
1

Appendix A

Using the Windows PowerShell
Functions

This appendix provides instructions for using the Microsoft Windows PowerShell functions
included in the script file found on the companion CD. These functions are contained within a
single PowerShell script that contains over 90 sample PowerShell functions for administering
various aspects of the Microsoft Office Communications Server 2007 R2 environment. Note
that these are sample functions only, not finished tools. They are provided as proof-of-
concept examples of how to administer Office Communication Server using Windows
PowerShell. Although the Microsoft Office Communications Server 2007 R2 Resource Kit
author team has made every effort to test these functions to ensure that they work properly,
these functions are provided “as is” with no warranty or guarantee concerning their
functionality. You should therefore become thoroughly familiar with using these functions in a
test environment before using them in your production environment.

Because these functions are provided as proof-of-concept samples only, you might need to
customize these functions if you intend to use them in your production environment. For
example, the functions as provided include only minimal support for error handling and
assume that the servers they are being run against exist and are configured appropriately. The
Microsoft Office Communications Server 2007 R2 Resource Kit author team therefore
encourages you to customize these functions to meet the needs of your own networking
environment.

Script Signing and Customizing the PowerShell Functions
PowerShell has an Execution Policy setting that controls the behavior of scripts. The Set-
ExecutionPolicy execution policy, cmdlet, allows this to be set to one of the following four
possible values:

Restricted
• This is the default setting, and it specifies that no scripts at all will be allowed to run.

AllSigned
• This setting requires all scripts to have a digital signature.

2

RemoteSigned
• This setting specifies that only scripts run from file shares, downloaded in Internet

Explorer, or received as mail attachments must be signed.

Unrestricted
• This setting specifies that all scripts can run.

The execution policy can be changed by running Set-ExecutionPolicy <value> from the
PowerShell window, where <value> is one of the preceding four values. Before you begin,
you should determine what the scripting policy is on your system by entering the command
Get-ExecutionPolicy at the PowerShell prompt. If it returns Restricted, you need to use the
Set-ExecutionPolicy cmdlet to allow scripts to run. Microsoft recommends that in a production
environment all PowerShell scripts be signed and the execution policy be configured as
AllSigned. If you feel the risks of running unsigned scripts have been sufficiently mitigated (for
example, you are running Office Communications Server in a self-contained test
environment), you can reduce the level of protection using either Set-ExecutionPolicy
RemoteSigned or Set-ExecutionPolicy Unrestricted.

The companion CD includes the OCS-R2.PS1 script file. This script file has not been digitally
signed by Microsoft, but you can self-sign the scripts to be used in environments where the
execution policy is configured as AllSigned. Best practice would have you sign it from a code
signing certificate from your CA, which will allow it to be run anywhere in your environment.
The companion CD also provides these functions in the form of an unsigned text file, OCS-
ALL.txt, so that you can customize these functions as needed. To use the functions after you
have customized them, start by renaming the text file, so that it has the .ps1 file extension. If
you are following the recommendation to run under the AllSigned policy, you need a code-
signing certificate and you should use the Set-AuthenticodeSignature cmdlet to sign your
script. If you set the policy to RemoteSigned or Unrestricted to avoid signing scripts, you
should understand the risks involved in doing this and take suitable steps to mitigate these
risks.

Note For more information about signing, enter Get-Help about_signing at the PowerShell
prompt.

How to Load the PowerShell Functions
The PowerShell functions provided are contained within a single PowerShell script (.ps1) file
named OCS-R2.PS1. To use these functions, you first have to load them from the PowerShell
command prompt using the following syntax:

. <path>\OCS-R2.PS1

3

The initial dot tells PowerShell, “Keep all of these functions in memory after you’ve finished
running the script.” This detail is important because developers often forget the dot, and users
end up wondering why the script seemed to have loaded but they didn’t get any additional
functions.

Note that PowerShell doesn’t add the current directory to the path, so if the files are in the
current directory, you need to invoke the script using the following syntax:

. .\OCS-R2.PS1

You will get a message telling you the functions have been loaded.

If you are going to the use the functions frequently, it is worth adding the dot commands to
your PowerShell profile. To find the path to the profile, you can enter $Profile at the
PowerShell command prompt. The path to your profile, by default, should be:

C:\Users\<your username>\Documents\PowerShell\Microsoft.PowerShell_profile.ps1

Usually, you need to create the file (for example, using Notepad) and directories, then add the
appropriate lines—for example:

. <path>\OCS-R2.PS1

. .\OCS-R2.PS1

OCS-R2.PS1 is a PowerShell script, and if you are using the AllSigned execution policy, it needs
to be signed. Of course, you can (not recommended, due to malware potential) set your
execution policy to UnRestricted. (See preceding note about signing of PowerShell scripts, and
do the Secure thing and sign the script..)

Understanding Command and Parameter Naming
PowerShell cmdlets are named in the form Verb-Noun, and the PowerShell functions
developed for this Resource Kit follow this naming convention. In particular, nouns that we
have provided are named OCSSomething, or OCSEdgeSomething, if they apply specifically to
an edge server role. The functions were developed for Office Communications Server 2007 R2
from scripts that were published for the initial release of Office Communications Server 2007.
Many of them should also work with the previous version, Live Communications Server 2005
SP1.

By convention, PowerShell commands that begin with the Get verb return objects that can be
used by other commands. For example, Get-Process returns a set of process Objects. When
these objects have been retrieved, they can then be used as input to other PowerShell
commands using the pipe syntax (“|”). Following are examples of using the pipe syntax:

4

• Sorted by property name using get-process | sort-object -Property ProcessName

• Filtered to specific processes with get-process | Where-Object {$_.processname -eq
'notepad'}

• Exported to a comma-separated values (CSV) file with get-process | export-CSV -path
"Processes.csv"

• Counted with get-process | Measure-Object

The PowerShell functions developed for this Resource Kit also follow this convention. By
convention, PowerShell commands use nouns written in the singular, and although the
commands used in the previous version of the Resource Kit used plural nouns, we have come
into line with this convention in this release. In addition, PowerShell developers are
recommended to avoid creating new verbs where it is possible to use existing ones, and some
of the commands have been renamed to use verbs already used by PowerShell

Office Communications Server exposes management interfaces through Windows
Management Instrumentation (WMI). (See MSDN for WMI documentation.) Many of the GET
functions simply fetch the corresponding WMI object or objects. By default, outputting these
objects to the screen will not produce nicely formatted results. However, in this release we
have provided a custom formatting XML file named ocsTypes.format.ps1xml. This tells
PowerShell how the objects should be formatted. This is loaded using the PowerShell cmdlet,
Update-formatData. The name of the XML file only needs to be specified when it is first

used. If it is updated during a PowerShell session, then it can be run without adding the file a
second time. In the previous release of the Resource Kit, no XML was provided. Functions
named List were provided for each Get- command. The XML file made these redundant, and
they have been removed.

For example, the Get-OCSUser function is the PowerShell command version of Get-
WMIObject –Class MSFT_SIPESUserSetting. It returns an array of MSFT_SIPESUserSetting
objects. We can pipe these objects into another PowerShell command, which might also
return an array of objects, which can be piped into another command, and so on. For
example, the following line of PowerShell syntax moves all the users on one server to another:

Get-OcsUser | where-object {$_.HomeServerDN –eq $OldServer} |

 forEach-Object {$_.HomeServerDN = $NewServer ; $_.Put() }

The GET function returns objects for all Office Communications Server users, and where-object
selects only users whose home server matches variable $OldServer. Then for each of the
selected users, the HomeServer property is set to whatever is stored in $NewServer. The

5

change is not committed until the Put() method is called. (Variables are explained at the end
of this appendix.)

This example shows how GET-OCSUser can be used; however, if you run it on its own, you’ll
see the objects formatted according to the XML provided. You can customize the display
permanently by changing the XML, but there are other options.

PowerShell can create a new object from an existing one, using a subset of its properties—for
example:

Get-WMIObject –Class MSFT_SIPESUserSetting | Select-Object –property

 DisplayName, PrimaryUri, HomeServerDN

This code creates new PowerShell custom objects with just the Display, URI, and Server
properties and these are far easier to read. But because they are no longer
MSFT_SIPESUserSetting objects, we can’t change a property and save the results.

PowerShell provides format-table and format-list commands, which allow you to choose how
the objects are displayed.

Get-OCSUser | format-Table –property DisplayName, PrimaryUri,

 HomeServerDN.

This command gets all the MSFT_SIPESUserSetting objects and produces a table with their
Name, URI, and Home Server properties.

If you make changes to the OCS-R2.PS1 PowerShell script, you should understand that many
of the Get- functions have other functions that depend on their output.

Using the Common Parameters

Some of these PowerShell functions can be passed parameters. For functions that allow
parameters to be passed, such parameters are optional. However, for example, Remove-
OCSUser must to be told which user, Export-OCSUsers, does need to be given the path where
its file should be written, and so on. Parameters in PowerShell can be identified by their
sequence, but if you want to refer back to what you have done, it is always better to specify
them explicitly. Parameters that are used frequently include the following:

-URI
• Specifies the SIP URI of a user. This parameter checks for the presence of SIP: and adds it

if it is not found.

6

-Path
• Specifies the path to a file. It is safest to always enclose paths in quotes, although if the

file name doesn’t include spaces, the quotes aren’t required.

-Condition
• Specifies a term to include in a WHERE statement. No checking of this is done.

-Server
• Specifies the name of the remote server on which the command is to be run.

Summary of the PowerShell Functions
Table A-1 summarizes the various functions provided in the OCS-R2.PS1 script. The sections
that follow this table provide additional details concerning each of these functions, along with
a few examples to illustrate their use.

Table A-1

Type Add Choose Export Get Import New Remove Update

ADUser X X

OCSADContainer X

OCS * Cert1 X

OCSEdgeFederationDenied X X X

OCSEdgeFederationPartner X X X X X

OCSEdgeIMProvider X X X X

OCSEdgeInternalDomain X X X

OCSEdgeInternalServer X X X

OCS* Event2 X

OCSGlobalUCSetting X

OCSInstalledService X

OCSLocationProfile X X X X

OCSMediationServer X

OCSMediationServerSetting X

OCSMeetingPolicy X X X X X

OCSNormalizationRule X X X X X

7

OCSPhoneRoute X X X X X

OCSPhoneRouteUsage X X X X

OCSPICUserCount X

OCSPool X X

OCSSchemaVersion X

OCSSIPDomain X X X

OCSSipRoutingCert X

OCSTrustedService X

OCSUCPolicy X X X X X

OCSUser X X X X X X

OCSUserDetail X

OCSWindowsService X

1 The Cert row of the table covers 5 different kinds of certificates.

2 The Event row of the table covers Warning Events and Error Events.

Active Directory

The following functions can be used to manage different aspects of Active Directory
Domain Services, as they relate to Office Communications Server 2007 R2.

Get-ADUser

Optional Parameters: -Container, filter

This function returns a collection of Active Directory user objects. The -Container parameter is
used to select a path to an Active Directory domain, container, or organizational unit (OU)—
for example, CN=Users,DC=LitwareInc,DC=com. If it is not specified, all of Active Directory is
searched for users. The filter parameter specifies an LDAP filter, which restricts the user
selection

Example: This function can be piped into other commands. So, to enable all the users in the
sales OU, you could use the following syntax:

get-aduser -container "OU=Sales,DC=litwareinc,DC=COM" |

 new-ocsuser -homeserverDN (Choose-OCSPool)

8

Get-ADUser returns an array of DirectoryService.SearchResult objects representing the users in
the sales OU. For each one, the new-OCSUser function is invoked, assuming that the users all
have mail addresses (any that don’t will cause an error), and the function is running on the
server where the users are to be homed.

Export-ADUser

Required Parameter: -path

Optional Parameters: -Container, filter

This function exports Active Directory user data to a CSV file to make it easier to enable them
in bulk. Note that the field names in Active Directory and OCS-WMI are not the same.
Export-ADUser preserves the Active Directory field names, and Export-OCSUser preserves the
OCS-WMI names.

The data to be exported is returned by the GetADUser function, and the –container and –filter
parameters are passed straight through to it. So, if no conditions are specified, all users are
exported.

Get-OCSADContainer

Office Communications Server uses Active Directory objects to hold its configuration
information. These objects are stored in a single Active Directory container, and this function
returns the Lightweight Directory Access Protocol (LDAP) path to the container. It also sets a
PowerShell local variable $OCSADContainer, so that other functions do not have to repeat the
search.

Get-OCSSchemaVersion

This function returns the version of the Office Communications Server updates that have been
applied to the Active Directory schema.

Certificates

The following functions can be used for managing certificates in an Office Communications
Server 2007 R2 environment. Each displays the friendly name for the certificate, the machine
that is the subject of the certificate, the authority that issued the certificate, the dates when
the certificate is valid, and the usages for which it is valid.

Get-OCSSipRoutingCert

This function returns information about the Standard Edition Server, Enterprise pool front-end
server, and Mediation Server certificates. It runs against the local server only.

9

Get-OCSEdgeAvAuthCert

This function returns information about the A/V Edge Server certificate. It runs against the
local server only.

Get-OCSEdgeConferencingExternalCert

This function returns information about the Conferencing Edge Server certificate. It runs
against the local server only.

Get-OCSEdgeFederationExternalCert

This function returns information about the Access Edge Server’s public edge certificate. The
Office Communications Server WMI object refers to this as a Federation certificate, and the
function follows that convention. However, the same certificate is also used for remote access.
It runs against the local server only.

Get-OCSEdgeFederationInternalCert

This function returns information about the Access Edge Server’s private edge certificate. The
Office Communications Server 2007 R2 WMI object refers to this as a Federation certificate,
and the function follows that convention. However, the same certificate is also used for
remote access. It runs against the local server only.

Edge Server: Federation Denied List

The following functions can be used for managing the Federation-Denied list in an Office
Communications Server 2007 R2 environment. Note that these functions are referred to as
blocked in the Office Communications Server 2007 R2 Management Console.

Get-OCSEdgeFederationDenied

Optional Parameters: -Server

This function returns the Federation-Denied list (from the WMI Object
MSFT_sipFederationDeniedDomainSetting) on an Access Edge Server. If no server parameter is
specified, this function runs against the local server.

New-OCSEdgeFederationDenied

Required Parameter: -Domain

Optional Parameters: -Server

10

This function adds the specified domain to the Federation-Denied list on an Access Edge
Server. If no server parameter is specified, this function runs against the local server.

Remove-OCSEdgeFederationDenied

Required Parameter: -Domain

Optional Parameters: -Server

This function removes the specified domain from the Federation-Denied list on an Access
Edge Server. If no server parameter is specified, this function runs against the local server.

Edge Server: Federation Partners

The following functions can be used for managing federation partners in an Office
Communications Server 2007 R2 environment. Note that these functions are referred to as
Allowed in the Office Communications Server 2007 R2 Management Console.

Get-OCSEdgeFederationPartner

Optional Parameters: -Server

This function returns the federation partners on an Access Edge Server (from the WMI object
MSFT_SIPFederationPartnerTable). If no server parameter is specified, this function runs
against the local server.

New-OCSEdgeFederationPartner

Required Parameter: -Domain

Optional Parameters: -Server-EdgeProxyAddress, -UserVerificationLevel

This function adds the specified domain to the list of federation partner domains on an Access
Edge Server. If an edge proxy address is specified for the partner domain, it will be located by
looking up an SRV record.

Export-OCSEdgeFederationPartner

Required Parameter: -Path

Optional Parameters: -Server

This function exports federation partners to the CSV file specified in path. If no server
parameter is specified, this function runs against the local server.

11

Import-OCSEdgeFederationPartner

Required Parameter: -Path

This function reads a CSV file and, for each line, creates a new federation partner on the local
server for the given domain, including the edge proxy address if it is specified.

Remove-OCSEdgeFederationPartner

Required Parameter: -Domain

Optional Parameters: -Server, -EdgeProxyAddress, -UserVerificationLevel

This function removes the specified domain from the list of federation partner domains on an
Access Edge Server. If no server parameter is specified, this function runs against the local
server.

Example: To delete all domains and then re-import from partners.csv, use the following
syntax:

get-ocsedgefederationPartner | foreach {Remove-OCSEdgeFederationPartner

 -domain $_.domain}

import-OcsEdgeFederationPartner –Path partners.csv

Edge Server: IM Providers

The following functions can be used for managing instant messaging (IM) providers in an
Office Communications Server 2007 R2 environment.

Get-OCSEdgeIMProvider

Optional Parameters: -Server

This function returns a list of IM providers on an Access Edge Server (from the WMI object
MSFT_SIPFederationNetworkProviderTable). By default, this list contains the three public IM
providers: MSN, AOL, and Yahoo!. If no server parameter is specified, this function runs
against the local server.

The information stored about each provider includes its EdgeProxyAddress, whether the
provider is a public IM service provider and whether a connection to this IM service provider
is enabled. It also shows the options for filtering incoming communications. WMI provides the
following values for the options for filtering incoming communications:

12

• UseSourceVerification—This value corresponds to the following option in the Office
Communications Server 2007 R2 Management Console: Allow Communications Only
From Users On Recipient’s Contact List.

• AlwaysVerifiable—This value corresponds to the following option in the Office
Communications Server 2007 R2 Management Console: Allow All Communications From
This Provider.

• AlwaysUnVerifiable—This value corresponds to the following option in the Office
Communications Server 2007 R2 Management Console: Allow All Communications Only
From Users Verified By This Provider.

If no server parameter is specified, this function runs against the local server.

New-OCSEdgeIMProvider

Required Parameters: -Name, edgeProxyAddress

Optional Parameters: UserVerificationLevel -Enabled -IsPublic

This function adds a new IM provider to an edge server, setting the name and Access Edge
Server address. If UserVerificationLevel is not specified, this function defaults to
UseSourceVerification. (See Get-OCSIMProviders.) If -enabled and -Ispublic are not specified,
they are set to false.

Update-OCSEdgeIMProvider

Required Parameters: -Name

Optional Parameters: UserVerificationLevel -edgeProxyAddress -Enabled -IsPublic

This function updates the IM provider specified by Name on an edge server. If
edgeproxyaddress, userVerificationlevel (which you can find listed under Get-OCSIMProviders),
or both, are specified, they will be modified.

Warning There is no “=false” for -enabled and -Ispublic. So, if they are not specified, they are set
to false, even if they were previously set to true.

Remove-OCSEdgeIMProvider

Required Parameter: -Name

13

Optional Parameters: -Server This function removes the IM provider specified by Name from
the Access Edge Server. If no server parameter is specified, this function runs against the local
server.

Edge Server: Internal Domains

The following functions can be used for managing internal (sip) domains in an Office
Communications Server 2007 R2 environment.

Get-OCSEdgeInternalDomain

Optional Parameters: -Server

This function returns the internal Session Initiation Protocol (SIP) domains supported on an
Access Edge Server (returned by the WMI object MSFT_sipFederationInternalDomainData). If
no server parameter is specified, this function runs against the local server.

New-OCSEdgeInternalDomain

Required Parameter: -Domain

Optional Parameters: -Server

This function adds the specified domain to the list of internal SIP domains supported on an
Access Edge Server. If no server parameter is specified, this function runs against the local
server.

Remove-OCSEdgeInternalDomain

Required Parameter: -Domain

Optional Parameters: -Server

This function deletes the specified domain from the list of internal SIP domains supported on
an Access Edge Server. If no server parameter is specified, this function runs against the local
server.

Edge Server: Internal Servers

The following functions can be used for managing the list of internal Office Communications
Servers that an Access Edge Server trusts.

Get-OCSEdgeInternalServer

Optional Parameters: -Server

14

This function returns the internal Live Communications Server or Office Communications
Server 2007 R2 servers authorized to use an Access Edge Server (returned by the WMI object
MSFT_SIPFederationInternalServerData). If no server parameter is specified, this function runs
against the local server

New-OCSEdgeInternalServer

Required Parameter: -intServer
Optional Parameters: -Server

This function adds an internal Live Communications Server or Office Communications Server
2007 R2 server to the list of servers authorized to use an Access Edge Server.
If no server parameter is specified, this function runs against the local server.

Remove-OCSEdgeInternalServer

Required Parameter: -intServer

Optional Parameters: -Server

This function removes an internal Live Communications Server or Office Communications
Server 2007 R2 server from the list of trusted servers authorized to connect to an Access Edge
Server. If no server parameter is specified, this function runs against the local server.

Events

The following functions can be used to query the event log for information from Office
Communications Server events.

Get-OCSWarningEvent

This function displays a tabular view of events from the Office Communications Server event
log that have an entry type of Warning. This function runs against the local server only.

Get-OCSErrorEvent

This function displays a tabular view of events from the Office Communications Server event
log that have an entry type of Error. This function runs against the local server only.

Location Profiles

The following functions can be used for managing Enterprise Voice location profiles in an
Office Communications Server 2007 R2 environment. See also Add -
OCSNormalizationRuleToOCSLocationProfile and Remove-

15

OCSNormalizationRuleFromOcsLocationProfile in the “Normalization Rules” section later in
this appendix.

Get-OCSLocationProfile

Optional Parameters: -Server, -name

This function returns a list of Enterprise Voice location profiles (from the WMI class
MSFT_SIPLocationProfileData). If no name is specified, then all location profiles are returned.
The name can use a wild card or specify a unique name. If no server parameter is specified,
this function runs against the local server.

Choose-OCSLocationProfile

Optional Parameter: -Server

This function returns MSFT_SIPLocationProfileData objects from the list returned by
Get-OCSLocationProfile. If there is only one object in this list, it is returned; otherwise, a list is
presented to allow one to be chosen. If no server parameter is specified, this function runs
against the local server.

New-OCSLocationProfile

Required Parameters: -Name, -Description –Rules

Optional Parameters: -Server

This function creates a new Location Profile, with the given name, and description (which is
labeled ‘Display text’ in the Office Communications Server Voice Properties, Add…, Add
Location Profile dialog when adding a new profile, and is required). A profile must have at
least one normalization rule. There are two ways of passing the rules, either as ‘rule’ WMI
objects or by name. If no server parameter is specified, this function runs against the local
server.

Examples

The following two examples are equivalent. One stores the rule object in a variable, the other
passes the rule name.

$rule=Get-OCSNormalizationrule –name “New-York” ;

New-OCSNormalizationProfile –name “Wall-St” –rule $rule –Description “Wall St, New York, US”

New-OCSNormalizationProfile –name “Wall-St” –rule “New-York” –Description “Wall St, New

York, US”

16

Remove-OCSLocationProfile

Required Parameter: -Name

Optional Parameter: -Server

This function deletes the named location profile. If no server parameter is specified, this
function runs against the local server.

Mediation Servers

The following functions can be used to work with Mediation Servers in an Office
Communications Server 2007 R2 environment.

Get-OCSMediationServerSetting

Optional Parameters: -Server

This function returns the settings for a Mediation Server (from the WMI class
MSFT_SIPMediationServerConfigSetting). If no server parameter is specified, this function runs
against the local server. If the local (or specified) server is not a Mediation Server, this function
returns an error.

Set-OCSMediationServerPlusSign

Optional Parmeters Server, -Remove, -Preserve

This function determines whether a Mediation server preserves or removes the + sign in an
E.164 formatted number for compatibility with PBXs, which do not support the + sign. A
mediation server name can be piped into the function or passed as a parameter. If no server
parameter is specified, this function runs against the local server. The two switches, Remove
and Preserve, toggle the server behavior. If the command is invoked with no parameters or
only a target server via the Server parameter, the + sign is preserved.

Note For more information see “Choose-OCSMediationSever” in the “Services” section later in this
document.

Meeting Policies

The following functions can be used to manage policy settings for Web conferencing in an
Office Communications Server 2007 R2 environment.

17

Get-OCSMeetingPolicy

Optional Parameters: -Server, -Name

This function returns a meeting policy objects (from the WMI class
MSFT_SIPGlobalMeetingPolicyData). The Name parameter filters the meeting polices, to the
named policy or policies if used with a wild card. If no server parameter is specified, this
function runs against the local server.

Choose-OCSMeetingPolicy

Optional Parameters: -Server

This function calls Get-OCSMeetingPolicy to get a collection of
MSFT_SIPGlobalMeetingPolicyData objects. If there is only one meeting policy, the object is
returned. If there is more than onemeeting policy, a list is displayed, the user is prompted to
select one or more policies, and the function returns the selected object or objects.

If no server parameter is specified, this function runs against the local server.

New-OCSMeetingPolicy

Required Parameter: -Name

Optional Parameters: -MeetingSize, -AllowAppSharingForExternalMeeting, -AllowIPAudio,
-AllowIPVideo, -AllowPresenterToDelegateRecording, -AllowPresenterToRecord, -ColorDepth,
-EnableAppDesktopSharing, -EnableDataCollaboration, -RetainPPTForExternalMeeting, -Server

This function creates a new meeting policy with the given name. The parameters have
defaults assigned as follows:

• Meeting Size: defaults to10.

• Allow App Sharing For External Meeting: can be None (the default), SingleApplication, or
Desktop.

• Allow IP Audio: defaults to false.

• Allow IP Video: defaults to false.

• Color Depth: can be ‘Gray shades’, ‘256’, ‘High colors’ (the default), or ‘True Colors’.

• Enable App Desktop Sharing: defaults to false.

• Enable Data Collaboration: defaults to false.

18

• Retain PPT For External Meeting: defaults to false.

• Allow Presenter To Record: defaults to false.

• Allow Presenter To Delegate Recording: defaults to false.

Note In the Configure Office Communications Server Users Wizard, Configure User Settings,
Meeting Policy, Add or Edit Policy, the setting to retain a PPT for External Meetings is labeled “Use
native format for PowerPoint Files”.

If no server parameter is specified, this function runs against the local server.

Remove-OCSMeetingPolicy

Required Parameter: -Name

This function deletes the named meeting policy.

Update-OCSMeetingPolicy

Required Parameter: -Name

Optional Parameters: -MeetingSize, -AllowAppSharingForExternalMeeting, -AllowIPAudio,
-AllowIPVideo, -AllowPresenterToDelegateRecording, -AllowPresenterToRecord, -ColorDepth,
-EnableAppDesktopSharing, -EnableDataCollaboration, -RetainPPTForExternalMeeting, -Server

This function updates the meeting policy with the given name. If parameters are not specified,
they are left as they are. (They are not reset to the defaults used by New-OCSMeeting.)

If no server parameter is specified, this function runs against the local server.

Normalization Rules

The following functions can be used for working with Enterprise Voice normalization rules in
an Office Communications Server 2007 R2 environment.

Get-OCSNormalizationRule

Optional Parameters: -Server, -name

This function returns a list of Enterprise Voice phone number normalization rules (from the
WMI class MSFT_SIPLocalNormalizationRuleData). If –Name is specified, the list is filtered
down to the name – which can include a wild card. If no server parameter is specified, this
function runs against the local server.

19

Choose-OCSNormalizationRule

Optional Parameters: -Server

This function returns MSFT_SIPLocalNormalizationRuleData objects from the list returned by
Get-OCSNormalizationRule. If there is only one object in this list, it is returned; otherwise, a list
is presented to allow one item to be chosen.

If no server parameter is specified, this function runs against the local server.

New-OCSNormalizationRule

Required Parameters: -Name, -pattern, -translation

Optional Parameter: -Description, server

This function creates a new Enterprise Voice normalization rule. A rule does not need to be
bound to any location profiles and the new- command doesn’t make the link between a
normalization rule and a location profile. Use the Add- function shown later in this list. If no
server parameter is specified, this function runs against the local server.

Pattern is a regular expression for recognizing the number, and translation is the string into
which the recognized number is inserted. The regular expression will usually begin with the
marker ^ and end with the marker $. In between, it can have \+, which designates a plus sign;
[0..9] or \d , which designates a digit; * , which designates any number of digits, including 0; +,
which designates at least one match; and ?, which designates zero or one matches. {n}
represents exact n matches, {n,} is at least n matches, and {n,m} is between n and m matches.
Finally, segments in brackets are passed on to the next stage as $1, $2, and so on.

Note PowerShell expands variables inside double quoted strings, so be sure to use single quotes
to prevent $1 being converted.

Examples

Change a 7 digit local number to a Seattle area US number beginning with +1425.

New-ocsNormalizationRule –Name 'Seattle Local area' –pattern '^(\d{7})$'

-Translation '+1425$1’

Remove the leading 0 from a malformed UK number.

New-ocsNormalizationRule –Name 'UK Leading 0' – pattern '^\+440(\d+)$'

-Translation '+44$1’

20

Update-OCSNormalizationRule

Optional Parameters: -Name, -Description, -pattern, -translation, Server

This function edits a normalization rule, following the same pattern as creating a new one. If
no server parameter is specified, this function runs against the local server. Rules can be
passed to this function using the pipe, but it does not support wild cards for rule names.

Example

Get-OcsNormalizationRule | where {$_.description –eq $null} | Update-OcsNomralizationRule -

description “Initial Rule”

Add-OCSNormalizationRuleToOCSLocationProfile

Required Parameters: -Location

Optional Parameters: -Rules, -Server

This function links one or more normalization rules to a location profile. There are two ways
you can pass the Rules and Location parameters: either by passing the object or by passing
theiname (and letting the function get the objects for you). You can pass an array of location
objects, or a list of location profile names separated by commas. For the rules, there is a wild
card, and you can name rules to take advantage of this. In addition, you can pipe rules into
the function. If no server parameter is specified, this function runs against the local server.

Examples

Link-OcsNormalizationRuleToOcsLocationProfile –rules “Generic-US” –location “Wall-st”

Get-OCSNormalizationRule –Name “Generic-US” |

Link-OcsNormalizationRuleToOCSLocationProfile -location Broadway, Madison

Remove-OCSNormalizationRuleFromOCSLocationProfile

Required parameter: Rule

Optional Parameters; -Location, -Server

This function removes a single Normalization rule from one or more location profiles. If no
location profile is passed, all profiles are checked, and those which are linked to the rule will
be unlinked. If a name is passed as the location parameter, then it can be a wild card or an
array of names. Alternatively, WMI objects representing the location profiles can be passed.
The rule can either be an object representing the Normalization rule or the name of the rule.

21

Remove-OCSNormalizationRule

Optional Parameters: -Rule, -Server

This function deletes the rule that is passed to it. The rule can be passed through the pipe, or
as a parameter, either using the name of the rule or the WMI object that represents it.
Because a Normalization rule cannot be deleted if it is linked to a location profile, the
function calls Remove-OCSNormalizationRuleFromOcsLocationProfile to remove
any links. Note that removing the last rule from a location profile is not a valid configuration.
If no server parameter is specified, this function runs against the local server.

Phone Routes

The following functions can be used for managing phone routes in an Office Communications
Server 2007 R2 environment. For more information about Office Communications Server 2007
R2 Enterprise Voice concepts, refer to Chapter 11, “VoIP Scenarios.”

Get-OCSPhoneRoute

Optional Parameters: -name; Server

This function returns a list of Enterprise Voice Phone Routes (from the WMI class
MSFT_SIPPhoneRouteData). If the name parameter is specified, the list is filtered to that name.
If no server parameter is specified, this function runs against the local server.

Choose-OCSPhoneRoute

Optional Parameters: -Server

This function returns MSFT_SIPPhoneRouteData objects from the list returned by
Get-OCSPhoneRoute. If there is only one object in this list, it is returned; otherwise, a list is
presented to allow one object to be chosen. If no server parameter is specified, this function
runs against the local server.

New-OCSPhoneRoute

Required Parameters: -Name, -GatewayList, -PhoneRouteUsages, -TargetPhoneNumber

Optional Parameter: -description

This function creates a new route. A route needs a name, a regular expression to identify
target phone numbers, and one or more associated gateways. In addition, a route cannot be
created without being associated with at least one route usage.

Example

22

New-OCSphoneRoute -name "MyNewRoute" -gatewayList (Choose-OcsMediationServer)`

-PhoneRouteUsages(Choose-OcsPhoneRouteUsages) -targetPhoneNumber ^650

Remove-OCSPhoneRoute

Required Parameter: -Name

Optional Parameters: -Server

This function deletes the named route. If no server parameter is specified, this function runs
against the local server.

Update-OCSPhoneRoute

Optional Parameters: -Name, -PhoneRouteUsages, -TargetPhoneNumber, -description

This function updates OCSPhone routes; the parameters have the same meaning as they do in
the New-OcsPhoneRoute Function. The name does not support wild cards; however multiple
routes can be piped into the function. At present, it does not support changing the gateways
used.

Get-OCSPhoneRouteForOCSPhoneRouteUsage

Optional Parameters: -usage, -Server

This function gets phone route objects that are associated with one or more usages. The
usage can be either a phone route usage object, an array of these objects, or a string
containing the name of the usage. Alternatively, one or more phone route usages can be
piped into the function. If no server parameter is specified, this function runs against the local
server.

Get-OCSPhoneRouteForOCSUser

Required Parameter: -URI

This function takes a URI representing a user and gets the policy associated with the user
(using Get-OCSPolicyForUser). It then gets the usages associated with that policy (using
GetOCSUsageForOCSUCPolicies), and gets the routes associated with those usages (using Get-
OcsPhoneRouteForOCSPhoneUsage). If the SIP: portion is not specified in the URI, it will be
added.

Get-OCSPhoneRouteForNumber

Required Parameter: -Number

Optional Parameter: -Routes

23

This function gets the phone routes that can be used to reach a particular number. If the
routes parameter is not specified, the function checks against all routes. If routes are passed to
the function, only those routes are checked for a match.

Phone Route Usages

The following functions can be used for working with phone route usage objects in an Office
Communications Server 2007 R2 environment.

Get-OCSPhoneRouteUsage

Optional Parameters: -name, -Server

This function returns a list of Unified Communications (UC) phone route usages (from the
WMI class MSFT_SIPPhoneRouteUsageData). If the name parameter is specified, the list is
filtered to the named route. A wild card can be used in the name to select multiple routes. If
no server parameter is specified, this function runs against the local server.

Choose-OCSPhoneRouteUsage

Optional Parameters: -Server

This function returns MSFT_SIPPhoneRouteUsageData objects from the list returned by
Get-OCSUCPhoneRouteUsage. If there is only one object in this list, it is returned; otherwise, a
list of objects is presented to allow one to be chosen. If no server parameter is specified, this
function runs against the local server.

New-OCSPhoneRouteUsage

Required Parameter: -Name

Optional Parameter: -Description, -Server

This function creates a new phone route usage and sets the Default Usage parameter to false.
It doesn’t add any routes to the usage. (See the Add-OCSPhoneRouteUsageForOCSUCPolicy
function that appears later in this list.) If no server parameter is specified, this function runs
against the local server.

Remove-OCSPhoneRouteUsage

Required Parameter: -Name

Optional Parameters: -Server

24

This function deletes the named phone route usage. If no server parameter is specified, this
function runs against the local server.

Get-OCSPhoneRouteUsageForOCSUCPolicy

Optional Parameters: -policy, -Server

This function returns the phone route usage or usages associated with a UC policy. Policy can
be passed as a parameter (either using the name of the policy or the WMI object which
represents it), or can be passed through using the pipe command. If no server parameter is
specified, this function runs against the local server.

Example

The following 2 examples produce the same result:

Get-OcSPhoneRouteUsageForOCSUCPolicy -policy (choose-ocsUCpolicy)

Choose-ocsUCpolicy | Get-OcSPhoneRouteUsageForOCSUCPolicy

Add-OCSPhoneRouteUsageToOCSPhoneRoute

Required Parameters: -Usages, -Route

Optional Parameter: -Server

This function links one or more usages to one or more phone route objects. There are two
ways you can pass the parameters: either by passing the object or objects or by passing their
names (and letting the function get the objects for you). For the usages, there is an automatic
wild card and you can name phone usage objects to take advantage of this. Routes can use a
wild card if explicitly specified. If objects are passed, the function allows single or multiple
objects to be passed. If no server parameter is specified, this function runs against the local
server.

Add-OCSPhoneRouteUsageToOCSUCPolicy

Required Parameters: -Usages, -Route

Optional Parameter: -Server

This function links one or more usages to one or more UC policy objects. There are two ways
you can pass the parameters: either by passing the object or objects, or by passing their
names (and letting the function get the objects for you). For the usages, there is an automatic
wild card, and you can name phone usage objects to take advantage of this. UC Policies can
use a wild card, if explicitly specified. If objects are passed, the function allows single or

25

multiple objects to be passed. If no server parameter is specified, this function runs against
the local server.

Remove-OCSPhoneRouteUsageFromOCSPhoneRoute

Required Parameter: -Usage

Optional Parameter –Route, -Server

This function unlinks a single phone route usage from one or more OCS phone routes. The
usage parameter can be passed as an object or as a string containing its name, as well as the
parameter. The route parameter supports wild cards but the usage parameter does not. If no
route is specified, the usage is removed from all routes. If no server parameter is specified, this
function runs against the local server.

Remove-OCSPhoneRouteUsageFromOCSUCPolicy

Required Parameter: -Usage

Optional Parameter –Policy, -Server

This function unlinks a single phone route usage from one or more UC Policies. The usage or
the policy can be passed as an object or as a string containing its name. The policy parameter
supports wild cards, but the usage parameter does not. If no policy is specified, the usage is
removed from all Policies. If no server parameter is specified, this function runs against the
local server.

Pools

The following functions can be used for managing pools in an Office Communications Server
2007 R2 environment. Internally, a Standard edition server is considered to be a pool.

Get-OCSPool

Optional Parameters: -name, -Server

This function returns pool settings (from the WMI class MSFT_SIPPoolSetting). If a name is
specified, the list of pools is filtered down to the matching name or names: wild cards are
supported in the name. If no server parameter is specified, this function runs against the local
server.

Choose-OCSPool

Optional Parameters: -Server

26

This function returns a single MSFT_SIPPoolSetting object from the list returned by
Get-OCSPoolSetting. If there is only one object in this list, it is returned; otherwise, a list of
objects is presented to allow one to be chosen. If no server parameter is specified, this
function runs against the local server.

Start-OCSReplication

Required Parameter: -Pool

This function starts the replication of Active Directory information to the specified pool. It is
not designed to run remotely.

SIP Domains

The following functions can be used to manage the list of SIP domains for which an Office
Communications Server 2007 R2 environment is authoritative.

Get-OCSSIPDomain

Optional Parameters: -Name, Server

This function returns SIP domains supported in an Office Communications Server deployment
(from the WMI class MSFT_SIPDomainData). If no server parameter is specified, this function
runs against the local server.

If a name is specified, the function returns the matching SIP domain objects, otherwise it
returns all known SIP domains. Wild cards are supported in the name.

Examples

Get-OCSSIPDomain

Get-OCSSipDomain –Server SE.litwareinc.com

Get-OcsSipDomain litware*

New-OCSSIPDomain

Required Parameter: -Domain

OptionalParameter: - Server

This function adds a SIP domain to the list of SIP domains supported on an Office
Communications Server deployment. If you need a new domain to be the default domain, this
should be set through the Office Communications Server Global Properties, General Tab. If no
server parameter is specified, this function runs against the local server.

Examples

27

New-OCSSIPDomain “LitwareInc.Co.Uk”

New-OCSSIPDomain –domain “LitwareInc.Co.Uk” –server se.litwareInc.com

Remove-OCSSIPDomain

Required Parameter: -Domain

OptionalParameter: - Server

This function deletes a SIP domain from the list of SIP domains supported on an Office
Communications Server2007 R2 deployment. If you need to delete the default domain, you
must set a new domain to be the default through the Office Communications Server Global
Properties, General Tab first. If no server parameter is specified, this function runs against the
local server.

Examples

Remove-OCSSIPDomain “LitwareInc.Co.Uk”

Remove-OCSSIPDomain –domain “LitwareInc.Co.Uk” –server se.litwareInc.com

Services

The following functions can be used for managing services in an Office Communications
Server 2007 R2 environment.

Get-OCSInstalledService

Optional Parameter: -Server

This function returns the Office Communications Server 2007 R2 Service components (from
the WMI class MSFT_SIPServerInstalledComponentData). If no server parameter is specified,
this function runs against the local server.

Get-OCSWindowsService

Optional Parameter: -Server

This function returns a list of win32_service objects for the Real-Time Communications (RTC)
services. If no server parameter is specified, this function runs against the local server.

Start-OCSWindowsService

Optional Parameters: -Server

This function attempts to start all the services returned by Get-OCSWindowService. If no server
parameter is specified, this function runs against the local server.

28

Stop-OCSwindowsService

Optional Parameter: -Server

This function attempts to stop all the services returned by Get-OCSWindowService. If no server
parameter is specified, this function runs against the local server.

Get-OCSTrustedService

Optional Parameter: -Server

This function returns a list of trusted services (from the WMI class
MSFT_SIPTrustedServiceSetting). If no server parameter is specified, this function runs against
the local server.

Choose-OCSMediationServer

Optional Parameter: -Server

This function returns a single MSFT_SIPTrustedServiceSetting object from the list returned by
Get-OCSTrustedService. The list is filtered down to objects with a type of Mediation Server. If
there is only one object in this list, it is returned; otherwise, a list of objects is presented to
allow one to be chosen. If no server parameter is specified, this function runs against the local
server.

UC Policies

The following functions can be used for managing Unified Communications policies in an
Office Communications Server 2007 R2 environment. (For more information, see the Add-
OCSPhoneRouteUsageToOCSPhoneRoute function in the “Phone Route Usages” section,
earlier in this appendix.)

Get-OCSUCPolicy

Optional Parameters: -name, -Server

This function returns a list of UC policies (from the WMI class MSFT_SIPGlobalUCPolicyData). If
a name is specified, then the function returns the matching policy objects; otherwise it returns
all policies. Wild cards are supported in the name.

If no server parameter is specified, this function runs against the local server.

Choose-OCSUCPolicy

Optional Parameter: -Server

29

This function returns MSFT_SIPGlobalUCPolicyData objects from the list returned by
Get-OCSUCPolicy. If there is only one object in this list, it is returned; otherwise, a list of
objects is presented to allow one to be chosen.

If no server parameter is specified, this function runs against the local server.

New-OCSUCPolicy

Required Parameter: -Name

Optional Parameters: -AllowSimultaneousRinging, -Server

This function creates a new UC policy object. If the -AllowSimultaneousRinging switch is used,
the policy will allow call forking. No usages are linked to the policy. (For more information,
see the Add-OCSPhoneUsageToOCSUCPolicy item shown earlier in this appendix.) The newly
created policy is set not to be the default. If no server parameter is specified, this function
runs against the local server.

Example

New-OCSUCPolicy “Admin Policy” – AllowSimultaneousRinging

Remove-OCSUCPolicy

Required Parameter: -Name

Optional Parameter: Server

This function deletes the named UC policy. If no server parameter is specified, this function
runs against the local server.

Example

Remove-OCSUCPolicy “Admin Policy”

Update-OCSUCPolicy

Optional Parameters -Name, -AllowSimultaneousRinging, -defaultPolicy, -Server

This function updates a UC policy. Policies are either piped into the function or the name of a
single policy is passed as a parameter (the name does not support the use of wild cards). The
policy can be set as the Default or to allow Simultaneous ringing by passing either $true or
$false as values for the parameters. If no server parameter is specified, this function runs
against the local server.

30

Get-OCSUCPolicyForOCSUser

Optional parameters: -User, -Server

This function returns the UC policy object associated with one or more users. It checks, using
Get-OCSGlobalUCSetting, to see whether a global policy is in force. If a global policy is in
force or no policy has been set for the user, it will return the global policy; otherwise, it will
return the one specified for the user. One or more users may be passed into the function
using the pipe or using the parameter, using either the WMI object representing the user or
the users SIP URI. (which is passed to Get-OCSUser). The parameter supports single or
multiple objects and wild cards. If no server parameter is specified, this function runs against
the local server.

Example

Get-OCSUCPolicyForOCSUser bart@litwareinc.com

Get-OCSGlobalUCSetting

Optional Parameter: -Server

This function returns the information from the object MSFT_sipGlobalUCSetting.

If no server parameter is specified, this function runs against the local server.

Users

The following functions can be used for managing users in an Office Communications Server
2007 R2 environment.

Get-OCSUser

Optional Parameters: -URI, -Condition, -Server

This function returns a list of presence-enabled users (from the WMI
classMsft_sipesusersetting). If no condition is specified, all enabled users are listed. The
condition is enclosed in quotes and written in WMI syntax, not PowerShell syntax. To avoid
the need to write a condition in the form “PrimaryURI=sip:user@domain”, the function will
also accept a URI parameter. This parameter can include a wild card, and if the SIP: is omitted,
it will be inserted automatically. If no server parameter is specified, this function runs against
the local server.

Examples

Get-OCSUser –condition “PublicNetworkEnabled = 'TRUE' "

31

Get-OCSUser –URI 'SIP:bart@litwareonc.com'

Get-OCSUserDetail

Optional Parameters: -Condition, -Server

This function displays a formatted list of UC users, showing their DisplayName, URI, and
whether they are enabled. If a user is enabled, the function shows whether they are enabled
for enhanced presence, enabled for remote access, enabled for federation, enabled for public
IM connectivity, or enabled for voice. It also displays the Unified Communications Policy and
Meeting Policy applied to them.

The data is returned by Get-OCSUser, and the -Condition parameter is passed straight
through to it. (See the Get-OCSUser function earlier in this list for more details.) If no server
parameter is specified, this function runs against the local server.

Get-OCSPICUsersCount

Optional Parameter: - Server

This function returns a count of users enabled for public IM connectivity. The data to be
counted is returned by a call to Get-OCSUser. If no server parameter is specified, this function
runs against the local server

New-OCSuser

Required Parameters: -User, -HomeServer
Optional parameters: URI, Server

This function returns one or more newly enabled Office Communications Server 2007 R2 user
objects. It accepts either an Active Directory object representing the user or their Active
Directory distinguished name, and a WMI object representing the requested home server or
the Home Server’s Active Directory distinguished name (not its FQDN) and the user’s SIP URI.
If no URI is specified, then the user’s e-mail address is used as their URI. If the domain in the
URI is not a supported SIP domain, a warning is issued, but the process continues. If no server
parameter is specified, this function runs against the local server.

Examples

Get-adUser –filter “givenName=Jo*” | new-OcsUser –homeServer (choose-ocspool)

New-ocsUser –user "CN=Sidney Higa,CN=users,DC=litwareinc, DC=com" –homeServer "CN=LC

Service,CN=Microsoft,CN=SE,CN=Pools CN=RTCServices,CN=Configuration,DC=litwareinc,Dc=com"

-uri "sip:sidhig@Litwareinc.co.uk"

32

Remove-OCSUSer

Required Parameters: -URI
Optional parameters: -Server

This function removes the users specified by the URI. It fetches the user objects identified by
the URI, and calls its delete method. You can build more complex selection processes and call
the delete() method, although care is needed because the delete process is not easily
reversible. Remove-OcsUser * will remove all users without warning. If no server parameter is
specified, this function runs against the local server.

Update-OCSUser

Optional Parameters: Condition, -URI –userDN , Server,
-AllowOrganizeMeetingWithAnonymousParticipants, -ArchiveFederatedCommunications,
-ArchiveInternalCommunications, -EnabledForEnhancedPresence, -EnabledForFederation,
-EnabledForInternetAccess, -HomeServerDN, -LineURI, -MeetingPolicy,
-PublicNetworkEnabled, -RemoteCallControlTelephonyEnabled, -UCPolicy

This function accepts input from the pipe command, which can either be an OCSUser object
or an Active Directory object. It will also accept the Active Directory distinguished name for
the user in the userDN parameter or a SIP URI in the URI parameter. Finally, it can retrieve
users matching the condition parameter. (See the Get-OCSUser function earlier in this
appendix for more details.) The other parameter names correspond to the WMI field names
shown in Get-OCSUser and are used as column headings in Import-OCSUser and
Export-OCSUser. If no server parameter is specified, this function runs against the local server.

Examples

Get-adUser –filter “givenName=Jo*” |

Update-OcsUser –EnabledForFederation $true

Get-OcsUser –Condition "PublicNetworkEnabled=true" |

Update-OcsUser –EnabledForFederation $true

(this example can be shortened, as the following one shows)

Update-OcsUser –condition "enabledForFederation=true" -EnabledForInternetAccessTrue

Update-OcsUser –URI Sip:sidHig@litware.co.uk –enabledForInternetAccess $true

Import-OCSUser

Required Parameter: -Path

33

This function imports Office Communications Server 2007 R2 user data from a CSV file
specified by path. For each line in the CSV, the logic is as follows:

1. Check to see if the user already exists. If not, and if the enabled parameter is true,
the New-OCSUser function is called to create the user.

2. Check to see if the enabled parameter in the file is set to false. If so, the user is
deleted; otherwise, all the settings are passed to Update-OCSUser.

Export-OCSUser

Required Parameter: -Path

Optional Parameters: -Condition, -Server

This function exports Office Communications Server user data to a CSV file specified by path.
The CSV file can be modified and re-imported.

The data is returned by Get-OCSUser, and the -Condition parameter is passed straight
through to it. If no condition is specified, all enabled users are exported. If no server
parameter is specified, this function runs against the local server.

Enable-ExchUmForOCSUser

Optional Parameters -filter, -exchUmPolicy, -runNow

This command is different from the other functions in this script set. It’s designed to run on
Exchange 2007, not Office Communications Server 2007 R2. It retrieves users from Active
Directory who are enabled for Enterprise Voice in Office Communications Server, but who are
not enabled for Exchange Unified Messaging. It generates the commands to run in Exchange
PowerShell to enable them.

The users selected from Active Directory can be restricted with the filter switch specifying an
LDAP term (which must be enclosed in brackets). If no filter is specified, all users will be
processed. An Exchange UM Mailbox policy name can be specified, but if none is provided,
the function will look for an Exchange dial plan that matches the name of the Office
Communications Server Location profile. If the dial plan is found, and it has a single UM
Mailbox policy associated with it, the user is enrolled into UM using that policy. If multiple
policies are associated with a dialplan, a choice will be displayed (in this case it is more
effective to filter the users by Office Communications Server Location Profile and specify the
Exchange UM policy). By default, Exchange will generate a random PIN of the required length
and mail it to the user.

34

This command outputs the commands to be run in Exchange PowerShell. If it is run from
within Exchange PowerShell, the –RunNow switch invokes the commands;, however if you
decide to run this on Office Communications Server 2007 R2, the output can be redirected to
a .PS1 file to be run as a script from within Exchange 2007’s PowerShell in a two step process

PowerShell Commands Used by the Functions
The following is a list describing different PowerShell commands used by the functions
contained in the OCS-R2.PS1 script.

Variables

PowerShell variables are prefixed with a dollar sign ($), and values are assigned with the
equals sign (=). For example:

$users = Get-OCSUser

There are some special variables, notably $_, which represents the current pipeline object. In
addition, $() is also used as a command expansion operator.

param

In a function declaration, param defines the parameters to be passed. It can define their type,
what their value should default to or an action to take if they are not passed. For example, in
the function name get-OCSPhoneRouteForNumber, we have the following:

Param([String]$Number=$(throw "You must specify a Number"),

 $routes=$(get-ocsphoneRoute))

Get-WMIObject

Get-WMIObject returns either a single management object or an array of objects. For
example, the command

get-wmiobject –list

returns a list of available WMI objects on the local machine. All those that are related to Office
Communications Server, or the earlier Live Communications Server versions , have class names
that begin with MSFT_SIP. So you can fetch a list of the interesting objects with the following:

get-wmiobject -list | where-object {$_.__CLASS -like "MSFT_SIP*"}

There are three ways to get information with Get-WMIObject.

35

The first example is to use the -query switch, which allows WMI to be queried with SQL syntax:

Get-WmiObject -query "select * from MSFT_SIPDomainData where

 address='$domain' "

Note that in PowerShell, when a string is enclosed in double quotation marks, variables will be
substituted into the string. So if $domain contains Microsoft.com, the query is executed as

select * from MSFT_SIPDomainData where address='Microsoft.com'

Secondly, you can select all the objects of a given class by running a query without a where
condition or use the -class switch. For example:

Get-WmiObject -class MSFT_SIPDomainData

Finally, you can explore WMI objects with the PowerShell Get-Member commands (aliased as
GM). For example:

Get-WmiObject -class MSFT_SIPDomainData | GM

Typically, objects for working with Office Communications Server have a DELETE() method to
remove them and a PUT() method to save them when properties have been changed; the
underlying code checks for validity when running a PUT() method and generates an error if
the values being set break any consistency rules.

To access WMI objects on a remote computer, Get-WMIObject can be used with the
-computername and -credential switches.

To create a new instance of a WMI object, there are two syntaxes that work in the same way:

$oInstance=([wmiclass]"\\.\root\cimv2:MSFT_SIPLocationProfileData")

 .createinstance()

and

new-Object System.Management.ManagementClass("MSFT_SIPDomainData"))

 .CreateInstance()

The \\.\ in the first example identifies the local server. This can be replaced with any server
name. In the second example, the local server is the only choice available.

New-Object

New-object is used to create a new .NET or COM object. Only two object classes are used in
the scripts we have provided: System.management.managementClass, for working with WMI,

36

and directoryServices.DirectorySearcher, for working with the Active Directory Services
Interface (ADSI).

The class System.management.managementClass is passed the path to a WMI object class,
while directoryServices.DirectorySearcher is passed an Active Directory path.

Get-EventLog

This function takes a -LogName switch to select the log required and then returns the events
in the specified log.

If...else

PowerShell uses the following syntax:

 if (condition) {code block}

ElseIf (condition) {Code block}

Else {code block}

One thing that might confuse new users of PowerShell is the way conditions are written. For
example:

($x –eq $y) rather than ($x =$ y)

($a –gt $b) rather than ($a > $b)

$x –eq $null rather than (isnull($x) or ($x is null)

In addition to the usual equal (-eq), not equal (-ne), greater than (-gt), and less than (-lt)
functions, PowerShell supports -like (for wild cards), -match (for comparison with regular
expressions), and -is for type checking. The types $a, -is, [Strring] (or any other type in square
brackets) are useful for checking what type of variable you have been passed. Here is an
example:

if { $pools -is [array]) {select the right element}

else {return the only element}

Where-object

The where-object function is used to filter an array of objects. For example:

$routes | where-object {$number -match $_.TargetPhoneNumber}

Unlike the IF statement, where the condition is enclosed in normal brackets and the code
block to run is enclosed in braces, where accepts a code block in braces. If it evaluates to true,

37

the object being examined is passed on to the next processing stage. If it evaluates to false,
the object is discarded.

Note also that where-object has an alias of WHERE, but this can lead the new PowerShell user
into writing SQL style syntax. PowerShell users use an asterisk (*) for a wild card, not a percent
sign (%. They also use -eq to mean “is equal to, rather than using an equals sign (=).

Measure-object

This function is used for counting the number of objects and producing aggregate results. For
example, the following syntax counts the number of functions with “OCS” in their name:

dir function:*ocs*| measure-object

Select-object

This function selects the first or last n objects or isolates individual properties. For example,
the export-CSV cmdlet outputs all the properties of the objects it is passed. So the redundant
ones can be removed, as in the following example:

Get-OCSFederationPartner -| Select-object Domain, EdgeProxyAddress |

 export-csv $path

Format-table

One of the big advantages of using PowerShell is the ease of outputting information from
arrays of objects in table or list format.

The -autosize switch allows format-table to size columns to fit the data, and the -wrap switch
allows the data to spill over onto multiple lines.

The -property switch selects the information to display, and custom properties can be set up,
as in the following example:

@{label='Members' ;Expression={$_.PoolMemberList}}

The expression code block can be pretty complex. Look at the code used in the choose
functions shown earlier in this appendix.

ForEach-object

Most PowerShell cmdlets automatically carry out their task with an array of objects. However,
some tasks need to be looped through. For example, if $users is a group of users to be

38

deleted, there is no .delete method for the whole array. So foreach-object is used instead, and
$_ is a special variable meaning “the current object,” as shown in the following example:

$users| foreach-object {$_.Delete()}

