school. String expressions behave similarly. For example,
the following declaration, expression calculation, and the subsequent definition for dbl is 55:

Dim dbl As Double
dbl = 5
dbl = dbl +5 * 10

Note This calculation follows the rules of priority during the evaluation: “Power before paren-
thesis, before period, before prime.”

Using this as a guide, you can see why “Adriana Ardelean” is stored in the str variable as the
resulting value in the following:

Dim str As String
str = "-> Adriana Ardelean <-"
str = str.Substring(3, 16)

Therefore, you can also see why the following code always results in a date that represents
two days in the future:

Dim dayaftertomorrow As Date
dayAfterTomorrow = Date.Now
dayAfterTomorrow = dayAfterTomorrow.AddDays(2)

Boolean Expressions
Numeric expressions, expressions that calculate date values, and string expressions are rela-
tively easy to read and understand. They are similar to the typical curve sketching formulas
we all learned in ninth or tenth grade.

How would you read the following expression?

Dim var = 5 = 5

Is this line valid? If yes, which type has var been assigned and what value does it carry?

To begin, yes, this line of code is valid. Second, it defines a variable of type Boolean. As men-
tioned earlier, variables of this type don’t have a very large number range because they can
only return one of two states, True or False.

Now let’s look at the expression from a slightly more analytical standpoint: 5 = 5 is a true
assertion. The result of the expression 5 = 5 is therefore True. In this case, the operator is the
equal operator (not the assignment operator, which defines a variable; it’s is the same opera-
tor character, but different context and different meaning), which always returns a Boolean

24 Part I Beginning with Language and Tools

result, the variable var will also be defined as Boolean by Local Type Inference. Try printing
the result by using the statement following:

Console.WriteLine(var.ToString)

This statement prints the value, True.

Boolean variables and Boolean statements are important because they are used as arguments
in statements for conditional program edits or for testing a loop exit criterion. For example,
during an If query, the block of code between If and End If is run only when the result of the
Boolean expression behind If is True. And if the construct contains an Else branch, that branch
is run when the result is False. The section “If … Then … Else … ElseIf … End If,” later in this
chapter, provides more detail about how this works.

Comparing Objects and Data Types
In the real world, objects are things that you might or might not be able to touch, but you
can at least describe them in some way. Take for example a bucket: you can clearly picture
it in your mind, but you fail to imagine a repository per se, because it’s not concrete enough
a definition. The only way to think about it is to manifest it into something defined: If your
repository becomes a drawer, a bowl, a can, or a bottle, you’d be able to picture it in your
mind. But you can’t think of just a repository. It’s the same in programming, with some slight
differences: objects are abstract entities. Apart from threads, which we’ll discuss later in the
book, they are pretty much the most abstract entities known in programming.

The best way to begin to explain what an object is would be to explain what it is not. For
example, an Integer variable is not an object. Neither is a date variable nor a Boolean variable.
A data type called Point (which determines a position for drawing) isn’t an object, either.

However, the entity on which you draw things, the content of a window or a PictureBox, or a
printer context are all objects. A brush that you use for drawing is an object. A button is an
object. A TextBox, into which you can enter text in a Windows or web application, is also an
object. A ToolTip is an object; a TCP/IP connection can also be an object (one that controls
that connection). Strings are a little more tricky. Is a string an object? In principle, yes; by
definition, no.

As you might have already noticed, objects and value data types have something in com-
mon. Both save data, and both regulate access to this data. But in general, objects are more
complex; they need more memory and have more methods that let you do something with
the object; for instance, setting focus to a TextBox, establishing a connection, bringing a but-
ton to the foreground. They also have more complex properties. Examples of these include
specifying or determining the text inside a TextBox, setting or querying the buffer size of
a TCP/IP connection, toggling a menu and thus setting or determining its “active” state,

 Chapter 1 Beginners All-Purpose Symbolic Instruction Code 25

specifying or retrieving the background color of a button, and so on. And objects can trigger
events (a button was clicked, the text in a TextBox changed, the data received in an open con-
nection, and so forth).

Simple variable types, such as Integer, Double, Date, or Boolean can be used directly after
declaration. Among other things, the .NET Framework infrastructure—the CLR to be exact—
also ensures that the appropriate amount of memory is reserved on the processor stack
for these value data types. A variable in your program is therefore connected to a memory
address in the processor stack.

Note The processor stack is a special memory range for caching temporary information, which
the processor (or a running process with the help of the processor) can access extremely fast.

Essentially, there is no space for more complex objects. There might be room for one, but
if you want to program a picture organizer, you will need to have more than one object in
memory at the same time. And that’s why space must be reserved in memory for these com-
plex objects. The memory to be reserved is called the Managed Heap in .NET-speak. This is
because you don’t need to worry about other data structures infringing upon the memory
space for your pictures; it’s all managed for you. And you don’t need to free up memory
space manually when the object is no longer needed—that’s managed for you, as well.

Thus, the difference between objects in programming and real life is that in the latter we
don’t distinguish between small objects which we can handle very, very fast and normal or
large size objects. In programming, we do this when we talk about data stores for the differ-
ent purposes:

The rule of thumb is a follows:

■ Value Types Can make due with very little memory space, but they are extremely fast

■ Reference Types Can use a lot of memory space, but they are slower (but still rela-
tively fast)

Deriving from Objects and Abstract Objects
Objects in .NET have another interesting characteristic: they build upon each other. This is
no different from objects in daily life. For example, as I mentioned before, a container is an
abstract object, which we can classify in general but not in concrete terms. A milk carton is
certainly a container, but a container is not necessarily a milk carton. A container could also
be a bottle, or a bucket, or a barrel. The intersection of certain properties makes all these
objects a container. Therefore, we can say that all objects that contain liquid, such as milk
cartons, bottles, barrels, or buckets, are derived from container.

26 Part I Beginning with Language and Tools

Programming works the same way. You can create a template (called a class) for an object
but only use this template for creating further templates. The differences between these
templates then flow into the derivations; by using additional properties and methods, the
abstract class Container becomes the more specific class Bottle, or MilkCarton, or Barrel. And
then you use this new template to bring into being (to instantiate) the actual barrel. You are
instantiating an object from a class.

Here’s another analogy: molds and sand. The mold is a class, the instantiation is the sand,
which you take from a sand heap. You only have one mold—one class—but by filling it with
sand, you can create countless objects. In .NET-speak: “You are reserving memory on the
Managed Heap, so a class can be instantiated into an object.”3 For a more complete discus-
sion of classes and objects, see Chapter 8, “Class Begins.”

This is also the reason why objects for new creations (for instantiating) need the keyword
New. So for example, to add a new button to a Windows Form, the following lines are
required:

'Instantiate new button object
Dim t As New System.Windows.Forms.Button

'Set Text property
t.Text = "New button"

'Add to form
myForm.Controls.Add(t)

'Focus button
t.Focus()

Classes and objects are such an extensive topic that they have their own section in this book.
With a basic idea of how this works, however, it will be easier for you to use classes and
objects in the many examples that you’ll see prior to reaching that part of the book. Most
important, you need to be able to distinguish objects (reference types) from primitive data
types (value types).

Properties
Objects and value types can have properties. Properties describe states that can be deter-
mined or changed. In contrast, methods typically perform a task. Even in everyday language,
these things can’t always be separated very easily. Properties are very similar to methods.
Setting a property initially corresponds to calling a method that doesn’t return a value, and
reading a property corresponds to a function call to a method that returns a result.

3 Translated into “sandbox speech” this means: “You take sand from the sand heap, so a mold can make a mud pie
with it”.

 Chapter 1 Beginners All-Purpose Symbolic Instruction Code 27

For example, the length of a string is a property. Let’s start by declaring and defining a String
variable, as follows:

Dim aName as String = "Adriana Ardelean"

You can then determine the string’s length (the number of characters it contains) by using
the appropriate property, as shown here:

Dim lengthOfName As Integer = aName.Length

Some properties, such as the current date (Date.Now) or the length of a string (stringVar.
Length), can only be read, but not changed. Such properties are called, not surprisingly, read-
only properties.

Other properties can be both read and written. For example, by using the Enabled prop-
erty of a control, such as a button, you can determine whether a user is able to select it in a
window:

aButton.Enabled = True ' now it is usable
aButton.Enabled = False ' now it isn't any longer.

'Query property and respond:
If aButton.Enabled Then
 ' The code here will be run only when the button is enabled.
End If

Type Literal for Determining Constant Types
Type literals force a constant to be a certain type. (Thus, in my opinion, I think they should
be called “Type forcing literals for constants.”) You have already learned about type literals in
several examples. To assign a string to a variable, you define it as having the type String, and
put whatever you would like to assign to it between quotes, as illustrated here:

Dim AText As String = "Put in quotes"

You don’t do this for numeric variables, however:

Dim Pi as Double = 3.1415926

To force a numeric constant to be a string so that you can assign it to a String variable with-
out having to convert it, you also place it in quotes. Quotes turn a number into a string:

Dim PiAsText As String="3.141592657"

Be aware that by using this technique, you can’t calculate with PiAsText. The variable PiAsText
is a string (like AText in the previous code line), which in this case happens to contain a string
that we humans can interpret to be a number. From the computer’s point of view, though,
there is no difference between "3.1415926" and "Hello, nice weather today!".

28 Part I Beginning with Language and Tools

In the .NET versions of Visual Basic (all versions since Visual Basic 2002), type literals aren’t
just limited to strings; they are also used with other data types. For example, to assign a date
constant to a variable of the type Date, use the # (number) character, as follows:

Dim KlausBirthday As Date=#07/24/1969#

It is important to write the date using the United States format: month first, then day, then
year, even if you’re on a Spanish, Italian, French or German Windows system.

Apart from quotes for strings, this is the only other literal type character that you use to wrap
a constant. Other type literals are simply placed behind the constant. In some cases, these
can consist of two letters instead of just one.

Table 1-1 shows how to define constants with type literals. If a variable type character exists
for a specific type, it is also presented.

TABLE 1-1 Type Literal and Variable Type Characters of Primitive Data Types, as of
Visual Basic 2005
Type
name

Type
character Type literal Example

Byte – – Dim var As Byte = 128

SByte – – Dim var As SByte = -5

Short – S Dim var As Short = -32700S

UShort – US Dim var As UShort = 65000US

Integer % I Dim var% = -123I or Dim var As Integer = -123I

UInteger – UI Dim var As UInteger = 123UI

Long & L Dim var& = -123123L or Dim var As Long = -123123L

ULong – UL Dim var As ULong = 123123UL

Single ! F Dim var! = 123.4F or Dim var As Single = 123.4F

Double # R Dim var# = 123.456789R or
Dim var As Double = 123.456789R

Decimal @ D Dim var@ = 123.456789123D or
Dim var As Decimal = 123.456789123D

Boolean – – Dim var As Boolean = True

Char – C Dim var As Char = "A"C

Date – #MM/dd/yyyy
HH:mm:ss# or
#MM/dd/yyyy
hh:mm:ss am/
pm#

Dim var As Date = #12/24/2008 04:30:15 PM#

Object – – In a variable with the type Object, any type can be boxed or
referenced

String $ “String” Dim var$ = "String" or
Dim var As String = "String"

 Chapter 1 Beginners All-Purpose Symbolic Instruction Code 29

Type Safety
.NET languages follow the rule of type safety. Type safe means that you can’t just mix differ-
ent types randomly during assignments. For example, the following line will not compile and
causes the error message shown in Figure 1-8:

Dim aDifferentString As String
aDifferentString = 1.23

FIguRE 1-8 Type safety in .NET enforces the rule that only equal or safe types can be
assigned implicitly to each other.

Note By default, Visual Basic .NET simulates the non-existent type safety used by Visual Basic
6.0 and Visual Basic for Applications (for example, for macro programming in Microsoft Word or
Microsoft Excel). You can (and should) change this default behavior for all new projects. To do
that, from the Tools menu, select Options | Projects And Solutions, and then select all the check
boxes under VB Defaults.

That customizes the settings for all future projects. To customize the settings for the currently
open project only, from the Project menu, select Properties, and then click the Compile tab. Set
the drop-down lists for all compilation options to On.

To view what the problem is, click the red bar in the squiggly line (see Figure 1-8) to activate
autocorrect for intelligent compiling. The problem arises in this example because in .NET, you
can only assign the same types implicitly, or types that are different but for which an implicit
conversion is definitely safe. And what does “definitely safe” mean? It is definitely safe, for
example, to assign an Integer type to a Long type, as shown in the following:

Dim aLong As Long
Dim anInt As Integer = 10000
aLong = anInt

30 Part I Beginning with Language and Tools

The computer would not complain about that assignment in any .NET language, because
nothing can go wrong. Integer covers a much smaller number range than Long; therefore, an
implicit conversion is widening the type, without possible risk.

Figure 1-9 demonstrates that it’s a different story the other way around.

FIguRE 1-9 Whereas smaller types can safely be converted into larger ones, converting larger to smaller
types is not type safe and, therefore, not permitted implicitly.

When converting from Long to Integer, information can become lost, so .NET doesn’t classify
these narrowing kinds of conversions as type safe. Of course, you can perform such a conver-
sion—just not implicitly. You need to instruct .NET explicitly that you are aware of the risk
and perform appropriate actions to be able to do the conversion. As you can see in Figure
1-9, autocorrect for intelligent compiling makes a direct suggestion: “Replace ‘aLong’ with
‘CInt(aLong)’” The CInt (Convert to Integer) command tells the compiler explicitly that you
want to make the conversion from Long to Integer.

By now, you can probably guess the purpose of type literals in Visual Basic, which you saw in
the previous section. Type safety also applies to constants. Therefore, there must be a way to
force a constant to be a certain type. This is exactly what happens when you use type literals.
Does the following work implicitly?

Dim aChar As Char
Dim aString As String = "Hello"
aChar = aString

No. Because Char can contain only one character, the “ello” portion of the “Hello” string
would be lost during the conversion. A Char type can take only a single Unicode character,
not an entire String. Even this code will not work properly:

 Chapter 1 Beginners All-Purpose Symbolic Instruction Code 31

Dim aChar As Char = "H"

String is String, and Char is Char. You define a String in quotes, no matter how many char-
acters it has. And even if it could be converted (as in the preceding code line), type safety
would be compromised. You need to turn “H” into a Char type, which you can do by placing
the “c” (for character) type literal behind it, as shown in Figure 1-10.

FIguRE 1-10 Use type literals to force constants to have a certain type.

The type safety rule doesn’t apply only to String and Char types; it also applies to the vari-
ous numeric data types. The following code section shows a few examples that demonstrate
when it makes sense to employ type literals:

'Error: Implicit doesn't work from Double to Decimal.
Dim decimal1 As Decimal = 1.2312312312312
'Here it is a Decimal, because of the D at the end:
Dim decimal2 As Decimal = 1.2312312312312D

Dim decimal3 As Decimal = 9223372036854775807 ' OK.
' Overflow - without type literal it is implicitly a
' Long value, and in this case it is outside its value range:
Dim decimal4 As Decimal = 9223372036854775808
' With the type literal "D" Decimal is forced as a constant, and it's correct:
Dim decimal5 As Decimal = 9223372036854775808D ' No overflow.

'Error: Without type literal it's again implicitly a Long,
'but outside of the Long value range:
Dim ushort1 As ULong = 9223372036854775808

' With the type literal Decimal is forced as a constant, and it's correct:
Dim ushort2 As Decimal = 9223372036854775808UL ' No overflow.

32 Part I Beginning with Language and Tools

Local Type Inference
Beginning with Visual Basic 2008, you can assign types to variables, based on their initial
assignments. This becomes apparent in the following assignment:

Dim blnValue = True

When you assign the value True to a primitive variable and type safety is defined, then
the variable must have the Boolean data type. The same logic applies to the following
assignment:

Dim strText = "A string."

In this case, strText must be a string—the assignment defines it. It’s different for numeric
variables. It’s important to know that by assigning an integer to a variable, which hasn’t yet
been assigned a type, the compiler assigns the type Integer, and by assigning a floating-point
number, the compiler gives the variable the type Double. These standard types of constants
already existed; in the end, it’s the constants that determine, according to their type literals,
which type they represent. Here are a few more examples:

Dim anInteger = 100 ' Integer, simple number without floating point defines integer constant
Dim aShort = 101S ' Short, because the type literal S defines a Short constant
Dim aSingle = 101.5F ' Single, because the type literal F defines a Single constant

Important Local type inference works only at the procedure level, not at class level (which is
why it’s called local type inference).

You control whether local inference is in effect with the statement Option Infer, which takes
either the parameter Off or On. By default, local type inference is enabled. To turn it off, use
the following statement.

Option Infer Off

You would place the Option Infer Off (or On) statement directly at the beginning of the code
file for the classes or modules of this code file, or globally for the entire project. To do this,
in Solution Explorer, right-click the project (not the solution) to open the context menu, and
then select Properties (see Figure 1-11).

 Chapter 1 Beginners All-Purpose Symbolic Instruction Code 33

FIguRE 1-11 Opening the context menu of the project in Solution Explorer.

In the dialog box that appears, click the Compile tab, and then set the option for Option
Infer, as desired (see Figure 1-12).

FIguRE 1-12 Setting the local type inference option on the Compile tab.

34 Part I Beginning with Language and Tools

Arrays and Collections
This chapter has already presented two ways of storing data:

■ Value types and primitive value types for saving fast, but small data structures, such as
date values, integer values, floating-point values, True/False values, positions and sizes,
and characters and strings.

■ Reference types for saving larger amounts of data, such as controls and pictures.

You use both types within a program by employing variables. However, in some cases this
can pose a problem: what do you do when you need to find another value in a table, based
on the value of a variable?

Suppose that you have saved five names in variables. This, in and of itself, is not a problem:

 Dim Name1 As String = "Lisa Feigenbaum"
 Dim Name2 As String = "Sarika Calla"
 Dim Name3 As String = "Ramona Leenings"
 Dim Name4 As String = "Amanda Silver"
 Dim Name5 As String = "Tanja Gelo"

Now you would like to access a name, and its number is saved in a variable, as shown in
Figure 1-13.

FIguRE 1-13 To find a variable by using another variable, such as in a list, you won’t get
very far by using normal variable names.

The solution to this problem lies in a concept called arrays. An array can save as many val-
ues as you determine, under a specified name. Each name is associated with a unique index
value. You can then use the index value to identify which value you want to access:

 Dim Names(0 To 4) As String
 Names(0) = "Adriana Ardelean"
 Names(1) = "Sarika Calla"
 Names(2) = "Ramona Leenings"
 Names(3) = "Beth Messi"
 Names(4) = "Lisa Feigenbaum"

 Dim NameNo As Integer = 3
 Console.WriteLine(Names(NameNo))

 Chapter 1 Beginners All-Purpose Symbolic Instruction Code 35

Important In contrast to Visual Basic 6.0 or VBA, arrays in .NET are always 0-based. This means
that the first element in an array has an index of 0. When dimensioning an array in Visual Basic,
you always specify the upper limit, not the number of elements (as you would in C#, for example).
While setting the dimensions, you can also use a short form. So, for example, the first line (high-
lighted in bold), in the previous code sample can also be written as follows:

 Dim Names(4) As String

Tip You can also define arrays with array initializers. Using the following syntax, you specify the
elements directly, which saves typing:

 Dim Names() As String = {"Adriana Ardelean",
 "Sarika Calla",
 "Ramona Leenings",
 "Beth Messi",
 "Lisa Feigenbaum"}

 Dim NameNo As Integer = 3
 Console.WriteLine(Names(NameNo))

When you define an array this way, note that you don’t specify the upper limit; the compiler de-
rives the upper limit from the number of elements that lie between the curly braces.

If you don’t know how many elements the array might have when you first create it, you
should use a List type instead. With a List, you can easily add new elements by using the Add
method, as shown in the following example:

 Dim OtherNames As New List(Of String)
 OtherNames.Add("Adriana Ardelean")
 OtherNames.Add("Sarika Calla")
 OtherNames.Add("Ramona Leenings")
 OtherNames.Add("Beth Messi")
 OtherNames.Add("Lisa Feigenbaum")

 'You can also access a dynamic list,
 'as in arrays, via the index:
 Dim NameNo As Integer = 3
 Console.WriteLine(OtherNames(NameNo))

For the moment, this is all the information we’re going to cover about arrays and lists. You
will learn more about them in Chapter 19, “Arrays and Collections,” which is dedicated to
these concepts, and you will encounter them again in the context of loops and in other
places throughout the book.

36 Part I Beginning with Language and Tools

Executing Program Code Conditionally
The Boolean data type is usually required when evaluating decisions, and used to control
whether program code is executed or not, depending on its value. Such decision-making
statements include If, Case [Is], While, or Until.

The function IIf does not control the program execution but should be mentioned here
because of its resemblance to the If statement. IIf returns a function result based on a
passed-in Boolean value or expression. When the passed-in value or expression is True, IIf
returns one result; if it is False, it returns the second.

If … Then … Else … ElseIf … End If
It is likely that you have employed the If statement many, many times, and you probably have
its use down pat. But in the interest of being complete, let’s examine it a little more closely.

In its simplest form, If causes code to run that’s placed between If and End If when the
Boolean expression behind If evaluates to True. The following construct demonstrates the
concept of comparisons with Boolean expressions:

locBoolean = True
If locBoolean Then
 'Only runs when locBoolean is True.
End If

Some developers might unnecessarily use the following expression:

locBoolean = True
If locBoolean = True Then
 'Only runs, if locBoolean is True.
End If

In fact, in this identification, locBoolean = True is not a characteristic of the If statement,
but basically just a normal variable assignment. When locBoolean has a value of True, the
entire expression is True, as well. The only thing the statement If does is examine the Boolean
value that follows it. It then runs the following statements only if the expression evaluates to
True. That’s why the value doesn’t need to be additionally checked by the programmer—it’s
redundant. The equal sign here is the comparison operator. In other words, if you replace
locBoolean with its current value, the preceding code looks as follows:

If True = True Then

You can quite confidently replace this by If True Then … or If locBoolean Then … (if it is true,
then …).

 Chapter 1 Beginners All-Purpose Symbolic Instruction Code 37

However, it’s certainly confusing in BASIC (not only in Visual Basic), that assignment operators
and comparison operators use the same character (the equal sign). For example, the follow-
ing expression is a valid statement:

Dim locBoolean = "Klaus" = "Uwe"

The first equal sign functions as an assignment operator; the second is a Boolean comparison
operator. The comparison operator has a higher priority than the assignment operator, so
in this example locBoolean takes the value False, because the string “Klaus” does not equal
“Uwe.” Otherwise, this example would produce a type conversion error.

However, other languages aren’t that much better. For example, C++ uses a single equal sign
(=) for assignment, and a double equal sign (==) for comparison, which is not intuitive at all.
As many as 5–8 percent of all errors in C++ programs can be traced back to this confusion,
which is a much higher number than the errors caused by the incorrect use of the equals
character in Visual Basic.

The If code block can be followed by an Else code block, which runs when the Boolean
expression behind the If evaluates to False. In addition, you can use an ElseIf code block
to insert further evaluations into the If construct. The code block behind the last Else code
block, if present, runs only when none of the conditions of the individual If or ElseIf sections
returned True, as shown in the example that follows:

locString1 = "Santa Claus, you think he's in town already?"
locString2 = "Santa Klaus*"
locBoolean = (locString1 Like locString2) ' returns False; checks for similarity (see
➥below)

If locBoolean Then
 'Boxing is possible, too:
 If locString2 = "Santa Klaus" Then
 Console.WriteLine("Name found!")
 Else
 Console.WriteLine("No name found!")
 End If
ElseIf Now = #12:00:00 PM# Then
 Console.WriteLine("Noon!")
ElseIf Now = #12:00:00 AM# Then
 Console.WriteLine("Still up so late?")
Else
 Console.WriteLine("It is any other time or locString1 was not like locString1...")
End If

The Logical Operators And, Or, Xor, and Not
Visual Basic has a variety of logical operators, which can be applied to numerical as well as
Boolean date types. The latter are mainly of interest because they can be used to formulate
almost natural language conditions for program sequencing, for example in If constructs.

38 Part I Beginning with Language and Tools

If you act on the assumption that the two numeric values 0 and 1, represented by the
Boolean type, correspond to True and False, it’s possible to formulate connections such as, “If
statement1 and statement2 are true, then...”

The most important logical operators are:

■ And Executes a logical AND operation. Both statements must be true to make the
expression true, as illustrated in the following table:

Statement 1 Statement 2 Result
False (0) False (0) False (0)

True (1) False (0) False (0)

False (0) True (1) False (0)

True (1) True (1) True (1)

■ Or Executes a logical Or operation. When at least one of the statements is true, the
expression is true:

Statement 1 Statement 2 Result
False (0) False (0) False (0)

True (1) False (0) True (1)

False (0) True (1) True (1)

True (1) True (1) True (1)

■ Xor Executes a logical exclusive Or operation. Only when exactly one of the two state-
ments is true is the statement true; otherwise, it’s false:

Statement 1 Statement 2 Result
False (0) False (0) False (0)

True (1) False (0) True (1)

False (0) True (1) True (1)

True (1) True (1) False (0)

■ Not Negates the statement. If it is true, it becomes false, and if it is false, it becomes
true:

Statement Result
False (0) True (1)

True (1) False (1)

The following example illustrates how to use some of the logical operators. This code checks
whether the character a user enters when selecting an option in a console application is
within a certain range:

 Chapter 1 Beginners All-Purpose Symbolic Instruction Code 39

 Sub ConditionCheck()

 'Output options and read characters from the keyboard.
 Console.Write("Which function would you like to execute (1-9, 0 or 'end' to
➥end): ")
 Dim input = Console.ReadLine

 'When entering "0" or "end",
 If input = "0" Or input.ToUpper = "END" Then
 'End method.
 Exit Sub
 End If

 'When the pressed character (string length=1) is greater than or equal to "1"
 'and lesser or equal to "9"...
 If input.Length = 1 And input >= "1" And input <= "9" Then
 '...then it was a valid selection, ...
 Console.WriteLine("This function is possible!")
 '...otherwise...
 Else
 '...not.
 Console.WriteLine("You have made the wrong choice.")
 End If
 End Sub

Note Logical operators can be applied to Boolean values and other numeric data types. By do-
ing this, the bits that compose the values internally are linked. For example, the following code
results in 5:

13 And 7

This is because the following operation is executed in binary:

 1101 (13)
And 0111 (07)

 0101 (05)

Each bit of the initial value is linked with each bit of the second value using And—and it then
returns the result.

Comparison Operators That Return Boolean Results
Visual Basic understands the following comparison operators, which compare two expres-
sions and return a Boolean result:

■ Expression1 = Expression2 Checks for equality; returns True when both expressions are
the same.

■ Expression1 > Expression2 Returns True when Expression1 is greater than Expression2.

40 Part I Beginning with Language and Tools

■ Expression1 < Expression2 Returns True when Expression1 is less than Expression2.

■ Expression1 >= Expression2 Returns True when Expression1 is greater than or equal to
Expression2.

■ Expression1 <= Expression2 Returns True when Expression1 is less than or equal to
Expression2.

■ Expression1 <> Expression2 Checks for inquality; returns True when Expression1 is not
the same as Expression2.

■ Expression1 Is [Expression2|Nothing] Checks for equality of an object reference (only
applicable to reference types); returns True when Expression1 points to the same data
memory range as Expression2. When Expression1 is not assigned to a range of memory
(defined object variable, but not an instantiated object), the comparison with Is uses
Nothing to return the Boolean value of True.

■ Expression1 IsNot [Expression2|Nothing] Check for the non-equality of an object ref-
erence (only applicable to reference types); returns True when Expression1 points to
a different data memory range than Expression2. When Expression1 points to a valid
memory range with instance data, the comparison with IsNot uses Nothing to return
the Boolean value of True.

■ String1 Like String2 Checks for similarity between two strings; a sample comparison
can make the comparison more flexible. If both strings are equal, according to certain
rules True is returned, otherwise False.

You can find more details in MSDN under the item, Like Operator.

The following lines of code demonstrate the use of comparison operators:

Dim locString1 As String = "Uwe"
Dim locString2 As String = "Klaus"

locBoolean = (locString1 = locString2) ' Returns False.
locBoolean = (locString1 > locString2) ' Returns True.
locBoolean = (locString1 < locString2) ' Returns False.
locBoolean = (locString1 >= locString2) ' Returns True.
locBoolean = (locString1 <= locString2) ' Returns False.
locBoolean = (locString1 <> locString2) ' Returns True.
locBoolean = (locString1 Is locString2) ' Returns False.

locString2 = "Uwe"
String.Internal(locString2) ' Now returns True, because both
locBoolean = (locString1 Is locString2) ' String objects point to a range. (see
➥chapter 7)

locString1 = "Santa Claus, you think he's in town already?"
locString2 = "Santa Klaus*"
locBoolean = (locString1 Like locString2) ' Returns True.

 Chapter 1 Beginners All-Purpose Symbolic Instruction Code 41

Short Circuit Evaluations with OrElse and AndAlso
Take a look at the following code block:

'Short circuit evaluation speeds up the process.
If locChar < "0" OrElse locChar > "9" Then
 locIllegalChar = True
 Exit For
End If

Note the keyword OrElse. Another keyword that you can use that functions in a similar man-
ner to OrElse is AndAlso. Both correspond to the commands Or and And, and they also serve
to logically link and evaluate Boolean expressions—they just operate differently (and some-
times faster). Let’s look at an example from our daily life to clarify the concept.

Suppose that you’re wondering whether you should bring an umbrella along for your daily
walk; it might rain, or else at least it looks pretty dark outside. But you would no longer need
to consider how the sky looks if just before you leave, you discover that it actually is raining.
If it’s raining right now, there is no need for you to check the second criterion—the umbrella
must come along; otherwise, you’re going to get wet. That’s exactly what OrElse does (or
AndAlso respectively). This approach is called Short Circuit Evaluation.

Especially with objects or when calling methods, short circuit evaluation can help make your
programs safer, as the following example shows:

Private Sub btnAndAlsoDemo_Click(ByVal sender As System.Object, ByVal e As System.
EventArgs) _
Handles btnAndAlsoDemo.Click
 Dim aString As String = “Klaus is the word that starts the sentence”
 If aString IsNot Nothing AndAlso aString.Substring(0, 5).ToUpper = "KLAUS" Then
 MessageBox.Show("The string begins with Klaus!")
 End If

 If aString IsNot Nothing And aString.Substring(0, 5).ToUpper = "KLAUS" Then
 MessageBox.Show("The string begins with Klaus!")
 End If
End Sub

As expected, this program code displays the message text twice, because aString has content
in both cases, and in both cases, the string starts with ”Klaus“ (after all, it’s the same string).
Now replace the bold-highlighted line in preceding example with the line that follows:

 Dim aString As String = Nothing

Figure 1-14 shows the results when you run the program one more time.

42 Part I Beginning with Language and Tools

FIguRE 1-14 AndAlso helps you with combined queries for Nothing and the use of instance methods.

Here, it becomes apparent how AndAlso works. The first query works because the second
part, which is linked with AndAlso, doesn’t even execute the code aString.Substring(0,
5).ToUpper = "KLAUS" any more. That’s because the object aString was Nothing. When
using AndAlso, if the first test evaluates to false, the rest of the checks are no longer of inter-
est, and they are therefore ignored.

In the second version that uses And, the second part executes—even though it makes no sense
to execute the code because the first expression is false. But because aString now has the value
Nothing, you can’t use its instance functions (SubString, ToUpper), so the program aborts with a
NullReferenceException.

Select … Case … End Select
As shown in the previous section, you can use ElseIf for option analysis when you want to
evaluate several Boolean expressions and you need to respond by running the correspond-
ing program code. You can achieve the same result in a much more elegant fashion by using
a Select construct. Select prepares an expression for comparison with a Boolean result; the
actual comparison takes place by using one or several different Case statements, each of
which must be followed by a corresponding comparison argument of the same type (or
implicitly convertible). If none of the conditions following the Case statements apply, an
optional Case Else at the end can execute statements that you want to run when none of the
Case statements prove true. The End Select command completes the construct. When a Case
expression evaluates to True, Select runs the code for that Case, but doesn’t perform any fur-
ther evaluations.

When evaluating conditions, Case by default checks only for equality; however, by adding the
keyword Is, you can also use other comparison operators. The following example shows how to
apply them:

 Chapter 1 Beginners All-Purpose Symbolic Instruction Code 43

Dim locString1 as String = "Miriam"

Select Case locString1
 Case "Miriam"
 Console.WriteLine("Hit!")
 Case Is > "N"
 Console.WriteLine("Name comes after 'M' in the alphabet")

 Case Is < "M"
 Console.WriteLine("Name comes before 'M' in the alphabet")

 Case Else
 Console.WriteLine("Name starts with 'M'")

 'Case Like "Miri"
 'This doesn't work!!!

End Select

However, comparison operations and conditional execution happen in one go here. This
means that the following construct won’t work:

'It doesn't work this way!!!
Select Case locBoolean

 Case
Console.WriteLine("Was true!")

End Select

The compiler has every right to complain.

The If Operator and IIf Function
If exists not only as a structure statement (If … Then … Else), but also as a function—and in
two variations. The IIf function (mentioned briefly earlier, and yes, it’s spelled with a double
“I”) takes three parameters, and returns either the first or the second expression as a result,
depending on the result of the first Boolean expression:

Dim c As Integer
'Returns 10
c = CInt(IIf(True, 10, 20))
'Returns 20
c = CInt(IIf(False, 10, 20))

44 Part I Beginning with Language and Tools

IIf has one big disadvantage: when using the IIf function, the result needs to be cast to the
correct type, because the IIf function only returns a base Object type, as shown here:

Dim c As Integer
'Returns 10
c = CInt(IIf(True, 10, 20))

Beginning with Visual Basic 2008, this has become easier because the keyword If (with one
“I”) has been extended, so you can use it the same way as the IIf function:

Dim c As Integer
'Returns 20
c = If(False, 10, 20)

For even fewer keystrokes, combine the If operator with local type inference, as follows:

'Returns 20
Dim c = If(False, 10, 20)

However, be careful; mixing various return types can cause the compiler to stumble, as
shown in Figure 1-15.

FIguRE 1-15 Using If instead of IIf only works if the compiler has the chance to clearly
determine the corresponding types.

Loops
Loops let you to run the commands and the statements they contain over and over again,
until a certain loop end state (called an exit condition) is achieved. Referring back to Figure
1-6, you can see an example of a loop in a Do … Loop construct, which allows users to
repeatedly enter birth dates or commands until they type a whitespace (a space or a tab or a
return) at the command prompt. When that happens, the variable input stays empty, and the
loop reaches its exit condition, which was defined after the keyword Loop.

In addition to Do … Loop, Visual Basic recognizes For … Next loops, which repeat all internal
statements until a counter variable has exceeded or dropped below a specified value. Also,
in Visual Basic, you can use For Each … Next loops, which repeat their internal statements as
often as there are elements in an object list, as well as While … End While loops, which repeat
their internal statements as long as a certain exit condition is still valid (defined right after
the While keyword). When there is no exit condition for a loop, it is called an infinite loop—
and the content of the loop will run until you can no longer pay your electric bill (which, in a
manner of speaking, constitutes an exit condition.)

 Chapter 1 Beginners All-Purpose Symbolic Instruction Code 45

For … Next Loops
For … Next loops let you repeat the statements within the code block for a predefined num-
ber of times. The syntax for such a construction is as follows (elements in square brackets are
optional, which means that they don‘t need to appear in each For … Next loop construct):

For counterVariable [As dataType] = Start To End [Step by step]
 [Statements]
 [Exit For]
 [Continue For]
Next [counterVariable]

The counterVariable of the For statement is a central part of the entire loop construct; it
is therefore not optional—you must define it. DataType determines which numeric type
counterVariable should be (for example, Integer or Long), but you can omit that when your
project has the local type inference turned on, or if you already defined the variable before-
hand. The latter is important when you want the variable to be valid after the loop exits and
you want to use the value.

Important Theoretically, you can also use floating point variable types, such as Double and
Single, but you should try to avoid those. Because of rounding inaccuracies, which are normal
during the conversion from the internal binary system to the decimal system, you can’t specify
the query for marginal values precisely. Therefore, a loop could potentially be repeated one too
many or too few times, even though you don’t expect it, or a targeted check for a certain value
could fail because of rounding errors. For example, even though the value 63.0000001 is close to
63, it’s still not 63. Checking the variable to see if it’s equal to 63 by using the If command would
fail.

If you can’t do without floating-point numbers in loops, consider using the more accurate but
much slower Decimal type, or test for certain values in ranges rather than total equality, such as:

If doubleVar >= 10.3 And doubleVar < 10.4 Then
 [Statements]
End If

The Start and End are required and define the initial value for counterVariable. In other words,
they specify where the counting starts as well as the limiting value, which determines how
many times the loop will execute. By default, the loop counter is incremented by using a step
size of one for every loop iteration; however, by using the StepSize parameter you can define
the increment.

Another way to exit a For … Next loop is with the Exit For command. Using Exit For makes
sense only if you place it inside an If query within a loop. Exit For exits the loop and continues
running the program by running statements that follow the Next keyword, which marks the
end of the loop. The keyword Next at the end of the loop is required; it delimits the bottom
of the For loop.

46 Part I Beginning with Language and Tools

Tip Use a For … Next loop construct when you already know how many loop iterations to ex-
pect. For example, a For … Next loop is perfectly suited for an array with a certain number of ele-
ments that to process:

 Dim Names() As String = {"Lisa Feigenbaum",
 "Sarika Calla",
 "Ramona Leenings",
 "Adriana Ardelean"}

 'Run through For loop and return:
 For index As Integer = 0 To Names.Length - 1
 Console.WriteLine(Names(index))
 Next

For cases in which you don’t know beforehand how many iterations will be necessary, it is better
to use a Do … Loop, which is described in more detail later in this chapter.

The previous code example displays the following output:

Lisa Feigenbaum
Sarika Calla
Ramona Leenings
Adriana Ardelean

Note that the elements of an array or a list are always 0-based. That’s why the value 1 is sub-
tracted from the length of the array; that’s the upper limit for running through the array (Length
returns the number of array elements).

You can “nest” For … Next loops, placing an inner loop inside an outer loop; however, they can’t
overlap. You can also explicitly tie a Next statement to a particular For statement by adding the
counter variable name after the Next statement. When a Next statement of an outer nesting level
has been placed before the Next statement of an inner level loop, the compiler complains, and
you will see a corresponding message in the error list. On the one hand, the compiler can rec-
ognize the overlap error only when you specify the corresponding counter variable in each Next
statement; on the other hand, it assumes the correct counter variable, when you don’t name one
explicitly. Therefore, the latter (omitting the counter variable after the Next statement) is often
the better solution.

Note The stepSize value can be positive or negative for integers. If the step size is negative, you
need to adjust the loop’s start and end values accordingly—in this case, the start value must then
be greater than the end value so that several loop iterations can take place. If you don’t specify
a value for stepSize, the default is 1, as mentioned earlier. Also important: if start is greater than
end, the step size is not automatically set to –1; unless you want 1 as the step size, you must ex-
plicitly specify the step size so that several loop iterations can take place.

 Chapter 1 Beginners All-Purpose Symbolic Instruction Code 47

Important start, end and stepSize can be either constant values or calculated and complex ex-
pressions, as presented here:

For dayCounter= 1 To (Now.Date - New Date(Now.Year, Now.Month, 1)).TotalDays
 (Statements)
Next

This example states, as applicable to all expressions: they are evaluated only once, then the loop
begins to run. It is important to be aware of that when considering performance issues (con-
structs, as in the example, don’t slow the program down, because they are evaluated only once)
and program flow. You cannot change the limit value that controls the end of the loop while the
loop is running. Also important: you shouldn’t manipulate the counter variable in code within
the loop, because that can lead to unforeseen results or errors.

Nesting For Loops
For loops can be nested within each other, which means that within a For loop, you can place
other For loops. Remember that the total number of iterations of the innermost loop will be
the inner loop count multiplied by the outer loop count when all loops use constant values.
For example:

For count1 As Integer = 1 To 10
 For count2 As Integer = 1 To 10
 For count3 As Integer = 1 To 10
 'The statements are run through a total of 10*10*10=1000 times.
 Next count3
 Next
Next count1

Tip You don’t need to specify the counterVariable after a Next statement. However, it some-
times makes your program easier to read, especially for deeply nested code.

For … Each Loops
A For … Each loop is similar to a For … Next loop, but it repeats the inner statements for each
element of a specified list or array. In general, you use For … Each as follows:

For Each element [As DataType] In list
 [Statements]
 [Exit For]
 [Statements]
 [Continue For]
Next [element]

48 Part I Beginning with Language and Tools

The variable element represents an item in the list. The For … Each loop thus runs through
the list elements—one list element is assigned to the element variable for each loop iteration.
The inner statements in the loop are run repeatedly, once for each element contained in the
list or array list.

Optionally, you can use Exit … For to prematurely end the loop iterations. This is why it makes
sense to put Exit … For into its own If block.

The Next statement is required; it ends the definition of the For loop. However, you don’t
need to specify element after Next.

Note Chapter 19 contains detailed information about lists as well as more in-depth coverage of
the functionality of For … Each loops.

The following example shows how to use a For … Each loop to run through the String array
created in the previous example. It displays the contents of all the array elements in the con-
sole window, as shown in the following:

 Dim Names() As String = {" Adriana Ardelean",
 "Sarika Calla",
 "Ramona Leenings",
 "Beth Messi",
 " Lisa Feigenbaum "}

 'Iteration using ForEach loop and return:
 For Each name In Names
 Console.WriteLine(name)
 Next

This code displays the following output in the console window:

Adriana Ardelean
Sarika Calla
Ramona Leenings
Beth Messi
Lisa Feigenbaum

Tip Sometimes you need to know when the last element in a list has been reached. In such
cases, don’t use For … Each; use For … Next instead:

 'Last element is treated differently:
 For index As Integer = 0 To Names.Length - 1
 If index < Names.Length - 1 Then
 Console.WriteLine(Names(index))
 Else
 Console.WriteLine("and last but not least: " & Names(index))
 End If
 Next

 Chapter 1 Beginners All-Purpose Symbolic Instruction Code 49

Of course, it’s possible to use an additional counter variable in the For … Each loop, but that’s
pretty much redundant here, because you can just use For … Next.

This code displays the following output in the console window:

Adriana Ardelean
Sarika Calla
Ramona Leenings
Beth Messi
and last but not least: Lisa Feigenbaum

Do … Loop and While … End While Loops
The Do … Loop and While … End loops repeat statements inside the program, either as long
as a condition is True, or until the condition becomes True. Together with Do, the keyword
Until indicates that a condition must become True. To run a loop as long as the condition is
True, use While.

The While and Until keywords are placed either after the loop start (Do) or after the loop end
(Loop).

Note that a Do While … Loop provides the same result as a While … End While loop. For his-
toric reasons you can use a different syntax to get to the same result. You can create a loop
construct with the appropriate exit conditions using the following code variations:

Do {While|Until} condition
 [statements]
 [Exit Do]
 [statements]
Loop

Or:

Do
 [statements]
 [Exit Do]
 [statements]
Loop {While|Until} condition

Or:

While condition
 [statements]
 [Exit While]
 [statements]
End While

50 Part I Beginning with Language and Tools

When using a While … End While or Do … Loop, Boolean variables or expressions serve as exit
conditions. The following lines of code show a few examples for using these loop types:

 Dim Names() As String = {"Adriana Ardelean",
 "Sarika Calla",
 "Ramona Leenings",
 "Beth Messi",
 "Lisa Feigenbaum"}

 'Return the names in ascending order ...
 Dim index As Integer = 0
 Do While index < Names.Length
 Console.WriteLine(Names(index))
 index += 1
 Loop

 Console.WriteLine("-------------------------")
 Console.WriteLine(" and backwards:")
 Console.WriteLine("-------------------------")

 '... and in descending order.
 index = Names.Length - 1
 While index > -1
 Console.WriteLine(Names(index))
 index -= 1
 End While

These lines of code display the following on the monitor:

Adriana Ardelean
Sarika Calla
Ramona Leenings
Beth Messi
Lisa Feigenbaum

 and backwards:

Lisa Feigenbaum
Beth Messi
Ramona Leenings
Sarika Calla
Adriana Ardelean

Exit—Leaving Loops Prematurely
The Exit statement causes a program to exit the loop and continue execution after the end
of the loop. For a For loop, program execution continues after the Next statement; for a Do
loop, it continues after the Loop command; and for a While loop, the program continues after
End While. Sometimes, you want to end a loop early, such as when you discover a condition
that makes continuation unnecessary, impossible, or undesirable; for instance, an inaccurate

 Chapter 1 Beginners All-Purpose Symbolic Instruction Code 51

value, or a call for exiting. As an example, when you catch an exception in a Try … Catch …
Finally statement (see the section “Error Handling in Code,” later in this chapter), you can, for
example, use Exit For at the end of the Finally block.

You can insert the desired number of Exit statements at any point within a loop. Exit is often
used after the evaluation of a condition; for example, in an If … Then … Else structure.

Continue—Repeating Loops Prematurely
You can also run a loop early, which means that in For … Next loops, you can, in certain cases,
treat Next preferentially. You can do this by using Continue. Of course, you can use Continue
in all other loop types, as well.

Simplified Access to Object Properties and Methods
using With … End With

By using With … End With, you can include a number of elements (properties, methods) of
an object within a code block repeatedly without to the need to name the object name each
time anew. When the fully-qualified name for the corresponding object variable is very long,
With … End With can be used not only to save keystrokes, but also to enhance performance.
At the same time, you lower the risk of misspelling one of its elements.

For example, if you’d like to use several different properties of a single object, write the state-
ments for property assignments into a With … End With structure. When you do this, you no
longer need to point to the object in each property assignment. A single reference to the
object, by which you place a period just before the property name, is enough (see Figure 1-16).

FIguRE 1-16 In a With … End With block, use the period to access the list of methods and properties of the
object, which was specified behind With.

Note Remember that With … End With builds a structure, as well. Variables that are defined
between With and End With only exist in this scope. The following section addresses this topic
further.

52 Part I Beginning with Language and Tools

The Scope of Variables
Declaring variables at procedure level (for instance, within the Sub and Function methods,
or Property procedures, which are covered in Chapter 9, “First Class Programming”) has an
effect on their scope. While in VBA and Visual Basic 6.0, for example, variables within pro-
cedures are still valid throughout that procedure from the moment they are declared, in
.NET versions of Visual Basic, they are valid from the moment they are declared only within
the code block in which they are defined. A “code block” in this context basically means a
construct that encapsulates code in some way; for example, If … Then … Else blocks, For …
Next or Do … Loop loops, or even With blocks, among others. The Visual Studio IDE makes it
relatively easy to see where blocks apply: each structure statement that causes the editor to
indent code placed between the start and end commands for the block automatically limits
the scope of the variables defined in that block. Figure 1-17 shows an example of this.

FIguRE 1-17 Variables are scoped to the structure block in which they are declared.

Figure 1-17 illustrates how the second time the program tries to access fiveFound, after com-
pleting the loop structure range (and thus also leaving the scope of the variable), an error
occurs.

To make fiveFound accessible in both the For … Next and the If structure block, you need to
move the fiveFound definition to the procedure level, making the changes highlighted in the
following code:

Sub Main()

 Dim fiveFound As Boolean

 For counter As Integer = 0 To 10
 ‘Dim fiveFound As Boolean
 If counter = 5 Then
 fiveFound = True
 End If
 Next

 Chapter 1 Beginners All-Purpose Symbolic Instruction Code 53

 If fiveFound Then
 Debug.Print("The number 5 was part of the list of numbers!")
 End If
End Sub

This variable scoping rule means that you can declare variables with the same name multiple
times, as long as they are in different structural code blocks, as the following example shows:

Sub Main()
 For counter As Integer = 0 To 10
 Dim fiveFound As Boolean
 If counter = 5 Then
 fiveFound = True
 End If
 Next
 For counter As Integer = 0 To 10
 Dim fiveFound As Boolean
 If counter = 5 Then
 fiveFound = True
 End If
 Next
End Sub

The preceding code declares the variable fiveFound twice within a single procedure, but no
error occurs, because each declaration is placed in a different scope.

Note, however, that you can’t declare variables with the same name in nested structures; that
won’t work because variables in a parent structure are always accessible from a child struc-
ture. Figure 1-18 shows how the corresponding error message would look.

FIguRE 1-18 Variables of a parent scope must not hide the variables in a child scope.

54 Part I Beginning with Language and Tools

The += and –= Operators and Their Relatives
Visual Basic provides abbreviation operators for numeric calculations, such as the += and –=
operators, which add or subtract and assign values in one operation, and for string concatena-
tions, the &= operator, which appends and assigns a string to another string in one operation.
The following example (from the next section) shows how you would use +=:

 Do
 If (helpValue And 1) = 1 Then
 resultValue += value1
 End If
 value1 = value1 << 1
 helpValue = helpValue >> 1
 Loop Until helpValue = 0

There are other abbreviation operators in Visual Basic that work in much the same way.
Table 1-2 shows these operators, along with a brief description:

TABLE 1-2 Operator Abbreviations in Visual Basic
Operation Abbreviation Description
var = var + 1 var += 1 Increase the variable content by one

var = var—1 var –= 1 Decrease the variable content by one

var = var * 2 var *= 2 Multiply the variable content by two (double it)

var = var / 2 var /= 2 Divide the variable content by two (floating-point
division)

var = var \ 2 var \= 2 Divide the variable content by two (integer division)

var = var ^ 3 var ^= 3 Raise the variable content to the power of three

varString = VarString &
“Ramona”

varString &=
“Ramona”

Add the string “Ramona” to the content of the string
varString

Note Using abbreviations simply saves keystrokes, which means it’s less work, but doesn’t cause
the code to run any faster.

It doesn’t matter whether you write the following:

intvar = intvar + 1

Or, whether you use this, instead:

intvar += 1

The compiler generates the same code with either syntax.

 Chapter 1 Beginners All-Purpose Symbolic Instruction Code 55

The Bit Shift Operators << and >>
In addition to the previously mentioned operators, Visual Basic 2003 already introduced bit
shift operators. These operators shift the individual bits of integer values to the left or to the
right. This book doesn’t discuss the functionality of the binary system in depth, but briefly,
shifting the bits of an integer value to the left doubles the value; shifting it to the right
divides it by two (without a remainder).

For example, a binary 101 (decimal 5) becomes binary 10 (decimal 2) when shifted one bit to
the right. For right shifts, the rightmost value simply falls off. Similarly, binary 101 becomes
binary 1010 (decimal 10) with a shift to the left; left shifts add zeroes at the right.

The code that follows demonstrates a multiplication algorithm at bit level. Older developers
might remember their times with the Commodore 64. Back then, such algorithms were used
in Assembler every day.

Private Sub MultiplicationWithBitShift
 Dim value1,value2, resultValue, helpValue As Integer
 value1 = 10
 value2 = 5
 resultValue = 0
 helpValue = value2

 'This algorithm works the same as multiplying
 'the old fashioned way in the decimal system:
 '
 '(10) (5)
 '1010 * 101 =
 '------------
 ' 1010 +
 ' 0000 +
 ' 1010
 '------------
 ' 110010 = 50

 'The "5" is shifted to the right bitwise,
 'to test its outer right bit. If it is set,
 'the value 10 is first added, and then its
 'complete "bit content" is moved one place to the left;
 'when it is not set, nothing happens.
 'This process repeats until all
 'bits of "5" are used up, i.e. the variable helpValue,
 'which processes this value, has become 0.
 'For a multiplication, as many additions are necessary
 'as there are bits set in the second value.

56 Part I Beginning with Language and Tools

 Do
 If (helpValue And 1) = 1 Then
 resultValue += wert1
 End If
 value1 = value1 << 1
 helpValue = helpValue >> 1
 Loop Until helpValue = 0
 Console.WriteLine("The result is:" & resultValue)
End Sub

Error Handling in Code
To be honest, error handling in the old Visual Basic versions, which still function in .NET
today, has always been anathema to me. If an error occurred after a very long routine in
the finished program, it was difficult and required a lot of effort to locate the exact posi-
tion of the error. The system variable Erl made it possible to show the line in which the
error occurred in the error handler, but to achieve this, you had to number the code lines
manually—a procedure that seemed rather antediluvian, even back then.

Today, discovering the exact location of an error is much, much easier, even though Visual
Basic still allows the original error-handling syntax. Here’s a look at the before and after ver-
sions. The following example shows a small VBA routine, which reads a file into a String vari-
able, or at least it tries to do that. Watch for comments in the list, which mark the program
execution in case of an error with numbers.

Note The following example is Visual Basic 6.0/VBA Code.

Private Sub Command1_Click()

 Dim fileNotFoundFlag As Boolean
 On Local Error GoTo 1000

 Dim ff As Integer
 Dim myFileContent As String
 Dim lineMemory As String
 ff = FreeFile
 '1: The error occurs here
 Open "C:\ATextFile.TXT" For Input As #ff
 '3: then go here
 If fileNotFound Then
 '4: to show this message.
 MsgBox ("The file does not exist")

 Chapter 1 Beginners All-Purpose Symbolic Instruction Code 57

 Else
 'This block is only run,
 'when everything was ok.
 Do While Not EOF(ff)
 Line Input #ff, lineMemory
 myFileContent = myFileContent & lineMemory
 Loop
 Close ff
 Debug.Print myFileContent
 End If
 'And that's also important so that the
 'program doesn't run into the error routine.
 Exit Sub

 '2: Then the program jumps here
1000 If Err.Number = 53 Then
 fileNotFound = True
 Resume Next
 End If

End Sub

Amazing, isn’t it? Just to catch a simple error, the program must jump back and forth like
mad all over the code. And this example catches only one single error!

What’s even more uncomfortable for me is that the On Error GoTo statement is still possible
in all VB.NET derivations—even though it’s now completely unnecessary—as you will see
in a moment. Reading a text file functions a little differently here in the following example,
because Open and Close don’t exist in this Visual Basic 6.0 format any longer. But that’s not
what this section is about.

Important The only difference, at least concerning the error handling, is that the line numbers
must have colons, like other jump labels. Translating the program above into VB.NET might yield
the following possible result (unfortunately):

Private Sub btnFileReadDotNet_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnFileReadDotNet.Click
 'IMPORTANT:
 'To access the IO objects, "Imports System.IO" must be
 'placed at the beginning of the code file!

 Dim FileNotFoundFlag As Boolean
 'Same rubbish here!
 On Error GoTo 1000

58 Part I Beginning with Language and Tools

 Dim myFileContent As String
 '1: If an error occurs here
 Dim fileStreamReader As New StreamReader("C:\ATextFile.txt")
 '3: to land here again with Resume Next
 If FileNotFoundFlag Then
 '4: and to catch the error
 MessageBox.Show("File was not found!")
 Else
 'When no error occured, this block is run
 myFileContent = fileStreamReader.ReadToEnd()
 fileStreamReader.Close()
 'And the file content is displayed.
 Debug.Print(myFileContent)
 End If
 Exit Sub
 '2: program execution continues here
1000: If Err.Number = 53 Then
 FileNotFoundFlag = True
 Resume Next
 End If
End Sub

Elegant Error Handling with Try/Catch/Finally
VB.NET offers a much more elegant way of implementing error handling. In contrast to On
Error GoTo, with the Try/Catch/Finally structure you can handle errors at the spot where they
actually occur. Take a look at the following example, which is an adaptation of the previous
example, this time using Try/Catch:

Private Sub btnFileReadDotNet_Click(ByVal sender As System.Object, ByVal e As System.
➥EventArgs) _
Handles btnFileReadDotNet.Click
 'IMPORTANT:
 'To access the IO objects, "Imports System.IO"
 'must be placed at the beginning of the code file!

 Dim myFileContent As String
 Dim fileStreamReader As StreamReader

 Try
 'Try the following commands.
 fileStreamReader = New StreamReader("C:\myTextFile.txt")
 myFileContent = fileStreamReader.ReadToEnd()
 fileStreamReader.Close()
 Debug.Print(myFileContent)

 Chapter 1 Beginners All-Purpose Symbolic Instruction Code 59

 Catch ex As FileNotFoundException
 'Here only FileNotFoundExceptions are caught
 MessageBox.Show("File not found!" & vbNewLine & _
 vbNewLine & "The exception text was:" & vbNewLine & ex.Message, _
 "Exception", MessageBoxButtons.OK, MessageBoxIcon.Error)
 Catch ex As Exception
 'Here all other exceptions, which
 'have not been handled yet, are caught
 'Here all other exceptions, which
 'have not been handled yet, are caught
 MessageBox.Show("An exception occured while processing the file!" & _
 vbNewLine & "The exception had the type:" & ex.GetType.ToString & _
 vbNewLine & vbNewLine & "The exception text was:" & vbNewLine & _
 ex.Message, "Exception", MessageBoxButtons.OK, MessageBoxIcon.Error)
 End Try
End Sub

What happens here? All the statements placed between the Try statement and the first Catch
statement occur in a kind of “trial mode.” If an error occurs during execution of any of these
wrapped statements, the program automatically jumps to the Catch block that most closely
matches the error that occurred.

Catching Multiple Exception Types
If you enter the command Try in the Visual Studio Code Editor and then press Return, the
Editor automatically inserts the following block:

Try

Catch ex As Exception

End Try

Exception is the name of the class that is highest in the Exception inheritance hierarchy, so it
can catch all exceptions—without exception (sorry... I had to do it). In the preceding code,
any exception that occurs is instantiated in the variable ex. But sometimes you want to handle
different errors differently, so it makes sense (as seen in the sample code) to differentiate
between the many different exception types. Perhaps your program needs to react differ-
ently to an exception triggered by a non-existent file than to one in which the file does exist,
but is currently in use.

You can try this out by using the sample code. When you run it, you see an exception called
FileNotFoundException. A Catch block using this class name for the exception type (Catch ex
As FileNotFoundException) catches only exceptions of that particular type. In the preceding
example, that exception produces the message box shown in Figure 1-19.

60 Part I Beginning with Language and Tools

FIguRE 1-19 The sample code returns this message when the file didn’t exist; in
other words, when a FileNotFoundException occurred.

If you now create a text file on drive C under this name, and then open that file in Word, for
example, the line again produces an exception, as illustrated here:

 fileStreamReader = New StreamReader("C:\myTextFile.txt")

This time, however, it’s not a FileNotFoundException, it’s an IOException, which produces the
error output shown in Figure 1-20.

FIguRE 1-20 Now this file exists, but it’s already open in Word.

This exception is caught with Catch ex as Exception, even though it has the type IOException
because, IOException is derived from Exception. In object-oriented programming, you cre-
ate extended classes by inheriting from existing classes, and from those classes you can
derive others that are even further specialized, and so on. It’s the same for exception
classes. Exception is the base class. The exception class SystemException is derived from
Exception, and IOException is derived from SystemException. Because the example doesn’t
explicitly handle IOException separately, the runtime chooses the Catch block that repre-
sents at least one of the base classes of the exception class that occurred. Using Exception
is the catch-all method, because all other exception classes are based on it. The exception
FileNotFoundException is handled separately, but for all other exceptions the Catch ex as
Exception block executes.

 Chapter 1 Beginners All-Purpose Symbolic Instruction Code 61

Important You can implement as many Catch branches into a Try-Catch block as you like,
and therefore, target and catch all conceivable exception types. However, be sure that you put
the more specialized exception types at the top, and those they are based on further below.
Otherwise, you’ll get into trouble because the runtime executes the Catch block that first match-
es a base exception class, which can occur before the Catch block with the specialized exception.
Figure 1-21 illustrates the potential problem:

FIguRE 1-21 Place Catch blocks with specialized exception classes before Catch blocks that handle base
exception classes; otherwise, the computer complains.

Using the Finally Block
Program code placed in a Finally block will always be executed. Even when an error occurs
and is caught with Catch, or even if that Catch block contains a Return statement, the Finally
block will still execute.

Normally, Return is the last command in a procedure, no matter where Return was placed. In
certain cases, however, it doesn’t make much sense, especially when working with error han-
dling, and therefore, Finally is the golden exception here.

Suppose that you are reading from a file, and to do so, you have opened the file. When
opening the file, there was no error, but there was an error while reading it. Maybe you have
read past the file end, and now lines which you are trying to process are empty (therefore,
Nothing). You have handled this case (catching a Null reference) with the corresponding
Catch block, and because there is nothing else to do, you want to leave your read routine
directly from the Catch block, with Return, after an error message has been displayed. The
problem is that the file is still open, and you should close it. With Finally, it is possible to
implement such a process elegantly.

The following example simulates such a process. It reads the file c:\aTextFile.txt line by line,
converting the individual lines into uppercase letters before combining them into a text
block. However, because it tries to read too many lines, the ToUpper string method, which
converts the line into uppercase letters, stops working at the point where the ReadLine func-
tion finds no more content, and therefore, returns Nothing:

62 Part I Beginning with Language and Tools

Private Sub btnTryCatchFinally_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles btnTryCatchFinally.Click
 'IMPORTANT:
 'To access the IO objects, "Imports System.IO"
 'must be placed at the beginning of the code file!

 Dim meinDateiInhalt As String
 Dim fileStreamReader As StreamReader
 Try
 'Try the following commands.
 fileStreamReader = New StreamReader("C:\aTextFile.txt")
 Dim locLine As String
 myFileContent = ""
 'Now we read line by line, but too many lines,
 'and therefore shoot past the end of the file:
 Try
 ' If your file "C:\aTextFile" doesn't contain
 ' exactly 1001 lines, it goes bust somewhere in here:
 For lineCounter As Integer = 0 To 1000
 locLine = fileStreamReader.ReadLine()
 'locLine is now Nothing, and the conversion into
 'capitals can no longer work.
 locLine = locLine.ToUpper
 myFileContent &= locLine
 Next
 Catch ex As NullReferenceException
 MessageBox.Show("The line could not be converted, " &
 "because it was empty!")
 ' Return? But the file is still open!!!
 Return
 Finally
 ' No matter! Even with Return in the Catch block
 ' Finally is still executed!
 fileStreamReader.Close()
 End Try
 'But this line runs only when the Try succeeds:
 Debug.Print(myFileContent)
 Catch ex As FileNotFoundException
 'Only FileNotFoundExceptions are caught here
 MessageBox.Show("File not found!" & vbNewLine &
 vbNewLine & "The exception text was:" & vbNewLine & ex.Message,
 "Exception", MessageBoxButtons.OK, MessageBoxIcon.Error)
 Catch ex As Exception
 'Here all other exceptions, which
 'have not been handled yet, are caught
 MessageBox.Show("An exception occured while processing the file!" &
 vbNewLine & "The exception had the type:" & ex.GetType.ToString &
 vbNewLine & vbNewLine & "The exception text was:" & vbNewLine &
 ex.Message, "Exception", MessageBoxButtons.OK, MessageBoxIcon.Error)
 End Try
End Sub

 Chapter 1 Beginners All-Purpose Symbolic Instruction Code 63

Tip You can retrace this process quite well by setting a breakpoint (press F9) in the line that
contains the Return, statement, and then running the program. When you step through the pro-
gram by pressing F11, you will notice that even after the Return statement, the code in the Finally
block is still executed.

 257

Chapter 6

The Essential .NET Data Types
In this chapter:
Numeric Data Types . 258
The Char Data Type . 281
The String Data Type . 283
The Boolean Data Type . 302
The Date Data Type . 303
 .NET Equivalents of Base Data Types . 312
Constants and Read-Only Field Variables . 315

In Chapter 1, “Beginners All-Purpose Symbolic Instruction Code,” you learned about vari-
ables, including what the different types of variables are, and you saw a few examples of
declaring and using variables of various data types. However, there’s still a lot to learn about
the base data types, which are part of the Microsoft .NET Framework. These are the data
types that you’ll be using over and over as a developer.

The base data types are mainly primitive data types, such as Integer, Double, Date, String, and
so on, with which you’re already familiar. They are an integral part of the C# and Microsoft
Visual Basic.NET languages; you can recognize them easily because the Microsoft Visual
Studio code editor colors them blue as soon as you declare them.

Base data types include all the types that are part of any .NET programming language, and
they expose the following characteristics:

■ They can be used as variable values. You can set the value of each base data
type directly. For example, specifying a value of 123.324D identifies a variable of type
Decimal with a specific magnitude.

■ They can be used as constant values. It is possible to declare a base data type as
a constant. When a certain expression is exclusively defined as a constant (such as the
expression 123.32D*2+100.23D), it can be evaluated during compilation.

■ They are recognized by the processor. Many operations and functions of certain base
data types can be delegated by the .NET Framework directly to the processor for execution.
This means that no program logic is necessary to calculate an arithmetic expression (for
example, a floating-point division). The processor can do this by itself, so such operations
are therefore very fast. Most of the operations of the data types Byte, Short, Integer, Long,
Single, Double, and Boolean fall into this category.

258 Part I Beginning with Language and Tools

Numeric Data Types
For processing numbers, Visual Basic provides the data types Byte, Short, Integer, Long, Single,
Double, and Decimal. The data types SByte, UShort, Uinteger, and ULong were introduced
with Visual Basic 2005. They differ in the range, the precision, or scale, of the values that they
can represent (for instance, the number of decimal points), and their memory requirements.

Note The nullable data types have been around since Visual Basic 2005, and we discussed them
briefly in the introduction to Chapter 1. Nullable data types behave similarly to their regular
data type counterparts, but they can also reflect a non-defined state, namely null1 (or Nothing
in Visual Basic). With the release of Visual Basic 2008, these data types are also part of the Visual
Basic language syntax, and they are defined by the question mark symbol as type literal. Here’s
how you declare an Integer data type as nullable:

Dim t As Integer?

You’ll see more about nullable data types in Chapter 18, “Advanced Types.”

Defining and Declaring Numeric Data Types
All numeric data types (as with all value types) are declared without the keyword New.
Constant values can be directly assigned to numeric types in the program’s code. There are
certain keywords that define the type of a constant value. A variable of the type Double can,
for example, be declared with the following statement:

Dim aDouble As Double

You can then use aDouble immediately in the code. Numeric variables can be assigned val-
ues, which are strings made up of digits followed (if necessary) by a type literal. In the follow-
ing example, the type literal is the D following the actual value:

aDouble = 123.3D

Just as with other base data types, declaration and assignment can take place in a single
statement. Therefore, you can replace the two preceding statements with the following
single statement:

Dim aDouble As Double = 123.3D

If you use local type inference (refer to Chapter 1 for more information), you don’t even need
to specify the type or procedure level (for example, in a Sub, a Function or a Property, but not
for module or class variables); you can let the compiler infer the correct type from the type of
the expression or the constant from which the variable is assigned:

1 Not to be confused with the value 0! Null denotes the absence of a value.

 Chapter 6 The Essential .NET Data Types 259

Dim aDouble = 123.3D

Note Local type inference must be switched on through the property settings of your project.
Alternatively, you can place Option Infer On at the top of the code file in which you want to use
local type inference.

The example applies to all other numeric data types equally—the type literal can of course
differ from type to type.

TABLE 6-1 Type Literals and Variable Type Declaration Characters of the Base Data
Types in Visual Basic 2010

Type
name

Type
declaration
character Type literal Example

Byte – – Dim var As Byte = 128

SByte – – Dim var As SByte = -5

Short – S Dim var As Short = -32700S

UShort – US Dim var As UShort = 65000US

Integer % I Dim var% = -123I or
Dim var As Integer = -123I

UInteger – UI Dim var As UInteger = 123UI

Long & L Dim var& = -123123L or
Dim var As Long = -123123L

ULong – UL Dim var As ULong = 123123UL

Single ! F Dim var! = 123.4F or
Dim var As Single = 123.4F

Double # R Dim var# = 123.456789R or
Dim var As Double = 123.456789R

Decimal @ D Dim var@ = 123.456789123D or
Dim var As Decimal = 123.456789123D

Boolean – – Dim var As Boolean = True

Char – C Dim var As Char = "A"c

Date – #MM/dd/yyyy HH:mm:ss#
or
#MM/dd/yyyy hh:mm:ss
am/pm#

Dim var As Date = #12/24/2008
04:30:15 PM#

Object – – In a variable of the type Object, any type can
be boxed or referenced by it

String $ “String” Dim var$ = "String" or
Dim var As String = "String"

260 Part I Beginning with Language and Tools

Delegating Numeric Calculations to the Processor
The example that follows shows how to leave some mathematical operations to the proces-
sor. To do this, you need to know that, due to its computational accuracy, the Decimal type is
calculated not by the floating-point unit of the processor, but by the corresponding program
code of the Base Class Library (unlike Double or Single).

Note This example goes a little deeper into the system. You will learn how to view the Assembler
and machine language representation—the concrete compilation of your program, the way the pro-
cessor sees it. Although this is not a requirement for developing applications by any means, it’s defi-
nitely an interesting experiment, and it will help you understand how the processor processes data.

Companion Content Open the solution Primitives01.sln, which you can find in the
\VB 2010 Developer Handbook\Chapter 06\Primitives01 folder.

Before you run the following sample code, press F9 to set a breakpoint in the highlighted line.

Public Class Primitives
 Public Shared Sub main()
 Dim locDouble1, locDouble2 As Double
 Dim locDec1, locDec2 As Decimal

 locDouble1 = 123.434D
 locDouble2 = 321.121D
 locDouble2 += 1
 locDouble1 += locDouble2
 Console.WriteLine("Result of the Double calculation: {0}", locDouble1)

 locDec1 = 123.434D
 locDec2 = 321.121D
 locDec2 += 1
 locDec1 += locDec2
 Console.WriteLine("Result of the Decimal calculation: {0}", locDec1)

 End Sub
End Class

When you start the program, it will stop at the line with the breakpoint. On the Debug/Window
menu, select Disassembly. This window will display what the Just-in-Time (JIT) compiler has
done with the program, which is first compiled in the IML, as shown in the code that follows.

Note The Disassembly window can display only assembly code, which is not very well opti-
mized. No setting can change that—you will always see the debug code, not the optimized code.
Later, in the optimized code, the processor registers are used as carriers for local variables, when-
ever possible, which drastically increases the execution speed of your applications.

 Chapter 6 The Essential .NET Data Types 261

 Dim locDouble1, locDouble2 As Double
 Dim locDec1, locDec2 As Decimal

 locDouble1 = 123.434D
00000055 movsd xmm0,mmword ptr [000002E8h]
0000005d movsd mmword ptr [rsp+50h],xmm0
 locDouble2 = 321.121D
00000063 movsd xmm0,mmword ptr [000002F0h]
0000006b movsd mmword ptr [rsp+58h],xmm0
 locDouble2 += 1
00000071 movsd xmm0,mmword ptr [000002F8h]
00000079 addsd xmm0,mmword ptr [rsp+58h]
0000007f movsd mmword ptr [rsp+58h],xmm0

The numbered lines correspond to assembly language statements and show the operations
required by the processor to execute the preceding Visual Basic statement. These are the
statements that the processor understands, and no matter what language you’re using to
write your applications, at the end of the day, your code must be translated into a series of
assembly statements. That’s what compilers do for you. The listings in this section demon-
strate (if nothing else) what a “high-level” language is all about.

Unlike what you might have expected, no special methods of the Double structure were
called. Instead, the addition happens via the floating-point functionality of the processor
itself (addsd,2 marked in bold). It’s quite different further down in the disassembly, where the
same operations are carried out by using the Decimal data type:

locDec2 += 1
0000017e mov rcx,129F1180h
00000188 mov rcx,qword ptr [rcx]
0000018b add rcx,8
0000018f mov rax,qword ptr [rcx]
00000192 mov qword ptr [rsp+000000A8h],rax
0000019a mov rax,qword ptr [rcx+8]
0000019e mov qword ptr [rsp+000000B0h],rax
000001a6 lea rcx,[rsp+000000A8h]
000001ae mov rax,qword ptr [rcx]
000001b1 mov qword ptr [rsp+000000E0h],rax
000001b9 mov rax,qword ptr [rcx+8]
000001bd mov qword ptr [rsp+000000E8h],rax
000001c5 lea rcx,[rsp+40h]
000001ca mov rax,qword ptr [rcx]
000001cd mov qword ptr [rsp+000000D0h],rax

2 Scalar Double-Precision Floating-Point Add

262 Part I Beginning with Language and Tools

000001d5 mov rax,qword ptr [rcx+8]
000001d9 mov qword ptr [rsp+000000D8h],rax
000001e1 lea r8,[rsp+000000E0h]
000001e9 lea rdx,[rsp+000000D0h]
000001f1 lea rcx,[rsp+000000B8h]
000001f9 call FFFFFFFFEF381460
// Here the addition routine of …
000001fe mov qword ptr [rsp+00000128h],rax
00000206 lea rcx,[rsp+000000B8h]
0000020e mov rax,qword ptr [rcx]
00000211 mov qword ptr [rsp+40h],rax
00000216 mov rax,qword ptr [rcx+8]
0000021a mov qword ptr [rsp+48h],rax
 locDec1 += locDec2
0000021f lea rcx,[rsp+40h]
00000224 mov rax,qword ptr [rcx]
00000227 mov qword ptr [rsp+00000110h],rax
0000022f mov rax,qword ptr [rcx+8]
00000233 mov qword ptr [rsp+00000118h],rax
0000023b lea rcx,[rsp+30h]
00000240 mov rax,qword ptr [rcx]
00000243 mov qword ptr [rsp+00000100h],rax
0000024b mov rax,qword ptr [rcx+8]
0000024f mov qword ptr [rsp+00000108h],rax
00000257 lea r8,[rsp+00000110h]
0000025f lea rdx,[rsp+00000100h]
00000267 lea rcx,[rsp+000000F0h]
0000026f call FFFFFFFFEF381460
// … Decimal is called. Here also.
 .
 .
 .

The preceding code demonstrates that the addition requires many more preparations. This
is because the values to be added must first be copied to the stack. The actual addition
isn’t performed by the processor itself, but by the corresponding routines of the Base Class
Library (BCL), which is called by using the Call statement, shown in the disassembly (high-
lighted in bold).

Tip This example illustrates why the performance of the Decimal data type is only about one
tenth of the performance of the Double data type. Therefore, you should use Decimal only when
you need to perform exact financial calculations and can’t tolerate any rounding errors. (For
more information, read the section, “Numeric Data Types at a Glance,” later in this chapter.)

 Chapter 6 The Essential .NET Data Types 263

A Note About Common Language Specification Compliance
Some of the data types introduced in Visual Basic 2005 don’t conform to the Common
Language Specification (CLS), or they simply aren’t CLS-compliant. Some generic data
types and some primitive data types that save integer values without prefixes (as well
as the base data type SByte) belong to this group. Methods that accept types that are
not CLS-compliant as arguments (or return values) should not be provided in compo-
nents intended for use by other .NET programming languages. You must not assume
that these types are “accessible” in all .NET languages. Visual Basic does not automati-
cally check for CLS compliance. If you have components checked for compliance by the
Visual Basic compiler, you can use the CLSCompliant attribute at class level, as follows:

<CLSCompliant(True)> _
 Public Class AClass

 Private myMember As UShort

 Public Property NotCLSCompliant() As UShort
 Get
 Return myMember
 End Get
 Set(ByVal value As UShort)
 myMember = value
 End Set
 End Property
End Class

Checking a single method for CLS compliance works the same way:

 <CLSCompliant(True)> _
 Public Shared Function ANonCLSComplianceMethod() As UShort
 Dim locTest As ClassLibrary1.AClass
 locTest = New ClassLibrary1.AClass
 End Function

Note Contrary to common belief, it’s not true that a method, an assembly, or even your entire
application is non–CLS-compliant if you are using just a single non-compliant type. Your assem-
bly becomes non–CLS-compliant only when you expose variables of non–CLS-compliant types
by making them Public.

264 Part I Beginning with Language and Tools

Numeric Data Types at a Glance
The following short sections describe the use of numeric data types and the range of values
that you can represent with each numeric type.

Byte
.NET data type: System.Byte

Represents: Integer values (numbers without decimal points) in the specified range

Range: 0 to 255

Type literal: Not available

Memory requirements: 1 byte

Declaration and example assignment:

Dim aByte As Byte
aByte = 123

Description: This data type stores only unsigned positive numbers in the specified numeric
range.

CLS-compliant: Yes

Conversion of other numeric types: CByte(objVar) or Convert.ToByte(objVar)

aByte = CByte(123.45D)
aByte = Convert.ToByte(123.45D)

SByte
.NET data type: System.SByte

Represents: Integer values (numbers without decimal points) in the specified range

Range: –128 to 127

Type literal: Not available

Memory requirements: 1 byte

Declaration and example assignment:

Dim aByte As SByte
aByte = 123

 Chapter 6 The Essential .NET Data Types 265

Description: This data type saves negative and positive numbers in the specified numeric
range.

CLS-compliant: No

Conversion of other numeric types: CSByte(objVar) or Convert.ToSByte(objVar)

aByte = CSByte(123.45D)
aByte = Convert.ToSByte(123.45D)

Short
.NET data type: System.Int16

Represents: Integer values (numbers without decimal points) in the specified range

Range: –32,768 to 32,767

Type literal: S

Memory requirements: 2 bytes

Declaration and example assignment:

Dim aShort As Short
aShort = 123S

Description: This data type stores signed numbers (both negative and positive) in the speci-
fied range. Conversion to the Byte data type can cause an OutOfRangeException, due to the
larger scope of Short.

CLS-compliant: Yes

Conversion of other numeric types: CShort(objVar) or Convert.ToInt16(objVar)

'Decimal points are truncated
aShort = CShort(123.45D)
aShort = Convert.ToInt16(123.45D)

UShort
.NET data type: System.UInt16

Represents: Positive integer values (numbers without decimal points) in the specified range

Range: 0 to 65,535

Type literal: US

Memory requirements: 2 bytes

266 Part I Beginning with Language and Tools

Declaration and example assignment:

Dim aUShort As UShort
aUShort = 123US

Description: This data type stores unsigned numbers (positive only) in the specified numeric
range. Conversion to the Byte or Short data types can cause an OutOfRangeException, due to
the (partially) larger scope of Byte or Short.

CLS-compliant: No

Conversion of other numeric types: CUShort(objVar) or Convert.ToUInt16(objVar)

'Decimal points are truncated
aUShort = CUShort(123.45D)
aUShort = Convert.ToUInt16(123.45D)

Integer
.NET data type: System.Int32

Represents: Integer values (numbers without decimal points) in the specified range

Range: –2,147,483,648 to 2,147,483,647

Type literal: I

Memory requirements: 4 bytes

Declaration and example assignment:

Dim anInteger As Integer
Dim anDifferentInteger% ' also declared a integer
anInteger = 123I

Description: This data type stores signed numbers (both negative and positive) in the
specified range. Conversion to the Byte, Short, and UShort data types can cause an
OutOfRangeException, due to the larger scope of Integer. By appending the “%” (percent)
character to a variable, the Integer type for the variable can be forced. However, in the inter-
est of better programming style, you should avoid this technique.

CLS-compliant: Yes

Conversion of other numeric types: CInt(objVar) or Convert.ToInt32(objVar)

anInteger = CInt(123.45D)
anInteger = Convert.ToInt32(123.45D)

 Chapter 6 The Essential .NET Data Types 267

UInteger
.NET data type: System.UInt32

Represents: Positive integer values (numbers without decimal points) in the specified range

Range: 0 to 4,294,967,295

Type literal: UI

Memory requirements: 4 bytes

Declaration and example assignment:

Dim aUInteger As UInteger
aUInteger = 123UI

Description: This data type stores unsigned numbers (positive only) in the speci-
fied range. Conversion to the data types Byte, Short, Ushort, and Integer can cause an
OutOfRangeException, due to the (partially) larger scope of UInteger.

CLS-compliant: No

Conversion of other numeric types: CUInt(objVar) or Convert.ToUInt32(objVar)

aUInteger = CUInt(123.45D)
aUInteger = Convert.ToUInt32(123.45D)

Long
.NET data type: System.Int64

Represents: Integer values (numbers without decimal points) in the specified range.

Range: –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

Type literal: L

Memory requirements: 8 bytes

Declaration and example assignment:

Dim aLong As Long
Dim aDifferentLong& ' also defined as long
aLong = 123L

Description: This data type stores signed numbers (both negative and positive) in the speci-
fied range. Conversion to all other integer data types can cause an OutOfRangeException,
due to the larger scope of Long. You can force a variable to a Long by appending the “&”
(ampersand) character to a variable. However, in the interest of better programming style,
you should avoid this technique.

268 Part I Beginning with Language and Tools

CLS-compliant: Yes

Conversion of other numeric types: CLng(objVar) or Convert.ToInt64(objVar)

aLong = CLng(123.45D)
aLong = Convert.ToInt64(123.45D)

ULong
.NET data type: System.UInt64

Represents: Positive integer values (numbers without decimal points) in the specified range

Range: 0 to 18.446.744.073.709.551.615

Type literal: UL

Memory requirements: 8 bytes

Declaration and example assignment:

Dim aULong As ULong
aULong = 123L

Description: This data type stores unsigned numbers (positive only) in the specified numeric
range. Conversion to all other integer data types can cause an OutOfRangeException, due to
the larger scope of ULong.

CLS-compliant: No

Conversion of other numeric types: CULng(objVar) or Convert.ToUInt64(objVar)

aULong = CULng(123.45D)
aULong = Convert.ToUInt64(123.45D)

Single
.NET data type: System.Single

Represents: Floating-point values (numbers with decimal points whose scale becomes
smaller with the increasing value) in the specified range

Note Scale in this context refers to the number of decimal points of a floating-point number.

Range: –3.4028235*1038 to –1.401298*10–45 for negative values; 1.401298*10–45 to
3.4028235*1038 for positive values

Type literal: F

 Chapter 6 The Essential .NET Data Types 269

Memory requirements: 4 bytes

Declaration and example assignment:

Dim aSingle As Single
Dim aDifferentSingle! ' also defined as Single
aSingle = 123.0F

Description: This data type stores signed numbers (both negative and positive) in the speci-
fied range. By appending the “!” (exclamation) character to a variable, you can foce the vari-
able to the Single type. However, in the interest of better programming style, you should
avoid this technique.

CLS-compliant: Yes

Conversion of other numeric types: CSng(objVar) or Convert.ToSingle(objVar)

aSingle = CSng(123.45D)
aSingle = Convert.ToSingle(123.45D)

Double
.NET data type: System.Double

Represents: Floating-point values (numbers with decimal points whose scale becomes
smaller with the increasing value) in the specified range

Range: –1.79769313486231570*10308 to –4.94065645841246544*10–324 for negative
values; 4.94065645841246544*10–324 to 1.79769313486231570308 for positive values

Type literal: R

Memory requirements: 8 bytes

Declaration and example assignment:

Dim aDouble As Double
Dim aDifferentDouble# ' also defined as Double
aDouble = 123.0R

Description: This data type stores numbers (both negative and positive) in the specified
range. By appending the “#” (hash) character to a variable, you can force it to the Double
type. However, in the interest of better programming style, you should avoid this technique.

CLS-compliant: Yes

Conversion of other numeric types: CDbl(objVar) or Convert.ToDouble(objVar)

aDouble = CDbl(123.45D)
aDouble = Convert.ToDouble(123.45D)

270 Part I Beginning with Language and Tools

Decimal
.NET data type: System.Decimal

Represents: Floating-point values (numbers with decimal points whose scale becomes
smaller with the increasing value) in the specified range

Range: Depends on the number of used decimal places. If no decimal places are used (called
a scale of 0) the max/min values are between ±79,228,162,514,264,337,593,543,950,335.
When using a maximal scale (28 places behind the period; only values between –1 and 1 can be
stored at this scale) the max/min values are between ±0.9999999999999999999999999999.

Type literal: D

Memory requirements: 16 bytes

Declaration and example assignment:

Dim aDecimal As Decimal
Dim aDifferentDouble@ ' also defined as Decimal
aDecimal = 123.23D

Description: This data type stores signed numbers (both negative and positive) in the speci-
fied range. By appending the “@” (ampersand) character to a variable you can force the
Decimal type. However, in the interest of better programming style, you should avoid this
technique.

Important For very high values, you must attach the type literal to a literal constant to avoid
an Overflow error message.

Note No arithmetic functions are delegated to the processor for the data type Decimal.
Therefore, this data type is processed much more slowly than the floating-point data types Single
and Double. At the same time, however, there will be no rounding errors due to the internal dis-
play of values in the binary system. You will learn more about this in the following section.

CLS-compliant: Yes

Conversion of other numeric types: CDec(objVar) or Convert.ToDecimal(objVar)

aDecimal = CDec(123.45F)
aDecimal = Convert.ToDecimal(123.45F)

The Numeric Data Types at a Glance
Table 6-2 presents a list of the numeric data types, along with a brief description.

 Chapter 6 The Essential .NET Data Types 271

TABLE 6-2 The Numeric Base Data Types in .NET 2.0/3.5/4.0 and Visual Basic 2010
Type
name

 .NET type
name Task Scope

Byte System.Byte Stores unsigned integer values
with a width of 8 bits (1 byte)

–0 to 255

SByte System.SByte Stores signed integer values with
a width of 8 bits (1 byte)

–127 to 128

Short System.Int16 Stores signed integer values with
a width of 16 bits (2 bytes)

–32,768 to 32,767

UShort System.UInt16 Stores unsigned integer values
with a width of 16 bits (2 bytes)

0 to 65,535

Integer System.Int32 Stores signed integer values with
a width of 32 bits (4 bytes)
Note: On 32-bit systems, this
integer data type is processed
most quickly

–2,147,483,648 to 2,147,483,647

UInteger System.UInt32 Stores unsigned integer values
with a width of 32 bit (4 bytes)

0 to 4,294,967,295

Long System.Int64 Stores signed integer values with
a width of 64 bits (8 bytes)

–9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

ULong System.UInt64 Stores unsigned integer values
with a width of 64 bits (8 bytes)

0 to 18,446,744,073,709,551,615

Single System.Single Stores floating-point numbers
with single precision; requires
4 bytes for display

–3.4028235E+38 to –1.401298E-45 for
negative values;
1.401298E-45 to 3.4028235E+38 for
positive values

Double System.Double Stores floating-point numbers
with double precision; requires
8 bytes for display.
Note: This is the fastest data type
for floating-point number cal-
culations because it is delegated
directly to the math unit of the
processor for calculation.

1.79769313486231570E+308 to
-4.94065645841246544E-324 for nega-
tive values;
4.94065645841246544E-324 to
1.79769313486231570E+308 for positive
values

Decimal System.Decimal Stores floating-point numbers in
binary-coded decimal format.
Note: This is the lowest data type
for floating-point number calcula-
tions, but its special form of rep-
resenting values excludes typical
computer rounding errors.

0 to ±79,228,162,514.264,337.593,543,
950,335
(±7.9...E+28) without decimal character;
0 to
±7.9228162514264337593543950335
with 28 places to the right of the
decimal character; smallest number not
equal 0 (zero) is
±0.0000000000000000000000000001
(±1E-28)

272 Part I Beginning with Language and Tools

Avoiding Single and Double Rounding Errors
It’s not unusual that some numeric systems are unable to display exact values for fractions.
However, programmers repeatedly believe that they have found an error in a programming
language or claim that the computer can’t calculate correctly. You have already experienced
rounding and conversion errors from one numeric system into another in your daily life with
the base-10 system. For example, dividing the number 1 by 3 results in a number with infinite
decimal points (0.333333333333…). Representing the fraction one-third using a base-3 sys-
tem requires considerably fewer numbers; it’s simply 0.1.

It doesn’t really matter how many numbers you use to display a fraction, but as long as you
use a finite number of digits in numeric systems to display a fraction, there will be situations
in which rounding errors are unavoidable.

For example, 3*1/3 in a base-3 system leads to the following calculation:

 0.1
+0.1
+0.1
==
+1.0

In the decimal system, this also corresponds to 1.0. But performing this same addition in
the decimal system is imprecise, because even if you use 60 decimal places to represent the
number, you never reach the value 1 in the addition, as shown here:

 0,333
+0.333
+0.333
==
 0.999

The total value in the preceding calculation is very close to 1—but it’s not quite 1. If you have
multiple intermediate results during the course of a calculation, such representation errors
can quickly lead to bigger mistakes that will become relevant at some point.

The computer has the same problem with certain numbers when it calculates in the binary
system. Even though it can display the number 69.82 in the decimal system correctly, it runs
into problems with the binary system. Converting 69 works without issues, but it becomes
difficult with 0.82.

Once you know that decimal places are represented by negative powers of the base number,
you can try to approximate the fractional part (0.82) by using the following calculations:

0.5 1*2^-1 intermediate result: 0.5
0.25 1*2^-2 intermediate result: 0.75
0.125 1*2^-3 intermediate result: 0.8125
0.0625 0*2^-4 intermediate result: 0.8125
0.03125 0*2^-5 intermediate result: 0.8125

 Chapter 6 The Essential .NET Data Types 273

0.015625 0*2^-6 intermediate result: 0.8125
0.0078125 0*2^-7 intermediate result: 0.8125
0.00390625 1*2^-8 intermediate result: 0.81640625
0.001953125 1*2^-9 intermediate result: 0.818359375
0.0009765625 1*2^-10 intermediate result: 0.8193359375
0.00048828125 1*2^-11 intermediate result: 0.81982421875

At this point, the computer has generated the binary digits 0.11100001111, but we have not
reached the desired goal. The truth is that you can play this game for all eternity, but you will
never be able to represent the number 0.82 in the decimal system with a finite number of
digits in the binary system.

Companion Content What’s the impact to programming in Visual Basic? Take a look at the
sample program in the \VB 2010 Developer Handbook\Chapter 06\Primitives02 folder.

Public Class Primitives

 Public Shared Sub main()

 Dim locDouble1, locDouble2 As Double
 Dim locDec1, locDec2 As Decimal

 locDouble1 = 69.82
 locDouble2 = 69.2
 locDouble2 += 0.62

 Console.WriteLine("The statement locDouble1=locDouble2 is {0}",
 locDouble1 = locDouble2)
 Console.WriteLine("but locDouble1 is {0} and locDouble2 is {1}", _
 locDouble1, locDouble2)

 locDec1 = 69.82D
 locDec2 = 69.2D
 locDec2 += 0.62D
 Console.WriteLine("The statement locDec1=locDec2 is {0}", locDec1 = locDec2)

 Console.WriteLine()
 Console.WriteLine("Press key to exit!")
 Console.ReadKey()

 …

 End Sub

End Class

At first glance, you’d think that both WriteLine methods return the same text. You don’t need
to use a calculator to see that the value (and thus the first variable) within the program rep-
resents the addition of the second and third value; therefore, both variable values should

274 Part I Beginning with Language and Tools

be the same. Unfortunately that’s not the case. Although the second part of the program
achieves the correct result using the Decimal data type, the Double type fails in the first part
of the program.

The second WriteLine method is even more confusing, because both variables appear to con-
tain the same value to the last decimal place. Here’s the output from the preceding code:

The statement locDouble1=locDouble2 is False
but locDouble1 is 69.82 and locDouble2 is 69.82
The statement locDec1=locDec2 is True

Press key to exit!

So what happened here? During the conversion from the internal binary number system to
the decimal number system, a rounding error takes place that conceals the true result. Based
on this experiment, the following remarks can be made. If at all possible, try to avoid using
fractioned Double or Single values as counters or conditions within a loop; otherwise, you run
the risk that your program becomes bogged down in endless loops as a result of the inaccu-
racies just mentioned. Therefore, follow these rules:

■ Use Single and Double data types only where the umpteenth number behind the
comma is not important. For example, when calculating graphics, where rounding
errors are irrelevant due to a smaller screen resolution, you should always choose the
faster processor-calculated data types, Single and Double, over the manually calculated
Decimal data type.

■ When working with finance applications you should always use the Decimal data type.
It’s the only data type that ensures that numeric calculations that cannot be repre-
sented exactly will not result in major errors.

■ If possible, never use the Decimal data type in loops, and do not use it as a counter
variable. The type is not directly supported by the processor, so it degrades your pro-
gram’s performance. Try to get by with one of the many integer variable types.

■ When you need to compare Double and Single variables to one another, you should
query their deltas rather than comparing the values directly, as in the following code:

If Math.Abs(locDouble1 – locDouble2) < 0.0001 then
 'Values are nearly the same, i.e. the same.
End If

Methods Common to all Numeric Types
All numeric data types have methods that are used the same way for all types. They convert a
string into the corresponding numeric value or a numeric value into a string. Other methods
serve to determine the largest or smallest value a data type can represent.

 Chapter 6 The Essential .NET Data Types 275

Converting Strings into Values and Avoiding Culture-Dependant Errors
The static functions Parse and TryParse are available to all numeric data types to convert a
string into a value. For example, to convert the numeric string “123” into the integer value
123, you can write:

Dim locInteger As Integer
locInteger = Integer.Parse("123")

Important Beginning with Visual Basic 2005, you can no longer write the following:

locInteger = locInteger.Parse("123") 'Should not be done like this any longer!

Because Parse is a static function, you should no longer call it via an object variable—use only
the corresponding class name. A program that addresses the static function via an object vari-
able can still be compiled, but the Code Editor will display a warning.

You can also try to convert the string into a numeric value, as shown here:

Dim locInteger As Integer
If Integer.TryParse("123", locInteger) Then
 'Conversion successful
Else
 'Conversion not successful
End If

If the conversion is successful, the converted number is displayed in the output variable—
locInteger in this example. The .NET Framework equivalent of Integer also permits conversions
via this code:

locInteger = System.Int32.Parse("123") 'This would work, too.

And of course, it’s also possible to make the conversion via the Convert class in .NET
Framework style by using the following:

locInteger = Convert.ToInt32("123") 'And this would work.

Finally, there’s an old-fashioned way in Visual Basic:

locInteger = CInt("123") 'Last option.

But watch out: you might find differences when running programs on a non–English-
language system because of the default cultural setting. For example, if you run the following
program on a German system, it will not act the way you might expect:

Dim locString As String = "123.23"
Dim locdouble As Double = Double.Parse(locString)
Console.WriteLine(locdouble.ToString)

276 Part I Beginning with Language and Tools

You might expect the string to be converted correctly into the value 123.23. Instead the pro-
gram returns the following:

12323

This is definitely not the expected result. However, if you run the program on an English sys-
tem, the result will be correct, as expected:

123.23

Well, maybe not quite. Germans are used to separating the decimal places from integer
places by a comma. English speaking countries use a period, and the preceding output uses
the correct English formatting. What’s the impact of this behavior on your programs? To
begin, you should avoid saving numeric constants as text in the program code itself if you
want to convert them to a numeric type later on (as shown in the example). When you define
numeric data types within your programs, make those definitions directly in code. Do not
use strings (text in quotes) and the corresponding conversion functions. You have probably
already noticed that numeric strings placed in code (without quotes) for assigning a value
must always adhere to the English formatting.

Note To be accurate, the behavior that was just described isn’t caused by an English-language
system; it is because that operating system has default cultural settings. Of course, a German or
other non–English-language system can also be configured to yield the same result.

As long as you don’t need to exchange files with information saved as text across cultural
borders for which your program has to generate values, you have nothing to worry about: if
your application is run on an English-language system, your numbers are written into the file
with a period as separator; in the German-speaking areas, a comma is used. Because cultural
settings are taken into account when reading a file, your application should be able to gener-
ate the correct values back from the text file.

It becomes a bit more problematic when the files containing the text are exchanged across
cultural borders. This can happen pretty easily; for example, you might access a database
server in a company with a .NET Windows Forms application from a German Windows 7 sys-
tem, because many IT departments exclusively run English-language versions on their serv-
ers for a variety of reasons. Therefore, a platform in the United States would export the file
with a period separator, and in Germany, the Parse function would recognize the period as
a thousands-separator, and thus erroneously treat the fractional digits as significant integer
digits. In this case, you need to ensure that any export of a text file is culturally neutral, which
you can achieve as follows:

 Chapter 6 The Essential .NET Data Types 277

You can use the Parse function and the ToString function of all numeric types to control
the conversion by a format provider. For numeric types, .NET offers many different format
providers: some help you control the format depending on the application type (finan-
cial, scientific, and so on), others control it depending on the culture, namely the classes
NumberFormatInfo and CultureInfo. You can pass either to the ToString or the Parse function
(assuming they have been properly initialized).

Important You should always use the following procedure for applications that will be used
internationally to avoid type conversion errors from the start:

Dim locString As String = "123.23"
Dim locdouble As Double

locdouble = Double.Parse(locString, CultureInfo.InvariantCulture)
Console.WriteLine(locdouble.ToString(CultureInfo.InvariantCulture))
Console.ReadLine()

Note To be able to access classes and functions that control globalization, you must bind the
namespace System.Globalization with the Imports statement at the beginning of the program, as
follows:

Imports System.Globalization

The static property InvariantCulture returns an instance of a CultureInfo class that represents
the current system locale.

Note Should the conversion fail simply because the string doesn’t contain a convertible format,
and thus can’t be converted into a value, .NET Framework generates an exception (see Figure
6-1). The exception can either be caught with Try … Catch, or alternatively, you can use the static
method TryParse, which never causes an exception during conversion attempts.

FIguRE 6-1 If a string that represents a numeric value cannot be converted due to its format, the .NET
Framework generates an exception.

278 Part I Beginning with Language and Tools

Performance and Rounding Issues
If you are using type-safe programming in Visual Basic .NET (which you should always do by
using Option Strict On in the project properties), it is customary to convert a floating-point
number into a value of the type Integer by using the conversion operator CInt. But a lot of
programmers don’t know that the Visual Basic compiler behaves completely differently than
the casting operator in C#. CInt in Visual Basic uses commercial rounding, so the compiler
turns

Dim anInt = CInt(123.54R)

into:

Dim anInt = CInt(Math.Round(123.54R))

It is not possible to implement a simple CInt (as used by the Visual Basic compiler itself, and as
is the default in C#) in Visual Basic itself. When converting a floating-point in C#, the decimal
places after the integer are simply truncated—they are not rounded. To simulate this, you
need to use the following construct:

Dim anInt = CInt(Math.Truncate(123.54R))

The problem is that the compiler generates the following completely redundant code from it:

Dim anInt = CInt(Math.Round(Math.Truncate(123.54R)))

When it comes to processing graphics, for example, this means a huge performance com-
promise, of course, because two functions are called from the Math Library. C# is noticeably
faster because it provides a CInt directly.

Tip If you do run into performance problems due to this behavior, create a C# assembly that
provides a function for converting Double, Single, or Decimal directly to Integer values. It’s quite
probable that this function will be inlined (the JIT compiler transfers the code of the C# function
to the assembly without generating a function call jump), and therefore, you can achieve almost
the same performance as in C#.

Determining the Minimum and Maximum Values of a Numeric Type
The numeric data types recognize two specific static properties that you can use to deter-
mine the largest and smallest representable value. These properties are called MinValue and
MaxValue—and just like any static function, you can call them through the type name as
shown in the following example:

 Chapter 6 The Essential .NET Data Types 279

Dim locDecimal As System.Decimal

Console.WriteLine(Integer.MaxValue)
Console.WriteLine(Double.MinValue)
Console.WriteLine(locDecimal.MaxValue) ' Compiler gives a warning – use type name instead.

Special Functions for all Floating-Point Types
Floating-point types have certain special properties that simplify processing of abnormal
results during calculations (such as the Infinity and the NaN properties). To check for non-
numeric results in your calculations, use the following members of the floating-point data
types.

Infinity
When a floating-point value type is divided by 0, the .NET Framework does not generate an
exception; instead, the result is infinity. Both Single and Double can represent this result, as
shown in the following example:

Dim locdouble As Double
locdouble = 20
locdouble /= 0
Console.WriteLine(locdouble)
Console.WriteLine("The statement locDouble is +infinite is {0}.",
 locdouble = Double.PositiveInfinity)
' I suggest using the IsPositiveInfinity method and replacing the last statement
' with an If statement:
If locdouble.IsPositiveInfinity Then
…
Else
…
End If

When you run this example, no exception occurs, but the program displays the following on
the screen:

+infinite
The statement locDouble is +infinite is True.

Instead of performing the comparison to infinity by using the comparison operator, you can
also use the static function IsInfinity, as follows:

Console.WriteLine("The statemdnt locDouble is +infinity is {0}.", locdouble.
IsInfinity(locdouble))

You can also use the IsPositiveInfinity and IsNegativeInfinity methods to determine whether a
value is infinitely large or infinitely small (a very large negative value).

280 Part I Beginning with Language and Tools

To assign the value infinite to a variable, use the static functions PositiveInfinity and
NegativeInfinity, which return appropriate constants.

Not a Number: NaN
The base floating-point types cover another special case: the division of 0 by 0, which is not
mathematically defined and does not return a valid number:

'Special case: 0/0 is not mathematically defined and returns "Not a Number"
aDouble = 0
aDouble = aDouble / 0
If Double.IsNaN(aDouble) Then
 Debug.Print("aDouble is not a number!")
End If

If you run this code, the output window will display the result of the If query.

Important You can test these special cases only via properties that static functions directly
“append” to the type. With the floating-point type constant NaN, you can assign the value “not a
valid number” to a variable, but you can’t use the constant to test for the not-a-number state, as
shown in the example that follows.

Dim aDouble As Double

'Special case: 0/0 is not mathematically defined and returns "Not a Number"
aDouble = 0
aDouble = aDouble / 0

'The text should be returned as expected,
'but isn't!
If aDouble = Double.NaN Then
 Debug.Print("Test 1:aDouble is not a number!")
End If

'Now the test can be performed!
If Double.IsNaN(aDouble) Then
 Debug.Print("Test 2:aDouble is not a number!")
End If

The preceding example displays only the second message in the output window.

Note Both features, NaN and Infinity, let your programs behave totally differently in contrast
to Visual Basic for Applications (or the old Visual Basic 6.0 for that matter). So be careful if you
migrate applications, or even only methods, from Visual Basic 6.0 to VB.NET: some algorithms in
VBA/Visual Basic 6.0 expect errors at certain points to occur, but since a division by zero doesn’t
necessarily lead to an error in VB.NET (this happens only with integer data types), those algo-
rithms might return incorrect results in certain cases.

 Chapter 6 The Essential .NET Data Types 281

Converting with TryParse
All numeric data types expose the static method TryParse, which attempts to convert a string
into a value. Unlike Parse, the TryParse method doesn’t generate an exception when the con-
version fails. Instead, you pass a variable name as a reference argument to the method, and
the method returns a result, indicating whether the conversion was successful (True) or not
(False), as shown here:

Dim locdouble As Double
Dim locString As String = "Onehundredandtwentythree"

'locdouble = Double.Parse(locString) ' Exception
'Not working, either, but at least no exception:
Console.WriteLine("Conversion successful? {0}", _
 Double.TryParse(locString, NumberStyles.Any, New CultureInfo("en-En"), locdouble))

Special Functions for the Decimal Type
The value type Decimal also has special methods, many of which aren’t of any use in Visual
Basic (you can use them, but it doesn’t make much sense—they were added for other lan-
guages that don’t support operator overloading). Take, for example, the static Add function,
which adds two numbers of type Decimal and returns a Decimal. You can use the + operator
of Visual Basic instead, which can also add two numbers of the type Decimal—and does so in
much more easily readable code. Therefore, it makes sense to use the functions presented in
Table 6-3.

TABLE 6-3 The Most Important Functions of the Decimal Type
Function name Task
Remainder(Dec1, Dec2) Determines the remainder of the division of both decimal Decimal values.

Round(Dec, Integer) Rounds a Decimal value to the specified number of decimal places.

Truncate(Dec) Returns the integer part of the specified Decimal value.

Floor(Dec) Rounds the Decimal value to the next smaller number.

Negate(Decimal) Multiplies the Decimal value by –1.

The Char Data Type
The Char data type stores a character in Unicode format (more about this topic later in the
chapter) using 16 bits, or 2 bytes. Unlike the String type, the Char data type is a value type.
The following brief overview gives you more details:

.NET data type: System.Char

Represents: A single character

282 Part I Beginning with Language and Tools

Range: 0–65.535, so that Unicode characters can be displayed

Type literal: c

Memory requirements: 2 bytes

Delegation to the processor: Yes

CLS-compliant: Yes

Description: Char values are often used in arrays, because in many cases it’s more practi-
cal to process individual characters than it is to process strings. Like any other data type, you
can define Char arrays with constants (you’ll see an example shortly). The following section
on strings contains examples on how to use Char arrays instead of strings for character-by-
character processing.

Even if Char is saved internally as an unsigned 16-bit value, and is therefore like a Short, you
cannot implicitly convert a Char into a numeric type. In addition to the possibility described
in the Online Help, however, you can use not only the functions AscW and ChrW to convert a
Char to a numeric data type, and vice versa, but also the Convert class, for example:

'Normal declaration and definition
Dim locChar As Char
locChar = "1"c
Dim locInteger As Integer = Convert.ToInt32(locChar)
Console.WriteLine("The value of '{0}' is {1}", locChar, locInteger)

When you run this example, it displays the following output:

The value of '1' is 49

You can also use the functions Chr and Asc, but they work only for non-Unicode characters
(ASCII 0–255). Due to various internal scope checks, they also have an enormous overhead;
therefore, they are nowhere near as fast as AscW, ChrW (which are the fastest, because a
direct and internal type conversion of Char into Integer, and vice versa, takes place) or the
Convert class (which has the advantage of being easily understood by non-Visual Basic devel-
opers as well).

Declaration and Sample Assignment (also as Array):

'Normal declaration and definition
Dim locChar As Char
locChar = "K"c

'Define and declare a Char array with constants.
Dim locCharArray() As Char = {"A"c, "B"c, "C"c}

'Convert a Char array into string.
Dim locStringFromCharArray As String = New String(locCharArray)

 Chapter 6 The Essential .NET Data Types 283

'Convert a string into a Char array.
'Of course that's also possible with a string variable.
locCharArray = "This is a string".ToCharArray

The String Data Type
Strings are used to store text. Unlike in Visual Basic for Applications (or Visual Basic 6.0), the
modern versions of Visual Basic offer an object-oriented programming (OOP) approach for
working with strings, which makes string processing much easier. Your programs will be eas-
ier to read if you follow the OOP concepts.

You have already encountered strings several times in the previous chapters. Nevertheless,
it’s worth taking another look behind the scenes. In conjunction with the Regular Expression
(Regex) class, the .NET Framework offers the best possible string support.

In contrast to other base types, strings are reference types. However, you don’t have to
define a new String instance with the keyword New. The compiler intervenes here because
it has to generate special code anyhow.

Note Similar to nullables (see Chapter 18) when boxing, CLR interrupts the default behavior
for reference types and changes it. Strictly speaking, since strings are reference types, they need
to be instantiated with New. The equal operator would also need to assign just one reference.
For strings, however, when assigning an instance to an object variable, the content is cloned,
which also deviates from the default. You can read more about reference types in Chapter 12,
“Typecasting and Boxing Value Types.”

The following sections provide an overview of the special characteristic of strings in the BCL.
At the end of this section, you’ll find an example application that illustrates the most impor-
tant string manipulation functions.

Strings—Yesterday and Today
Beginning with Visual Studio 2002 and .NET Framework 1.0, Microsoft introduced a com-
pletely new way to approach string programming in Visual Basic. This was the result of the
new implementation of the data type String, which is created by instantiating a class, like
other objects.

Almost all commands and functions that were “standalone” in Visual Basic 6.0 and VBA still
exist in the .NET Framework versions of Visual Basic. But they are not only superfluous—you
can reach the same goal much more elegantly with the existing methods and properties of
the String object—but they also slow down programs unnecessarily, because internally they
call the String object functions anyhow.

284 Part I Beginning with Language and Tools

For (almost) all the old string functions, there is a corresponding class function that you
should use as a substitute. The following sections demonstrate the handling of strings with
the help of a few short examples.

Declaring and Defining Strings
As with all other base data types, you can declare strings without using the New keyword;
you can perform assignments directly in the program. For example, you can declare a string
with the statement:

Dim aString As String

You can then immediately use the new string variable. The instance of the String object is
created at IML level. Strings are defined as a list of characters between quotes, as shown in
the following example:

aString = "Susan Kallenbach"

Just as with other base data types, declaration and assignment can both take place in an
assignment. Therefore, you can combine the two single statements shown in the preceding
statements into the following shorter, single statement:

Dim aString As String = "Susan Kallenbach"

Handling Empty and Blank Strings
For decades, Visual Basic developers have become accustomed to using the code pattern
shown in the following to check whether a string variable is not defined (Nothing) or points
to an empty string:

Dim myString As String
myString = WinFormsTextBox.Text

If myString Is Nothing Or myString = "" Then
 MessageBox.Show("myString is empty.")
End If

Initially, the data type String acts like a regular reference type. As soon as it is declared, it
becomes Nothing, because its content points to nothing. But it also has a second state that
corresponds to the value “empty,” which occurs when it points to a memory area reserved
for saving characters, but that doesn’t contain any characters. In this case, the String vari-
able saves an empty string. Yet a third possibility occurs when the string does contain data
(at least from the computer’s standpoint), but that data does not represent visible content,
because it’s not printable (or more precisely, it’s not visible on the screen or when printed).
Such characters are called whitespace characters, which include space characters, tabs, and
other control characters.

 Chapter 6 The Essential .NET Data Types 285

All these states are checked by a static method of the String type, and it simplifies testing for
such states:

 If String.IsNullOrWhiteSpace(myString) Then
 MessageBox.Show("my string is empty.")
 End If

When you run this code, you always receive the message “my string is empty” when the
myString variable is empty (points to an empty string), is Nothing, or contains only one or
more whitespaces.

The method IsNullOrWhiteSpace has been available since .NET Framework 4.0. If you need to
maintain backward compatibility with earlier versions of the .NET Framework, or if you want
to allow whitespaces as valid entries, it is better to use the IsNullOrEmpty method, which
returns True for Nothing and empty strings, as illustrated in the following:

 If String.IsNullOrEmpty(myString) Then
 MessageBox.Show("myString is empty.")
 End If

Automatic String Construction
Normally, a class constructor creates an instance and a structure to pre-assign certain values
to parameters—you’ll find a lot more on constructors in this book’s OOP section.

Even though you create strings in the same manner as all other base data types, you still
have the option of calling a constructor method. However, you don’t employ the construc-
tor exclusively for re-instantiating an empty String object (the parameterless constructor is
not permitted), but you actually emulate, among others, the old String$ function from Visual
Basic 6.0 or VBA.

With their help it was possible to generate a string programmatically and save it in a String
variable.

Note While many of the old Visual Basic 6.0/VBA commands are still available all of the .NET
Framework versions up to 4.0, the String function itself no longer exists in the .NET versions of
Visual Basic—possibly due to the type identifier of the same name.

To use the String constructor as a String$ function substitute, do the following:

Dim locString As String = New String("A"c, 40)

The type literal “c” indicates that you need to pass a value of the type Char in the construc-
tor. Unfortunately this limits the repetition function to one character, which wasn’t the case
with String$. Fortunately, it’s no problem to implement a Repeat function, which resolves this
issue:

286 Part I Beginning with Language and Tools

 Public Function Repeat(ByVal s As String, ByVal repeatitions As Integer) As String
 Dim sBuilder As New StringBuilder

 For count As Integer = 1 To repeatitions
 sBuilder.Append(s)
 Next

 Return sBuilder.ToString
 End Function

Note This construct mainly serves as an example, and you should only construct strings in
this manner if there are very few characters. You should use the larger text segments of the
StringBuilder class for performance reasons. The StringBuilder class is described in the section,
“StringBuilder vs. String: When Performance Matters,” later in this chapter. Why this is the case is
explained in the section, ”No Strings Attached, or Are There? Strings are Immutable!”

Apart from using a constructor to generate strings by repeating the same character, you can
also use one to create a string from a Char array or a portion of a Char array, as shown in the
following example:

Dim locCharArray() As Char = {"K"c, "."c, " "c, "L"c, "ö"c, "f"c, "f"c, "e"c, "l"c, "m"c,
➥"a"c, "n"c, "n"c}
Dim locString As String = New String(locCharArray)
Console.WriteLine(locString)
locString = New String(locCharArray, 3, 6)
Console.WriteLine(locString)

When you run this program, the console window displays the following output:

K. Löffelmann
Löffel

Assigning Special Characters to a String
To include quotes in the string itself, use repeated double quotes. For example, to define the
string “Adriana said, “it’s only 1pm, I’m going to sleep in a little longer!” in a program, you
would write the assignment as follows:

locString = "Adriana said, ""it's only 1pm, I'm going to sleep in a little longer!""."

To include other special characters, use the existing constants in the Visual Basic vocabulary.
For example, to build a paragraph into a string, you need to insert the ASCII codes for line-
feed and carriage return into the string. You achieve this by using the constants shown in the
following example:

 Chapter 6 The Essential .NET Data Types 287

locOtherString = "Adriana said ""I'm going to sleep in a little longer!""" & vbCr & vbLf & _
 "She fell asleep again immediately."

You could use vbNewLine or the shorthand vbCrLf character constants instead. For example,
you can save keystrokes with the following version, which delivers the same result:

locOtherString = "Adriana said ""I'm going to sleep in a little longer!""" & vbNewLine & _
 "She fell asleep again immediately."

Table 6-4 presents the special character constants that Visual Basic offers.

TABLE 6-4 The Constants That Correspond to the Most Common Special Characters
Constant ASCII Description
vbCrLf or vbNewLine 13; 10 Carriage return/line feed character

vbCr 13 Carriage return character

vbLf 10 Line feed character

vbNullChar 0 Character with a value of 0

vbNullString String with a value of 0. Doesn’t corresponds to a string with a
length of 0 (“”); this constant is meant for calling external proce-
dures (COM Interop).

vbTab 9 Tab character

vbBack 8 Backspace character

vbFormFeed 12 Not used in Microsoft Windows

vbVerticalTab 11 Control characters for the vertical tab which isn’t used in
Microsoft Windows

Memory Requirements for Strings
Each character in a string requires two bytes of memory. Even though strings are returned
as letters, each character is represented in memory by a numeric value. The values from 1
to 255 correspond to the American Standard Code for Information Interchange—ASCII for
short—which standardizes only values up to 127 for each character set. Special characters
are defined in the 128–255 range, and those characters depend on the specific character
set used. Generally the codes for the special characters of the European countries, such as
“öäüÖÄÜâéè”, have the same code for each font (the exception proves the rule, as usual).
Values above 255 represent special characters that are used, for example, for the Cyrillic,
Arabic, or Asian characters. This coding convention, called Unicode, permits a considerably
larger total number of characters. The .NET Framework generally saves strings in Unicode
format.

288 Part I Beginning with Language and Tools

No Strings Attached, or Are There? Strings are Immutable!
Generally, strings are reference types, but they are strictly static in memory and are there-
fore immutable. In practice, that means that there is no restriction as to how you handle
strings: even though you might think you have changed a string, you have actually created
a new one that contains the changes. You need to know that when it comes to applications
that perform many string operations, you should use the StringBuilder class instead, which is
noticeably more powerful, even though it doesn’t offer the flexibility of the string manipula-
tion methods or the advantages of the base data types. (The section, “When Speed Matters,”
discusses this topic in more detail.)

You can read more about reference and value types in Chapter 8, “Class Begins.”

Much more important is the impact of the immutability of strings in your programs: even
though strings are considered reference types, they behave like value types, because they
cannot be changed. When two string variables point to the same memory area and you
change the content of a string, it appears as though you are changing the value of the
original variable, but in reality, such operations create a completely new String object in
memory and change the existing variable to point to it. This way, you never end up in the
situation you know from reference types, in which changing the object content via the object
variable never causes another string variable, which points to the same memory area, to
return the edited string. This explains why strings are reference types, but at the same time,
they “look and feel” like value types.

You will see more about this in the following section along with some practical examples.

Memory Optimization for Strings
For saving strings the .NET Framework uses an internal pool that to avoids redundancies in
string storage. If you define two strings within your program using the same constant, the
Visual Basic compiler recognizes that they’re the same and places only one copy of the string
in memory. At the same time, it allows both object variables to point to the same memory
area, as the following example proves:

Dim locString As String
Dim locOtherString As String

locString = "Adriana" & " Ardelean"
locOtherString = "Adriana Ardelean"
Console.WriteLine(locString Is locOtherString)

When you start this program, it returns True—meaning that both strings point to the same
memory area. This condition exists only as long as the compiler can recognize the equality of
the strings, and to do this, their values must be specified in a single statement. For example,
in the following code, the compiler can no longer recognize the equality of the strings, so the
result would be False:

 Chapter 6 The Essential .NET Data Types 289

Dim locString As String
Dim locOtherString As String

locString = "Adriana"
locString &= " Ardelean"
locOtherString = "Adriana Ardelean"
Console.WriteLine(locString Is locOtherString)

It’s obvious that a behavior to avoid redundancies at runtime would take too much time and
can’t be used in a sensible way. If there are a lot of strings, the BCL would waste too much
time searching for strings that already existing. However, you do have the option to specifi-
cally add a string created at runtime to a pool. If you add several identical strings to the
internal pool, they are not assigned redundantly—several identical strings then share the
same memory. Of course, this only makes sense when you can predict that there will be
many conformant strings within a program. The example that follows shows how you explic-
itly add a string with the static function Intern to the internal pool:

Dim locString As String
Dim locOtherString As String

locString = "Adriana"
locString &= " Ardelean"
locString = String.Intern(locString)
locOtherString = String.Intern("Adriana Ardelean")
Console.WriteLine(locString Is locOtherString)

When you start this program, the output is again True.

Determining String Length
VBA/Visual Basic 6.0 compatible command: Len

.NET versions of Visual Basic: strVar.Length

Description: With this command you determine the length of a string in characters, and not
in bytes.

Example: The following example accepts a string from a user and returns the string’s charac-
ters in inverse order:

Dim locString As String
Console.Write("Enter a text: ")
locString = Console.ReadLine()
For count As Integer = locString.Length - 1 To 0 Step -1
 Console.Write(locString.Substring(count, 1))
Next

You can find the same example with Visual Basic 6.0 compatibility commands in the next
section.

290 Part I Beginning with Language and Tools

Retrieving Parts of a String
VBA/Visual Basic 6.0 compatible command(s): Left, Right, Mid

.NET versions of Visual Basic: strVar.SubString

Description: Use this command to retrieve a certain part of a string as another string.

Note Why the good-old Left and Right methods of the class String were omitted is a question
only the programmer can answer. Maybe they were simply forgotten, or the programmer knew
only C and couldn’t imagine a world as simple as BASIC.

Example: The following example reads a string from the keyboard and then returns its char-
acters in inverse order. You can find the same example in the previous section with the func-
tions of the String object.

Dim locString As String
Console.Write("Enter a text: ")
locString = Console.ReadLine()
For count As Integer = Len(locString) To 1 Step -1
 Console.Write(Mid(locString, count, 1))
Next

Padding Strings
VBA/Visual Basic 6.0 compatible command(s): RSet, LSet

.NET versions of Visual Basic: strVar.PadLeft; strVar.PadRight

Description: With these commands, you can increase the length of a string to a certain
number of characters; the string is padded with blank characters at the beginning or the end.

Example: The following example demonstrates the use of the PadLeft and the PadRight
method:

Dim locString As String = "This string is so long"
Dim locString2 As String = "Not this one"
Dim locString3 As String = "This"
Len(locString)
locString2 = locString2.PadLeft(locString.Length)
locString3 = locString3.PadRight(locString.Length)

Console.WriteLine(locString + ":")
Console.WriteLine(locString2 + ":")
Console.WriteLine(locString3 + ":")

 Chapter 6 The Essential .NET Data Types 291

When you run this program the following output is generated:

This string is so long:
 Not this one:
This :

Note The strings are so perfectly aligned only because the Console window uses a monospaced
font by default. You can’t align strings in a typical window that uses a proportional font with the
PadLeft and PadRight methods.

Find and Replace Operations
VBA/Visual Basic 6.0 compatible command(s): InStr, InStrRev, Replace

.NET versions of Visual Basic: strVar.IndexOf; strVar.IndexOfAny; strVar.Replace; strVar.
Remove

Description: With the Visual Basic 6.0 compatible command InStr, you can search for the
occurrence of a character or a string within a string. InStrRev does the same, but it starts the
search from the end of the string. Replace lets you to replace a substring within a string with
another string.

Using the IndexOf method of the String class, you can search for the occurrence of a charac-
ter or a string within the current string. Furthermore, the IndexOfAny method lets you find
the occurrences of a group of characters passed as a Char array within the string. The Replace
method replaces individual characters or strings with others in the current string, and the
Remove method removes a specific substring from the string.

Example: The following examples demonstrate how to use the Find and Replace methods of
the String class:

Companion Content Open the corresponding solution (.sln) for this example, which you can
find in the \VB 2010 Developer Handbook\Chapter 06\Strings – Find and Replace folder.

Imports System.Globalization

Module Strings
 Sub Main()
 Dim locString As String = _
 "Common wisdoms:" + vbNewLine + _
 "* If you would shout for 8 years, 7 months, and 6 days," + vbNewLine + _
 " you would have produced enough energy to heat a cup of coffee." + _
➥vbNewLine + _
 "* If you hit your head against the wall, you use up 150 calories." +

292 Part I Beginning with Language and Tools

➥vbNewLine + _
 "* Elephants are the only animals who can't jump." + vbNewLine + _
 "* A cockroach can live for 9 days without a head before it dies of
➥hunger." + vbNewLine + _
 "* Gold and other metals originate solely from" + vbNewLine + _
 " supernovae." + vbNewLine + _
 "* The Moon consists of debris from a collision of a" + vbNewLine + _
 " planet the size of Mars with the Earth." + vbNewLine + _
 "* New York is called the ""Big Pineapple"", because ""Big Pineapple"" in
➥the language of" + vbNewLine + _
 " Jazz musicians meant ""hitting the jackpot"". To have a career in New
➥York" + vbNewLine + _
 " meant their jackpot." + vbNewLine + _
 "* The expression ""08/15"" for something unoriginal was originally " +
➥vbNewLine + _
 " the label of the machine gun LMG 08/15;" + vbNewLine + _
 " It become the metaphor for unimaginative, military drills." +
➥vbNewLine + _
 "* 311 New Yorkers are being bit by rats per year in average." +
➥vbNewLine + _
 " But 1511 New Yorkers have been bit by other New Yorkers at the same
➥time."
 'Replace number combination with letters
 locString = locString.Replace("08/15", "Zero-eight-fifteen")

 'Count punctuation
 Dim locPosition, locCount As Integer

 Do
 locPosition = locString.IndexOfAny(New Char() {"."c, ","c, ":"c, "?"c},
➥locPosition)
 If locPosition = -1 Then
 Exit Do
 Else
 locCount += 1
 End If
 locPosition += 1
 Loop

 Console.WriteLine("The following text...")
 Console.WriteLine(New String("="c, 79))
 Console.WriteLine(locString)
 Console.WriteLine(New String("="c, 79))
 Console.WriteLine("...has {0} punctuation.", locCount)
 Console.WriteLine()
 Console.WriteLine("And after replacing 'Big Pineapple' with 'Big Apple' it
➥looks as follows:")
 Console.WriteLine(New String("="c, 79))

 Chapter 6 The Essential .NET Data Types 293

 'Another substitution
 locString = locString.Replace("Big Pineapple", "Big Apple")
 Console.WriteLine(locString)
 Console.ReadLine()

 End Sub

End Module

The example displays the following output on the screen:

The following text...
===
Common wisdoms:
* If you would shout for 8 years, 7 months, and 6 days,
 you would have produced enough energy to heat a cup of coffee.
* If you hit your head against the wall, you use up 150 calories.
* Elephants are the only animals who can't jump.
* A cockroach can live for 9 days without a head before it dies of hunger.
* Gold and other metals originate solely from
 Supernovae.
* The Moon consists of debris from a collision of a
 planet the size of Mars with the Earth.
* New York is called the "Big Pineapple", because "Big Pineapple" in the language of
 Jazz musicians meant "hitting the jackpot". To have a carreer in New York
 meant their jackpot.
* The expression "08/15" for something unoriginal was originally
 the label of the machine gun LMG 08/15;
 It become the metaphor for unimaginative, military drills.
* 311 New Yorkers are being bit by rats per year in average.
 But 1511 New Yorkers have been bit by other New Yorkers at the same time.
===
...has 23 punctuation marks.

And if you replace 'Big Pineapple' with 'Big Apple' it looks as follows:
===
Common wisdoms:
* If you would shout for 8 years, 7 months, and 6 days,
 you would have produced enough energy to heat a cup of coffee.
* If you hit your head against the wall, you use up 150 calories.
* Elephants are the only animals who can't jump.
* A cockroach can live for 9 days without a head before it dies of hunger.
* Gold and other metals originate solely from
 Supernovae..
* The Moon consists of debris from a collision of a
 planet the size of Mars with the Earth.
* New York is called the "Big Apple", because "Big Apple" in the language of
 Jazz musicians meant "hitting the jackpot". To have a carreer in New York
 meant their jackpot.

294 Part I Beginning with Language and Tools

* The expression "08/15" for something unoriginal was originally
 the label of the machine gun LMG 08/15;
 It become the metaphor for unimaginative, military drills.
* 311 New Yorkers are being bit by rats per year in average.
 But 1511 New Yorkers have been bit by other New Yorkers at the same time.

Tip The example presented in the section ”Splitting Strings,” contains a custom function called
ReplaceEx, which you can use to search for several characters, replacing found occurrences with a
specified character.

Trimming Strings
VBA/Visual Basic 6.0 compatible command(s): Trim, RTrim, LTrim

.NET versions of Visual Basic: strVar.Trim, strVar.TrimEnd, strVar.TrimStart

Description: These methods remove characters from both the beginning and the end of
a string (Trim) or at either end of a string (TrimStart and TrimEnd). For these methods, the
object methods of the strings are preferable to the compatibility functions, because for the
former you can also specify which characters should be trimmed, as the following example
demonstrates. In contrast, the Visual Basic 6.0 compatibility functions only allow space char-
acters to be trimmed.

Example: The following example generates a String array whose individual elements have
unwanted characters at the beginning and the end (not just space characters), which are
removed by using the Trim function.

Note This example also shows that strings act differently than common objects, even though
they are considered reference types, because they are immutable. If you assign two object vari-
ables to an object and change the content of a variable, the object variable will also represent
the changed object content. Even if a string seems to be changed, in fact, it’s not. Rather, another
completely new instance is created, which reflects the changes. The original string is discarded
(you can read more about this topic in the section, “No Strings Attached, or Are There? Strings
are Immutable!,” earlier in this chapter).

Dim locStringArray() As String = { _
 " - Here the actual text starts!", _
 "This text ends with strange characters! .- ", _
 " - Here both sides are problematic - "}

 Chapter 6 The Essential .NET Data Types 295

For Each locString As String In locStringArray
 locString = locString.Trim(New Char() {" "c, "."c, "-"c})
 Console.WriteLine("Clean and neat: " + locString)
Next

'Important: String is a reference type, but nothing has changed for the array.
'That's because strings aren't changed directly, but are always created anew and thus
changed.
For Each locString As String In locStringArray
 Console.WriteLine("Still messy: " + locString)
Next

If you run this program, the following output is generated:

Clean and neat: Here the actual text starts!
Clean and neat: This text ends with strange characters!
Clean and neat: Here both sides are problematic
Still messy: - Here the actual text starts!
Still messy: This text ends in strange characters! .-
Still messy: - Here both sides are problematic –

Splitting Strings
VBA/Visual Basic 6.0 compatible command(s): Split

.NET versions of Visual Basic: strVar.Split

Description: The .NET Split method of the String class is superior to the compatibility func-
tion in that it permits you to specify several separator characters in a Char array. This makes
your programs more flexible when it comes to analyzing and rebuilding text.

Example: The following example separates the individual terms or sections of a string into
partial strings separated by different separator characters. These separated strings are later
presented as elements of a String array and are further prepared with additional functions.

Companion Content Open the corresponding solution (.sln) for this example, which you can
find in the \VB 2010 Developer Handbook\Chapter 06\String – Split folder.

Module Strings
 Sub Main()
 Dim locString As String = _
 "Individual, elements; separated by, different - characters."
 Console.WriteLine("From the line:")
 Console.WriteLine(locString)
 Console.WriteLine()
 Console.WriteLine("Becomes a string array with the following elements:")
 Dim locStringArray As String()
 locStringArray = locString.Split(New Char() {","c, ";"c, "-"c, "."c})

296 Part I Beginning with Language and Tools

 For Each locStr As String In locStringArray
 Console.WriteLine(ReplaceEx(locStr, New Char() {","c, ";"c, "-"c, "."c}, _
 Convert.ToChar(vbNullChar)).Trim)
 Next
 Console.ReadLine()
 End Sub

 Public Function ReplaceEx(ByVal str As String, ByVal SearchChars As Char(), _
 ByVal ReplaceChar As Char) As String
 Dim locPos As Integer
 Do
 locPos = str.IndexOfAny(SearchChars)
 If locPos = -1 Then Exit Do
 If AscW(ReplaceChar) = 0 Then
 str = str.Remove(locPos, 1)
 Else
 str = str.Remove(locPos, 1).Insert(locPos, ReplaceChar.ToString)
 End If
 Loop
 Return str
 End Function
End Module

When you run this program, it generates the following output:

The line:
Individual, elements; separated, by, different- characters.

Becomes a string array with the following elements:
Individual
elements
separated
by
different
characters

Iterating through Strings
The following code segment uses a further variation for iterating through the individual
characters in a string. The Chars property of a String object is an array of Char values, which
represent the individual characters in the string. Because the String object also offers the
function GetEnumerator, you have the following option for iterating via a string:

For Each locChar As Char In "This is a string"
 'Do something.
Next

 Chapter 6 The Essential .NET Data Types 297

Thanks to the power of the String class, the functions Find and Replace are surprisingly easy
to implement. In the following code, assume that the fneFiles collection contains a list of file
names:

Private Sub btnCheckFound_Click(ByVal sender As System.Object, ByVal e As System.
➥EventArgs) _
 Handles btnCheckFound.Click
 For Each locFEI As FilenameEnumeratorItem In fneFiles.Items
 Dim locFilename As String = locFEI.Filename.Name
 If locFilename.IndexOf(txtSearch.Text) > -1 Then
 locFEI.Checked = True
 Else
 locFEI.Checked = False
 End If
 Next
End Sub

Private Sub btnReplaceChecked_Click(ByVal sender As System.Object,ByVal e As System.
➥EventArgs) _
 Handles btnReplaceChecked.Click
 For Each locFEI As FilenameEnumeratorItem In fneFiles.Items
 Dim locFilename As String = locFEI.SubItems(1).Text
 If locFEI.Checked Then
 If locFilename.IndexOf(txtSearch.Text) > -1 Then
 locFilename = locFilename.Replace(txtSearch.Text, txtReplace.Text)
 locFEI.SubItems(1).Text = locFilename
 End If
 End If
 Next
End Sub

StringBuilder vs . String: When Performance Matters
As you saw earlier in this chapter, .NET provides you with extremely powerful tools for pro-
cessing strings. If you read the section on memory management, you probably noticed that
string processing speed in certain scenarios leaves much to be desired. The reason is simple:
strings are immutable. If you are working with algorithms that build strings character-by-
character, then for every character you add to the string, a completely new string must be
created—and that takes time.

The StringBuilder class represents an alternative for such operations. In no way does it pro-
vide the functionality of the String class in terms of methods, but it does offer an essential
advantage: it is managed dynamically, and therefore, it is disproportionately faster. When it
comes to building strings (by appending, inserting, or deleting characters), you should use a
StringBuilder instance—especially when you’re dealing with large amounts of data.

298 Part I Beginning with Language and Tools

Using the StringBuilder class is quite simple. First, you need to declare the System.Text
namespace, which you can bind into your class or module file with an Imports statement, as
follows:

Imports System.Text

Next, you simply declare a variable with the type StringBuilder, and then initialize it with one
of the following constructor calls:

'Declaration without parameters:
Dim locSB As New StringBuilder
'Declaration with capacity reservation
locSB = New StringBuilder(1000)
'Declaration from an existing string
locSB = New StringBuilder("Created from a new string")
'Declaration from string with the specification of a capacity to be reserved
locSB = New StringBuilder("Created from string with capacity for more", 1000)

Note that you can specify an initial capacity when defining a StringBuilder object. This way,
the space that your StringBuilder object will eventually require is reserved immediately—no
additional memory needs to be requested at runtime, which improves performance.

To add characters to the string, use the Append method. Using Insert, you can place charac-
ters anywhere into the string stored in the StringBuilder object. Replace lets you replace one
string with another, whereas Remove deletes a specified number of characters from a specific
character position onward. Here’s an example:

locSB.Append(" – and this gets appended to the string")
locSB.Insert(20, ">>this ends up somewhere in the middle<<")
locSB.Replace("String", "StringBuilder")
locSB.Remove(0, 4)

When you have finished building the string, you can convert it into a “real” string by using
the ToString function:

'StringBuilder has finished building the string
'Convert to string
Dim locString As String = locSB.ToString
Console.WriteLine(locString)

When you execute the preceding statements, the console window displays the following text:

StringBuilder Create>>this ends up somewhere in the middle<<d from string with capacity for
more – and that is added to the StringBuilder

Performance Comparison: String vs . StringBuilder

Companion Content Open the solution (.sln) for this example, which you can find in the
\VB 2010 Developer Handbook\Chapter 06\StringVsStringBuilder folder.

 Chapter 6 The Essential .NET Data Types 299

This section’s project demonstrates the efficiency of the StringBuilder class. The program cre-
ates a number of String elements, each consisting of a fixed number of random characters.
When you start the program, enter the values of the following parameters as prompted:

Enter the string length of an element: 100
Enter a number of elements to be generated: 100000

Generating 100000 string elements with the String class...
Duration: 2294 milliseconds

Generating 100000 string elements with the StringBuilder class...
Duration: 1111 milliseconds

The preceding code demonstrated that using the StringBuilder class with an element length
of 100 characters already doubles the speed. Restart the program. To see a really impressive
increase in speed, enter an element length of 1000 and specify the value of 10000 for the
number of elements to be generated, as shown in the following example:

Enter the string length of an element: 1000
Enter a number of elements to be generated: 10000

Generating 10000 string elements with the String class...
Duration: 6983 milliseconds

Generating 10000 string elements with the StringBuilder class...
Duration: 1091 milliseconds

With these parameters, the StringBuilder is approximately six times faster than the String
class. The lengthier the generated strings, the more sense it makes to use a StringBuilder
object.

The program relies on the StopWatch class for timing the operations. With this class, you can
measure time durations with extreme precision—and it’s simple to use. The following code
sample, which reuses some code from earlier in the chapter, shows its use:

Imports System.Text

Module StringsVsStringBuilder

 Sub Main()
 Dim locAmountElements As Integer
 Dim locAmountCharsPerElement As Integer
 Dim locVBStringElements As VBStringElements
 Dim locVBStringBuilderElements As VBStringBuilderElements

 'StringBuilderExamples()
 'Return

 Console.Write("Enter the string length of an element: ")
 locAmountCharsPerElement = Integer.Parse(Console.ReadLine)
 Console.Write("Enter a number of elements to be generated: ")

300 Part I Beginning with Language and Tools

 locAmountElements = Integer.Parse(Console.ReadLine)
 Console.WriteLine()
 Console.WriteLine("Generating " & locAmountElements &
 " string elements with the String class...")
 Dim locTimeGauge = Stopwatch.StartNew
 locVBStringElements = New VBStringElements(locAmountElements,
➥locAmountCharsPerElement)
 locTimeGauge.Stop()
 Console.WriteLine("Duration: " & locTimeGauge.ElapsedMilliseconds.ToString())
 locTimeGauge.Reset()
 Console.WriteLine("Generating " & locAmountElements &
 " string elements with the StringBuilder class...")
 locTimeGauge.Start()
 locVBStringBuilderElements =
 New VBStringBuilderElements(locAmountElements,
➥locAmountCharsPerElement)
 locTimeGauge.Stop()
 Console.WriteLine("Duration: " & locTimeGauge.ElapsedMilliseconds.ToString())
 locTimeGauge.Reset()
 Console.WriteLine()
 Console.ReadLine()
 End Sub

 Sub StringBuilderExamples()

 'Declaration without parameters:
 Dim locSB As New StringBuilder
 'Declaration with capacity reservation
 locSB = New StringBuilder(1000)
 'Declaration from an existing string
 locSB = New StringBuilder("Created from a new string")
 'Declaration from string with the specification of a capacity to be reserved
 locSB = New StringBuilder("Created from string with capacity for more", 1000)

 locSB.Append(" - and this gets appended to the string")
 locSB.Insert(20, ">>this ends up somewhere in the middle<<")
 locSB.Replace("String", "StringBuilder")
 locSB.Remove(0, 4)

 'StringBuilder has finished building the string
 'Convert to string umwandeln
 Dim locString As String = locSB.ToString
 Console.WriteLine(locString)
 Console.ReadLine()
 End Sub

End Module

Public Class VBStringElements

 Private myStrElements() As String

 Chapter 6 The Essential .NET Data Types 301

 Sub New(ByVal AmountOfElements As Integer, ByVal AmountChars As Integer)

 ReDim myStrElements(AmountOfElements - 1)
 Dim locRandom As New Random(DateTime.Now.Millisecond)
 Dim locString As String

 For locOutCount As Integer = 0 To AmountOfElements - 1
 locString = ""
 For locInCount As Integer = 0 To AmountChars - 1
 Dim locIntTemp As Integer = Convert.ToInt32(locRandom.NextDouble * 52)
 If locIntTemp > 26 Then
 locIntTemp += 97 - 26
 Else
 locIntTemp += 65
 End If
 locString += Convert.ToChar(locIntTemp).ToString
 Next
 myStrElements(locOutCount) = locString
 Next
 End Sub

End Class

Public Class VBStringBuilderElements

 Private myStrElements() As String

 Sub New(ByVal AmountOfElements As Integer, ByVal AmountChars As Integer)

 ReDim myStrElements(AmountOfElements - 1)
 Dim locRandom As New Random(DateTime.Now.Millisecond)
 Dim locStringBuilder As StringBuilder

 For locOutCount As Integer = 0 To AmountOfElements - 1
 locStringBuilder = New StringBuilder(AmountChars)
 For locInCount As Integer = 0 To AmountChars – 1
 Dim locIntTemp As Integer = Convert.ToInt32(locRandom.NextDouble * 52)
 If locIntTemp > 26 Then
 locIntTemp += 97 - 26
 Else
 locIntTemp += 65
 End If
 locStringBuilder.Append(Convert.ToChar(locIntTemp))
 Next
 myStrElements(locOutCount) = locStringBuilder.ToString
 Next
 End Sub

End Class

302 Part I Beginning with Language and Tools

The Boolean Data Type
The data type Boolean saves binary states, which means it doesn’t save much. Its value can be
False or True—it can’t save anything else. This data type is most frequently used when run-
ning conditional program code (you saw the basics of conditional code in Chapter 1).

.NET data type: System.Boolean

Represents: One of two states: True or False.

Type literal: Not available

Memory requirements: 2 bytes

Note: To define a Boolean variable, use the keywords True and False directly and without
quotes in the program text, such as in the following example:

Dim locBoolean As Boolean
locBoolean = True 'Expression is true.
locBoolean = False 'Expression is false.

Converting to and from Numeric Data Types
You can convert a Boolean type to a numeric data type.

Important Visual Basic deviates from the .NET Framework in its internal representation of the
primitive Boolean data type. For example, when you convert a Boolean data type into an Integer
data type using Visual Basic commands, the value True is converted to –1. But when using .NET
Framework conversions, such as the Convert class, True is converted to +1.

The following example shows how this works:

Dim locInt As Integer = CInt(locBoolean) ' locInt is -1
locInt = Convert.ToInt32(locBoolean) ' locInt is now +1!!!
Dim locLong As Long = CLng(locBoolean) ' locLong is -1
locLong = Convert.ToInt64(locBoolean) ' locLong is +1

When converting it back, the behavior of the Convert class of .NET Framework and the con-
version statements of Visual Basic are identicial. Only the numeric value 0 returns the Boolean
result of False, all other values result in True, as the following example shows.

Companion Content Open the corresponding solution (.sln) for this example, which you can
find in the \VB 2010 Developer Handbook\Chapter 06\Primitives03 folder.

 Chapter 6 The Essential .NET Data Types 303

locBoolean = CBool(-1) ' locBoolean is True.
locBoolean = CBool(0) ' locBoolean is False.
locBoolean = CBool(1) ' locBoolean is True.
locBoolean = Convert.ToBoolean(-1) ' locBoolean is True.
locBoolean = Convert.ToBoolean(+1) ' locBoolean is True.
locBoolean = CBool(100) ' locBoolean is True.
locBoolean = Convert.ToBoolean(100) ' locBoolean is True.

Converting to and from Strings
When you convert a Boolean data type into a string—for example, to save its status in a
file—the respective value is converted to one of two strings represented by the static read-
only properties TrueString and FalseString of the Boolean structure. In the current version of
.NET Framework (4.0, as of this writing), they result in “True” and “False,” regardless of the
computer’s cultural settings. So, no matter if your programs run on a United States platform
or, for example, on a German platform, it always becomes either “True” or “False”, never
“Wahr” or “Falsch”. When converting a String into Boolean, these strings return the values
True and False, respectively.

The Date Data Type
The Date data type stores and manipulates date values. It helps you to calculate time differ-
ences, parse date values from strings, and convert date values into formatted strings.

.NET data type: System.DateTime

Represents: Dates and time from 1.1.0001 (0 hours) to 31.12.9999 (23:59:59 hours) with a
resolution of 100 nanoseconds (this unit is called a tick)

Type literal: Enclosed in pound-signs, always United States culture format (#MM/dd/yyyy
HH:mm:ss#)

Memory requirements: 8 bytes

Note Date also is a base data type, for which you can define a date variable directly by using
literals in the program code. The same rules apply for numeric values: The United States date/
time format is important. If you are not familiar with this format, here’s a brief explanation.

For the United States, you write date values in the format month/day/year, separated by a
slash. This syntax can easily cause confusion if you are not familiar with it. For example, the
date 12/17/2011 is clearly a United States date, because there is no month 17. However, the
date 12/06/2011 could be interpreted as either June 12th or December 6th. There is a similar

304 Part I Beginning with Language and Tools

issue with the time of day. In the United States, you might find a 24-hour display for a bus
schedule or in the military, but otherwise, the postfixes “AM” (for “ante meridian”—before
noon) and “PM” (for “post meridian”—after noon) defines which 3 o’clock is intended. The
formatting scheme becomes even more problematic with 12:00 (there is no 0:00!). Maybe
you’ve had your own experience when trying to program a video recorder that recorded not
your desired TV program, but another that was broadcast 12 hours later (or earlier). 12:00
AM corresponds to midnight or the 0:00 hour on the 24-hour clock; 12:00 PM corresponds
to noon.

Value assignments to a Date data type in program code occur by surrounding the date/time
string characters with “#” (hash) characters. The following example shows how this works:

Dim Midnight As Date = #12:00:00 AM#
Dim Noon As Date = #12:00:00 PM#
Dim NewYearsEve As System.DateTime = #12/31/2010#
Dim TimeForChampagne As System.DateTime = #12/31/2010 11:58:00 PM#
Dim TimeForAspirin As System.DateTime = #1/1/2011 11:58:00 AM#

The editor helps you to find the correct format by translating the 24-Hour format into the
12-hour format, automatically. For example, it converts the expression #0:00# to #12:00:00
AM# automatically.

It also adds missing entries for minutes and seconds if you inadvertently enter a value that
contains only the hours portion. You can enter times in the 24-hour format; the editor will
automatically convert them to the 12-hour format.

TimeSpan: Manipulating Time and Date Differences
What’s unique about the Date data type is that it supports calculations to determine time
differences, representing a length of time with TimeSpan objects. These objects represent
time intervals, not time values. Unlike the Date type, TimeSpan is not a .NET base data type.

The TimeSpan data type is quite easy to use. You can subtract one data value from another
to determine the time span between the two dates, or add a time span to a date, or subtract
it from a date (see the following example) to calculate the date after so many months, days
or hours.

Companion Content Open the corresponding solution (.sln) for this example, which you can
find in the \VB 2010 Developer Handbook\Chapter 06\DateTime folder.

Dim locDate1 As Date = #3:15:00 PM#
Dim locDate2 As Date = #4:23:32 PM#
Dim locTimeSpan As TimeSpan = locDate2.Subtract(locDate1)
Console.WriteLine("The time span between {0} and {1} is", _
 locDate1.ToString("HH:mm:ss"), _
 locDate2.ToString("HH:mm:ss"))

 Chapter 6 The Essential .NET Data Types 305

Console.WriteLine("{0} second(n) or", locTimeSpan.TotalSeconds)
Console.WriteLine("{0} minute(n) and {1} second(n) or", _
 Math.Floor(locTimeSpan.TotalMinutes), _
 locTimeSpan.Seconds)
Console.WriteLine("{0} hour(s), {1} minute(s) and {2} second(s) or", _
 Math.Floor(locTimeSpan.TotalHours), _
 locTimeSpan.Minutes, locTimeSpan.Seconds)
Console.WriteLine("{0} Ticks", _
 locTimeSpan.Ticks)

A Library with Useful Functions for Date Manipulation
In the same example, you will find a class file called DateCalcHelper.vb that contains a static
class of the same name. This class provides some useful functions that simplify the calculation
of certain relative points in time, and shows how to perform calculations with date values.

Thanks to the XML comments in the example, the class is self-explanatory. When you develop
you own programs that make intensive use of relative point-in-time calculations, just add this
code file to your project (or the assembly of your project).

The following code shows the function names along with their explanations (in bold):

Public NotInheritable Class DateCalcHelper

 ''' <summary>
 ''' Calculates the date which corresponds to the 1st of the month,
 ''' which results from the specified date.
 ''' </summary>
 ''' <param name="CurrentDate">Date, whose month the calculation is based on.
➥</param>
 ''' <returns></returns>
 ''' <remarks></remarks>
 Public Shared Function FirstDayOfMonth(ByVal CurrentDate As Date) As Date
 Return New Date(CurrentDate.Year, CurrentDate.Month, 1)
 End Function

 ''' <summary>
 ''' Calculates the date which corresponds to the last day of the month,
 ''' which results from the specified date.
 ''' </summary>
 ''' <param name="CurrentDate">Date, whose month the calculation is based on.
➥</param>
 ''' <returns></returns>
 ''' <remarks></remarks>
 Public Shared Function LastDayOfMonth(ByVal CurrentDate As Date) As Date
 Return New Date(CurrentDate.Year, CurrentDate.Month, 1).AddMonths(1).
➥AddDays(-1)
 End Function

306 Part I Beginning with Language and Tools

 ''' <summary>
 ''' Calculates the date which corresponds to the first of the year,
 ''' which results from the specified date.
 ''' </summary>
 ''' <param name="CurrentDate">Date, whose year the calculation is based on.
 ''' </param>
 ''' <returns></returns>
 ''' <remarks></remarks>
 Public Shared Function FirstOfYear(ByVal CurrentDate As Date) As Date
 Return New Date(CurrentDate.Year, 1, 1)
 End Function

 ''' <summary>
 ''' Calculates the date which corresponds to the first Monday of the first week of
 ''' the month, which results from the specified date.
 ''' </summary>
 ''' <param name="CurrentDate">Date, whose week the calculation is based on.
 ''' </param>
 ''' <returns></returns>
 ''' <remarks></remarks>
 Public Shared Function MondayOfFirstWeekOfMonth(ByVal CurrentDate As Date) As Date
 Dim locDate As Date = FirstDayOfMonth(CurrentDate)
 If Weekday(locDate) = DayOfWeek.Monday Then
 Return locDate
 End If
 Return locDate.AddDays(6 - Weekday(CurrentDate))
 End Function

 ''' <summary>
 ''' Calculates the date which corresponds to the Monday of the week,
 ''' which results from the specified date.
 ''' </summary>
 ''' <param name="CurrentDate">Date, whose week the calculation is based on.
 ''' </param>
 ''' <returns></returns>
 ''' <remarks></remarks>
 Public Shared Function MondayOfWeek(ByVal CurrentDate As Date) As Date
 If Weekday(CurrentDate) = DayOfWeek.Monday Then
 Return CurrentDate
 Else
 Return CurrentDate.AddDays(-Weekday(CurrentDate) + 1)
 End If
 End Function

 ''' <summary>
 ''' Calculates the date which corresponds to the first Monday
 ''' of the second week of the month,
 ''' which results from the specified date.
 ''' </summary>
 ''' <param name="CurrentDate">Date, whose week the calculation is based on.
 ''' </param>

 Chapter 6 The Essential .NET Data Types 307

 ''' <returns></returns>
 ''' <remarks></remarks>
 Public Shared Function MondayOfSecondWeekOfMonth(ByVal currentDate As Date) As
➥Date
 Return MondayOfFirstWeekOfMonth(currentDate).AddDays(7)
 End Function

 ''' <summary>
 ''' Calculates the date which corresponds to Monday of the last week of the month,
 ''' which results from the specified date.
 ''' </summary>
 ''' <param name="CurrentDate">Date, whose week the calculation is based on.
 ''' </param>
 ''' <returns></returns>
 ''' <remarks></remarks>
 Public Shared Function MondayOfLastWeekOfMonth(ByVal CurrentDate As Date) As Date
 Dim locDate As Date = FirstDayOfMonth(CurrentDate).AddDays(-1)
 If Weekday(locDate) = DayOfWeek.Monday Then
 Return locDate
 End If
 Return locDate.AddDays(-Weekday(CurrentDate) + 1)
 End Function

 ''' <summary>
 ''' Results in the date of the next work day.
 ''' </summary>
 ''' <param name="CurrentDate">Date the calculation is based on</param>
 ''' <param name="WorkOnSaturdays">True, if Saturday is a work day.</param>
 ''' <param name="WorkOnSundays">True, if Sunday is a work day.</param>
 ''' <returns></returns>
 ''' <remarks></remarks>
 Public Shared Function NextWorkday(ByVal CurrentDate As Date,
 ByVal WorkOnSaturdays As Boolean, _
 ByVal WorkOnSundays As Boolean) As Date
 CurrentDate = CurrentDate.AddDays(1)
 If Weekday(CurrentDate) = DayOfWeek.Saturday And Not WorkOnSaturdays Then
 CurrentDate = CurrentDate.AddDays(1)
 End If
 If Weekday(CurrentDate) = DayOfWeek.Sunday And Not WorkOnSundays Then
 CurrentDate = CurrentDate.AddDays(1)
 End If
 Return CurrentDate
 End Function

 ''' <summary>
 ''' Results in the date of the previous work day.
 ''' </summary>
 ''' <param name="CurrentDate">Date the calculation is based on</param>
 ''' <param name="WorkOnSaturdays">True, if Saturday is a work day.</param>
 ''' <param name="WorkOnSundays">True, if Sunday is a work day.</param>
 ''' <returns></returns>
 ''' <remarks></remarks>

308 Part I Beginning with Language and Tools

 Public Shared Function PreviousWorkday(ByVal CurrentDate As Date,
 ByVal WorkOnSaturdays As Boolean, _
 ByVal WorkOnSundays As Boolean) As Date
 CurrentDate = CurrentDate.AddDays(-1)
 If Weekday(CurrentDate) = DayOfWeek.Sunday And Not WorkOnSundays Then
 CurrentDate = CurrentDate.AddDays(-1)
 End If
 If Weekday(CurrentDate) = DayOfWeek.Saturday And Not WorkOnSaturdays Then
 CurrentDate = CurrentDate.AddDays(-1)
 End If
 Return CurrentDate
 End Function
End Class

Converting Strings to Date Values
Just like the base numeric data types, you can also convert strings that represent date values
into a Date data type. The Date data type provides two functions, Parse and ParseExact, that
analyze a string and build the actual date value from it.

Conversions with Parse
When using Parse, the parser uses every trick in the book to convert a date, a time, or a com-
bination of both into a time value, as shown in the following example:

Dim locToParse As Date
locToParse = Date.Parse("13.12.10") ' OK, basic European setting is processed.
locToParse = Date.Parse("6/7/10") ' OK, but European date is used in spite of "/".
locToParse = Date.Parse("13/12/10") ' OK, as above.
locToParse = Date.Parse("06.07") ' OK, is extended by the year.
locToParse = Date.Parse("06,07,10") ' OK, comma is acceptable.
locToParse = Date.Parse("06,07") ' OK, comma is acceptable; year is added.
'locToParse = Date.Parse("06072010") ' --> Exception: was not recognized as a valid date!
'locToParse = Date.Parse("060705") ' --> Exception: was not recognized as a valid date!
locToParse = Date.Parse("6,7,4") ' OK, comma is acceptable; leading zeros are added.

locToParse = Date.Parse("14:00") ' OK, 24-hour display is acceptable.
locToParse = Date.Parse("PM 11:00") ' OK, PM may be in front of...
locToParse = Date.Parse("11:00 PM") ' ...and behind the time specification.
'locToParse = Date.Parse("12,00 PM") ' --> Exception: was not recognized as a valid date!

'Both date/time combinations work:
locToParse = Date.Parse("6.7.10 13:12")
locToParse = Date.Parse("6,7,10 11:13 PM")

As you can see here, a format entry that is very common in European locales is not recog-
nized: when the individual value groups of the date are written sequentially but without a
separating character. However, there is a solution to this problem as well.

 Chapter 6 The Essential .NET Data Types 309

Note The date 6/7/10 represents a July date, for example, in the Irish locale, and a June date in
the United States locale.

Conversion with ParseExact
If, in spite of all its flexibility, Parse fails to recognize a valid date/time format, you can still set
a recognition pattern for the entry by using the method ParseExact for string conversions.

Note You should also use ParseExact if you don’t want to allow as much flexibility as Parse
permits.

This is especially true when you need to differentiate between time and date values. For a
field in which the users of your program must enter a time, your program knows, for exam-
ple, that the value 23:12 refers to the time 23:12:00, and not to the date 23.12.2000. Parse
wouldn’t work here, because it can’t recognize the context.

Apart from the string to be analyzed, ParseExact requires at least two additional parameters:
a string that contains the specific recognition pattern, and a format provider that provides
further formatting requirements. There are several different format providers that you can
use—but you can access them only after inserting the following line, which imports the
required namespace at the beginning of your module or class file:

Imports System.Globalization

The simplest version that will recognize a time entry as the time of day, if it has been entered
in the above format, it would look like this:

locToParse = Date.ParseExact("12,00", "HH,mm", CultureInfo.CurrentCulture)

The string “HH” specifies that hours are expressed in the 24-hour format. If you use the
lower-case pattern “hh” instead, the parser will recognize only the 12-hour format. Next,
the input contains a comma, which becomes the separator character, and finally the format
specifies that minutes come last, using the string “mm.”

In practice, it’s rare that users follow specific requirements; therefore, your program should
ideally recognize several different versions of time entries. With the ParseExact function,
you can specify a range of possible formats for the parser to perform the conversion. All
you need to do is define a String array containing the permitted formats, and then pass it to
the ParseExact method along with the string to be parsed. If you decide to use this method,
however, you also need to specify a parameter that regulates the parsing flexibility (for
example, if the input strings that will be analyzed are allowed to contain whitespace, which
then will be ignored). The entry is regulated by a parameter of the type DateTimeStyles which
allows the settings listed in Table 6-5.

310 Part I Beginning with Language and Tools

TABLE 6-5 The Extended Settings That Can Be used with Parse
Member name Description Value
AdjustToUniversal Date and time must be converted to Universal Time or

Greenwich Mean Time (GMT)
16

AllowInnerWhite Additional whitespaces within the string are ignored during
parsing, unless the DateTimeFormatInfo format patterns contain
spaces

4

AllowLeadingWhite Leading whitespaces are ignored during parsing, unless the
DateTimeFormatInfo format patterns contain spaces

1

AllowTrailingWhite Trailing whitespaces are ignored during parsing, unless the
DateTimeFormatInfo format patterns contain spaces

2

AllowWhiteSpaces Additional whitespaces, which are located at any position
within the string, are ignored during parsing, unless the
DateTimeFormatInfo format patterns contain spaces. This
value is equivalent to the combination of AllowLeadingWhite,
AllowTrailingWhite, and AllowInnerWhite

7

NoCurrentDateDefault Date and time are inseparately combined in the Date data
type. Even if only a time is assigned, the Date value will always
show a valid date. This setting specifies that the DateTime.
Parse method and the DateTime.ParseExact method use a date
according to the Gregorian calendar with year = 1, month = 1,
and day = 1, when the string only contains the time, but not the
date. If this value isn’t specified, the current date is used.

8

None Specifies that the default formatting options must be used; for
instance, the default format for DateTime.Parse, and DateTime.
ParseExact.

0

The following lines of code show how to use ParseExact to convert strings into date values
with specific requirements for date formats:

Imports System.Globalization

Module Module1

 Sub Main()

 Dim locToParseExact As Date
 Dim locTimePattern As String() = {"H,m", "H.m", "ddMMyy", "MM\/dd\/yy"}

 'Works: it's in the time pattern.
 locToParseExact = Date.ParseExact("12,00", _
 locTimePattern, _
 CultureInfo.CurrentCulture, _
 DateTimeStyles.AllowWhiteSpaces)

 Chapter 6 The Essential .NET Data Types 311

 'Works: it's in the time pattern, and whitespaces are permitted.
 locToParseExact = Date.ParseExact(" 12 , 00 ", _
 locTimePattern, _
 CultureInfo.CurrentCulture, _
 DateTimeStyles.AllowWhiteSpaces)

 'Doesn't work: it's in the time pattern, but whitespaces are not permitted.
 'locToParseExact = Date.ParseExact(" 12 , 00 ", _
 ' locTimePattern, _
 ' CultureInfo.CurrentCulture, _
 ' DateTimeStyles.None)

 'Works: it's in the time pattern.
 locToParseExact = Date.ParseExact("1,2", _
 locTimePattern, _
 CultureInfo.CurrentCulture, _
 DateTimeStyles.None)
 'Works: it's in the time pattern.
 'But the date corresponds to 1.1.0001 and is therefore
 'not displayed as a Tooltip, contrary to all the other
 'examples shown here.
 locToParseExact = Date.ParseExact("12.2", _
 locTimePattern, _
 CultureInfo.CurrentCulture, _
 DateTimeStyles.NoCurrentDateDefault)

 'Works: it's not in the time pattern, because seconds are used
 'locToParseExact = Date.ParseExact("12,2,00", _
 ' locTimePattern, _
 ' CultureInfo.CurrentCulture, _
 ' DateTimeStyles.NoCurrentDateDefault)

 'Doesn't work: the colon is not in the time pattern.
 'locToParseExact = Date.ParseExact("1:20", _
 ' locTimePattern, _
 ' CultureInfo.CurrentCulture, _
 ' DateTimeStyles.None)

 'Now it works, because it's used as date in the time pattern.
 '(third element in the string array)
 locToParseExact = Date.ParseExact("241205", _
 locTimePattern, _
 CultureInfo.CurrentCulture, _
 DateTimeStyles.AllowWhiteSpaces)

 'Works: US format is used,
 'as defined by the slashes and the group order.
 '(fourth element in the string array).
 locToParseExact = Date.ParseExact("12/24/05", _
 locTimePattern, _
 CultureInfo.CurrentCulture, _
 DateTimeStyles.AllowWhiteSpaces)
 End Sub

End Module

312 Part I Beginning with Language and Tools

When you define slashes as group separators, remember to always put a backslash in front so
the separators aren’t processed as control characters.

.NET Equivalents of Base Data Types
There is a .NET equivalent for each base data type in Visual Basic, as shown in Table 6-6.

TABLE 6-6 The Base Visual Basic Data Types and Their .NET Equivalents
Base data type in Visual Basic .NET data type equivalent
Byte System.Byte

SByte System.SByte

Short System.Int16

UShort System.UInt16

Integer System.Int32

UInteger System.UInt32

Long System.Int64

ULong System.UInt64

Single System.Single

Double System.Double

Decimal System.Decimal

Boolean System.Boolean

Date System.DateTime

Char System.Char

String System.String

Table 6-6 illustrates that it doesn’t matter at all whether you declare a 32-bit integer with

Dim loc32BitInteger as Integer

or with

Dim loc32BitInteger as System.Int32

The object variable loc32BitInteger ends up with the exact same type in both cases. Take a
look at the IML-generated code that follows:

Public Shared Sub main()

 Dim locDate As Date = #12/14/2003#
 Dim locDate2 As DateTime = #12/14/2003 12:13:22 PM#
 If locDate > locDate2 Then
 Console.WriteLine("locDate is larger than locDate2")

 Chapter 6 The Essential .NET Data Types 313

 Else
 Console.WriteLine("locDate2 is larger than locDate")
 End If

The generated lines of code verify that this is true:

.method public static void main() cil managed
{
 // Code size 75 (0x4b)
 .maxstack 2
 .locals init ([0] valuetype [mscorlib]System.DateTime locDate,
 [1] valuetype [mscorlib]System.DateTime locDate2,
 [2] bool VBCGt_bool$S0)
 IL_0000: nop
 IL_0001: ldc.i8 0x8c58fec59f98000
 IL_000a: newobj instance void [mscorlib]System.DateTime::.ctor(int64)
 IL_000f: nop
 IL_0010: stloc.0
 IL_0011: ldc.i8 0x8c59052cd35dd00
 IL_001a: newobj instance void [mscorlib]System.DateTime::.ctor(int64)
 IL_001f: nop
 IL_0020: stloc.1
 IL_0021: ldloc.0
 IL_0022: ldloc.1
.
.
.

As the code highlighted in bold shows, both local variables have been declared as System.
DateTime type. Notice also that Date variables are represented internally as Long values).

The GUID Data Type
GUID is the abbreviation for Globally Unique Identifier. The term “Global” refers to the fact
that even though two GUID generators aren’t aware of each other’s existence and are spa-
tially separated from each other, they are highly unlikely to produce two identical identifiers.

GUIDs are 16-byte (128-bit) values, usually represented in the format {XXXXXXXX-XXXX-
XXXX-XXXX-XXXXXXXXXXXX}, where each “X”represents a hexadecimal number between 0
and F.

In .NET, the name of the data type (GUID) corresponds to its abbreviation.

314 Part I Beginning with Language and Tools

Note Don’t use the GUID constructor to create a new GUID. Because a GUID is a value type, do-
ing so wouldn’t make any sense anyway. If you use the default constructor (the constructor with
no parameters) with a value type, the value type is created on the Managed Heap but is then
immediately discarded. Instead, use the static function NewGuid to create a new GUID, as shown
in the following example:

 Dim t As Guid
 t = Guid.NewGuid

GUIDs are generally used as primary keys in databases, because it is extremely improbable
that two computer systems generate identical GUIDs. Database tables with foreign key iden-
tifiers based on GUIDs are particularly useful for synchronizing databases that cannot be
constantly connected for technical reasons.

The Guid data type has a constructor with parameters that let you recreate an existing GUID
via a string. Using it this way makes sense, for example, when a component (class, structure)
that you have developed must always return the same unique identifier.

The following automatically implemented property of a class could therefore implement a
UniqueID property:

Public Class AClass

 'The property always returns the same GUID:
 Property UniqueID As Guid = New Guid("{46826D55-6FDD-44FA-BADE-515E04770816}")
End Class

You can read more about classes and properties in Part II, “Object-Oriented Programming.”

Tip When you want only a new GUID string, you don’t need to write an application that uses
NewGuid to create one. Instead, you can use a feature already in Visual Studio. On the Tools
menu, click Create GUID. The Create GUID dialog box appears. In the dialog box, select Registry
Format, and then click Copy (see Figure 6-2). Go back to the Code Editor and paste the clipboard
content as a parameter for the Guid constructor, as shown in the preceding example.

 Chapter 6 The Essential .NET Data Types 315

FIguRE 6-2 Using the Create GUID dialog box in the Visual Studio IDE, you
can easily create a GUID constant.

Constants and Read-Only Fields (Read-Only Members)
Apart from the variable types discussed in this chapter, there are two value storage types in
Visual Basic, which at first glance seem rather similar, constants and read-only fields. These
two value storage types are defined only once during your program’s lifetime, but they
behave very differently under certain circumstances—and their contents are saved in com-
pletely different manners.

Before discussing the differences, let’s examine what they have in common. Read-only fields
and constants are used in similar contexts: namely, when a value must be used at differ-
ent places within a program. For example, you would probably use a constant to return the
name of your program or the expiration date of a demo version. When queried at different
places within your program the constant must always have the same value. To avoid having
to change the value in the source code in many different places (should you need to make
any changes later on) you define this value as a constant or read-only field centrally, and
then substitute the field or constant name for the value where you would use the value in the
code.

Of course, you need to ensure that this value cannot be overwritten. Therefore, neither con-
stants nor read-only fields can be changed.

316 Part I Beginning with Language and Tools

Constants
You define constants with the Const keyword at the module level. Module level means that
you can define a constant in a class, in a module, or in a structure. The syntax for defining a
constant is just like a variable, but you need to add the keyword Const, as shown in the fol-
lowing example:

Public Const APPLICATIONNAME As String = "Type demo"

Or:

Private Const EXPIRATIONDATE as Date=#12/31/2010#

You can also define other constants this way—you just need to specify the appropriate type
with the As clause and a value.

But watch out!

You can only define actual constants as constants. Even if, for example, the return value of a
method, such as Date.MaxValue actually has the characteristics of a constant, you can’t assign
it to a constant. For example, the following statement will cause an error:

Private Const EXPIRATIONDATE as Date=Date.MaxValue

In this case, you should use a read-only field, as explained in the following section.

There’s another important issue—the use of public constants across several assemblies.

Important You might think that a constant could therefore be “misused” as a field variable,
which is read-only. However, that can backfire, when public constants are accessed in other as-
semblies.

When you give a constant a value, a concrete value is never created and saved at runtime.
Therefore, constants don’t need any memory space at runtime—neither on the Managed Heap,
nor on the stack, nor within any processor registers. Instead, the actual value is hidden in the
metafiles of the assembly in which the constant is defined. Unfortunately, that can lead to prob-
lems if different versions are used.

Because they are saved only in the metadata of the assembly, constants can be evaluated only
at compilation time, not at design time. Therefore, for example, if you define a public constant
in assembly A and access it from assembly B, you basically only need assembly A during the cre-
ation of assembly B. To put it simply, this is because the compiler only looks in assembly A, while
it is creating assembly B, and transfers the values of the constants to assembly B where necessary.
If assembly A is exclusively used to call constants, you could dispose of it afterward. And that’s
the problem. Because assembly A isn’t actually accessed at runtime but only at compilation time,
it’s not enough to exchange assembly A, if the value of the constant defined there changes. Since
assembly B accessed assembly A only at compilation time, it is not affected by the change.

For this reason you need to be careful with public constants and always recreate an application
with all connected assemblies when a scenario such as the one described above takes place. To
avoid this kind of behavior from the start, an alternative is to use read-only properties. The topic
of properties is discussed in detail in Chapter 9, “First Class Programming.”

 Chapter 6 The Essential .NET Data Types 317

Read-Only Fields
Read-only fields can also define constant values. These are also defined exclusively at module
level (class, structure, module), and differ from a typical variable declaration by the keyword
ReadOnly:

Private ReadOnly THEDATE As Date=#07/24/1969#
Friend ReadOnly MAXDATE As Date=Date.MaxValue

Or:

Public ReadOnly PERMITTED_CITIES As New List(Of String) From {"Lippstadt", "Las Vegas",
 "Kempen", "Los Angeles"}

These examples show that unlike regular constants, read-only fields are executable
statements.

Important An assignment to a read-only field might occur only in the constructor of the class,
the structure, or the module, as you can see in the following code segment.

Therefore, the following construction is permitted:

Public Class Test
 Friend ReadOnly MAXDATE As Date
 Public ReadOnly PERMITTED_CITIES As List(Of String)

 Sub New()
 'Permitted only once!
 MAXDATE = Date.MaxValue
 PERMITTED_CITIES = New List(Of String) From {"Lippstadt", "Las Vegas",
➥"Kempen", "Los Angeles"}
 End Sub
.
.
.

If you attempt to assign or re-assign a value to a read-only field from within a method, as
in the following code segment, Visual Basic generates a design-time warning. The following
code will cause the error “A read-only variable cannot be the target of an assignment.”

 Sub NewMethod()
 MAXDATE = Date.MaxValue
 PERMITTED_CITIES = New List(Of String) From {"Munich", "Paris", "London", "Seattle"}

318 Part I Beginning with Language and Tools

Important With objects that can be defined as read-only fields, as we have seen in the code
sample, the definition as ReadOnly only prohibits a completely new assignment. However, since
in this case the variable is a pointer to an object, nothing stands in the way of manipulating the
object content. Therefore, the following code is valid—although whether it’s practical is a differ-
ent question:

 'But this works:
 PERMITTED_CITIES.Clear()
 PERMITTED_CITIES.AddRange(New List(Of String) From {"Munich", "Paris",
 "London", "Seattle"})
 End Sub

End Class

 961

Index

interfaces and, 436–441
MustInherit keyword, 427
MustOverride keyword, 427–429
virtual procedures and, 426–429

accelerator keys
defined, 149
specifying, 149–151

AcceptButton property
(controls), 151

access modifiers
about, 348, 376
classes and, 376
constructors, 364
procedures and, 377
property accessors and, 378–380
specifying variable

scope, 376–380
variables and, 378

Action delegate, 683
Action(Of T) generic

delegate, 609–611
AddAfter method (LinkedList(Of

Type) class), 689
AddBefore method (LinkedList(Of

Type) class), 689
AddFirst method (LinkedList(Of

Type) class), 689
AddHandler method

(EventHandlerList class), 536,
561–569, 570

Add-Ins Refactor tool, 175
addition (+) operator, 523–524, 532
addition (+=) operator, 54
AddLast method (LinkedList(Of

Type) class), 689
Add method

ArrayList class, 650–652, 652
Collection class, 565
Collection(Of Type) class, 656
ComboBox controls, 236
Decimal structure, 281
Hashtable class, 659
IList interface, 657–659
MeshGeometry3D class, 218
XML literals and, 826

Add New Item dialog box
about, 83
Generate New Type dialog box

and, 118
managing templates, 83–84
multitargeting and, 89

Add New Reference dialog box, 89

Add Random Addresses command
(File menu), 712

AddRange method (ArrayList
class), 652

Add Reference dialog box
about, 97
ImageResizer example, 245
selecting assemblies, 69

AddressOf operator, 551, 557
Add Service Reference dialog

box, 89
ADO.NET Entity Client Data

Provider, 859
ADO.NET Entity Data Model.

See EDM
ADO.NET Entity Framework.

See Entity Framework
AdventureWorks sample database

Database Selection dialog
box, 844

first practical example, 848–856
Full-Text Search option, 838
installing, 843–846
license terms dialog box, 844
querying entity models, 856–869

Aero design, 775
Aggregate clause (LINQ), 798, 820
aggregate functions, 820–822
alarm clock example

about, 536
consuming events, 537–539
delegates and, 547–556
embedding events

dynamically, 561–569
event parameters, 542–547
implementing event

handlers, 569–574
lambda expressions, 556–561
raising events, 539–542

Algol programming language, 13
alias names, 817
Alt key, 158
Alt+F6 keyboard shortcut, 100
Alt+< keyboard shortcut, 117, 402
Alt+> keyboard shortcut, 117, 402
ampersand (&), 149
Anchor property (controls), 133,

134–135, 140–141
AndAlso keyword, 41–42
AND logical operator, 38, 82, 533,

581

Symbols
+ (addition) operator, 523–524, 532
+= (addition) operator, 54
& (ampersand), 149
<> (angle brackets)

attribute marking, 722
non-equivalency operator, 532
XML document elements, 824

‘ (apostrophe), 169
* (asterisk), 227
<< bit shift operator, 55–56, 532
>> bit shift operator, 55–56, 532
& (composition) operator, 532
&= (concatenation) operator, 54
{} (curly braces), 619
/ (division) operator, 523–524, 532
/= (division) operator, 54
\ (division) operator, 532
= (equal sign)

assignment operator, 37
comparison operator, 36, 37
equals operator, 337, 532

> (greater than) operator, 532
>= (greater than or equal to)

operator, 532
< (less than) operator, 532
<= (less than or equal to)

operator, 532
* (multiplication) operator, 523–524
*= (multiplication) operator, 54
^ (power) operator, 532
^= (power) operator, 54
[] (square brackets), 85
- (subtraction) operator, 523–524,

532
-= (subtraction) operator, 54
_ (underscore)

attributes and, 722
field variables and, 349
line continuation and, 163

A
abbreviation operators, 54
Absolute size type, 137
absolute value, defined, 665
abstract classes

declaring methods, 427–429
declaring properties, 427–429
deriving from, 25–26
Editor support for, 436–441

962 angle brackets (<>)

CLS compliance, 263
constants and, 316
defined, 66
embedding in code files and

projects, 67–70
Framework Class Library

and, 71–74
methods and, 68
namespaces and, 66–70
satellite, 763

assembly language, 547
Assembly property (Type class), 728
AssemblyQualifiedName property

(Type class), 728
assignment operator

array initializers and, 629
equal sign and, 37

assignments
defined, 317
read-only fields and, 317

Assignment tool (Toolbox), 881
As Structure keyword, 598
asterisk (*), 227
attached properties, 216
Attach To Process command (Debug

menu), 548
Attribute class

definition, 734
GetCustomAttributes meth-

od, 738, 739
GetProperties method, 738
GetType method, 738
restricting, 734

attribute classes, 722, 734
attributes

about, 721, 722
creating custom, 734–737
determining at runtime, 738–740
ObsoleteAttribute class, 723
<> symbol, 722
usage examples, 721
Visual Basic-specific, 724
XML documents and, 823

Attributes property (Type
class), 728, 739

AttributeTargets enumeration, 734
AttributeUsageAttribute class, 724,

734
autoimplemented properties, 346,

349, 350, 390
AutoScroll property (controls), 144,

145
AutoSize property (controls), 144

Reverse method, 634
Sort method, 633–634, 635–640,

640, 683–684
array initializers

assignment operator and, 629
local type inference and, 629–631

ArrayList class
about, 623, 648–649, 652,

652–655
Add method, 650–652, 652
AddRange method, 652
Clear method, 652
Count property, 652
Equals method, 652
IEnumerable interface and, 653
RemoveAt method, 652
Remove method, 652
RemoveRange method, 652
ToArray method, 653

arrays
about, 34–35, 624
collections as, 645
creating, 624
defining, 35, 626
determining number of

elements, 633
dimensioning, 35, 626–628
enumerator support, 642
implementing custom

classes, 635–640
initializing, 625–642
jagged, 629, 631–632
lambda expressions, 640–642
memory considerations, 490,

625, 628
multidimensional, 629, 631–632
as parameters, 630
performance considerations, 647
pre-allocating element

values, 629
re-dimensioning, 626–628
reversing element order, 634
searching, 635
sorting, 633–634

array variables
about, 628
local type inference and, 630

Arrow keys, 158
Asc function, 282
ASCII codes, 286, 287
AscW function, 282
AsParallel method (LINQ que-

ries), 808–810, 903
assemblies

base assembly, 71
Base Class Library and, 71–74
CLI and, 71
CLR and, 71

angle brackets (<>)
attribute marking, 722
non-equivalency operator, 532
XML document elements, 824

Angle property (RotateTransform
class), 216

anonymous methods, 557
anonymous types, 791
API (Application Programming

Interface), 194
apostrophe (‘), 169
app.config file, 95, 850
AppDomains, 492, 496
Append method (StringBuilder

class), 298
Application class

DoEvents method, 902
MainWindow property, 220
Run method, 206, 207

application domains, 492, 496
ApplicationEvents.vb file, 752, 776
ApplicationException, 180
Application Framework

about, 773–774
configuring options, 774–776
DotNetCopy tool and, 752
enabling, 773–774
event handling and, 752
NetworkAvailabilityChanged

event, 778
Shutdown event, 777
Startup event, 777
StartupNextInstance event, 778
UnhandledException event, 778

Application Programming Interface
(API), 194

Architecture Explorer
class diagrams, 113–114
Generate Sequence Diagram, 112
launching, 112
sequence diagrams, 112–113
View Class Diagram, 113

arguments. See also parameters
Boolean data types and, 24
command-line, 756–758
defined, 15
methods without return values, 16
passing to properties, 350–351

Array class
about, 339, 623
BinarySearch method, 464, 635,

635–640
Copy method, 415
ForEach method, 641
IEnumerable interface and, 642
lambda expressions and, 640–642
Length property, 633

 CheckState property (CheckBox) 963

C# programming language
array definitions, 630
casting operator, 278
class procedures and, 433
precursor to, 14

calculation operators, 523–524
Calla, Sarika, 798
Cambridge University, 14
CancelButton property

(controls), 151
CancellationTokenSource class, 943
CancellationToken structure

about, 942–947
IsCancellationRequested

property, 943
ThrowIfCancellationRequested

method, 943
Caption property

(controls), 149–151
carriage return character, 286
Carroll, Lewis, 228
cascading

deletes, 874
queries, 807

case sensitivity, search
functionality, 107

Case statement, 42–44
casting

C# support, 278
reference types, 479–481

CByte function, 264
CDbl function, 269
CDec function, 270
CenterX property (RotateTransform

class), 216
CenterY property (RotateTransform

class), 216
Char data type

about, 19, 281
Asc function, 282
AscW function, 282
Chr function, 282
ChrW function, 282
converting, 282
.NET equivalent, 312
type declaration character, 259
type literals and, 28, 259
type safety and, 30–31

Chars property (String class), 296
CheckBox controls

Checked property, 604
CheckState property, 604
Nullable types and, 602
ThreeState property, 604–605

Checked property (CheckBox), 604
CheckState property

(CheckBox), 604

default value, 17
logical operators and, 39
.NET equivalent, 312
type declaration character, 259
type literals and, 28, 259

Boolean expressions
about, 23
If ... Then ... Else structure and, 36
Nullable data types and, 604

BorderStyle property (con-
trols), 141, 145

boxing
defined, 473
interface-boxed value

types, 486–488
Nullable value types

and, 605–607
object variables, 473
ToString function and, 486
usage considerations, 485–486
value types, 473, 481–486

breakpoints
inserting, 9
setting, 63, 260, 547

Bucket structures, 673
Button controls

AcceptButton property, 151
adjusting spaces between, 131
aligning, 131
CancelButton property, 151
Click event, 244, 250
Content property, 210, 233
Enabled property, 345
FontSize property, 210
Foreground property, 210
Height property, 215
RenderTransform property, 216
setting up on forms, 151
Text property, 149–151
Width property, 208, 215

ByRef keyword, 465, 466
Byte data type

about, 18, 264, 271
enumeration elements as, 578
.NET equivalent, 312
type declaration character, 259
type literals and, 28, 259

ByVal keyword, 466

C
C programming language, 14
C++ programming language

inheritance and, 429
inventor of, 442
precursor to, 14

B
B programming language, 14–15
background compiler feature, 164
Backing Field, 349
backslash, 312
backup tool. See DotNetCopy tool
Backus, John, 13
base-2 system, 460
base-8 system, 460
base-10 system, 460, 462
base-16 system, 460
base-32 system, 460
base assembly, 71
Base Class Library. See BCL
BaseType property (Type class), 728
Basic command (Text Editor menu)

VB Specific option, 110
BASIC programming language, 3–4
BCL (Base Class Library)

about, 71–72
CLI support, 72
CLR support, 71
CTS support, 72
Just-in-Time compiler and, 73
MSIL and, 73
multitargeting and, 96
processing data types, 262

BCPL programming language, 14
BeginInvoke method

controls, 914
delegate variables, 907
Dispatcher class, 914

Bell Laboratories, 14
BinaryFormatter class

about, 697
BinarySerializer class

and, 699–700
serializing objects of different

versions, 711
BinarySearch method (Array

class), 464, 635, 635–640
BinarySerializer class, 699–700,

706–708
binding

about, 354
events to controls, 242
multiple interfaces, 442–443
properties and, 354
settings values, 186–187

BindingsFlag enumeration, 731
bit shift operators, 55–56, 532
Boolean data type

about, 19, 302
in arguments, 24
comparison operators and, 526
converting, 302, 303

964 Choose Default Environment Settings dialog box

adding code files to
projects, 172–174

automatic code indentation, 163
automatic keyword

completion, 163
code snippets library, 178–182
error detection in, 164–168
IntelliSense feature, 160–163,

168–172, 174
saving application

settings, 182–190
setting display to correct

size, 159–160
Settings Designer

window, 182–190
Smart Tags in, 167
XML documentation

comments, 168–172
code files

adding to projects, 172–174
distributing class code over, 384
embedding assemblies, 67–70
embedding namespaces, 67–70
handling application

events, 776–780
importing namespaces, 69

CodePlex website, 172
code snippets, 178–182, 355
CollectionBase class

List property, 657, 659
type safety and, 655–659

Collection class
about, 562, 565
Add method, 565
ClearItems method, 565
InsertItem method, 565
Insert method, 565
RemoveItem method, 565

collection initializers, 619, 650–652
Collection(Of Type) class

about, 679
Add method, 656
Item property, 656
usage recommendations, 655
value types and, 649

collections. See also specific
collections

about, 645–649
ArrayList class and, 652–655
as arrays, 645
combining multiple, 812–816
custom classes as keys, 669–673
DictionaryBase class and, 673
enumerator support, 642
FIFO principle, 674–675
generic, 649, 655, 678–691
generics building, 649
grouping, 816–819

Singleton classes, 364, 455–458
as templates, 26
triggering events, 535, 539–542
usage considerations, 338–339
using as array elements, 635–640
value types and, 340–342
XML documentation

comments, 168–172
Class keyword, 418
ClearItems method (Collection

class), 565
Clear method (ArrayList class), 652
Click event

binding events to controls, 242,
244

image resizing and, 250
multiple controls and, 480
sender parameter and, 544

Click event handler, 694
CLI (Common Language

Infrastructure)
about, 71
BCL and, 72

client profiles
about, 93–94
defined, 93
projects and, 94

CLng function, 268, 302
clock frequency approach, 322
cloning behavior, 342
CLR (Common Language Runtime)

about, 71
AppDomains, 492, 496
BCL support, 71
boxing and, 485
circular references and, 710
execution engine, 71
garbage collection and, 71, 496
multitargeting and, 87–89
Nullable types and, 601
primitive data types and, 18
reference types and, 341
value types and, 341, 468

CLS (Common Language
Specification), 263

CLSCompliant attribute, 263
Cobol programming language, 13
code. See programming and

development
code blocks

about, 52–53
automatic code indentation, 163
collapsing, 110
context menus, 111
expanding, 110
navigating between, 107

Code Editor
about, 159
accessing, 160

Choose Default Environment
Settings dialog box

accessing, 5
General Development Settings, 5,

77
Migrate My Eligible Settings

option, 77
Visual Basic Development

Settings, 5, 77
Chr function, 282
ChrW function, 282
CIL (Common Intermediate

Language), 73, 362
CInt function

about, 30, 278, 474
Integer data type and, 266, 302

circular references, 492, 708–711
class constructors. See constructors
class diagrams, 113–114
classes. See also interfaces;

polymorphism
about, 323, 327–330, 343
abstract, 426–429, 436–441
access modifiers and, 376
adjusting names, 177–178
built-in members of Object

type, 443–448
CLSCompliant attribute, 263
constraining generics to

specific, 590–594
constraining to default

constructors, 597–598
creating, 328
as data types, 338
delegating, 388
displaying members, 391, 392
enumerator support, 642
inheritance and, 387–399
initializing fields for, 398–399
instantiating, 330–332
local type inference and, 32
managing internally, 393
member shadowing, 449–454
modules and, 15, 455
namespaces and, 67
Nothing value, 336–338
objects and reference

types, 332–336
OOP considerations, 323–326
overloading methods and, 367
overriding methods, 399–403
overriding properties, 399–403
partial code for methods, 384
partial code for properties, 384
preparing for operator

procedures, 519–523
references types and, 340
self-instantiating, 455–458

 ControlPaint class 965

Mini Address Book
example, 324–326

My functionality feature
availability, 754–755

speed considerations, 9
starting, 8–10

Console class
ReadLine method, 654
WriteLine method, 15, 372

constants
about, 257
assemblies and, 316
defining, 316
Overflow error message and, 270
read-only fields and, 315
type literals and, 27–28
type safety and, 30

Const keyword, 316
constraining generics

to classes with default
constructors, 597–598

combining constraints, 598–599
to specific base classes, 590–594
to specific interfaces, 594–597
to value types, 598, 602

constructors
about, 343, 356–358
access modifiers, 364
creating, 357
.ctor method, 364
default, 397, 399, 597–598
overloading, 361, 366–375
parameterized, 358–365
value types and, 466–468

Container class, 26
ContainerControl control, 128
containers

automatically scrolling controls
in, 143–145

controls as, 139, 140, 222
inheritance and, 388–389

Content property (controls), 210,
222, 233

context menus
adding toolbars, 10
code blocks, 111
diagrams, 112
EDM Designer, 878
Layout toolbar, 131
projects, 80
Properties option, 32

Continue statement, 51
ContinueWith method (Task

class), 908
Control control type, 128
ControlDesigner component, 129
ControlPaint class, 199

Is Nothing operator, 337
returning Boolean results, 39–40,

526
compiled queries, 868–869
CompiledQuery class, 869
compilers

background compiler feature, 164
configuration management

settings, 189
intermediary code, 66
Just-in-Time, 71, 73, 209, 362, 587
multitargeting and, 89, 95
.NET, 66
rounding issues, 278
Visual Basic, 4

complex expressions, 22
composition (&) operator, 532
concatenating

LINQ queries, 805–807
strings, 54

concatenation (&=) operator, 54
conceptual data model

about, 847
connection settings, 883
editing contents of, 856
EDM support, 833
entity connection string and, 850
eSQL and, 859
file extension for, 847
inheritance feature, 886–889
mapping considerations, 851

conceptual layer, 834
Conceptual Schema Definition

Language (CSDL), 847, 856
concurrency checks, 876–878
conditional logic. See also For Each

loops
AndAlso keyword, 41–42
Boolean expressions and, 24
comparison operators returning

Boolean results, 39–40
exit conditions, 16, 44
If operator, 43–44
If ... Then ... Else ... ElseIf ... End If

structure, 36–37
IIf function, 43–44
logical operators, 37–39
loops and, 44–51
OrElse keyword, 41–42
Select ... Case ... End Select

structure, 42–44
Short Circuit Evaluation, 41–42

configuration management, 189
Connection Manager, 884
console applications

defined, 6
designing, 6–8
Main method, 12–15

hashtables and, 659, 659–669,
673

homogenous, 655
initializing, 650–652
lambda expressions and, 793
LIFO principle, 675–676
LINQ support, 787
memory considerations, 645
non-homogenous, 655
performance considerations, 647
Queue class, 674–675
Select method and, 790
SortedList class, 676–678
Stack class, 675–676
type-safe, 655–659
value types in, 649

Collect method (GC class), 496
Column property (controls), 142
columns

creating for controls, 136–138
defining for arranging

controls, 225–237
spanning in controls, 142–143

ColumnSpan property (con-
trols), 142, 232, 239

Combined Program Language
(CPL), 13–14

ComboBox controls, 236
COMClassAttribute class, 724
COM (Common Object Model), 491,

496
CommandLineArgs property (My.

Application object), 756–758
command-line arguments

defined, 757
reading, 756–758

commenting code, 169
Common Dialogs, 775
Common Intermediate Language

(CIL), 73, 362
Common Language Infrastructure

(CLI)
about, 71
BCL support, 72

Common Language Runtime.
See CLR

Common Language Specification
(CLS), 263

Common Object Model (COM), 491,
496

Common Type System. See CTS
Comparer class, 683–684
CompareTo method (IComparable

interface), 594, 639
comparison operators

equal sign and, 36, 37
implementing, 526
Is keyword and, 42

966 controls

Count property
ArrayList class, 652
LINQ query example, 803, 805,

806
synchronizing threads

example, 947
CPL (Combined Program

Language), 13–14
Created At field, 696
CREATE FUNCTION statement

(SQL), 891
Create GUID dialog box, 314
CREATE PROCEDURE statement

(SQL), 891
Create Schema command (XML

menu), 830
CreateWindow function, 357
CreationDate property (field

variables), 357
CSByte function, 265
CSDL (Conceptual Schema

Definition Language), 847, 856
.CSDL file extension, 847
CShort function, 265
CSng function, 269
.ctor method, 364
Ctrl keyboard shortcut, 159
Ctrl+A keyboard shortcut, 173
Ctrl+Alt+H keyboard shortcut, 940
Ctrl+Alt+O keyboard shortcut, 494,

506
Ctrl+Alt+Pause keyboard

shortcut, 940
Ctrl+Alt+Space keyboard

shortcut, 114
Ctrl+arrow keyboard shortcut, 158
Ctrl+ C keyboard shortcut, 173
Ctrl+Comma keyboard

shortcut, 106
Ctrl+Down Arrow keyboard

shortcut, 107
Ctrl+E keyboard shortcut, 82
Ctrl+F5 keyboard shortcut, 9, 189,

190, 548
Ctrl+H keyboard shortcut, 111
Ctrl+L keyboard shortcut, 111
Ctrl+M keyboard shortcut, 111
Ctrl+N keyboard shortcut, 81
Ctrl+O keyboard shortcut, 111
Ctrl+Period keyboard shortcut, 117
Ctrl+P keyboard shortcut, 111
Ctrl+Shift+arrow keyboard

shortcut, 158
Ctrl+Space keyboard shortcut, 163,

171
Ctrl+Tab keyboard shortcut, 184
Ctrl+U keyboard shortcut, 111

RowSpan property, 142, 239
Scrollbars property, 141
selecting, 141
selecting multiple, 130–132
selecting within Properties

window, 146
selecting without mouse, 146
SizeMode property, 144, 145
Size property, 143
Smart Tags on, 132
spanning rows or

columns, 142–143
specifying reference

control, 130–132
TabIndex property, 148
tab order, 146–148
TextAlign property, 141
Text property, 149–151, 154
VerticalContentAlignment

property, 234
Width property, 208, 215
WPF supported, 222

convenience methods, 373
conversions. See also type conver-

sion operators
Boolean data types, 302, 303
catching type failures, 478
Char data types, 282
Date data types, 308–312
enumerations to other

types, 578–580
numeric data types, 264–270,

302, 417
potential errors, 86
primitive data types, 474–475
String data types, 275–277, 303,

308–312, 417, 460, 476–478
type safety and, 30

Convert class
converting primitive types, 475
ToByte method, 264
ToDecimal method, 270
ToDouble method, 269
ToInt16 method, 265
ToInt32 method, 266, 275, 282,

302
ToInt64 method, 268, 302
ToSByte method, 265
ToSingle method, 269
ToString method, 459
ToUInt16 method, 266
ToUInt32 method, 267
ToUInt64 method, 268

CopyFile method (My.Computer.
FileSystem object), 753, 767

Copy method (Array class), 415
CopyTo method (FileInfo class), 767
counterVariable (For statement), 45

controls
AcceptButton property, 151
accessing from non-UI

threads, 909–914
adjusting proportionately, 136
adjusting size, 130
Anchor property, 133, 134–135,

140–141
arranging in cells, 139–140
assigning properties to

multiple, 134
automatically scrolling in

containers, 143–145
AutoScroll property, 144, 145
AutoSize property, 144
BeginInvoke method, 914
binding events to, 242
binding settings values, 186–187
BorderStyle property, 141, 145
CancelButton property, 151
Caption property, 149–151
Column property, 142
ColumnSpan property, 142, 232,

239
as containers, 139, 140, 222
Content property, 210, 222, 233
creating columns and rows

for, 136–138
defining columns and

rows, 225–237
Description property, 246
Dock property, 133
dynamically arranging at

runtime, 133–143
Enabled property, 345
FontSize property, 210
Foreground property, 210
functions for control

layout, 155–158
Height property, 215
HorizontalContentAlignment

property, 234
Invoke method, 914
keyboard shortcuts, 158
Location property, 142–143, 145
Margin property, 128, 232, 235,

239
Multiline property, 141
Name property, 149–151, 154
naming conventions, 146, 154,

155
nesting, 145, 222, 237
Nullable value types and, 602
Padding property, 128
positioning, 128–132, 158
property extenders, 142
RenderTransform property, 216
Row property, 142

 deleting data from tables 967

inserting breakpoints, 9
performance considerations, 190
Release configuration setting, 189

Debug toolbar, 10
Debug/Window menu

Attach To Process command, 548
Disassembly command, 260, 547,

549
Start Debugging command, 8,

241
Start Without Debugging com-

mand, 9, 189, 548
Stop Debugging command, 166
Threads command, 940

Decimal data type
about, 19, 270, 271
Add method, 281
avoiding rounding errors, 274
Double data type

comparison, 262
Floor method, 281
generic collections and, 679
IComparable interface and, 594
Negate method, 281
.NET equivalent, 312
Nothing value and, 337
processor execution, 261
Remainder method, 281
Round method, 281
special functions, 281
Truncate method, 281
type declaration character, 259
type literals and, 28, 259

declaring variables, 16–21
Decrease Vertical Spacing

function, 131
DeepCopy method, 706–708
deep object cloning, 702–708
delegates

about, 547–553
events and, 535
generic, 608–611
parallelization and, 558
passing to methods, 553–556
starting threads, 903

Delegate type, 535, 550
delegate variables

BeginInvoke method, 907
calling asynchronously, 907
internal controls, 550, 551
Invoke method, 554, 907

delegation technique, 388
Delete Entries function, 162
DeleteObject method

(ObjectContext
class), 874–875

DELETE statement (SQL), 874
deleting data from tables, 874–876

classes as, 338
converting, 30
converting enumerations to

other, 578–580
CTS regulation, 17
data structures and, 172
declaring variables, 16
default values, 17
dominant types, 631
extension methods and, 789
generic collections and, 678
local type inference, 22, 258
logical operators and, 39
memory considerations, 468
.NET equivalents, 312–315
objects and, 24–26
standardizing code bases with

generics, 587
type declaration characters, 259
type literals for, 28, 258, 259
type variance, 612–616

Date data type
about, 19, 303
converting, 308–312
functions for date

manipulation, 305–308
generic collections and, 679
IComparable interface and, 594
.NET equivalent, 312
Nothing value and, 337
TimeSpan data type and, 304
type declaration character, 259
type literals and, 28, 259

DateTime structure
Now property, 383
ParseExact method, 309–312,

476, 478
Parse method, 308, 309, 476, 478
ToString method, 477

DateTimeStyles enumeration
AdjustToUniversal value, 310
AllowInnerWhite value, 310
AllowLeadingWhite value, 310
AllowTrailingWhite value, 310
AllowWhiteSpaces value, 310
NoCurrentDateDefault value, 310
None value, 310

DDL (Data Definition
Language), 882

Debug class
finalization logic and, 502
Print method, 558
WriteLine method, 502
Write method, 502

Debug configuration setting, 189
debugging

Debug configuration setting, 189
disabling, 548

Ctrl+ Up Arrow keyboard
shortcut, 107

Ctrl+V keyboard shortcut, 174
CTS (Common Type System)

about, 17, 72, 361
BCL support, 72
equivalents for access

modifiers, 376–378
CType function

about, 474, 533
DirectCast method and, 479
type conversion operators

and, 526–528
CUInt function, 267
CULng function, 268, 463
culture-dependant errors, 275–277
CultureInfo class, 277
curly braces {}, 619
Current property (IEnumerator

interface), 644
currentsettings.vssettings file, 78
CUShort function, 266
custom classes

implementing, 635–640
as keys, 669–673
managing hashtable keys, 673

D
Dartmouth College, 3
Database Engine Configuration

dialog box, 840, 841
databases

impedance mismatch and, 833
synchronizing, 314
updating data model

from, 878–879
updating entity models

from, 878–879
data binding. See binding
Data Definition Language

(DDL), 882
data encapsulation, 354
data manipulation

concurrency checks, 876–878
deleting data from

tables, 874–876
inserting related data into

tables, 872–874
LINQ to Entities and, 869–870
saving modifications, 870–871

data providers, 859
data structures. See structures
data types. See also specific data

types; reference types; type
safety; value types

about, 18
anonymous, 791

968 deprecated procedures

Empty method (EventArgs
class), 545

Enabled property (controls), 345
EnableRefactoringOnRename prop-

erty (forms), 177
End If statement, 36–37, 163
EndInvoke method, 907
End Sub statement, 12
Enqueue method (Queue class), 674
entity connection string

App.Config file and, 850
generating, 850
models and, 850

Entity Container Name
property, 854

Entity Data Model. See EDM
Entity Data Model Wizard

choose data provider
connection, 849

Choose Your Database Objects
page, 851

foreign key IDs, 852
generating entity connection

string, 850
generating models, 849
opening, 849

entity, defined, 833
Entity Designer, 853–854
Entity Framework

about, 833–834
data manipulation and, 869–878
eager loading technique, 862–866
executing T-SQL

commands, 889–890
first practical example, 848–856
future considerations, 893
inheritance in conceptual data

model, 886–889
lazy loading technique, 862–866
model-first design

process, 879–886
pre-requisites for testing

examples, 834–847
querying entity model, 856–869
stored procedures and, 890–893
updating data model from

databases, 878–879
entity models. See EDM
EntityObject class, 870
Entity SQL (eSQL), 859
Enum class

GetType method, 579
GetUnderlyingType method, 578
HasFlag method, 582
Parse method, 579

Enumerable class, 619
enumerations (Enums)

about, 575–576

Silent mode, 750–752
simplified file operations, 765–768
special features, 752–753
writing localizable applica-

tions, 761–765, 762–765
Double data type

about, 17, 19, 269, 271
avoiding rounding

errors, 272–274
Decimal data type

comparison, 262
generic collections and, 679
Infinity property, 279
local type inference, 32
.NET equivalent, 312
Nothing value and, 337
processor execution, 261
type declaration character, 259
type literals and, 28, 259

duotrigesimal system, 460
DVD cover generator case example

about, 122–123
creating project, 125–126
specifications, 123–125

DWord data type, 469–470
Dynamic Link Libraries (DLLs), 66

E
eager loading technique, 862–866
ECMA (European Computer

Manufacturers
Association), 72

Edit and Continue feature, 188, 363
Edit Filter dialog box, 861
Edit menu, 114
EDM Designer

about, 847
changing entity container

name, 854–855
context menu, 878
Processing of Metafile Artifacts

property, 847
EDM (Entity Data Model)

about, 833
changing entity container

name, 854–855
changing entity set

name, 853–854
connection string for, 850
eSQL and, 859
updating from

databases, 878–879
working principle of, 846–847

.edmx file extension, 847, 855–856
Eichert, Steve, 798
Einstein, Albert, 897
elements. See under arrays; XML

documents

deprecated procedures, 723
Dequeue method (Queue class), 674
Descending keyword, 821
Description property, 246, 425
deserialization

BinaryFormatter class, 696–702
defined, 693
SoapFormatter class, 696–702

design patterns, 364, 455
Developer Express refactoring

tools, 178
diagrams

class, 113–114
context menus, 112
sequence, 112–113

DictionaryBase class, 673
Dictionary class, 674
DictionaryEntry structure, 673
Dictionary(Of Key, Type) class, 680
dimensioning arrays

changing at runtime, 626
ReDim statement, 626–628
specifying upper limit, 35, 626

Dim keyword, 17
DirectCast method, 479–481, 579
DirectoryInfo class, 751
directory management, 751
DirectX library, 199, 200
Disassembly command (Debug

menu), 547, 549
Disassembly window, 260
Dispatcher.BeginInvoke

method, 914
Dispose method (IDisposable

interface), 503–513
division (/) operator, 523–524, 532
division (/=) operator, 54
division (\) operator, 532
DllImport attribute, 508
DllImportAttribute class, 724
DLLs (Dynamic Link Libraries), 66
docking windows, 105
Dock property (controls), 133
documentation tags, 168–172
document templates, 426
DoEvents method (Application

class), 902
Do ... Loop loops, 49–50
domains, application, 492, 496
DotNetCopy Options dialog box

depicted, 748
Start Copying button, 749

DotNetCopy tool
about, 745–750
application settings, 768–771
Autostart mode, 750–752
reading command-line

arguments, 757–758
retrieving resources, 759–761

 FIFO principle 969

XML literals and, 826
Extensible Application Markup

Language. See XAML
(Extensible Application
Markup Language)

Extensible Application Markup
Language (XAML), 823

Extensible Markup Language
(XML), 823

Extension attribute, 651
ExtensionAttribute class, 617, 619
Extension Manager

about, 119
depicted, 119
types supported, 120

extension methods
about, 616–617
collection initializers

and, 650–652
combining, 794–795
LINQ support, 788–796
main application area, 617–619
query syntax and, 795
simplifying collection

initializers, 619

F
F5 keyboard shortcut, 8, 165, 190
F6 keyboard shortcut, 100
F7 keyboard shortcut, 168, 174, 242
F9 keyboard shortcut, 9, 63, 260,

547
F10 keyboard shortcut, 9
F11 keyboard shortcut, 9, 63
FCL (Framework Class Library)

about, 71–72
CTS and, 72
Just-in-Time compiler and, 73
MSIL and, 73
namespace support, 67
Random class, 483

Feature Selection dialog box, 838,
839

Feigenbaum, Lisa, 798
FieldInfo class, 732
FieldOffset attribute, 469–472
field variables (fields)

about, 328
accessing, 348
as Backing Field, 349
CreationDate property, 357
defining, 365
initializing, 332, 398–399
naming convention, 348
properties vs., 354–356
targeted memory

assignment, 469–472
FIFO principle, 674–675

AddHandler method, 536, 561–
569, 570

Item property, 570
RemoveHandler method, 566, 570

event handlers
custom, 569–574
implementing, 569–574

event handling
Application Framework, 752
consuming events with, 536
multiple events, 544
WPF support, 214–215

EventInfo class, 732
Event keyword, 541
events

binding to controls, 242
code files handling, 776–780
consuming with Handles, 537–539
consuming with

WithEvents, 537–539
embedding dynamically, 561–569
inheritance and, 541–542
providing parameters

for, 542–547
raising, 539–542
triggering with classes, 535,

539–542
triggering with objects, 25
ways to consume, 536
wiring to procedures, 539

Exception class, 60, 180
exception classes, 60
Exception Snapshot window, 166
ExecuteFunction method

(ObjectContext class), 890
ExecuteStoreCommand method

(ObjectContext class), 890
ExecuteStoreQuery method

(ObjectContext class), 890
execution plans (LINQ que-

ries), 805–807, 810
.exe files, 66
Exists method (File class), 331
exit conditions

defined, 44
Exit ... For statement, 45, 48
Exit statement, 50
Exit Sub statement, 16
Return statement, 16

Exit ... For statement, 45, 48, 51
Exit statement, 50
Exit Sub statement, 16
Expression Blend, 193
expressions. See also lambda

expressions
Boolean, 23, 36, 604
comparing, 39–40
complex, 22
local type inference and, 22

converting to other data
types, 578–580

determining element types, 578
determining element values, 577
duplicate values and, 577
Flags, 580–582
hashtables and, 673
Intellisense and, 117
in real world application, 419
reflection technique, 376
retrieving types at runtime, 578
usage example, 576

enumerators
about, 642–643
custom, 643–645

Enum keyword, 578
e parameter (events), 543
equal sign (=)

assignment operator, 37
comparison operator, 36, 37
equals operator, 337, 532

Equals method
ArrayList class, 652
Object class, 444, 448, 669

error handling
about, 56–58
array initializers and, 629
avoiding rounding

errors, 272–274
catching type conversion

failures, 478
circular references, 710
Code Editor and, 164–168
code snippets and, 180
conversions, 86
culture-dependant

errors, 275–277
missing namespaces, 254
missing references, 254
multiple exception types, 59–61
operator procedures, 530–532
parallelizing loops and, 927–931
ToolTips and, 559
Try ... Catch ... Finally block, 58–

64, 514
type-safe classes and, 586

Esposito, Dino, 784
eSQL (Entity SQL), 859
European Computer Manufacturers

Association (ECMA), 72
evaluation operators, 528–530
EventArgs class

about, 545–547
Empty method, 545
event parameters and, 543
inheritance and, 777

EventHandlerList class
about, 570

970 File .Exists method

tasks on controls using smart
tags, 132

WPF comparisons, 222
For ... Next loops

about, 45–47
usage considerations, 46

Fortran programming language, 13
forward slashes, 312
fractions, defined, 17
Framework Class Library. See FCL
FrameworkElement class, 243
Friend access modifier

classes and, 377
procedures and, 377
property accessors and, 380
variables and, 378

From clause (LINQ)
combining multiple collections

example, 813, 815
querying XML documents, 828
range variables and, 798

From keyword, 650
FullName property (Type class), 728
function imports, 891
Function keyword

anonymous methods and, 557
arrays and, 629
constructors and, 359
extension methods, 617
methods with return values, 12,

16
Function(Of T) generic

delegate, 611
functions

aggregate, 820–822
defined, 551
enumerations and, 575
lambda, 557–558
linking with object variables, 556

fuzzy searches, 106

g
games, evolution of graphics

in, 199–204
Garbage Collector

about, 71, 341, 489
arrays and, 628
Finalize method and, 498–503
generics and, 649
.NET support, 492–494
process overview, 494–497
usage example, 414–415,

489–492
Garofalo, Raffaele, 214

ForEach method
Array class, 641
List(Of Type) class, 557, 683
Parallel class, 903, 921–923,

923–927
Foreground property (controls), 210
foreign keys

deleting data and, 874
LINQ queries and, 852
relationship violations, 873

format providers, 277, 309
formatting numeric output, 417
FormClosing event, 185, 503, 545
For method (Parallel class)

about, 903, 915–921
Exit For equivalent, 923–927

forms. See also Forms Designer;
Windows Forms applications

adding to projects, 152–154
binding settings values, 186–187
calling without

instantiation, 755–756
design considerations, 126–127,

152
EnableRefactoringOnRename

property, 177
handling tasks on closing, 185
KeyDown event, 543
language settings, 765
Load event, 759
refactoring classes, 177
setting up OK and Cancel

buttons, 151
Size property, 187
SnapToGrid property, 129
Text property, 151

Forms Designer
about, 129, 192
accessing Toolbox, 126–127
adding multiple forms to

projects, 152–154
automatically scrolling controls in

containers, 143–145
control properties, 149–151
dynamically arranging controls at

runtime, 133–143
EnableRefactoringOnRename

property, 177
functions for control

layout, 155–158
My namespace and, 760
positioning controls, 128–132
selecting controls without

mouse, 146
setting up buttons, 151
tab order of controls, 146–148

File.Exists method, 331
file extensions, renaming files

and, 177
FileInfo class

about, 751
CopyTo method, 767
image resizing, 250, 251

file management, 751, 765–768
File menu

Add Random Addresses
command, 712

New command, 6, 67, 81
Open Address List menu

item, 712
FileNotFoundException, 59
FileOpen method, 745
filtering

Intellisense feature, 116
LINQ query considerations, 805
Pascal Case convention, 116

Finalize method (Object class), 448,
498–503

Finally block, 61
FindLast method (LinkedList(Of

Type) class), 689
Find method

LinkedList(Of Type) class, 689
String class, 291, 297

firewalls
SQL Profiler tool and, 861
Windows Firewall, 838

First method (LinkedList(Of Type)
class), 689

Flags enumerations
about, 580
defining, 580
querying, 581

floating-point data types
defined, 17
Infinity property, 279
loops and, 45
NaN property, 280
special functions, 279–281

Floor method (Decimal
structure), 281

FlowLayoutPanel control, 133
FolderBrowserDialog class, 244
folders, project, 6
FontSize property (controls), 210
For Each loops

about, 47–49
Array.ForEach method and, 641
collections and, 655
enumerators and, 643–645
generic action delegates and, 683
usage example, 584

 hyperthreading processors 971

grouping
collections, 816–819
queries, 821–822

Group Join clause (LINQ), 816, 819,
821

GUID data type, 313–315

H
HandleAutoStart method, 753
Handles keyword, 214, 480,

537–539
HasFlag method (Enum class), 582
hashcode, 665, 669–670
hashing concept, 665
Hashtable class

about, 659
Add method, 659
GetHashcode method, 669
random data example, 659–669

hashtables
about, 659
access time

considerations, 665–666
enumerating data elements

in, 673
load factor concept, 666–669
processing speed

considerations, 662–665
type-safe collections, 673
unique key values and, 672

HasValue property, 566, 604
Header property (MenuItem

class), 240
Height property

for controls, 215
for windows, 207

hexadecimal system, 460
hierarchies

MemberInfo class and, 732–733
shadowing and, 450–454
XAML, 217, 218

Highlighted Reference feature
about, 107–109
changing highlighted color, 109
disabling, 110

Hill, Murray, 14
homogenous collections, 655
HorizontalContentAlignment prop-

erty (controls), 234
House, David, 897
HTML (HyperText Markup

Language), 823
HTML-Reference help files, 172
HyperText Markup Language

(HTML), 823
hyperthreading processors, 898

GetConstructor method (Type
class), 630

GetCustomAttributes method
Attribute class, 738, 739
Type class, 728, 739

GetEnumerator method
IEnumerable interface, 643
String class, 296

GetEvent method (Type class), 728
GetEvents method (Type class), 728
GetField method (Type class), 729
GetFields method (Type class), 729
GetFiles method (My.Computer.

FileSystem), 765
GetHashcode method

Hashtable class, 669
GetHashCode method

Object class, 448
GetInstance static function, 457
GetKeyForItem method

(KeyedCollection class), 686
Get keyword, 346
GetMember method (Type

class), 729
GetMembers method (Type

class), 729, 730, 732
GetProperties method (Type

class), 729, 738
GetProperty method (Type

class), 729
GetType method

Attribute class, 738
Enum class, 579
Object class, 448, 485
Type class, 630, 727, 738

GetUnderlyingType method (Enum
class), 578

GetValue method (PropertyInfo
class), 733

GOTO statement, 13
graphic cards

about, 198–199
games and, 199
GDI support, 194–195

Graphics Device Interface. See GDI
greater than (>) operator, 532
greater than or equal to (>=)

operator, 532
Grid controls

ColumnSpan property, 232, 239
default in windows, 222
defining columns and

rows, 225–237
Margin property, 232
row numbering, 228
RowSpan property, 239

Group By clause (LINQ), 816–819

GC class
Collect method, 496
SuppressFinalize method, 503,

513
GDI+

drawing considerations, 197
.NET graphic commands and, 199

GDI (Graphics Device Interface)
drawing considerations, 197–198
graphic cards and, 194

Generate From Usage feature
about, 117
Generate New Type

option, 117–118
Generate New Type dialog box

about, 117–118
Access option, 118
File name option, 118
Kind option, 118
Project location option, 118

generations of objects, 494–497
generic collections

about, 678
Collection(Of Type) class, 649, 655
KeyedCollection class, 686–689
LinkedList(Of Type) class, 689–691
listing of important, 679–681
List(Of Type) class, 649, 655,

681–686
generic delegates

about, 608
Action delegate, 683
Action(Of T), 609–611
Comparer class and, 683–684
Function(Of T), 611
as parameters, 640
Predicate class and, 684–686
Tuple(Of T), 611–612

generics
about, 583–585
anonymous types and, 791
building collections, 649
combining constraints, 598–599
constraining to classes with de-

fault constructors, 597–598
constraining to specific base

classes, 590–594
constraining to specific

interfaces, 594–597
constraining to value types, 598,

602
Garbage Collector and, 649
homogenous collections and, 655
solution approaches, 585–586
standardizing code bases of

types, 587–589
Get accessors (property proce-

dures), 347, 378–380

972 IAsyncResult interface

converting to Long, 474
enumeration elements as, 578
generic collections and, 679
KeyedCollection class and, 686
local type inference, 32
.NET equivalent, 312
Nothing value and, 337, 608
TryParse static method, 466
type declaration character, 259
type literals and, 28, 259
type safety and, 29–30

IntelliSense feature
about, 114, 349
All tab, 162
Common tab, 162
completion list, 161, 185
Consume First mode, 115–117,

174
Declare First mode, 114
Delete Entries function, 162
displaying class members, 391,

392
enumeration and, 117
filtering elements, 161
frequently used elements, 185
implicit line continuation, 163
LINQ query support, 829–832
LINQ to SQL support, 784
multiple command lines, 163
multitargeting and, 89
named parameter support, 371
parameter information, 162, 163
switching between tabs, 402
Toggle Completion Mode, 114
wiring events to procedures, 539
XML documentation

comments, 168–172
interface patterns, 429
interfaces

about, 429–436
abstract classes and, 436–441
binding multiple, 442–443
constraining generics to

specific, 594–597
Editor support for, 436–441
generic, 615
implementing interfaces, 441–442
interface-boxed value

types, 486–488
object variables and, 429
specifying constraints

for, 598–599
interface variables, 639
Intermediate Language (IL), 361
Invalidate method (PictureBox), 567
InvalidCastException, 166
InvariantCulture property

(CultureInfo class), 277

Image.Stretch property, 253
impedance mismatch, 833
imperative concept, 13
Implements keyword, 432, 433, 658
Import And Export Settings com-

mand (Tools menu), 78
Import And Export Settings

Wizard, 78
importing namespaces, 69, 254
Imports statement, 69
Include method, 864
Increase Vertical Spacing

function, 131
indexes

defined, 624
KeyedCollection class

and, 686–689
object variables and, 642

IndexOfAny method (String
class), 291

IndexOf method (String class), 291
Infinity property (floating-point

types), 279
inheritance

about, 387–388
classes and, 387–399
conceptual data model

and, 886–889
events and, 541–542
multiple, 442–443
polymorphism and, 404–407
process and concepts, 389–398
value types and, 481

Inherits keyword, 418, 443
InitializeComponent method, 204,

209
initializing

arrays, 625–642
collections, 650–652
fields, 332, 398–399
properties, 332, 360

In keyword, 615
InsertItem method (Collection

class), 565
Insert method

Collection class, 565
StringBuilder class, 298

INSERT statement (SQL), 873
Installable attribute, 824
instantiating

classes, 330–332
public fields, 332
self-instantiating classes, 455–458
value types, 466–468

InStrRev string function, 291
InStr string function, 291
Integer data type

about, 17, 18, 266, 271
converting from Long, 30

I
IAsyncResult interface, 907
The IBM Mathematical Formula

Translation System, 13
IComparable interface

about, 594–596
CompareTo method, 594, 639
implementing, 639–640

IDisposable interface
about, 503
Dispose method, 503–513
finalization logic and, 502
high resolution timer, 504–511
inserting disposable

patterns, 511–516
IEnumerable interface

about, 616
ArrayList class and, 653
custom enumerators, 643–645
GetEnumerator method, 643
implementing, 642
LINQ to Objects and, 784
Select method, 790–794, 795
Where method, 789–790, 795

IEnumerable(Of T) interface, 619,
643, 789

IEnumerator interface
Current property, 644
MoveNext method, 644
Reset method, 644

If operator, 43–44
IF statement, 13
If ... Then ... Else structure

about, 36–37
ending method execution, 16
structured programming and, 13

IIf function, 43–44
IL Disassembler, 362, 394
IL (Intermediate Language), 361
IList interface, 657–659
ImageResizer example

about, 219–225
adding pictures, 246–247
adding projects to

solutions, 248–250
binding events to controls, 242
defining grid columns/

rows, 225–237
image resizing process, 250–252
implementing menu, 240–241
inserting rows

retroactively, 237–240
loading default settings, 242–244
output path in, 244–246
parallelizing, 919–921
polishing program, 252–256
resizing pictures, 248
setting references, 248–250

 LINQ queries 973

LayoutMode property (forms), 129
Layout toolbar

activating, 131
Decrease Vertical Spacing

function, 131
Increase Vertical Spacing

function, 131
Make Same Size function, 131
Make Vertical Spacing Equal

function, 131
lazy loading technique, 353,

862–866
Left string function, 290
Length property

Array class, 633
String class, 289

Len string function, 289
less than (<) operator, 532
less than or equal to (<=)

operator, 532
LIFO principle, 675–676
Like operator, 533
linefeed character, 286, 618
LinkedList(Of Type) class

about, 680, 689–691
AddAfter method, 689
AddBefore method, 689
AddFirst method, 689
AddLast method, 689
FindLast method, 689
Find method, 689
First method, 689
Last method, 689
RemoveFirst method, 689
RemoveLast method, 689
Remove method, 689

LINQ (Language-Integrated Query)
about, 322, 785–788
customer list example, 785–788
enumerator support, 643
extension methods, 788–789
generics and, 583
lambda expressions, 788
OOP support, 321
reserved words, 788, 798–799
typical usage, 784–785

LINQ queries
Aggregate clause, 798, 820
aggregate functions

and, 820–822
anatomy of, 798–804
arranging in successive order, 806
AsParallel method, 808–810, 903
cascading, 807
combining multiple

collections, 812–816
concatenating, 805–807
delayed execution, 805–807

K
Kant, Immanuel, 388
Kemeny, John George, 3
Kernighan, B.W., 14
keyboard shortcuts. See also specific

shortcuts
about, 76
code snippets and, 180
positioning controls, 158
ToolTips and, 180

KeyChar property (forms), 543
KeyDown event, 543
KeyedCollection class

about, 599, 680
design issue, 686
GetKeyForItem method, 686
implementing, 674
serialization problems, 717–720

keywords
access modifiers as, 376
automatic completion, 163
defining constant values, 258
polymorphism and, 424–425
upgrading projects and, 85

Kurtz, Thomas Eugene, 3

L
Label controls

Anchor property, 141
BorderStyle property, 141
labeling TextBox controls, 129
TextAlign property, 141
Text property, 149–151

lambda expressions
about, 556–557
Action delegate and, 683
array methods and, 640–642
collections and, 793
generic comparison delegates

and, 683–684
generic predicate delegates

and, 684–686
LINQ support, 788
List(Of Type) class and, 681–686
local variables and, 936
multi-line, 557–561, 608–609, 906
return values and, 557
signatures of, 641
single-line, 557–561
Where method and, 789

lambda statements, 557
Language-Integrated Query.

See LINQ (Language-
Integrated Query)

Last method (LinkedList(Of Type)
class), 689

Invoke method
controls, 914
delegate variables, 554, 907
reflection technique and, 630
UI thread and, 914

InvokeRequired method, 914
IOException, 60
IQueryable(Of Type) interface, 789,

869
IsAssignableFrom method, 480, 481
IsBackground property (Thread

class), 906, 933
IsCancellationRequested prop-

erty (CancellationToken
structure), 943

IsFalse operator, 528–530, 533
IsInfinity static function, 279
Is keyword

comparison operators and, 42
Type class and, 727
usage example, 447

IsLoaded property, 864
IsNegativeInfinity method, 279
Is Nothing operator, 337
IsNot method, 447
IsNullOrEmpty method (String

class), 285
IsNullOrWhiteSpace method (String

class), 285
IsPositiveInfinity method, 279
IsSerializable property (Type

class), 739
IsTrue operator, 528–530, 533
Item property

Collection(Of Type) class, 656
EventHandlerList class, 570
List(Of Type) class, 715

Items property (ListBox), 217

J
jagged arrays

about, 632
defining, 632
multidimensional arrays and, 629,

631–632
Join clause (LINQ)

about, 815–816
anonymous result collections

and, 866–868
Group By clause and, 817–819

.jpg format, 242
Just-in-Time compiler

about, 71, 362
generics and, 587
MSIL and, 73, 209

974 LINQ queries

Location value type, 19
logical operators

about, 533
applying to data types, 39
conditional code and, 37–39
Flags enumerations and, 581

London University, 14
Long data type

about, 18, 267, 271
converting from Integer, 474
converting to Integer data

type, 30
enumeration elements as, 578
IComparable interface and, 594
.NET equivalent, 312
type declaration character, 259
type literals and, 28, 259
type safety and, 29–30

LongEx structure, 470
loops. See also For Each loops

about, 44
Continue statement, 51
Do ... Loop loops, 49–50
floating point variable types, 45
For ... Next loops, 45–47
leaving prematurely, 50
message, 901–902
parallelization and, 914–931
While ... End While loops, 49–50

LSet string function, 290
LTrim string function, 294

M
Main method

declaring variables, 16–21
programming requirements, 15
starting up with, 12–15

MainWindow file, 220
MainWindow property (Application

class), 220
Make Same Size function, 131
Make Vertical Spacing Equal

function, 131
Managed Extension Framework

(MEF), 120
Managed Heap

about, 25, 328
arrays and, 490, 628
pointers to, 332–336
unboxing and, 484

mapping models
conceptual data model, 851
editing contents of, 856
entity connection string and, 850
file extension for, 847

Mapping Specification Language
(MSL), 847, 856

LINQ to XML
about, 785, 823–824
creating XML

documents, 826–828
processing XML

documents, 824–826
querying XML

documents, 828–829
type safety, 829
XML literals and, 826

ListBox controls
ImageResizer example, 247
Items property, 217
polymorphism example, 407–410
Remove method, 446–447

List data type, 35
List(Of Type) class

about, 680
ForEach method, 557, 683
generic action delegates and, 683
generic comparison delegates

and, 683–684
generic predicate delegates

and, 684–686
Item property, 715
lambda expressions and, 681–686
LINQ queries and, 811
ToArray method, 810–812
ToDictionary method, 812
ToList method, 810–812
ToLookup method, 812
usage recommendations, 655
value types and, 649

List property (CollectionBase
class), 657, 659

ListView controls
managing resource elements, 758
resizing, 133

ListViewItem class
Selected property, 686
Tag property, 686

LoadCopyEntryList function, 753
Loaded event, 211, 243
Load event handler, 759
load factor concept, 666–669
Localizable property, 761–765
localization process, 761–765
local type inference

about, 22, 32–33, 325
anonymous types and, 791
array initializers and, 629–631
dominant types, 631
If operator and, 44
numeric data types and, 258
via passed parameters, 791–794
switching on, 259

Location property (controls), 142,
145

LINQ queries, continued
delayed processing and, 802
entity model and, 856–869
execution plans, 805–807, 810
forcing execution, 810–812
From clause, 798, 813, 815, 828
Group By clause, 816–819
grouping collections, 816–819
Group Join clause, 816, 819, 821
guidelines for creating, 810
IntelliSense support, 829–832
Join clause, 815–816, 866–868
Order By clause, 801, 821
parallelizing, 808–810
performance

considerations, 804–805
Select clause, 800–802, 866–868
Skip clause, 822
starting threads, 903
Take clause, 822
Take While clause, 822
ToArray method, 810–812
ToList method, 810–812
Where clause, 801, 814–815

LINQ to DataSets, 785
LINQ to Entities

about, 784, 785, 833–834
data manipulation and, 869–878
executing T-SQL

commands, 889–890
first practical example, 848–856
inheritance in conceptual data

model, 886–889
LINQ to SQL comparison, 784
model-first design

process, 879–886
pre-requisites for testing

examples, 834–847
querying entity model, 856–869
stored procedures and, 890–893
updating data model from

databases, 878–879
LINQ to Objects. See also LINQ

queries
about, 784, 797
aggregate functions, 820–822
arrays and, 623
combining multiple

collections, 812–816
homogenous collections and, 655
IQueryable(Of T) interface

and, 789
LINQ to SQL

about, 784
data mapping and, 834
future development, 784
LINQ to Entities comparison, 784

 MVVM (Model View View Model) 975

model-first design
process, 879–886

Model View View Model
(MVVM), 214

ModifiedDate property, 878
Mod operator, 533
modules

about, 15, 455
classes and, 455
extension methods and, 617

Moiré effect, 195
Monitor class

about, 951–955
PulseAll method, 953–955
Pulse method, 953–955
TryEnter method, 953
Wait method, 953–955

Moore, Gordon Earle, 897
Moore’s Law, 897
MoveNext method (IEnumerator

interface), 644
mscorlib.dll assembly, 71, 72
MSI extension, 120
MSIL (Microsoft Intermediate

Language)
about, 4, 73
CLR and, 71
IL Disassembler and, 362

MSI (Microsoft Installer), 120, 835
.MSL file extension, 847
MSL (Mapping Specification

Language), 847, 856
multidimensional arrays

creating, 631
defining, 632
jagged arrays and, 629, 631–632

multi-line lambda expressions
about, 557–561
generic delegates and, 608–609
starting threads, 906

Multiline property (controls), 141
multimedia-timer, 507–511
multiple collections

combining, 812–816
grouping, 816–819

multiple inheritance, 442–443
multiplication (*) operator, 523–524
multiplication (*=) operator, 54
multitargeting Visual Basic

applications, 87
multitasking, defined, 899
multithreading, defined, 899
MustInherit keyword, 427
MustOverride keyword, 427–429
Mutex class, 457, 955–960
MVVM (Model View View

Model), 214

array supported, 633–635
assemblies and, 68
assigning general requirements

to, 15
calling, 15
CLS compliance, 263
common to numeric data

types, 274–279
constructor, 328
convenience, 373
declaring for abstract

classes, 427–429
declaring for virtual

procedures, 427–429
defined, 15
displaying parameter

information, 162
extension, 616–619, 650–652,

788–796
named parameters and, 371
non-static, 365
optional parameters and, 369,

369–372
overloading, 366–375
overriding, 399–403, 612, 636
parallelizing, 912
partial class code for, 384
passing delegates to, 553–556
properties as, 26, 395
signatures of, 15, 609
simplified access to, 51
starting threads, 903
static, 15, 331, 381–383, 618
type safety and, 547
without return values, 12, 16
with return values, 12, 16, 551
XML documentation

comments, 168–172
Microsoft Expression Blend, 193
Microsoft Installer (MSI), 120, 835
Microsoft Intermediate Language

(MSIL)
about, 4, 73
CLR and, 71
IL Disassembler and, 362

Microsoft .NET Framework. See .NET
Framework

Microsoft Reporting Services, 861
Microsoft SQL Server, 515
Microsoft Visual Studio. See Visual

Studio IDE
Microsoft Windows SDK Tools, 362
Mid string function, 290
Mini Address Book example, 324–

326, 553
MinValue property (numeric

types), 278

Margin property (controls), 128,
232, 235, 239

Marguerie, Fabrice, 798
markup languages, 823
MarshalAsAttribute class, 724
Math.Truncate method, 920
Matryoshka dolls, 482
MaxValue property (numeric

types), 278
MEF (Managed Extension

Framework), 120
Me keyword, 424–425
MemberInfo class, 732–733
MemberType property (Type

class), 731
member variables. See field vari-

ables (fields)
MemberwiseClone method (Object

class), 448
memory address pointers, 332–336
memory considerations

allocating memory, 497
arrays, 490, 625, 628
collections, 645
data types, 468
field variables, 469–472
garbage collection, 496
hashtables, 660
load factor concept, 666–669
Managed Heap, 25, 328, 332–336
processor stack, 25
reference types, 25
strings, 287, 288
threads and, 903
value types, 25

MemoryStream class, 706–708
MenuItem class

Click event, 242
Header property, 240

menus
Header property, 240
ImageResizer example, 240–241

MeshGeometry3D class
Add method, 218
Normals property, 218
Positions property, 218
TriangleIndices property, 218

MessageBox class
error message example, 67–69
Flags enumerations and, 580
Show method, 209

message loops, 901–902
metadata, defined, 361
MethodInfo class, 732
methods. See also procedures

anonymous, 557
arrays as parameters, 630

976 My namespace

changing target for
applications, 90–95

CTS regulation, 17
installing, 835
interfaces and, 429
multitargeting and, 87–95
overriding methods, 402–403
overriding properties, 402–403
Visual Basic features and, 744

.NET Framework Client Profile, 94
NetworkAvailabilityChanged

event, 778
New Application Setting dialog

box, 187
New command (File menu)

creating projects, 81
Project option, 6, 67

New Form dialog box, 152
NewGuid static function, 314
New keyword, 26, 330–332, 468
New Project dialog box

about, 81–83
accessing, 79, 125
Browse button, 7
depicted, 7, 82
managing templates, 83–84
multitargeting and, 89, 90
opening, 81
search functionality, 82, 83
Search Installed Templates

box, 82
setting up Windows Forms appli-

cations, 125, 126
NextBytes method (Random

class), 483
NextDouble method (Random

class), 483
Next keyword, 45
Next method (Random class), 483
non-equivalency operator <>, 532
non-homogenous collections, 655
non-static methods, 365
Normals property

(MeshGeometry3D class), 218
Nothing value

about, 258
boxing and, 606–607
default values and, 337
Nothing as default and, 607–608
as null reference pointer, 336–337
strings and, 284

NOT logical operator, 38, 533
Now property (DateTime

structure), 383
Nullable class, 566
Nullable value types

about, 19–21, 258, 566, 601–604
Boolean expressions and, 604

My.WebServices object
about, 754
feature availability, 755

N
named parameters, 371
Name property (controls), 149–151,

154
namespaces

about, 66
assemblies and, 66–67
classes and, 67
embedding in code files and

projects, 67–70
importing, 69, 254
XAML support, 207, 215
xmlns prefix, 831

naming conventions
controls, 146, 154, 155
field variables, 348
projects, 67
XML documents and, 824

NaN property (floating-point
types), 280

Navigate To dialog box, 106
Navigate To feature

about, 106
fuzzy search support, 106
Highlight References feature

and, 107–109
navigating between code

blocks, 107
Pascal Casing convention, 107

Negate method (Decimal
structure), 281

NegativeInfinity static function, 280
nesting

automatic code indentation
and, 164

controls, 145, 222, 237
declaring variables and, 53
For loops, 47

.NET
about, 65–66
equivalents for base data

types, 312–315
Garbage Collector

support, 492–494
SDK tools, 362
speed of object

allocation, 497–498
.NET Compact Framework, 907, 931
.NET Framework. See

also collections
allocating memory, 497
assemblies and, 66–74
background, 65–66

My namespace
about, 753–755
functionality by project

type, 754–755
My.Application object, 754,

756–758
My.Computer.FileSystem

object, 765–768
My.Computer object, 754
My.Forms object, 754, 755–756
My.Resources object, 754–755,

758–761
My.Settings object, 754–755,

768–771
My.User object, 754–755
My.WebServices object, 754–755
writing localizable

applications, 761–765
My.Application object

about, 754
CommandLineArgs

property, 756–758
feature availability, 754
Startup event, 757, 768

MyApplication_Startup form, 752
MyBase keyword, 424–425
MyClass keyword, 424–425
My.Computer.FileSystem object

about, 765–768
CopyFile method, 753, 767
GetFiles method, 765

My.Computer object
about, 754
feature availability, 754

myDigits array, 462
My.Forms object

about, 754
calling forms without

instantiation, 755–756
feature availability, 754

My namespace
My.Settings object, 775
My.User object, 775

My Pictures directory, 242
My.Resources object

about, 754
feature availability, 755
targeted access to

resources, 758–761
My.Settings object

about, 754
application settings, 768–771
feature availability, 755
saving on shutdown, 775

My.User object
about, 754
feature availability, 755
saving User Authentication

Mode, 775

 Options command (Tools menu) 977

OnClear event handler, 215
OnClear event method, 216
OnClick event handler, 208, 212
On Error GoTo statement, 57
OnLoaded method, 211, 243
Onxxx methods, 536, 541–542
OOP (Object-Oriented

Programming)
about, 13, 321
classes and, 323–326
object relationships and, 405–407
objects and, 323–326
polymorphism and, 403
reusability and, 392
Visual Basic features and, 743–745

op-codes, defined, 547
Open Address List menu item (File

menu), 712
Open Containing Folder

command, 80
Open Project command, 79, 80
OperationCanceledException, 94

3, 944
operator procedures

about, 517–519
comparison operators and, 526
evaluation operators

and, 528–530
implementable

operators, 532–534
implementing, 523–525
overloading, 525
preparing classes for, 519–523
preparing structures for, 519–523
problem handling, 530–532
reference types and, 530–532
type conversion operators

and, 526–528, 531
optimistic concurrency checking

model, 876
OptimisticConcurrencyException,

877
optional parameters, 369, 369–372
Option Infer statement, 32, 259
Options command (Tools menu)

EnableRefactoringOnRename
property, 177

Environment option
General option, 80
Startup option, 81

Fonts And Colors option, 109, 160
LayoutMode property, 129
Office Tools option, 86
Projects And Solutions option

General, 84, 125, 152
VB Defaults, 29, 168

SnapToGrid property, 129

sender parameter and, 542
type declaration character, 259
type literals and, 28, 259
type safety and, 583

Object-Oriented Programming.
See OOP (Object-Oriented
Programming)

ObjectQuery class
about, 856
ToTraceString method, 859

ObjectResult(of T) class, 890
objects

as abstract entities, 24
with circular references, 708–711
comparing, 444–446
creating, 330–332
creating templates for, 26
data types and, 24–26
deep cloning, 702–708
deriving from, 25–26
garbage collection

process, 494–497
generations of, 494–497
impedance mismatch, 833
instantiating from

classes, 330–332
object variables and, 332–336
OOP considerations, 323–326
renaming properties, 177–178
shallow cloning, 702–708
simplified access to, 51
speed of allocation, 497–498
SyncLock statement, 949–959
targeted release, 513–516
triggering events with, 25
XML documentation

comments, 168–172
object serialization. See serialization
ObjectSet(of Type) class, 856
ObjectSpaces, 784
object variables

boxing, 473
delegate types and, 551
indexes and, 642
instance rule for, 446
interfaces and, 429
linking functions with, 556
local type inference and, 630
Nothing value, 336–338
objects and, 332–336
saving number of parameters

passed, 550
typecasting, 473
type variance and, 612

Obsolete attribute, 723, 744
ObsoleteAttribute class, 723
Of keyword, 587

boxing and, 605–607
deleting value of, 20
resetting to Nothing, 604
typical usage, 21

NullReferenceException, 380
NumberFormatInfo class, 277
NumberSystem prop-

erty (NumberSystems
structure), 462

NumberSystems structure, 461
numeric data types. See also specific

numeric data types
about, 258
common methods, 274–279
converting, 264–270, 302, 417
converting to/from

enumerations, 579
defining and declaring, 258–259
delegating calculation to

processors, 260–263
format providers, 277
list of supported, 264–270
MaxValue property, 278
MinValue property, 278
Parse static function, 275, 381
performance issues, 278
rounding issues, 272–274, 278
TryParse static method, 275, 478

numeric systems, 460

O
Object class

ArrayList class and, 655
Equals method, 444, 448, 669
Finalize method, 448, 498–503
GetHashCode method, 448
GetType method, 448, 485
IList interface and, 657
MemberwiseClone method, 448
ReferenceEquals method, 448
ToString method, 402–403, 408–

410, 444, 448
value types and, 482

ObjectContext class
about, 856
DeleteObject method, 874–875
ExecuteFunction method, 890
ExecuteStoreCommand

method, 890
ExecuteStoreQuery method, 890
Refresh method, 877
SaveChanges method, 871, 872
Translate method, 890

Object data type
built-in members, 443–448
IIf function and, 44

978 Option Strict statement

physical storage model
about, 847
editing contents of, 856
entity connection string and, 850
file extension for, 847

PictureBox controls
alarm clock example, 536
AutoSize property, 144
Invalidate method, 567
scrollbars and, 143
SizeMode property, 144, 145

pictures
adding, 246–247
resizing, 248, 250–252

Pictures directory, 242
P/Invoke function, 507, 508
Plain Old CLR Objects (POCOs), 870
P/LINQ (parallel LINQ), 322
pluralization, 852
POCOs (Plain Old CLR Objects), 870
pointers, 332–336
Point value type, 679
polymorphism

about, 355, 388, 403–404
code reuse and, 421
covariance in, 612
example of, 407–410
inheritance and, 404–407
Me keyword and, 424–425
MyBase keyword and, 424–425
MyClass keyword and, 424–425
properties vs., 355
in real world

applications, 410–424
port numbers, 838
Positions property

(MeshGeometry3D class), 218
PositiveInfinity static function, 280
power (̂) operator, 532
power (–) operator, 54
PowerShell, 835
Predicate class, 684–686
Predicate delegate, 789
Preserve keyword, 628
prime number search

program, 899–901
primitive data types

about, 18–19, 257
ArrayList class and, 649
BCL support, 71
converting, 474–475
generic collections and, 679
IComparable interface and, 594
local type inference, 32
Nothing value and, 337
storing data, 34
ToString function, 417
type literals and, 28

Print method (Debug class), 558

LINQ queries and, 808–810
loops and, 914–931, 927–931
methods and, 912
Parallel class and, 914–931

parallel LINQ (P/LINQ), 322
ParallelLoopState class, 923–927
parameters. See also arguments

arrays as, 630
code snippets, 181
collection initializers and, 619
constructor, 358–365
defined, 15
displaying information in, 162
event, 542–547
extension methods, 617
generic delegates as, 640
named, 371
optional, 369, 369–372
overloaded property procedures

with, 375
passing by reference, 465–466,

611
passing by value, 465–466
passing to tasks, 936
properties with, 351
saving number passed, 550
specifying constraints

for, 598–599
type inference via, 791–794

ParseExact method (DateTime struc-
ture), 309–312, 476, 478

Parse method
DateTime structure, 308, 309,

476, 478
Enum class, 579

Parse static function
about, 275, 381, 459, 464
culture-dependent errors

and, 276
Partial keyword, 209, 384–386
Pascal Case convention, 107, 116
passwords, SQL Slammer virus

and, 840
Percent size type, 137
performance considerations

arrays and, 647
clock frequency approach, 322
collections and, 647
compiled queries and, 868–869
console applications, 9
hashtables, 660
LINQ queries, 804–805
numeric data types and, 278
parallelizing queries and, 809–810
processors, 322
properties, 353
StringBuilder vs. String

classes, 297–301
threads and, 507

Option Strict statement
about, 166
converting data types and, 474
implicit conversions and, 431
overloaded functions and, 369
type safety and, 168, 278

Order By clause (LINQ), 801, 821
OrElse keyword, 41–42
OR logical operator, 38, 533
Out keyword, 615–616
OutOfRangeException, 265, 266,

267
Overflow error message, 270
overloaded constructors

about, 361, 366–372
mutual calling of, 374

overloaded methods
about, 366–372
mutual calling of, 372–373
overriding comparison, 400

overloaded procedures, 400, 525
overloaded properties

about, 366–372
with parameters, 375

Overloads keyword, 368, 669
Overridable keyword, 400, 403
Overrides keyword, 403, 669
overriding

methods, 399–403, 612, 636
overloading comparison, 400
properties, 399–403

P
Padding property (controls), 128
padding strings, 290
PadLeft method (String class), 290
PadRight method (String class), 290
Panel controls

about, 136, 140
Anchor property, 141, 143
AutoScroll property, 144, 145
AutoSize property, 144
BorderStyle property, 145
ColumnSpan property, 142
as containers, 139
Location property, 142, 143, 145
scroll bars and, 144
Size property, 143

Parallel class
about, 322
ForEach method, 903, 921–923,

923–927
For method, 903, 915–921,

923–927
parallelization

delegates and, 558
ImageResizer example, 919–921

 Public access modifier 979

determining values at
runtime, 733

as functions, 395
initializing, 332, 360
as methods, 26, 395
multitargeting and, 89
overloading, 366–375
overriding, 399–403
with parameters, 351
partial class code for, 384
passing arguments to, 350–351
performance considerations, 353
pre-allocating default values, 350
property extenders, 142
public variables and, 354–356
read-only, 27, 417
renaming for objects, 177–178
simplified access to, 51
Smart Tags and, 132
static, 383
usage considerations, 344–346

Properties command (Project menu)
Compile tab, 29

Properties window
assigning properties to multiple

controls, 134
binding settings values, 186
multitargeting and, 89
References tab, 70
selecting controls within, 146
Settings tab, 183
Text property, 230

property extenders, 142
PropertyInfo class

about, 732
determining info at runtime, 733
GetValue method, 733

property procedures
about, 344–346
access modifiers and, 378–380
arrays in, 629
assigning values, 346–350
creating with code snippets, 355
overloading with parameters, 375

Pro Power Pack Tools, 118
Protected access modifier

classes and, 377
procedures and, 377
variables and, 378

Protected Friend access modifier
classes and, 377
procedures and, 377
variables and, 378

Public access modifier
classes and, 377
procedures and, 377
property accessors and, 379
serialization and, 713
variables and, 378

specifying variable scope with ac-
cess modifiers, 376–380

using class constructors, 356–365
using properties, 344–356
using settings variables, 184–185
using static elements, 380–383

programming languages. See
also specific languages

history of, 3, 13
imperative concept, 13

programs. See Visual Basic programs
ProgressBar controls, 237, 250
project folders, 6
Project Properties page

Application tab, 773–774
Compile tab, 29, 90–91
modifying client profiles, 95
switching targets, 97
Windows Application Framework

Properties, 774–776
projects

adding code files, 172–174
adding forms to, 152–154
adding to solutions, 248–250
client profiles and, 94
combining into one solution, 126
context menus, 80
creating, 81–84, 125–126
DVD cover generator case

example, 125–126
embedding assemblies in, 67–70
embedding namespaces in, 67–70
forcing type safety in, 168
multitargeting and, 89
naming conventions, 67
pinning with pushpin icons, 80
renaming, 177–178
switching on local type

inference, 259
upgrading from previous

versions, 85–87
properties. See also specific

properties
about, 26, 343
array supported, 633–635
assigning to multiple

controls, 134
assigning values, 346–350
attached, 216
autoimplemented, 346, 349, 350,

390
binding settings values, 186–187
declaring for abstract

classes, 427–429
declaring for virtual

procedures, 427–429
default, 351–352

PrintPreviewControl class, 153
PrintType property

(classes), 424–425
Private access modifier

about, 348
classes and, 376
constructors and, 364
procedures and, 377
variables and, 378

procedural programming, 13,
324–326, 406

procedures. See also methods; op-
erator procedures; property
procedures

access modifiers and, 377
deprecated, 723
local type inference, 32
shadowing, 449–454
signatures of, 537
stored, 890–893
variable declarations and, 22
virtual, 426–429
wiring events to, 539

Processing of Metafile Artifacts
property, 847

processors
data types and, 257
delegating numeric calculations

to, 260–263
hashtables and, 660
hyperthreading, 898
parallelizing queries and, 809
passing method parameters, 549,

550
performance considerations, 322
threads and, 506

processor stack
defined, 25, 340
memory address in, 25
value types and, 340

programming and develop-
ment. See also conditional
logic; DotNetCopy tool; My
namespace

calling forms without
instantiation, 755–756

distributing class code, 384–386
handling application

events, 776–780
Main method considerations, 15
overloading methods, construc-

tors, properties, 366–375
programming methodologies, 13,

321–326
reading command-line

arguments, 756–758
refactoring code, 174–178

980 public keyword

Remove method
ArrayList class, 652
LinkedList(Of Type) class, 689
ListBox controls, 446–447
String class, 291

RemoveRange method (ArrayList
class), 652

Rename command, 389
renaming tool, 175
rendering concept, 193, 199
RenderTransform property

(controls), 216
Repeat function, 285
Replace method (String class), 291,

297
reports, conversion, 86
reserved words (LINQ), 788,

798–799
Reset method (IEnumerator

interface), 644
Resize event, 198
resource files

targeted access to, 758–761
writing localizable

applications, 761–765
Return keyword

Finally block and, 63
methods without return val-

ues, 12, 16
return values

Function keyword and, 12, 16
lambda expressions and, 557
Return keyword and, 12, 16
Sub keyword and, 12, 16
tasks and, 936–939

Reverse method (Array class), 634
Richards, Martin, 14
Right string function, 290
Ritchie, Dennis, 14
RND function, 483
RotateTransform class

Angle property, 216
CenterX property, 216
CenterY property, 216

Rotor (CLI implementation), 72
rounding issues

avoiding errors, 272–274
compilers and, 278

Round method (Decimal
structure), 281

round-tripping, 95
Row property (controls), 142
rows

creating for controls, 136–138
defining for arranging

controls, 225–237
inserting retroactively, 237–240
numbering, 228
spanning in controls, 142–143

Recent Projects list (Start Page)
about, 79
configuring, 80
pushpin icons, 80

recursion. See recursion.
re-dimensioning arrays, 626–628
ReDim statement, 626–628, 632
refactoring code, 174–178
reference control

changing, 130
defined, 130
identifying, 131
specifying, 130–132

ReferenceEquals method (Object
class), 448

reference types
boxing process and, 473
casting, 479–481
classes and, 340
CLR and, 341
defined, 18
memory considerations, 25
operator procedures

and, 530–532
passing parameters by, 465–466,

611
storing data, 34
strings as, 283
structures and, 471
value type comparison, 468–469

reflection techniques
about, 724–726
access modifiers and, 376
determining property values, 733
LINQ queries and, 811
local type inference and, 630
object hierarchy and, 732–733
Type class and, 726–732
usage examples, 721

Refresh method (ObjectContext
class), 877

Regex class, 283
Release configuration setting, 189
Remainder method (Decimal

structure), 281
RemoveAt method (ArrayList

class), 652
RemoveFirst method (LinkedList(Of

Type) class), 689
Remove From List command, 80
RemoveHandler method

(EventHandlerList class), 566,
570

RemoveItem method (Collection
class), 565

RemoveLast method (LinkedList(Of
Type) class), 689

public keyword, 343
PulseAll method (Monitor

class), 953–955
Pulse method (Monitor

class), 953–955
Push method (Stack class), 675
pushpin icons, 80

Q
queries. See also LINQ queries

anonymous result collections
and, 866–868

cascading, 807
compiled, 868–869
extension methods and, 795
Flags enumerations, 581
indexed, 686–689
KeyedCollection class, 686–689
Link to SQL support, 784
performance

considerations, 868–869
to XML documents, 828–829

Queue class
Dequeue method, 674
Enqueue method, 674
FIFO principle, 674–675
type safety and, 675

Queue(Of Type) class, 681
QueueUserWorkItem method

(ThreadPool class), 909
quotation marks, 286

R
RAD (Rapid Application

Development), 106
Random class

about, 483, 625
NextBytes method, 483
NextDouble method, 483
Next method, 483
synchronizing threads

example, 956
range variables, 800
Rapid Application Development

(RAD), 106
ReadLine method (Console

class), 654
ReadOnlyCollection(Of Type)

class, 680
read-only fields

about, 317–318
constants and, 315

ReadOnly keyword, 317
read-only properties, 27, 417

 SoapFormatter class 981

Short data type
about, 18, 265, 271
enumeration elements as, 578
.NET equivalent, 312
type declaration character, 259
type literals and, 28, 259

Show All Files icon, 539, 760
Show method (MessageBox

class), 209
ShowNewFolderButton

property, 246
Shutdown event, 777
Shutdown Mode, specifying, 775
signatures

defined, 15, 550
lambda expressions, 641
of methods, 15, 609
of procedures, 537

Silverlight
MVVM and, 214
project templates, 88

Single data type
about, 19, 268, 271
avoiding rounding

errors, 272–274
Infinity property, 279
.NET equivalent, 312
type declaration character, 259
type literals and, 28, 259

single-line lambda
expressions, 557–561

Singleton classes, 364, 455–458
Singleton design pattern, 364, 455
SizeChanged event, 201
SizeMode property (controls), 144,

145
Size property (controls), 143, 187
Size Type setting (rows and

columns), 136–138
Size value type, 19, 679
Skip clause (LINQ), 822
slashes, 312
Sleep method (Thread class), 915,

956
Smart Tags

about, 132, 382
auto correction, 167
common tasks on controls, 132
creating columns and rows for

controls, 136–138
recognizing, 167

SnapToGrid property (forms), 129
Snoop tool, 98
SOAP format, 697
SoapFormatter class

about, 697
serializing objects of different

versions, 711
SoapSerializer class and, 698–699

Selected property (ListViewItem
class), 686

Select method (IEnumerable inter-
face), 790–794, 795

SELECT statement (SQL), 890
self-instantiating classes, 455–458
sender parameter (events), 542,

543–545
sequence diagrams, 112–113
Serializable attribute

.NET serialization and, 696,
701–702

XML serialization and, 712, 713
SerializableAttribute class, 724
serialization

BinaryFormatter class, 696–702
deep object cloning and, 702–708
defined, 182, 693
objects with circular references

and, 708–711
shallow object cloning

and, 702–708
SoapFormatter class, 696–702
techniques overview, 694–696
XML, 711–720

SerializationBinder class, 711
Server Configuration dialog

box, 839
Set accessors (property proce-

dures), 346, 378–380
Settings Designer

about, 182
Application scope, 189
binding settings values, 186–187
depicted, 183
setting up settings

variables, 183–184
storing settings, 187–190
using settings variables in

code, 184–185
settings files, 78
Setup Process Is Complete dialog

box, 842
Setup Support Files dialog box, 837,

838
SGML (Standard Generalized

Markup Language), 823
shadow copies of files, 746–748
shadowing class

procedures, 449–454
Shadows keyword, 450
shallow object cloning, 702–708
Shared keyword, 380, 381
Shift+Alt+F10 keyboard

shortcut, 117
Shift+arrow keyboard shortcut, 158
Short Circuit Evaluation, 41–42

RowSpan property (controls), 142,
239

RSet string function, 290
RTrim string function, 294
Run command (Start menu), 756
Run method (Application

class), 206, 207
runtime

changing dimensions of arrays
at, 626

Code Editor error
support, 165–166

determining custom attributes
at, 738–740

determining property values
at, 733

dynamically arranging controls
at, 133–143

retrieving enumeration elements
at, 578

triggering events, 535

S
sa account (SQL Server), 840
Sandcastle Helpfile Builder, 172
satellite assembly, 763
SaveChanges method

(ObjectContext class), 871, 872
SByte data type

about, 18, 264, 271
.NET equivalent, 312
type declaration character, 259
type literals and, 28, 259

scope of variables, 52–53, 376–380
Scrollbars property (controls), 141
scrolling of controls,

automatic, 143–145
ScrollViewer controls, 253
SDK (Software Development

Kit), 362
search functionality

case sensitivity, 107
multiple substrings, 107
Navigate To feature, 106
New Project dialog box, 82, 83
Pascal Casing convention, 107
prime number search

program, 899–901
in sorted arrays, 635
substring matching, 107

Select ... Case ... End Select
structure, 42–44

Select clause (LINQ)
anonymous result collections

and, 866–868
range variables and, 800
usage example, 801, 802

982 SoapSerializer class

static methods
about, 15, 331, 381–383
extension methods and, 618
numeric data types, 275, 381

static properties, 383
StatusBar controls, 236–237
Stop Debugging command (Debug

menu), 166
StopWatch class, 299
stored procedures, 890–893
Store Schema Definition Language

(SSDL), 847, 856
storing settings, 187–190
StreamingContext

structure, 700–702
Stretch property (Image class), 253
String$ function, 285
StringBuilder class

about, 288
Append method, 298
Insert method, 298
String class comparison, 297–301
ToString method, 298

String class
automatic construction, 285
Chars property, 296
Find method, 291, 297
GetEnumerator method, 296
IndexOfAny method, 291
IndexOf method, 291
IsNullOrEmpty method, 285
IsNullOrWhiteSpace method, 285
keys and, 673
Length property, 289
PadLeft method, 290
PadRight method, 290
Remove method, 291
Replace method, 291, 297
Split method, 295
StringBuilder class

comparison, 297–301
SubString method, 290
TrimEnd method, 294
Trim method, 294
TrimStart method, 294

String data type
about, 16, 19, 283–284
converting, 275–277, 303, 308–

312, 417, 460, 476–478
declaring and defining, 284
default value, 17
empty and blank strings, 284
IComparable interface and, 594
.NET equivalent, 312
type declaration character, 259
type literals and, 28, 259
type safety and, 30–31

strings. See also String data type

SQL Server Management
Studio, 876

SQL Server Replication, 838
SQL Slammer virus, 840
SQL (Structured Query Language)

CREATE FUNCTION
statement, 891

CREATE PROCEDURE
statement, 891

DELETE statement, 874
INSERT statement, 873
SELECT statement, 890

square brackets [], 85
.SSDL file extension, 847
SSDL (Store Schema Definition

Language), 847, 856
Stack class

LIFO principle, 675–676
Push method, 675
type safety and, 676

Stack(Of Type) class, 681
StackOverflowException, 710
Standard Generalized Markup

Language (SGML), 823
Start Debugging command (Debug

menu), 8, 241
StartNew method (TaskFactory

class), 908
Start Page

about, 79–81
Close Page After Project Load

check box, 81
configuring, 81
creating projects, 81–84
depicted, 79
extending Visual Studio, 118
Get Started tab, 79, 80, 81
Guidance And Resources tab, 80,

81
Latest News tab, 80, 81
New Project link, 79, 125
Open Project link, 79, 80
Recent Projects list, 79, 80
RSS Feed tab, 79
Show Page On Startup check

box, 81
Star Trek Voyager, 657
Startup event

Application Framework, 777
My.Application object, 757, 768

StartupNextInstance event, 778
Start Without Debugging command

(Debug menu), 9, 189, 548
statement lambdas, 557
Static access modifier, 378
static elements, 380–383
Static keyword, 380

SoapSerializer class, 698–699
Software Development Kit

(SDK), 362
Solution Explorer

about, 5
accessing Code Editor, 160
Add Reference command, 205
establishing references to

assemblies, 68
My Project node, 90
setting local inference

options, 32–33
Show All Files icon, 760

solutions
adding program libraries

to, 248–250
defined, 6

SortedDictionary(Of Key, Type)
class, 681

SortedList class, 676–678
SortedList(Of Key, Type) class, 678,

681
SortedSet(Of Type) class, 681
sorting

arrays, 633–634
elements in collections, 676–678

Sort method (Array class)
about, 633–634
generic comparison delegates

and, 683–684
implementing custom

classes, 635–640
lambda expressions and, 640

special characters, assigning to
strings, 286

SpinWait method (Thread
class), 918, 938

splash (start) screen, 776
Split command (Window menu), 99
SplitContainer control, 133
Split method (String class), 295
Split string function, 295
split windows, 99–101, 109
SQL Profiler tool, 860, 861, 873
SQL Server

generated SQL
statements, 859–861

Link to SQL and, 784
port numbers, 838
sa account, 840
Using statement and, 515

SQL Server 2008 Express
downloading and

installing, 835–843
uninstalling, 834

SQL Server 2008 Setup Wizard, 837
SQL Server Installation Center, 836
SQL Server Installation Center dia-

log box, 835

 TextBox controls 983

inserting related data
into, 872–874

Tab Order command (View
menu), 147

tab order of controls, 146–148
Tag property (ListViewItem

class), 686
Take clause (LINQ), 822
Take While clause (LINQ), 822
Task class, 322

ContinueWith method, 908
starting threads, 903, 908
WaitAll method, 934–935
WaitAny method, 934–935
WaitOne method, 934–935

TaskFactory class
about, 910, 931–933
StartNew method, 908

Task Manager
depicted, 505
Processes tab, 667

Task(Of Type) class, 938
Task Parallel Library. See TPL
tasks

about, 908, 931–933
avoiding freezing UI

during, 939–942
calling methods as, 936
cancelling, 942–947
passing parameters to, 936
return values and, 936–939
waiting on completion, 934–935

Teitlebaum, David, 204
templates

changing location, 84
classes as, 26
creating for objects, 26
default, 84
defined, 82
document, 426
finding, 7
managing, 83–84
modifying, 84
searching for, 82, 83
Silverlight, 88

Terminate event, 496
TextAlign property (controls), 141
TextBlock controls

dragging from Toolbox, 229
Margin property, 239
nesting, 237
Text property, 230

TextBox controls
Anchor property, 141
labeling, 129
Margin property, 235
Multiline property, 141
Scrollbars property, 141

SyncLock statement, 949–951
system assemblies, 67, 97
System.Collections.Generic

namespace, 655, 680
System.Collections.ObjectModel

namespace
Collection class, 565
Collection(Of Type) class, 655, 679
KeyedCollection class, 599, 680
List(Of Type) class, 655
ReadOnlyCollection(Of Type)

class, 680
System.Design.Dll assembly, 130
SystemException, 60
System.Globalization

namespace, 277
System namespace, 208
System properties window, 746
System.Reflection namespace, 369,

726
System.Runtime.CompilerServices

namespace, 617, 619, 651
System.Runtime.Serialization.

Formatters.Soap
namespace, 699

System.Text namespace, 298
System.Threading.Tasks

namespace, 559, 915
System.Windows.Forms

namespace, 67, 199, 245
System.Windows namespace, 208

T
TabIndex property (controls), 148
Tab keyboard shortcut, 181
TableLayoutPanel controls

about, 133
adjusting controls

proportionately, 136
anchoring controls in, 140–141
Anchor property, 134–135
arranging controls in

cells, 139–140
Column property, 142
ColumnSpan property, 142
creating columns and rows

for, 136–138
Location property, 142–143
performing tasks on, 132
Row property, 142
RowSpan property, 142
Size property, 143
spanning rows or

columns, 142–143
tab order of controls, 147–148

tables
deleting data from, 874–876

assigning special characters
to, 286

concatenating, 54
determining length, 289
empty/blank, 284
find/replace operations, 291
immutability of, 288
iterating through, 296
memory considerations, 287, 288
multiple substring searches, 107
padding, 290
parsing into enumerations, 579
as reference types, 283
retrieving parts of, 290
splitting, 295–296
substring matching, 107
trimming, 294

Stroustrup, Bjarne, 442
StructLayout attribute, 469–472
structured programming, 13
Structured Query Language (SQL)

CREATE FUNCTION
statement, 891

CREATE PROCEDURE
statement, 891

DELETE statement, 874
INSERT statement, 873
SELECT statement, 890

Structure keyword, 459
structures

creating value types
with, 341–342

as custom types, 172
defined, 341
practical example of, 459–465
preparing for operator

procedures, 519–523
property procedures and, 348
reference types and, 471

Sub keyword
anonymous methods and, 557
arrays and, 629
constructors and, 359
extension methods, 617
methods without return val-

ues, 12, 16
SubString method (String class), 290
subtraction (-) operator, 523–524,

532
subtraction (-=) operator, 54
SuppressFinalize method (GC

class), 503, 513
Switch construct, 13
synchronizing

databases, 314
playback media, 507
threads, 947–959

984 Text Editor menu

TreeView control, 133
TriangleIndices property

(MeshGeometry3D class), 218
TrimEnd method (String class), 294
Trim method (String class), 294
TrimStart method (String class), 294
Trim string function, 294
Truncate method

Decimal structure, 281
Math class, 920

Try ... Catch ... Finally block
error handling, 58–64
Exit For statement, 51
targeted object release, 514

TryEnter method (Monitor
class), 953

TryParse static method
about, 281
enumerations and, 580
exceptions and, 277
numeric data types and, 275,

281, 478
parameters and, 466

T-SQL (Transact-SQL)
automatically logging

queries, 859
executing command directly in

object context, 889–890
LINQ to SQL support, 784
Select clause and, 799

TSWriteLine method, 905
TSWrite method, 905
Tuple class, 611–612
Tuple(Of T) generic

delegate, 611–612
type casting

defined, 473
events and, 544
object variables, 473

Type class
about, 726–728
Assembly property, 728
AssemblyQualifiedName

property, 728
Attributes property, 728, 739
BaseType property, 728
FullName property, 728
GetConstructor method, 630
GetCustomAttributes meth-

od, 728, 739
GetEvent method, 728
GetEvents method, 728
GetField method, 729
GetFields method, 729
GetMember method, 729
GetMembers method, 729, 730,

732
GetProperties method, 729

Toolbox
accessing, 126–127
Assignment tool, 881
dragging TextBlock from, 229
multitargeting and, 89

Tools menu. See also Options com-
mand (Tools menu)

Import And Export Settings
command, 78

opening Extension Manager, 119
ToolTips

error handling and, 559
keyboard shortcuts, 180
Show All Files icon, 539, 760

ToSByte method (Convert
class), 265

ToSingle method (Convert
class), 269

ToString function
boxing and, 486
numeric data types and, 277
polymorphism example, 425
primitive data types, 417

ToString method
Convert class, 459
DateTime structure, 477
Object class, 402–403, 408–410,

444, 448
StringBuilder class, 298

ToTraceString method (ObjectQuery
class), 859

ToUInt16 method (Convert
class), 266

ToUInt32 method (Convert
class), 267

ToUInt64 method (Convert
class), 268

TPL (Task Parallel Library)
about, 916
accessing controls from

threads, 909–914
parallelizing loops, 914–931
starting threads, 903–909
synchronizing threads, 947–959
Task class and, 908
threads overview, 897–903
working with tasks, 931–947

Trace Listener program, 502
Transact-SQL (T-SQL)

automatically logging
queries, 859

executing command directly in
object context, 889–890

LINQ to SQL support, 784
Select clause and, 799

transcendental schemata, 388
Translate method (ObjectContext

class), 890

Text Editor menu, 110
Text property

for controls, 149–151, 154, 230
for forms, 151

TextRenderer class, 199
text, rendering, 199
Thompson, Ken, 14
Thread class

about, 905–906
IsBackground property, 906, 933
Sleep method, 915, 956
SpinWait method, 918, 938
starting threads, 903

ThreadPool class
about, 903
QueueUserWorkItem

method, 909
thread pools, 903, 909
threads

about, 897–903
processor time and, 507
starting, 903–909
synchronizing, 947–959

ThreadSafeTextWindowCompone
nt, 905

Threads command (Debug
menu), 940

Threads window, 941
ThreeState property

(CheckBox), 604–605
ThrowIfCancellationRequested

method (CancellationToken
structure), 943

Tick event handler, 541
TimeSpan data type, 304
Title property (windows), 207
ToArray method

ArrayList class, 653
List (Of Type) class, 810–812

ToByte method (Convert class), 264
ToDecimal method (Convert

class), 270
ToDictionary method (List(Of Type)

class), 812
ToDouble method (Convert

class), 269
ToInt16 method (Convert class), 265
ToInt32 method (Convert

class), 266, 275, 282, 302
ToInt64 method (Convert

class), 268, 302
ToInt function, 459
ToList method (List(Of Type)

class), 810–812
ToLookup method (List(Of Type)

class), 812
toolbars, adding, 10

 Visual Basic programs . See also conditional logic 985

local type inference and, 32
nesting and, 53
object, 332–336
properties and, 354–356
range, 800
scope of, 52–53, 376–380
type declaration characters, 259
using settings variables in

code, 184–185
With ... End With structure and, 51

vbBack character constant, 287
vbCr character constant, 287
vbCrLf character constant, 287
VBFixedArrayAttribute class, 724
VBFixedStringAttribute class, 724
vbFormFeed character

constant, 287
vbLf character constant, 287
vbNewLine character constant, 287
vbNullChar character constant, 287
vbNullString character

constant, 287
vbTab character constant, 287
vbVerticalTab character

constant, 287
VerticalContentAlignment property

(controls), 234
View menu, 147
virtual procedures

abstract classes and, 426–429
declaring methods, 427–429
declaring properties, 427–429
MustOverride keyword, 427–429

visible entity, defined, 204
Visual Basic applications

multitargeting, 87
upgrading to Visual Studio, 87

VisualBasic.Compatibility
assembly, 744

Visual Basic Compiler, 4
VisualBasic.dll file, 744
Visual Basic Editor

inserting disposable
patterns, 511–516

LINQ to SQL support, 784
Visual Basic Express, 4, 87
Visual Basic IDE, 214–215
Visual Basic programs. See also con-

ditional logic
anatomy of, 10–12
application settings, 768–771
arrays and collections, 34–35
declaring variables, 16–21
definitions of variables, 21–24
error handling in, 56–64
expressions, 21–24
handling application

events, 776–780

Upgrade Wizard, 86
upgrading projects, 85–87
User Authentication Mode, 775
UShort data type

about, 265, 271
.NET equivalent, 312
type declaration character, 259
type literals and, 28, 259

Using keyword, 513–516

V
value assignment, 603
value data types

memory considerations, 25
objects and, 24

Value property
Nullable types and, 604
NumberSystems structure, 462
XElement class, 825, 828

value types. See also specific value
types

about, 340
ArrayList class and, 649
assigning to variables, 342
boxing, 473, 481–486
classes and, 340–342
CLR and, 341, 468
collections and, 649
constraining generics to, 598, 602
constructors and, 466–468
creating within structures, 341
default instantiations of, 466–468
defined, 18
generic collections and, 679
inheritance and, 481
interface-boxed, 486–488
memory considerations, 25
Nothing value and, 337
Object class and, 482
passing parameters, 465–466
practical example of

structures, 459–465
reference type

comparison, 468–469
storing data, 34
targeted memory

assignments, 469–472
variables. See also data types; field

variables
access modifiers and, 378
assigning value types to, 342
declaring, 16–21
default values, 17
defined, 16
defining and declaring at same

time, 21
defining settings, 183–184

GetProperty method, 729
GetType method, 630, 727, 738
IsSerializable property, 739
MemberType property, 731

type conversion operators
calculation operators and, 523
floating-point numbers and, 278
operator procedures and, 526–

528, 531
type inference. See local type

inference
type literals

for data types, 259
determining constant

types, 27–28
keywords defining, 258
Overflow error message and, 270
type safety and, 30

type safety
about, 29–33
collections and, 655–659
conversions and, 30
forcing, 166–168
importance of, 17
LINQ to XML and, 829
methods and, 547
Object data type and, 583
Option Strict statement, 166, 168
Queue class and, 675
Stack class and, 676

type variance, 612–616

u
UInteger data type

about, 18, 267, 271
.NET equivalent, 312
type declaration character, 259
type literals and, 28, 259

UI thread
about, 903, 909
accessing Windows

controls, 909–914
avoiding freezing user

interface, 939–942
message loops and, 902

ULong data type
about, 18, 268, 271
.NET equivalent, 312
numeric systems and, 460
type declaration character, 259
type literals and, 28, 259

underscore (_)
attributes and, 722
field variables and, 349
line continuation and, 163

UnhandledException event, 778

986 Visual Basic programs

Nullable data types and, 602
setting up, 125, 126
writing localizable, 761–765

Windows Forms Designer. See Forms
Designer

Windows historical
overview, 194–214

Windows Presentation Foundation.
See WPF

Windows Server, 835
WindowStartupLocation property

(windows), 253
Windows Task Manager, 505
Windows XP Designs, 774
winmm.dll library, 508
With ... End With structure, 51
WithEvents keyword, 536, 537–539
Woodruff, Eric, 172
Wooley, Jim, 798
World Wide Web Consortium

(W3C), 823
WPF Designer

adjusting row definitions, 238
* specification, 227
XAML hierarchies and, 218

WPF (Windows Presentation
Foundation)

about, 97–98, 191–193
bringing design and development

together, 204–206
event handling, 214–215
ImageResizer example, 219–256
managing screen real

estate, 99–103
new features, 193–204
profiles and, 94
Windows Forms comparison, 222
XAML support, 823
XAML syntax overview, 215–218

WriteableBitmapManager
class, 250, 254

WriteLine method
Console class, 15, 372
Debug class, 502

Write method (Debug class), 502

X
XAML (Extensible Application

Markup Language), 823
about, 192, 207–225
hierarchy support, 217, 218
implementing menus, 240

XAttribute class
about, 825
creating XML structures, 827–828

W
W3C (World Wide Web

Consortium), 823
WaitAll method (Task

class), 934–935
WaitAny method (Task

class), 934–935
Wait method (Monitor

class), 953–955
WaitOne method (Task

class), 934–935
Where clause (LINQ)

combining multiple collections
example, 814

usage considerations, 801, 802
Where method (IEnumerable inter-

face), 789–790, 795
While ... End While loops, 49–50
Width property

for controls, 208, 215
for windows, 207

Window class
Height property, 207
Loaded event, 211, 243
Title property, 207
Width property, 207

Window key + arrow keys, 103
windows

common use scenarios, 104–105
docking, 105
floating style, 104
Grid controls, 222
horizontally tabbed, 101–102
layout persistence, 103
Loaded event, 243
multimonitor support, 103
normal/default view, 104
Resize event, 198
SizeChanged event, 201
split, 99–101, 109
tear-away, 103
vertically tabbed, 101–102

Windows Authentication Mode, 840
Windows Explorer, starting, 80, 757
Windows Firewall, 838
Windows Forms applications

availability of My
functionality, 754–755

BackgroundWorker compo-
nent, 903, 905

calling forms without
instantiation, 755–756

defined, 6
enabling Application

Framework, 774
InvokeRequired method, 914

Visual Basic programs continued
loops in, 44–51
Main method, 12–15
objects and data types, 24–26
operators, 54–56
performance considerations, 190
program statements in, 12
properties, 26–27
scope of variables, 52–53
type literals, 27–28
type safety, 29–33
With ... End With structure, 51

Visual Studio Content Installer
(VSI), 120

Visual Studio Editor, 5
Visual Studio Gallery, 119, 120
Visual Studio IDE

accessing Toolbox, 126–127
Architecture Explorer, 112–117
creating regions, 110
extending, 118–120
Generate From Usage

feature, 117–118
history of multitargeting, 87–95
limitations of

multitargeting, 95–97
migrating from previous

versions, 85
outlining options, 111
searching and navigating

code, 106–110
selecting profiles, 76–78
starting for first time, 4–6, 76–78
Start Page, 79–86
tools supported, 4–5
upgrading projects from previous

versions, 85–87
upgrading VB applications to, 87
WPF support, 97–105

Visual Studio Options dialog box.
See Options command (Tools
menu)

Visual Studio Tools for Office
(VSTO), 369

VSI format, 120
VSI (Visual Studio Content

Installer), 120
VSIX extension, 120
VSIX package format, 120
VSPackages, 120
.vssettings files, 78
VSTO (Visual Studio Tools for

Office), 369

 987

XDocument class
about, 825
XML literals and, 826

XElement class
about, 825
creating XML structures, 827–828
Value property, 825, 828
XML literals and, 826

XML documents
about, 823
attributes in, 823
creating, 826–828
elements in, 823–824
inserting comments into, 168–172
naming conventions, 824
processing, 824–826
querying, 828–829
typical contents, 823
values in, 823
XML literals and, 826

XML (Extensible Markup
Language), 823

XML literals, 826
XML menu, 830
XML Schema Definition (XSD)

file, 829, 830
XML serialization

about, 711–716
checking version

independence, 716–717
KeyedCollection class

and, 717–720
XOR logical operator, 38, 533
XSD (XML Schema Definition)

file, 829, 830

Klaus Löffelmann
Klaus Löffelmann is a Microsoft MVP for Visual Basic .NET, and has
been a professional software developer for over 20 years. He has
written several books about Visual Basic and is the owner and
founder of ActiveDevelop in Lippstadt, Germany, a company special-
izing in software development, localization, technical literature, and
training/coaching with Microsoft technologies.

Sarika Calla Purohit
Sarika Calla Purohit is a Software Design Engineer Test Lead on the
Visual Studio Languages team at Microsoft. She has been a member
of the Visual Studio team for over eight years and has contributed to
Visual Basic .Net since version 1.1. Most recently, her team was
responsible for testing the Visual Basic IDE in Visual Studio 2010.

Stay in touch!
To subscribe to the Microsoft Press® Book Connection Newsletter—for news on upcoming
books, events, and special offers—please visit:

What do
you think of
this book?
We want to hear from you!
To participate in a brief online survey, please visit:

Tell us how well this book meets your needs —what works effectively, and what we can
do better. Your feedback will help us continually improve our books and learning
resources for you.

Thank you in advance for your input!

microsoft.com/learning/booksurvey

microsoft.com/learning/books/newsletter

	Table of Contents
	Foreword
	Introduction
	Part I. Beginning with Language and Tools
	Chapter 1. Beginners All-Purpose Symbolic Instruction Code
	Starting Visual Studio for the First Time
	Console Applications
	Starting an Application

	Anatomy of a (Visual Basic) Program
	Starting Up with the Main Method
	Methods with and Without Return Values
	Defining Methods Without Return Values by Using Sub
	Defining Methods with Return Values by Using Function

	Declaring Variables
	Nullables

	Expressions and Definitions of Variables
	Defining and Declaring Variables at the Same Time
	Complex Expressions
	Boolean Expressions

	Comparing Objects and Data Types
	Deriving from Objects and Abstract Objects

	Properties
	Type Literal for Determining Constant Types
	Type Safety
	Local Type Inference

	Arrays and Collections
	Executing Program Code Conditionally
	If … Then … Else … ElseIf … End If
	The Logical Operators And, Or, Xor, and Not
	Comparison Operators That Return Boolean Results
	Short Circuit Evaluations with OrElse and AndAlso
	Select … Case … End Select

	Loops
	For … Next Loops
	For … Each Loops
	Do … Loop and While … End While Loops
	Exit—Leaving Loops Prematurely
	Continue—Repeating Loops Prematurely

	Simplified Access to Object Properties and Methods Using With … End With
	The Scope of Variables
	The += and –= Operators and Their Relatives
	The Bit Shift Operators << and >>

	Error Handling in Code
	Elegant Error Handling with Try/Catch/Finally

	Chapter 6. The Essential .NET Data Types
	Numeric Data Types
	Defining and Declaring Numeric Data Types
	Delegating Numeric Calculations to the Processor
	Numeric Data Types at a Glance
	The Numeric Data Types at a Glance
	Methods Common to all Numeric Types
	Special Functions for all Floating-Point Types
	Special Functions for the Decimal Type

	The Char Data Type
	The String Data Type
	Strings—Yesterday and Today
	Declaring and Defining Strings
	Handling Empty and Blank Strings
	Automatic String Construction
	Assigning Special Characters to a String
	Memory Requirements for Strings
	No Strings Attached, or Are There? Strings are Immutable!
	Iterating through Strings
	StringBuilder vs. String: When Performance Matters
	Performance Comparison: String vs. StringBuilder

	The Boolean Data Type
	Converting to and from Numeric Data Types
	Converting to and from Strings

	The Date Data Type
	TimeSpan: Manipulating Time and Date Differences
	A Library with Useful Functions for Date Manipulation
	Converting Strings to Date Values

	.NET Equivalents of Base Data Types
	The GUID Data Type

	Constants and Read-Only Fields (Read-Only Members)
	Constants
	Read-Only Fields

	Index

