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Chapter 6

Tools for LINQ to SQL

The best way to write queries using LINQ to SQL is by having a DataContext-derived class

in your code that exposes all the tables, stored procedures, and user-defined functions you
need as properties of a class instance. You also need entity classes that are mapped to the data-
base objects. As you have seen in previous chapters, this mapping can be made by using
attributes to decorate classes or through an external XML mapping file. However, writing this
information by hand is tedious and error-prone work. You need some tools to help you
accomplish this work.

In this chapter, you will learn about what file types are involved and what tools are available to
automatically generate this information. The .NET 3.5 Software Development Kit (SDK)
includes a command-line tool named SQLMetal. Microsoft Visual Studio 2008 offers an inte-
grated graphical tool named the Object Relational Designer. We will examine both tools from
a practical point of view.

in the C# samples provided with Visual Studio 2008. All the samples are contained in the
Microsoft Visual Studio 9.0\Samples\1033\CSharpSamples.zip file in your program files direc-
tory if you installed Visual Studio 2008. You can also download an updated version of these
samples from http.//code.msdn.microsoft.com/csharpsamples.

@ \ Important In this chapter we use the version of the Northwind database that is included

File Types
There are three types of files involved in LINQ to SQL entities and a mapping definition:
m Database markup language (DBML)
m Source code (C# or Visual Basic)

m External mapping file (XML)

A common mistake is the confusion between DBML and XML mapping files. At first sight,
these two files are similar, but they are very different in their use and generation process.

DBML—Database Markup Language

The DBML file contains a description of the LINQ to SQL entities in a database markup
language. Visual Studio 2008 installs a DbmlSchema.xsd file, which contains the schema def-
inition of that language and can be used to validate a DBML file. The namespace used for this

187



188 Part Il LINQ to Relational Data

file is http://schemas.microsoft.com/lingtosql/dbml/2007, which is different from the
namespace used by the XSD for the XML external mapping file.

Note You can find the DbmiSchema.xsd schema file in the %ProgramFiles(x86)%\Microsoft
Visual Studio 9.0\Xm\Schemas folder.

The DBML file can be automatically generated by extracting metadata from an existing
Microsoft SQL Server database. However, the DBML file includes more information than can
be inferred from database tables. For example, settings for synchronization and delayed load-
ing are specific to the intended use of the entity. Moreover, DBML files include information
that is used only by the code generator that generates C# or Visual Basic source code, such as
the base class and namespace for generated entity classes. Listing 6-1 shows an excerpt from
a sample DBML file.

Listing 6-1 Excerpt from a sample DBML file

<?xm1 version="1.0" encoding="utf-8"7>
<Database Name="Northwind" Class="nwDataContext"
xmlns="http://schemas.microsoft.com/1inqtosql/dbm1/2007">
<Connection Mode="AppSettings"
ConnectionString="Data Source=..."
SettingsObjectName="DevLeap.Ling.LinqToSql.Properties.Settings"
SettingsPropertyName="NorthwindConnectionString"
Provider="System.Data.SqlClient" />
<Table Name="dbo.Orders" Member="Orders">
<Type Name="Order">
<Column Name="OrderID" Type="System.Int32"
DbType="Int NOT NULL IDENTITY" IsPrimaryKey="true"
IsDbGenerated="true" CanBeNull="false" />
<Column Name="CustomerID" Type="System.String"
DbType="NChar(5)" CanBeNull="true" />
<Column Name="OrderDate" Type="System.DateTime"
DbType="DateTime" CanBeNull="true" />

<Association Name="Customer_Order" Member="Customer"
ThisKey="CustomerID" Type="Customer"
IsForeignKey="true" />
</Type>
</Table>

</Database>

The DBML file is the richest container of metadata information for LINQ to SQL. Usually, it
can be generated from a SQL Server database and then manually modified, adding informa-
tion that cannot be inferred from the database. This is the typical approach when using the

SQLMetal command-line tool. The Object Relational Designer included in Visual Studio 2008
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offers a more dynamic way of editing this file, because programmers can import entities from
a database and modify them directly in the DBML file through a graphical editor. The DBML
generated by SQLMetal can also be edited with the Object Relational Designer.

The DBML file can be used to generate C# or Visual Basic source code for entities and
DataContext-derived classes. Optionally, it can also be used to generate an external XML
mapping file.

DBML syntax. You can find more information and the whole DbmlSchema.xsd content in the

I:j More Info It is beyond the scope of this book to provide a detailed description of the
product documentation at http.//msdn2.microsoft.com/library/bb399400.aspx.

C# and Visual Basic Source Code

The source code written in C#, Visual Basic, or any other .NET language contains the defini-
tion of LINQ to SQL entity classes. This code can be decorated with attributes that define the
mapping of entities and their properties with database tables and their columns. Otherwise,
the mapping can be defined by an external XML mapping file. However, a mix of both is not
allowed—you have to choose only one place where the mappings of an entity are defined.

This source code can be automatically generated by tools such as SQLMetal directly from a
SQL Server database. The code-generation function of SQLMetal can translate a DBML file to
C# or Visual Basic source code. When you ask SQLMetal to directly generate the source code
for entities, internally it generates the DBML file that is converted to the entity source code. In
Listing 6-2, you can see an excerpt of the C# source code generated for LINQ to SQL entities
that were generated from the DBML sample shown in Listing 6-1.

Listing 6-2  Excerpt from the class entity source code in C#

[System.Data.Ling.Mapping.DatabaseAttribute(Name="Northwind")]
public partial class nwDataContext : System.Data.Ling.DataContext {

/AETE

public System.Data.Ling.Table<Order> Orders {
get { return this.GetTable<Order>(Q); }

}

}

[Table(Name="dbo.Orders")]

public partial class Order : INotifyPropertyChanging, INotifyPropertyChanged {
private int _OrderID;
private string _CustomerID;
private System.Nullable<System.DateTime> _OrderDate;

[Column(Storage="_OrderID", AutoSync=AutoSync.OnInsert,
DbType="Int NOT NULL IDENTITY", IsPrimaryKey=true,
IsDbGenerated=true)]
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public int OrderID {
get { return this._OrderID; }
set {
if ((this._OrderID !'= value)) {

this.OnOrderIDChanging(value);
this.SendPropertyChanging();
this._OrderID = value;
this.SendPropertyChanged("OrderID");
this.OnOrderIDChanged();

3

[Column(Storage="_CustomerID", DbType="NChar(5)")]
public string CustomerID {
get { return this._CustomerID; }
set {
if ((this._CustomerID != value)) {
if (this._Customer.HasLoadedOrAssignedvValue) {
throw new ForeignKeyReferenceAlreadyHasValueException();
}
this.OnCustomerIDChanging(value);
this.SendPropertyChanging();
this._CustomerID = value;
this.SendPropertyChanged("CustomerID");
this.OnCustomerIDChanged() ;

[Column(Storage="_OrderDate", DbType="DateTime")]
public System.Nullable<System.DateTime> OrderDate {
get { return this._OrderDate; }
set {
if ((this._OrderDate != value)) {
this.OnOrderDateChanging(value);
this.SendPropertyChanging();
this._OrderDate = value;
this.SendPropertyChanged("OrderDate");
this.OnOrderDateChanged();

[Association(Name="Customer_Order", Storage="_Customer",
ThisKey="CustomerID", IsForeignKey=true)]
public Customer Customer {
get { return this._Customer.Entity; }

set {
Customer previousValue = this._Customer.Entity;
if ((previousValue != value)

|| (this._Customer.HasLoadedOrAssignedValue == false)) {
this.SendPropertyChanging();



o)

Chapter 6 Tools for LINQ to SQL 191

if ((previousValue != null)) {
this._Customer.Entity = null;
previousValue.Orders.Remove(this);

}

this._Customer.Entity = value;

if ((value !'= null)) {
value.Orders.Add(this);
this._CustomerID = value.CustomerID;

}
else {
this._CustomerID = default(string);
}
this.SendPropertyChanged("Customer");
}
b
}
// ...

The attributes that are highlighted in bold in Listing 6-2 are not generated in the source code
file when you have SQLMetal generate both the source code file and an external XML
mapping file. The XML mapping file will contain this mapping information.

discussed in Chapter 4, “LINQ to SQL: Querying Data,” and in Chapter 5, "LINQ to SQL:

More Info Attributes that define the mapping between entities and database tables are
Managing Data”

XML—External Mapping File

An external mapping file can contain binding metadata for LINQ to SQL entities as an
alternative way to store them in code attributes. This file is an XML file with a schema that is
a subset of the DBML file. The DBML file also contains information useful for code generators.
Attributes defined on class entities are ignored whenever they are included in the definitions
of an external mapping file.

The namespace used for this file is http://schemas.microsoft.com/linqtosql/mapping/2007,
which is different from the one used by the DBML XSD file.

Note The LingToSglMapping.xsd schema file should be located in the %ProgramFiles(x86)%\
Microsoft Visual Studio 9.0\XmN\Schemas folder. If you do not have that file, you can create it
by copying the code from the documentation page at http.//msdn2.microsoft.com/library/
bb386907.aspx.
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In Listing 6-3, you can see an example of an external mapping file generated from the DBML
file presented in Listing 6-1. We highlighted the Storage attribute that defines the mapping
between the table column and the data member in the entity class that stores the value
exposed through the member property (defined by the Member attribute). The value assigned
to Storage depends on the implementation generated by the code generator; for this reason, it
is not included in the DBML file.

Listing 6-3 Excerpt from a sample XML mapping file

<?xml version="1.0" encoding="utf-8"?>
<Database Name="northwind"
xmIns="http://schemas.microsoft.com/Tinqtosql/mapping/2007">
<Table Name="dbo.Orders" Member="Orders">
<Type Name="Orders">
<Column Name="OrderID" Member="OrderID" Storage="_OrderID"
DbType="Int NOT NULL IDENTITY" IsPrimaryKey="true"
IsDbGenerated="true" AutoSync="OnInsert" />
<Column Name="CustomerID" Member="CustomerID" Storage="_CustomerID"
DbType="NChar(5)" />
<Column Name="OrderDate" Member="OrderDate" Storage="_OrderDate"
DbType="DateTime" />

<Association Name="FK_Orders_Customers" Member="Customers"
Storage="_Customers" ThisKey="CustomerID"
OtherKey="CustomerID" IsForeignKey="true" />
</Type>
</Table>

</Database>

are available only through an external mapping file but not with attribute-based mapping.
For example, with an XML mapping file you can specify different DbType values for SQL
Server 2000, SQL Server 2005, and SQL Server Compact 3.5. External XML mapping files are

I:j More Info If a provider has custom definitions that extend existing ones, the extensions
discussed in Chapter 5.

LINQ to SQL File Generation

Usually, most of the files used in LINQ to SQL are automatically generated by some tool.
The diagram in Figure 6-1 illustrates the relationships between the different file types and the
relational database. In the remaining part of this section, we will describe the most important
patterns of code generation that you can use.
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DataContext-derived
Class +——— | SQL Server Database
C# / Visual Basic Code

S

DBML

XML Mapping File

Figure 6-1 Relationships between file types and the relational database

Generating a DBML File from an Existing Database

If you have a relational database, you can generate a DBML file that describes tables, views,
stored procedures, and user-defined functions, mapping them to class entities that can be
created by a code generator. After it is created, the DBML file can be edited using a text editor
or the Object Relational Designer included in Visual Studio 2008.

Generating an Entity’s Source Code with Attribute-Based Mapping

You can choose to generate source code for class entities in C# or Visual Basic with attribute-
based mapping. This code can be generated from a DBML file or directly from a SQL Server
database.

If you start from a DBML file, you can still modify that DBML file and then regenerate the
source code. In this case, the generated source code should not be modified because it could
be overwritten in the future by code regeneration. You can customize generated classes by
using a separate source code file, leveraging the partial class declaration of generated class
entities. This is the pattern used when working with the Object Relational Designer.

If you generate code directly from a SQL Server database, the resulting source code file can
still be customized using partial classes; however, if you need to modify the mapping settings,
you have to modify the generated source code. In this case, you probably will not regenerate
this file in the future and can therefore make modifications directly on the generated source
code in C# or Visual Basic.

Generating an Entity’s Source Code with an External XML Mapping File

You can choose to generate source code for class entities in C# or Visual Basic together with an
external XML mapping file. The source code and the XML mapping file can be generated
from a DBML file or directly from a SQL Server database.
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If you start from a DBML file, you can still modify that DBML file and then regenerate the
source code and the mapping file. In this case, the generated files should not be modified
because they could be overwritten in the future by code regeneration. You can customize
generated classes by using a separate source code file, leveraging the partial class declaration
of the generated class entities. This is the pattern used when you work with the Object
Relational Designer.

If you generate code directly from a SQL Server database, the resulting source code file can
still be customized using partial classes. Because the mapping information is stored in a sepa-
rate XML file, you need to modify that file to customize mapping settings. Most likely, you will
not regenerate these files in the future and can therefore make modifications directly on the
generated files.

Creating a DBML File from Scratch

You can start writing a DBML file from scratch. In this case, you probably would not have an
existing database file and would generate the database by calling the DataContext.CreateData-
base method on an instance of the generated class inherited from DataContext. This approach
is theoretically possible when you write the XML file with a text editor, but in practice we
expect that it will be done only by using the Object Relational Designer.

Choosing this approach means that entity classes are more important than the database
design, and the database design itself is only a consequence of the object model you designed
for your application. In other words, you see the relational database as a simple persistence
layer (without stored procedures, triggers, and other database-specific features), which should
not be accessed directly by consumers that are not using the LINQ to SQL engine. In the real
world, we have found this can be the case for applications that use the database as the storage
mechanism for complex configurations or to persist very simple information, typically in a
stand-alone application with a local database. Whenever a client-server or multitier architec-
ture is involved, chances are that additional consumer applications will access the same data-
base—for example, a tool to generate reports, such as Reporting Services. These scenarios
are more database-centric and require better control of the database design, removing the
DBMLHirst approach as a viable option. In these situations, the best way of working is to
define the database schema and the domain model separately and then map the entities of the
domain model on the database tables.

SQLMetal

SQLMetal is a code-generation command-line tool that can be used to do the following:

m  Generate a DBML file from a database
B Generate an entity’s source code (and optionally a mapping file) from a database

m  Generate an entity’s source code (and optionally a mapping file) from a DBML file
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The syntax for SQLMetal is the following:
sqlmetal [options] [<input file>]

In the following sections, we will provide several examples that demonstrate how to use SQL-
Metal.

|:] More Info A complete description of the SQLMetal command-line options is available at
http.//msdn2.microsoft.com/library/bb386987.aspx.

Generating a DBML File from a Database

To generate a DBML file, you need to specify the /dbml option, followed by the filename to
create. The syntax to specify the database to use depends on the type of the database. For
example, a standard SQL Server database can be specified with the /server and /database
options:

sqlmetal /server:localhost /database:Northwind /dbml:northwind.dbml

Windows authentication is used by default. If you want to use SQL Server authentication, you
can use the /user and /password options. Alternatively, you can use the /conn option, which
cannot be used with /server, /database, /user, or /password. The following command line that
uses /conn is equivalent to the previous one, which used /server and /database:

sqlmetal /conn:"Server=1ocalhost;Database=Northwind;Integrated Security=yes"
/dbm1:northwind.dbm1

If you have the Northwind MDF file in the current directory and are using SQL Server
Express, the same result can be obtained by using the following line, which makes use of the
input file parameter:

sqlmetal /dbml:northwind.dbml Northwnd.mdf

Similarly, an SDF file handled by SQL Server Compact 3.5 can be specified as in the following
line:

sqlmetal /dbml:northwind.dbml Northwind.sdf

By default, only tables are extracted from a database. You can also extract views, user-defined
functions, and stored procedures by using /views, /functions, and /sprocs, respectively, as
shown here:

sqlmetal /server:localhost /database:Northwind /views /functions /sprocs
/dbm1 :northwind.dbml

‘ Note Remember that database views are treated like tables by LINQ to SQL.
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Generating Source Code and a Mapping File from a Database

To generate an entity’s source code, you need to specify the /code option, followed by the
filename to create. The language is inferred by the filename extension, using CS for C# and
VB for Visual Basic. However, you can explicitly specify a language by using /language:csharp
or /language:vb to get C# or Visual Basic code, respectively. The syntax to specify the database
to use depends on the type of the database. A description of this syntax can be found in the
preceding section, “Generating a DBML File from a Database.”

For example, the following line generates C# source code for entities extracted from the
Northwind database:

sqlmetal /server:localhost /database:Northwind /code:Northwind.cs

If you want all the tables and the views in Visual Basic, you can use the following
command line:

sqlmetal /server:localhost /database:Northwind /views /code:Northwind.vb

Optionally, you can add the generation of an XML mapping file by using the /map option, as
in the following command line:

sqlmetal /server:localhost /database:Northwind /code:Northwind.cs /map:Northwind.xml

@ Important When the XML mapping file is requested, the generated source code does not
contain any attribute-based mapping.

There are a few options to control how the entity classes are generated. The /namespace option
controls the namespace of the generated code. (By default, there is no namespace.) The /context
option specifies the name of the class inherited from DataContext that will be generated. (By
default, it is derived from the database name.) The /entitybase option allows you to define the
base class of the generated entity classes. (By default, there is no base class.) For example, the
following command line generates all the entities in a LingBook namespace, deriving them
from the DevLeap.LingBase base class:

sqlmetal /server:localhost /database:Northwind /namespace:LingBook
/entitybase:Devleap.LingBase /code:Northwind.cs

Note If you specify a base class, you have to be sure that the class exists when the generated
source code is compiled. It is a good practice to specify the full name of the base class.

If you want to generate serializable classes, you can specify /serialization:unidirectional in the
command line, as in the following example:

sqlmetal /server:localhost /database:Northwind /serialization:unidirectional
/code:Northwind.cs
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I:] More Info See the section “Entity Serialization” in Chapter 5 for further information
about serialization of LINQ to SQL entities, as well as Chapter 18, "LINQ and the Windows

Communication Foundation.”

Finally, there is a /pluralize option that controls how the names of entities and properties are
generated. When this option is specified, the entity names generated are singular, but table
names in the DataContext-derived class properties are plural, regardless of the table name’s
form. In other words, the Customer (or Customers) table generates a Customer entity class
and a Customers property in the DataContext-derived class.

Generating Source Code and a Mapping File from a DBML File

The generation of source code and a mapping file from a DBML file is identical to the syntax
required to generate the same results from a database. The only change is that instead of
specifying a database connection, you have to specify the DBML filename as an input file
parameter of the command-line syntax. For example, the following command line generates
the C# class code for the Northwind DBML model description:

sqlmetal /code:Northwind.cs Northwind.dbml

@ Important Remember to use the /dbml option only to generate a DBML file. You do not
have to specify /dbml when you want to use a DBML file as input.

You can use all the options for generating source code and a mapping file that we described in
the “Generating Source Code and a Mapping File from a Database” section.

Using the Object Relational Designer

The Object Relational Designer (O/R Designer) is a graphical editor integrated with Visual
Studio 2008. It is the standard editor for a DBML file. It allows you to create new entities, edit
existing ones, and generate an entity starting from an object in a SQL Server database. (There
is support for tables, views, stored procedures, and user-defined functions.) A DBML file can
be created by choosing the LINQ To SQL Classes template in the Add New Item dialog box,
which you can see in Figure 6-2, or by adding an existing DBML file to a project (using the
Add Existing Item command and picking the Data category).

The design surface allows you to drag items from a connection opened in Server Explorer.
Dragging an item results in the creation of a new entity deriving its content from the imported
object. Alternatively, you can create new entities by dragging items such as Class, Association,
and Inheritance from the toolbox. In Figure 6-3, you can see an empty DMBL file opened in
Microsoft Visual Studio. On the left are the Toolbox and Server Explorer elements ready to be
dragged onto the design surface.
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Figure 6-3 Empty DBML file opened with the Object Relational Designer

Dragging two tables, Orders and Order Details, from Server Explorer to the left pane of the
DBML design surface results in a DBML file that contains two entity classes, Order and
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Order_Detail, as you can see in Figure 6-4. Because a foreign key constraint exists in the
database between the Order Details and Orders tables, an Association between the Order and
Order_Detail entities is generated too.
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Figure 6-4 Two entities created from a server connection

You can see that plural names have been translated into singular-name entity classes.
However, the names of the Table<T> properties in the NorthwindDataContext class are plural
(Orders and Order_Details), as you can see in the bottom part of the Class View shown in
Figure 6-5.

The Class View is updated by Visual Studio 2008 each time you save the DBML file. Every
time that this file is saved, two other files are saved too: a .layout file, which is an XML file
containing information about the design surface, and a .cs/.vb file, which is the source code
generated for the entity classes. In other words, each time a DBML file is saved from Visual
Studio 2008, the code generator is run on the DBML file and the source code for those entities
is updated. In Figure 6-6, you can see the files related to our Northwind.dbml in Solution
Explorer. We have a Northwind.dbml.layout file and a Northwind.designer.cs file.
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Figure 6-5 Plural names for Table<T> properties in a DataContext-derived class
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Figure 6-6 Files automatically generated for a DBML file are shown in Solution Explorer
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You should not modify the source code produced by the code generator. Instead, you should
edit another file containing corresponding partial classes. This file is the Northwind.cs file
shown in Figure 6-7, which is created the first time you select the View/Code command for the
currently selected item in the Object Relational Designer. In our example, we chose View,
Code from the context menu on the Order entity, which is indicated by the arrow in Figure 6-6.
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Figure 6-7 Custom code is stored in a separate file under the DBML file in Solution Explorer

At this point, most of the work will be done in the Properties window for each DBML item and
in the source code. In the remaining part of this chapter, you will see the most important activ-
ities that can be performed with the DBML editor. We do not cover how an entity can be
extended at the source-code level because this topic has been covered in previous chapters.

DataContext Properties

Each DBML file defines a class that inherits DataContext. This class will have a Table<T>
member for each entity defined in the DBML file. The class itself will be generated following
requirements specified in the Properties window. In Figure 6-8, you can see the Properties
window for our NorthwindDataContext class.
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Figure 6-8 DataContext properties

The properties for DataContext are separated into two groups. The simpler one is Data, which
contains the default Connection for DataContext: if you do not specify a connection when
you create a NorthwindDataContext instance in your code, this will be the connection used.
With Application Settings, you can specify whether the Application Settings file should be
used to set connection information. In that case, Settings Property Name will be the property to
use in the Application Settings file.

The group of properties named Code Generation requires a more detailed explanation, which
is provided in Table 6-1.

Table 6-1 Code-Generation Properties for DataContext

Property Description

Access Access modifier for the DataContext-derived class. It can be only
Public or Internal. By default, it is Public.

Base Class Base class for the data context specialized class. By default, it is

System.Data.Ling.DataContext. You can define your own base class,
which would probably be inherited by DataContext.

Context Namespace Namespace of the generated DataContext-derived class only. It does
not apply to the entity classes. Use the same value in Context
Namespace and Entity Namespace if you want to generate
DataContext and entity classes in the same namespace.
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Table 6-1 Code-Generation Properties for DataContext

Property

Description

Entity Namespace

Namespace of the generated entities only. It does not apply to the
DataContext-derived class. Use the same value in Context Namespace
and Entity Namespace if you want to generate DataContext and
entity classes in the same namespace.

Inheritance Modifier

Inheritance modifier to be used in the class declaration. It can be
(None), abstract, or sealed. By default, it is (None).

Name

Name of the DataContext-derived class. By default, it is the name of
the database with the suffix “DataContext”. For example, Northwind-
DataContext is the default name for a DataContext-derived class
generated for the Northwind database.

Serialization Mode

If this property is set to Unidirectional, the entity’s source code is
decorated with DataContract and DataMember for serialization
purposes. By default, it is set to None.

Entity Class

When you select an entity class on the designer, you can change its properties in the
Properties window. In Figure 6-9, you can see the Properties window for the selected Order

entity class.
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Figure 6-9 Entity class properties
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The properties for an entity class are separated into three groups. The Data group contains
only Source, which is the name of the table in the SQL Server database, including the owner or
schema name. This property is automatically filled when the entity is generated by dragging a
table onto the designer surface.

The Default Methods group contains three read-only properties—named Delete, Insert, and
Update—which indicate the presence of custom Create, Update, Delete (CUD) methods. These
properties are disabled if no stored procedures have been defined in the same DBML file. If
you have stored procedures to be called for insert, update, and delete operations on an entity,
you first have to import them into the DBML file (as described in the “Stored Procedures and
User-Defined Functions” section later in this chapter). Then you can edit these properties by
associating the corresponding procedure for each of the CUD operations.

Finally, the properties in the group Code Generation are explained in Table 6-2.

Table 6-2 Code-Generation Properties for an Entity Class

Property Description

Access Access modifier for the entity class. It can be only Public or Internal. By
default, it is Public.

Inheritance Modifier Inheritance modifier to be used in the class declaration. It can be
(None), abstract, or sealed. By default, it is (None).

Name Name of the entity class. By default, it is the singular name of the table

dragged from a database in the Server Explorer window. For example,
Order is the default name for the table named Orders in the Northwind
database.

Remember that the entity class will be defined in the namespace
defined by the Entity Namespace of the related DataContext class.

Entity Members

When an entity is generated by dragging a table from Server Explorer, it has a set of predefined
members that are created by reading table metadata from the relational database. Each of
these members has its own settings in the Properties window. You can add new members by
clicking on Add/Property on the contextual menu, or simply by pressing the INS key. You can
delete a member by pressing the DEL key or by clicking Delete on the contextual menu.
Unfortunately, the order of the members in an entity cannot be modified through the Object
Relational Designer and can be changed only by manually modifying the DBML file and
moving the physical order of the Column tags within a Type.

Warning You can open and modify the DBML file with a text editor such as Notepad. If
you try to open the DBML file with Visual Studio 2008, remember to use the Open With
option from the drop-down list for the Open button in the Open File dialog box, picking the
XML Editor choice to use the XML editor integrated in Visual Studio 2008; otherwise, the
Object Relational Designer will be used by default. You can also use the Open With
command on a DBML file shown in the Solution Explorer in Visual Studio 2008.
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When you select an entity member on the designer, you can change its properties in the
Properties window. In Figure 6-10, you can see the Properties window for the selected OrderID
member of the Order entity class.
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Figure 6-10 Entity member properties

The properties for an entity member are separated into two groups. The Code Generation group
controls the way member attributes are generated, and its properties are described in Table 6-3.

Table 6-3 Code-Generation Properties for Data Members of an Entity

Property Description

Access Access modifier for the entity class. It can be Public, Protected, Protected
Internal, Internal, or Private. By default, it is Public.

Delay Loaded If this property is set to true, the data member will not be loaded until its

first access. This is implemented by declaring the member with the
Link<T> class, which is explained in the “Deferred Loading of Properties”
section in Chapter 4. By default, it is set to false.

Inheritance Modifier

Inheritance modifier to be used in the member declaration. It can be
(None), new, virtual, override, or virtual. By default, it is (None).

Name

Name of the member. By default, it is the same column name used in the
Source property.

Type

Type of the data member. This type can be modified into a Nullable<T>
according to the Nullable setting in the Data group or properties.
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The Data group contains important mapping information between the entity data member
and the table column in the database. The properties in this group are described in Table 6-4.
Many of these properties correspond to settings of the Column attribute, which are described
in Chapter 4 and Chapter 5.

Table 6-4 Data Properties for Data Members of an Entity

Property

Description

Auto Generated Value

Corresponds to the IsDbGenerated setting of the Column attribute.

Auto-Sync Corresponds to the AutoSync setting of the Column attribute.

Nullable If this property is set to true, the type of the data member is declared
as Nullable<T>, where T is the type defined in the Type property.
(See Table 6-3.)

Primary Key Corresponds to the IsPrimaryKey setting of the Column attribute.

Read Only If this property is set to true, only the get accessor is defined for the

property that publicly exposes this member of the entity class. By default,
it is set to false. Considering its behavior, this property could be part of
the Code Generation group.

Server Data Type

Corresponds to the DbType setting of the Column attribute.

Source It is the name of the column in the database table. Corresponds to the
Name setting of the Column attribute.
Time Stamp Corresponds to the IsVersion setting of the Column attribute.

Update Check

Corresponds to the UpdateCheck setting of the Column attribute.

Association Between Entities

An association represents a relationship between entities, which can be expressed through
EntitySet<T>, EntityRef<T>, and the Association attribute we describe in Chapter 4. In Figure 6-4,
you can see the association between the Order and Order_Detail entities expressed as an arrow
that links these entities. In the Object Relational Designer, you can define associations
between entities in two ways:

m  When one or more entities are imported from a database, the existing foreign key
constraints between tables, which are also entities of the designed model, are trans-
formed into corresponding associations between entities.

m  Selecting the Association item in the Toolbox window, you can link two entities defining
an association that might or might not have a corresponding foreign key in the relational
database. To build the association, you must have two data members of the same type in
the related entities that define the relationship. On the parent side of the relationship,
the member must also have the Primary Key property set to True.
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Note An existing database might not have the foreign key relationship that corresponds to
an association defined between LINQ to SQL entities. However, if you generate the relational
database using the DataContext.CreateDatabase method of your model, the foreign keys are
automatically generated for existing associations.

When you create an association or double-click an existing one, the dialog box shown in
Figure 6-11 is displayed. The two combo boxes, Parent Class and Child Class, are disabled
when editing an existing association, they are enabled only when you create a new association
by using the context menu and right-clicking on an empty area of the design surface. Under
Association Properties, you must select the members composing the primary key under the
Parent Class, and then you have to choose the appropriate corresponding members in the
Child Class.

Association Editor -— -?;_ ..” |
Parent Class: Child Class:
| Crder ¥ : iOrder_DetaiI ":

Association Properties;

Order Properties Crder_Detail Properties
OrderdD

[ ok ][ conce

Figure 6-11 Association properties

After you have created an association, you can edit it in more detail by selecting the arrow in
the graphical model and then editing it in the Properties window, as shown in Figure 6-12.

By default, the Association is defined in a bidirectional way. The child class gets a property with
the same name as the parent class (Order_Detail Order in our example), just to get a typed ref-
erence to the parent itself. In the parent class, a particular property represents the set of child
elements (Order.Order_Details in our example). Table 6-5 provides an explanation of all the
properties available in an association. As you will see, most of these settings can significantly
change the output produced.
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Figure 6-12 Association properties

Table 6-5 Association Properties

Property

Description

Cardinality

Defines the cardinality of the association between parent and
child nodes. This property has an impact only on the member
defined in the parent class. Usually and by default, it is set to
OneToMany, which will generate a member in the parent class
that will enumerate a sequence of child items. The only other
possible value is OneToOne, which will generate a single property
of the same type as the referenced child entity. See the sidebar
“Understanding the Cardinality Property” for more information.

By default, this property is set to OneToMany. Using the One-
ToOne setting is recommended, for example, when you split a
logical entity that has many data members into more than one
database table.

Child Property

If this property is set to False, the parent class will not contain a
property with a collection or a reference of the child nodes. By
default, it is set to True.

Child Property/Access

Access modifier for the member children in the parent class. It
can be Public or Internal. By default, it is Public.
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Table 6-5 Association Properties

Property Description

Child Property/Inheritance Inheritance modifier to be used in the member children in the

Modifier parent class. It can be (None), new, virtual, override, or virtual. By
default, it is (None).

Child Property/Name Name of the member children in the parent class. By default, it

has the plural name of the child entity class. If you set Cardinality
to OneToOne, you would probably change this name to the
singular form.

Parent Property/Access Access modifier for the parent member in the child class. It can
be Public or Internal. By default, it is Public.

Parent Property/Inheritance Inheritance modifier to be used in the parent member in the

Modifier child class. It can be (None), new, virtual, override, or virtual. By
default, it is (None).

Parent Property/Name Name of the parent member in the child class. By default, it has

the same singular name as the parent entity class.

Participating Properties Displays the list of related properties that make the association
work. Editing this property opens the Association Editor, which is
shown in Figure 6-11.

Unique Corresponds to the IsUnique setting of the Association attribute.
It should be True when Cardinality is set to OneToOne. However,
you are in charge of keeping these properties synchronized.
Cardinality controls only the code generated for the Child Property,
while Unique controls only the Association attribute, which is
the only one used by the LINQ to SQL engine to compose SQL
queries. By default, it is set to False.

If you have a parent-child relationship in the same table, the Object Relational Designer auto-
matically detects it from the foreign key constraint in the relational table whenever you drag it
into the model. It is recommended that you change the automatically generated name for
Child Property and Parent Property. For example, importing the Employees table from North-
wind results in Employees for the Child Property Name and Employeel for the Parent Property
Name. You can rename these more appropriately as DirectReports and Manager, respectively.

Warning The Child Property and Parent Property of a parent-child Association referencing
the same table cannot be used in a DataloadOptions.LoadWith<T> call because it does not
support cycles.

One-to-One Relationships

Most of the time, you create a one-to-many association between two entities, and the default
values of the Association properties should be sufficient. However, it is easy to get lost with a
one-to-one relationship. The first point to make is about when to use a one-to-one relationship.
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A one-to-one relationship should be intended as a one-to-zero-or-one relationship, where
the related child entity might or might not exist. For example, we can define the simple model
shown in Figure 6-13. For each Contact, we can have a related Customer, containing its amount
of Credit. In the Properties window, you can see highlighted in bold the properties of the
association between Contact and Customer that have been changed from their default values.
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Figure 6-13 Association properties of a one-to-one relationship

Cardinality should already be set to OneToOne when you create the Association. However, it is
always better to check it. You also have to set the Unique property to True and change the
Child Name property to the singular Customer value.

The ContactID member in the Contact entity is a primary key defined as INT IDENTITY in the
database. Thus, it has the Auto Generated Value set to True and Auto-Sync set to Onlnsert. In

the Customer entity, you have another member called ContactID, which is also a primary key
but is not generated from the database. In fact, you will use the key generated for a Contact to
assign the Customer.ContactID value. Thanks to the Contact. Customer and Customer.Contact

properties, you can simply assign the relationship by setting one of these properties, without
worrying about the underlying ContactID field. In the following code, you can see an example
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of two Contact instances saved to the DataContext, one of them is associated with a Customer
instance:

ReTationshipDataContext db = new RelationshipDataContext();

Contact contactPaolo = new Contact();
contactPaolo.LastName = "Pialorsi";
contactPaolo.FirstName = "Paolo";

Contact contactMarco = new Contact();
Customer customer = new Customer();
contactMarco.LastName = "Russo";
contactMarco.FirstName = "Marco";
contactMarco.Customer = customer;
customer.Credit = 1000;

db.Contacts.InsertOnSubmit(contactPaolo);
db.Contacts.InsertOnSubmit(contactMarco);
db.SubmitChanges();

We created the relationship by setting the Contact. Customer property, but the same result
could have been obtained by setting the Customer.Contact property. In other words, thanks to
the synchronization code automatically produced by the code generator, in our one-to-one
relationship the line

contactMarco.Customer = customer;
produces the same result as writing
customer.Contact = contactMarco;

However, you have to remember that the Customer.Contact member is mandatory if you create
a Contact instance, while Contact.Customer can be left set to the default null value if no
Customer is related to that Contact. At this point, it should be clear why the direction of the
association is relevant even in a one-to-one relationship. As we said, it is not really a one-to-one
relationship but a one-to-zero-or-one relationship, where the association stems from the
parent that always exists to the child that could not exist.

Warning A common error made when defining a one-to-one association is using the
wrong direction for the association. In our example, if the association went from Customer to
Contact, it would not generate a compilation error; instead, our previous code would throw
an exception when trying to submit changes to the database.




212

Part Il LINQ to Relational Data

Understanding the Cardinality Property

To better understand the behavior of the Cardinality property, let’s take a look at the
generated code. This is an excerpt of the code generated with Cardinality set to
OneToMany. The member is exposed with the plural name of Customers.

public partial class Contact {
public Contact() {
this._Customers = new EntitySet<Customer>(
new Action<Customer>(this.attach_Customers),
new Action<Customer>(this.detach_Customers));

private EntitySet<Customer> _Customers;

[Association(Name="Contact_Customer", Storage="_Customers",
ThisKey="ContactID", OtherKey="ContactID")]
public EntitySet<Customer> Customers {
get { return this._Customers; }
set { this._Customers.Assign(value); }

And this is the code with Cardinality set to OneToOne. The member is exposed with the
singular name of Customer. (You need to manually change the Child Property Name if
you change the Cardinality property.)

public partial class Contact {
public Contact() {
this._Customer = default(EntityRef<Customer>);
}

private EntityRef<Customer> _Customer;

[Association(Name="Contact_Customer", Storage="_Customer",
ThisKey="ContactID", IsUnique=true, IsForeignKey=false)]
public Customer Customer {
get { return this._Customer.Entity; }

set {
Customer previousValue = this._Customer.Entity;
if ((previousValue != value)

|| (this._Customer.HasLoadedOrAssignedValue == false)) {
this.SendPropertyChanging();
if ((previousValue != null)) {

this._Customer.Entity = null;

previousValue.Contact = null;

}

this._Customer.Entity = value;
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if ((value != null)) {
value.Contact = this;

}
this.SendPropertyChanged("Customer") ;

As you can see, in the parent class we get a Contact.Customer member of type Entity-
Ref<Customer> it Cardinality is set to OneToOne. Otherwise, we get a Contact.Customers
member of type EntitySet<Customer> if Cardinality is set to OneToMany. Finally, the code
generated for the Customer class does not depend on the Cardinality setting.

Entity Inheritance

LINQ to SQL supports the definition of a hierarchy of classes all bound to the same source
table. The LINQ to SQL engine generates the right class in the hierarchy, based on the value
of a specific row of that table. Each class is identified by a specific value in a column, following
the InheritanceMapping attribute applied to the base class, as we saw in the section “Entity
Inheritance” in Chapter 4.

Creating a hierarchy of classes in the Object Relational Designer starting from an existing
database requires you to complete the following actions:

1. Create a Data class for each class of the hierarchy. You can drag the table for the base
class from Server Explorer, and then create other empty classes by dragging a Class item
from the toolbox. Rename the classes you add according to their intended use.

2. Setthe Source property for each added class equal to the Source property of the base class
you dragged from the data source.

3. After you have at least a base class and a derived class, create the Inheritance relation-
ship. Select the Inheritance item in the toolbox, and draw a connection starting from the
deriving class and ending with the base class. You can also define a multiple-level
hierarchy.

4. Ifyouhave members in the base class that will be used only by some derived classes, you
can cut and paste them in the designer. (Note that dragging and dropping members is
not allowed.)

For example, in Figure 6-14 you can see the result of the following operations:

1. Drag the Contact table from Northwind.
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Add the other empty Data classes (Employee, CompanyContact, Customer, Shipper, and
Supplier).

Put the dbo.Contacts value into the Source property for all added Data classes. (Note that
dbo.Contacts is already the Source value of the base class Contact.)

Define the Inheritance between Employee and Contact and between CustomerContact and
Contact.

Define the Inheritance between Customer and CompanyContact, Shipper and Company-
Contact, and Supplier and CompanyContact.

Cut the CompanyName member from Contact, and paste it into CompanyContact.

Set the Discriminator Property of any Inheritance item to ContactType. (See Table 6-6 for
further information about this property.)

Set the Inheritance Default Property of any Inheritance item to Contact.
Set the Base Class Discriminator Value of any Inheritance item to Contact.

Set the Derived Class Discriminator Value to Employee, Customer, Shipper, or Supplier for
each corresponding Inheritance item.
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Figure 6-14 Design of a class hierarchy based on the Northwind.Contact table
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Our example uses an intermediate class (CompanyContact) to simplify the other derived
classes (Supplier, Shipper, and Customer). We skipped the CompanyContact class that sets the
Derived Class Discriminator Value because that intermediate class does not have concrete
data in the database table.

In Table 6-6, you can see an explanation of all the properties available for an Inheritance item.
We used these properties to produce the design shown in Figure 6-14.

Table 6-6 Inheritance Properties

Property Description

Inheritance Default This is the type that will be used to create entities for rows that do
not match any defined inheritance codes (which are the values
defined for Base Class Discriminator Value and Derived Class
Discriminator Value). This setting defines which of the generated
InheritanceMapping attributes will have the IsDefault=true

setting.
Base Class Discriminator This is a value of the Discriminator Property that specifies the
Value base class type. When you set this property for an Inheritance

item, all Inheritance items originating from the same data class
will assume the same value.

Derived Class Discriminator This is a value of the Discriminator Property that specifies the
Value derived class type. It corresponds to the Code setting of the
InheritanceMapping attribute.

Discriminator Property The column in the database that is used to discriminate between
entities. When you set this property for an Inheritance item, all
Inheritance items originating from the same data class will
assume the same value. The selected data member in the base
class will be decorated with the IsDiscriminator=true setting in
the Column attribute.

Stored Procedures and User-Defined Functions

Dragging a stored procedure or a user-defined function from the Server Explorer window to
the Object Relational Designer surface creates a method in the DataContext class correspond-
ing to that stored procedure or that user-defined function. In Figure 6-15, you can see an
example of the [Customer By City] stored procedure dragged onto the Methods pane of the
Object Relational Designer.

Note You can show and hide the Methods pane by using the context menu that opens when
you right-click on the design surface.
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Figure 6-15 Stored procedure imported into a DBML file

When you import either a stored procedure or a user-defined function, a Data Function item is
created in the DataContext-derived class. The properties of a Data Function are separated into
two groups. The Misc group contains two read-only properties, Method Signature and Source.
The Source property contains the name of the stored procedure or user-defined function in the
database. The value of the Method Signature property is constructed with the Name property
(shown in Table 6-7) and the parameters of the stored procedure or user-defined function.
The group of properties named Code Generation requires a more detailed explanation, which
is included in Table 6-7.

Table 6-7 Code-Generation Properties for Data Function

Property Description

Access Access modifier for the generated method in the DataContext-derived
class. It can be Public, Protected, Protected Internal, Internal, or Private.
By default, it is Public.

Inheritance Modifier Inheritance modifier to be used in the member declaration. It can be
(None), new, virtual, override, or virtual. By default, it is (None).
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Table 6-7 Code-Generation Properties for Data Function

Property Description

Name Name of the method representing a stored procedure or a user-defined
function in the database. By default, it is derived from the name of
the stored procedure or the user-defined function, replacing invalid
characters in C# or Visual Basic with an underscore (_). It corresponds to
the Name setting of the Function attribute.

Return Type Type returned by the method. It can be a common language runtime
(CLR) type for scalar-valued user-defined functions, or Class Data for
stored procedures and table-valued user-defined functions. In the latter
case, by default it is (Auto-generated Type). After it has been changed to
an existing Data Class name, this property cannot be reverted to (Auto-
generated Type). See the "Return Type of Data Function” section for more
information.

Return Type of Data Function

Usually a stored procedure or a table-valued user-defined function returns a number of rows,
which in LINQ to SQL becomes a sequence of instances of an entity class. (We discussed this
in the “Stored Procedures and User-Defined Functions” section in Chapter 4.) By default,

the Return Type property is set to (Auto-generated Type), which means that the code generator
creates a class with as many members as the columns returned by SQL Server. For example,
the following excerpt of code is part of the Customers_By_CityResult type automatically gener-
ated to handle the Customer_By_City result. (The get and set accessors have been removed
from the properties declaration for the sake of conciseness.)

public partial class Customers_By_CityResult {
private string _CustomerID;
private string _ContactName;
private string _CompanyName;
private string _City;

public Customers_By_CityResult() { }

[Column(Storage="_CustomerID", DbType="NChar(5) NOT NULL",
CanBeNull=false)]
public string CustomerID { ... }

[Column(Storage="_ContactName", DbType="NVarChar(30)")]
public string ContactName { ... }

[Column(Storage="_CompanyName", DbType="NVarChar(40) NOT NULL",
CanBeNull=false)]
public string CompanyName { ... }

[Column(Storage="_City", DbType="NVarChar(15)")]
public string City { ... }
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However, you can instruct the code generator to use an existing Data Class to store the data
resulting from a stored procedure call, setting the Return Type property to the desired type.
The combo box in the Properties window presents all types defined in the DataContext. You
should select a type compatible with the data returned by SQL Server.

Important Return Type must have at least a public member with the same name of a
returned column. If you specify a type with public members that do not correspond to
returned columns, these “missing” members will have a default value.

You can create an entity class specifically to handle the result coming from a stored procedure
or user-defined function call. In that case, you might want to define a class without specifying
a Source property. In this way, you can control all the details of the returned type. You can also
use a class corresponding to a database table. In this case, remember that you can modify the
returned entity. However, to make the SubmitChanges work, you need to get the initial value for
all required data members of the entity (at least those with the UpdateCheck constraint) in
order to match the row at the moment of update. In other words, if the stored procedure or
user-defined function does not return all the members for an entity, it is better to create an
entity dedicated to this purpose, using only the returned columns and specifying the destina-
tion table as the Source property.

Note To map Return Type to an entity during the method construction, you can drag the
stored procedure or user-defined function, dropping it on the entity class that you want to
use as a return type. In this way, the method is created only if the entity class has a corre-
sponding column in the result for each of the entity members. If this condition is not
satisfied, an error message is displayed and the operation is cancelled.

Mapping to Delete, Insert, and Update Operations

All imported stored procedures can be used to customize the Delete, Insert, and Update oper-
ations of the entity class. To do that, after you import the stored procedures into DataContext,
you need to bind them to the corresponding operation in the entity class. Figure 6-16 shows
the Configure Behavior dialog box that allows mapping of all the method arguments with the
corresponding class properties.
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For more information, see the "Customizing Insert, Update, and Delete” section

Views and Schema Support

All views in a database can be used to generate an entity class in the DBML file. However,

LINQ to SQL does not know whether the view is updatable or not. It is your responsibility to
make the right use of an entity derived from a view, trying to update instances of that entity
only if they come from an updatable view.

If the database has tables in different schemas, the Object Relational Designer does not
consider them when creating the name of data classes or data functions. The schema is

maintained as part of the Source value, but it does not participate in the name construction of

generated objects. You can rename the objects, but they cannot be defined in different
namespaces, because all the entity classes are defined in the same namespace, which is
controlled by the Entity Namespace property of the generated DataContext-derived class.
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D More Info  Other third-party code generators might support the use of namespaces, using
SQL Server 2005 schemas to create entities in corresponding namespaces.

Summary

In this chapter, we took a look at the tools that are available to generate LINQ to SQL entities
and DataContext classes. The .NET Framework SDK includes the command-line tool named
SQLMetal. Visual Studio 2008 has a graphical editor known as the Object Relational
Designer. Both allow the creation of a DBML file, the generation of source code in C# and
Visual Basic, and the creation of an external XML mapping file. The Object Relational
Designer also allows you to edit an existing DBML file, dynamically importing existing tables,
views, stored procedures, and user-defined functions from an existing SQL Server database.
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