Programming Programming Microsoft®

Microsoft

Visual C# 2008: Visual C#® 2008:
The Language The Language

-

Donis Marshall

A

Donis Marshall

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/12283.aspx

Microsoft

9780735625402 Press

© 2008 Donis Marshall (All). All rights reserved.

Table of Contents

Acknowledgments. XXi
Introduction XXiii
Who Is This Book FOr?. XXiii
Organization of This BOOK oo XXiii
System Requirements i XXiv
Technology Updates XXV

Find Additional Content Online. i i, XXV

The Companion Web Site. XXV

Support for ThisBook............ XXV

Part| Core Language

1 Introduction to Microsoft Visual C# Programming............ 3
A Demonstration of Visual C# 2008 5
Sample CH# Program.ot 5
Sample LINQ Program o 7
Common Elements in Visual C# 2008. 9
NaMESPACES . . oo ettt e 9

Main Entry Point. 14

Local Variables 15
Nullable Types 16
EXPresSSIONS . .ottt 17
Selection Statements. 18
Iterative Statements. 20

C# Core Language Features. 23
Symbolsand Tokens 24
Identifiers. 43
Keywords. 43

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and
learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey

X Table of Contents

PrMITIVES. . . 47
YRS, et 47
2 Ty PES. et et e e 49
ClaSSES . 50
Class Members 51
Member Functions. 57
STUCHUNES. ot 81
Enumeration 83
Bitwise Enumeration 85
Equivalence versus Identity. 86
Class Refinement. 87
3 Inheritance........ e 89
Inheritance Example 91
SYStem.ODJeCt 94
Object.Equals Method. ... 95
Object.GetHashCode Method, 96
Object.GetType Method 97
Object.ToString Method 97
Object. MemberwiseClone Method 97
Object.ReferenceEquals Method 99
Employee Classooi 99
Implementing Inheritance 101
Accessibility 102
Overriding Inherited Behavior........ i i 102
Virtual and Override Keywords i, 103
Overload versus Override., 104
Overriding Events.t 105
Extension Method 105

The new Modifier. ... 107
AbStract Classes 111
Sealed Classes.t 113
Constructors and Destructors 114
Interfaces. 117
Implementing Interfaces. 120
Explicit Interface Member Implementation. 121

Reimplementation of Interfaces 125

Table of Contents xi

Polymorphism. o 127
Interface Polymorphism 131
The new Modifier and Polymorphism 132
CaStinNg . 133
Type Operators. 137
Attribute Inheritance. 139
Visual Studio 2008o 140

Part Il Core Skills

4 Introduction to Visual Studio 2008 143
Migrating to Visual Studio 2008 143
Integrated Development Environment. 145

Start Page 146
Creating Projects 147
Multiple-Targeting. 148
Solution Explorer. 148
Adding References. 151
Managing Windows in Visual Studio 152
AUTORECOVEN . . .o 153
Class Hierarchies. e 154
Class View WINdow o 154
ObjJeCt BIOWSET. . o ottt 155
Class Diagram 156
Inheritance 160
ASSOCIAtION o oottt 162
A Class Diagram Example. 162
Error List Window. 167
Code Editor. . ..o 167
IntelliSense 167
Surround With ... 169
Font and Color Formatting i 169
Source Code Formatting. 170
Change Tracking 170
Code SNIPPELS. - o et 170
Insert a Code Snippeto 171

Default Snippets.o 172

xii Table of Contents

Code Snippets Manager. 174
Creating Snippets.o 175
Copy and Paste. 181
Refactoringo 182
Refactoring Example.o 183
Building and Deployment. 187
MSBUIlD . ..o 187
ClickOnce Deployment. ... 193
Arrays and Collections. 199
5 Arraysand Collections L, 201
AT S o 203
Array Elementso 205
Multidimensional Arrays. 206
Jagged Arrays. ... 208
SYStEMLAITAY . . oo 210
System.Array Properties 218
params KeywWord 227
Array CONVEISION . .o oottt et e 229
COllECtiONS. . . v 230
ArrayList Collection 231
BitArray Collection. 235
Hashtable Collection 238
Queue Collection 242
Stack Collection 247
Specialized Collections i 248

LINQ .o 249
6 Introductionto LINQ 251
CH EXTENSIONS .« oottt 253
Type Inference 253
Object Initializers. 253
ANONYMOUS TYPES . o oottt 254
Extension Methods 254
Lambda EXpression 255
EXPression Trees. . ..ottt 256

LINQ Essentials 257

Core Elements. 257

Table of Contents xiii

Conversion Operators.ttt 261
LINQ Query Expression Syntax ..., 262
Where Is LINQ?. 263
LINQ to Objectso 264
Examples of LINQ to Objects 265

LINQ Operatorsot 268
Aggregation Operators.t 268
Concatenation Operator.t 269

Data Type Conversion Operatorsooueeeeuiinninnnn. 270
Element Operators.o 271
Equality Operator. o 272
Filtering Operator 272
Generation Operators.t 273
Grouping Operator 273

Join Operators 274
Partitioning Operators ... 274
Quantifier Operators. 275

Set Operators 276
Sorting OpPeratorsttt 276
GENEIICS . . e 278
7 € 1= 3 =T T ol 279
GeNEIC TYPES - o ottt et e e 282
Type Parameters.o 282

Type ArgumMENtS. . ..o 282
ConStructed TYPES . . . 287
Overloaded Methods i 287
GenericMethods 289
The this Reference for Generic Types., 290
CONSraiNtS. . o oo 291
Derivation Constraints.t 292
Interface Constraints. i 297
Value Type Constraintsouii e 298
Reference Type Constraints, 299
Default Constructor Constraints 300
CaStiNg . . 301
Inheritance. 301
Overriding Generic Methods. i, 303

Nested TYPeS . ..ottt 304

xiv Table of Contents

Static Members. ... 305
Operator FUNCLIONS 306
Serialization. 308
Generics Internals. 310
Generic Collections 312

Enumerators 312

8 Enumerators e e 313

Enumerable Objects. 314

Generic Enumerators. 321

Erators . o 325

Operator Overloading. 334

Part Il More C# Language

9 OperatorOverloadingc.iiiiiiiiiiiiien.... 337
Mathematical and Logical Operators. 338
Implementation 339
Increment and Decrement Operators. 342
LeftShift and RightShift Operatorsccoiiinio... 343
Operator True and Operator False 344
Paired Operatorso 345
Conversion OPeratorsttt e e e 351
The Operator String Operator 354

A Practical Example 355
Operator Overloading Internals i i, 358
Delegates and Events 360
10 DelegatesandEvents............... ..., 361
Delegates. . ..o 361
Defininga Delegate. ... 363
CreatingaDelegate. ... 363
Invoking aDelegate 365
Arrays of Delegates . ..ot 365
Asynchronous Invocation. 372
Asynchronous Delegate Diagram 376
EXCEPtIONS . . .o 378
Anonymous Methods 379

Outer Variables. 382

Table of Contents

Generic Anonymous Methods. 384
Limitations of Anonymous Methods 385
EVeNtS . oo 385
Publishingan Event. 386
Subscribers ... 387
Raisingan Event. 387

LINQ Programmingt e 390
11 LINQProgrammingc.ceuuiiniinninennennennenns 391
LINQto XML . ..o 391
XML Schemaso 392
Validation 392
Navigation.o 393

XML Modification 399

XML Query EXPressionsoouueeae i 401

LINQ t0 SQL ottt 402
Entity Classeso oo 402

LINQ to SQL Query EXpression ..., 404
ASSOCIAtIONS . ..ot 407
LINQto SQLUpdateso 410
Exception Handling 412

12 ExceptionHandling il 413
An Exception Example. oo 413
A Standard Exception Model 414
Structured Exception Handlingo i i i 415
Try Statements 415
Catch Statements. 417
Finally Statements 420
Exception Information Table 421
Nested Try Blocks. oo 421
System.EXception 423
System.Exception FUNCLIONSt 423
System.Exception Properties. i 425
Application EXceptions 426
Exception Translation 428

COM Interoperability Exceptions, 429
Remote EXceptions. 434

Unhandled EXCEPLIONS. 435

Xvi Table of Contents

Application.ThreadException. ccciiiiiieeeiioi.. 437
AppDomain.UnhandledException 437
Managing Exceptions in Visual Studio ool 439
The Exception Assistanto i 439
The Exceptions Dialog Box. i 439
Metadata and Reflection 440

Part IV Debugging

13 Metadataand Reflection............ 443
Metadata.o 443
Metadata Tokens 445
Metadata Heaps. 446
StreamMS . 446
Metadata Validation 447
ILDASM L 448
Reflection. o 453
Obtaininga Type Object ... e 453
Loading Assemblies. 456
Browsing Type Information 458
Dynamic Invocation. 461

Type Creationot 467

Late Binding Delegates. 469
Function Call Performance. ..., 471
Reflection and Generics 471
IsGeneric and IsGenericTypeDefinitionccuveiuinann. 472

Y PO, 473
Gt P . ot 473
GetGenericTypeDefinition 474
GetGenericCArgUMENtso 475
Creating Generic TYPES. . ..ot vi ittt e 476
Reflection Security. 477
AttribULeS. . . 478
Programmer-Defined Custom Attributes 480
Attributes and Reflection 485

S 487
14 MSILProgramming.uuuiiniinennenneneenennnn 489
"Hello World” Application 491

Evaluation Stack 493

Table of Contents xvii

MSILin Depth. ..o 494
DIreCtiVeS. . . 494
Complex Tasks 506
Managing Types.o 506
Branching. 512
Calling Methods. 514
AT Y S e 517
Arithmetic Instructions 519
Conversion Operationso 519
Exception Handling 520
Miscellaneous Operations.ouuuuee e 522
Process EXecution. 522
Roundtrippingo 524
Debugging with Visual Studio 2008 526
15 Debugging with Visual Studio 2008 527
Debugging OVEervIieW 528
Debugging Windows Forms Projects., 528
Attaching to a Running Process ..., 529
Debugging Console Application Projects 530
Debugging Class Library Projects............... 531
Debug Setup. . ..o 531
Debug and Release Configurations 532
Configuration Manager ot 532
Debug Settings.o 533
Visual Studio Environment Debug Settings. 534
Debug Settings fora Solution............ 540
Debug Settings fora Project 540
Breakpoints 542
Function Breakpoints 542
Breakpoints Window. 544
Trace Points.o o 548
Code StePPING . oo v 551
Step COmMMaANAS. ... 551
Example of Setting The Next Statement 552
Debug Toolbar 553
Data TIPS o oo 553
Visualizers o 554

Debug WIindows. 556

xviii

Table of Contents

Breakpoints Window. 556
OutpUt Window 556
Watch Window and Other Variables Windows. 557
Autos WINdow . ..o 560
Locals Windowo 560
Immediate Window. 560

Call Stack Windowo o o 563
Threads Window 564
Modules Window. 565
Memory Window. 566
Disassembly Window 567
Registers Window 567
TraACING e 568
Tracing Example.o 577
Configuration File 580
Tracing Example with a Configuration File 582
DebuggerDisplayAttribute. 585
DebuggerBrowsableAttribute 586
DebuggerTypeProxyAttribute 589
DUMp Files. oo 589
Advanced Debugging 591
16 AdvancedDebugging il 593
DebuggableAttribute Attribute 595
DEbUggerS. . o o 595
Managed Debugger (MDbg)ot 596
MDbg Commands 601
WiNDDg . 603
Basic WinDbg Commandst 603

Son of Strike (SOS)o 610
SOS Example, Part 1. 611

SOS Example, Part Il 614
DUMIPS e 616
ADPIUS . . oo 617
Memory Management 619
Object graph. ... 620
GeNErations. 622
Finalization 626

Reliability and Performance Monitor.............. 627

Table of Contents

Threads. . ..o 628
Threads Commands.oou it 630
EXCEPHIONS . o oo 636
SYMOIS . 637
Symsrv Symbol Server. 638
Application Symbols 639
Memory Management 639

PartV Advanced Features

17 Memory Management...........ottt 643
Unmanaged RESOUICESttt 644
Garbage Collection Overview i, 645

GC FIaVOrS . o oo 649

Finalizers oo 651
IDisposable.Dispose 665
Disposable Pattern. i 669
Disposable Pattern Considerationsccoooo... 671

Disposing Inner Objects 675

Weak Reference 677
Weak Reference Internals.oo i 680
WeakReference Class. 680

Reliable Code 681

Managing Unmanaged Resourcesc.oouuiiiiiiinnnn. 685

The GC CIass . . e 688
Unsafe Code o 688

18 UnsafeCode.........coiiiniiiii it 691
Unsafe Keyword 693
POINtErS .« . 694

Pointer Parameters and Pointer Return Values. 697

P/INVOKE. . . o 701

SUMIMIATY .t 715
INdeX. ..o e e e 717

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and
learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey

Xix

Chapter 11

LINQ Programming

Chapter 6, "Introduction to LINQ,” was a general introduction to Language Integrated Query
(LINQ) and a review of LINQ to Objects. LINQ to Objects is the implicit LINQ provider, but
other providers are available. Namely, LINQ to XML and LINQ to SQL are the more commonly
used of these other providers. Because of the ubiquitous nature of Extensible Markup
Language (XML) and SQL in .NET development, these two providers have particular impor-
tance. Both of them implement the /Queryable interface, which extends the IEnumerable<T>
interface, to refine and implement the standard LINQ interface in the context of the provider.
For example, LINQ to XML does more than query XML. You also can use LINQ to XML to
browse an XML data store. LINQ to SQL also provides more than query functionality. You can
perform SQL commands, such as insert, delete, and add operations.

This chapter demonstrates the extensible nature and strength of LINQ. In the future, the
realm of LINQ will expand as additional providers are introduced. It will be the unifying
model of data, in the most abstract of terms. LINQ probably will touch upon domains that
have not even been envisioned in the hallways of Microsoft. There could be LINQ to Explorer,
which could allow users to query files and directories with query expressions. LINQ to
Internet could extend the concept of data mining to the Web. LINQ to Cloud could search for
specific resources in your cloud. The possibilities are unlimited. Until then, we will focus on
LINQ to XML and LINQ to SQL.

LINQ to XML

LINQ to XML manages XML data. XElement is the central component to LINQ to XML.
XElement represents a collection of XML elements. You can load XML into an XElement
component from memory using a string containing XML or another XElement object.
XElement also can be loaded from a file using TextReader and XmlTextReader types.
Conversely, you can persist XML to a string in memory, or you can persist XML to a file
using the TextWriter or XmiTextWriter types.

As mentioned, LINQ to XML is about more than simply querying XML data. In addition to
performing queries against XML stores, LINQ to XML presents a complete interface to
validate, navigate, update, and otherwise manage XML data. Already, .NET supports
competing application programming interfaces (APIs) for managing XML at various levels

of sophistication and complexity: Xm/TextReader and XmlTextWriter for reading and writing
XML, XmIDocument for supporting the Document Object Model (DOM) for accessing XML,
and finally XPath. Instead of supporting XML query capability only and deferring to another
interface for other functionality, LINQ to XML provides a comprehensive interface to manage

391

392

Part Il More C# Language

XML. This is consistent with the overall objective of LINQ to provide a unified syntax over
various domains. Instead of forcing you to understand two models (LINQ to XML and
something else), you can learn a single syntax and methodology for accessing XML.

XML Schemas

Validation using schemas is an essential ingredient of XML management. The mantra of
garbage-in and garbage-out is well founded. The concept of well-formed XML is also
important. Both validation and well-formed XML are verifiable in LINQ to XML.

Validation

You can validate XML against a schema with either XDocument.Validate or XElement.Validate.
The schema is normally found in an .xsd file. Here is a simple schema that defines the book
element, which requires an author attribute. The author attribute is of the string type:

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema'>
<xsd:element name="book">
<xsd:compTlexType>
<xsd:attribute name="author"
type="xsd:string" use="required"/>
</xsd:complexType>
</xsd:element>
</xsd:schema>

The following code is a short XML file that includes a book element. Notice that the author
attribute has been omitted. Therefore, based on the schema, this is not a valid XML file:

<?xml version="1.0"7>

<book xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="file:///c:/code/validate.xsd">

</book>

The following program uses LINQ to XML to validate the XML file with the schema.
XmliSchemaSet.Add reads the schema file. The XML file is read with the XDocument.Load
method and then is validated with the XDocument.Validate method. The first parameter of
the Validate method identifies the schema. The next parameter is the callback function that

is called to handle schema errors. In this example, the callback is ReportSchemakrror, which
displays the error message to the Console window. The application has several LINQ-related
namespaces. System.Ling is the core namespace for LINQ, while System.Xml.Ling is the core
namespace for LINQ to XML. The System.Xml.Schema namespace contains the XmI/SchemaSet
type. Here is the code:

using System;

using System.Ling;

using System.Xml.Ling;
using System.Xml.Schema;

Chapter 11 LINQ Programming 393

namespace Validate {
class Program {
static void Main(string[] args) {

Xm1SchemaSet schemas = new Xml1SchemaSet();
schemas.Add("", @"validate.xsd");
XDocument xml = XDocument.Load(@"c:\code\validate.xm1");

xml.Validate(schemas, new ValidationEventHandler (ReportSchemaError));

}

private static void ReportSchemaError(object sender, ValidationEventArgs e) {
Console.WriteLine(e.Message);

}
}

Here is the message that is displayed:

The required attribute 'author' is missing.

Here is a modified XML file. This file will pass the validation:

<?xml1 version="1.0"7>

<book xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="file:///c:/code/validate.xsd"
author="Donis Marshall">

</book>

In XML, quotes are required around string properties. For that reason, the following attribute
would not be well-formed XML; the quotes are missing:

author=Donis Marshall

The quality of the XML formation is checked by LINQ to XML when loading the document
into memory, using, for example, the XDocument.Load function. If the document is not well
formed, an XmlException is thrown at that time.

Navigation

Navigation XML is another capability of LINQ to XML. Navigation allows you to browse XML
nodes. Data is only as useful as it is accessible. Classes derived from XNode form the set of
object types that can be navigated or browsed. For LINQ to XML, nodes encompass every
aspect of the XML. These types include:

B Elements within a document (XElement)
B Parent and child elements (XElement)

B Element value (XText)

B Comments (XComment)

B Attributes of an element (XAttribute)

394 Part Il More C# Language

Table 11-1 lists the members of the XNode class related to navigation, which are common to
the classes in the preceding list.

TABLE 11-1 XNode members pertaining to navigation

Member Description

Ancestors Returns the ancestors of the current element. The second overload restricts the
result to elements of the specified name. Here are the signatures:

pubTlic IEnumerable<XElement> Ancestors()

pubTlic IEnumerable<XElement> Ancestors(XName name)

CreateNavigator Creates a LINQ to XML cursor. (Cursors are discussed at the end of this section.)
Here are the signatures:

public static XPathNavigator CreateNavigator(this XNode node)

public static XPathNavigator CreateNavigator(this XNode node,
XmTNameTable nameTable)

ElementsAfterSelf ~ Returns siblings after the current element. The second overload restricts the
results to elements of the specified name. Here are the signatures:

public IEnumerable<XElement> ElementsAfterSelf()

public IEnumerable<XElement> ElementsAfterSelf(XName name)

ElementsBeforeSelf ~ Returns siblings before the current element. The second overload restricts the
results to elements of the specified name. Here are the signatures:

pubTlic IEnumerable<XElement> ElementsBeforeSelf()

public IEnumerable<XElement> ElementsBeforeSelf(XName name)

IsAfter Indicates whether the current node is after the specified node. Here is the
signature:

public bool IsAfter(XNode node)

IsBefore Indicates whether the current node is before the specified node. Here is the
signature:

public bool IsBefore(XNode node)

NodesAfterSelf Returns nodes after the current node. Here is the signature:
public IEnumerable<XNode> NodesAfterSelf()

NodesBeforeSelf Returns nodes before the current node. Here is the signature:
public IEnumerable<XNode> NodesBeforeSelf()

NextNode Returns the next node. Here is the definition:
public XNode NextNode {get;}

Parent Returns the parent of the current node. Here is the definition:
public XElement Parent {get;}

PreviousNode Returns the previous node.

public XNode PreviousNode{get;}

Chapter 11 LINQ Programming 395

In addition to being a valid XML node, XElement is an XML container class. Container classes
inherit XContainer, which then inherits XNode. XDocument is another example of a container
class and also inherits XContainer. Containers can manage nodes found in the container.
Table 11-2 lists methods and properties of XContainer that help when navigating XML.

TABLE 11-2 XContainer members pertaining to navigation

Member

DescendantNodes

Descendants

FirstNode

LastNode

Description

Returns a collection of descendant nodes. The second overload restricts the
results to elements of the specified name. Here are the signatures:

public IEnumerable<XElement> Descendants()

pubTlic IEnumerable<XElement> Descendants(XName name)

Returns a collection of descendant elements. The second overload restricts
the result to elements of the specified name. Here are the signatures:

pubTlic IEnumerable<XElement> Descendants()

pubTlic IEnumerable<XElement> Descendants(XName name)

Returns the first child node of the current element. Here is the definition:

public XNode FirstNode {get;}

Returns the last child node of the current element. Here is the definition:

public XNode LastNode {get;}

XElement has additional members for navigation that are not inherited from XNode or
XContainer. The list of these members is provided in Table 11-3.

TABLE 11-3 XElement navigation members

Member
AncestorsAndSelf

Attribute

Attributes

Description

Returns the current element and ancestors. The second overload restricts
the result to elements of the specified name. Here are the signatures:

pubTlic IEnumerable<XElement> AncestorsAndSelf()

public IEnumerable<XElement> AncestorsAndSelf(XName name)

Returns the specified attribute of the current element. The second overload
restricts the results to nodes of the specified name. Here are the signatures:

public XAttribute Attribute(XName name)

pubTlic IEnumerable<XElement> AncestorsAndSelf(XName name)

Returns the attributes of the current element. The second overload restricts
the result to attributes of the specified name. Here are the signatures:

pubTlic IEnumerable<XAttribute> Attributes()

pubTlic IEnumerable< XAttribute > Attributes(XName name)

396

Part Il More C# Language
TABLE 11-3 XElement navigation members

Member Description

DescendantNodeAndSelf Returns a collection of descendant nodes. Here is the signature:

public IEnumerable<XNode> DescendantsNodesAndSelf()

Element Returns the specified child element. Here is the signature:

pubTlic XElement ETement(XName name)
Elements Returns the child elements of the current element. The second overload
restricts the result to elements of the specified name. Here are the signatures:

pubTlic IEnumerable<XElement> Elements()

public IEnumerable<XElement> Elements(XName name)

FirstAttribute Returns the first attribute of the current element. Here is the definition:

public XAttribute FirstAttribute {get;}

FirstNode Returns the first child node of the current element. Here is the definition:

public XNode FirstNode {get;}

LastAttribute Returns the last attribute of the current element. Here is the definition:

pubTlic XAttribute LastAttribute {get;}

LastNode Returns the last child node of the current element. Here is the definition:

pubTlic XNode LastNode {get;}

XML data is hierarchical. XElement reflects that hierarchical nature of XML onto LINQ to XML.
In most XML models, document is the key component. However, in LINQ to XML, the focus

is XElement. You can enumerate all the elements of the document from an XElement object
that refers to the root element. From there, you can continue to drill down through child
elements, values, and attributes until the XML document has been explored fully.

The following code is a console application that enumerates elements of an XML file. The
filename is provided as a command-line parameter. In Main, the XML file is loaded and the
root element is displayed. The GetElements method is called next. In this method, the child
elements are requested using the XElement.Descendants method. Then the elements are
enumerated. GetElement is called recursively until all the elements have been rendered. The
attributes, if any, of every element also are displayed:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Xml.Ling;

using System.Text;

namespace EnumerateXML
{
class Program {
static void Main(string[] args) {

Chapter 11 LINQ Programming 397

XElement xml = XETement.Load(args[0]);
Console.WriteLine("Element: {0}", xml.Name);
GetETements(xm1);

}

static void GetElements(XElement xml1) {
foreach (XElement element in xml.Descendants()) {
Console.WriteLine("Element: {0}", element.Name);
foreach (XAttribute attribute in element.Attributes()) {
Console.WriteLine(" " + attribute.Name);
}

GetETlements(element);

3

The XPathNavigator is an alternate model for browsing using LINQ to XML. It uses a cursor
to browse instead of requesting and then enumerating a collection of elements. The previous
code example used the latter model. The cursor model is simpler and probably more descriptive.
XNode.CreateNavigator returns an instance of an XPathNavigator. XPathNavigator has Move
methods that move the cursor, such as MoveToAttribute, MoveToChild, and MoveToFollowing.
The cursor can be moved forward and backward. MoveToParent and MoveToRoot are examples
of methods that jump the cursor backward in the LINQ to XML. More important than
navigation, the XPathNavigator type has methods that edit values and confirm relationships,
such as between parents and children. The objective of the following example is similar to
the previous example. This code browses an XML file using the XPathNavigator:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Xml.Ling;

using System.Xml.XPath;

using System.Text;

namespace PathNavigator {
class Program {
static void Main(string[] args) {
XElement xml = XElement.Load(args[0]);
XPathNavigator nav = ((XNode) xml).CreateNavigator();

Console.WriteLine("Element: {0}", nav.Name);
GetETements(nav);

static void GetElements(XPathNavigator nav) {
while (nav.MoveToFollowing(XPathNodeType.Element)) {
Console.WriteLine("Element: {0}", nav.Name);
if (nav.HasAttributes) {
nav.MoveToFirstAttribute();
Console.WriteLine("{0}", nav.Name);

398 Part Il More C# Language

while (nav.MoveToNextAttribute())
Console.WriteLine("{0}", nav.Name);

Explicit Casting

XML elements can contain values. These values are outside the control of the Common
Language Runtime (CLR) and therefore are not type-safe. Nonetheless, you can cast these
values to .NET primitives. The conversion occurs at run time. An invalid cast will raise an
exception at that time. Here is a simple XML file:

<data>
<item>
bob
</item>
</data>

The following code reads the simple XML file and selects the child node, which is the item
element. That element is then cast to a string in the Console.WriteLine method. The cast is
successful because the value (bob) is convertible to a string. The next line is commented out,
where the element is cast to an integer. That is invalid for this element and would raise a
FormatException exception at run time. Of course, you would prefer to raise an exception at
compile time:

XElement xml = XElement.Load(@"..\..\simple.xm1");
XETement child = (XElement)xml.FirstNode;

Console.WriteLine("Element: {0}", (string) child);
//Console.WriteLine("Element: {0}", (int) child);

Unlike XElement, the XPathNavigator type does not support explicit casting of element values.
You have to use member properties to cast to the target type. The following simple XML file
has been altered slightly. The item property now contains an integer value:

<data>
<item>
123
</item>
</data>

The following code uses XPathNavigator to move to the child node and then to display the
value. The ValueAsint property is used to cast the value to an integer. Similar to explicit
casting, this is not type-safe. Conversion problems occur at run time and cause a
FormatException exception:

XElement xml = XElement.Load(@"..\..\simple.xm1");
XPathNavigator nav = ((XNode)xm1).CreateNavigator();

Chapter 11 LINQ Programming 399

nav.MoveToChild(XPathNodeType.ETement);
Console.WriteLine("Element: {0}", nav.ValueAsInt);

XML Modification

You can change the content of XML data using LINQ to XML. In the case of an XML file, you
can read the XML into memory, modify the data, and then save the changes back to a file. The
XElement element has several methods that support modifying XML. This includes adding
and changing nodes. Table 11-4 lists members of XElement that are useful in modifying an
XML data file.

TABLE 11-4 XElement members pertaining to data modification

Member Description

Add Adds content to the current element, which could be a child element. Here are
the signatures:

pubTlic void Add(object content)

public void Add(object[] content)
AddAfterSelf Adds content after the current element. Here are the signatures:

pubTic void AddAfterSelf(object content)

public void AddAfterSelf(object[] content)

AddAnnotation Adds an annotation (a comment) to the current element. Here is the signature:

public void Annotation (object content)

AddBeforeSelf Adds content before the current element. Here are the signatures:

public void AddBeforeSelf(object content)

public void AddBeforeSelf(object[] content)

AddFirst Inserts content as the first child of the current element. Here are the signatures:

public void AddFirst(object content)

public void AddFirst(object[] content)

Remove Removes the current element. Here is the signature:

pubTlic void Remove()

RemoveAll Removes child nodes of the current element. Here is the signature:

pubTlic void RemoveAll1()

RemoveAnnotations Removes annotations of the type indicated from the current element. Here are
the signatures:

public void RemoveAnnotations<T>() where T : class

public void RemoveAnnotations(Type type)

400 Part Il More C# Language

TABLE 11-4 XElement members pertaining to data modification

Member

RemoveAttributes

RemoveNodes

ReplaceAll

ReplaceAttributes

ReplaceNodes

Save

SetAttributeValue

SetElementValue

SetValue

Description

Removes the attributes of the current element. Here is the signature:
pubTlic void RemoveAttributes()

Removes the nodes of the current element. Here is the signature:
public void RemoveNodes ()

Replaces the children of the current element with the provided content. Here
are the signatures:

pubTlic void ReplaceAll(object content)

public void ReplaceAll(object[] content)

Replaces the attributes of the current element with the provided content. Here
are the signatures:

public void ReplaceAttributes(object content)

public void ReplaceAttributes(object[] content)

Replaces the child nodes of the current element with the provided content.
Here are the signatures:

pubTlic void ReplaceNodes(object content)

public void ReplaceNodes(object[] content)

Saves XML data. SaveOptions enumeration has two values. SaveOptions.None
indents the XML, while removing extraneous white space. SaveOptions.
DisableFormatting persists the XML while preserving the formatting, including
white space. Here are the signatures:

public void Save(string fileName)

public void Save(TextWriter textWriter)

pubTlic void Save(XmlWriter writer)

public void Save(string fileName, SaveOptions options)

pubTic void Save(TextWriter textWriter, SaveOptions options)

Adds, modifies, or deletes an attribute. If the attribute does not exist, it is added.
Otherwise, the attribute is changed. If value is null, the attribute is deleted.
Here is the signature:

public void SetAttributeValue(XName name, object value)

Adds, modifies, or deletes a child element. If the element does not exist, it is
added. If value is null, the element is deleted. Here is the signature:

public void SetElementValue(XName name, object value)
Sets the value of the current element. Here is the signature:

public void SetValue(object value)

Chapter 11 LINQ Programming 401

The following program demonstrates modifying XML data. It finds and replaces the value
of an attribute or element. This is a console program where you specify the XML file, mode
(attribute or element), find value, and replace value as command-line arguments—in that
order. The mode is either attribute (or just a) or element (or just e). Results are saved back to
the original file. In the application, the XML file is loaded with XElement.Load. In the
element case, we enumerate the elements. Whenever a matching value is found, it is
changed with the replace value. In the attribute case, the elements are enumerated. Within
each element, the attributes are enumerated. If a matching value is found, it is changed
with the replace value. After the switch statement, the XML file is updated using the
XElement.Save method:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Xml.Ling;

namespace FindAndReplace {
class Program {
static void Main(string[] args) {
XElement xml = XElement.Load(args[0]);
char[] remove = { '"\t', '"\n', " ' };
switch (args[1].ToLower()) {
case "element":
case "e":
foreach (XElement element in xml.Elements()) {
if (args[2] == ((string)element).Trim(remove)) {
element.SetValue(args[3]);
}
}
break;
case "attribute":
case "a":
foreach (XETement element in xml.Elements()) {
foreach (XAttribute attribute in element.Attributes()) {
if (args[2] == ((string) (attribute)).Trim(remove)) {
attribute.SetValue(args[3]);
}
}
}
break;
}
xm1.Save(args[0]);

XML Query Expressions

With LINQ to XML, you can apply LINQ query expressions to XML data. The query expression
cannot be applied directly to an XML file. The file first must be read into memory as an

402

Part Il More C# Language

XElement or an XDocument. Chapter 6 explained the syntax of query expressions. The
XElement.Elements, XElement.Attributes, and other members of XDocument and XElement
return enumerable collections, which can be sources of LINQ query expressions. Here is an
example of a query expression using LINQ to XML:

var saleitems = from item in xml.ETements()
where item.FirstAttribute.Value == "sale"
orderby item.Element("discount™).Value
select item;

LINQ to SQL

LINQ to SQL is used to access relational databases. A goal of LINQ to SQL is to offer a unified
query expression language for relational databases regardless of the data source. You learn

a single syntax that can be applied to a variety of native databases. The query expression is
converted by the provider into a query string targeting a specific database, and the query
string is submitted to the relevant database engine. You can retrieve the SQL-specific query
string generated for a query expression with the DataContext.GetCommand method. To sub-
mit a SQL command directly to the database engine, use DataContext.ExecuteQuery. LINQ to
SQL queries are not immediate and use deferred loading. This is accomplished via expression
trees, which is a language extension of .NET 3.5. Expression trees were reviewed in Chapter 6.

In this book, AdventureWorks_Data is used as the sample database. AdventureWorks_Data is
downloadable from this Microsoft Web site: http://www.codeplex.com/MSFTDBProdSamples.
Download the AdventureWorksDB.msi installer. The following code uses the AdventureWorks_
Data database and displays the underlying native query string of a LINQ to SQL query ex-
pression. The DataContext.GetCommand method returns the native query string:

DataContext context = new DataContext(conn);
Table<Employee> employees = context.GetTable<Employee>();

var query = from e in employees

where e.ManagerID == "21"

select new { e.EmployeeID, e.ManagerID };
DbCommand command = context.GetCommand(query);
Console.WritelLine(command.CommandText);

Entity Classes

Entity classes map a native database table or view to a managed class. Intrinsically, this
changes access from a data model to an object-oriented model. You can map database
columns (fields) to data members and properties of a managed class. Mapping every column
of the table is not required. You can map only needed columns to the class instead of the

Chapter 11 LINQ Programming 403

entire table. Columns not mapped are not accessible in LINQ to SQL. Entity classes also can
define uniqueness and associations.

The Table attribute maps an entity class to a database table and cannot be applied to a
structure. Name is the only property of the Table attribute and names the database table
that the class is mapping. If the Name property is omitted, the class maps to the table that
shares the name of the class. For example, by default, the class XData would map to a table
in the database named XData.

A Column attribute maps a database column to a data member or property of the entity class.
The Name property is optional and maps the member to a specific column in the database
table. The default mapping is to the column with the same name as the member. The Column
attribute has additional properties. Table 11-5 list all the properties of the Column attribute.

TABLE 11-5 Properties of the Column attribute

Property Description Type

AutoSync Indicates how the CLR retrieves a value during an insert or update AutoSync
command.

CanBeNull Indicates whether the table column can contain null. bool

DbType Maps a database type to the managed type of the class member. string

Expression This is the expression used in a computed column. string

IsDbGenerated Indicates that the column is auto-generated by the database. bool

IsDiscriminator Indicates whether a discriminator column is being used to filter bool
derived classes.

IsPrimaryKey Indicates whether this column is the primary key. This can be bool
assigned to multiple members to create a composite key.

IsVersion Indicates whether this column is used as a version number or bool
timestamp.

Name Maps the data member or property to a specific column. string

Storage When a data column maps to a property, the Storage property string

identifies the underlying data member to bypass the property
accessor method. This is used when setting the property.

UpdateCheck Indicates how optimistic locking is handled. UpdateCheck

An entity class is defined and used in the following example. Employee is the entity class. It is
mapped to the HumanResources.Employee table in the SQL database. The /d data member

is mapped explicitly to EmployeelD of the target entity. The other members are mapped
implicitly to the correct member in the corresponding table. In Main, the connection string

is set. The dots represent the path to the AdventureWorks_Data database. This is where the
database is installed. You should substitute the correct path. Next, an instance of DataContext
is created. DataContext is a bridge to the original data source. DataContext.GetTable binds
the entity class to the database. The result is placed in the Table<Employee> type. The
subsequent query returns employees that share a specific manager, where the manager ID

404

Part Il More C# Language

is 21. The foreach loop displays the results. A reference to System.Data.Ling.dll is required to
access the System.Data.Ling and System.Data.Ling.Mapping namespaces:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Data.Ling;

using System.Data.Ling.Mapping;

namespace CSharpBook {
class Program {
static void Main(string[] args) {
string conn = @"Data Source=DONISBOOK;AttachDbFilename=" +
@"'...\AdventureWorks_Data.mdf';Integrated Security=True";
DataContext context = new DataContext(conn);
Table<Employee> employees = context.GetTable<Employee>();
var query = from e in employees
where e.ManagerID == 21
select new { e.Id, e.Title};
foreach (var item in query) {
Console.WriteLine("{0} {13}",
item.Id, item.Title);

}

[Table(Name = "HumanResources.Employee™)]

pubTlic class Employee{
[CoTumn(Name="EmpTloyeeID", IsPrimaryKey=true)] public int Id;
[Column] public string Title;
[Column] public int ManagerID;

LINQ to SQL Query Expression

LINQ to SQL query expressions are applied to relational databases. The query expression is
object-based, which might require mapping database tables and views to entities. Use the

DataContext type to connect to the data source. Next, you apply a query expression to the
resulting entity type. Here are the steps for applying a query expression to a table:

Define entities for database tables to be used in the query.

Define the connection string.

1.

2.

3. Define a new DataContext.

4. Call DataContext.GetTable to initialize each entity.
5.

Apply a query expression to the resulting entity objects.

Chapter 11 LINQ Programming 405

The following sample code demonstrates these steps. This program displays the names of
all salespeople. General salesperson information, sales information, and employee names
are stored in separate tables. Entities are created for the Employee, SalesOrderHeader, and

Contact tabl

es. In Main, the connection string is defined. DataContext.GetTable then is called

to create entity objects for the Employee and Contact tables. A query expression is performed
on the table objects. A join is used to create a relationship between the two tables. The

results then

using System
using System
using System
using System
using System

namespace Si
class Pr
stat

LastName };

[Table(N
public c
[Col
[Col
[Col
}
[Table(N
public c
[Col
[Col
[Col

are enumerated and displayed:

.Collections.Generic;
.Ling;

.Data.Ling;
.Data.Ling.Mapping;

mpleQuery {
ogram {
ic void Main(string[] args) {
string conn = @"Data Source=DONISBOOK;AttachDbFilename=" +
@"'...\AdventureWorks_Data.mdf';Integrated Security=True";
DataContext context = new DataContext(conn);
Table<Employee> employees = context.GetTable<Employee>(Q);
Table<Contact> contacts = context.GetTable<Contact>();
var result = from employee in employees
join contact in contacts
on employee.ContactID equals contact.ContactID
where employee.Title == "Sales Representative"
select new { employee.ContactID, contact.FirstName, contact.

Console.WriteLine("Sales people are:");
foreach (var item in result) {
Console.WriteLine("{0} {1}", item.FirstName, item.LastName);

ame = "HumanResources.Employee")]

lass Employee {

umn(IsPrimaryKey = true)] public int EmployeelD;
umn] public string Title;

umn] public int ContactID;

ame = "Person.Contact")]

lass Contact {

umn(IsPrimaryKey = true)] public int ContactID;
umn] public string FirstName;

umn] public string LastName;

406

Part Il More C# Language

LINQ to DataSet

You can query datasets using LINQ to DataSet. LINQ to DataSet query expressions accept
datasets or derivative objects, such as data tables, as valid data sources. With LINQ to
DataSet, you create datasets in the usual manner. Define a connection string, create an
instance of a data adapter and dataset, and initialize the dataset using the DataAdapter.Fill
method.

The DataRowExtensions class contains extensions to be used with LINQ to DataSet. The Field
extension is a generic method and provides type-safe access to a database field (column),
which is useful in a LINQ to DataSet query expression. The SetField extension is also a generic
method and changes the value of a field.

The preceding example displays the names of salespeople. The following code does the
same but uses a dataset. Two data adapters are defined that connect to the same database.
The first data adapter selects the Contact table, while the second selects the Employee table.
Next, both tables are added to the dataset using data adapters. References to the data tables
are then extracted from the dataset. A LINQ to DataSet query expression is then performed
to return a list of salespeople. The results are enumerated in a foreach loop, where the report
is displayed:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Data;

using System.Data.SqlClient;
using System.Data.Ling;

namespace CSharpBook {
class Program {
static void Main(string[] args) {

string conn =
@"Data Source=DONISBOOK;AttachDbFiTlename=" +
@"'...\AdventureWorks_Data.mdf"';Integrated Security=True";

string tablePerson= "select * from Person.Contact";

string tableEmployee= "select * from HumanResources.Employee";

SqlDataAdapter dal = new SqlDataAdapter(tablePerson, conn);
Sq1DataAdapter da2 = new SqlDataAdapter(tableEmployee, conn);

DataSet ds = new DataSet();

dal.Fi11(ds, "Contact");

da2.Fill1(ds, "Employee");

DataTable employees=ds.Tables["Employee"];
DataTable contacts=ds.Tables["Contact"];

var results = from person in employees.AsEnumerable()
join contact in contacts.AsEnumerable()
on person.Field<int>("ContactID") equals contact.
Field<int>("ContactID")
where person.Field<string>("Title") == "Sales Representative"

Chapter 11 LINQ Programming 407

select new { ID = person.Field<int>("ContactID"),
First = contact.Field<string>("FirstName"),
Last = contact.Field<string>("LastName")};

Console.WriteLine("Sales people are:");
foreach (var item in results) {

Console.WriteLine("{0} {1}", item.First, item.Last);
}

Associations

Associations are integral to SQL programming. The most common associations are one-to-
many and one-to-one associations. For example, an inventory database might consist of
purchase order, product, and vendor tables. There would be a one-to-many relationship
from the purchase order table to the product table. For any purchase order, there could be
many products. A one-to-one relationship exists between the purchase order and vendor
tables. This would match the vendor ID in the purchase order with the vendor name found
in the vendor table. Associated tables must share a common field. The vendor ID field would
be the common field between the purchase order and vendor tables. The common field
provides the link between the associated tables.

In LINQ to SQL, tables are represented by entity classes. In an entity class, a relationship is
defined with the Association attribute. The ThisKey and OtherKey properties describe the
association between entities. ThisKey defines the common field (typically the primary key) in
the current entity. OtherKey defines the common field in the other entity. In standard SQL
terminology, OtherKey is equivalent to a foreign key.

Associations in LINQ to SQL are similar to joins in other query languages. A join defines the
relationship between two tables. An association defines the relationship between objects.
The EntitySet type defines a one-to-many relationship, while the EntityRef type defines a
one-to-one relationship. Both are exposed as properties within the entity class. The EntityRef
and EntitySet types also provide access to the related class or collection from within the
current entity. For this reason, both typically are exposed as properties. Here is an example of
the Association attribute, EntityRef type, and EntitySet type:

[TabTle(Name = "HumanResources.Employee™)]

pubTlic class Employee {
[CoTumn(IsPrimaryKey = true)] public int EmployeelD;
[Column] public string Title;
[CoTumn] public int ContactID;

private EntitySet<SalesOrderHeader> propSales = null;
[Association(Storage = "propSales", ThisKey = "EmployeeID",
OtherKey = "SalesPersonID")]
public EntitySet<SalesOrderHeader> Sales {
get { return this.propSales; }

408

Part Il More C# Language

set { this.propSales.Assign(value); }
}

private EntityRef<Contact> propName;
[Association(Storage = "propName", ThisKey = "ContactID", OtherKey = "ContactID")]
public Contact Name {

get { return this.propName.Entity; }

set { this.propName.Entity = value; }

}

Assuming that the employee is a salesperson, there is a one-to-many relationship between
the Employee and Sales tables. For that reason, the relationship is defined with an Association
attribute on an EntitySet type. The foreign key in the Sales table is defined by the OtherKey
property, which is SalesPersonID. The local key is EmployeelD and is defined with the ThisKey
property. In this example, the ThisKey property is self-documenting only. Without the
property, the default is the primary key, which is EmployeelD. Properties in the class hide the
details of the EntityRef and EntitySet types. You can access the related table (Sales) from this

property.

There is a one-to-one relationship between the Employee and Contact tables. For that reason,
the EntityRef type is used. The foreign key is ContactID of the Contact table, which is defined
with the ThisKey property. The EntityRef is abstracted by a class property.

Here is the entire code. There are three entity classes: Employee, Contact, and
SalesOrderHeader. The program generates a sales report, which is saved to a file. Notice

that the query expression does not include an explicit join. The join is defined already via

the Association attributes. The report is written to the file in the foreach loop. From each
Employee entity, references to the other entity classes are available through the EntityDef and
EntityRef properties. Sales is an EntityDef type, which represents the one-to-many relationship
between the Employee and Sales tables. In this case, the "many” are sales records. Each sales
record is retrieved in the nested foreach loop and is written to the sales report:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Data.Ling;

using System.Data.Ling.Mapping;
using System.IO;

namespace SalesReport {
class Program {
static void Main(string[] args) {
StreamWriter sw = new StreamWriter("report.txt");
string conn = @"Data Source=DONISBOOK;AttachDbFilename=" +
@"'...\AdventureWorks_Data.mdf';Integrated Security=True";
DataContext context = new DataContext(conn);
Table<Employee> employees = context.GetTable<Employee>();

var sales = from person in employees
where person.Title == "Sales Representative"

Chapter 11

select person;

foreach (var item in sales) {
sw.WriteLine(
"\r\n{0} {1} {2}\r\n\r\nOrders:",
item.EmployeelD,
item.Name.FirstName,
item.Name.LastName) ;

foreach (var salesitem in item.Sales) {
sw.WriteLine("{0}", salesitem.SalesOrderID);

[Table(Name = "HumanResources.Employee™)]

public class Employee {
[Column(IsPrimaryKey = true)] public int EmployeelD;
[Column] public string Title;
[Column] public int ContactID;

private EntitySet<SalesOrderHeader> propSales = null;

LINQ Programming

[Association(Storage = "propSales", ThisKey = "EmployeeID",

OtherKey = "SalesPersonID")]

public EntitySet<SalesOrderHeader> Sales {
get { return this.propSales; }
set { this.propSales.Assign(value); }

private EntityRef<Contact> propName;

[Association(Storage = "propName", ThisKey = "ContactID")]

public Contact Name {
get { return this.propName.Entity; }
set { this.propName.Entity = value; }

[Table(Name = "Sales.SalesOrderHeader")]

public class SalesOrderHeader {
[Column(IsPrimaryKey=true)] public int SalesOrderID;
[Column] public int CustomerlID;
[Column] public int SalesPersonID;

private EntityRef<Employee> propSalesPerson;

[Association(Storage = "propSalesPerson", ThisKey = "SalesPersonID")]

public Employee SalesPerson {
get { return this.propSalesPerson.Entity; }
set { this.propSalesPerson.Entity = value; }

[Table(Name = "Person.Contact")]
pubTlic class Contact {
[Column(IsPrimaryKey = true)] public int ContactID;

409

410

Part Il More C# Language

[CoTumn] public string FirstName;
[Column] public string LastName;

LINQ to SQL Updates

As mentioned, the DataContext type is the bridge between LINQ to SQL and the relational
database. DataContext creates an in-memory representation of a data table or view, which is
cached in entity classes. This is the disconnected model with optimistic locking. This model
is not ideal for highly contentious data sources, where there is likely to be a high number of
conflicts in a short period of time. The DataContext is also responsible for updating changes
back to the original data source and resolving possible conflicts. You can specify what action
to take when a conflict occurs.

In LINQ to SQL, the Identity Management Service tracks changes to entities. The Identity
Management Service keeps a single instance of a row in memory. For example, if separate
queries return overlapping results, the common results reference the same entities. This
keeps the in-memory representation synchronized. Entities must have a primary key defined
to be tracked by the Identity Management Service. Entities without a primary key are read-
only, and changes are discarded.

Changing an existing record is easy. Change a value of a mapped data member or property
in the related entity. This will update the data in memory.

To add a new record, create a new instance or instances of the entity. Call Table<TEntity>.
InsertOnSubmit to add a single entity (record). Table<TEntity>.InsertOnAllSubmit adds a
collection of entities.

To delete a record, first find the record or records using a query expression. Then
call Table<TEntity>.DeleteOnSubmit to delete a single entity (record). Table<TEntity>.
DeleteAllOnSubmit deletes a collection of entities.

DataContext.SubmitChanges persists changes (updates, inserts, or deletions) to the data
source. Prior to calling this method, only the in-memory representation is changed. You can
obtain the pending changes with the DataContext.GetChangeSet method. The return value
from this method is a ChangeSet type, which has a collection for each type of change: Inserts,
Updates, and Deletes. The ChangeSet.ToString method returns a summary of changes. This is
the signature of DataContext.SubmitChanges:

pubTlic void SubmitChanges()

public void SubmitChanges(ConflictMode failureMode)

ConflictMode is an enumeration, where FailOnFirstConflict and ContinueOnConflict are the
values. FailOnFirstConflict means updates will stop on the first conflict. ContinueOnConfflict
means all updates are attempted even if a conflict occurs prior to completing.

Chapter 11 LINQ Programming 411

ChangeTable is a console application that updates the ContactType table of the
AdventureWorks_Data database. You enter individual commands from the command line. For
example, the following commands add, delete, and modify a record in the ContactType table.

C:\>changetable -del 21
C:\>changetable -add "Senior Manager"
C:\>changetable -update 20 Director

The first command deletes the record that contains the specified Contact/D. The second
command adds a new record for Senior Manager. Finally, the last command updates the
record with the specified Contact/D. The name in that record is changed to Director. Running
the program with no command-line arguments will list the ContactType records without
making any updates.

In the sample code, the switch statement partitions and handles each command: add, delete,
and update. After the switch statement, DataContext.SubmitChanges saves the changes to
the actual database. The last action is to list the contents of the ContactType table, including
any changes. Here is the code for the ChangeTable application. The entity class for the
ContactType table is at the end of the sample code:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Data.Ling;

using System.Data.Ling.Mapping;

namespace ChangeTable {
class Program {
static void Main(string[] args) {

string conn = @"Data Source=DONISBOOK;AttachDbFilename=" +
@""'...\AdventureWorks_Data.mdf';Integrated Security=True";
DataContext context = new DataContext(conn);
Table<ContactType> contacts = context.GetTable<ContactType>();
ContactType record = null;
if (args.Length > 0) {
switch (args[0].ToLower()) {
case "add":
case "a":
record = new ContactType {
Name = args[1],
ModifiedDate = DateTime.Now

};
contacts.InsertOnSubmit(record);
break;
case "del":
case "d":
record = contacts.Where(c => c.ContactTypeID == int.Parse(args[1])).

First(Q;
contacts.DeleteOnSubmit(record);

412

Part Il More C# Language

break;
case "update":
case "u":
record = contacts.Where(c => c.ContactTypeID == int.Parse(args[1])).
First(Q);
record.Name = args[2];
break;

}
Console.WriteLine("{0}\n", context.GetChangeSet().ToString());

context.SubmitChanges();
}
Console.WriteLine("Contact type Tist:\n");
foreach (var contact in contacts) {
Console.WriteLine("{0} {1} {2}",
contact.ContactTypelD,
contact.Name,
contact.ModifiedDate);

3

[Table(Name = "Person.ContactType")]

public class ContactType {
[Column(IsPrimaryKey=true, IsDbGenerated=true)] public int ContactTypelD;
[CoTlumn] public string Name;
[Column] public DateTime ModifiedDate;

Exception Handling

Exception handling is an essential ingredient in software development and in creating a robust
application. Chapter 12, “Exception Handling,” discusses various aspects of exception handling,
including protected bodies, exception handlers, and termination handlers. A protected body,
also known as a guarded body, is a try block and encapsulates protected code. When an
exception is raised in the protected code, execution is transferred to the exception filter. The
exception filter is a catch statement that identifies which exceptions are handled at that
location on the call stack. Termination handlers are finally blocks. Place cleanup code in a
finally block, where code is executed whether an exception is raised or not.

There are system or hard exceptions such as access violations and software exceptions, which
are thrown by the CLR. You can throw some system exceptions. However, you also can throw
user-defined exceptions.

Unhandled exceptions can crash an application, causing a crash dialog box to be displayed.
You can override this default behavior with the appropriate unhandled exception event
handler. This and other topics related to exception handling are detailed in the next chapter.

	Cover
	Table of Contents
	Chapter 11: LINQ Programming
	LINQ to XML
	XML Schemas
	Validation
	Navigation
	XML Modification
	XML Query Expressions

	LINQ to SQL
	Entity Classes
	LINQ to SQL Query Expression
	Associations
	LINQ to SQL Updates
	Exception Handling

