Programming Programming Windows"
Windows Services Services with Microsoft”

with Microsoft

Visual Basic 2008 Visual Basic® 2008
Michael Gernaey

¢

Michael Gernaey

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/11309.aspx

Microsoft

9780735624337 Press

© 2008 Michael Gernaey. All rights reserved.

Table of Contents

INtrodUuction XVii
WHho This BOOK IS FOI. e e e XVii
How This Book Is Organized. XVii
System Requirements. XVili
Find Additional Content Online XViii
The Companion Web Site o i XViii
Support for This BOOK Xix
Questions and Comments. Xix

rart| Defining Windows Services

1 Writing Your First Service in Visual Basic2008 3
Generating the Project. 4
Renaming Our Project Files 4
Understanding the Wizard Code i i .. 5
The <OnStart> Method 5

The <OnStop> Method 5
Other Events. 6
WHriting Our First Code e 7
Modifying the <OnStart> Method. 7
Modifying the <OnStop> Method i, 8
Modifying the <OnPause> Method. iiiiiiiiiiiinn.. 9
Modifying the <OnContinue> Method ccciiiiiiiiiiinnn. 9
Making the Service Installable 10
Setting the Service Properties.t 11
Setting the Startup Options. i 12
Additional Configuration Options, 12

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

vii

viii Table of Contents

Building, Installing, and Deploying i 12
Creating Your Service Storage Location il 13
Verifying That You Have .NET 2.0 Installed. 13
Verifying That Your Service Is Installed 14
<ONSEArt> MESSAgE . . . oottt 14
<ONPAUSe> MESSAEottt 14
<ONContinue> MESSAQEttt e 14
<ONSEOP> MESSAGE . . . o oottt e 15

UMY . 15

2 Expanding Your Servicewith Threads 17

Cleaning Up the Service from the Previous Chapter 17

Understanding Threads. e 18
Determining How Many ThreadstoCreate 18
Thread Synchronization e 18
Creating Threads 19
Thread Methods 19

The New Code. 20
Thread Funtion Codeo 20
Event-Logging Code. 21
Updating the <OnStart>Method 22
Updating the <OnStop> Method 22
Updating the <OnPause> Method 22
Updating the <OnContinue> Method 23
Updating the Thread Method. 23
Executingthe Thread 23
Updating <OnStart> 24

Install and Test Your Service i 24

What Is Thread Cleanup? 25
Thread Cleanup Availability. 25
Threads and Accessibility. 25
A Problem with the Current <OnStart> Thread 25
Thread Cleanup. e 26
Making Thread Cleanup Useful 28
Keeping the Thread Alive 29

Install and Verify 30

Table of Contents ix

Extending <OnPause> and <OnContinue>ccvo... 30
Ways to Control Thread Processing ..., 30
Updating <ONPaUSe>. et 30
Updating <OnContinue> 31
Using Thread State Controlo 32
Updating <ONPauSe>. e 33
Updating <OnContinue> 34
Updating <OnNStop> 34
Updating <ThreadFunc> e 35
Importance of the THREAD_WAIT Value, 36

SUMIMaANY. o e e e 37

3 Servicesand Security i e 39

Security Privileges and Services 39
Service ACCOUNt SECUNILYot 40
Local System 41
User ACCOUNTSo 41
Securing the Service 43
Protecting Data o 43

SUMIMIAIY. oo e e e 46

part I Creating Interactive Windows Services

4 Servicesand Polling i 49
Polling the File System o 49
AddingaModule File. 50

Adding Event Log Instancelds. 50
Adding New Polling Code 50
Introduction to Instrumenting a Resource File........................... 51
Updating the Service Events i 52
Modifying Our <ONStart>............ . 52
Modifying <ONSEOP>o 53
Modifying <ONPAUSe> 53
Modifying <ONnContinue>t 54
Writing a New Thread Method. 54

Install and Verify 55

Table of Contents

Monitoring with Multiple Threads. 56
Expanding Processing 56
Creating the Code. e 56
Installation and Verification. L 58

Extending the Threading Model i 58
Monitoring More Than One Folder............. 58
Monitoring More Than One File Type Per Folder 59
Outputting to More Than One Folder. i 59
Processing More Than One File Type Per Folder......................... 59
When Complexity Steps In 60

Adding a FileWorker Class. 60
Designinga New ClassFile i 60

Implementing the Worker Class. e 62
Adding a FileWorker Collection, 62
Adding New File Type and Input Locations 62

Creating the FileWorkerOptions Classc.couuiiiiie i 63
Updating the FileWorker Constructor.................. 64
Updating Our <FileWorker.ThreadFunc> 64

Updating <Tutorials.ThreadFunc>............ 65
Updating the <OnStop> Method 66
Installation and Verification........ i 67

Using Configuration Files 68
Application-Specific Configuration File. 68
The Application-Processing Configuration File 69

Updating <Tutorials.ThreadFunc>............ 70
Installation and Verification. 72

UMY . 72

5 Processing and Notification 73

SMTP Notifications. 73

File Processing.ot 76
Configuring Our New SMTP Classt 76
Updating the FileWorkerOptions Class 77
Updating the FileWorker Class i i .. 77
Updating the Tutorials Class 80

Installation and Verification. 82

Table of Contents xi

Advanced ProCeSSING 82
Exploring Processing Options 83
Optimizing Processing 83

Implementing a Solution 85
Creating a New <FileWorker.Processingincoming> Method 85
Updating the <Tutorials.OnStop> Method 89
Queueing E-mail Notifications 89
Decoupling Notifications Implementation Questions..................... 90
Decoupling: An Example 90
SMTP Queueing Solution. 91
Updating the SMTP Class. e e 94
Updating the FileWorkerOptions Class. 97
Updating the <Tutorials.ThreadFunc> Method 98
Updating the <FileWorker> Constructor.oooiiiiiiiaa. .. 99
Installation and Verification........ 100

SUMMIAIY oo e 101

6 User Input, Desktop Interaction, and Feedback................... 103

Understanding Service Feedback..............l 103

Configuring a Service to Interact with the Desktop. 104
Getting Started with Creating the Interactive Service.................... 104
Creating a Feedback Form............ 104
Making the Form Visible to the Service.......... 106
Updating the FileWorker Class. 106
Install, Configure, and Verify 110

SUMIMIATY. oo e 111

7 Data Logging: Processing and Storing Data in SQL Server 2005. 113

Configuring Microsoft SQL Server 114
Creating a Tutorials Database 114
CreatingaUsersTable i, 114
Creating a User Stored Procedure. 114

Understanding a LINQSQL Class. o, 115

Using LINQ To SQLo oo 115
CreatingaSQLClass 118

Updating the FileWorker Class i 120
Updating <FileWorker.ProcessFiles>.c.coiiiiiiiiiiiiiinnn. 120

Install and Verify 122

xii

Table of Contents

Data Tracking Validation 123
Creating Process Error Folder i 123
Error Processing Solution. 123
Updating the FileWorkerOptions Class 123
Updating Our Configurationxml File 124
Updating the FileWorker Class i i .. 124
Updating the <Tutorials.ThreadFunc> Method......................... 125

Implementing the Record Failure Code i, 126
Adding a Process Failure Method 126
The Worker Thread. e 128
Install and Verify o 130

Data Migration from One Data Store to Another Data Store 130
Creating the Back-End Data Storeo 131
Creating a New Connection String ... 131
Creating a New <ProcessRecords> Methodo.... 136
Install and Verify 139

Reporting Processing Failures. 139

Optimizing the LINQSQL Class.t 140
Install and Verify 141

SUMIMaANY .o e e e e e e e 141

Part Il Services That Support IT and the Business

8 Monitoring and ReportingwithWMI 145
Using WMI with Services. 145
WMI Architecture 146
Creating the Generic WMI Class. 147
Understanding WMI Classes and TheirUses 149
Specific WMl and Custom Classes 149
Using the WMIClass 151
Adding New EventLog Constants. 151
Updating <Tutorials.ThreadFunc>............. 151
Adding the WMI Property Reader Method 153
Extending the WMI Implementation. o .. 154
Extendingthe WMIClass. 154
Creating the WMIWorkerOptions Class. 159
Creating the Configuration File 160

WMI Service ACCoOUNt. i 160

WMI System MONItOringottt e lel
Updating the Configuration File....... 161

WMI Win32_Process Usagettt l6l
Updating the WMIWorkerOptions Classc.ccoiiiiiiinnan. 163
Updating the <Tutorials.ThreadFunc> Method 163
Updating the <Query> Configuration Value 164
Updating the <WMI.ProcessWMIRequest> Method 164
Service Function Validation 165
Service Notification. 165
Updating the Configurationxml File 166
Updating the WMI Class.t 166
Updating the WMIWorkerOptions Classc.ccoiiiiiiinnan. 166
Updating the <Tutorials.ThreadFunc> Method 167
Updating the <WMI.ProcessWMIRequest> Method 168
Service Validation 169
SUMIMaANY. o e e e e e 169
9 Talkingtothelnternet...... i, 171
Reading and Parsing ASP Pages i 171
Creating the ASP MasterPage. i i .. 172
Callingthe ASPMasterPage. ..., 172
Application Log Instancelds. 177
Storing ASP Page URL Monitoring Status ou... 177
Creating LINQ To SQL Dependencies. ..., 179
Updating the Configuration File....... i, 180
Updating the <Tutorials.TThreadFunc> Method 181
Updating the Tutorials <OnStop> Method......................o.... 182
Service Validation 183
Adding a Dynamic Status ASPX Page. ... 183
Creating a New ASP .NET Web Application 183
Validating the Web Site 186

FTP and Your Service i 186
Using FTP inthe Service. e 187
Creating FTP Directories.t 187
Adding an FTP Classttt 187
Modifying the Configuration File, 196

Modifying the <Tutorials.ThreadFunc> Method 196

Xiv Table of Contents

Updating the Tutorials <OnStop> Method 197
Service Validation 198
Uploading Data Using FTP 199
Updating the FTP Class 199
Updating the Configuration File. oL, 201
Updating the <Tutorials.ThreadFunc> Method......................... 201
Updating the FTP Classt 201
Updating the <Start> Method............ 202
Service Validation 202
SUMIMATY ottt e e e e 203
10 ServicesThatlListen i, 205
Listening with TCP/IP 205
Design Points for Service Listeners., 206
Creating the First Listener Service s 206
Coding the Service Listener. 206
Creating a Listener Classt 207
Listener Processing Methodso i, 215
Updating the <Tutorials.ThreadFunc> Method......................... 216
Updating the Tutorials <OnStop> Method 217
Service Validation 218
The Test Client. e 218
Allowing Multiple Connections i 221
Extending the Listener Class i 221
Updating the <StartListener> Method 223
Service Validation 224
UMM o 225
11 Advanced Security Considerations and Communications 227
What Does Securing the Service Mean?. 227
Service Logon Privileges 228
Securing Your Service's Configuration.............. L. 228
Options for Securing ConfigurationData.............. ..., 229

A Closer Look at Security Options 230
Services as Clients.o e 235
Securing the HTTP Client Service. e 235

Securing the FTP Service e 241

Table of Contents Xv

Securing the SMTP Client Class.o 247
Writing Secure Code. 251
Securing In-Memory and On-Disk Datac.cooviiioi.... 253
Using SSL with Server Services 254
Updating the Test Clientto Use SSL......... i, 261
SUMIMIATIY. oo e e 263

part v Advanced Windows Services Topics
12 Scheduling, Configuring, Administering, and Setting Up

Windows Servicesttt i i e 267
What Does Scheduling Mean? 267
Scheduling OptioNns. 268
Permission Requirements. 268
Determining the Type of SchedulingtoUse............................ 268
Administration of Services. ... 269
Types of ConfigurationData i 270
Advanced Service Administration......... i 274
Installing Services i 277
Adding the Setup Project. 277
SUMIMANY. . ot e e e e e e 279
13 Debugging and Troubleshooting Windows Services 281
Debugging Servicest 281
Using the Visual Studio IDE 281
Writing Your Service as a Console Application.......................... 282
Troubleshooting and Monitoring Services 282
Task Manager. 282
Performance Monitor. ... 285
Performance Counter CONSUMENS. ittt 285
Using Perfmon as a Performance Counter Consumer.................... 285
Standard System Exposed Performance Counters....................... 286
Viewing Perfmon. 286
Examples of Debugging and Monitoring Your Service........................ 287
High CPU .. o e 289

SUMIMaANY. o e 292

xvi Table of Contents

14 Adding Performance Counters................iiiiiiiinienn... 293
Types of Performance Counters. i 293
Operating System-Exposed Countersc.c.uuuiiirnrnnnnnn. 293
Application-Specific Counters. 294
Adding Counters to Your SErviCe.ttt 295
Creating Your COUNerSottt e e e 295
Implementing Our Countersin Code ..o, 298
Creating Instances of Counters. i 298
Updating Counter Values. 299
Sample Service with Performance Counters............................ 300
Service Validation 302
SUMIMANY . e e e 304

partv Appendices

A Microsoft Internet Information Server (I1S) 307
Installing Microsoft IS 307

Installing IIS on Microsoft Vista Ultimate 308

Installing lISon Windows XP. 308

B Microsoft File Transfer Protocol Service 311
Installing Microsoft FTP Servicet 311

Installing the FTP Service on Windows Server 2003 311

Installing the FTP Service on Windows Vista Ultimate 311

Installing FTP Services on Windows XP............... 312

C Microsoft SMTP Service.o iuniiii it 313
Installing SMTP Services on Windows XP............. .o, 313

X ..ttt e e 315

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Chapter 2

Expanding Your Service with
Threads

In this chapter:

Cleaning Up the Service from the Previous Chapter 17
Understanding Threads. it it 18
The New Code . ..ot e e et et e 20
Install and Test Your Service.ot iiiiiiiiie it iiineeennnn. 24
What Is Thread Cleanup?ttt i i it et e i i 25
Extending <OnPause> and <OnContinue>.cuuuineeunneennnnns 30
SUMIMIAIY . .ttt e et e e et ettt et e e 37

In the previous chapter we created a simple project using the Microsoft Visual Basic Wizard
and templates for Windows Services. Although we were able to install and run the service, it
was not very useful—except for demonstration purposes.

You may remember that I said we wanted to avoid doing a large amount of work in the
<OnStart> method. But if we aren’t going to do the work there, where do we do it? This is
where threads come in. Threads are like mini-processes within the service. Threads allow you
to perform multiple actions at the same time within the same application or service.

To determine whether your service requires threads—or how many threads it requires—you
have to understand threads a little better. Those of you who already understand how threads
work—not just the concept—can skip this section.

Cleaning Up the Service from the Previous Chapter

Before we continue much farther, it is important to note that in many cases we will be continuing
the code from the previous chapter. To do this successfully, you should remove the service
instance from the previous chapter when you start the next chapter. To uninstall the Tutorials
service, open a Visual Studio Command Prompt window and switch to the c:\temp directory.
Type installutil tutorials.exe /u and press Enter. If the service is still installed, you will see
that it has successfully been stopped and uninstalled. If it was not installed, a failure occurs. If
you are in the wrong directory, you will receive an error. If you inadvertently deleted the
service from the temp directory before you removed it, don’t worry. Just rebuild your Chapter
1 code and then remove it.

17

18

Part | Defining Windows Services

Understanding Threads

Every application or service has at least one thread. Although the service will usually have
much more than just one thread, it has to have at least one thread to perform any work. When
an application (or in this case, a service) starts, its primary thread is fired up and begins
processing messages from the system. These messages can be mouse clicks, keyboard input,
custom events, operating system alerts, and more.

The service we are working with in this book has a primary thread called by the Service
Control Manager (SCM). Remember that the SCM states that your service is running only if
your <OnStart> method returns within 30 seconds of the start request. Imagine, however, if
you only used the primary thread to do work. When <OnStart> is called, you have potentially
a lot of code running that would prevent the <OnStart> method from completing in 30 seconds.
Therefore the SCM reports back to the user that the service did not start successfully.

With threads, not only can we perform work within the service, but we can also allow the
service’s primary thread to perform its primary function—coordinating with the SCM through
exposed methods such as <OnStart> and <OnStop>.

For example, suppose you write a game. The game won’t perform very well if you expect to
draw a large number of graphical aspects at the same time. Like your service, these games
require separate threads to perform much of this work.

Determining How Many Threads to Create

You have already been exposed to the minimal integration thread between the SCM and the
service, which is the primary SCM thread. For any decent service or real-world application,
you will need at least one more thread, which will perform the work while your main thread
waits for events triggered by the user.

Note You can trigger a <ServiceMethod> that is exposed to the SCM, within your service,
but this kind of method is normally triggered by the user through the Administrative Tools,
Control Panel, Services panel utility.

The question of how many threads to use is a tricky one. Creating too many threads is danger-
ous and cumbersome—not only from a coding perspective, but also from an administrative
and support perspective. You have to understand that when you add threads, you add
complexity to your service or application because of threads’ effects on memory, CPU, and
other resources.

Thread Synchronization

Many applications and services are written to access data or resources. The developer might
want to write code that has multiple threads that can access or share this data at the same time.

Chapter 2 Expanding Your Service with Threads 19

Microsoft SQL Server 2005 is a great example, allowing multiple users while sharing data
among them. Imagine only allowing one connection and one thread to the entire database
system at a time. Ouch!

But what if you were sharing data with dozens of users and all of them tried to update the
same record at the same time? This is just not possible—the system has no way to determine
how to resolve this situation. Developers must synchronize the order of access to shared data
and resources and thereby protect the system from catastrophic anomalies.

Before you determine exactly how many threads you may need or if you need to synchronize
your threads (which takes much more effort), you must determine the actions and results you
expect to accomplish as well as the data and/or resources required to produce the desired
result. If you access other NET classes or components, it is very important to read up on those
components to determine their thread-safe capabilities, which will be defined in the Microsoft
Developer Network documentation for Visual Studio 2008. Many are only thread-safe when
created as static or shared, depending on the language you create your service in, which will
also be specified in MSDN.

Creating Threads

In this chapter we will continue to use code from Chapter 1. The first thing we must do is tell
the project that we will be using threads. Visual Basic 2008 supports native threads, which
were not supported in earlier versions of Visual Basic.

At the top of the Tutorials.vb file we need to add another import for the NET Threading class,
shown in Listing 2-1.

Listing 2-1 Threading Namespace import statement.
Imports System.Threading

This allows the service to use the classes within the Threading namespace directly, without
having to define the namespace for each type declaration. Initially we will only create one
thread. Remember, however, that by default the service already has a primary thread. We will
use the new thread as a worker thread. Remember also that services are not required to have
any specific number of threads—or any extra threads at all. However, to make a service robust
we need to use threads that allow us greater control over the tasks required by the service.

Thread Methods

First we must create a thread method, which is used as the starting point of a thread. When
you create a thread, it is assigned to a thread method. This method will be used by the thread
when it starts. This code can be used by any number of threads. However, the thread itself is
isolated, and does not have direct access to other methods or class data members unless they
are shared.

20

Part | Defining Windows Services

The New Code

For this example we will be adding some very simple threading code. The code will write an
event into the event log database similar to the way we did in Chapter 1. However, we will use
the new thread method to perform the work and we will use the current <OnStop> code to
clean up the thread and specify that the service is shutting down.

Thread Funtion Code

The first thing we must do is create the thread function or method. In the Tutorials.vb code
file, create the method shown in Listing 2-2.

Listing 2-2 Simple thread function.
Private Sub ThreadFunc(Q)
Try
Catch tab as ThreadAbortException
Catch ex as Exception
Finally
End try
End Sub

In this example, I am creating a method called <ThreadFunc>. As I mentioned, threads can
only access shared data members in a class or must be passed the information directly. In this
example, I intentionally do not use what is called an overloaded parameterized thread method.
I will be using the parameterized method in future chapters. We are going to make a change
to the existing code, by adding a log event method that will allow us to write information to
the event log but can also be called from the thread.

One important thing to note in the <ThreadFunc> method’s Try/Catch block is that there are
two exception handlers. The second handler catches an exception called Exception. This is
a catchall: Tt will catch any unhandled or thrown exceptions not caught by a previous handler.

The first handler catches an exception called ThreadAbortException. When you want to
clean up a thread, your only option is to abort the thread. (I'll discuss this further later in the
chapter.) When you abort the thread, it will throw this exception, which allows you to catch
the error and perform cleanup before the thread is exited.

The last handler you will see is Finally, which is always called in a Try/Catch scenario, whether
an exception occurs or not. Finally allows you to clean up anything you want to clean up
before you exit the thread—or potentially before you reach this code again if it is in a loop.

Note To ensure garbage collection of objects created in this thread, you have to under-
stand scope. If you create an object after the Try definition, you cannot clean it up in the
Catch or Finally blocks. You must define them outside this scope first.

Chapter 2 Expanding Your Service with Threads 21

Event-Logging Code

To properly use event-logging code, we must add an Imports statement under the threading
import, as shown in Listing 2-3.

Listing 2-3 Import to interact with event log database and debug .NET classes.
Imports System.Diagnostics

Now we can create an event logging procedure, shown in Listing 2-4.

Listing 2-4 Shared method for event log database entry creation.
Private Shared Sub WriteLogEvent(ByVal pszMessage As String, _
ByVal dwID As Long, ByVal iType As EventLogEntryType
ByVal pszSource As String)
Try
Dim eLog As EventlLog = New EventLog("Application™)
elLog.Source = pszSource
Dim eInstance As EventInstance = New EventInstance(dwID, 0, iType)
Dim strArray() As String
ReDim strArray(1)
strArray(0) = pszMessage
eLog.WriteEvent(eInstance, strArray)
eLog.Dispose()
Catch ex As Exception
'We cannot log an event above
'So we will skip attempting
'to write this error in the Tog
Debug.WriteLine(ex.ToString())
End Try
End Sub

The preceding method is defined as being shared, which means that we can access this
method from any instance of or reference to this class, even from a non-shared or static thread
method. The <WriteLogEvent> will write an event to the Application log. If an exception is
generated, we will ignore it for now, because if we can’t write to the event log, we can’t do
much else, except maybe log to a flat file or a database.

The code in Listing 2-4 uses the WriteEvent method, which uses the more up-to-date version of
the NET EventLog method. You will notice that I am using the EventInstance class. This is the
more accurate approach to writing events that support the Instanceld property (compared to
the older EventID property).

Now that we have an event logging function, let’s update the <OnStop> and <OnStart> methods.

22

Part | Defining Windows Services

Updating the <OnStart> Method

As shown in Listing 2-5, we want to change the current <OnStart> method code to use the new
<WriteLogEvent> method

Listing 2-5 Modifications to <OnStart> method to use the <WriteLogEvent> method.
Dim StartLog As EventLog = New EventLog("Application")

StartLog.Source = "Tutorials"

StartLog.WriteEntry("Tutorials Starting", EventLogEntryType.Information,

1000)

StartLog.Dispose()

Replace the code in Listing 2-5 with the following:

WriteLogEvent("Tutorials Starting", 1000, EventLogEntryType.Information,
"Tutorials")

This code allows the <OnStart> method to call the newly created shared method and to write
to the event log. This makes the <OnStart> code cleaner. Next we must update the <OnStop>
method.

Updating the <OnStop> Method

Listing 2-6 shows the current <OnStop> method.

Listing 2-6 Modifications to the <OnStop> method to use the <WriteLogEvent> method.
Dim StoplLog As EventLog = New EventLog("Application™)

StoplLog.Source = "Tutorials"

StopLog.WriteEntry("Tutorials Stopping", EventLogEntryType.Information,

1001)

StoplLog.Dispose()

Replace the code in Listing 2-6 with the following code:

WriteLogEvent("Tutorials Stopping'", 1001,
EventLogEntryType.Information, "Tutorials")

Updating the <OnPause> Method

Listing 2-7 shows the current <OnPause> method.

Listing 2-7 Modifications to the <OnPause> method to use the <WriteLogEvent> method.
Dim StopLog As Event log database = New EventLog("Application™)

StoplLog.Source = "Tutorials"
StopLog.WriteEntry("Tutorials Pausing", EventLogEntryType.Information,
1001)

StopLog.Dispose()
Replace the code in Listing 2-7 with the following code:

WriteLogEvent("Tutorials Pausing", 1002, EventLogEntryType.Information,
"Tutorials")

Chapter 2 Expanding Your Service with Threads 23

Updating the <OnContinue> Method

Listing 2-8 shows the current <OnContinue> method.

Listing 2-8 Modifications to the <OnContinue> method to use the <WriteLogEvent> method.
Dim StopLog As Event log database = New EventLog("Application™)

StoplLog.Source = "Tutorials"

StopLog.WriteEntry("Tutorials Continuing",

EventLogEntryType.Information, 1003)

StoplLog.Dispose()

Replace the code in Listing 2-8 with the following code:

WriteLogEvent("Tutorials Continuing", 1003, _
EventLogEntryType.Information, "Tutorials'")

Updating the Thread Method

Now we can add code to the <ThreadFunc> method, which will make the thread useful and
demonstrate its ability to communicate with the shared <WriteLogEvent> method.

Listing 2-9 shows what the entire method code will look like.

Listing 2-9 Thread method code with event-logging support.

Private Sub ThreadFunc(Q)

Try
WriteLogEvent("Thread Function Information - " + Now.ToString, 1005, _
EventLogEntryType.Information, "Tutorials")

Catch tab As ThreadAbortException '

Catch ex As Exception

WriteLogEvent("Thread Function Error - " + Now.ToString, 1005, _
EventLogEntryType.Error, "Tutorials")
End Try
End Sub

The code shown in Listing 2-9 will attempt to write an event to the Application log. In the
event of an exception, the code again tries to write an event to the Application log. I have
added this code only for demonstration purposes so that you can see how TheadAbortException
is raised. However, here we are using another method to make the call and that method has
its own error handlers, so no unhandled exceptions should occur here.

Executing the Thread

Once all the code is in place, we have to create a thread, assign it to use the thread method, and
then start the thread. Threads have several properties, which I will describe in this section.

Note Remember that we are not using a parameterized thread for this example. Therefore
the event log entry contains a static message.

24

Part | Defining Windows Services

Because the desired functionality of the service is to have the <OnStart> method do minimal
work and then return back to the SCM, we will modify the <OnStart> method to create an
instance of a thread, assign it to the thread method, set the priority, and then execute or start
the thread. Once these steps have been completed, the thread will write to the Application log
its standard started message and return control back to the SCM. Because we create the thread
in its own space, the <OnStart> method is not blocked by its creation or the work it performs.
Therefore, minimal time is required to set up and execute a thread.

Updating <OnStart>

We need to update the <OnStart>method to create and run a thread that will execute the new
<ThreadFunc> code. Listing 2-10 shows what the finished method should look like.

Listing 2-10 Updated <OnStart> method with thread support.
Protected Overrides Sub OnStart(ByVal args() As String)

'Add code here to start your service. This method should set things
'in motion so your service can do its work.

Try
Dim tmpThread As New Thread(AddressOf ThreadFunc)
tmpThread.Name = "Tutorials Worker Thread"

tmpThread.Priority = ThreadPriority.Normal
tmpThread.Start()
WriteLogEvent("Tutorials Starting"”, 1000, _
EventLogEntryType.Information, "Tutorials")
Catch ex As Exception
'We Catch the Exception
'to avoid any unhandled errors
'and we will stop the service if any occur here
Me.Stop()
End Try
End Sub

Once you have completed implementing the changes to the <OnStart>, save and build the
project.

Install and Test Your Service

&

Copy the tutorials.exe from the bin\Release directory to the c:\temp directory, replacing the
Tutorials.exe we created in Chapter 1. Open a Visual Studio Command Prompt window and
switch to the c¢:\temp directory. Type installutil tutorials.exe and press Enter. After the ser-
vice installs correctly, open the Services control panel utility by clicking Start, clicking Admin-
istrative Tools, clicking Control Panel, and then clicking Services. Then start the Tutorials
service by right-clicking it and selecting Start. Using the Event Viewer, you will see the events
from the <OnStart> and <ThreadFunc> methods. Stop the service and you will now see the event
from the <OnStop> method.

Note In subsequent chapters, | won't explain how to install and remove your service—I will
simply indicate when you need to do so.

Chapter 2 Expanding Your Service with Threads 25

What Is Thread Cleanup?

We have now expanded the code so that we can call methods on the class and/or code within
thread functions. However, we have not yet made it possible to clean up the threads if the user
were to stop the service while the threads were actively processing. We need to have control
over the cleanup of the threads because unlike applications that run on the client, services are
required to either shut down quickly or update the Service Control Manager with an estimate
of how much longer the services need to shut down. If the Services does not request more
time, the SCM will consider the service to be in a hung or unresponsive state, which will most
likely require a reboot of the system. In some cases you can look in Task Manager or use the
Windows Resource Kit to terminate the rogue service. Over time, however, attempting to
forcibly terminate a process can cause operating system or application instability.

Thread Cleanup Availability

We need to make the threads that we create accessible to the rest of the service methods, not
just the one that starts or creates the thread. You can do this in many ways—by creating a pool
of threads or a class of thread-exposing objects, for example—but for now we’re going to use
the simplest way possible. We will be adding a list, or collection of threads, that is available
privately to the service but is not available to external processes.

Threads and Accessibility

By default, threads have limited access to other members or data in your service. Each thread
only has access to either shared data members or methods and—if you are using a parameter-
ized thread method—the object that is passed to it. Threads—which run in different scopes to
be able to share data—must be coded in a way that protects your data. (For more information,
see “Thread Synchronization” earlier in this chapter.) From a Ul perspective, it is possible to
create delegates which can be used to participate with other threads. In this case you do not
need synchronization to use the delegates themselves, but you may need synchronization
within the method executed on the delegate, to protect the actions being performed on the
delegate’s behalf.

A Problem with the Current <OnStart> Thread

If you look back at the previous <OnStart> method, you’ll notice that we are creating a thread.
The problem is that we are creating the thread with a local variable instance, which makes it
local-scope only. Once the thread has started, it will continue to run. However, the thread
variable, or pointer to the thread, goes out of scope, and we .now have no way to directly
access the thread and stop it from doing its work—or clean it up. This lack of access would be
a huge problem if a thread became unstable, or worse if it exhibited rogue behavior such as
accessing off-limits data or causing a memory leak, CPU spike, or other resource issue.

26

Part | Defining Windows Services

Fixing the Thread-Scope Issue

To resolve the thread-scope issue we have to make the thread available to either the global
scope of the application or to some part of the service that allows us to clean up threads. In
this example—because we are only using a single thread—we are going to create a private data
member of type Thread that is global to the service class, which we are calling Tutorials.

Directly after the class definition code, add the code shown in Listing 2-11.

Listing 2-11 Code to add a private thread member variable to the service.
Public Class Tutorials
Private m_WorkerThread As Thread = Nothing

The code in Listing 2-11 will create a variable that will store a thread pointer after we create it.
This variable doesn’t store anything yet. We have to assign it something before we can use it.
When we add the code shown in Listing 2-12, the class definition allows this variable to be
available to any method in the service, except directly by the threads we create because those
threads require differently scoped variables. Again this variable is intended to be available to
the service, not just by the threads we create, so that we can clean it up later. The variable is
not required to be available to the threads themselves because a thread can clean itself up.

Creating the Thread in <OnStart>

We need to change the current <OnStart> method so that it no longer uses a local variable for the
thread. In the <OnStart> method we will change the code shown in the first part of Listing 2-12
with the bolded code that follows it.

Listing 2-12 Modifications to <OnStart> to fix the thread-scope issue.
Dim tmpThread As New Thread(AddressOf ThreadFunc)

tmpThread.Name = "Tutorials Worker Thread"

tmpThread.Priority = ThreadPriority.Normal

tmpThread.Start()

m_WorkerThread = New Thread(AddressOf ThreadFunc)
m_WorkerThread.Name = "Tutorials Worker Thread"
m_WorkerThread.Priority = ThreadPriority.Normal
m_WorkerThread.Start(Q

Now that we are creating a thread using the private class variable, we have to worry about
cleaning it up.

Thread Cleanup

Before we get into the code itself, you have to understand that like other .NET variables, thread
variables have a scope. Global variables are just that—global—and can be accessed by other
methods. Originally the thread variable was only local to the <OnStart> method. Now it is not.

Why is this distinction so important? You should never just create threads that your application
can’t clean up. When an application exits, the threads and resources the application allocated
should be released, even if those resources are no longer visible to the application itself

Chapter 2 Expanding Your Service with Threads 27

However, a service works a little differently. When a service shuts down, it expects you to have
cleaned up any existing threads. If you didn’t, and the service recognizes this fact—and you
haven’t told the service to wait for you to complete cleanup—the service will cause the Service
Control Manager to throw back an error to the user. You will often need to use Task Manager
to terminate the now rogue and abandoned application service.

Cleaning Up the <OnStop> Method

In the <OnStop> method, we will not only write an event to the Application log, but also shut
down the thread. It's important to note that <OnStop> is similar to <OnStart> in that it can
only take so much time before returning. However, in the <OnStop> method you can request
more time from the SCM to continue cleaning up. We won’t need to do this because we only
have two actions and both are extremely simple.

The top part of Listing 2-13 shows the current code, which we will replace with the bolded
code that follows it. This is the new cleanup code.

Listing 2-13 Modifications to <OnStop> to support new thread scope.
Try
WriteLogEvent("Tutorials Stopping", 1001, EventLogEntryType.Information,
"Tutorials")
Catch ex As Exception
WriteLogEvent(ex.ToString, 1001, EventLogEntryType.Error, "Tutorials™)
End Try
Try
If Not m_WorkerThread Is Nothing Then
Try
m_WorkerThread.Abort()
m_WorkerThread = Nothing
Catch ex As Exception
m_WorkerThread = Nothing
End Try
End If
WriteLogEvent("Tutorials Stopping", 1001, _
EventLogEntryType.Information, "Tutorials')
Catch ex As Exception
WriteLogEvent(ex.ToString, 1001, EventLogEntryType.Error, "Tutorials')
End Try

Now we are able to control how the thread is terminated and when, because the thread is a
data member of the service class. This means that any method that is part of the service class
can terminate that thread at any time. You should always ensure that the thread still exists
before attempting to abort it.

About Thread Abort

When you call Abort on an active thread, inside that thread’s instance of the thread method it
will throw a ThreadAbortException. So we will add a handler for this exception. Currently
the service thread function completes its task so quickly that we will not see the abort exception.
The thread exits normally before we could call the <OnStop> method.

28

\

Makin

Part | Defining Windows Services

Note When you abort a thread, there is no guarantee that the thread will terminate or
even throw the ThreadAbortException immediately.

g Thread Cleanup Useful

Although we have added in thread cleanup code, we still have a problem. The current thread
method implementation actually performs only a single action and then exits. Although

this doesn’t make the cleanup code totally useless, its value is questionable because the
thread has already exited and cleaned itself up.

To remedy this, we will modify the thread method to do two things:

® Add a handler for the ThreadAbortException

m Add code to keep the thread alive so that the cleanup code will execute

Adding Code to ThreadAbortException

Listing 2-14 shows the code we add to ensure that the ThreadAbortException handler is being
used properly.

Listing 2-14 Modifications to <ThreadFunc> to handle ThreadAbortException.
Try
WriteLogEvent("Thread Function Information - " + Now.ToString, 1005, _
EventLogEntryType.Information, "Tutorials™)
Catch tab As ThreadAbortException 'this must be Tlisted first as
Catch ex As Exception

WriteLogEvent("Thread Function Error - " + Now.ToString, 1005, _
EventLogEntryType.Error, "Tutorials")
End Try
Try
WriteLogEvent("Thread Function Information - " + Now.ToString, 1005, _

EventLogEntryType.Information, "Tutorials™)

'this must be listed first as Exception is the master catch

Catch tab As ThreadAbortException

‘Clean up the thread here

WriteLogEvent("Thread Function Abort Error - " + Now.ToString, 1006, _
EventLogEntryType.Error, "Tutorials") Catch ex As Exception
WriteLogEvent("Thread Function Error - " + Now.ToString, 1005, _
EventLogEntryType.Error, "Tutorials")

End Try

In Listing 2-14 we added ThreadAbortException, which will attempt to write an event to the
Application log, alerting us about a request to abort the thread. The only problem is that

this can’t happen because the code runs only once and then exits. By the time you do start
the service it has probably run this code and exited. To fix this we need to make sure that the
thread continues to run long enough for the cleanup code and this new exception to be executed.

Chapter 2 Expanding Your Service with Threads 29

Keeping the Thread Alive

To resolve the issue of the thread exiting too quickly, we will add in a loop that will run the
code to write an event over and over. In many cases threads will do the same work repeatedly.
However, this doesn’t mean that the thread will be active all the time—instead, it will have a
sleep interval before it continues its work or starts over again.

We will define a constant called THREAD_WAIT, shown in Listing 2-15. This constant is just
below m_WorkerThread at the top of Tutorials.vb.

Listing 2-15 Creating the thread loop wait variable.
Public Class Tutorials

Private m_WorkerThread As Thread = Nothing
Private Const THREAD_WAIT As Integer = 5000

We will wrap the current code in a Do/Loop and use a Thread class’s Sleep method to pause

the thread.
Q Tip The Thread class's Sleep method uses milliseconds to represent its sleep time. You must
convert seconds, minutes, or your TimeSpan into milliseconds.

Listing 2-16 shows the new thread method code.

Listing 2-16 New thread method code implementing keep-alive logic.
Do
Try
WriteLogEvent("Thread Function Information - " + Now.ToString, 1005, _
EventLogEntryType.Information, "Tutorials")
'this must be listed first as Exception is the master catch
Catch tab As ThreadAbortException
'Clean up the thread here
WriteLogEvent("Thread Function Abort Error - " + Now.ToString, 1006, _
EventLogEntryType.Error, "Tutorials")
Catch ex As Exception
WriteLogEvent("Thread Function Error - " + Now.ToString, 1005, _
EventLogEntryType.Error, "Tutorials")
End Try
Thread.S1eep (THREAD_WAIT)
Loop

The thread will run the code, sleep for five seconds, and then run the code again. When the
thread is aborting in the <OnStop> method, it will cause the ThreadAbortException to be
called, in which case it will log another event, letting us know that the thread was aborted. We
could perform any necessary cleanup there. However, do not make a habit of spending long
amounts of time in the <OnStop> method or you could possibly lock up the service.

30 Part | Defining Windows Services

Install and Verify

Before you compile and install your new service version, make sure to remove the old one.
When you run the service, you will see the information event logging the time every five
seconds until you stop the service.

Now you have an understanding of how to use threads in your services. There is no real limit
to how many you can use. However, you should use threads and resources wisely. Threads
that run out of control can hang your systems, lock up your processors or your data, block
users from retrieving information and, even worse, crash your system.

Extending <OnPause> and <OnContinue>

Remember that we created a way to indirectly control the flow of service. Using <OnPause>
and <OnContinue>, we can write code that will allow us to either block threads from doing
work or make them intuitive enough to know whether they should exit or merely delay their
processing responsibilities.

Ways to Control Thread Processing

We will implement a couple of different ways to control what the threads do.

Thread Suspension

Our first attempt at thread control will be to use the built-in Thread class method called
Suspend. This method will allow us to stop a thread in its tracks, or at least attempt to. A thread
suspension can fail, in which case we would end up in a situation that we must code for—a
rogue thread. However, for the purposes of this example, we will implement the Thread
Suspension and Thread Resume features of the Thread class.

Updating <OnPause>

We will use the <OnPause> method to suspend the thread; we will use <OnContinue> to
resume the thread. Listing 2-17 shows the updated code for <OnPause>.

Listing 2-17 Modifications to <OnPause> to support thread suspension.
Protected Overrides Sub OnPause()
Try
If (Not m_WorkerThread Is Nothing) Then
Try
m_WorkerThread.Abort()
Catch ex As Exception
'we do not care about this
'exception as we are shutting it down
'anyway
m_WorkerThread = Nothing
End Try

Chapter 2 Expanding Your Service with Threads 31

End If

WriteLogEvent("Tutorials Pausing", 1002,
EventLogEntryType.Information, "Tutorials™)
Catch ex As Exception
'We Catch the Exception
'to avoid any unhandled errors
'since we are pausing and
'logging an event is what failed
'we will merely write the output
'to the debug window
Debug.WriteLine("Error pausing service: " + ex.ToString(Q))
Me.Stop()
End Try
End Sub

Updating <OnContinue>

We now have to update the <OnContinue> method to allow us to resume the thread. Listing 2-18
shows the updated code.

Listing 2-18 Modifications to <OnContinue> to support continuing the thread.
Protected Overrides Sub OnContinue()
Try
Try
'Create a new thread
'and start it just Tike
'in the OnStart
m_WorkerThread = New Thread(AddressOf ThreadFunc)
m_WorkerThread.Name = "Tutorials Worker Thread"
m_WorkerThread.Priority = ThreadPriority.Normal
m_WorkerThread.Start()
Catch ex As Exception
WriteLogEvent("Tutorials Unable to Continue:" + vbCrLf +
ex.ToString(), 1010, EventLogEntryType.Information, "Tutorials™)
m_WorkerThread = Nothing
End Try

WriteLogEvent("Tutorials Continuing", 1003,
EventLogEntryType.Information, "Tutorials")
Catch ex As Exception
'We Catch the Exception
'to avoid any unhandled errors
'since we are resuming and
'Togging an event is what failed
'we will merely write the output
'to the debug window
Debug.WriteLine("Error resuming service: " + ex.ToString())
Me.Stop()
End Try
End Sub

32

Part | Defining Windows Services

In Listing 2-18, we use the Resume method to start the thread back where it was suspended.
You have to be careful about how your code handles being suspended. While the thread is
suspended, you will receive no processing notifications. Therefore, thread suspension is not
always the best solution. Let’s look at another scenario.

Using Thread State Control

Another way to control thread processing is through state variables. You can use individual

variables for each state, or—as in the following example—you can use a type that will affect each
thread.

Listing 2-19 shows the code we will add to the thread definition at the top of the class definition.

Listing 2-19 Code to create a thread state capability.
Private Const THIRTY_SECONDS As Long = 30000
Private Const TIME_OUT As Long = 15000
Private Structure Thread_Action_State
Private m_Pause As Boolean
Private m_Stop As Boolean
Public Property Pause() As Boolean
Get
Return m_Pause
End Get
Set(ByVal value As Boolean)
m_Pause = value
End Set
End Property
Public Property StopThread() As Boolean
Get
Return m_Stop
End Get
Set(ByVal value As Boolean)
m_Stop = value
End Set
End Property
End Structure
Private Shared m_ThreadAction As New Thread_Action_State

This code adds the following features to the service:

First we are adding a constant called THIRTY_SECONDS. I mentioned earlier the service
can request additional shutdown time from the SCM. In this case we are going to request an
additional 30 seconds to complete processing and cleanup before we exit.

Next we add the TIME_OUT constant. Because we are now using multiple threads, we need to
make sure that the processing threads are completed before the primary thread says we are
done by exiting the <OnStop> method. To do this, we will use the processing thread’s Join

Chapter 2 Expanding Your Service with Threads 33

method, which will allow us to either block indefinitely for that thread to complete or wait
for a specified period of time. In this case we will wait 15 seconds for the thread to complete
its task or shut itself down.

Next we add the Thread_Action_State structure. This structure has two properties: one states
whether the service is paused, telling the processing threads to pause, and the other tells
the threads that the service is shutting down and they need to exit.

Last we add the m_ThreadAction variable. This variable is shared, or static, meaning that all
threads can see these values and there is no need to pass it around to each thread. This also
means that the variable can be accessed directly without creating an instance of the class itself.
The thread class instance is created automatically when you start the service so you don’t
need to instantiate it by any other means. The default values are false, so the threads will
neither be stopped nor paused when the service starts up.

Updating <OnPause>

Now that we have added new state controls, we need to modify <OnPause>, <OnStop>, and
<OnContinue> to reflect the state changes. In the previous <OnPause> we suspended the
thread. We need to remove or comment that code out and add in the new state change code.
<OnPause> should now look like the code shown in Listing 2-20.

Listing 2-20 Modifications to <OnPause> to use thread state management.
Protected Overrides Sub OnPause()
Try
m_ThreadAction.Pause = True
WriteLogEvent("Tutorials Pausing"”, 1002, EventLogEntryType.Information, _
"Tutorials™)
Catch ex As Exception
'We Catch the Exception
'to avoid any unhandled errors
'since we are pausing and
'logging an event is what failed
'we will merely write the output
'to the debug window
Debug.WriteLine("Error pausing service: " + ex.ToString())
Me.Stop()
End Try
End Sub

This code will merely change the state of the threads to Paused. Although we have more work
to do, controlling the thread’s state is much simpler here than suspending the threads—and
safer, too.

34 Part | Defining Windows Services

Updating <OnContinue>
As with <OnPause>, <OnContinue> must reflect a similar change, shown in Listing 2-21.

Listing 2-21 Modifications to <OnContinue> to support thread state management.
Protected Overrides Sub OnContinue()
Try
m_ThreadAction.Pause = False
WriteLogEvent("Tutorials Continuing", 1003, EventLogEntryType.Information,
Tutorials")
Catch ex As Exception
'We Catch the Exception
'to avoid any unhandled errors
'since we are resuming and
'logging an event is what failed
'we will merely write the output
'to the debug window
Debug.WriteLine("Error resuming service: " + ex.ToString(Q))
Me.Stop()
End Try
End Sub

You will notice that just as <OnPause> set the state to True, we now set it to False so that the
threads can continue their work.

Updating <OnStop>

Last we will update <OnStop>, which requires a bit more work than updating the previous two
methods. Not only do we need to tell the threads to stop, but we also want to attempt to wait
for them so that we know they are completed and cleaned up before exiting. Listing 2-22
shows the updated code.

Listing 2-22 Modifications to <OnStop> to support thread state management.
Protected Overrides Sub OnStop()
' Add code here to perform any tear-down
'necessary to stop your service.
Try
If (Not m_WorkerThread Is Nothing) Then
Try
Me.RequestAdditionalTime(THIRTY_SECONDS)
m_WorkerThread.Join(TIME_OUT)
m_ThreadAction.StopThread = True
Catch ex As Exception
'Do Nothing
End Try
End If

WriteLogEvent("Tutorials Stopping"”, 1001,
EventLogEntryType.Information, "Tutorials")
Catch ex As Exception
'We Catch the Exception
'to avoid any unhandled errors
'since we are stopping and
'Togging an event is what failed

Chapter 2 Expanding Your Service with Threads 35

'we will merely write the output
'to the debug window
m_WorkerThread = Nothing
Debug.WriteLine("Error stopping service: " + ex.ToString())
End Try
End Sub

First, I replaced the Abort and Nothing lines of code. Because we aren’t going to directly clean
up the thread, instead telling it when to clean itself up, we have to remove these.

As mentioned when I described the new <OnStop> code, I will first request an additional
30 seconds from the SCM so that it doesn’t believe we are being unresponsive.

Next I will add the Join method to the worker thread. This is like saying to the thread, “I am
waiting for you to exit. Let me know when you are done.” However, although I could wait
forever for the service to exit, I have asked for only 30 extra seconds from the SCM. Therefore
I have set a 15-second time-out for the thread to exit before I move on, so that I don’t cause the
SCM to consider the service unresponsive to the stop request.

Next I set the state of the threads to stopped. You may wonder why I didn’t do this first.
I could have but then, by time I got to the Join method, the thread could be invalidated and
cause an exception. I'm prepared for that possibility, but I prefer to avoid it.

The last step is to write the original event, exit, and return control to the SCM.

Note If for some reason the thread | join with is not cleaned up in the allotted time, it will
get cleaned up when the process exits. However, if this doesn't happen we may need to
reboot or terminate the service in Task Manager.

Updating < ThreadFunc>

At this point all the code I added is useless unless I first modify the <ThreadFunc> method to
handle these state changes. I usually don’t directly add state change checks to my threads
without wrapping them in a call that returns a bool. I find that sometimes I want to do more
than just exit or pause a thread when the state changes. Because I want to have multiple state
change checks in my thread—which could make it quite large or complex—I wouldn’t want to
copy and paste this excessive code all over. I don’t need to add a wrapper method for every
state change possible because I already defined these state changes in the the StopThread and
Pause properties of the Thread.

Listing 2-23 shows the new <ThreadFunc> code.

Listing 2-23 Modifications to thread method to support thread state management.
Private Sub ThreadFunc(Q)
While Not m_ThreadAction.StopThread
If Not m_ThreadAction.Pause Then
Try
WriteLogEvent("Thread Function Information -

+ Now.ToString, _

36 Part | Defining Windows Services

1005, EventLogEntryType.Information, "Tutorials™)
Catch tab As ThreadAbortException _

'this must be listed first as Exceptionis the master catch
'Clean up the thread here
WriteLogEvent("Thread Function Abort Error -

1006, EventLogEntryType.Error, "Tutorials™)

Catch ex As Exception

+ Now.ToString, _

WriteLogEvent("Thread Function Error - " + Now.ToString, 1005, _
EventLogEntryType.Error, "Tutorials")
End Try
End If
Thread.STeep (THREAD_WAIT)
End While

End Sub

This function has changed quite a bit. First, I changed from a Do Loop to a While End While
loop. I am using an outer loop to validate that the thread is not in a stopped State. If T hit
this state, I will exit the While loop and exit the thread, hence shutting it down.

[am validating that the service is not in a Paused state. If the service is in a Paused state, none
of the code is executed and it will merely hit Thread.Sleep. This causes the service thread to
sleep for five seconds. Then it attempts to do the While loop and If check again. This process
will continue until someone stops the service, in which case it will exit. Pausing will not exit—
it will just stop it from doing any active processing.

When this thread exits the Join that the main thread attached to in the <OnStop> method, the
event is released and <OnStop> method processing continues, causing the service itself to
finally exit and the SCM to report it has stopped.

Importance of the THREAD_WAIT Value

Because we are only doing a 15-second join with this thread to validate that it has shut down,
if we set the THREAD_WAIT beyond 10 or 12 seconds, the thread could very likely still be
asleep before it validates that it was supposed to shut down. Therefore you should check
before you go to sleep whether you were supposed to stop. Pausing is not a big deal, but if you
were to have a process internal to the thread that took more than 5 to 10 seconds to complete,
and it had just started, and then you went to sleep for 5 or more seconds, you could easily
exceed this 15-second join. For this reason, update your <ThreadFunc> by wrapping your
Sleep call as shown in Listing 2-24.

Listing 2-24 Update to thread method thread sleep call code.

If Not m_ThreadAction.StopThread Then
Thread.STleep(THREAD_WAIT)

End If

You may think this is merely adding extra code, but itisn’t. It is saving us from missing our
required deadline of 15 seconds.

Chapter 2 Expanding Your Service with Threads 37

Summary

We have successfully created a fairly extensive multi-threaded service. At this point you might
not see its value because we only have one worker thread. However, the abilities we have
included in this version can be easily extended in upcoming chapters, where we will use more
than just one worker thread. Controlling thread states is of key importance to services for sta-
bility and usability.

Threads are a way to allow applications to perform multiple actions in a concurrent manner.

Microsoft Visual Basic 2008 supports threads natively with the System.Threading class.

® Microsoft Visual Basic 2008 makes the creation of threads simple, but you must also be
careful when using this powerful programming technique.

m Use caution when creating threads. Overuse or improper use can cause severe side
effects and instability.

	Cover
	Table of Contents
	Chapter 2: Expanding Your Service with Threads
	Cleaning Up the Service from the Previous Chapter
	Understanding Threads
	Determining How Many Threads to Create
	Thread Synchronization
	Creating Threads
	Thread Methods

	The New Code
	Thread Funtion Code
	Event-Logging Code
	Updating the <OnStart> Method
	Updating the <OnStop> Method
	Updating the <OnPause> Method
	Updating the <OnContinue> Method
	Updating the Thread Method
	Executing the Thread
	Updating <OnStart>

	Install and Test Your Service
	What Is Thread Cleanup?
	Thread Cleanup Availability
	Threads and Accessibility
	A Problem with the Current <OnStart> Thread
	Thread Cleanup
	Making Thread Cleanup Useful
	Keeping the Thread Alive
	Install and Verify

	Extending <OnPause> and <OnContinue>
	Ways to Control Thread Processing
	Updating <OnPause>
	Updating <OnContinue>
	Using Thread State Control
	Updating <OnPause>
	Updating <OnContinue>
	Updating <OnStop>
	Updating <ThreadFunc>
	Importance of the THREAD_WAIT Value

	Summary

