Programming Programming
Microsoft M icrOSOft® LI NQ

Paolo Pialorsi
Marco Russo

Paolo Pialorsi
Marco Russo

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/10827.aspx

Microsoft

9780735624009 Press

© 2008 Paolo Pialorsi and Marco Russo. All rights reserved.

Table of Contents

FOreword. o XVii
Preface. Xix
Acknowledgments XX
INtroduction XXi
ABOUE THIS BOOK XXi
System Requirements. XXili
The Companion Web Site. XXili
Support for This BOOK Xxiii

part! LINQ FOUNDATIONS

1 LINQIntroduction.c.iiniiiiiii i it i 3
What Is LINQ? .o 3
Why Do We Need LINQ? e 5
How LINQ WoOrKS. . ..o 6

Relational Model vs. Hierarchical/Network Model. 8
XML Manipulation. 13
Language Integration. ... 15
Declarative Programming 16
Type Checkingo 18
Transparency Across Different Type Systems., 18
LINQ Implementations.ttt e 18
LINQ to Objects. . .ot e 19
LINQ to ADO.NET ... e e e 19
LINQ to XML, o oo 20
SUMIMAIY. . . 21

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

vii

viii Table of Contents

2 LINQSyntax Fundamentals............. o i it 23
LINQ QUEKIES . . oot e e e 23
QUEIY SYNTaX . .ottt 23

Full Query Syntaxout 28
Query Keywordso 29
From Clauseo 29
Where Clause. e 31
Select ClauSeo 32
Group and Into Clauses i 32
Orderby Clause 35

Join Clause 35

Let Clauseo 39
Additional Visual Basic 2008 Keywords. ..., 40
Deferred Query Evaluation and Extension Method Resolution. 41
Deferred Query Evaluation L. 41
Extension Method Resolution............. i i it 42
Some Final Thoughts About LINQ Queries 44
Degenerate Query EXpressions.ttt 44
Exception Handling 45
SUMIMIAIY e e e e e e e e 47
3 LINQtoODbjects.ooiiuiiiii it i i e 49
QUETY OPEIators. . ..\ttt e e e e 52
The Where Operator.t e e 52
Projection Operators i 54
Ordering Operatorsttt 57
Grouping Operatorsttt 61

JOIN OPEIatorS. . .\ttt 65

Set OPErators. . ..ot 70
Aggregate Operatorsot 74
Aggregate Operators in Visual Basic 2008ccoiiiiii. ... 84
Generation Operatorsoiti it 86
Quantifiers Operators. 87
Partitioning Operators.t 90
Element Operators 92
Other Operatorst 97

ConVversion OPEratorst 98

Table of Contents ix

AsEnumerable. 98
ToArray and TOLISt 100
TODICHIONGAIY . . . o oo 101
TOLOOKUD oo e e e 102
OfType and Cast.o 104
SUMIMATY. ¢ o e e e 104

partil LINQ to Relational Data

4 LINQtoSQL:QueryingData...........c.ooiiiiiiiiininnnnnn... 107
Entities in LINQ t0 SQL.ot 107
External Mapping 110

Data Modeling. 111
DataContext 111
Entity Classesottt 112
Entity Inheritance. 114
Unique Object Identity 116
Entity Constraints. 117
Associations Between Entities 118
Relational Model vs. Hierarchical Model 124

Data QUEerYINGttt 125
Projections 127
Stored Procedures and User-Defined Functions......................... 128
Compiled QUETIESot e 136
Different Approaches to QueryingData ..., 138
Direct QUENIES . ..ot 140
Deferred Loading of Entities 142
Deferred Loading of Properties.t 144
Read-Only DataContext ACCESS. e e 145
Limitations of LINQ to SQLt e 146
Thinking in LINQ 10 SQL ... e 147
The IN/EXISTS Clauset eeeeeeeeeeeeeeeeee 148

SQL Query RedUction 150
Mixing .NET Code with SQLQueries i, 151

SUMIMIAIY. oottt e e e e e e e e e e e 154

Table of Contents

5 LINQtoSQL:ManagingData................ ..., 155
CRUD and CUD Operationsuuuueett e 155
Entity Updates.o 156
Database Updates. 163
Customizing Insert, Update, and Delete................ 167
Database Interaction 168
Concurrent Operations i 168
TransaCtioNSottt 172
EXCEPtioNs 173
Database and Entities. 175
Entity Attributes to Maintain Valid Relationships. 175
Deriving Entity Classes. ...t 177
Attaching Entities 179
BindingMetadata. 183
Differences Between .NET and SQL Type Systems....................... 186
SUMIMANY . e e e e 186
6 ToolsforLINQtoSQL........oiuniimiii it 187
File TYPES oo 187
DBML—Database Markup Language 187

C# and Visual Basic Source Code.ttt 189
XML—External Mapping File 191
LINQ to SQL File Generation.o .. 192
SQLMetal . . oo 194
Generating a DBML File from a Database. 195
Generating Source Code and a Mapping File from a Database 196
Generating Source Code and a Mapping File from a DBML File 197
Using the Object Relational Designer......... 197
DataContext Propertiest 201
Entity Class. . ..o 203
Association Between Entities. 206
Entity Inheritance 213
Stored Procedures and User-Defined Functions 215
Views and Schema Support. 219

SUMMATY . . oo e e e e 220

Table of Contents xi

7 LINQtoDataSet e 221
Introducing LINQ to DataSet.t 221
Using LINQ to Load a DataSet ..o, 221

Loading a DataSet with LINQto SQL.......o, 222
Loading Data with LINQ to DataSet............ ..ot 224
Using LINQ to Query a DataSet i 226
Inside DataTable. AsEnumerable ccciiiiiiiiiinn. 227
Creating DataView Instances with LINQ 228
Using LINQ to Query a Typed DataSet, 229
Accessing Untyped DataSet Data.......... 230
DataRow COmMParison.o it 231
SUMIMaANY. o 232

8 LINQtoENntities.........oouuiiiniiiiii it 233

Querying Entity Data Model 233
OVEIVIBW . . o oot 233
Query EXpressions oot 235

Managing Dataooi 241

Query ENgine. . ..o 241
Query EXeCUtiON ... o 242
More on ObjectQUery<T> e 245
Compiled QUETIES . . . oot e e 247

LINQto SQLand LINQ to Entities. 248

SUMIMIANY. o e 249

pPart Il LINQ and XML

9 LINQ to XML: Managing the XML Infoset........................ 253
Introducing LINQ to XML. oo 253

LINQ to XML Programming.ttt 256
XDocument. 258

XElement 259

XALIDULE e e e e 262

XNode 263

XName and XNamespace. 265

Other X* Classes. 270
XStreamingElement 270

XObject and Annotations 272

xii Table of Contents

Reading, Traversing, and Modifying XML............... oo i i, 275
SUMIMATIY ot e e e e e 276
10 LINQ to XML: Querying Nodes.ot 277
QuErying XML, . ..o 277
Attribute, Attributes 277
Element, Elements. 278
XPath Axes "like” Extension Methods 279
XNode Selection Methods. i 283
InDocumentOrder i 285
Deferred Query Evaluation 285
LINQ Queries over XML. i 286
Querying XML Efficiently to Build Entities 288
Transforming XML with LINQto XML i . 292
Support for XSD and Validation of Typed Nodesooiin. 295
Support for XPath and System. XmlXPath. 298
LINQ to XML SeCUNItY. . ..\ttt e e 300
LINQ to XML Serialization. 301
UMY o 302

part v Advanced LINQ

11 Inside EXpression Trees.oviuiiniiiitiii i innennnnn 305
Lambda EXPressions.ttt e 305
What Is an EXpression Treeottt 307

Creating EXpression Treesttt 308
Encapsulation 310
Immutability and Modification. 312
Dissecting EXpression Trees.ottt 317
The Expression Classt 319
Expression Tree Node Types 321
Practical Nodes Guide 323
Visiting an EXpression Treeottt 327
Dynamically Building an Expression Treet 338
How the Compiler Generates an Expression Tree 338
Combining Existing Expression Trees.t 340
Dynamic Composition of an Expression Tree........................... 346

SUMIMANY .ot e e e e e e e e e 350

12 Extending LINQ. i i e e 351
CUStOM OPErators. . ..ottt e 351
Specialization of Existing Operators. i .. 356

Dangerous PractiCeso ot 358
Limits of Specialization....... 360
Creating a Custom LINQ Provider ...t 368
The IQueryable Interface i 368
From IEnumerable to IQueryable and Back............................. 371
Inside IQueryable and IQueryProvider 373
Writing the FlightQueryProvider i .. 376
SUMIMAIY. . oo 399
13 Parallel LINQ . ..o e e e e et e e 401
Parallel Extensions to the .NET Framework........... 401
Parallel.For and Parallel.ForEach Methods 401
Do Method 403
Task Classo 404
Future<T> Class.t 405
Concurrency Considerationsc.ouuuiiit i 406
Using PLINQ . .o oo 408
Threads Used by PLINQ e 409
PLINQ Implementation.o i e 411
PLINQ USE. . oot e e e 412
Side Effects of Parallel Execution. o i, 416
Exception Handling with PLINQ o i 420
PLINQ and Other LINQ Implementationsot 421
SUMIMAIY. . o 423

14 Other LINQ Implementations i, 425
Database ACCESSt 425
Data Access Withouta Database 426
LINQ to Entity Domain Models. i 427
LINQ tO ServiCes 428
LINQ for System Engineerso i, 429
Dynamic LINQ o 429
Other LINQ Enhancementsand Tools 430

SUMIMAIY. . .o 431

Xiv Table of Contents

partv Applied LINQ

15 LINQina MultitierSolution i 435
Characteristics of a Multitier Solution............ i i 435
LINQ to SQL ina Two-Tier Solution. i 437
LINQ inan n-Tier Solution e 438

LINQ to SQLasa DALReplacement i, 438
Abstracting LINQ to SQL with XML External Mapping................... 439
Using LINQ to SQL Through Real Abstraction.......................... 442
LINQto XML asthe Datalayerc.couiiiiiiiiininanann... 450
LINQ to Entitiesasthe Data Layer.............. 453
LINQ in the Business Layerttt 454
LINQ to Objects to Write BetterCode.o ... 455
IQueryable<T> versus IEnumerable<T>ccciiiiinnnn. 456
Identifying the Right Unitof Work. 460
Handling Transactionso ittt 461
Concurrency and Thread Safety i 461
UMY o 461

16 LINQand ASPINET.t i i 463

ASPINET 3.5 L 463
LISEVIEW. . . oo 463
ListView Data Binding.t 466
DataPager 470

LingDataSource. 475
Paging Data with LingDataSource and DataPager 480
Handling Data Modifications with LingDataSource. 484
Using Custom Selections with LingDataSource 487
Using LingDataSource with Custom Types 488

Binding to LINQ qUETIEs 490

SUMIMATY o e e e 494

17 LINQ and WPF/Silverlight i, 495

Using LINQ with WPF. e 495
Binding Single Entities and Properties. oL 495
Binding Collections of Entities, 499

Using LINQ with Silverlight. 503

UMY o 504

Table of Contents Xv

18 LINQ and the Windows Communication Foundation.............. 505
WOEOF OVEIVIEW .« o oottt e e e e e e 505
WCF Contracts and Servicest 506
Service Oriented Contractso i 509
Endpoint and Service Hosting. i 510
SErvice CONSUMEBLS . . ittt e ettt e e e e e e e e e 512
WCFand LINQ to SQL . ..o 516
LINQ to SQL Entities and Serialization............ 516
Publishing LINQ to SQL Entities with WCF 519
Consuming LINQ to SQL Entities with WCF 522
LINQ to Entitiesand WCF 526
Query Expression Serialization 535
SUMIMaAIY. . .o 536

part vi Appendixes

A ADO.NET Entity Framework o ... 541
ADO.NET Standard Approach 541
Abstracting from the Physical Layer............. L. 545
Entity Data Modeling 547

Entity Data Model Files. 547
Entity Data Model Designer and Wizard............... ... oot 551
Entity Data Model Generation Tool i 556
Entity Data Model Rules and Definition. 556
Querying Entities with ADO.NET. e 557
Querying ADO.NET Entitieswith LINQ 564
Managing Data with Object Services.o .. 565
Object Identity Management i 567
Transactional Operations 568
Manually Implemented Entities i 568
LINQ to SQL and ADO.NET Entity Framework 569
SUMIMaANY. o e 569

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

XVi Table of Contents

B C#3.0:Newlanguage Features.................ciiiiiiniinian.. 571
CHE20REVISITEA. . .o 571
GBNEIICS ottt ettt e e e e 571
Delegateso 573
Anonymous Methods. 575
Enumeratorsand Yield. 577

CH B0 FEatUIES . . et 583
Automatically Implemented Properties. 583
Local Type Inference. 584
Lambda EXPressionsttt 586
Extension Methods. i 592
Object Initialization EXpressions.t 599
Anonymous TYpesS. 604
QUENY EXPressSiONS. . . oottt e e e e 608
Partial Methods. 610
SUMIMANY .t e e e e 612
C Visual Basic 2008: New Language Features 613
Visual Basic 2008 and Nullable Types i 613
The IfOperator 615
Visual Basic 2008 Features Correspondingto C#3.0......................... 616
Local Type Inference. ... 616
Extension Methods. 618
Object Initialization EXpressions.ttt 620
ANONYMOUS TYPES. - o ottt e e e 622
QUENY EXPresSiONS. . ..ottt e e 625
Lambda EXPressionsttt 627
CloSUIES o oo 628
Partial Methods. 629
Visual Basic 2008 Features Without C# 3.0 Counterparts 630
XML SUPPOIt . oot e 630
Relaxed Delegates. 637

C# 3.0 Features Without Visual Basic 2008 Counterparts 638
The yield Keyword. e 638
Anonymous Methods. 638
UMM o 638

Chapter 6

Tools for LINQ to SQL

The best way to write queries using LINQ to SQL is by having a DataContext-derived class

in your code that exposes all the tables, stored procedures, and user-defined functions you
need as properties of a class instance. You also need entity classes that are mapped to the data-
base objects. As you have seen in previous chapters, this mapping can be made by using
attributes to decorate classes or through an external XML mapping file. However, writing this
information by hand is tedious and error-prone work. You need some tools to help you
accomplish this work.

In this chapter, you will learn about what file types are involved and what tools are available to
automatically generate this information. The .NET 3.5 Software Development Kit (SDK)
includes a command-line tool named SQLMetal. Microsoft Visual Studio 2008 offers an inte-
grated graphical tool named the Object Relational Designer. We will examine both tools from
a practical point of view.

in the C# samples provided with Visual Studio 2008. All the samples are contained in the
Microsoft Visual Studio 9.0\Samples\1033\CSharpSamples.zip file in your program files direc-
tory if you installed Visual Studio 2008. You can also download an updated version of these
samples from http.//code.msdn.microsoft.com/csharpsamples.

@ \ Important In this chapter we use the version of the Northwind database that is included

File Types
There are three types of files involved in LINQ to SQL entities and a mapping definition:
m Database markup language (DBML)
m Source code (C# or Visual Basic)

m External mapping file (XML)

A common mistake is the confusion between DBML and XML mapping files. At first sight,
these two files are similar, but they are very different in their use and generation process.

DBML—Database Markup Language

The DBML file contains a description of the LINQ to SQL entities in a database markup
language. Visual Studio 2008 installs a DbmlSchema.xsd file, which contains the schema def-
inition of that language and can be used to validate a DBML file. The namespace used for this

187

188 Part Il LINQ to Relational Data

file is http://schemas.microsoft.com/lingtosql/dbml/2007, which is different from the
namespace used by the XSD for the XML external mapping file.

Note You can find the DbmiSchema.xsd schema file in the %ProgramFiles(x86)%\Microsoft
Visual Studio 9.0\Xm\Schemas folder.

The DBML file can be automatically generated by extracting metadata from an existing
Microsoft SQL Server database. However, the DBML file includes more information than can
be inferred from database tables. For example, settings for synchronization and delayed load-
ing are specific to the intended use of the entity. Moreover, DBML files include information
that is used only by the code generator that generates C# or Visual Basic source code, such as
the base class and namespace for generated entity classes. Listing 6-1 shows an excerpt from
a sample DBML file.

Listing 6-1 Excerpt from a sample DBML file

<?xm1 version="1.0" encoding="utf-8"7>
<Database Name="Northwind" Class="nwDataContext"
xmlns="http://schemas.microsoft.com/1inqtosql/dbm1/2007">
<Connection Mode="AppSettings"
ConnectionString="Data Source=..."
SettingsObjectName="DevLeap.Ling.LinqToSql.Properties.Settings"
SettingsPropertyName="NorthwindConnectionString"
Provider="System.Data.SqlClient" />
<Table Name="dbo.Orders" Member="Orders">
<Type Name="Order">
<Column Name="OrderID" Type="System.Int32"
DbType="Int NOT NULL IDENTITY" IsPrimaryKey="true"
IsDbGenerated="true" CanBeNull="false" />
<Column Name="CustomerID" Type="System.String"
DbType="NChar(5)" CanBeNull="true" />
<Column Name="OrderDate" Type="System.DateTime"
DbType="DateTime" CanBeNull="true" />

<Association Name="Customer_Order" Member="Customer"
ThisKey="CustomerID" Type="Customer"
IsForeignKey="true" />
</Type>
</Table>

</Database>

The DBML file is the richest container of metadata information for LINQ to SQL. Usually, it
can be generated from a SQL Server database and then manually modified, adding informa-
tion that cannot be inferred from the database. This is the typical approach when using the

SQLMetal command-line tool. The Object Relational Designer included in Visual Studio 2008

Chapter 6 Tools for LINQ to SQL 189

offers a more dynamic way of editing this file, because programmers can import entities from
a database and modify them directly in the DBML file through a graphical editor. The DBML
generated by SQLMetal can also be edited with the Object Relational Designer.

The DBML file can be used to generate C# or Visual Basic source code for entities and
DataContext-derived classes. Optionally, it can also be used to generate an external XML
mapping file.

DBML syntax. You can find more information and the whole DbmlSchema.xsd content in the

I:j More Info It is beyond the scope of this book to provide a detailed description of the
product documentation at http.//msdn2.microsoft.com/library/bb399400.aspx.

C# and Visual Basic Source Code

The source code written in C#, Visual Basic, or any other .NET language contains the defini-
tion of LINQ to SQL entity classes. This code can be decorated with attributes that define the
mapping of entities and their properties with database tables and their columns. Otherwise,
the mapping can be defined by an external XML mapping file. However, a mix of both is not
allowed—you have to choose only one place where the mappings of an entity are defined.

This source code can be automatically generated by tools such as SQLMetal directly from a
SQL Server database. The code-generation function of SQLMetal can translate a DBML file to
C# or Visual Basic source code. When you ask SQLMetal to directly generate the source code
for entities, internally it generates the DBML file that is converted to the entity source code. In
Listing 6-2, you can see an excerpt of the C# source code generated for LINQ to SQL entities
that were generated from the DBML sample shown in Listing 6-1.

Listing 6-2 Excerpt from the class entity source code in C#

[System.Data.Ling.Mapping.DatabaseAttribute(Name="Northwind")]
public partial class nwDataContext : System.Data.Ling.DataContext {

/AETE

public System.Data.Ling.Table<Order> Orders {
get { return this.GetTable<Order>(Q); }

}

}

[Table(Name="dbo.Orders")]

public partial class Order : INotifyPropertyChanging, INotifyPropertyChanged {
private int _OrderID;
private string _CustomerID;
private System.Nullable<System.DateTime> _OrderDate;

[Column(Storage="_OrderID", AutoSync=AutoSync.OnInsert,
DbType="Int NOT NULL IDENTITY", IsPrimaryKey=true,
IsDbGenerated=true)]

190 Part Il LINQ to Relational Data

public int OrderID {
get { return this._OrderID; }
set {
if ((this._OrderID !'= value)) {

this.OnOrderIDChanging(value);
this.SendPropertyChanging();
this._OrderID = value;
this.SendPropertyChanged("OrderID");
this.OnOrderIDChanged();

3

[Column(Storage="_CustomerID", DbType="NChar(5)")]
public string CustomerID {
get { return this._CustomerID; }
set {
if ((this._CustomerID != value)) {
if (this._Customer.HasLoadedOrAssignedvValue) {
throw new ForeignKeyReferenceAlreadyHasValueException();
}
this.OnCustomerIDChanging(value);
this.SendPropertyChanging();
this._CustomerID = value;
this.SendPropertyChanged("CustomerID");
this.OnCustomerIDChanged() ;

[Column(Storage="_OrderDate", DbType="DateTime")]
public System.Nullable<System.DateTime> OrderDate {
get { return this._OrderDate; }
set {
if ((this._OrderDate != value)) {
this.OnOrderDateChanging(value);
this.SendPropertyChanging();
this._OrderDate = value;
this.SendPropertyChanged("OrderDate");
this.OnOrderDateChanged();

[Association(Name="Customer_Order", Storage="_Customer",
ThisKey="CustomerID", IsForeignKey=true)]
public Customer Customer {
get { return this._Customer.Entity; }

set {
Customer previousValue = this._Customer.Entity;
if ((previousValue != value)

|| (this._Customer.HasLoadedOrAssignedValue == false)) {
this.SendPropertyChanging();

o)

Chapter 6 Tools for LINQ to SQL 191

if ((previousValue != null)) {
this._Customer.Entity = null;
previousValue.Orders.Remove(this);

}

this._Customer.Entity = value;

if ((value !'= null)) {
value.Orders.Add(this);
this._CustomerID = value.CustomerID;

}
else {
this._CustomerID = default(string);
}
this.SendPropertyChanged("Customer");
}
b
}
// ...

The attributes that are highlighted in bold in Listing 6-2 are not generated in the source code
file when you have SQLMetal generate both the source code file and an external XML
mapping file. The XML mapping file will contain this mapping information.

discussed in Chapter 4, “LINQ to SQL: Querying Data,” and in Chapter 5, "LINQ to SQL:

More Info Attributes that define the mapping between entities and database tables are
Managing Data”

XML—External Mapping File

An external mapping file can contain binding metadata for LINQ to SQL entities as an
alternative way to store them in code attributes. This file is an XML file with a schema that is
a subset of the DBML file. The DBML file also contains information useful for code generators.
Attributes defined on class entities are ignored whenever they are included in the definitions
of an external mapping file.

The namespace used for this file is http://schemas.microsoft.com/linqtosql/mapping/2007,
which is different from the one used by the DBML XSD file.

Note The LingToSglMapping.xsd schema file should be located in the %ProgramFiles(x86)%\
Microsoft Visual Studio 9.0\XmN\Schemas folder. If you do not have that file, you can create it
by copying the code from the documentation page at http.//msdn2.microsoft.com/library/
bb386907.aspx.

192 Part Il LINQ to Relational Data

In Listing 6-3, you can see an example of an external mapping file generated from the DBML
file presented in Listing 6-1. We highlighted the Storage attribute that defines the mapping
between the table column and the data member in the entity class that stores the value
exposed through the member property (defined by the Member attribute). The value assigned
to Storage depends on the implementation generated by the code generator; for this reason, it
is not included in the DBML file.

Listing 6-3 Excerpt from a sample XML mapping file

<?xml version="1.0" encoding="utf-8"?>
<Database Name="northwind"
xmIns="http://schemas.microsoft.com/Tinqtosql/mapping/2007">
<Table Name="dbo.Orders" Member="Orders">
<Type Name="Orders">
<Column Name="OrderID" Member="OrderID" Storage="_OrderID"
DbType="Int NOT NULL IDENTITY" IsPrimaryKey="true"
IsDbGenerated="true" AutoSync="OnInsert" />
<Column Name="CustomerID" Member="CustomerID" Storage="_CustomerID"
DbType="NChar(5)" />
<Column Name="OrderDate" Member="OrderDate" Storage="_OrderDate"
DbType="DateTime" />

<Association Name="FK_Orders_Customers" Member="Customers"
Storage="_Customers" ThisKey="CustomerID"
OtherKey="CustomerID" IsForeignKey="true" />
</Type>
</Table>

</Database>

are available only through an external mapping file but not with attribute-based mapping.
For example, with an XML mapping file you can specify different DbType values for SQL
Server 2000, SQL Server 2005, and SQL Server Compact 3.5. External XML mapping files are

I:j More Info If a provider has custom definitions that extend existing ones, the extensions
discussed in Chapter 5.

LINQ to SQL File Generation

Usually, most of the files used in LINQ to SQL are automatically generated by some tool.
The diagram in Figure 6-1 illustrates the relationships between the different file types and the
relational database. In the remaining part of this section, we will describe the most important
patterns of code generation that you can use.

Chapter 6 Tools for LINQ to SQL 193

DataContext-derived
Class +——— | SQL Server Database
C# / Visual Basic Code

S

DBML

XML Mapping File

Figure 6-1 Relationships between file types and the relational database

Generating a DBML File from an Existing Database

If you have a relational database, you can generate a DBML file that describes tables, views,
stored procedures, and user-defined functions, mapping them to class entities that can be
created by a code generator. After it is created, the DBML file can be edited using a text editor
or the Object Relational Designer included in Visual Studio 2008.

Generating an Entity’s Source Code with Attribute-Based Mapping

You can choose to generate source code for class entities in C# or Visual Basic with attribute-
based mapping. This code can be generated from a DBML file or directly from a SQL Server
database.

If you start from a DBML file, you can still modify that DBML file and then regenerate the
source code. In this case, the generated source code should not be modified because it could
be overwritten in the future by code regeneration. You can customize generated classes by
using a separate source code file, leveraging the partial class declaration of generated class
entities. This is the pattern used when working with the Object Relational Designer.

If you generate code directly from a SQL Server database, the resulting source code file can
still be customized using partial classes; however, if you need to modify the mapping settings,
you have to modify the generated source code. In this case, you probably will not regenerate
this file in the future and can therefore make modifications directly on the generated source
code in C# or Visual Basic.

Generating an Entity’s Source Code with an External XML Mapping File

You can choose to generate source code for class entities in C# or Visual Basic together with an
external XML mapping file. The source code and the XML mapping file can be generated
from a DBML file or directly from a SQL Server database.

194

Part Il LINQ to Relational Data

If you start from a DBML file, you can still modify that DBML file and then regenerate the
source code and the mapping file. In this case, the generated files should not be modified
because they could be overwritten in the future by code regeneration. You can customize
generated classes by using a separate source code file, leveraging the partial class declaration
of the generated class entities. This is the pattern used when you work with the Object
Relational Designer.

If you generate code directly from a SQL Server database, the resulting source code file can
still be customized using partial classes. Because the mapping information is stored in a sepa-
rate XML file, you need to modify that file to customize mapping settings. Most likely, you will
not regenerate these files in the future and can therefore make modifications directly on the
generated files.

Creating a DBML File from Scratch

You can start writing a DBML file from scratch. In this case, you probably would not have an
existing database file and would generate the database by calling the DataContext.CreateData-
base method on an instance of the generated class inherited from DataContext. This approach
is theoretically possible when you write the XML file with a text editor, but in practice we
expect that it will be done only by using the Object Relational Designer.

Choosing this approach means that entity classes are more important than the database
design, and the database design itself is only a consequence of the object model you designed
for your application. In other words, you see the relational database as a simple persistence
layer (without stored procedures, triggers, and other database-specific features), which should
not be accessed directly by consumers that are not using the LINQ to SQL engine. In the real
world, we have found this can be the case for applications that use the database as the storage
mechanism for complex configurations or to persist very simple information, typically in a
stand-alone application with a local database. Whenever a client-server or multitier architec-
ture is involved, chances are that additional consumer applications will access the same data-
base—for example, a tool to generate reports, such as Reporting Services. These scenarios
are more database-centric and require better control of the database design, removing the
DBMLHirst approach as a viable option. In these situations, the best way of working is to
define the database schema and the domain model separately and then map the entities of the
domain model on the database tables.

SQLMetal

SQLMetal is a code-generation command-line tool that can be used to do the following:

m Generate a DBML file from a database
B Generate an entity’s source code (and optionally a mapping file) from a database

m Generate an entity’s source code (and optionally a mapping file) from a DBML file

Chapter 6 Tools for LINQ to SQL 195
The syntax for SQLMetal is the following:
sqlmetal [options] [<input file>]

In the following sections, we will provide several examples that demonstrate how to use SQL-
Metal.

|:] More Info A complete description of the SQLMetal command-line options is available at
http.//msdn2.microsoft.com/library/bb386987.aspx.

Generating a DBML File from a Database

To generate a DBML file, you need to specify the /dbml option, followed by the filename to
create. The syntax to specify the database to use depends on the type of the database. For
example, a standard SQL Server database can be specified with the /server and /database
options:

sqlmetal /server:localhost /database:Northwind /dbml:northwind.dbml

Windows authentication is used by default. If you want to use SQL Server authentication, you
can use the /user and /password options. Alternatively, you can use the /conn option, which
cannot be used with /server, /database, /user, or /password. The following command line that
uses /conn is equivalent to the previous one, which used /server and /database:

sqlmetal /conn:"Server=1ocalhost;Database=Northwind;Integrated Security=yes"
/dbm1:northwind.dbm1

If you have the Northwind MDF file in the current directory and are using SQL Server
Express, the same result can be obtained by using the following line, which makes use of the
input file parameter:

sqlmetal /dbml:northwind.dbml Northwnd.mdf

Similarly, an SDF file handled by SQL Server Compact 3.5 can be specified as in the following
line:

sqlmetal /dbml:northwind.dbml Northwind.sdf

By default, only tables are extracted from a database. You can also extract views, user-defined
functions, and stored procedures by using /views, /functions, and /sprocs, respectively, as
shown here:

sqlmetal /server:localhost /database:Northwind /views /functions /sprocs
/dbm1 :northwind.dbml

‘ Note Remember that database views are treated like tables by LINQ to SQL.

196 Part Il LINQ to Relational Data

Generating Source Code and a Mapping File from a Database

To generate an entity’s source code, you need to specify the /code option, followed by the
filename to create. The language is inferred by the filename extension, using CS for C# and
VB for Visual Basic. However, you can explicitly specify a language by using /language:csharp
or /language:vb to get C# or Visual Basic code, respectively. The syntax to specify the database
to use depends on the type of the database. A description of this syntax can be found in the
preceding section, “Generating a DBML File from a Database.”

For example, the following line generates C# source code for entities extracted from the
Northwind database:

sqlmetal /server:localhost /database:Northwind /code:Northwind.cs

If you want all the tables and the views in Visual Basic, you can use the following
command line:

sqlmetal /server:localhost /database:Northwind /views /code:Northwind.vb

Optionally, you can add the generation of an XML mapping file by using the /map option, as
in the following command line:

sqlmetal /server:localhost /database:Northwind /code:Northwind.cs /map:Northwind.xml

@ Important When the XML mapping file is requested, the generated source code does not
contain any attribute-based mapping.

There are a few options to control how the entity classes are generated. The /namespace option
controls the namespace of the generated code. (By default, there is no namespace.) The /context
option specifies the name of the class inherited from DataContext that will be generated. (By
default, it is derived from the database name.) The /entitybase option allows you to define the
base class of the generated entity classes. (By default, there is no base class.) For example, the
following command line generates all the entities in a LingBook namespace, deriving them
from the DevLeap.LingBase base class:

sqlmetal /server:localhost /database:Northwind /namespace:LingBook
/entitybase:Devleap.LingBase /code:Northwind.cs

Note If you specify a base class, you have to be sure that the class exists when the generated
source code is compiled. It is a good practice to specify the full name of the base class.

If you want to generate serializable classes, you can specify /serialization:unidirectional in the
command line, as in the following example:

sqlmetal /server:localhost /database:Northwind /serialization:unidirectional
/code:Northwind.cs

Chapter 6 Tools for LINQ to SQL 197

I:] More Info See the section “Entity Serialization” in Chapter 5 for further information
about serialization of LINQ to SQL entities, as well as Chapter 18, "LINQ and the Windows

Communication Foundation.”

Finally, there is a /pluralize option that controls how the names of entities and properties are
generated. When this option is specified, the entity names generated are singular, but table
names in the DataContext-derived class properties are plural, regardless of the table name’s
form. In other words, the Customer (or Customers) table generates a Customer entity class
and a Customers property in the DataContext-derived class.

Generating Source Code and a Mapping File from a DBML File

The generation of source code and a mapping file from a DBML file is identical to the syntax
required to generate the same results from a database. The only change is that instead of
specifying a database connection, you have to specify the DBML filename as an input file
parameter of the command-line syntax. For example, the following command line generates
the C# class code for the Northwind DBML model description:

sqlmetal /code:Northwind.cs Northwind.dbml

@ Important Remember to use the /dbml option only to generate a DBML file. You do not
have to specify /dbml when you want to use a DBML file as input.

You can use all the options for generating source code and a mapping file that we described in
the “Generating Source Code and a Mapping File from a Database” section.

Using the Object Relational Designer

The Object Relational Designer (O/R Designer) is a graphical editor integrated with Visual
Studio 2008. It is the standard editor for a DBML file. It allows you to create new entities, edit
existing ones, and generate an entity starting from an object in a SQL Server database. (There
is support for tables, views, stored procedures, and user-defined functions.) A DBML file can
be created by choosing the LINQ To SQL Classes template in the Add New Item dialog box,
which you can see in Figure 6-2, or by adding an existing DBML file to a project (using the
Add Existing Item command and picking the Data category).

The design surface allows you to drag items from a connection opened in Server Explorer.
Dragging an item results in the creation of a new entity deriving its content from the imported
object. Alternatively, you can create new entities by dragging items such as Class, Association,
and Inheritance from the toolbox. In Figure 6-3, you can see an empty DMBL file opened in
Microsoft Visual Studio. On the left are the Toolbox and Server Explorer elements ready to be
dragged onto the design surface.

198 Part Il LINQ to Relational Data

Categories: Templates:
Wisual CH#Items Visual Studio installed templates
Code [0l DataSet [2 1IN to SQL Classes
Data [Local Database 53 Local Database Cache
\Gl:leral L_] Service-based Database t%j)(ML File
e .
Windows Forms 8] %ML Schema B HELT File
WRF My Templates
Repaorting HﬂSearch Online Termplates..,
W arkflow

LING to SOL classes mapped to relational objects,

MName: DataClassesLdbml

[aaa][cancel

Figure 6-2 Add New Item dialog box

File Edit View Project Build Debug Data Tools Test Anahze ‘Window Help
P - i | % G - ™S5 | b Debug - Ay CPU - | [# readdlef - | Q5 Bl
T

Nnnhwind.dhmlt Program. Ht Start Page - X

4 Inheritance
=l General

There are no usable controls in this
group. Drag an itern onto this text to
add it to the toolbox,

3 i

Server Explorer -1 x
EERY. |

£ L Tables -
[ActiveProductsFedara
[AddressSplit E
[BaseContactSplit L4
[BaseProductsFedarate
[categories

[E ContactNameSplit
[Contacts

[CustomerCustomerDe
= CustorerDemograph
[Customers

[DiscontinuedPraducts
= Employzes

= EmployesSplit

[EmployeeTerritories
[InternalOnly

3 Order Details

= orders

= Products

3 Region

[shippers

= Suppliers

[Territories

o T Vs
] [Pr—— v < 0 v

[34 Ervar List = Output [Pending Checkins |55 Find Results 13 Find Symbol Results|
Ready

-8
|sa|uadmd g‘ |Ma|/\sse\o E‘Jam\dxa uognog @‘ -

The Object Relational Designer allaws you ta visualize data classes in yaur code, Creste methods by dragsing

Iterns frarn Server Explorer

o . ’
Create data classes by dragging items from Server Explorer or Toolbox onta this design surface anto this esion surfore,

B-8-8-8-8

B-2-8-5-0-8-0-8

B-8-8-5-8

]

Figure 6-3 Empty DBML file opened with the Object Relational Designer

Dragging two tables, Orders and Order Details, from Server Explorer to the left pane of the
DBML design surface results in a DBML file that contains two entity classes, Order and

Chapter 6 Tools for LINQ to SQL 199

Order_Detail, as you can see in Figure 6-4. Because a foreign key constraint exists in the
database between the Order Details and Orders tables, an Association between the Order and
Order_Detail entities is generated too.

& Northwind - Microsoft Visual Studia =8 Ecl [
File Edit View Project Build Debug Dats Tools Test Analyze Window Help
- S e | % Ba 9 - -S| b Debug - Ay CPU - | @ readdef HEIS T
ol ~ B X| “Northwind.dbm!"| Programcs) Start Pags | - % (7
4 Inheritance & - = &
= General Order 2 s
= £
B m
There are na usable controls in this & Properties a
group. Drag an item onto this textta |5 P Orderd E
3
add it to the toolbox. B Customerd ?E
— P EmployeelD
o
Server Explorar SO B OrderDate . g
] <] | % = F RequiredDate £ ¢
3
[BaseContactSplit =~ T ShippedDate E
[BaseProductsFedarate = Shipiia —
- [Categories 7 Freight Lj
[ContactNarmesplit ' Shiphame I
[Contacts || B Shiphddress 1 E
- [E CustemerCustomerDe P ShipCity :
[CustomnerDemograph EF ShipRegion Create methods by dragging
- [Customers B ShipPostalCode ‘terns from Serves Explorer
[DiscontinuedProducts 7 shipCountry onto this d—ngn aface

[Employees ——— ——
- [EmployesSplit |
[ErnployeeTerritaries |
- [InternalOnly
- [Order Details

(]

[Orders Order_Detail
- [Products
[Region = Properties
[shippers P OrderD
- [Suppliers ?EF ProductD
[Tenitaries L = UnitPrice
- Views B Quantity
3 Stored Procedures = Discount
[Functions =

S,

F= <
g [» d L B
|28 Ervor List| =] Output][58 Pending Checkins |5 Find Results 1] Find Symbol Resuls|

Saving Auta Recovery Infarmation

Figure 6-4 Two entities created from a server connection

You can see that plural names have been translated into singular-name entity classes.
However, the names of the Table<T> properties in the NorthwindDataContext class are plural
(Orders and Order_Details), as you can see in the bottom part of the Class View shown in
Figure 6-5.

The Class View is updated by Visual Studio 2008 each time you save the DBML file. Every
time that this file is saved, two other files are saved too: a .layout file, which is an XML file
containing information about the design surface, and a .cs/.vb file, which is the source code
generated for the entity classes. In other words, each time a DBML file is saved from Visual
Studio 2008, the code generator is run on the DBML file and the source code for those entities
is updated. In Figure 6-6, you can see the files related to our Northwind.dbml in Solution
Explorer. We have a Northwind.dbml.layout file and a Northwind.designer.cs file.

200 Part Il LINQ to Relational Data

& Northwind - Microsoft Visual Studio
File Edit View Refactor Project Build Debug Data Tools Test Analyre Window Help

(- i - o5 i | % Ba @]9 - & - 55| b Debug ~ Ay CPU - | @ readdef LR Bl

Toolbax = & X| Northwind.dbml| Program.cs} Start Page | Class View

4~ Inheritance - (omu Cij= = |E-|4

= General <Search> b > =
There are na usable controls in this B Properties = (A Nortrwind

OrdedD 3 Project References
Custornerl &4} Morthwind
P EmployeelD ER 1 orthwin
OrderDate S0 Base Types
RequiredDate &% DataContext
ShippedDate =0 Disposable

ShipVia

group. Drag an iterm onto this textte |5
add it to the toolbox,

4

Server Explarer -1 X

EIRCY- |
[BaseCantactSplit -
[BaseProductsFedarate

‘sa\uadmd 5| ‘Mau\ssem &,ﬂliammxa uonn|og @l "

- [Categories ' Freight

[T ContactMarmeSplit Shiphame

& Contacts = = Shipaddress {3 Morthwind.Properties
- [E CustamerCustomerDe P ShipCity

[CustarnerDemograph =7 ShipRegion
- [Customers B ShipPostalCade

ShipCountry

[DiscontinuedProducts|

[Employees —_——
- [Employeesplit

[E EmployeeTerritories
- [InternalOnly
- [Order Details

- MorthwindDataContest() -
“@ MorthwindDataContext(string)
- <@ MorthwindDataContex(Systern Data.IDbC

[Orders Order_Detail
- [Products =@ MorthwindDataContext{string, Systern.Da
[Region E Praperties : NorthwindDataContext(Systern. Data.JDb(
[Shippers P Orderd ~g¥ OnCreated0
&% UpdateOrder(Northwind Order)
- [Suppliers BroductD L
. : Detail(Morthwind. Order_Del =
[Tenitaries UnitPrice -
A - 75 Order_Details
- [Wiews Quantity |
[Stored Procedures Discaunt
[Functions

A Somnnme
(|Pre—— | —— ‘ i v
|28 Ervor List| =] Output|[58 Pending Checkins |5 Find Results 1] Find Symbol Resuls|

Trem(s) Saved

Figure 6-5 Plural names for Table<T> properties in a DataContext-derived class

% Northwind - Microsoft Wisual Studio
File Edit View Project Build Debug Data Tools Test Anabyze Window Help

i - - o b | % Ga |9 - - DI | b Debug - Ay CRU - | @ readdef 2
Toolbax B X Morthwind.dbml | Program.cs| Start Page 4
4 Inheritance - T — o
Ordy 2
£l General ' N! Northwind (1 project) E
o
There are no usable cantrals in this & Properties & Properties L
group. Drag an item onto this textto |= FEF OrderdD) Bssermbhyinfo.cs &
add it to the toolbox. =
iy = CustomerlD £ Settings.settings @
ErnployeelD [References =
Server Explarer -1 x OrderDate -3 Systern g
ENRS 25 RequiredDate 3 Systern.Core =
[@ BaseContactSplit ~ ~ E ' ShippedDate “3 System.Data E
- [BaseProcuctsFedarate g Shiplfia -3 Systern.Data DataSetExtensions ﬁ
[Categories Freight -3 System Data.Ling a
- [ContactMameSplit Shiphame 3 GystemXml 3
[Contacts | ShipAddress @ st Ling 4
[CustomerCustornerDe ShipCity - [app.canfig 2
- [CustomerDemagraph ShipRegion - SrHTTLD]
[Custamers ShipPostslCode] Northwind.dbml.layout
. [DiscontinuedProducts ShipCountry % ‘B Morthwind.designer.cs
- [Employzes 9
[Employeesplit |
- [EmployecTermitaries
[InternalOnly = |
[Order Details
. [Orders Order_Detail
[Praducts
- [Region B Properties
- [Shippers FEF OrderD
3 Suppliers ProductD
m [Teritories L F UnitPrice
Views
=T Quantity
[Stored Procedures B Discount
- £ Functions
F3 Sumnmmne =4
4 m 3 g m

|3 Ervor List| 5 Qutput[5 Pending Checkins |5 Find Results 1[g3 Find Symbol Results|
Item(s) Saved

Figure 6-6 Files automatically generated for a DBML file are shown in Solution Explorer

Chapter 6 Tools for LINQ to SQL 201

You should not modify the source code produced by the code generator. Instead, you should
edit another file containing corresponding partial classes. This file is the Northwind.cs file
shown in Figure 6-7, which is created the first time you select the View/Code command for the
currently selected item in the Object Relational Designer. In our example, we chose View,
Code from the context menu on the Order entity, which is indicated by the arrow in Figure 6-6.

5 Narthwind - Microsoft Visual Studie == EoR (|
File Edit ‘View Project Bulld Debug Data Tools Test Analyze ‘Window Help
-S| G- -5 b Debug ~ Any CPU - | [# readdef - | A R B
i S B A |32 38 838500
Toolbax X | Northwind.cs* | Narthwind.dbrl) Programcs) StartPage Solution Explarer - Solution ‘Morthwind'... v & X
Data Flow Destinations Hirrreeereaaeee———— W £

Data Flaw Transformations (7] Morthwindt Qrder - ‘Séftz .lNErlth %d'(l o

B G | 1@ namespace Northwind { olutian Tortmain projec!

eneral E z partial class order { & (5 Northwind
3 N 1 - [Properties
There are no usable cantrols in this c @) Assemblylnfo.cs

group.D:‘?:: \t:hmfnt‘ithlsteﬂto i 3 Seftings.settings
Server Explarer TEx - R;Z"T“
i 3 System
ERERRS | -3 Systern.Core
- [BaseContactSplit - Lo+ System.Data
[BasePraductsFedarate 3 Systern.Data.DataSetExtensions
- [Categories 3 System.Data.ling
- [ContactMarmeSplit fo +3 SystemXml
[E Contacts -3 SystemXml Ling

3 app.config
[2 Northwind dbml

- [CustomerCustormerDe
@ CustomerDemograph

|M6\ASSE\O E‘Jam\dxa umumna@‘ |saluadmd 5‘

[Customers LowE .cs
- [E DiscontinuedProducts i '8 Northwind.dbmllayout
[Ermployees] Northwind.designer.cs
- [EmplayeeSplit .] Program.cs

[ErnployeeTemitaries |=
[Intermalonly
- [Order Details
[Orders
- [Products
- [Region
[shippers
- [Suppliers bl
[Territories
[Wiews
- [Stored Procedures &

P i m
| Ervor List| 5 Qutput[5 Pending Checkins |5 Find Results 1[g3 Find Symbol Results|
Reacly

Figure 6-7 Custom code is stored in a separate file under the DBML file in Solution Explorer

At this point, most of the work will be done in the Properties window for each DBML item and
in the source code. In the remaining part of this chapter, you will see the most important activ-
ities that can be performed with the DBML editor. We do not cover how an entity can be
extended at the source-code level because this topic has been covered in previous chapters.

DataContext Properties

Each DBML file defines a class that inherits DataContext. This class will have a Table<T>
member for each entity defined in the DBML file. The class itself will be generated following
requirements specified in the Properties window. In Figure 6-8, you can see the Properties
window for our NorthwindDataContext class.

202 Part Il LINQ to Relational Data

% Northwind - Microsoft Visual Studin [E==[EcE|F>)
File Edit View Project Bulld Debug Dats Tools Test Analyze ‘Window Help
Pl - @ % BaE |- - L] P Debug ~ Any CPU - | @ readdef - | s B 2
Toolbox ~ # X Northwindics® Northwind.dbml | Prograr.cs| Start pag | Froperties [P
g lnberitanee = s NorthwindDataContext DataContest -2
Order Z I
£ General VS =
£
E =
There are no usable contrals in this = Properties B Code Generation 2
group. Drag an iterm onto this tedtto |5 PEF OrdedD Access Public e
add it to the toolbox. L4 2 CustornerlD Base Class Syster.Data Ling DataCantext g
% 3 @
e 2 EmployeelD Context Namespace 3
Server Explarer X B OrderDate Entity Narmespace El
ERENRS | 7 RequiredDate Inheritance Modifier (Mone) 2
[BaseContactSplit =~ 2 ShippedDate Name NorthwindDataContext E)
E)]
[BaseProductsFedarate B Shipiia Serialization Mode Mone E
- [Categories F Freight B Data &
[ContactMarneSplit B ShipHarme HorthwindConnectionString (Settin{x | T
[Contacts T Shipaddress Connection String Data Source=localhost;Initial Catalog-| =
- [CustomerCustorerDe B ShipCity Application Settings True 2
@ CustormerDernograph EF ShipRegion Settings Property Name MorthwindConnectionString
- [Customers B ShipPostalCade
[0 DiscontinuedProducts F ShipCountry

[Employees —_——
- [EmployesSplit |

[EmployeeTenitaries
- [InternalOnly
- [Order Details

m

[Orders Order_Detail L
- [Products
[T Region = Properties
[shippers PEF OrdedD
- [Suppliers PEF ProductlD
[T Tenitories L 5 UnitPrice
- Views B Quantity
3 Stored Procedures ' Discount Connection
E zumnﬂ::m:s e Database Connection,

< n » d uJ
2 Error List|[E Output] 58 Pending Checkins [l Find Results 1] Find Symbal Results|

Ready

Figure 6-8 DataContext properties

The properties for DataContext are separated into two groups. The simpler one is Data, which
contains the default Connection for DataContext: if you do not specify a connection when
you create a NorthwindDataContext instance in your code, this will be the connection used.
With Application Settings, you can specify whether the Application Settings file should be
used to set connection information. In that case, Settings Property Name will be the property to
use in the Application Settings file.

The group of properties named Code Generation requires a more detailed explanation, which
is provided in Table 6-1.

Table 6-1 Code-Generation Properties for DataContext

Property Description

Access Access modifier for the DataContext-derived class. It can be only
Public or Internal. By default, it is Public.

Base Class Base class for the data context specialized class. By default, it is

System.Data.Ling.DataContext. You can define your own base class,
which would probably be inherited by DataContext.

Context Namespace Namespace of the generated DataContext-derived class only. It does
not apply to the entity classes. Use the same value in Context
Namespace and Entity Namespace if you want to generate
DataContext and entity classes in the same namespace.

Chapter 6 Tools for LINQ to SQL 203

Table 6-1 Code-Generation Properties for DataContext

Property

Description

Entity Namespace

Namespace of the generated entities only. It does not apply to the
DataContext-derived class. Use the same value in Context Namespace
and Entity Namespace if you want to generate DataContext and
entity classes in the same namespace.

Inheritance Modifier

Inheritance modifier to be used in the class declaration. It can be
(None), abstract, or sealed. By default, it is (None).

Name

Name of the DataContext-derived class. By default, it is the name of
the database with the suffix “DataContext”. For example, Northwind-
DataContext is the default name for a DataContext-derived class
generated for the Northwind database.

Serialization Mode

If this property is set to Unidirectional, the entity’s source code is
decorated with DataContract and DataMember for serialization
purposes. By default, it is set to None.

Entity Class

When you select an entity class on the designer, you can change its properties in the
Properties window. In Figure 6-9, you can see the Properties window for the selected Order

entity class.

& Northwind - Microsoft Wisual Studio

Toolbox ~ 1 x
¢ Inheritance -
= General
There are no usable contrals in this
group. Drag an item onto this textta |5
add it to the toolbox,

Server Explarer -0

El|sE

File Edit View Project Build Debug Dats Tools Test Analze ‘Window Help

-S| # GRB|9-- E-E| b Debug

X

[BaseCantactSplit

[BaseProductsFedarate
- [Categories

[ContactNameSplit

[Contacts

[CustomerDemograph
- [Customers
[DiscontinuedProducts|
[Employees
- [Employeesplit
[EmployeeTerritories
- [InternalOnly
- [Order Details
[Orders
- [Products
[Region
[Shippers
- [Suppliers
[Territories
- [Views
[Stored Procedures

a—

- [CustomerCustormerDe |

m

=]
~ Any CPU - | [@# readdef - | QR Bl 2
Morthwind.cs*” Northwind.dbml | Pragram,cs| Start Pag | FroPerties ==Xy
@ Order Data Class (e
Order I
1= 2
Bl Properties B Code Generation -
PEF OrdedD Access Public Pl
=F CustomedD Inheritance Madifier (Mone) &
B EmployeelD TS O der s
B OrderDate El Data g
7 RequiredDate Source dbe.Orders 2
C 57 ShippedDate El Default Methods =3
B Shipvia Delete Use Runtime LR
=7 Freight Insert Use Runtirme &
B ShipHare Updste Use Runtirme 3
P Shiphddress 4
2 ShipCity z
F ShipRegion ==
B ShipPostalCode
B ShipCountry
Order_Detail [
= Properties
P Ordedd
? & Productd
' UnitPrice
B Quantity
*F Discount Name
Mame of the entity class.
n

2 Error List| 3 Output] 58 Pending Checkins [l Find Results 1] Find Symbal Results|

Ready

Figure 6-9 Entity class properties

204

Part Il LINQ to Relational Data

The properties for an entity class are separated into three groups. The Data group contains
only Source, which is the name of the table in the SQL Server database, including the owner or
schema name. This property is automatically filled when the entity is generated by dragging a
table onto the designer surface.

The Default Methods group contains three read-only properties—named Delete, Insert, and
Update—which indicate the presence of custom Create, Update, Delete (CUD) methods. These
properties are disabled if no stored procedures have been defined in the same DBML file. If
you have stored procedures to be called for insert, update, and delete operations on an entity,
you first have to import them into the DBML file (as described in the “Stored Procedures and
User-Defined Functions” section later in this chapter). Then you can edit these properties by
associating the corresponding procedure for each of the CUD operations.

Finally, the properties in the group Code Generation are explained in Table 6-2.

Table 6-2 Code-Generation Properties for an Entity Class

Property Description

Access Access modifier for the entity class. It can be only Public or Internal. By
default, it is Public.

Inheritance Modifier Inheritance modifier to be used in the class declaration. It can be
(None), abstract, or sealed. By default, it is (None).

Name Name of the entity class. By default, it is the singular name of the table

dragged from a database in the Server Explorer window. For example,
Order is the default name for the table named Orders in the Northwind
database.

Remember that the entity class will be defined in the namespace
defined by the Entity Namespace of the related DataContext class.

Entity Members

When an entity is generated by dragging a table from Server Explorer, it has a set of predefined
members that are created by reading table metadata from the relational database. Each of
these members has its own settings in the Properties window. You can add new members by
clicking on Add/Property on the contextual menu, or simply by pressing the INS key. You can
delete a member by pressing the DEL key or by clicking Delete on the contextual menu.
Unfortunately, the order of the members in an entity cannot be modified through the Object
Relational Designer and can be changed only by manually modifying the DBML file and
moving the physical order of the Column tags within a Type.

Warning You can open and modify the DBML file with a text editor such as Notepad. If
you try to open the DBML file with Visual Studio 2008, remember to use the Open With
option from the drop-down list for the Open button in the Open File dialog box, picking the
XML Editor choice to use the XML editor integrated in Visual Studio 2008; otherwise, the
Object Relational Designer will be used by default. You can also use the Open With
command on a DBML file shown in the Solution Explorer in Visual Studio 2008.

Chapter 6 Tools for LINQ to SQL 205

When you select an entity member on the designer, you can change its properties in the
Properties window. In Figure 6-10, you can see the Properties window for the selected OrderID
member of the Order entity class.

There are no usable contrals in this
group. Drag an item onto this ted to
add it to the toolbox,

Server Explarer

E|%

~ 1 X

[BaseCantactSplit

[BaseProductsFedarate
- [Categories

[ContactNameSplit

[Contacts

[CustornerDernagraph
- [Customers
[DiscontinuedProducts|
[Ermployees
- [Emplayeesplit
[ErnployeeTeritaries
- [InternalOnly
- [Order Details
[Orders
- [Products
[Region
[shippers
- [Suppliers
[Territories
- [Views
[Stored Procedures
[Functions

Smonem.

=1 -
[—T— b

- [CustomerCustormerDe |

I

4

2 Error List| 3 Output] 58 Pending Checkins [l Find Results 1] Find Symbal Results|

=]

« Northwind - Microsoft Visual Studia [= ==
File Edit View Project Bulld Debug Dats Tools Test Analyze ‘Window Help
- S e | % Ba 9™ S| b Debug - Ay CPU - | @ readdef - | R B
Taolbox ~ ¥ X osthwind.cs®” Northwind.dbml | Bragram;cs| Start Pag | Properies | X
4= Inheritance - @ OrderID Member Property -
£ General Gt

= Properties Bl Code Generation
PEF OrdedD Access Public
B2 CustornerD Delsy Loaded False
5 EmployeelD Inheritance Madifier (Mane)
B OrderDate OrderlD

7 RequiredDate Type int (System.Int32)
5 ShippedDate B Data
= Shiptia Auta Generated Value True
7 Freight Auta-Sync Onlnsert
B ShipMame Mullshle False
B Shiphddress Primary Key True
2 ShipCity Read Only False
F ShipRegion Server Data Type Int NOT NULL IDENTITY
B ShipPostalCode Source OrderD
=F ShipCountry Tirme Stamp False
Update Check Blovays

‘MEIJ\SSB\Q @‘Jammxa unn|og I:ﬂl ‘sa\uadmd gl -

—_————

Order_Detail L

= Properties
P Ordedd
75 ProductD
' UnitPrice
B Quantity
*F Discount

Name
hame of the praperty.

i

Ready

Figure 6-10 Entity member properties

The properties for an entity member are separated into two groups. The Code Generation group
controls the way member attributes are generated, and its properties are described in Table 6-3.

Table 6-3 Code-Generation Properties for Data Members of an Entity

Property Description

Access Access modifier for the entity class. It can be Public, Protected, Protected
Internal, Internal, or Private. By default, it is Public.

Delay Loaded If this property is set to true, the data member will not be loaded until its

first access. This is implemented by declaring the member with the
Link<T> class, which is explained in the “Deferred Loading of Properties”
section in Chapter 4. By default, it is set to false.

Inheritance Modifier

Inheritance modifier to be used in the member declaration. It can be
(None), new, virtual, override, or virtual. By default, it is (None).

Name

Name of the member. By default, it is the same column name used in the
Source property.

Type

Type of the data member. This type can be modified into a Nullable<T>
according to the Nullable setting in the Data group or properties.

206

Part Il LINQ to Relational Data

The Data group contains important mapping information between the entity data member
and the table column in the database. The properties in this group are described in Table 6-4.
Many of these properties correspond to settings of the Column attribute, which are described
in Chapter 4 and Chapter 5.

Table 6-4 Data Properties for Data Members of an Entity

Property

Description

Auto Generated Value

Corresponds to the IsDbGenerated setting of the Column attribute.

Auto-Sync Corresponds to the AutoSync setting of the Column attribute.

Nullable If this property is set to true, the type of the data member is declared
as Nullable<T>, where T is the type defined in the Type property.
(See Table 6-3.)

Primary Key Corresponds to the IsPrimaryKey setting of the Column attribute.

Read Only If this property is set to true, only the get accessor is defined for the

property that publicly exposes this member of the entity class. By default,
it is set to false. Considering its behavior, this property could be part of
the Code Generation group.

Server Data Type

Corresponds to the DbType setting of the Column attribute.

Source It is the name of the column in the database table. Corresponds to the
Name setting of the Column attribute.
Time Stamp Corresponds to the IsVersion setting of the Column attribute.

Update Check

Corresponds to the UpdateCheck setting of the Column attribute.

Association Between Entities

An association represents a relationship between entities, which can be expressed through
EntitySet<T>, EntityRef<T>, and the Association attribute we describe in Chapter 4. In Figure 6-4,
you can see the association between the Order and Order_Detail entities expressed as an arrow
that links these entities. In the Object Relational Designer, you can define associations
between entities in two ways:

m When one or more entities are imported from a database, the existing foreign key
constraints between tables, which are also entities of the designed model, are trans-
formed into corresponding associations between entities.

m Selecting the Association item in the Toolbox window, you can link two entities defining
an association that might or might not have a corresponding foreign key in the relational
database. To build the association, you must have two data members of the same type in
the related entities that define the relationship. On the parent side of the relationship,
the member must also have the Primary Key property set to True.

Chapter 6 Tools for LINQ to SQL 207

Note An existing database might not have the foreign key relationship that corresponds to
an association defined between LINQ to SQL entities. However, if you generate the relational
database using the DataContext.CreateDatabase method of your model, the foreign keys are
automatically generated for existing associations.

When you create an association or double-click an existing one, the dialog box shown in
Figure 6-11 is displayed. The two combo boxes, Parent Class and Child Class, are disabled
when editing an existing association, they are enabled only when you create a new association
by using the context menu and right-clicking on an empty area of the design surface. Under
Association Properties, you must select the members composing the primary key under the
Parent Class, and then you have to choose the appropriate corresponding members in the
Child Class.

Association Editor -— -?;_ ..” |
Parent Class: Child Class:
| Crder ¥ : iOrder_DetaiI ":

Association Properties;

Order Properties Crder_Detail Properties
OrderdD

[ok][conce

Figure 6-11 Association properties

After you have created an association, you can edit it in more detail by selecting the arrow in
the graphical model and then editing it in the Properties window, as shown in Figure 6-12.

By default, the Association is defined in a bidirectional way. The child class gets a property with
the same name as the parent class (Order_Detail Order in our example), just to get a typed ref-
erence to the parent itself. In the parent class, a particular property represents the set of child
elements (Order.Order_Details in our example). Table 6-5 provides an explanation of all the
properties available in an association. As you will see, most of these settings can significantly
change the output produced.

208

Part Il LINQ to Relational Data

& Northwind - Microsoft Visual Studio =2 (=R
File Edit View Project Build Debug Dats Tools Test Analze ‘Window Help
HEn RAGE A=A " - NN RN SR = RN =N 2 0T + Any CPU - | @ readdef - | G Bl B
Toolbox ~ # X Northwindics® Northwind.dbml | Program.cs| Start pag |Froperties [P
Silnheritanee W r Order_Order_Detail Assaciation M(E
£ General s E
1= B
There are no usable contrals in this = Properties B Association e
group. Drag an item onto this tetto |5 PEF Ordedn Cardinality OneToMany =
add it to the toolbax, L4 = CustomerD Bl Child Property True ﬁ‘;"
= 2 EmployeelD Access Public g
Server Explarer - X B OrderDate Inheritance Madifier (Mo 2
[F] [<] | T, . 7 RequiredDate Mame Order_Details 2
[BaseContactSplit =+ g ShippedDate [E] Parent Property E
[BaseProductsFedarate 7 shipvia Access Public (=
- [Categories 7 Freight Tnheritance Modifier (Hane) §
[ContactNarneSplit B ShipHarme Narne Order T
[T Contacts T Shipaddress Participating Properties Order.OrderID - > Order_Detzil.OrderdD || 2
- [CustomerCustormerDe | ' ShipCity Unigue False e
[CustomerDemograph EF ShipRegion o
- [Customers 2 ShipPostalCode
[DiscontinuedPraducts BT shipCountry
[Employees -8
- [Ermployeesplit i
[EmployeeTenitaries
- [InternalOnly =
- [Order Details =
Ij Orders Order_Detail [
- [Products
[T Region = Properties
[shippers P OrdedD
- [Suppliers 25 ProductD
[Territories L B UnitPrice
- [Wiews B Quantity
(3 Stored Pracedures = Discount Parent Property
(3 Punctions o i e e s el s et o W esseriid) et lles:
Q| —— : < n

2 Error List| 3 Output]T5h Pending Checkins [l Find Results 1] Find Symbal Results|

Ready

Figure 6-12 Association properties

Table 6-5 Association Properties

Property

Description

Cardinality

Defines the cardinality of the association between parent and
child nodes. This property has an impact only on the member
defined in the parent class. Usually and by default, it is set to
OneToMany, which will generate a member in the parent class
that will enumerate a sequence of child items. The only other
possible value is OneToOne, which will generate a single property
of the same type as the referenced child entity. See the sidebar
“Understanding the Cardinality Property” for more information.

By default, this property is set to OneToMany. Using the One-
ToOne setting is recommended, for example, when you split a
logical entity that has many data members into more than one
database table.

Child Property

If this property is set to False, the parent class will not contain a
property with a collection or a reference of the child nodes. By
default, it is set to True.

Child Property/Access

Access modifier for the member children in the parent class. It
can be Public or Internal. By default, it is Public.

Chapter 6 Tools for LINQ to SQL 209

Table 6-5 Association Properties

Property Description

Child Property/Inheritance Inheritance modifier to be used in the member children in the

Modifier parent class. It can be (None), new, virtual, override, or virtual. By
default, it is (None).

Child Property/Name Name of the member children in the parent class. By default, it

has the plural name of the child entity class. If you set Cardinality
to OneToOne, you would probably change this name to the
singular form.

Parent Property/Access Access modifier for the parent member in the child class. It can
be Public or Internal. By default, it is Public.

Parent Property/Inheritance Inheritance modifier to be used in the parent member in the

Modifier child class. It can be (None), new, virtual, override, or virtual. By
default, it is (None).

Parent Property/Name Name of the parent member in the child class. By default, it has

the same singular name as the parent entity class.

Participating Properties Displays the list of related properties that make the association
work. Editing this property opens the Association Editor, which is
shown in Figure 6-11.

Unique Corresponds to the IsUnique setting of the Association attribute.
It should be True when Cardinality is set to OneToOne. However,
you are in charge of keeping these properties synchronized.
Cardinality controls only the code generated for the Child Property,
while Unique controls only the Association attribute, which is
the only one used by the LINQ to SQL engine to compose SQL
queries. By default, it is set to False.

If you have a parent-child relationship in the same table, the Object Relational Designer auto-
matically detects it from the foreign key constraint in the relational table whenever you drag it
into the model. It is recommended that you change the automatically generated name for
Child Property and Parent Property. For example, importing the Employees table from North-
wind results in Employees for the Child Property Name and Employeel for the Parent Property
Name. You can rename these more appropriately as DirectReports and Manager, respectively.

Warning The Child Property and Parent Property of a parent-child Association referencing
the same table cannot be used in a DataloadOptions.LoadWith<T> call because it does not
support cycles.

One-to-One Relationships

Most of the time, you create a one-to-many association between two entities, and the default
values of the Association properties should be sufficient. However, it is easy to get lost with a
one-to-one relationship. The first point to make is about when to use a one-to-one relationship.

210

Part Il LINQ to Relational Data

A one-to-one relationship should be intended as a one-to-zero-or-one relationship, where
the related child entity might or might not exist. For example, we can define the simple model
shown in Figure 6-13. For each Contact, we can have a related Customer, containing its amount
of Credit. In the Properties window, you can see highlighted in bold the properties of the
association between Contact and Customer that have been changed from their default values.

5 Narthwind - Microsoft Visual Studie = EoR (=
Fil: Edit View Project Bulld Debug Dats Toals Test Anabze ‘indow Help
- - g5 | % Ba |9 - - DI | b Debug ~ Ay CRL - | @ reacdef MR TR
Taolbax >3 X ianship.dbml | blorthing.cs*| Northwind gbmi| Pr | PTOPerties pa [T
[I_Painter |- |Cnn|act_Cus|umer Association |v 3
= Class Tl =
. Bssociation e E
& Inheritance (. e
£) General OneToOne =g
i B Praperties Bl Child Property True o
: Becess Public 3
Server Explorer TEx PE ContactD Inheritance Modifier (Nane) g
= | g Lestiome Name Customer b
[BaseContactSplit = = =] Parent Property 2
- [BaseProductsFedarate b4 Access Public TE
[Categories Q Inheritance Madifier (Mone) &
- [ContactMameSplit /7’*’\\ MName Contact @
[Contacts Customer Participating Properties Contart.ContartlD -> Custorner. Contaf|
[CustomerCustarmerDe 1| Unigue False E
- [CustomerDemograph = Properties]
[Customers 75 ContactlD
- [5] DiscantinuedPraducts) R Cregit
- [Employees
[Ermployeesplit
- [EmployecTeritories
[Intemalonly =
[Greler Details
- [Orders
[Praducts
- [Region
- [Shippers
[suppliers
- [Territories L
3 Wiews
[Stored Procedures Cordinality
E Functions i Controls whether an associatian is One or Many.
[Pr— e . 4 m
|1 Ervor List| 5 Qutput[5 Pending Checkins |5 Find Results 1[g3 Find Symbol Results|
Ready

Figure 6-13 Association properties of a one-to-one relationship

Cardinality should already be set to OneToOne when you create the Association. However, it is
always better to check it. You also have to set the Unique property to True and change the
Child Name property to the singular Customer value.

The ContactID member in the Contact entity is a primary key defined as INT IDENTITY in the
database. Thus, it has the Auto Generated Value set to True and Auto-Sync set to Onlnsert. In

the Customer entity, you have another member called ContactID, which is also a primary key
but is not generated from the database. In fact, you will use the key generated for a Contact to
assign the Customer.ContactID value. Thanks to the Contact. Customer and Customer.Contact

properties, you can simply assign the relationship by setting one of these properties, without
worrying about the underlying ContactID field. In the following code, you can see an example

©

Chapter 6 Tools for LINQ to SQL 211

of two Contact instances saved to the DataContext, one of them is associated with a Customer
instance:

ReTationshipDataContext db = new RelationshipDataContext();

Contact contactPaolo = new Contact();
contactPaolo.LastName = "Pialorsi";
contactPaolo.FirstName = "Paolo";

Contact contactMarco = new Contact();
Customer customer = new Customer();
contactMarco.LastName = "Russo";
contactMarco.FirstName = "Marco";
contactMarco.Customer = customer;
customer.Credit = 1000;

db.Contacts.InsertOnSubmit(contactPaolo);
db.Contacts.InsertOnSubmit(contactMarco);
db.SubmitChanges();

We created the relationship by setting the Contact. Customer property, but the same result
could have been obtained by setting the Customer.Contact property. In other words, thanks to
the synchronization code automatically produced by the code generator, in our one-to-one
relationship the line

contactMarco.Customer = customer;
produces the same result as writing
customer.Contact = contactMarco;

However, you have to remember that the Customer.Contact member is mandatory if you create
a Contact instance, while Contact.Customer can be left set to the default null value if no
Customer is related to that Contact. At this point, it should be clear why the direction of the
association is relevant even in a one-to-one relationship. As we said, it is not really a one-to-one
relationship but a one-to-zero-or-one relationship, where the association stems from the
parent that always exists to the child that could not exist.

Warning A common error made when defining a one-to-one association is using the
wrong direction for the association. In our example, if the association went from Customer to
Contact, it would not generate a compilation error; instead, our previous code would throw
an exception when trying to submit changes to the database.

212

Part Il LINQ to Relational Data

Understanding the Cardinality Property

To better understand the behavior of the Cardinality property, let’s take a look at the
generated code. This is an excerpt of the code generated with Cardinality set to
OneToMany. The member is exposed with the plural name of Customers.

public partial class Contact {
public Contact() {
this._Customers = new EntitySet<Customer>(
new Action<Customer>(this.attach_Customers),
new Action<Customer>(this.detach_Customers));

private EntitySet<Customer> _Customers;

[Association(Name="Contact_Customer", Storage="_Customers",
ThisKey="ContactID", OtherKey="ContactID")]
public EntitySet<Customer> Customers {
get { return this._Customers; }
set { this._Customers.Assign(value); }

And this is the code with Cardinality set to OneToOne. The member is exposed with the
singular name of Customer. (You need to manually change the Child Property Name if
you change the Cardinality property.)

public partial class Contact {
public Contact() {
this._Customer = default(EntityRef<Customer>);
}

private EntityRef<Customer> _Customer;

[Association(Name="Contact_Customer", Storage="_Customer",
ThisKey="ContactID", IsUnique=true, IsForeignKey=false)]
public Customer Customer {
get { return this._Customer.Entity; }

set {
Customer previousValue = this._Customer.Entity;
if ((previousValue != value)

|| (this._Customer.HasLoadedOrAssignedValue == false)) {
this.SendPropertyChanging();
if ((previousValue != null)) {

this._Customer.Entity = null;

previousValue.Contact = null;

}

this._Customer.Entity = value;

Chapter 6 Tools for LINQ to SQL 213

if ((value != null)) {
value.Contact = this;

}
this.SendPropertyChanged("Customer") ;

As you can see, in the parent class we get a Contact.Customer member of type Entity-
Ref<Customer> it Cardinality is set to OneToOne. Otherwise, we get a Contact.Customers
member of type EntitySet<Customer> if Cardinality is set to OneToMany. Finally, the code
generated for the Customer class does not depend on the Cardinality setting.

Entity Inheritance

LINQ to SQL supports the definition of a hierarchy of classes all bound to the same source
table. The LINQ to SQL engine generates the right class in the hierarchy, based on the value
of a specific row of that table. Each class is identified by a specific value in a column, following
the InheritanceMapping attribute applied to the base class, as we saw in the section “Entity
Inheritance” in Chapter 4.

Creating a hierarchy of classes in the Object Relational Designer starting from an existing
database requires you to complete the following actions:

1. Create a Data class for each class of the hierarchy. You can drag the table for the base
class from Server Explorer, and then create other empty classes by dragging a Class item
from the toolbox. Rename the classes you add according to their intended use.

2. Setthe Source property for each added class equal to the Source property of the base class
you dragged from the data source.

3. After you have at least a base class and a derived class, create the Inheritance relation-
ship. Select the Inheritance item in the toolbox, and draw a connection starting from the
deriving class and ending with the base class. You can also define a multiple-level
hierarchy.

4. Ifyouhave members in the base class that will be used only by some derived classes, you
can cut and paste them in the designer. (Note that dragging and dropping members is
not allowed.)

For example, in Figure 6-14 you can see the result of the following operations:

1. Drag the Contact table from Northwind.

214

Part I

2.

10.

LINQ to Relational Data
Add the other empty Data classes (Employee, CompanyContact, Customer, Shipper, and
Supplier).

Put the dbo.Contacts value into the Source property for all added Data classes. (Note that
dbo.Contacts is already the Source value of the base class Contact.)

Define the Inheritance between Employee and Contact and between CustomerContact and
Contact.

Define the Inheritance between Customer and CompanyContact, Shipper and Company-
Contact, and Supplier and CompanyContact.

Cut the CompanyName member from Contact, and paste it into CompanyContact.

Set the Discriminator Property of any Inheritance item to ContactType. (See Table 6-6 for
further information about this property.)

Set the Inheritance Default Property of any Inheritance item to Contact.
Set the Base Class Discriminator Value of any Inheritance item to Contact.

Set the Derived Class Discriminator Value to Employee, Customer, Shipper, or Supplier for
each corresponding Inheritance item.

« Northwind - Microsoft Visual Studia [= ==
File Edit View Project Build Debug Dats Tools Test Analyze Window Help
A - S | % GaE]9 - ™ - & B Debug - Ay CPU - | readdef HEI= 1T
Toolbox > 4 X| Inheritance.dbml | Relationship.dbrl | Morthwind,cs*} Northwind.dbm | Program.cs) Start Page | - x iy
& Pointer - i bl
[Chass w B i
. Assaciation H p p g
4 Inheritance Contact Employee :
£ General 4 A
i B Properties 2
£
Server Explarer -1 % ‘}g Contactlh 3 i
B ContactType o
= 0
E J |% | B ContactMame E
[Data Connections = B ContactTitle E
B [amadvista-64.Har B Address ?E
Database Diay B
33 Database Dia 57 city CompanyContact 3
-0 5”‘” I Region Pl 7
ActivePro E
- O AderessSy g PostalCode g r—— 3
[BaseCont % Country 2 CompanyName Create methads by |5
= Phone dragging items from
[BaseProdi]
L 2 Extension Fas Server Explarer onto
- [Categorie = B Fa this design surface.
[ContactM
F HomePage
[Contacts
BT PhotoPath
- [E Customer B Phote Customer
[Custarner =
- [Custorner
- [Discontin
[Employee] |
- [Employee p
[Ernployee Supplier Shipper
[Intemalor
- [Order Det
[Orders
- [Products
- & Region 4
P Shinmar: N4
0| ol il] i
| Ervor List] 5 Output[5 Pending Checkins |5 Find Results 1[g3 Find Symbol Results|
Ready

Figure 6-14 Design of a class hierarchy based on the Northwind.Contact table

Chapter 6 Tools for LINQ to SQL 215

Our example uses an intermediate class (CompanyContact) to simplify the other derived
classes (Supplier, Shipper, and Customer). We skipped the CompanyContact class that sets the
Derived Class Discriminator Value because that intermediate class does not have concrete
data in the database table.

In Table 6-6, you can see an explanation of all the properties available for an Inheritance item.
We used these properties to produce the design shown in Figure 6-14.

Table 6-6 Inheritance Properties

Property Description

Inheritance Default This is the type that will be used to create entities for rows that do
not match any defined inheritance codes (which are the values
defined for Base Class Discriminator Value and Derived Class
Discriminator Value). This setting defines which of the generated
InheritanceMapping attributes will have the IsDefault=true

setting.
Base Class Discriminator This is a value of the Discriminator Property that specifies the
Value base class type. When you set this property for an Inheritance

item, all Inheritance items originating from the same data class
will assume the same value.

Derived Class Discriminator This is a value of the Discriminator Property that specifies the
Value derived class type. It corresponds to the Code setting of the
InheritanceMapping attribute.

Discriminator Property The column in the database that is used to discriminate between
entities. When you set this property for an Inheritance item, all
Inheritance items originating from the same data class will
assume the same value. The selected data member in the base
class will be decorated with the IsDiscriminator=true setting in
the Column attribute.

Stored Procedures and User-Defined Functions

Dragging a stored procedure or a user-defined function from the Server Explorer window to
the Object Relational Designer surface creates a method in the DataContext class correspond-
ing to that stored procedure or that user-defined function. In Figure 6-15, you can see an
example of the [Customer By City] stored procedure dragged onto the Methods pane of the
Object Relational Designer.

Note You can show and hide the Methods pane by using the context menu that opens when
you right-click on the design surface.

216 Part Il LINQ to Relational Data

& Northwind - Microsoft Visual Studio = loE
File Edit View Project Build Debug Dats Tools Test Analze ‘Window Help
- S e | % Ca 9™ S| b Debug - Ay CPU - | @ readdef HE-I- T
Lanbes > 1 X| Northwind.dbmI*| Inheritancedbml | Relationship.dbml] = x | Properties ~wxg
Points 2 ; o
|£} CT‘" ik | || o + [=@ Custamers_By_City (System String param1) | || Customers By City Data Function -||E
a5 £
8 g
€ Associstion 3 - AR 5
¢ Inheritance Bl Properties H Code Generation B
£ General TE Orde Bccess Public H
B CustornerD Inheritance Modifier (Mone) ?E
- ' Employeeld [T customers By City &
Server Explorer > X B OrderDate Return Type (Ruto-generated Type) || 2
[F] [<] | T, . ZF RequiredDate |~ B Misc =
[Orders - ZF ShippedDate Method Signature Customers By City (Systd| 2
[Products = chipvia Source dbo.[Customers By City]
- [Region 2 Freight
[Shippers = ShipMame
[suppliers P Shipddress | |
- [Tenitories = ShipCity
3 Views =7 ShipRegion
- [Stored Procedures P ShipPostalCode
[£] Custorers By City B ShipCauntry

Customers Count By Re —
CustOrderHist |

CustOrdersDetail
CustOrdersOrders
CustOrderTotal

Employes Sales by Cour| fadei=tad
Get Custarner fnd Orde
InserOrderDetails B Broperies
ManyPar TE Orden
Sales by Year TE Produ
SalesByCategory 5 Unithr
Ten Most Expensive Pro B uant
TwaCustomer6raups = Discar Name
=] Whole Or Partial Custon _ e Mame of the method,
Fa B i
a I ' K| G
|28 Ervor List| =] Output][58 Pending Checkins |5 Find Results 1] Find Symbol Resuls|
Ready

Figure 6-15 Stored procedure imported into a DBML file

When you import either a stored procedure or a user-defined function, a Data Function item is
created in the DataContext-derived class. The properties of a Data Function are separated into
two groups. The Misc group contains two read-only properties, Method Signature and Source.
The Source property contains the name of the stored procedure or user-defined function in the
database. The value of the Method Signature property is constructed with the Name property
(shown in Table 6-7) and the parameters of the stored procedure or user-defined function.
The group of properties named Code Generation requires a more detailed explanation, which
is included in Table 6-7.

Table 6-7 Code-Generation Properties for Data Function

Property Description

Access Access modifier for the generated method in the DataContext-derived
class. It can be Public, Protected, Protected Internal, Internal, or Private.
By default, it is Public.

Inheritance Modifier Inheritance modifier to be used in the member declaration. It can be
(None), new, virtual, override, or virtual. By default, it is (None).

Chapter 6 Tools for LINQ to SQL 217

Table 6-7 Code-Generation Properties for Data Function

Property Description

Name Name of the method representing a stored procedure or a user-defined
function in the database. By default, it is derived from the name of
the stored procedure or the user-defined function, replacing invalid
characters in C# or Visual Basic with an underscore (_). It corresponds to
the Name setting of the Function attribute.

Return Type Type returned by the method. It can be a common language runtime
(CLR) type for scalar-valued user-defined functions, or Class Data for
stored procedures and table-valued user-defined functions. In the latter
case, by default it is (Auto-generated Type). After it has been changed to
an existing Data Class name, this property cannot be reverted to (Auto-
generated Type). See the "Return Type of Data Function” section for more
information.

Return Type of Data Function

Usually a stored procedure or a table-valued user-defined function returns a number of rows,
which in LINQ to SQL becomes a sequence of instances of an entity class. (We discussed this
in the “Stored Procedures and User-Defined Functions” section in Chapter 4.) By default,

the Return Type property is set to (Auto-generated Type), which means that the code generator
creates a class with as many members as the columns returned by SQL Server. For example,
the following excerpt of code is part of the Customers_By_CityResult type automatically gener-
ated to handle the Customer_By_City result. (The get and set accessors have been removed
from the properties declaration for the sake of conciseness.)

public partial class Customers_By_CityResult {
private string _CustomerID;
private string _ContactName;
private string _CompanyName;
private string _City;

public Customers_By_CityResult() { }

[Column(Storage="_CustomerID", DbType="NChar(5) NOT NULL",
CanBeNull=false)]
public string CustomerID { ... }

[Column(Storage="_ContactName", DbType="NVarChar(30)")]
public string ContactName { ... }

[Column(Storage="_CompanyName", DbType="NVarChar(40) NOT NULL",
CanBeNull=false)]
public string CompanyName { ... }

[Column(Storage="_City", DbType="NVarChar(15)")]
public string City { ... }

218

Part Il LINQ to Relational Data

However, you can instruct the code generator to use an existing Data Class to store the data
resulting from a stored procedure call, setting the Return Type property to the desired type.
The combo box in the Properties window presents all types defined in the DataContext. You
should select a type compatible with the data returned by SQL Server.

Important Return Type must have at least a public member with the same name of a
returned column. If you specify a type with public members that do not correspond to
returned columns, these “missing” members will have a default value.

You can create an entity class specifically to handle the result coming from a stored procedure
or user-defined function call. In that case, you might want to define a class without specifying
a Source property. In this way, you can control all the details of the returned type. You can also
use a class corresponding to a database table. In this case, remember that you can modify the
returned entity. However, to make the SubmitChanges work, you need to get the initial value for
all required data members of the entity (at least those with the UpdateCheck constraint) in
order to match the row at the moment of update. In other words, if the stored procedure or
user-defined function does not return all the members for an entity, it is better to create an
entity dedicated to this purpose, using only the returned columns and specifying the destina-
tion table as the Source property.

Note To map Return Type to an entity during the method construction, you can drag the
stored procedure or user-defined function, dropping it on the entity class that you want to
use as a return type. In this way, the method is created only if the entity class has a corre-
sponding column in the result for each of the entity members. If this condition is not
satisfied, an error message is displayed and the operation is cancelled.

Mapping to Delete, Insert, and Update Operations

All imported stored procedures can be used to customize the Delete, Insert, and Update oper-
ations of the entity class. To do that, after you import the stored procedures into DataContext,
you need to bind them to the corresponding operation in the entity class. Figure 6-16 shows
the Configure Behavior dialog box that allows mapping of all the method arguments with the
corresponding class properties.

Chapter 6 Tools for LINQ to SQL

& Morthwind - Microsoft Visual Studio
File Edit Miew Project Build

-G | K G @9 - F- 5 b Debug

Debug
- Any CPU

Data Tools Test Anahze Window Help

EEE]

- | 3 Bl

Toolbox

Morthwind.dbm1*

[& Painter

Properties ~ 1 x

Order_Detail Data Class -

] Class

& Associstion
4~ Inheritance
£l General

Server Bxplorer

Select a class and behavior, Then, choose ta either let the system automatically generate code at runtime ar
custarnize with specific insert, update, or delete method.

© {ublic

one)
rder_Detail

|Mau\sse\om‘mm\dx3 uognog @‘ -

Class:
I NE: bo.[Order Details
GIA) gﬁ [Order_Detail - I 1

Orders
Behavior:
3 Products se Runtime
= Region [Imm '] se Runtime
[shippers ©) Use runtime se Runtime
(= suppliers Let the systern autormatically generate insert, update, and delete logic at runtirme.
[Territories ® Customize
- [Miews
& £ Stored Procedures [InserrderDetails (SystemInt2 arderdD, SysternInt32 praductD, Syster Decimal unitPrice, SystemIntl6 qua =
Custorners By
Custormers o Method Arqurnents Class Praperties
CustOrderHist Discount
CustOrdersDe arderdD OrderlD
CustOrdersOn
CustOrderTaty productD Praductld
Employee Sale quantity Quantity
Get Custamer uritPrice UnitPrice
TnserOrderDet
ManyPar
Sales by Vear
SalesByCatego
Ten Most Expe
[E] TwoCustarner
[E=] Whole Or Parti
b i [| wrse— — T
L F— _—

3 Error List) 5] Output| (54 Pendimyrermrerm g s oy

Ready

Figure 6-16 Use of a stored procedure to insert an Order_Detail

219

More Info
in Chapter 5.

\

For more information, see the "Customizing Insert, Update, and Delete” section

Views and Schema Support

All views in a database can be used to generate an entity class in the DBML file. However,

LINQ to SQL does not know whether the view is updatable or not. It is your responsibility to
make the right use of an entity derived from a view, trying to update instances of that entity
only if they come from an updatable view.

If the database has tables in different schemas, the Object Relational Designer does not
consider them when creating the name of data classes or data functions. The schema is

maintained as part of the Source value, but it does not participate in the name construction of

generated objects. You can rename the objects, but they cannot be defined in different
namespaces, because all the entity classes are defined in the same namespace, which is
controlled by the Entity Namespace property of the generated DataContext-derived class.

220 Part Il LINQ to Relational Data

D More Info Other third-party code generators might support the use of namespaces, using
SQL Server 2005 schemas to create entities in corresponding namespaces.

Summary

In this chapter, we took a look at the tools that are available to generate LINQ to SQL entities
and DataContext classes. The .NET Framework SDK includes the command-line tool named
SQLMetal. Visual Studio 2008 has a graphical editor known as the Object Relational
Designer. Both allow the creation of a DBML file, the generation of source code in C# and
Visual Basic, and the creation of an external XML mapping file. The Object Relational
Designer also allows you to edit an existing DBML file, dynamically importing existing tables,
views, stored procedures, and user-defined functions from an existing SQL Server database.

	Cover
	Table of Contents
	Chapter 6: Tools for LINQ to SQL
	File Types
	DBML—Database Markup Language
	C# and Visual Basic Source Code
	XML—External Mapping File
	LINQ to SQL File Generation

	SQLMetal
	Generating a DBML File from a Database
	Generating Source Code and a Mapping File from a Database
	Generating Source Code and a Mapping File from a DBML File

	Using the Object Relational Designer
	DataContext Properties
	Entity Class
	Association Between Entities
	Entity Inheritance
	Stored Procedures and User-Defined Functions
	Views and Schema Support

	Summary

