Programming Programming Microsoft®

Microsoft

Visual C# 2008: Visual C#® 2008:
The Language The Language

-

Donis Marshall

A

Donis Marshall

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/12283.aspx

Microsoft

9780735625402 Press

© 2008 Donis Marshall (All). All rights reserved.

Table of Contents

Acknowledgments. XXi
Introduction XXiii
Who Is This Book FOr?. XXiii
Organization of This BOOK oo XXiii
System Requirements i XXiv
Technology Updates XXV

Find Additional Content Online. i i, XXV

The Companion Web Site. XXV

Support for ThisBook............ XXV

Part| Core Language

1 Introduction to Microsoft Visual C# Programming............ 3
A Demonstration of Visual C# 2008 5
Sample CH# Program.ot 5
Sample LINQ Program o 7
Common Elements in Visual C# 2008. 9
NaMESPACES . . oo ettt e 9

Main Entry Point. 14

Local Variables 15
Nullable Types 16
EXPresSSIONS . .ottt 17
Selection Statements. 18
Iterative Statements. 20

C# Core Language Features. 23
Symbolsand Tokens 24
Identifiers. 43
Keywords. 43

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and
learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey

X Table of Contents

PrMITIVES. . . 47
YRS, et 47
2 Ty PES. et et e e 49
ClaSSES . 50
Class Members 51
Member Functions. 57
STUCHUNES. ot 81
Enumeration 83
Bitwise Enumeration 85
Equivalence versus Identity. 86
Class Refinement. 87
3 Inheritance........ e 89
Inheritance Example 91
SYStem.ODJeCt 94
Object.Equals Method. ... 95
Object.GetHashCode Method, 96
Object.GetType Method 97
Object.ToString Method 97
Object. MemberwiseClone Method 97
Object.ReferenceEquals Method 99
Employee Classooi 99
Implementing Inheritance 101
Accessibility 102
Overriding Inherited Behavior........ i i 102
Virtual and Override Keywords i, 103
Overload versus Override., 104
Overriding Events.t 105
Extension Method 105

The new Modifier. ... 107
AbStract Classes 111
Sealed Classes.t 113
Constructors and Destructors 114
Interfaces. 117
Implementing Interfaces. 120
Explicit Interface Member Implementation. 121

Reimplementation of Interfaces 125

Table of Contents xi

Polymorphism. o 127
Interface Polymorphism 131
The new Modifier and Polymorphism 132
CaStinNg . 133
Type Operators. 137
Attribute Inheritance. 139
Visual Studio 2008o 140

Part Il Core Skills

4 Introduction to Visual Studio 2008 143
Migrating to Visual Studio 2008 143
Integrated Development Environment. 145

Start Page 146
Creating Projects 147
Multiple-Targeting. 148
Solution Explorer. 148
Adding References. 151
Managing Windows in Visual Studio 152
AUTORECOVEN . . .o 153
Class Hierarchies. e 154
Class View WINdow o 154
ObjJeCt BIOWSET. . o ottt 155
Class Diagram 156
Inheritance 160
ASSOCIAtION o oottt 162
A Class Diagram Example. 162
Error List Window. 167
Code Editor. . ..o 167
IntelliSense 167
Surround With ... 169
Font and Color Formatting i 169
Source Code Formatting. 170
Change Tracking 170
Code SNIPPELS. - o et 170
Insert a Code Snippeto 171

Default Snippets.o 172

xii Table of Contents

Code Snippets Manager. 174
Creating Snippets.o 175
Copy and Paste. 181
Refactoringo 182
Refactoring Example.o 183
Building and Deployment. 187
MSBUIlD . ..o 187
ClickOnce Deployment. ... 193
Arrays and Collections. 199
5 Arraysand Collections L, 201
AT S o 203
Array Elementso 205
Multidimensional Arrays. 206
Jagged Arrays. ... 208
SYStEMLAITAY . . oo 210
System.Array Properties 218
params KeywWord 227
Array CONVEISION . .o oottt et e 229
COllECtiONS. . . v 230
ArrayList Collection 231
BitArray Collection. 235
Hashtable Collection 238
Queue Collection 242
Stack Collection 247
Specialized Collections i 248

LINQ .o 249
6 Introductionto LINQ 251
CH EXTENSIONS .« oottt 253
Type Inference 253
Object Initializers. 253
ANONYMOUS TYPES . o oottt 254
Extension Methods 254
Lambda EXpression 255
EXPression Trees. . ..ottt 256

LINQ Essentials 257

Core Elements. 257

Table of Contents xiii

Conversion Operators.ttt 261
LINQ Query Expression Syntax ..., 262
Where Is LINQ?. 263
LINQ to Objectso 264
Examples of LINQ to Objects 265

LINQ Operatorsot 268
Aggregation Operators.t 268
Concatenation Operator.t 269

Data Type Conversion Operatorsooueeeeuiinninnnn. 270
Element Operators.o 271
Equality Operator. o 272
Filtering Operator 272
Generation Operators.t 273
Grouping Operator 273

Join Operators 274
Partitioning Operators ... 274
Quantifier Operators. 275

Set Operators 276
Sorting OpPeratorsttt 276
GENEIICS . . e 278
7 € 1= 3 =T T ol 279
GeNEIC TYPES - o ottt et e e 282
Type Parameters.o 282

Type ArgumMENtS. . ..o 282
ConStructed TYPES . . . 287
Overloaded Methods i 287
GenericMethods 289
The this Reference for Generic Types., 290
CONSraiNtS. . o oo 291
Derivation Constraints.t 292
Interface Constraints. i 297
Value Type Constraintsouii e 298
Reference Type Constraints, 299
Default Constructor Constraints 300
CaStiNg . . 301
Inheritance. 301
Overriding Generic Methods. i, 303

Nested TYPeS . ..ottt 304

xiv Table of Contents

Static Members. ... 305
Operator FUNCLIONS 306
Serialization. 308
Generics Internals. 310
Generic Collections 312

Enumerators 312

8 Enumerators e e 313

Enumerable Objects. 314

Generic Enumerators. 321

Erators . o 325

Operator Overloading. 334

Part Il More C# Language

9 OperatorOverloadingc.iiiiiiiiiiiiien.... 337
Mathematical and Logical Operators. 338
Implementation 339
Increment and Decrement Operators. 342
LeftShift and RightShift Operatorsccoiiinio... 343
Operator True and Operator False 344
Paired Operatorso 345
Conversion OPeratorsttt e e e 351
The Operator String Operator 354

A Practical Example 355
Operator Overloading Internals i i, 358
Delegates and Events 360
10 DelegatesandEvents............... ..., 361
Delegates. . ..o 361
Defininga Delegate. ... 363
CreatingaDelegate. ... 363
Invoking aDelegate 365
Arrays of Delegates . ..ot 365
Asynchronous Invocation. 372
Asynchronous Delegate Diagram 376
EXCEPtIONS . . .o 378
Anonymous Methods 379

Outer Variables. 382

Table of Contents

Generic Anonymous Methods. 384
Limitations of Anonymous Methods 385
EVeNtS . oo 385
Publishingan Event. 386
Subscribers ... 387
Raisingan Event. 387

LINQ Programmingt e 390
11 LINQProgrammingc.ceuuiiniinninennennennenns 391
LINQto XML . ..o 391
XML Schemaso 392
Validation 392
Navigation.o 393

XML Modification 399

XML Query EXPressionsoouueeae i 401

LINQ t0 SQL ottt 402
Entity Classeso oo 402

LINQ to SQL Query EXpression ..., 404
ASSOCIAtIONS . ..ot 407
LINQto SQLUpdateso 410
Exception Handling 412

12 ExceptionHandling il 413
An Exception Example. oo 413
A Standard Exception Model 414
Structured Exception Handlingo i i i 415
Try Statements 415
Catch Statements. 417
Finally Statements 420
Exception Information Table 421
Nested Try Blocks. oo 421
System.EXception 423
System.Exception FUNCLIONSt 423
System.Exception Properties. i 425
Application EXceptions 426
Exception Translation 428

COM Interoperability Exceptions, 429
Remote EXceptions. 434

Unhandled EXCEPLIONS. 435

Xvi Table of Contents

Application.ThreadException. ccciiiiiieeeiioi.. 437
AppDomain.UnhandledException 437
Managing Exceptions in Visual Studio ool 439
The Exception Assistanto i 439
The Exceptions Dialog Box. i 439
Metadata and Reflection 440

Part IV Debugging

13 Metadataand Reflection............ 443
Metadata.o 443
Metadata Tokens 445
Metadata Heaps. 446
StreamMS . 446
Metadata Validation 447
ILDASM L 448
Reflection. o 453
Obtaininga Type Object ... e 453
Loading Assemblies. 456
Browsing Type Information 458
Dynamic Invocation. 461

Type Creationot 467

Late Binding Delegates. 469
Function Call Performance. ..., 471
Reflection and Generics 471
IsGeneric and IsGenericTypeDefinitionccuveiuinann. 472

Y PO, 473
Gt P . ot 473
GetGenericTypeDefinition 474
GetGenericCArgUMENtso 475
Creating Generic TYPES. . ..ot vi ittt e 476
Reflection Security. 477
AttribULeS. . . 478
Programmer-Defined Custom Attributes 480
Attributes and Reflection 485

S 487
14 MSILProgramming.uuuiiniinennenneneenennnn 489
"Hello World” Application 491

Evaluation Stack 493

Table of Contents xvii

MSILin Depth. ..o 494
DIreCtiVeS. . . 494
Complex Tasks 506
Managing Types.o 506
Branching. 512
Calling Methods. 514
AT Y S e 517
Arithmetic Instructions 519
Conversion Operationso 519
Exception Handling 520
Miscellaneous Operations.ouuuuee e 522
Process EXecution. 522
Roundtrippingo 524
Debugging with Visual Studio 2008 526
15 Debugging with Visual Studio 2008 527
Debugging OVEervIieW 528
Debugging Windows Forms Projects., 528
Attaching to a Running Process ..., 529
Debugging Console Application Projects 530
Debugging Class Library Projects............... 531
Debug Setup. . ..o 531
Debug and Release Configurations 532
Configuration Manager ot 532
Debug Settings.o 533
Visual Studio Environment Debug Settings. 534
Debug Settings fora Solution............ 540
Debug Settings fora Project 540
Breakpoints 542
Function Breakpoints 542
Breakpoints Window. 544
Trace Points.o o 548
Code StePPING . oo v 551
Step COmMMaANAS. ... 551
Example of Setting The Next Statement 552
Debug Toolbar 553
Data TIPS o oo 553
Visualizers o 554

Debug WIindows. 556

xviii

Table of Contents

Breakpoints Window. 556
OutpUt Window 556
Watch Window and Other Variables Windows. 557
Autos WINdow . ..o 560
Locals Windowo 560
Immediate Window. 560

Call Stack Windowo o o 563
Threads Window 564
Modules Window. 565
Memory Window. 566
Disassembly Window 567
Registers Window 567
TraACING e 568
Tracing Example.o 577
Configuration File 580
Tracing Example with a Configuration File 582
DebuggerDisplayAttribute. 585
DebuggerBrowsableAttribute 586
DebuggerTypeProxyAttribute 589
DUMp Files. oo 589
Advanced Debugging 591
16 AdvancedDebugging il 593
DebuggableAttribute Attribute 595
DEbUggerS. . o o 595
Managed Debugger (MDbg)ot 596
MDbg Commands 601
WiNDDg . 603
Basic WinDbg Commandst 603

Son of Strike (SOS)o 610
SOS Example, Part 1. 611

SOS Example, Part Il 614
DUMIPS e 616
ADPIUS . . oo 617
Memory Management 619
Object graph. ... 620
GeNErations. 622
Finalization 626

Reliability and Performance Monitor.............. 627

Table of Contents

Threads. . ..o 628
Threads Commands.oou it 630
EXCEPHIONS . o oo 636
SYMOIS . 637
Symsrv Symbol Server. 638
Application Symbols 639
Memory Management 639

PartV Advanced Features

17 Memory Management...........ottt 643
Unmanaged RESOUICESttt 644
Garbage Collection Overview i, 645

GC FIaVOrS . o oo 649

Finalizers oo 651
IDisposable.Dispose 665
Disposable Pattern. i 669
Disposable Pattern Considerationsccoooo... 671

Disposing Inner Objects 675

Weak Reference 677
Weak Reference Internals.oo i 680
WeakReference Class. 680

Reliable Code 681

Managing Unmanaged Resourcesc.oouuiiiiiiinnnn. 685

The GC CIass . . e 688
Unsafe Code o 688

18 UnsafeCode.........coiiiniiiii it 691
Unsafe Keyword 693
POINtErS .« . 694

Pointer Parameters and Pointer Return Values. 697

P/INVOKE. . . o 701

SUMIMIATY .t 715
INdeX. ..o e e e 717

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and
learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey

Xix

Chapter 1
Introduction to Microsoft Visual
C# Programming

Microsoft Visual Studio 2008, known during development as Orcas, is the successor to
Microsoft Visual Studio 2005. The launch of the latest version of Visual Studio coincides with
the release of Visual C# 2008, .NET Framework 3.5, and ASP.NET 3.5. Microsoft continues to
shift Visual Studio from simply a comprehensive developer tool to a solution for the software
lifecycle. This includes an Integrated Development Environment (IDE), components (testing
tools, code analysis, and more), and tools for software design, development, testing, quality
assurance, and debugging.

Anders Hejlsberg, technical fellow and chief architect of the C# language at Microsoft, has
discussed Visual C# 2008 on numerous occasions. He highlights Language Integrated Query
(LINQ) and related enhancements as the primary new features in Visual C# 2008. LINQ is a
unified query model that is object-oriented and integrated into the C# language. New fea-
tures, such as lambda expressions, extension methods, expression trees, implicitly typed local
variables and objects, and other new features are useful in isolation, but they also extend the
language to support LINQ. These and other changes are sure to secure the stature of C# as
the preeminent development language for .NET.

With LINQ, Visual C# 2008 changes the relationship between developers and data. LINQ is
an elegant solution for accessing specific data using a query language that is independent

of the data source. LINQ is also object-oriented and extensible. LINQ moves C# a measure
closer to functional programming, it refocuses developers from managing the nuts and bolts
of data (state) to behavior of information (objects), and it provides a unified model for query-
ing data that no longer depends on the vagaries of a specific language or technology. With
LINQ, you can access with the same unified query model a Structured Query Language (SQL)
database, an Extensible Markup Language (XML) file, or even an array.

LINQ removes the distinction between data and objects. Traditional queries are strings that
are not entirely type-safe and return a vector of information, which defines the disconnect
between data and objects (objects being type-safe, supporting IntelliSense, and not neces-
sarily rectangular). LINQ forms an abstraction layer that allows developers to treat data as
objects and focus on solutions in a unified manner without sacrificing specificity.

Visual Studio 2008 epitomizes the term unified. For example, Visual Studio 2008 provides a
unified environment for developing to different .NET targets. In addition, the Visual Studio
Designer provides a unified canvas where Microsoft Windows Forms, Extensible Application
Markup Language (XAML), and Windows XP and Windows Vista visually themed applications

Part| Core Language

can be designed and implemented. Visual Studio C# 2008 has additional capabilities for
creating enterprise, distributed, or Web-based applications—most notably with Microsoft
Silverlight. Silverlight is a plug-in that provides a unified environment for building Web appli-
cations with cross-browser support and that promotes enhanced rich interactive applications
(RIA).

Visual Studio 2008, with ASP.NET 3.5, further separates design and implementation
responsibilities, allowing for clearer separation of designer and developer roles.

The trend towards collaborative and team development continues. No developer can be
completely self-reliant, and Visual Studio 2008 has additional features that benefit a wide
variety of teams ranging from small to large in size. Visual Studio 2008 also recognizes

the important role of everyone—not just developers but others on the software team. For
example, the new database project separates language developer and database developer/
architect roles.

As mentioned, Visual Studio 2008 encompasses the entire life cycle of a software application.
The product boasts new revisions of tools for testing and quality assurance. Many of these
tools were introduced in Visual Studio 2005. Furthermore, testing tools have been extended
to the Professional revision of the product, making them available to more developers and
not reserved for Microsoft Visual Studio Team editions. Both developers and non-developers,
such as quality assurance staff, can use the testing tools that have been incorporated into
Visual Studio 2008. The testing tools are easy to use but comprehensive, and performance
also has been improved. Finally, the testing tools are integrated better, including seamless
access to unit testing in the IDE. Chapter 17, “Testing,” reviews Visual Studio 2008 testing
tools.

.NET Framework 3.5 and the Common Language Runtime (CLR) platform continues to
provide important services for managed applications, such as memory management,
security services, type-safety, and structured exception handling. The .NET Framework

now supports LINQ and other new features. Some favorite new elements of the .NET
Framework include (but are not limited to) Active Directory APIs (System.DirectoryServices.
AccountManagement.dll), ASP.NET AJAX (System.Web.Extensions), Peer-To-Peer (P2P) sup-
port (System.NET.dII), STL to CLR for Managed C++ developers (System.VisualC.STLCLR.dII),
Window Presentation Foundation (WPF; System.Windows.Presentation.dll), and Windows
Communication Foundation (System WorkflowServices.dll). .NET Framework 3.5 offers numer-
ous other enhancements, including improved network layers and better performing sockets.

Visual C# 2008 is a modern, object-oriented, and type-safe programming language. C# has
its roots in the C family of languages and will be immediately comfortable to C, C++, and
Java programmers. The ECMA-334 standard and ISO/IEC 23270 standard apply to the C#
language. Microsoft's C# compiler for the .NET Framework is a conforming implementation
of both of these standards.

Chapter 1 Introduction to Microsoft Visual C# Programming

A Demonstration of Visual C# 2008

To introduce programming in Visual C# 2008, the following code examples are presented
with explanations. Some of the programming concepts given in this section are explained in
depth throughout the remainder of the book.

Sample C# Program

In deference to Martin Richards, the creator of the Basic Combined Programming Language
(BCPL) and author of the first “"Hello, World!" program, | present a “"Hello, World!" program.
Actually, | offer an enhanced version that displays “Hello, World!" in English, Italian, or
Spanish. The program is a console application.

Here is my version of the “Hello, World!" program, which is stored in a file named hello.cs:
using System;
namespace HelloNamespace {

class Greetings{
public static void DisplayEnglish() {
Console.WriteLine("Hello, world!");
}
public static void DisplayItalian() {
Console.WriteLine("Ciao, mondo!");
}
public static void DisplaySpanish() {
Console.WriteLine("Hola, imundo!™);
}
}

delegate void delGreeting();

class HelloWorld {
static void Main(string [] args) {
try {

int iChoice = int.Parse(args[0]);

delGreeting [] arrayofGreetings={
new delGreeting(Greetings.DisplayEnglish),
new delGreeting(Greetings.DisplayItalian),
new delGreeting(Greetings.DisplaySpanish)};

arrayofGreetings[iChoice - 1]10);
}
catch(Exception ex) {
Console.WriteLine(ex.Message);

3

Part| Core Language

Csc.exe is the C# compiler. Enter the following €¢sc command at the Visual Studio command
prompt to compile the hello.cs source file and create the executable hello.exe:

csc hello.cs

The hello.exe file is a .NET single-file assembly. The assembly contains metadata and
Microsoft Intermediate Language (MSIL) code but not native binary. Mixed assemblies (both
native and managed) may contain binary.

Run the Hello application from the command line. Enter the program name and the lan-
guage (1 for English, 2 for Italian, or 3 for Spanish). For example, the following command line
displays “Ciao, mondo!” (“Hello, world!" in Italian).

Hello 2

The source code of the Hello application highlights the common elements of most .NET
applications: using statement directive, a namespace, types, access modifiers, methods,
exception handling, and data.

Note C# is case-sensitive.

The HelloNamespace namespace contains the Greetings and HelloWorld types. The Greetings
class has three static methods, and each method displays “Hello, World!" in a different natu-
ral language. Static methods are invoked on the type (classname.member), not an instance
of that type. The static methods of the Greetings type are also public and therefore visible
inside and outside the class.

Delegates define a type of function pointer. The delGreeting delegate is a container for func-
tion pointers. A delGreeting delegate points to functions that return void and have no param-
eters. This is (not so coincidentally) the function signature of the methods in the Greetings

type.

The entry point of this and any other C# executable is a Main method. Command-line param-
eters are passed as the args parameter, which is a string array. In the HelloWorld program, the
first element of the args array is used as a number indicating the language of choice, as input
by the user. The Hello application converts that element to an integer. Next, the program de-
fines an array of function pointers, which is initialized to point to each of the methods of the
Greetings class. The following statement invokes a function pointer to display the selected
HelloWorld message:

arrayofGreetings[iChoice - 11Q);

The value iChoice - 1 is an index into the delegate array. Since arrays are zero-based in C#,
iChoice is offset by -1.

Chapter 1 Introduction to Microsoft Visual C# Programming 7

Most of the code in the Main method is contained in a try block. The code in the try block is
a guarded body. A guarded body is protected against exceptions defined in the correspond-
ing catch filter. When an exception is raised that meets the criteria of the catch filter, execu-
tion is transferred to the catch block, which displays the exception message. If no exception is
raised, the catch block is not executed. In our HelloWorld application, omitting the choice or
entering a non-numeric command-line parameter when running the program will cause an
exception, which is caught, and the catch block displays the appropriate message.

There are several statement blocks in the sample code. A statement block contains zero or
more statements bracketed with curly braces {}. A single statement can be used separately or
within a statement block. The following two code examples are equivalent:

// Example 1
if (bvalue)
Console.WriteLine ("information");

// Example 2
if (bvalue)
{

Console.WriteLine ("information");

3

Sample LINQ Program

Because LINQ plays such an important role in Visual C# 2008, here are two sample applica-
tions to demonstrate LINQ. Actually, the LINQ example comprises two examples: a traditional
version and a LINQ version. Both examples list the names of people that are 30 years old or
older. The traditional example filters the names with an if statement. The LINQ example uses
a LINQ query to ascertain the correct names. The result of both applications is identical.

Here is the traditional example, stored in a file named people.cs:
using System;
namespace Example {

class Person {
public Person(string _name, int _age) {
name = _name;
age = _age;
}
public string name =
public int age = 0;

Part| Core Language

class Startup {
static void Main() {

Person [] people = {new Person("John", 35),
new Person("Ji11", 37),
new Person("Jack", 25),
new Person("Mary", 28)};

foreach (Person p in people) {

if (p.age >= 30) {
Console.WriteLine(p.name);

}

}

The code has a single namespace, which is Example. Example contains the Person and Startup
types. The Person class has a public two-argument constructor. A constructor is a method
with the same name as its class. This constructor is used to initialize instances of the Person
class. The Person type contains two fields—name and age.

Main, the entry point function, is in the Startup class. In Main, an array of four employees is
defined. The foreach statement iterates through the elements in the people array. Next, the if
statement filters the employees and displays the names of people 30 years old or older in the
console window.

The program is compiled with the C# compiler as follows:

csc people.cs

Here is the LINQ version of this example:

using System;
using System.Ling;

namespace Example {

class Person {
public Person(string _name, int _age) {
name = _name;
age = _age;
}
public string name =
public int age = 0;

woo,

}

class Startup {
static void Main() {
Person [] people={new Person("John", 35),
new Person("Ji11", 37),
new Person("Jack", 25),
new Person("Mary", 28)};

Chapter 1 Introduction to Microsoft Visual C# Programming 9

var ageQuery = from p in people
where p.age >= 30
select p;
foreach (var p in ageQuery) {
Console.WriteLine(p.name);

}

3

The LINQ version filters people using a LINQ query instead of an if statement. This highlights
the seminal difference between a traditional query and LINQ. The if statement in the tradi-
tional version filters data, whereas the LINQ query in the LINQ example filters Person objects.
In this way, LINQ removes the disconnect between objects and data.

The var keyword in the ageQuery variable declaration is for type inference. Type inference is
not typeless. A specific type is inferred at compile time from the result of the LINQ query ex-
pression. This keeps the code type-safe, which is an important tenet of .NET. In our example,
the query expression evaluates to an array of Person types. Therefore, at compile time, “var
query” implies "Person [] query".

Common Elements in Visual C# 2008

The remainder of the chapter discusses the common elements of Visual C# 2008 programs.

Namespaces

Namespaces provide hierarchical clarity of classes within and across related assemblies. The
.NET Framework Class Library (FCL) is an example of the effective use of namespaces. The FCL
would sacrifice clarity if it were designed as a single namespace with a flat hierarchy. Instead,
the FCL is organized using a main namespace (System) and several nested namespaces.
System, which is the root namespace of the FCL, contains the classes ubiquitous to .NET, such
as Console. Types related to LINQ are grouped in the System.Ling namespace. Other .NET
services are similarly nested in .NET namespaces. For example, data services are found in the
System.Data namespace and are further delineated in the System.Data.SqlClient namespace,
which contains classes specific to Microsoft SQL.

A nested namespace is considered a member of the containing namespace. Use the dot
punctuator () to access members of the namespace, including nested namespaces.

A namespace at file scope, not nested within another namespace, is considered part of the
compilation unit and included in the global declaration space. (A compilation unit is a source
code file. A program partitioned into several source files has multiple compilation units—one
compilation unit for each source file.) Any namespace can span multiple compilation units.

10

Part| Core Language

For example, all namespaces defined at file scope are included in a single global declaration
space that also spans separate source files.

The following code has two compilation units and three namespaces. ClassB is defined in the
global declaration space of both compilation units, which is a conflict. ClassC is defined twice
in NamespaceZ, which is another conflict. For these reasons, the following program will not
compile.

The global declaration space has four members. NamespaceY and NamespaceZ are mem-
bers. The classes ClassA and ClassB are also members of the global namespaces. The mem-
bers span the Filel.cs and File2.cs compilation units, which both contribute to the global
namespace:

// filel.cs

pubTlic class ClassA {
}

pubTlic class ClassB {
}

namespace NamespaceZ {
public class ClassC {
}

}

// file2.cs

pubTlic class ClassB {
}

namespace NamespaceY {
public class ClassA {
}

}

namespace NamespaceZ {

pubTlic class ClassC {
}

public class ClassD {
}
}

Attempt to compile the above code into a library from the command line with this state-
ment. You will receive compile errors because of the conflicts:

csc /t:library filel.cs file2.cs

Chapter 1 Introduction to Microsoft Visual C# Programming 11

The relationship between compilation units, the global namespace, and nonglobal
namespaces are illustrated in Figure 1-1.

filel.cs file2.cs
] I

Global Namespace

namespace NamespaceA namespace NamespaceA
namespace NamespaceB namespace NamespaceC
Compilation Unit Compilation Unit

FIGURE 1-1 Global declaration space vs. namespaces

The using directive makes a namespace implicit. You then can access members of the named
namespace directly without their fully qualified names. Do you refer to members of your
family by their “fully qualified names” or just their first names? Unless your wife is the queen
of England, you probably refer to her directly, simply using her first name. The using directive
means that you can treat members of a namespace like family members.

The using directive must precede the first member within a namespace in a compilation
unit. The following code defines the namespace member ClassA. The fully qualified name is
NamespaceZ NamespaceY.ClassA. Imagine having to type that several times in a program!

using System;

namespace NamespaceZ {
namespace NamespaceY {
class ClassA {
pubTlic static void FunctionM(Q) {
Console.WriteLine("FunctionM™");

}

}

namespace Application {
class Starter {
public static void Main() {
NamespaceZ.NamespaceY.ClassA.FunctionM(Q);

}

12

Part| Core Language

The using directive in the following code makes NamespaceZ NamespaceY implicit. Now you
can directly access ClassA without further qualification:

namespace Application {
using NamespaceZ.NamespaceY;
class Starter {
public static void Main() {
ClassA.FunctionM(Q);
}

}

Ambiguities can occur when separate namespaces with identically named members are
made implicit. When this occurs, the affected members can be assessed only with their fully
qualified names.

The using directive also can define an alias for a namespace or type. Aliases are typically
created to resolve ambiguity or simply as a convenience. The scope of the alias is the space
where it is declared. The alias must be unique within that space. In this source code, an alias
is created for the fully qualified name of ClassA:

namespace Application {
using A=NamespaceZ.NamespaceY.ClassA;
class Starter {
public static void Main() {
A.FunctionM(Q);
}

}

In this code, A is the alias and a nickname for NamespaceZ.NamespaceY.ClassA and can be
used synonymously.

Using directive statements are not cumulative and are evaluated independently. Take the
following example:

using System.Text;

The previous statement makes System.Text implicit but not the System namespace. The
following code makes both namespaces implicit:

using System;
using System.Text;

The extern alias directive is an alias to another assembly. The resulting alias can be combined
with a namespace to make an explicit reference to a namespace in a different assembly.
Separate the alias and referenced assembly with two colons as follows:

extern alias::namespace

Chapter 1 Introduction to Microsoft Visual C# Programming 13

Here is sample code for a library that contains two namespaces, stored in a file named mylib.cs:
using System;

namespace ANamespace{
namespace BNamespace {
public class XClass {
pubTlic static void MethodA() {
Console.WriteLine("MyLib::XClass.MethodA");
}

}

The following command will compile the source file into a Dynamic Link Library (DLL)
assembly:

csc /t:library mylib.cs

Here is sample code, stored in a file named program.cs, for an executable that uses the DLL
assembly. The extern alias statement resolves the ambiguity between the library and the
executable:

extern alias MyLib;
using System;

namespace ANamespace{
namespace BNamespace {
class XClass {
pubTlic static void MethodA() {
Console.WriteLine("Program: :XClass.MethodA");
}

3

class Startup{
pubTlic static void Main() {
MyLib: :ANamespace.BNamespace.XClass.MethodAQ);
}
}

The following command will compile the program and define MyLib as an alias for mylib.dll:

csc program.cs /r:MyLib=mylib.dT11

In the preceding code, the call to XClass.MethodA is not ambiguous because of the extern
alias. Because of the alias, the call to XClass.MethodA executes the version in the library
rather than the version in the current compilation unit.

Part| Core Language

Main Entry Point

Main is the entry point method for a C# application and a member function of a class or
struct (the entry point method is where the C# application starts executing). There are four
valid signatures for Main when being used as the entry point method:

static void Main() {
// main block
}

static int Main() {
// main block
}

static void Main(string [] args) {
// main block
}

static int Main(string [] args) {
//
}

A class or struct can contain only one entry point method. Main must be static and should
be private, although that is not required. Naturally, a public Main method is accessible as an
entry point method.

Application arguments are passed into the program as a string array parameter of the Main
function. Arrays in .NET are instances of the System.Array class. You can use the properties
and methods of System.Array to examine the application arguments, including the Length
field to determine the number of arguments passed into Main. The command arguments
start at element zero of the string array. When no arguments are passed, the arg parameter
is non-null but the array length is zero.

The return value of an entry point method is cached internally for interprocess communica-
tion. If the application is part of a system of applications and spawned to complete a specific
task, the return value could represent a status code or the result of that task. The default exit
code of an application is zero. The exit code of a process is stored in the Process Environment
Block (PEB) and is accessible through the GetExitCodeProcess application programming
interface (API).

What if the entry point is ambiguous? Look at this code, stored in main.cs:
using System;
namespace Application{

class StarterA{
static void Main() {

Chapter 1 Introduction to Microsoft Visual C# Programming 15

}
}
class StarterB{
static void Main() {

}
}

This code has two valid entry points, which is inherently ambiguous. The compiler option
main is available to designate the class name where the desired entry point method is found.
The following command successfully compiles the previous program:

csc /main:Application.StarterB main.cs.

Local Variables

Local variables are local to a statement block. Local variables can be declared anywhere

in the block, but they must be defined before use. Local variables can refer to either value
or reference types. A value type is allocated storage on the stack, whereas reference types
have memory allocated on the managed heap. Actually, the reference itself is on the stack,
while the object being referenced is on the managed heap. Value types are types such as
primitives, structures, and enumerations. The memory storage for value types is released
deterministically when the variable is no longer in scope. Reference types are types such as
user defined types, interfaces, strings, arrays, and pointers. They are always initialized with
the new keyword and removed nondeterministically by the Garbage Collector, which is a
component of the CLR. Value types can be initialized with a simple assignment and declared
in an individual declaration or in a daisy-chain:

int variablea = 5, variableb, variablec = 10;

The scope and visibility of a local variable is the statement block, where it is declared, and
any subsequent nested code blocks in the current statement block. This is called the variable
declaration space, in which local variables must be uniquely declared.

In the following code, several local variables are defined. The storage for variablea, variableb,
variablec, and variabled is released at the end of the function block when the variables are no
longer within scope. However, the lifetime of variablee, a local variable and reference type, is
managed by the Garbage Collector. It is generally good policy to set reference types to null
when they are no longer needed:

void Function() {
int variablea = 0;
int variableb = 1,variablec, variabled = 4;
const double PI = 3.1415;
UserDefined variablee = new UserDefined();

16

Part| Core Language

// function code

variablee = null;

Nullable Types

In the previous code, a reference type is set to null. Assigning null to an object indicates
that it is unused. This is consistent for all reference types. Can you similarly flag an integer as
unused? How can you stipulate that a value type contains nothing? Nulls are not assignable
to primitive value types like an integer or char (a compilation error would occur).

int variablea = null; // compiler error

Setting an integer to -1 is a possible solution, assuming that this value is outside the range of
expected values. However, this solution is non-portable, requires explicit documentation, and
is not very extensible. Nullable types provide a consistent solution for setting a value type to
null. This is especially important when manipulating data between C# and a database source,
where primitives often contain null values.

Declare a nullable type by adding the ? type modifier in the value type declaration. Here is
an example:

doubTle? variablel = null;

The object variablel is a nullable type and the underlying type is double. A nullable type
extends the interface of the underlying type. The HasValue and Value properties are added.
Both properties are public and read-only. HasValue is a Boolean property, whereas the type
of Value is the same as the underlying type. If the nullable type is assigned a non-null value,
HasValue is true and the Value property is accessible. Otherwise, HasValue is false, and an
exception is raised if the Value property is accessed. The acceptable range of values for a
nullable type includes the null value and the limits of the underlying type.

The null coalescing operator (??) evaluates the value of a nullable type. The syntax is as
follows:

variable ?? r_value

If the nullable type contains a value, the expression evaluates to that value. If the nullable
type is empty (that is, it contains null), the expression evaluates to the r_value of the null

coalescing operator. The stated r-value of the null coalescing operator must be the same
type as the underlying type. The following code sets variable2 to the value of variablel if
variablel is not null and to zero otherwise:

doubTle variable2 = variablel ?? 0;

Chapter 1 Introduction to Microsoft Visual C# Programming 17

Here is another example of nullable types:

static void Main() {
int? variablea = null;
Console.WriteLine(variablea.HasValue); // false
int variableb = variablea ?? 5;
Console.WriteLine(variableb); // 5

Expressions

Expressions resolve to a value. An expression commonly contains one or more operators.
However, an expression also can be a single value or constant. Operators are unary, binary, or
ternary.

With the exception of the assignment and ternary operators, expressions are evaluated
from left to right. Expressions can contain multiple operators; operators are evaluated in
order of precedence. Use parentheses to change the precedence or to clarify the desired
precedence.

Table 1-1 lists the order of precedence.

TABLE 1-1 Order of precedence for expressions
Precedence Operator

1 array '[], checked, function '()', member operator "', new, postfix decre-
ment, postfix increment, typeof, default, anonymous method, delegate, and
unchecked operators

2 unary addition '+, casting ‘()’, one’s complement '~, logical not "', prefix
decrement, prefix increment, and negation -’ operators

3 division /', modulus ‘%', and multiplication *" operators
4 binary addition +" and binary subtraction ‘~' operators
5 left-shift ‘<<’ and right-shift '>>' operators
6 as, is, less than ‘<, less than or equal to '<=', greater than ">, and greater
than or equal to '>=" operators
7 equals '=="and not equal '/=" operators
Logical And ‘& operator
Logical XOR A" operator
10 Logical Or '|" operator
11 Conditional And ‘&&' operator
12 Conditional Or ’||" operator
13 Null coalescing ‘??'operator
14 Conditional ‘2" operator
15 Assignment ‘=", compound *=, /=, %=, +=, —=, <<=, >>=, &=, "=, and |=,

and lambda operator '=>"

18

Part| Core Language

Selection Statements

A selection statement evaluates an expression to determine what code branch is executed
next. Selection statements include if statements, while loops, for loops, and goto and switch
statements.

An if statement evaluates a Boolean expression. If the expression is true, control is transferred
to the next true_statement. If the expression is false, execution is transferred to the first state-
ment after the true_statement.

Here is the syntax of the if statement:

if (Boolean_expression) true_statement

In the preceding code, the true_statement is executed when Boolean_expression is true.
When combined with an else condition, the if statement has true_statement and false_statement.
The false_statement immediately follows the else statement. When the Boolean_expression

is true, you are transferred to the true_statement. If it is false, control is transferred to the
false_statement. If nested, the else statement belongs to the nearest if statement.

Here is the syntax:

if (Boolean_expression)
true_statement;
else
false_statement;

An alternative to nested if and else statements is the else if clause, which is particularly useful
in evaluating choices. The else if statement can be used along with an else statement.

The syntax appears here:

if (Boolean_expression_1)
true_statement_1;

else if (Boolean_expression_2)
true_statement_2;

else if (Boolean_expression_n)
true_statement_n;

else
false_statement;

This is an example of various if statements:

static void Main() {
Console.WriteLine("Enter command:");
string menuChoice=(Console.ReadLine()).ToLower();

Chapter 1 Introduction to Microsoft Visual C# Programming 19

if (menuChoice == "a")
Console.WriteLine("Doing Task A");
else if (menuChoice == "b")
Console.WriteLine("Doing Task B");
else if (menuChoice == "c")
Console.WriteLine("Doing Task C");
else
Console.WriteLine("Bad choice");

}

A switch statement is sometimes a better solution then an if statement. Within a switch
statement, execution jumps to the case label that matches the switch expression. The switch
expression must resolve to an integral, char, enum, or string type. The case label is a constant
or literal and must have the same underlying type as the switch expression.

Here is the syntax for the switch statement:

switch (switch_expression)
{
case Tlabell:
switch_statementl;
case label2:
switch_statement?2;
default:
default_statement;

3

A switch statement contains a switch expression and is followed by a switch block, which
contains one or more case statements. Within the switch block, each case statement must
evaluate to a unique label. After the switch expression is evaluated, control is transferred to
the matching case label. The matching case has the same value as the switch expression. If
no case label matches the switch expression, control is transferred to the default case state-
ment or (if the default case statement is not present) to the next statement after the switch
statement.

Unlike C and C++, cascading between case statements is not allowed—that is, you cannot
“crash the party” of another case statement. Each case block must conclude with a transfer of
control, such as break, goto, return, or throw. The exception is cases that have no statements,
where fallthrough is allowed.

This is sample code for a switch statement:

static void Main() {
Console.WriteLine("Enter command:");
string resp = (Console.ReadLine()).ToLower(Q);
switch (resp) {
case "a":
Console.WriteLine("Doing Task A");

break;

20 Part| Core Language

case "b":
Console.WriteLine("Doing Task B");
break;

case "c":
Console.WriteLine("Doing Task C");
break;

default:

Console.WriteLine("Bad choice");
break;

}

Any object, value, or reference type that is convertible to an integral, char, enum, or string
type is acceptable as the switch_expression, which is demonstrated in the following code. You
are allowed a one-step conversion to one of the acceptable types.

class Employee {
public Employee(string f_Emplid) {
m_Emplid = f_Emplid;
}

static public implicit operator string(Employee f_this) {
return f_this.m_EmpTid;
}

private string m_Emplid;

3

class Starter {
static void Main() {
Employee newempl = new Employee("1234");
switch (newempl) {
case "1234":
Console.WriteLine("Employee 1234");
return;
case "5678":
Console.WriteLine("Employee 5678");
return;
default:
Console.WriteLine("Invalid employee");
return;

Iterative Statements

C# has the full repertoire of C-style iterative statements. C# also has a foreach statement.
Iterative statements repeat a statement until a condition has been satisfied.

The for statement is designed for structured iteration. The while and do statement itera-
tions are more flexible. The for statement contains three clauses. First is the initializer_clause,

Chapter 1 Introduction to Microsoft Visual C# Programming 21

where the loop iterators are declared. The scope of an iterator is the for statement and
for_statement. Second is the Boolean_expression, which must evaluate to a Boolean type. The
expression normally compares the iterator to a stop value. Third, the iterator_expression is
executed at each iteration, which is usually responsible for updating the iterator. Each clause
is optional and delimited with a semicolon. The for_statement is repeated until the Boolean_
expression is false.

The for_statement is repeated zero or more times. If the Boolean_expression is initially false,
the for_statement is executed zero times. The syntax of the for statement is as follows:

for (initializer_clause; Boolean_expression; iterator_expression) for_statement

The following is a rather mundane for loop:

static void Main() {
for (int iCounter = 0; iCounter < 10; ++iCounter) {
Console.Write(iCounter);
}
}

Both the initializer_clause and iterator_expression can contain multiple statements delim-
ited by commas, not semicolons. This allows additional flexibility and complexity. Here is an
example:

static void Main() {
for (int iBottom = 1, iTop = 10; iBottom < iTop; ++iBottom, --iTop) {
Console.WriteLine(“{0}x{1} {2}”, iBottom, iTop, iBottom * iTop);
}
}

The while statement, which is an iterative statement, is more free-form than the for state-
ment. The body of the while statement is executed zero or more times; it is executed when the
Boolean_expression is true. If the Boolean_expression is initially false, the body is executed zero
times.

Typically, the while statement or expression is responsible for altering an iterator or other
factors, eventually causing the Boolean_expression to evaluate to false, which ends the loop.
Care should be taken to avoid unintended infinite loops.

The syntax for the while statement is as follows:

while (Boolean_expression) body_statement

This is source code for selecting a choice rewritten with a while statement:

static void Main() {
string resp;
Console.WriteLine("Enter command ('x' to end):");
while ((resp=(Console.ReadLine()).ToLower()) !'= "x") {
switch (resp) {

22

Part| Core Language

case "a":
Console.WriteLine("Doing Task A");
break;

case "b":
Console.WriteLine("Doing Task B");
break;

default:
Console.WriteLine("Bad choice™);
break;

}

A do statement is a loop that evaluates the Boolean_expression at the end. This is the reverse
of the while statement. The impact is that the body of the do statement is repeated one or
more times. The niche for the do statement is when the body must be executed at least once.
The iteration of the body continues while the Boolean_expression is true.

Here is the syntax of the do statement:

do body_statement while (Boolean_expression)

Here is sample code of the do statement:

static void Main() {

string resp;

do {
Console.WriteLine("Menu\n\nl - Task A"™);
Console.WriteLine("2 - Task B");
Console.WriteLine("E - E(xit)");
resp = (Console.ReadLine()).ToLower();

}

while(resp!="e");

}

The foreach statement is a convenient mechanism for automatically iterating elements
of a collection. The alternative is manually iterating a collection with an enumerator
object obtained with the /Enumerable.GetEnumerator method. All collections implement
the I[Enumerable interface. The foreach statement is unquestionably simpler.

This is the syntax of the foreach statement:

foreach (type variable in collection) body_statement

The foreach statement iterates the elements of the collection. As each element is enumer-
ated, the variable is assigned the current element, and the body of the foreach statement
is executed. The scope of the variable is the foreach statement. When the collection is fully
iterated, the iteration stops.

Chapter 1 Introduction to Microsoft Visual C# Programming 23

The variable type should be related to the type of objects contained in the collection. In
addition, the variable is read-only. Even using the variable in a context that implies change,
such as passing the variable as a ref function parameter, is an error.

This code iterates an array of numbers:

static void Main() {
string [] numbers={ "uno", "dos",
"quatro", "cinco"};
foreach (string number in numbers) {
Console.WriteLine(number);

"tres",

3
}

The break statement forces a premature exit of a loop or switch. Control is transferred to the
statement after the loop or switch. In a switch block, the break prevents fallthrough between
switch_labels. For an iterative statement, a break stops the iteration unconditionally and exits
the loop. If the switch or iterative statement is nested, only the nearest loop is exited.

The continue statement transfers control to the end of a loop where execution of the loop
is allowed to continue. The Boolean_expression of the iterative statement then determines
whether the iteration continues.

This is sample code of the break statement:

static void Main() {

string resp;

while(true) {
Console.WriteLine("Menu\n\nl - Task A");
Console.WriteLine("2 - Task B");
Console.WriteLine("E - E(xit)");
resp = (Console.ReadLine()).ToLower();
if (resp == "e") {

break;

}

C# Core Language Features

Now that some basic examples and the framework of Visual C# 2008 code have been
presented, we can discuss the fundamental building blocks of any C# application. This sec-
tion starts by discussing symbols and tokens, the most elemental components of a Visual C#
2008 application.

24

Part| Core Language

Symbols and Tokens

Symbols and tokens are the basic constituents of the C# language. C# statements consist of
symbols and tokens—indeed, they cannot be assembled without them. Table 1-2 provides a
list of the C# symbols and tokens. Each entry in Table 1-2 is explained in the text that follows.

TABLE 1-2 C# Symbols and tokens

Description

White space
Tab
Punctuator

Line terminator

Comment
Preprocessor directive
Block

Lambda expression
Generics

Nullable type
Character

Escape character

Integer suffix (case-insensitive)

Real suffix (case-insensitive)

Operator

Compound operator

White Space

Symbols or tokens

Space, Form Feed

Horizontal_tab, Vertical_tab

Carriage return, line feed, next line character, line separator, para-
graph separator, carriage return and line feed together

V/AVAR /S i
#

{}

Unicode_character

\code

ulullu

fdm

%%/ ><?22()[]]|| N~ ++-- =isas & && -> 1 << >>
==l=<=>= 4= -=*= /= %= &= |= A= <<= >>= =>

White space is defined as a space, horizontal tab, vertical tab, or form feed character. White
space characters can be combined; where one whitespace character is required, two or more
contiguous characters of white space can be substituted.

Tabs

Tabs—horizontal and vertical—are white-space characters, as discussed just previously.

Punctuators

Punctuators separate and delimit elements of the C# language. Punctuators include the
semicolon (;), dot (), colon (), and comma (,).

Chapter 1 Introduction to Microsoft Visual C# Programming 25

Semicolon punctuator In Visual C#, statements are terminated with a semicolon (,). C# is a
free-form language in which a statement can span multiple lines of source code and can start
in any position. Conversely, multiple statements can be combined on a single source code
line. Here are some variations:

int variablea =
variableb +
variablec;

variableb = variableb + 3; variablec = variablec + 1;
++variableb;

Dot punctuator Dot syntax connotes membership. The dot character (.) binds a target to
a member, in which the target can be a namespace, type, structure, enumeration, interface,
or object. This assumes the member is accessible. Membership is sometimes nested and de-
scribed with additional dots.

Here is the syntax for the dot punctuator:
Target.Member

This is an example of the dot punctuator:
System.Windows.Forms.MessageBox.Show("A nice day!");

System, Windows, and Forms are namespaces. MessageBox is a class. Show, the most nested
member, is a static method.

Colon punctuator The colon punctuator primarily delimits a label, indicates inheritance,
indicates interface implementation, sets a generic constraint, or is part of a conditional
operator.

Labels are tags for locations to which program execution can be transferred. A label is ter-
minated with a colon punctuator (;). The scope of a label is limited to the containing block
and any nested block. There are various methods for transferring to a label. For example, you
can jump to a label with the goto statement. Within a switch block, you also can use the goto
statement to jump to a case or default statement.

Here is the syntax for the label punctuator:
label_identifier: statement

A statement must follow a label, even if it's an empty statement.

26

Part| Core Language

Here is an example of a goto statement:

public static void Main() {
goto one;
// do stuff
one: Console.WriteLine("one");

}

Comma punctuator The comma punctuator delimits array indexes, function parameters,
types in an inheritance list, statement clauses, and other language elements. The comma
punctuator separates clauses of a for statement in the following code:

for (int iBottom = 1, iTop = 10; iBottom < iTop; ++iBottom, --iTop) {
Console.WriteLine(“{0}x{1} {2}”, iBottom, iTop, iBottom*iTop);
}

A statement clause is a substatement in which multiple statement clauses can be combined
into a single statement. Statement clauses are not always available—check documentation
related to the language artifact to be sure.

Line Terminators

Line terminators separate lines of source code. Where one line terminator is available, two or
more are allowed. Except in string literals, line terminators can be inserted anywhere white
space is allowed. The following code is syntactically incorrect:

int variableb, variablec;

int variablea = var
iableb+variablec; // wrong!

The variableb identifier cannot contain spaces. Therefore, it also cannot contain a line terminator.

Comments

C# supports four styles of comments: single-line, delimited, single-line documentation, and
multi-line documentation comments. Although comments are not required, the liberal use
of comments is considered good programming style. Be kind to those maintaining your pro-
gram (present and future) —comment! | highly recommend reading Code Complete, Second
Edition (Microsoft Press, 2004), by Steve McConnell; this book provides valuable best practices
on programming, including how to document source code properly.

Single-line comments: // Single-line comments start at the comment symbol and conclude at
the line terminator, as follows:

Console.WriteLine(objGreeting.French); // Display Hello (French)

Chapter 1 Introduction to Microsoft Visual C# Programming 27

Delimited comments: /* and */ Delimited comments, also called multi-line or block com-
ments, are bracketed by the /* and */ symbols. Delimited comments can span multiple lines
of source code:

/ *
Class Program: Programmer Donis Marshall

*/

class Program {

static int Main(string[] args) {

Greeting objGreeting = new Greeting(Q);
Console.WriteLine(objGreeting.French); // Display Hello (French)
return 0;

3

Single-line documentation comments: /// Documentation comments apply a consistent
format to source code comments and use XML tags to classify comments. With the docu-
mentation generator, documentation comments are exportable to an XML file. The result-
ing file is called the documentation file, which is identified in the Visual Studio project options.
IntelliSense and the Object Browser use information in this file.

Single-line documentation comments are partially automated in the Visual Studio IDE. The
Visual Studio IDE has Smart Comment Editing, which automatically continues or creates a
skeleton for a document comment after initially entering the /// symbol. For example, the
following code snippet shows sample code with single-line documentation comments.
After entering an initial // Smart Comment Editing completed the remainder of the com-
ment framework, including adding comments and XML tags for the type, methods, method
parameter, and return value. You only need to update the comment framework with specific
comments and additional comment tags that might be helpful:

/// <summary>
///
/// </summary>
class Program {
/// <summary>
///
/// </summary>
/// <param name="args"></param>
/// <returns></returns>
static int Main(string[] args) {
Greeting objGreeting = new Greeting();
Console.WriteLine(objGreeting.French); // Display Hello (French)
return 0O;

Part| Core Language

Here are the documentation comments with added details:

/// <summary>
/// Starter class for Simple HelloWorld
/// </summary>
class Program {
/// <summary>
/// Program Entry Point
/// </summary>
/// <param name="args">Command Line Parameters</param>
/// <returns>zero</returns>
static int Main(string[] args) {
Greeting objGreeting = new Greeting(Q);
Console.WriteLine(objGreeting.French); // Display Hello (French)
return 0;

}

The C# compiler is a documentation generator. The /doc compiler option instructs the
compiler to generate the documentation file. This can be done using the Visual Studio IDE.
Select Project Properties from the Project menu. In the Properties window, select the Build
tab. Toward the bottom of the Build pane (shown in Figure 1-2), you can specify the name of
the XML documentation file.

File Edit View Project Build Debug Data Tools Test Anpalyze Window Help
- S % 9 F B b Debug r AnyCPU - | i

X ConsoleApplicationl | Program.cs| Start Page > X
[® Ge.. |

Application

Configuration: | Active (Debug) - Platform: | Active (Bny CPLY) -
Build
Euild Events Treatwarnings as errors !Z'
Debug © Mone
Resonn ©) Specific warnings: |

@ &1

Services

Output
Settings

Output path: bin\Debugh E

Reference Paths i 3
Signing HML documentation file: | |
. [Register for COM interop
ECUlity
puUBIE Generate serialization assernbly:
Code Analysis EE

4 m 3

k|
Reztly

FIGURE 1-2 The Build pane of the Project Settings window

Chapter 1 Introduction to Microsoft Visual C# Programming 29
For the preceding source file, this is the documentation file generated by the C# compiler:

<?xml version="1.0"7>
<doc>
<assembly>
<name>ConsoleApplicationl</name>
</assembly>
<members>
<member name="T:ConsoleApplicationl.Program">
<summary>
Starter class for Simple HellowWorld
</summary>
</member>
<member name="M:ConsoleApplicationl.Program.Main(System.String[])">
<summary>
Program Entry Point
</summary>
<param name="args">Command Line Parameters</param>
<returns>zero</returns>
</member>
</members>
</doc>

The documentation generator prefixes IDs to element names of the member name tag. In the
preceding documentation file, T is the prefix for a type, whereas M is a prefix for a method.
Here's a listing of IDs:

Event

Field
Method
Namespace
Property
Type

Error

Multi-line documentation tags Multi-line documentation tags are an alternative to
single-line documentation tags. Smart Comment Editing is not available with multi-line
documentation tags. You must enter the documentation tags explicitly. However, Intellisense
is available. Multi-line documentation comments must adhere to a degree of consistency,
which is explained in the article titled “Delimiters for Documentation Tags (C# Programming
Guide),” in Visual Studio Help (ms-help.//MS.VSCC.v90/MS.MSDNQTR.v90.en/dv_csref/html/
9b2bdd18-4f5c-4c0b-988e-fb992e0d233e.htm).

Here is an example of delimited documentation tags:

/**
*<summary>this is an example.</summary>

*/

30

Part| Core Language

Preprocessor Directives

Preprocessor directives define symbols, undefine symbols, include source code, exclude
source code, name sections of source code, and set warning and error conditions. The variety
of preprocessor directives is limited compared with C++, and many of the C++ preproces-
sor directives are not available in C#. There is not a separate preprocessor or compilation
stage for preprocessor statements. Preprocessor statements are processed by the normal C#
compiler. The term preprocessor is used because the preprocessor directives are semantically
similar to related commands in C++.

Here is the syntax for a preprocessor directive:

#command expression

This is a list of preprocessor directives available in C#:

#define #undef #if

#else #elif #endif
#line #error #warning
#region #endregion #pragma

The preprocessor symbol (#) and subsequent directive are optionally separated with white
space but must be on the same line. A preprocessor directive can be followed with a single-
line comment but not a multi-line comment.

Declarative preprocessor directives The declarative preprocessor directives are #define
and #undef, which define and undefine a preprocessor symbol, respectively. Defined symbols
are implicitly true, whereas undefined symbols are false. Declarative symbols must be de-
fined in each compilation unit where the symbol is referenced. Undeclared symbols default
to undefined and false. The #define and #undef directives must precede any source code.
Redundant #define and #undef directives have no effect.

Preprocessor symbols can also be set as a compiler option. In the Build pane of the Project
Properties dialog box, you can define one or more symbols in the Conditional Compilation
Symbols text box. This is shown in Figure 1-3. Other preprocessor symbols, such as DEBUG
and TRACE, are commonly set implicitly as a compiler option.

Here is the syntax for declarative preprocessor directives:

#define identifier
#undef identifier

Chapter 1 Introduction to Microsoft Visual C# Programming 31

W L ONSOIBSPPIICATIONL = WICFOSOTT ¥ISUal sTuaio L

File Edit Miew Project Build Debug Data Tools Test Apalyze Window Help

(S @ 6 G B9 F B b Debug - Any CEU o)]
X ConsoleApplicationl Program.cs| Start Page - X
[® Ge.. |
Application
Configuration: | Active {Debug) - Platform: | &ctive (Any CPLY -
| Build
Euild Events Ceneral =
Debug Conditional compilation symbols:
Define DEBUG constant
Resources
Define TRACE constant
Services
Platfarm target: Ay CPU N
S [&llovay unsafe code
Reference Paths [F] Optirnize code
Signing Errars and warnings
Publish Suppress warnings:
= -
<[I S
Ready

FIGURE 1-3 The Conditional Compilation Symbols text box

Conditional preprocessor directives Conditional preprocessor directives are the #if, #else,
#elif, and #endif directives, which exclude or include source code. A conditional preproces-
sor directive begins with #if and ends with #endif. The intervening conditional preprocessing
directives, #else and #elif, are optional.

Here is the syntax for conditional preprocessor directives:

#if Boolean_expression
#el1if Boolean_expression
#else

#endif

The Boolean_expression of the #if and #elif directive is a combination of preprocessor
symbols and Boolean operators (! == /= && ||). If the Boolean_expression is true, the source
code immediately after the #if or #elif directive and before the next conditional preproces-
sor directive is included in the compilation. If the Boolean_expression is false, the source
code is excluded from source compilation. The #else directive can be added to a #if or #elif
combination. If the Boolean_expression of #if and #elif is false, the code following the #else

32

Part| Core Language

is included in the compilation. When true, the source code after the #else is not included.
Here's sample code with preprocessor symbols and related directives:

#define DEBUGGING
using System;

namespace Donis.CSharpBook {
class Starter{
#if DEBUGGING
static void OutputLocals() {
Console.WriteLine("debugging...");
}
#endif
static void Main(Q) {
#if DEBUGGING
OutputLocals();
#endif

3

Finally, the #elif directive is a combination of an else and if conditional preprocessor directive.
It is matched with the nearest #if directive:

#if expression
source_code
#elif expression
source_code
#else
source_code
#endif

Diagnostic directives Diagnostic directives include the #error, #warning, and #pragma
directives. The #error and #warning directives display error and warning messages, respec-
tively. The diagnostic messages are displayed in the Error List window of the Visual Studio
IDE. Similar to standard compilation errors, an #error directive prevents the program from
compiling successfully; a #warning directive does not prevent the program from successfully
compiling unless Treat Warnings As Error is set as a compiler option. You can use conditional
directives to conditionally apply diagnostic directives.

Here is the syntax for diagnostic directives:

#error error_message
#warning error_message

The error_message is of string type and is optional.

Chapter 1 Introduction to Microsoft Visual C# Programming 33

Pragma directives The #pragma directive disables or enables compilation warnings. When
disabled, the warning or error is suppressed and will not appear in the Error List window. This
is useful for suppressing an unwanted warning or error temporarily or permanently.

Here is the syntax for pragma directives:

#pragma warning disable warning_Tlist
#pragma warning restore warning_1list

The warning_list contains one or more warnings delimited with commas. A disabled warning
remains disabled until it is restored or the compilation unit ends.

The following code demonstrates the pragma warning directive. In this example, the 219
warning (Variable Is Assigned But Its Value Is Never Used) is initially disabled and then
restored. Therefore a warning is received about variableb but not variablea.

class Starter

{
#pragma warning disable 219
static void Main()

{

int variablea = 10;

}

#pragma warning restore 219

static void FuncAQ

{

int variableb = 20;
}
}

Region directives Region directives mark sections of source code. The #region directive
starts a region, whereas the #endregion directive ends the region. Region directives can be
nested. The Visual Studio IDE outlines the source code based on region directives. In Visual
Studio, you can collapse or expand regions of source code.

Here is the syntax for region directives:

#region identifier
source_code
#endregion

Line directives Line directives modify the line number reported in subsequent compiler er-
rors and warnings. There are three versions of the line directive.

Here is the syntax for line directives:

#1ine Tine_number source_filename
#1ine default
#1ine hidden

34

Part| Core Language

The first #line directive renumbers the source code from the location of the directive until
the end of the compilation unit is reached or overridden by another #line directive. In the
following code, the #line directive resets the current reporting line to 25:

#line 25

static void Main() {
Console.WriteLine("#1ine application™);
int variablea=10; // 219 warning

}

The #line default directive undoes any previous #line directives. The line number is then reset
to the natural line number.

The #line hidden directive is only tangentially related to the line number. This directive does
not affect the line number; it hides source code from the debugger when stepping. The
source code is skipped until the next #line directive is encountered. This is helpful in stepping
through source code. Hidden code is essentially stepped over. For example, when stepping

in the following source, the for loop is stepped over. The #line default directive then returns
normal stepping.

static void Main()
{
int variablea = 10;
variablea++;
#1ine hidden
for (int i = 0; i < 5; ++1)
{

variabTlea++;
}
#1ine default
Console.WritelLine(variablea);

3

Blocks

A type, which can be a class, struct, interface, or enum, is defined within a block. Members of
the type are contained inside the block.

Here is the syntax for a type block:

type typename { // block
}

A block can also be a statement block. Statement blocks contain one or more statements.
Each statement of the statement block is delimited by a semicolon. Typically, where a single
statement is allowed, a statement block can be substituted. Statement blocks are commonly
used as function bodies, conditional statements, and iterative statements. For function
bodies, a statement block is required.

Chapter 1 Introduction to Microsoft Visual C# Programming 35

The if path in the following code consists of a single statement. Therefore, a statement
block is not required. The Console.WriteLine is the only statement within the context of the if
statement:

static void Main() {
int variablea = 5, variableb = 10;
if (((variablea + variableb) % 2) == 0)
Console.WriteLine("the sum is even");

3

In the modified code, the if path contains multiple statements and a statement block is needed.
Some would suggest, and | agree, that always using statement blocks with conditional or
iterative statements is a good practice. This prevents an inadvertent future error when a single
statement is expanded to multiple statements as shown below, but the block is forgotten:

static void Main() {
int variablea = 5, variableb = 10;
if (((variablea + variableb) % 2) == 0) {
Console.WriteLine(“{0} {1}”, variablea,
variableb);
Console.WriteLine("the sum is even");

Generic types

A generic is an abstraction of a type, which itself is an abstraction of a noun, place, or thing.

The Nodelnt class is an abstraction of a node within a linked list of integers. The following is a
partial implementation of the code (the full implementation is presented later in this book):

class NodeInt {
pubTlic NodeInt(int f_Value, NodeInt f_Previous) {
m_Value = f_Value;
m_Previous = f_Previous;

}
// Remaining methods

private int m_Value;
private NodeInt m_Previous;

3

The Node generic type further abstracts a linked list. Unlike Nodelnt, Node is not integer-
specific but a linked list of any type. In the generic type, integer specifics of the Nodelnt class
have been removed and substituted with placeholders.

class Node<T> {
pubTic Node(T f_Value, Node<T> f_Previous) {
m_Value = f_Value;
m_Previous = f_Previous;

36

Part| Core Language

// Remaining methods

private T m_Value;
private Node<T> m_Previous;

}
In the preceding example, T is the generic type parameter, which is then used as a placeholder

throughout the class for future type substitution.

There is much more about generics later in Chapter 7, “Generics.”

Characters

C# source files contain Unicode characters, which are the most innate of symbols. Every element,
keyword, operator, or identifier in the source file is a composite of Unicode characters.

Numeric Suffixes

Numeric suffixes cast a literal value to the underlying or a related type. Literal integer values
can have the /, u, ul, and lu suffixes appended to them; literal real values can have the f, d,
and m suffixes added. The suffixes are case-insensitive. Table 1-3 describes each suffix.

TABLE 1-3 Description of suffixes

Description Type Suffix
Unsigned integer or unsigned long uint or ulong v
Long or unsigned long long or ulong L
Unsigned long ulong ul or lu
Float float F
Double double D
Money decimal M

When casting a real type using the m suffix (for monetary or currency calculations), rounding
might be required. If so, banker's rounding is used.

Here is an example of a numeric suffix:

uint variable = 10u;

Escape Characters

The escape character provides an alternate means of encoding Unicode characters, which
is particularly useful for special characters that are not available on a standard keyboard.
Escape sequences can be embedded in identifiers and string literals. Unicode escape se-
quences must have four hexadecimal digits and are limited to a single character.

Chapter 1 Introduction to Microsoft Visual C# Programming 37

A Unicode escape sequence looks like this:

\u hexdigitl hexdigit2 hexdigit3 hexdigit4

Hexadecimal escape sequences contain one or more digits as defined by the location of a
Unicode character.

A hexadecimal escape sequence looks like this:
\x hexdigitl hexdigit2 ... hexdigitn
Table 1-4 shows a list of the predefined escape sequences in C#.

TABLE 1-4 Predefined escape sequences

Simple escape Sequence
Single quote \'
Double quote \”
Backslash \\
Null \0
Alert \a
Backspace \b
Form feed \f
New line \n
Carriage return \r
Horizontal tab \t
Unicode character \u
Vertical tab \v
Hexadecimal character(s) \x

This is an unconventional version of the traditional “Hello World!" program:

using System;

class HelloWorld {
static void Main() {
Console.Write("\u0048\u0065\u006C\u006C\uO06F\n");
Console.Write("\x77\x6F\x72\x6C\x64\x21\b") ;

Verbatim Characters

The verbatim character (@) prevents the translation of a string or identifier, where it is treated
“as-is.” To create a verbatim string or identifier, prefix it with the verbatim character. This is
helpful, for example, when storing directory paths in a string literal.

38

Part| Core Language

A verbatim string is a string literal prefixed with the verbatim character. The characters of the
verbatim string, including escape sequences, are not translated. The exception is the escape
character for quotes, which is translated even in a verbatim string. Unlike a normal string,
verbatim strings can even contain physical line feeds.

Here is a sample verbatim string:
using System;

class Verbatim{
static void Main() {
string fileLocation = @"c:\datafile.txt";
Console.WriteLine("File is located at {0}",
filelLocation);

3

A verbatim identifier is an identifier prefixed with the verbatim character that prevents

the identifier from being parsed as a keyword. When porting source code from another
programming language where allowable keywords and identifiers may be different, this
feature could be useful. Otherwise, it is a best practice not to use this technique because
verbatim identifiers almost always make your code less readable and harder to maintain.

The following source code is technically correct:

pubTlic class ExampleClass {
pubTlic static void Function() {
int @for = 12;
MessageBox.Show(@for.ToString());

}

In the preceding code, the for keyword is being used as a variable name. This is confusing
at best. The for keyword is common in C# and many other programming languages, and
therefore most developers would find this code confusing.

Operators

Operators are used in expressions and always return a value. There are three categories of
operators: unary, binary, and ternary. Some operators, such as is, as, and default, also are
considered keywords. The following sections describe all the operators in C#.

Unary operators Unary operators have a single operand. Table 1-5 lists the unary
operators.

TABLE 1-5 Unary operators

Operator

unary plus

unary minus
Boolean negation
bitwise 1's complement
prefix increment
prefix decrement
postfix increment
postfix decrement
cast

function

array index

dot

global namespace qualifier

Chapter 1

Symbol
+

!

++

Sample

variable = +5;
variable = —(-10);
variable = Itrue;
variable = ~((uint)1);
++variable;

— —variable;
variable++;

variable — —;

variable = (int)123.45;
FunctionCall(parameter);
arraynamefindex/;
container.member

global::globalmember

Here are some more details on unary parameters:

® Prefix operators are evaluated before the encompassing expression.

® Postfix operators are evaluated after the encompassing expression.

Introduction to Microsoft Visual C# Programming 39

Result

5

10

false
4294967294
11

10

11

10

123

return value
nth element
member

Globalmember

Binary operators Binary operators have a left and right operand. Table 1-6 details the bi-

nary operators.

TABLE 1-6 Binary operators

Operator
assignment
binary plus
binary minus
multiplication
division
modulus
bitwise AND
bitwise OR
bitwise XOR
bitwise shift left
bitwise shift right

null coalescing

<<
>>

7?

Sample

variable =10;

variable = variable + 5;
variable = variable — 10;
variable = variable * 5;
variable = variable / 5;
variable = variable % 3;
variable = 5 & 3;
variable = 5| 3;
variable = 5 N 3;
variable = 5 << 3;
variable = 5 >> 1;

variableb = variable??5

Result

40

Part| Core Language

Here's more information on binary operators:
® Integer division truncates the floating point portion of the result.
® The operands in a bitwise shift left are value << bitcount.
® The operands in a bitwise shift right are value >> bitcount.

Compound operators Compound operators combine an assignment and another operator.
If the expanded expression is variable = variable operator value, the compound operator is
variable operator= value. For example, assume that we want to code the following:

variable = variable + 5;
The preceding statement is equivalent to this:
variable += 5;

Compound operations are a shortcut and are never required in lieu of the expanded
statement. Table 1-7 lists the compound operators.

TABLE 1-7 Compound operators

Operator Symbol Sample
addition assignment += variable +=5;
subtraction assignment -= variable —= 10;
multiplication assignment *= variable *=5;
division assignment /= variable /= 5;
modulus assignment %= variable %= 3;
AND assignment &= variable &= 3;
OR assignment |= variable |= 3;
XOR assignment A= variable A= 3;
left-shift assignment <<= variable <<= 3;
right-shift assignment >>= variable >>=1;

Boolean operators Boolean expressions evaluate to true or false. Unlike C++, the integer
values of nonzero and zero are not equivalent to a Boolean true or false.

There are two versions of the logical and and or operators. The && and || operators support
short-circuiting, whereas & and | do not. What is short-circuiting? If the result of the expres-
sion can be determined with the left side, the right side is not evaluated. Without disciplined
coding practices, short-circuiting might cause unexpected side effects.

Next is an example of possible short-circuiting. If FunctionA evaluates to false, the
entire Boolean expression is false. Therefore the right-hand expression (FunctionB) is not

Chapter 1 Introduction to Microsoft Visual C# Programming 41

evaluated. If calling FunctionB has a required side effect, short-circuiting in this circumstance
could cause a bug.

if (FunctionA() && FunctionB(Q)) {

3

Table 1-8 shows the Boolean operators.

TABLE 1-8 Boolean operators

Operator Symbol
equals ==
not equal I=
less than <
greater than >
logical AND (allows short-circuiting) &&
logical OR (allows short-circuiting) I
logical AND &
logical OR |
less than or equal <=
greater than or equal >=
logical XOR A

Ternary operators The conditional operator is the sole ternary operator in C# and is an ab-
breviated if else statement.

Here is the syntax of the conditional operator:

Boolean_expression ? true_statement : false_statement

This is the conditional operator in source code:

char e = (x >0) ? '>' : '<

Type operators Type operators act on a type. The as and is operators are binary operators,
while the typeof operator is unary. Table 1-9 lists the type operators.

TABLE 1-9 Type operators

Operator Syntax Description
as object as type Casts object to type if possible. If not, returns null.
is object is type Expression evaluates to true if object is related to type;

otherwise, evaluates to false.

typeof typeof(object) Returns the type of the object.

42

Part| Core Language

Pointer operators Pointer operators are available in unsafe mode. This allows C# develop-
ers to use C++ style pointers. The unsafe compiler option sets unsafe mode. From the Visual
Studio IDE, you can choose the Allow Unsafe Mode option in the Project Properties dialog
box on the Build pane. Table 1-10 lists the pointer operators.

TABLE 1-10 Pointer operators

Operator Symbol Description

asterisk operator (postfix) * Declare a pointer

asterisk operator (prefix) * Dereference a pointer

ampersand operator & Obtain an address

arrow operator -> Dereference a pointer and member access

Here is some sample code using pointers:

static void Main(string[] args)

{
unsafe {
int variable = 10;
int* pVariable = &variable;
Console.WriteLine("Value at address 1is {0}.",
*pVariable);
}
}

A more extensive review of pointers is presented later in the book in Chapter 19, “Unsafe
Code.”

Miscellaneous operators The miscellaneous operators are unary but do not otherwise fit
into a clear category. Table 1-11 lists the miscellaneous operators.

TABLE 1-11 Miscellaneous operators

Operator Syntax Description

New new type(parameters) Calls a matching constructor of the type. For a
reference type, creates an instance of the object
on the managed heap. For a value type, creates
an instance of an initialized object on the stack.

checked checked(expression) Exception is raised if expression overflows.

delegate delegate return_type Defines a type that holds type-safe function
method references.

lambda => Separates the input and expression body of a

lambda expression.

unchecked unchecked(expression) Overflows are ignored in expression.

Identifiers

Chapter 1 Introduction to Microsoft Visual C# Programming 43

An identifier is the name of a C# entity, which includes type, method, property, field, and
other names. Identifiers can contain Unicode characters, escape character sequences, and
underscores. A verbatim identifier is prefixed with the verbatim character (as discussed in the
section “Verbatim Characters” earlier in this chapter).

Keywords

One of the strengths of C# is that the language has relatively few keywords. Table 1-12
provides an overview of the C# keywords. Extended explanations of each keyword are
provided in context at the appropriate location in this book.

TABLE 1-12 Overview of C# keywords with explanations

Keyword

abstract

base
break
case
catch

checked

class

const
continue
do

else

enum
event

explicit

extern

Syntax

abstract class identifier
abstract method

base.member

break

case label
catch(filter){ handler }

checked { statement }

class identifier

const type identifier

continue

do { statement } while (expression)

else { statement }

enum identifier
event delegatename identifier

explicit operator conversiontype

extern return_type method

Explanation

The class cannot be instantiated.

The method is implemented in a descen-
dant class. This includes properties, indexers,
and events.

Accesses a member of the base class.
Exits current loop or switch statement.
Target of a switch expression.

The catch clause is where an exception is
handled. The exception filter determines if the
exception is handled in the handler.

If an expression within the statement_block
overflows, throws an exception.

Defines a new class.

Declares a constant local variable or field.
Constants cannot be modified.

Continues to the next iteration of the loop, if
any.

The do loop is iterated until the expression is
false.

The else statement is matched to the nearest if
statement and provides the false path.

Defines an enumeration type.
Defines an event of the delegatename type.

This user-defined conversion requires an ex-
plicit cast.

A method implemented externally—outside
the current assembly.

44 Part| Core Language

TABLE 1-12 Overview of C# keywords with explanations

Keyword
false

finally

fixed

for
foreach

get
goto

if

implicit

interface

internal

lock

namespace

hew

null

Syntax
false

finally { statement }

fixed (declaration)

for (initializers; Boolean_expression;
iterators) statement

foreach (element in enumerable_
collection)

get
goto identifier
goto case identifier

goto default

if (Boolean_expression) statement
implicit operator conversiontype
foreach (element in enumerable_
collection)

interface identifier

internal identifier

lock(object) { statement }

namespace identifier

new return_type method

new type

null

Explanation
A Boolean value.
Associated with the nearest try block. The final-

ly block has cleanup code for resources defined
in the try block.

Fixes a pointer variable in memory and pre-
vents relocation of that variable by the Garbage
Collector.

The for loop iterates the statement until the
Boolean_expression is false.

Iterates elements in a enumerable_collection.

Accessor method of a property member.

Transfers control to a label.

Transfers control to a label inside a switch
statement.

Transfers control to a default label inside a
switch statement.

The statement is executed if the Boolean_
expression resolves to true.

This user-defined conversion requires only an
implicit cast.

Iterate elements in an enumerable_collection.

Defines an interface.

Type or member accessible only within the
current assembly.

Statement blocks locked on the same object
are protected by a shared critical section, and
access to those blocks is synchronized.

Defines a namespace.
The new method hides the matching method of
the base class.

The new operator declares a new structure
or class. The new operator is not required for
structures.

null can be assigned to references and nullable
value types.

Chapter 1

Introduction to Microsoft Visual C# Programming 45

TABLE 1-12 Overview of C# keywords with explanations

Keyword
object
operator

out

override

params

private
protected
public
readonly

ref

return

sealed
set

sizeof

stackalloc

Syntax
object
operator operator

out type parameter

override method

params type [] identifier

private member
protected member
public member
readonly type identifier

ref type parameter

return expression

sealed identifier
set

sizeof(valuename)

stackalloc type [expression]

Explanation

The object keyword is an alias for System.Object,
which is the base class to all NET objects (value
or reference type).

Define a user-defined operator as a class or
struct member.

The actual parameter is passed by reference
into the method and can be modified directly.
The parameter can be uninitialized prior to the
function call.

Override a virtual method in a base class.
Method includes a member function, property,
indexer, or an event.

Variable-length parameter list. The params
parameter must be the last parameter in a pa-
rameter list.

The member is visible only within the contain-
ing class or struct.

Protected members are visible to the parent
and any descendant classes.

Public members are visible to everyone. This
includes inside and outside the class.

Read-only fields can be initialized at declaration
or in a constructor but nowhere else.

The parameter is passed by reference into the
method and can be modified directly in the
called function. The parameter must be initial-
ized prior to the function call. The ref keyword
is also required at the call site.

Returns the result of an expression from a
method. Functions with a void return can have
a return statement without a value (i.e., return;).

Class is not inheritable.
Mutator method of property member.

Sizeof returns the size of a value type. Sizeof of
non-primitive types requires unsafe mode.

Allocates an array of a value type on the stack;
available only in unsafe mode. Expression
determines the size of the array.

46 Part |

Core Language

TABLE 1-12 Overview of C# keywords with explanations

Keyword
static

struct

switch
this

throw

true

try

unchecked

unsafe

using

virtual

void

volatile

while

Syntax
static method

struct identifier

switch(expression) { statement }

this

throw object

true
try { statement }

unchecked { statement }

unsafe type

unsafe return_type method

using identifier

using (identifier_constructor_state-
ment) statement

virtual method

void method

void *identifier

volatile fieldname

while (expression) statement

Explanation

Method is class-bound and not associated with
a specific object instance.

Defines a new structure.

Control is transferred to either a matching case
label or the default label, if present.

The this object is a reference to the current
object instance.

Throws a user-defined exception. Exception
objects should be derived from System.
Exception.

A Boolean value.

Code in statement_block of try is guarded. If an
exception is raised, control is transferred to the
nearest catch statement.

Overflows in unchecked statements are ignored.

Type can contain unsafe code, such as pointers.
Also requires the unsafe code compiler option.
The method can contain unsafe code such as
pointers. Also requires the unsafe code compiler
option.

The using keyword makes the specified
namespace implicit.

IDisposable.Dispose, which is the explicit
destructor, is called on the named object after
the statement is executed.

Makes the method overridable in a derived class.

A void return means that the method does not
return a value. The method can omit a return
statement or have an empty return.

Identifier is a pointer name. A void pointer is a
typeless pointer; supported only in unsafe mode.

Access to volatile fields is serialized. This is
especially useful in a multi-threaded environ-
ment. In addition, volatile fields also are not
optimized.

The statement is repeated while the expression
is true.

Primitives

Chapter 1

Introduction to Microsoft Visual C# Programming

47

Primitives are the predefined data types that are intrinsic to C#. Primitives are also keywords.
Primitives historically found in C-base languages, including int, long, and many others, are
included in C#. The intrinsic types are declared as C# keywords but are aliases for types in the
.NET FCL. Except for the string type, the primitives are value types and allocated on the stack
as structures. The string type is a class and allocated on the managed heap.

The primitives are listed in Table 1-13. Primitives have a published interface. For numeric
types, the min property, max property, and Parse methods of the interface are particularly
useful. The min and max property are invaluable for bounds checking, whereas the Parse
method converts a string to the target primitive.

TABLE 1-13 Primitives in C#

Type Primitive

bool System.Boolean
byte System.Byte
char System.Char
decimal System.Decimal
double System.Double
float System.Single
int System.Int32
long System.Int64
sbyte System.SByte
short System.Int16
string System.String
uint System.UInt32
ulong System.UInt64
ushort System.UInt16

Types

Description

Boolean

8-bit integer

16-bit Unicode character
128-bit decimal

64-bit floating point
32-bit floating point

32-bit unsigned integer
64-bit integer

8-bit integer
16-bit integer
not applicable

32-bit unsigned integer
64-bit unsigned integer
16-bit unsigned integer

Range

true or false.

0 to 255.

/u0000 to /uFFFF.

0and 1.0 x 10-8 to £7.9 x 108, with
28 digits of precision.

0 and +5.0 x 10324 to +1.7 x 10308,
with 15 digits of precision.

0 and 1.5 x 104> to +3.4 x 1038,
with 7 digits of precision.

—-2,147,483,648 to 2,147,483,647.

-9,223,372,036,854,775,808 to 9,223,3
72,036,854,775,807.

-128 to 127.
—-32,768 to 32,767.

String is an immutable variable length
string.

0 to 4,294,967,295.
0 to 18,446,744,073,709,551,615.
0 to 65,535.

This chapter is an introduction of Microsoft Visual C# 2008, including LINQ, which is the most
important new feature in C#. The remaining chapters of this book provide the underlying
details of LINQ and other topics introduced in this chapter, beginning with the next chapter,

which pertains to types.

48

Part| Core Language

The core ingredient of most programming languages is the type. The term type encompasses
classes, structures, interfaces, and enumerations. Classes are reference types and are placed
on the managed heap, structures are value types and appear on the stack, and an enumera-
tion is a set of flags.

Even a nontrivial C# program has at least one type. Literarily, except for namespaces, every
entity in C# is a type or a member of a type. This includes the common primitives, such as
int, float, and double. Classes are the nouns of the C# language, and it is certainly difficult to
write a great story without any nouns. It is impossible to write a C# program without classes.

	Cover
	Table of Contents
	Chapter 1: Introduction to Microsoft Visual C# Programming
	A Demonstration of Visual C# 2008
	Sample C# Program
	Sample LINQ Program

	Common Elements in Visual C# 2008
	Namespaces
	Main Entry Point
	Local Variables
	Nullable Types
	Expressions
	Selection Statements
	Iterative Statements

	C# Core Language Features
	Symbols and Tokens
	Identifiers
	Keywords
	Primitives

	Types

