Programming Programming Windows"
Windows Services Services with Microsoft”

with Microsoft

Visual Basic 2008 Visual Basic® 2008
Michael Gernaey

¢

Michael Gernaey

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/11309.aspx

Microsoft

9780735624337 Press

© 2008 Michael Gernaey. All rights reserved.

Table of Contents

INtrodUuction XVii
WHho This BOOK IS FOI. e e e XVii
How This Book Is Organized. XVii
System Requirements. XVili
Find Additional Content Online XViii
The Companion Web Site o i XViii
Support for This BOOK Xix
Questions and Comments. Xix

rart| Defining Windows Services

1 Writing Your First Service in Visual Basic2008 3
Generating the Project. 4
Renaming Our Project Files 4
Understanding the Wizard Code i i .. 5
The <OnStart> Method 5

The <OnStop> Method 5
Other Events. 6
WHriting Our First Code e 7
Modifying the <OnStart> Method. 7
Modifying the <OnStop> Method i, 8
Modifying the <OnPause> Method. iiiiiiiiiiiinn.. 9
Modifying the <OnContinue> Method ccciiiiiiiiiiinnn. 9
Making the Service Installable 10
Setting the Service Properties.t 11
Setting the Startup Options. i 12
Additional Configuration Options, 12

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

vii

viii Table of Contents

Building, Installing, and Deploying i 12
Creating Your Service Storage Location il 13
Verifying That You Have .NET 2.0 Installed. 13
Verifying That Your Service Is Installed 14
<ONSEArt> MESSAgE . . . oottt 14
<ONPAUSe> MESSAEottt 14
<ONContinue> MESSAQEttt e 14
<ONSEOP> MESSAGE . . . o oottt e 15

UMY . 15

2 Expanding Your Servicewith Threads 17

Cleaning Up the Service from the Previous Chapter 17

Understanding Threads. e 18
Determining How Many ThreadstoCreate 18
Thread Synchronization e 18
Creating Threads 19
Thread Methods 19

The New Code. 20
Thread Funtion Codeo 20
Event-Logging Code. 21
Updating the <OnStart>Method 22
Updating the <OnStop> Method 22
Updating the <OnPause> Method 22
Updating the <OnContinue> Method 23
Updating the Thread Method. 23
Executingthe Thread 23
Updating <OnStart> 24

Install and Test Your Service i 24

What Is Thread Cleanup? 25
Thread Cleanup Availability. 25
Threads and Accessibility. 25
A Problem with the Current <OnStart> Thread 25
Thread Cleanup. e 26
Making Thread Cleanup Useful 28
Keeping the Thread Alive 29

Install and Verify 30

Table of Contents ix

Extending <OnPause> and <OnContinue>ccvo... 30
Ways to Control Thread Processing ..., 30
Updating <ONPaUSe>. et 30
Updating <OnContinue> 31
Using Thread State Controlo 32
Updating <ONPauSe>. e 33
Updating <OnContinue> 34
Updating <OnNStop> 34
Updating <ThreadFunc> e 35
Importance of the THREAD_WAIT Value, 36

SUMIMaANY. o e e e 37

3 Servicesand Security i e 39

Security Privileges and Services 39
Service ACCOUNt SECUNILYot 40
Local System 41
User ACCOUNTSo 41
Securing the Service 43
Protecting Data o 43

SUMIMIAIY. oo e e e 46

part I Creating Interactive Windows Services

4 Servicesand Polling i 49
Polling the File System o 49
AddingaModule File. 50

Adding Event Log Instancelds. 50
Adding New Polling Code 50
Introduction to Instrumenting a Resource File........................... 51
Updating the Service Events i 52
Modifying Our <ONStart>............ . 52
Modifying <ONSEOP>o 53
Modifying <ONPAUSe> 53
Modifying <ONnContinue>t 54
Writing a New Thread Method. 54

Install and Verify 55

Table of Contents

Monitoring with Multiple Threads. 56
Expanding Processing 56
Creating the Code. e 56
Installation and Verification. L 58

Extending the Threading Model i 58
Monitoring More Than One Folder............. 58
Monitoring More Than One File Type Per Folder 59
Outputting to More Than One Folder. i 59
Processing More Than One File Type Per Folder......................... 59
When Complexity Steps In 60

Adding a FileWorker Class. 60
Designinga New ClassFile i 60

Implementing the Worker Class. e 62
Adding a FileWorker Collection, 62
Adding New File Type and Input Locations 62

Creating the FileWorkerOptions Classc.couuiiiiie i 63
Updating the FileWorker Constructor.................. 64
Updating Our <FileWorker.ThreadFunc> 64

Updating <Tutorials.ThreadFunc>............ 65
Updating the <OnStop> Method 66
Installation and Verification........ i 67

Using Configuration Files 68
Application-Specific Configuration File. 68
The Application-Processing Configuration File 69

Updating <Tutorials.ThreadFunc>............ 70
Installation and Verification. 72

UMY . 72

5 Processing and Notification 73

SMTP Notifications. 73

File Processing.ot 76
Configuring Our New SMTP Classt 76
Updating the FileWorkerOptions Class 77
Updating the FileWorker Class i i .. 77
Updating the Tutorials Class 80

Installation and Verification. 82

Table of Contents xi

Advanced ProCeSSING 82
Exploring Processing Options 83
Optimizing Processing 83

Implementing a Solution 85
Creating a New <FileWorker.Processingincoming> Method 85
Updating the <Tutorials.OnStop> Method 89
Queueing E-mail Notifications 89
Decoupling Notifications Implementation Questions..................... 90
Decoupling: An Example 90
SMTP Queueing Solution. 91
Updating the SMTP Class. e e 94
Updating the FileWorkerOptions Class. 97
Updating the <Tutorials.ThreadFunc> Method 98
Updating the <FileWorker> Constructor.oooiiiiiiiaa. .. 99
Installation and Verification........ 100

SUMMIAIY oo e 101

6 User Input, Desktop Interaction, and Feedback................... 103

Understanding Service Feedback..............l 103

Configuring a Service to Interact with the Desktop. 104
Getting Started with Creating the Interactive Service.................... 104
Creating a Feedback Form............ 104
Making the Form Visible to the Service.......... 106
Updating the FileWorker Class. 106
Install, Configure, and Verify 110

SUMIMIATY. oo e 111

7 Data Logging: Processing and Storing Data in SQL Server 2005. 113

Configuring Microsoft SQL Server 114
Creating a Tutorials Database 114
CreatingaUsersTable i, 114
Creating a User Stored Procedure. 114

Understanding a LINQSQL Class. o, 115

Using LINQ To SQLo oo 115
CreatingaSQLClass 118

Updating the FileWorker Class i 120
Updating <FileWorker.ProcessFiles>.c.coiiiiiiiiiiiiiinnn. 120

Install and Verify 122

xii

Table of Contents

Data Tracking Validation 123
Creating Process Error Folder i 123
Error Processing Solution. 123
Updating the FileWorkerOptions Class 123
Updating Our Configurationxml File 124
Updating the FileWorker Class i i .. 124
Updating the <Tutorials.ThreadFunc> Method......................... 125

Implementing the Record Failure Code i, 126
Adding a Process Failure Method 126
The Worker Thread. e 128
Install and Verify o 130

Data Migration from One Data Store to Another Data Store 130
Creating the Back-End Data Storeo 131
Creating a New Connection String ... 131
Creating a New <ProcessRecords> Methodo.... 136
Install and Verify 139

Reporting Processing Failures. 139

Optimizing the LINQSQL Class.t 140
Install and Verify 141

SUMIMaANY .o e e e e e e e 141

Part Il Services That Support IT and the Business

8 Monitoring and ReportingwithWMI 145
Using WMI with Services. 145
WMI Architecture 146
Creating the Generic WMI Class. 147
Understanding WMI Classes and TheirUses 149
Specific WMl and Custom Classes 149
Using the WMIClass 151
Adding New EventLog Constants. 151
Updating <Tutorials.ThreadFunc>............. 151
Adding the WMI Property Reader Method 153
Extending the WMI Implementation. o .. 154
Extendingthe WMIClass. 154
Creating the WMIWorkerOptions Class. 159
Creating the Configuration File 160

WMI Service ACCoOUNt. i 160

WMI System MONItOringottt e lel
Updating the Configuration File....... 161

WMI Win32_Process Usagettt l6l
Updating the WMIWorkerOptions Classc.ccoiiiiiiinnan. 163
Updating the <Tutorials.ThreadFunc> Method 163
Updating the <Query> Configuration Value 164
Updating the <WMI.ProcessWMIRequest> Method 164
Service Function Validation 165
Service Notification. 165
Updating the Configurationxml File 166
Updating the WMI Class.t 166
Updating the WMIWorkerOptions Classc.ccoiiiiiiinnan. 166
Updating the <Tutorials.ThreadFunc> Method 167
Updating the <WMI.ProcessWMIRequest> Method 168
Service Validation 169
SUMIMaANY. o e e e e e 169
9 Talkingtothelnternet...... i, 171
Reading and Parsing ASP Pages i 171
Creating the ASP MasterPage. i i .. 172
Callingthe ASPMasterPage. ..., 172
Application Log Instancelds. 177
Storing ASP Page URL Monitoring Status ou... 177
Creating LINQ To SQL Dependencies. ..., 179
Updating the Configuration File....... i, 180
Updating the <Tutorials.TThreadFunc> Method 181
Updating the Tutorials <OnStop> Method......................o.... 182
Service Validation 183
Adding a Dynamic Status ASPX Page. ... 183
Creating a New ASP .NET Web Application 183
Validating the Web Site 186

FTP and Your Service i 186
Using FTP inthe Service. e 187
Creating FTP Directories.t 187
Adding an FTP Classttt 187
Modifying the Configuration File, 196

Modifying the <Tutorials.ThreadFunc> Method 196

Xiv Table of Contents

Updating the Tutorials <OnStop> Method 197
Service Validation 198
Uploading Data Using FTP 199
Updating the FTP Class 199
Updating the Configuration File. oL, 201
Updating the <Tutorials.ThreadFunc> Method......................... 201
Updating the FTP Classt 201
Updating the <Start> Method............ 202
Service Validation 202
SUMIMATY ottt e e e e 203
10 ServicesThatlListen i, 205
Listening with TCP/IP 205
Design Points for Service Listeners., 206
Creating the First Listener Service s 206
Coding the Service Listener. 206
Creating a Listener Classt 207
Listener Processing Methodso i, 215
Updating the <Tutorials.ThreadFunc> Method......................... 216
Updating the Tutorials <OnStop> Method 217
Service Validation 218
The Test Client. e 218
Allowing Multiple Connections i 221
Extending the Listener Class i 221
Updating the <StartListener> Method 223
Service Validation 224
UMM o 225
11 Advanced Security Considerations and Communications 227
What Does Securing the Service Mean?. 227
Service Logon Privileges 228
Securing Your Service's Configuration.............. L. 228
Options for Securing ConfigurationData.............. ..., 229

A Closer Look at Security Options 230
Services as Clients.o e 235
Securing the HTTP Client Service. e 235

Securing the FTP Service e 241

Table of Contents Xv

Securing the SMTP Client Class.o 247
Writing Secure Code. 251
Securing In-Memory and On-Disk Datac.cooviiioi.... 253
Using SSL with Server Services 254
Updating the Test Clientto Use SSL......... i, 261
SUMIMIATIY. oo e e 263

part v Advanced Windows Services Topics
12 Scheduling, Configuring, Administering, and Setting Up

Windows Servicesttt i i e 267
What Does Scheduling Mean? 267
Scheduling OptioNns. 268
Permission Requirements. 268
Determining the Type of SchedulingtoUse............................ 268
Administration of Services. ... 269
Types of ConfigurationData i 270
Advanced Service Administration......... i 274
Installing Services i 277
Adding the Setup Project. 277
SUMIMANY. . ot e e e e e e 279
13 Debugging and Troubleshooting Windows Services 281
Debugging Servicest 281
Using the Visual Studio IDE 281
Writing Your Service as a Console Application.......................... 282
Troubleshooting and Monitoring Services 282
Task Manager. 282
Performance Monitor. ... 285
Performance Counter CONSUMENS. ittt 285
Using Perfmon as a Performance Counter Consumer.................... 285
Standard System Exposed Performance Counters....................... 286
Viewing Perfmon. 286
Examples of Debugging and Monitoring Your Service........................ 287
High CPU .. o e 289

SUMIMaANY. o e 292

xvi Table of Contents

14 Adding Performance Counters................iiiiiiiinienn... 293
Types of Performance Counters. i 293
Operating System-Exposed Countersc.c.uuuiiirnrnnnnnn. 293
Application-Specific Counters. 294
Adding Counters to Your SErviCe.ttt 295
Creating Your COUNerSottt e e e 295
Implementing Our Countersin Code ..o, 298
Creating Instances of Counters. i 298
Updating Counter Values. 299
Sample Service with Performance Counters............................ 300
Service Validation 302
SUMIMANY . e e e 304

partv Appendices

A Microsoft Internet Information Server (I1S) 307
Installing Microsoft IS 307

Installing IIS on Microsoft Vista Ultimate 308

Installing lISon Windows XP. 308

B Microsoft File Transfer Protocol Service 311
Installing Microsoft FTP Servicet 311

Installing the FTP Service on Windows Server 2003 311

Installing the FTP Service on Windows Vista Ultimate 311

Installing FTP Services on Windows XP............... 312

C Microsoft SMTP Service.o iuniiii it 313
Installing SMTP Services on Windows XP............. .o, 313

X ..ttt e e 315

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Chapter 10
Services That Listen

In this chapter:

Listening with TCP/IP i e e 205
Service Validation e 218
Allowing Multiple Connections.ttt 221
SUMIMIAIY . . .ottt e e et e e e e e e 225

Sometimes you need your service to be triggered by more than the generation of external data.
Services also have the ability to wait for direct input, whether by listening on a Transmission
Control Protocol (TCP), User Datagram Protocol (UDP), Simple Network Management
Protocols (SNMP), Named Pipes, MailSlots, or any other mechanism that allows for direct
one-to-one or one-to-many comimunications.

You can design your service for more than just processing data. In some cases an end user
or even another process needs to request data in real time. To do this, we have to design how
the service will process incoming requests or monitor for incoming requests. Depending on
how the request or connection is made, we need to set up our service listening protocols
appropriate to that communication method. Yowll need to decide whether to use static
connections—such as a TCP connection—or a call/caller/callback method. For example, when
a UDP request comes in, an acknowledgement might be sent, the data gathered, and then a
call made from the service to the requester with either a static connection request or with a
request for the original caller. Sometimes a request can come in that defines the information
being requested and where and how it should be returned to the requester. Your service might
be designed to accept a set of parameters from the caller that will determine the information
requested, as well as the directory to store the data when the processing is completed. You can
also provide security credentials, logon information, IP addresses, and any other information
required to process the caller’s request.

Listening with TCP/IP

When using TCP/IP to accept incoming connections and requests, you must account for
several things before designing your service. These depend on the solution you are trying to
build or the problem you are trying to resolve.

205

206 Part lll Services That Support IT and the Business

Design Points for Service Listeners

Many different types of service listeners are available. Whether the protocol is TCP, HTTP,
UDP, FTP, or some custom variation, you need to consider some important questions before
you start coding your service, including the following:

Which server port (or list of ports) will requests come in on?
How many active connections will you allow at one time?

What type of security will you implement? Will you use network authentication, implied
security, or clear-text authentication with user names and passwords stored in a secured
place such as Microsoft SQL Server?

If your service must perform actions on behalf of that caller, will it do so in the context
of the caller, or in its own security context? Will your service have more or less security
authorization than the caller?

Will the connections be synchronous or asynchronous?
Will connections have a time limit?

Will each request from a caller require a new connection or can connections be static
after a user is connected successfully?

How will the service handle invalid connection attempts?
In what format does the service expect the requests?

What format will you use for communications between the service and the client?

Creating the First Listener Service

The preceding list shows some important characteristics of a service that you must carefully
consider before design. In this section, we’ll use a single server port to listen for connections.
When connections arrive, they will be authenticated using a very simple, basic text
authentication scheme. The user name and password will be hard-coded for now. When the
connection is authenticated and a secondary socket has been created to service clients’
requests, we’ll wait for requests to come in from the client. All of these requests will be
standard text-based requests with a standard delimiter. When the request comes in, the
service will process the request and then return the information to the caller. After the caller
acknowledges receipt of the information or the request times out, the connection will be
dropped and the resources for that connection and any work it did will be cleaned up.

Coding the Service Listener

We'll continue with the code in Chapter 9, “Talking to the Internet.” The code base gives us
our standard service framework with the ability to start, stop, pause, continue, and shut down
the service.

Chapter 10 Services That Listen 207

Adding a Configuration File

We need to add a configuration file that our application can use to create single or multiple
listeners. In the first example, shown in Listing 10-1, we’ll only use a single listener.

Listing 10-1 Configuration file schema.
<?xm1 version="1.0" encoding="utf-8" ?>
<Configuration>
<Listeners>
<Listener>
<Port>15000</Port>
<MaxConnections>1</MaxConnections>
</Listener>
</Listeners>
</Configuration>

The configuration file will allow us to have as many listeners as we want. The listeners
themselves consist of the following two properties:

W Port represents the server side port to listen on. For most systems this is a number
between 1 and 65,000. Ensure that the port you want to listen on is not already in use.

m MaxConnections represents how many client connections you can have at one time.
Remember that connections do not stay connected on the server port that the client
initially connected to. You have to create a server-side socket to hold the client’s
connection.

Creating a Listener Class

We need to create a class that can support multiple listeners. Although we won’t be creating
multiple services, we will be creating the ability for multiple entry points into this service. We
could also extend our configuration file to include information that would tell the Listener
class instance to do a specific task. If a single service could have multiple actions, you would
want to have separate server ports, threads, and worker data for each possible action. You
could optimize your service even more by separating the workload of each task that your
service is capable of. Let’s review our Listener class, shown in Listing 10-2.

Listing 10-2 The Listener class.
Imports System.Threading
Imports System.IO

Imports System.Text

Imports System.Net.Sockets
Imports System.Net

Imports System.ServiceProcess

Public Class Listener
Public m_Incoming As Thread
Private m_ThreadAction As ThreadActionState
Private m_Listener As Socket = Nothing
Private m_ClientSocket As Socket = Nothing

208 Part lll Services That Support IT and the Business

Private m_MaxConnections As Integer
Private m_Port As Integer

Public Sub New(ByRef threadaction As ThreadActionState)
m_ThreadAction = threadaction
End Sub

PubTic Sub Start(Q)
m_Incoming = New Thread(AddressOf StartListener)
m_Incoming.Priority = ThreadPriority.Normal
m_Incoming.IsBackground = True
m_Incoming.Start()

End Sub

Private Sub StartListener()
WhiTle Not m_ThreadAction.StopThread
If Not m_ThreadAction.Pause Then
Try
'We need to set up our Port Tistener and the ability
'to accept an incoming call.
Dim localEndPoint As IPEndPoint = Nothing

m_Listener = New Socket(AddressFamily.InterNetwork, _
SocketType.Stream, ProtocolType.Tcp)

Dim ipHostInfo As IPHostEntry = Dns.GetHostEntry(Dns.GetHostName())
Dim ipAddress As IPAddress = ipHostInfo.AddressList(0)

localEndPoint = New IPEndPoint(ipAddress.Any, Me.Port)

m_Listener.Bind(TocalEndPoint)
m_Listener.Listen(Me.MaxConnections)

Dim bytes() As Byte = New [Byte](1024) {}

While True
' Program is suspended while waiting for an incoming connection.
m_ClientSocket = m_Listener.Accept

Dim Data As String = Nothing
Dim bError As Boolean = False
' An incoming connection needs to be processed.
While True
Dim iStart As Long = Now.Ticks
'Create a Byte Buffer to receive data on.
bytes = New Byte(1024) {}

Dim bytesRec As Integer = _

m_ClientSocket.Receive(bytes)

Data += Encoding.ASCII.GetString(bytes, 0, _
bytesRec)

If ((Now.Ticks - iStart) / 10000000) > 30 Then
'We have timed out based on a 30 second timeout
Try

Chapter 10 Services That Listen 209

m_CTientSocket.Shutdown(SocketShutdown.Both)
Catch ex As Exception
'do nothing
End Try

Try
m_ClientSocket.Close()
Catch ex As Exception

'do nothing
End Try
Exit While

End If
'if we have not timed out yet then Tet us see if a command
'has come in and process it
If Data.IndexOf("<EOF>") > -1 Then
'If we have found an EOF then we need to process that information
'we could reset our timeout variable also if we have a command so it

'does not time out falsely
'Process the Command
Dim pszOut As String = Nothing

Try
WriteLogEvent(Data, 15, _
EventLogEntryType.Information, My.Resources.Source)
Call ProcessCommand(Data, pszOut)
m_ClientSocket.Send(Encoding.ASCII.GetBytes(pszOut), _
Encoding.ASCII.GetBytes(pszOut).Length, SocketFlags.None)
Catch ex As Exception
Exit While
End Try
'clean up
Try
m_ClientSocket.Shutdown(SocketShutdown.Both)
Catch ex As Exception
End Try

Try
m_ClientSocket.Close()
Catch ex As Exception
End Try
End If

Exit While
End While
End While

Catch nex As SocketException
WriteLogEvent(My.Resources.ThreadErrorMessage + "_" +
nex.ToString + "_" + Now.ToString, THREAD_ERROR, _

EventLogEntryType.Error, My.Resources.Source)
Catch tab As ThreadAbortException
WriteLogEvent(My.Resources.ThreadAbortMessage + "_" +
tab.ToString + "_" + Now.ToString, THREAD_ABORT_ERROR
EventLogEntryType.Error, My.Resources.Source)

210 Part lll Services That Support IT and the Business

Catch ex As Exception
WriteLogEvent(My.Resources.ThreadErrorMessage + "_" +
ex.ToString + "_" + Now.ToString, THREAD_ERROR, _
EventLogEntryType.Error, My.Resources.Source)
End Try
End If

If Not m_ThreadAction.StopThread Then
Thread.STeep(THREAD_WAIT)
End If
End While

End Sub

Private Shared Sub WriteLogEvent(ByVal pszMessage As String, _
ByVal dwID As Long, ByVal iType As EventLogEntryType
ByVal pszSource As String)

Try

Dim eLog As EventlLog = New EventLog("Application™)
eLog.Source = pszSource

Dim eInstance As EventInstance = New EventInstance(dwID, 0, iType)
Dim strArray() As String

ReDim strArray(1)
strArray(0) = pszMessage
eLog.WriteEvent(eInstance, strArray)

elLog.Dispose()
Catch ex As Exception
'Do not Catch here as it doesn't do any good for now
End Try
End Sub

Private Function ProcessCommand(ByVal pszCommand As String, _
ByRef pszOut As String) As Boolean
Try
If pszCommand Is Nothing Then
Return False
End If

'Get the Data and clear out our ending delimiter
Try
pszCommand = pszCommand.Remove(pszCommand.Length - 5,
"<EOF>".Length)
Catch ex As Exception
Return False
End Try

'Sp1it the Command and find out which one we are doing
Dim pszArray() As String = Split(pszCommand, "##")

Select Case UCase(pszArray(0))
Case "GETDATETIME"
pszOut = GetDateTime()

Chapter 10 Services That Listen 211

Case "GETSERVICESTATUS"
pszOut = GetServiceStatus(pszArray(1))
Case "GETPROCESSLIST"
pszOut = GetProcessList()
Case Else
pszOut = Nothing
Return False
End Select

Return True
Catch ex As Exception
Return False
End Try
End Function

Private Function GetDateTime() As String
Try
Return Now.ToString
Catch ex As Exception
Return Nothing
End Try
End Function

Private Function GetServiceStatus(ByVal pszService As String) As String
Try
Dim tmpService As New ServiceController(pszService)
Dim pszOut As String = Nothing

Select Case tmpService.Status
Case ServiceControllerStatus.ContinuePending

pszOut = "ContinuePending"

Case ServiceControllerStatus.Paused
pszOut = "Paused"

Case ServiceControllerStatus.PausePending
pszOut = "PausePending"

Case ServiceControllerStatus.Running
pszOut = "Running"

Case ServiceControllerStatus.StartPending
pszOut = "StartPending"

Case ServiceControllerStatus.Stopped
pszOut = "Stopped"

Case ServiceControllerStatus.StopPending
pszOut = "StopPending"

Case Else
pszOut = "Unknown"

End Select

Try
tmpService.Close()
tmpService.Dispose()
tmpService = Nothing

Catch ex As Exception
'Do nothing

End Try

212 Part lll Services That Support IT and the Business

Return pszOut
Catch ex As Exception
Return "Unknown"
End Try
End Function

Private Function GetProcessList() As String
Try
Dim pszOut As String = Nothing
Dim tmpProcesses() As Process = Process.GetProcesses
Dim objProcess As Process
For Each objProcess In tmpProcesses
If pszOut Is Nothing Then
pszOut = objProcess.ProcessName
Else
pszOut += "##" + objProcess.ProcessName
End If
Next

objProcess = Nothing
tmpProcesses = Nothing

Return pszOut
Catch ex As Exception
Return Nothing
End Try
End Function

Public Property Port() As Integer
Get
Return m_Port
End Get
Set(ByVal value As Integer)
m_Port = value
End Set
End Property

Public Property MaxConnections() As Integer
Get
Return m_MaxConnections
End Get
Set(ByVal value As Integer)
m_MaxConnections = value
End Set
End Property

Public ReadOnly Property Incoming() As Thread
Get
Return m_Incoming
End Get
End Property
End Class

The following sections review this code.

Chapter 10 Services That Listen 213

Listener Class Properties

Listener has two properties that we read from our configuration file. First is the Port property,
which tells us which server port to use for this instance. Second is the MaxConnections
property, which tells us how many clients can connect to this instance at one time. Each
property must be set before the <Start> method of the class instance is called.

The <StartListener> Method

If you’ve never worked with sockets and TCP/IP before, it’s especially important that you
review this code.

The first thing I do is create an endpoint, shown in Listing 10-3. An endpoint defines the
binding information used by the socket to bind to the local server and socket instance based
on the port and server IP address.

Listing 10-3 Define local endpoint used by listener socket.
Dim localEndPoint As IPEndPoint = Nothing

Next I create a listener socket, shown in Listing 10-4. The listener socket waits on the
endpoint for incoming requests.

Listing 10-4 Define listener socket used by service.
m_Listener = New Socket(AddressFamily.InterNetwork, _
SocketType.Stream, ProtocolType.Tcp)

I am using the standard TCP protocol. This indicates that I want to create a connection-based
socket.

Next, as shown in Listing 10-5, I create the required IPHostEntry and IPAddress instances that
are used by IPEndPoint to create the binding information for the listener socket. I use the
Dns.GetHostName method to get the list of IP addresses of the local computer. I actually get
back a list of IP addresses, but I only care about the first one. I could, of course, iterate through
the list if I had multiple adapters and wanted to bind to a specific adapter.

Listing 10-5 Define listener socket attributes used to bind to server local port.
Dim ipHostInfo As IPHostEntry = Dns.GetHostEntry(Dns.GetHostName())

Dim ipAddress As IPAddress = ipHostInfo.AddressList(0)

TocalEndPoint = New IPEndPoint(ipAddress, Me.Port)
m_Listener.Bind(TocalEndPoint)

m_Listener.Listen(Me.MaxConnections)

Last, you will see that I use IPEndPoint to bind the listener socket, and then I use the Socket.Listen
method to start listening for incoming connections. You should also notice that I am using
the MaxConnections property from the configuration file to tell the listener how many client
sockets can be connected at any time before it will return an unavailable connection error to
the clients.

214 Part lll Services That Support IT and the Business

The <StartListener> Processing Loop

Once we have the service listener socket running, we are waiting for a client connection
request. When a request comes in, we want to process that request. Let’s review the code that
does this, shown in Listing 10-6.

Listing 10-6 The <StartListener> processing loop.

Dim bytes() As Byte = New [Byte](1024) {}

While True

' Program is suspended while waiting for an incoming connection.
m_ClientSocket = m_Listener.Accept

Dim Data As String = Nothing
Dim bError As Boolean = False
' An incoming connection needs to be processed.
While True
Dim iStart As Long = Now.Ticks
'Create a Byte Buffer to receive data on.
bytes = New Byte(1024) {}
Dim bytesRec As Integer = m_ClientSocket.Receive(bytes)
Data += Encoding.ASCII.GetString(bytes, 0, bytesRec)
If ((Now.Ticks - iStart) / 10000000) > 30 Then
'We have timed out based on a 30 second timeout
Try
m_ClientSocket.Shutdown(SocketShutdown.Both)
Catch ex As Exception
End Try

Try
m_CTlientSocket.Close()
Catch ex As Exception

End Try
Exit While
End If

If Data.IndexOf("<EOF>") > -1 Then
Dim pszOut As String = Nothing

Try
WriteLogEvent(Data, 15, EventlLogEntryType.Information,
My .Resources.Source)
Call ProcessCommand(Data, pszOut)
m_ClientSocket.Send(Encoding.ASCII.GetBytes(pszOut),
Encoding.ASCII.GetBytes(pszOut).Length,
SocketFTlags.None)
Catch ex As Exception
Exit While
End Try
'clean up
Try
m_ClientSocket.Shutdown(SocketShutdown.Both)
Catch ex As Exception
End Try

Try
m_ClientSocket.Close()

Chapter 10 Services That Listen 215

Catch ex As Exception
End Try
End If

Exit While
End While
End While

When a client connection request comes in, we use our single client socket and then use the
listener socket’s accept method to assign the client to the client socket. Then we begin an inner
loop to receive the request from the client. In this case I am requiring a 30-second window
for the client to send its request. If the request doesn’t come within the allotted time, I consider
a time-out has occurred, and then exit the loop and disconnect the client.

If the client does send its request in the time period allotted, I begin to peek the data and
look for the <EOF>, which is required based on the communication specification for this
client-server pair.

When I find the <EOF>, the data is read off into the allocated buffer and then sent to the
<ProcessCommand>method. (I will go over this method shortly.) If the <ProcessCommand> call
has no errors or issues, I use the client socket to send the response to the client, shut down the
socket, close the socket, and then go back to listening for another connection request.

Listener Processing Methods

The Listener class has several processing methods that are used to parse, process, and respond
to clients’ requests. In our service, we support three separate requests. Each request is
covered by a separate processing method. Each processing method is wrapped around the
<ProcessCommand> function, which takes the request from the client, parses it, calls the
processing method, and then returns the data to the <StartListener> thread.

The <ProcessCommand> Method

<ProcessCommand> is the main method used by our service. The service will use this wrapper
method to determine the type of client request and then call the appropriate method to handle
the gathering of the client’s request. After the request is complete, the <ProcessCommand>
method will return the data via a reference pointer to a string passed to it from the
<StartListener> thread method. Each processing method will return back the appropriate
string to <ProcessCommand>.

The <GetDateTime> Method

<GetDateTime> will return the current date and time of the local server. Although not an
incredibly useful method, <GetDateTime> is good for demonstration purposes.

216

Part lll Services That Support IT and the Business

The <GetServiceStatus> Method

When <GetServiceStatus> is called, the user will pass in the short name of any service whose
status it wants to validate. After this method is called, it will return the state of the requested
service. In the case of an error, or if no service is found, <GetServiceStatus> will return an
unknown status to the caller.

The <GetProcessList> Method

<GetProcessList>will return a comma-delimited list to the client of currently running processes
on the server. The client can then parse the processes and get an alphabetized list of server
processes.

Updating the <Tutorials.ThreadFunc> Method

We need to update the <ThreadFunc> method (as shown in Listing 10-7) so that we can read
in the values from our configuration file.

Listing 10-7 The <ThreadFunc> method configuration code.
Private Sub ThreadFunc()
Try
'Load our Configuration File
Dim Doc As XmlDocument = New XmlDocument()
Doc.Load(My.Settings.ConfigFile)

Dim Options As XmINode
'Get a pointer to the Outer Node
Options = Doc.SelectSingleNode("//*[1ocal-name()="'Listeners']")

If (Not Options Is Nothing) Then
Dim tmpOptions As System.Xml.XPath.XPathNavigator = _
Options.FirstChild.CreateNavigator()

If (Not tmpOptions Is Nothing) Then
Dim children As System.Xml.XPath.XPathNavigator
Do
Try
Dim tmpListener As New Listener(m_ThreadAction)

children = tmpOptions.SelectSingleNode("MaxConnections™)
tmpListener.MaxConnections = Int32.Parse(children.Value)

children = tmpOptions.SelectSingleNode("Port")
tmpListener.Port = Int32.Parse(children.Value)

m_WorkerThreads.Add(tmpListener)
tmpListener.Start()
Catch ex As Exception
WriteLogEvent(ex.ToString(), CONFIG_READ_ERROR, _
EventLogEntryType.Error, My.Resources.Source)
End Try
Loop While (tmpOptions.MoveToNext)

Chapter 10 Services That Listen 217

End If
End If

Catch ex As Exception
WriteLogEvent(ex.ToString(), ONSTART_ERROR, _
EventLogEntryType.Error, My.Resources.Source)
Me.Stop()
End Try
End Sub

As with all our previous services, we need to be able to read in the values from the configura-
tion file and then assign them to the properties of the class instance. In this case, we are
assigning both the MaxConnections and Port properties to the Listener class instance. We can
have as many instances as we want, and we can listen on practically an unlimited number of
ports. I would recommend, however, that you don’t use any ports below 1024 because these
are usually associated with already existing applications or standards.

Updating the Tutorials <OnStop> Method

The service <OnStop> method needs to be updated to clean up the service threads properly for
each class instance created, which is displayed in Listing 10-8.

Listing 10-8 The updated <OnStop> service method.
Protected Overrides Sub OnStop()
' Add code here to perform any tear-down necessary to stop your service.
Try
If (Not m_WorkerThread Is Nothing) Then
Try
WriteLogEvent(My.Resources.ServiceStopping, ONSTOP_INFO, _
EventLogEntryType.Information, My.Resources.Source)

m_ThreadAction.StopThread = True

For Each Tistener As Listener In m_WorkerThreads
Me.RequestAdditionalTime (THIRTY_SECONDS)
Listener.Incoming.Join(TIME_OUT)

Next

Catch ex As Exception
m_WorkerThread = Nothing
End Try
End If
Catch ex As Exception
'We Catch the Exception
'to avoid any unhandled errors
'since we are stopping and
'logging an event is what failed
'we will merely write the output
'to the debug window
m_WorkerThread = Nothing
Debug.WriteLine("Error stopping service: " + ex.ToString())
End Try
End Sub

218 Part lll Services That Support IT and the Business

Service Validation

To test the service, we need to connect to the service and call each of the processing methods
to see what we get back. For this reason, [have created a client that can use the functionality
of the service, whether it is remote or local. The important thing to realize is that we haven’t
yet implemented any type of authentication in the service, which means that anyone who
has access to the server remotely would have access to call the functionality of the service. We
will work on this in later chapters.

The Test Client

I have created a test client that looks like this and can be used to demonstrate the functionality
of the service on any given port.

B chopter sncient -Ioix

Status | I I

Process || j
Part I‘I‘IDDD

The code, which appears in Listing 10-9, is very simple, but shows how easily you can use
your service. The three buttons do three different things: Each creates a Socket, calls
<GetDateTime>, <GetProcessList>, or <GetServiceStatus>, and fills in the appropriate box with
the response from the server. For the status, the first text box represents the service name,
such as w3svc, and the second text box represents its status after you click the button and a
response returns from the server.

Listing 10-9 Chapter 10 test client code.
Imports System.Text

Imports System.Net

Imports System.Net.Sockets

Public Class frmClient

Private Sub Buttonl_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles getTime.Click
Try
Dim bytes(1024) As Byte
Dim ipHostInfo As IPHostEntry = Dns.GetHostEntry(Dns.GetHostName())

Dim ipAddress As IPAddress
Dim sendersocket As New Socket(AddressFamily.InterNetwork, _
SocketType.Stream, ProtocolType.Tcp)

Dim remoteEP As IPEndPoint

For Each ipAddress In ipHostInfo.AddressList
Debug.WriteLine(ipAddress.ToString + "-" +

Chapter 10 Services That Listen

ipAddress.AddressFamily.ToString)
If ipAddress.AddressFamily = AddressFamily.InterNetwork Then
remoteEP = New IPEndPoint(ipAddress, CInt(txtPort.Text))

Try
sendersocket.Connect(remoteEP)
Exit For

Catch ex As Exception
Debug.WriteLine(ex.ToString())

End Try

End If
Next

Dim msg As Byte() = _
Encoding.ASCII.GetBytes ("GETDATETIME##<EOF>")
Dim bytesSent As Integer = sendersocket.Send(msg)
Dim bytesRec As Integer = sendersocket.Receive(bytes)
txtTime.Text = Encoding.ASCII.GetString(bytes, 0, bytesRec)

sendersocket.Shutdown (SocketShutdown.Both)
sendersocket.Close()
Catch ex As Exception
End Try
End Sub

Private Sub Buttonl_Click_1(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Buttonl.Click
Try
cmbProcessList.Items.Clear()
Dim bytes(1024) As Byte
Dim ipHostInfo As IPHostEntry = Dns.GetHostEntry(Dns.GetHostName())

Dim ipAddress As IPAddress = ipHostInfo.AddressList(0)

Dim remoteEP As New IPEndPoint(ipAddress, CInt(txtPort.Text))

Dim sendersocket As New Socket(AddressFamily.InterNetwork, _
SocketType.Stream, ProtocolType.Tcp)

For Each ipAddress In ipHostInfo.AddressList
Debug.WriteLine(ipAddress.ToString + "-" +
ipAddress.AddressFamily.ToString)
If ipAddress.AddressFamily = AddressFamily.InterNetwork Then
remoteEP = New IPEndPoint(ipAddress, CInt(txtPort.Text))

Try
sendersocket.Connect(remoteEP)
Exit For

Catch ex As Exception
Debug.WriteLine(ex.ToString())

End Try

End If
Next

Dim msg As Byte() = _
Encoding.ASCII.GetBytes("GETPROCESSLIST##<EOF>")

219

220 Part lll Services That Support IT and the Business

Dim bytesSent As Integer = sendersocket.Send(msg)

Dim bytesRec As Integer = sendersocket.Receive(bytes)

Dim tmpArray() As String = Split((Encoding.ASCII.GetString(bytes, 0, bytesRec)),
"##", , CompareMethod.Text)

Dim iLoop As Integer

For iLoop = 0 To tmpArray.Length - 1
cmbProcessList.Items.Add(tmpArray(iLoop))

Next
sendersocket.Shutdown(SocketShutdown.Both)
sendersocket.Close()

Catch ex As Exception

End Try

End Sub

Private Sub Button2_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button2.Click
Try
Dim bytes(1024) As Byte
Dim ipHostInfo As IPHostEntry = Dns.GetHostEntry(Dns.GetHostName())
Dim ipAddress As IPAddress = ipHostInfo.AddressList(0)
Dim remoteEP As New IPEndPoint(IPAddress, CInt(txtPort.Text))
Dim sendersocket As New Socket(AddressFamily.InterNetwork, _
SocketType.Stream, ProtocolType.Tcp)

For Each ipAddress In ipHostInfo.AddressList
Debug.WriteLine(ipAddress.ToString + "-" +
ipAddress.AddressFamily.ToString)
If ipAddress.AddressFamily = AddressFamily.InterNetwork Then
remoteEP = New IPEndPoint(ipAddress, CInt(txtPort.Text))

Try
sendersocket.Connect(remoteEP)
Exit For

Catch ex As Exception
Debug.WriteLine(ex.ToString())

End Try

End If
Next

Dim msg As Byte() = _
Encoding.ASCII.GetBytes("GETSERVICESTATUS##" +
txtService.Text + "<EOF>")
Dim bytesSent As Integer = sendersocket.Send(msg)
Dim bytesRec As Integer = sendersocket.Receive(bytes)
txtServiceStatus.Text =
Encoding.ASCII.GetString(bytes, 0, bytesRec)

sendersocket.Shutdown(SocketShutdown.Both)
sendersocket.Close()
Catch ex As Exception
End Try
End Sub
End Class

Chapter 10 Services That Listen 221

The code in Listing 10-9 is fast and reliable, and you can click the buttons repeatedly. This is
neither a complicated process nor a robust one, but you can use this same client to test the
code we created previously in this chapter, as we extend the service to allow more than one
connection at a time.

If you click one of the buttons, the client utility will connect to the local server and try to run
one of the commands. Because it is intended only for demonstration purposes, the error
handling is not robust. If you wanted to test it against a remote server, you will need to modify
the code to use the name of the server you want to connect to in place of the Dns.GetHost-
Name() method used in conjunction with the Dns.GetHostEntry() method.

Allowing Multiple Connections

Allowing only a single connection might work, especially in cases where the requests come
from either a single source or at intervals that help ensure that two resources cannot compete
for a connection at the same time. However, in some circumstances a single instance of a
service could be used to generate requests for multiple resources. A good example of this is
when you have a server that is multi-homed for several subnets, and receives requests for data
from any or all of these subnets—and possibly from multiple computers or processes on each
subnet. In this case, a single point connection would not be beneficial; however, you still want
to limit how many connections you allow for performance reasons.

Extending the Listener Class

We are going to modify the code in Listing 10-9 to allow for up to 10 simultaneous connections
to our service. This will require us to create up to 10 client sockets to accept the incoming
requests, as well as telling our listener socket to accept up to 10 client requests before it
returns an error to the client stating that it is unable to connect. Listener sockets only accept
one socket at a time. Our code uses synchronous sockets with a backlog of up to 10 socket
requests. Remember, though, that our configuration file allows us to specify the maximum
number of sockets at any given time. Therefore, it is not a hard-coded value.

We’'ll use ThreadPool to take care of the multiple connections that our class will now be able to
accept. Let’s review the new modifications.

The <SocketThread> Method

We need to create a secondary thread method that will act as our socket processing thread.
Since we will allow more than one connection at a time, having only a single thread won’t
work. Listing 10-10 shows the newly created thread method.

Listing 10-10 The <SocketThread> thread method.
Private Sub SocketThread(ByVal args As Object)
Dim 1Socket As Socket = CType(args, Socket)

222 Part lll Services That Support IT and the Business

Try
Dim bytes() As Byte = New [Byte](1024) {}
Dim Data As String = Nothing
Dim bError As Boolean = False

While Not m_ThreadAction.StopThread
If Not m_ThreadAction.Pause Then
Dim iStart As Long = Now.Ticks
bytes = New Byte(1024) {}
Dim bytesRec As Integer = 1Socket.Receive(bytes)
Data += Encoding.ASCII.GetString(bytes, 0, bytesRec)

If ((Now.Ticks - iStart) / 10000000) > 30 Then
Try
1Socket.Shutdown (SocketShutdown.Both)
Catch ex As Exception
End Try

Try

1Socket.Close()
Catch ex As Exception
End Try

1Socket = Nothing
Exit Sub
End If
If Data.IndexOf("<EOF>") > -1 Then
Dim pszOut As String = Nothing
Try
Call ProcessCommand(Data, pszOut)
1Socket.Send(Encoding.ASCII.GetBytes(pszOut),
Encoding.ASCII.GetBytes(pszOut).Length, SocketFlags.None)
Catch ex As Exception
'clean up
1Socket.Shutdown(SocketShutdown.Both)
1Socket.Close()
1Socket = Nothing
Return
End Try
End If

Exit While
End If
End While
Catch ex As Exception
1Socket = Nothing
Finally
'clean up
Try
1Socket.Shutdown(SocketShutdown.Both)
1Socket.Close()
1Socket = Nothing
Catch ex As Exception
1Socket = Nothing

Chapter 10 Services That Listen 223

Finally
1Socket = Nothing
End Try
End Try
End Sub

The method shown in the preceding listing will be created as a temporary thread by our
<StartListener> method, which will listen for incoming connections and then create a tempo-
rary thread to process the request. The temporary thread accepts a socket as a parameter.

Next, we call the <ProcessCommand> method, just as we did earlier, and then send the
response to the caller. Last, we close the socket and consider the communication closed.
Although this requires us to continually recreate new sockets for the same client calling many
different methods, or calling the same method many times, it is for demonstration purposes
only. We are not required to drop this socket at all. We could simply make the temporary
thread go back into a receive blocking state waiting for a new command from the client.

We could also consider using asynchronous sockets instead of synchronous sockets; however,
depending on the workload required, synchronous sockets work for a fast, small service
that has limited functional requirements and connections.

Updating the <StartListener> Method

We need to update our primary thread method because we only want it to listen for incoming
connections now and not process them. Let’s review the new code, shown in Listing 10-11.

Listing 10-11 The new <StartListener> method.
Private Sub StartListener()
While Not m_ThreadAction.StopThread
If Not m_ThreadAction.Pause Then
Try
Dim localEndPoint As IPEndPoint = Nothing

m_Listener = New Socket(AddressFamily.InterNetwork, _
SocketType.Stream, ProtocolType.Tcp)

Dim ipHostInfo As IPHostEntry =
Dns.GetHostEntry(Dns.GetHostName())
Dim ipAddress As IPAddress = ipHostInfo.AddressList(0)

TocalEndPoint = New IPEndPoint(ipAddress.Any, Me.Port)

m_Listener.Bind(TocalEndPoint)
m_Listener.Listen(Me.MaxConnections)

While Not m_ThreadAction.StopThread
Dim tmpSocket As Socket

tmpSocket = m_Listener.Accept

Dim tmpThread As New Thread(AddressOf SocketThread)

224 Part lll Services That Support IT and the Business

tmpThread.IsBackground = True
tmpThread.Name = "Socket Thread"
tmpThread.Start(tmpSocket)

End While
Catch nex As SocketException
WriteLogEvent(My.Resources.ThreadErrorMessage + "_" +
nex.ToString + "_" + Now.ToString, THREAD_ERROR,

EventLogEntryType.Error, My.Resources.Source)
Catch tab As ThreadAbortException
WriteLogEvent (My.Resources.ThreadAbortMessage + "_" +
tab.ToString + "_" + Now.ToString, THREAD_ABORT_ERROR,
EventLogEntryType.Error, My.Resources.Source)
Catch ex As Exception

WriteLogEvent(My.Resources.ThreadErrorMessage + "_" +
ex.ToString + "_" + Now.ToString, THREAD_ERROR,
EventLogEntryType.Error, My.Resources.Source)

End Try
End If

If Not m_ThreadAction.StopThread Then
Thread.STeep (THREAD_WAIT)
End If
End While
End Sub

Now that we have our processing thread, this code just needs to wait for an incoming socket
connection and then hand that socket off to our processing thread. It simply creates a local
background thread and then passes it the socket that it just accepted from the client. Notice
that our error handling is not as exhaustive as it could or should be. You should be very
careful when deciding to run any type of service, especially when it comes to error handling
and resources.

Service Validation

Install the new service and make sure that your configuration file has at least two separate
entries for ports to listen on, with more than a single connection as its MaxConnections

property.

Run multiple instances of the test client, assigning different ports to the test client to cover all
possible listening server ports you configured. For each client you should receive a response
from the server on the specified port. You can even run multiple instances of the client against
the same port and each client will still receive its own response. Remember that the accept
method can only accept one socket connection at a time per server port, so you won’t be able
to receive a response at the same instant that you do on another—the server has to process the
incoming connection and hand it off to the processing thread. Also, remember that your
MaxConnections property specifies how many connections can wait in the backlog of queued
requests to the server. So if you launch, for example, 11 or more clients and expect them all
to work at the same time, you'll be disappointed. When more than 10 clients are queued,
client connections will start to fail.

Chapter 10 Services That Listen 225

Summary

Microsoft Visual Basic 2008 has built-in support for sockets that allows for creation of
services that can act as a client or a server answering to incoming requests.

Services written in Visual Basic 2008 can support secured or unsecured socket
protocols.

Microsoft Visual Basic 2008 System.NET and System.NET.Sockets classes provide a vast
amount of support for traditional and nontraditional connection and connectionless
protocols.

To interact propetly, client-server applications must be written to a standard understood
by both the client and the server.

The number of sockets within a client or server is limited by several factors, but revolves
around system resources such as memory, network hardware, virtual memory, and
CPU. You should write applications to scale with worker threads and sockets, not on an
unlimited one-to-one basis with simultaneous connection requests.

	Cover
	Table of Contents
	Chapter 10: Services That Listen
	Listening with TCP/IP
	Design Points for Service Listeners
	Creating the First Listener Service
	Coding the Service Listener
	Creating a Listener Class
	Listener Processing Methods
	Updating the <Tutorials.ThreadFunc> Method
	Updating the Tutorials <OnStop> Method

	Service Validation
	The Test Client

	Allowing Multiple Connections
	Extending the Listener Class
	Updating the <StartListener> Method
	Service Validation

	Summary

