
 Microsoft®

Foreword by David Campbell
Microsoft Technical Fellow

SQL Server®
2008 Internals

Paul S. Randal, Kimberly L. Tripp,
Conor Cunningham, Adam Machanic, and Ben Nevarez

Kalen Delaney

Microsoft® SQL Server ® 2008
Internals

Kalen Delaney
Paul S. Randal, Kimberly L. Tripp

Conor Cunningham, Adam Machanic
and Ben Nevarez

626249.indb 1 3/10/11 11:53 AM

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2009 by Kalen Delaney

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2008940524

Printed and bound in the United States of America.

2 3 4 5 6 7 8 9 10 POD 7 6 5 4 3 2

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly
at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, Access, Active Directory, Excel, MS, MSDN, Outlook, SQL Server, Visual SourceSafe, Win32,
Windows, and Windows Server are either registered trademarks or trademarks of the Microsoft group of companies. Other
product and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted
herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, logo,
person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any express,
statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will be held
liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ken Jones
Developmental Editor: Sally Stickney
Project Editor: Lynn Finnel
Editorial Production: S4Carlisle Publishing Services
Technical Reviewer:	Benjamin Nevarez; Technical Review services provided by Content Master, a member of CM Group, Ltd.
Cover: Tom Draper Design

Body Part No. X15-32079								 [2012-03-30]

A02L626249.indd 2 3/30/12 11:32 AM

For Dan, forever . . . .

—Kalen

626249.indb 3 3/10/11 11:53 AM

626249.indb 4 3/10/11 11:53 AM

		 v

Contents at a Glance

	 1	 SQL Server 2008 Architecture and Configuration 1

	 2	 Change Tracking, Tracing, and Extended Events 75

	 3	 Databases and Database Files . 125

	 4	 Logging and Recovery . 181

	 5	 Tables . . 211

	 6	 Indexes: Internals and Management . . 299

	 7	 Special Storage . . 375

	 8	 The Query Optimizer . . 443

	 9	 Plan Caching and Recompilation . . 525

	 10	 Transactions and Concurrency . 587

	 11	 DBCC Internals . 663

	 	 Index . 729

626249.indb 5 3/10/11 11:53 AM

626249.indb 6 3/10/11 11:53 AM

		 vii

Table of Contents
Foreword . xix

Introduction . xxi

	 1	 SQL Server 2008 Architecture and Configuration 1
SQL Server Editions . 1

SQL Server Metadata . 2

Compatibility Views . 3

Catalog Views . 4

Other Metadata . 6

Components of the SQL Server Engine . 8

Observing Engine Behavior . . 9

Protocols . . 11

The Relational Engine . . 12

The Storage Engine . 14

The SQLOS . 18

NUMA Architecture . 19

The Scheduler . 20

SQL Server Workers . 21

Binding Schedulers to CPUs . 24

The Dedicated Administrator Connection (DAC) 27

Memory . 29

The Buffer Pool and the Data Cache . 29

Access to In-Memory Data Pages . 30

Managing Pages in the Data Cache . 30

The Free Buffer List and the Lazywriter . 31

Checkpoints . 32

Managing Memory in Other Caches . 34

Sizing Memory . 35

Sizing the Buffer Pool . . 36

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

626249.indb 7 3/10/11 11:53 AM

viii	 Table of Contents

SQL Server Resource Governor . . 42

Resource Governor Overview . 42

Resource Governor Controls . 51

Resource Governor Metadata . . 52

SQL Server 2008 Configuration . 54

Using SQL Server Configuration Manager . 54

Configuring Network Protocols . 54

Default Network Configuration . 55

Managing Services . 55

SQL Server System Configuration . . 57

Operating System Configuration . 57

Trace Flags . 60

SQL Server Configuration Settings . . 60

The Default Trace . 71

Final Words . 73

	 2	 Change Tracking, Tracing, and Extended Events 75
The Basics: Triggers and Event Notifications . 75

Run-Time Trigger Behavior . 76

Change Tracking . . 76

Change Tracking Configuration . 77

Change Tracking Run-Time Behavior . 82

Tracing and Profiling . . 86

SQL Trace Architecture and Terminology . 86

Security and Permissions . 88

Getting Started: Profiler . . 89

Server-Side Tracing and Collection . 97

Extended Events . 108

Components of the XE Infrastructure . 108

Event Sessions . 118

Extended Events DDL and Querying . 121

Summary . 124

	 3	 Databases and Database Files . 125
System Databases . 126

master . 126

model . 126

tempdb . 126

The Resource Database . 127

msdb . 128

626249.indb 8 3/10/11 11:53 AM

	 Table of Contents	 ix

Sample Databases . 128

AdventureWorks . 128

pubs . 129

Northwind . 129

Database Files . 130

Creating a Database . 132

A CREATE DATABASE Example . 134

Expanding or Shrinking a Database . . 135

Automatic File Expansion . 135

Manual File Expansion . 136

Fast File Initialization . 136

Automatic Shrinkage . 136

Manual Shrinkage . 137

Using Database Filegroups . 138

The Default Filegroup . 139

A FILEGROUP CREATION Example . . 140

Filestream Filegroups . 141

Altering a Database . 142

ALTER DATABASE Examples . 143

Databases Under the Hood . . 144

Space Allocation . 145

Setting Database Options . 148

State Options . 151

Cursor Options . 155

Auto Options . 155

SQL Options . 156

Database Recovery Options . 158

Other Database Options . 159

Database Snapshots . 159

Creating a Database Snapshot . 160

Space Used by Database Snapshots . 162

Managing Your Snapshots . 164

The tempdb Database . . 164

Objects in tempdb . . 165

Optimizations in tempdb . 166

Best Practices . 168

tempdb Space Monitoring . . 169

Database Security . 170

Database Access . 170

Managing Database Security . 172

626249.indb 9 3/10/11 11:53 AM

x	 Table of Contents

Databases vs. Schemas . . 173

Principals and Schemas . 173

Default Schemas . 174

Moving or Copying a Database . 175

Detaching and Reattaching a Database . 175

Backing Up and Restoring a Database . 177

Moving System Databases . 177

Moving the master Database . 179

Compatibility Levels . 179

Summary . 180

	 4	 Logging and Recovery . 181
Transaction Log Basics . 181

Phases of Recovery . 184

Reading the Log . 186

Changes in Log Size . 187

Virtual Log Files . . 187

Observing Virtual Log Files . 188

Automatic Truncation of Virtual Log Files . 192

Maintaining a Recoverable Log . 193

Automatic Shrinking of the Log . 196

Log File Size . 196

Backing Up and Restoring a Database . 197

Types of Backups . . 197

Recovery Models . . 198

Choosing a Backup Type . 203

Restoring a Database . 203

Summary . 209

	 5	 Tables . . 211
Creating Tables . 211

Naming Tables and Columns . 212

Reserved Keywords . 213

Delimited Identifiers . 214

Naming Conventions . 215

Data Types . 215

Much Ado About NULL . 241

626249.indb 10 3/10/11 11:53 AM

	 Table of Contents	 xi

User-Defined Data Types . 244

IDENTITY Property . 245

Internal Storage . 249

The sys.indexes Catalog View . 250

Data Storage Metadata . 251

Data Pages . 254

Examining Data Pages . 256

The Structure of Data Rows . 260

Finding a Physical Page . 262

Storage of Fixed-Length Rows . 265

Storage of Variable-Length Rows . . 267

Storage of Date and Time Data . 272

Storage of sql_variant Data . 275

Constraints . 279

Constraint Names and Catalog View Information 280

Constraint Failures in Transactions and Multiple-Row
Data Modifications . 281

Altering a Table . 282

Changing a Data Type . 283

Adding a New Column . . 284

Adding, Dropping, Disabling, or Enabling a Constraint 284

Dropping a Column . 285

Enabling or Disabling a Trigger . 286

Internals of Altering Tables . 286

Heap Modification Internals . 289

Allocation Structures . 289

Inserting Rows . 290

Deleting Rows . 291

Updating Rows . 294

Summary . 297

	 6	 Indexes: Internals and Management . . 299
Overview . . 299

SQL Server Index B-trees . 300

Tools for Analyzing Indexes . . 304

Using the dm_db_index_physical_stats DMV . 304

Using DBCC IND . 308

626249.indb 11 3/10/11 11:53 AM

xii	 Table of Contents

Understanding Index Structures . . 310

The Dependency on the Clustering Key . 311

Nonclustered Indexes . 314

Constraints and Indexes . . 315

Index Creation Options . 316

IGNORE_DUP_KEY . . 316

STATISTICS_NORECOMPUTE . . 317

MAXDOP . 317

Index Placement . 317

Constraints and Indexes . . 318

Physical Index Structures . 318

Index Row Formats . 318

Clustered Index Structures . 319

The Non-Leaf Level(s) of a Clustered Index . 320

Analyzing a Clustered Index Structure . 321

Nonclustered Index Structures . 326

Special Index Structures . 337

Indexes on Computed Columns and Indexed Views 337

Full-Text Indexes . 345

Spatial Indexes . . 346

XML Indexes . . 346

Data Modification Internals . . 347

Inserting Rows . 347

Splitting Pages . . 348

Deleting Rows . 352

Updating Rows . 358

Table-Level vs. Index-Level Data Modification . 362

Logging . 363

Locking . 363

Fragmentation . . 363

Managing Index Structures . 364

Dropping Indexes . 365

ALTER INDEX . 365

Detecting Fragmentation . 368

Removing Fragmentation . 369

Rebuilding an Index . 371

Summary . 374

626249.indb 12 3/10/11 11:53 AM

	 Table of Contents	 xiii

	 7	 Special Storage . . 375
Large Object Storage . 375

Restricted-Length Large Object Data (Row-Overflow Data) 376

Unrestricted-Length Large Object Data . 380

Storage of MAX-Length Data . 386

Filestream Data . 388

Enabling Filestream Data for SQL Server . 389

Creating a Filestream-Enabled Database . 390

Creating a Table to Hold Filestream Data . . 390

Manipulating Filestream Data . 392

Metadata for Filestream Data . . 397

Performance Considerations for Filestream Data 399

Sparse Columns . 400

Management of Sparse Columns . . 400

Column Sets and Sparse Column Manipulation 403

Physical Storage . 405

Metadata . 409

Storage Savings with Sparse Columns . . 409

Data Compression . . 412

Vardecimal . 413

Row Compression . 414

Page Compression . 423

Table and Index Partitioning . 434

Partition Functions and Partition Schemes . 434

Metadata for Partitioning . 436

The Sliding Window Benefits of Partitioning . 439

Summary . 442

	 8	 The Query Optimizer . . 443
Overview . . 443

Tree Format . 444

What Is Optimization? . 445

How the Query Optimizer Explores Query Plans . 446

Rules . 446

Properties . 447

Storage of Alternatives—The “Memo” . 449

Operators . 450

626249.indb 13 3/10/11 11:53 AM

xiv	 Table of Contents

Optimizer Architecture . . 456

Before Optimization . 456

Simplification . 457

Trivial Plan/Auto-Parameterization . 457

Limitations . 459

The Memo—Exploring Multiple Plans Efficiently 459

Statistics, Cardinality Estimation, and Costing . 462

Statistics Design . 463

Density/Frequency Information . 466

Filtered Statistics . 468

String Statistics . 469

Cardinality Estimation Details . 470

Limitations . 474

Costing . 475

Index Selection . 477

Filtered Indexes . 480

Indexed Views . 482

Partitioned Tables . 486

Partition-Aligned Index Views . 490

Data Warehousing . 490

Updates . . 491

Halloween Protection . . 494

Split/Sort/Collapse . 495

Merge . 497

Wide Update Plans . 499

Sparse Column Updates . 502

Partitioned Updates . 502

Locking . 505

Distributed Query . 507

Extended Indexes . 510

Full-Text Indexes . 510

XML Indexes . . 510

Spatial Indexes . . 510

Plan Hinting . 511

Debugging Plan Issues . . 513

{HASH | ORDER} GROUP . 514

{MERGE | HASH | CONCAT } UNION . 515

FORCE ORDER, {LOOP | MERGE | HASH } JOIN . 516

626249.indb 14 3/10/11 11:53 AM

	 Table of Contents	 xv

INDEX=<indexname> | <indexid> . . 516

FORCESEEK . 517

FAST <number_rows> . 517

MAXDOP <N> . . 518

OPTIMIZE FOR . . 518

PARAMETERIZATION {SIMPLE | FORCED} . 520

NOEXPAND . 521

USE PLAN . 521

Summary . 523

	 9	 Plan Caching and Recompilation . . 525
The Plan Cache . 525

Plan Cache Metadata . 525

Clearing Plan Cache . 526

Caching Mechanisms . 527

Adhoc Query Caching . 528

Optimizing for Adhoc Workloads . 530

Simple Parameterization . 533

Prepared Queries . 538

Compiled Objects . 540

Causes of Recompilation . 543

Plan Cache Internals . 553

Cache Stores . 553

Compiled Plans . 555

Execution Contexts . 555

Plan Cache Metadata . 556

Handles . . 556

sys.dm_exec_sql_text . 557

sys.dm_exec_query_plan . 558

sys.dm_exec_text_query_plan . 558

sys.dm_exec_cached_plans . 559

sys.dm_exec_cached_plan_dependent_objects . 559

sys.dm_exec_requests . 560

sys.dm_exec_query_stats . 560

Cache Size Management . 561

Costing of Cache Entries . 564

Objects in Plan Cache: The Big Picture . 565

Multiple Plans in Cache . 567

626249.indb 15 3/10/11 11:53 AM

xvi	 Table of Contents

When to Use Stored Procedures and Other Caching Mechanisms 568

Troubleshooting Plan Cache Issues . 569

Wait Statistics Indicating Plan Cache Problems . 569

Other Caching Issues . 571

Handling Problems with Compilation and Recompilation 572

Plan Guides and Optimization Hints . 573

Summary . 585

	 10	 Transactions and Concurrency . 587
Concurrency Models . 587

Pessimistic Concurrency . 587

Optimistic Concurrency . 588

Transaction Processing . . 588

ACID Properties . . 589

Transaction Dependencies . 590

Isolation Levels . 592

Locking . 596

Locking Basics . 596

Spinlocks . . 597

Lock Types for User Data . 597

Lock Modes . 598

Lock Granularity . 601

Lock Duration . 608

Lock Ownership . . 609

Viewing Locks . 609

Locking Examples . 612

Lock Compatibility . 618

Internal Locking Architecture . 620

Lock Partitioning . . 622

Lock Blocks . . 623

Lock Owner Blocks . 624

syslockinfo Table . 624

Row-Level Locking vs. Page-Level Locking . 627

Lock Escalation . 629

Deadlocks . . 630

Row Versioning . 635

Overview of Row Versioning . . 635

Row Versioning Details . 636

Snapshot-Based Isolation Levels . 637

Choosing a Concurrency Model . . 655

626249.indb 16 3/10/11 11:53 AM

	 Table of Contents	 xvii

Controlling Locking . 657

Lock Hints . . 657

Summary . 661

	 11	 DBCC Internals . 663
Getting a Consistent View of the Database . 664

Obtaining a Consistent View . 665

Processing the Database Efficiently . 668

Fact Generation . . 668

Using the Query Processor . 670

Batches . 673

Reading the Pages to Process . . 674

Parallelism . 675

Primitive System Catalog Consistency Checks . 677

Allocation Consistency Checks . 679

Collecting Allocation Facts . 679

Checking Allocation Facts . 681

Per-Table Logical Consistency Checks . 683

Metadata Consistency Checks . 684

Page Audit . 685

Data and Index Page Processing . 687

Column Processing . 689

Text Page Processing . 693

Cross-Page Consistency Checks . 694

Cross-Table Consistency Checks . 705

Service Broker Consistency Checks . 706

Cross-Catalog Consistency Checks . 707

Indexed-View Consistency Checks . . 707

XML-Index Consistency Checks . 708

Spatial-Index Consistency Checks . 709

DBCC CHECKDB Output . 709

Regular Output . 710

SQL Server Error Log Output . 712

Application Event Log Output . 713

Progress Reporting Output . . 714

DBCC CHECKDB Options . . 715

NOINDEX . 715

Repair Options . . 716

ALL_ERRORMSGS . 716

EXTENDED_LOGICAL_CHECKS . 717

626249.indb 17 3/10/11 11:53 AM

xviii	 Table of Contents

NO_INFOMSGS . 717

TABLOCK . . 717

ESTIMATEONLY . 717

PHYSICAL_ONLY . 718

DATA_PURITY . 719

Database Repairs . . 719

Repair Mechanisms . . 720

Emergency Mode Repair . 721

What Data Was Deleted by Repair? . . 722

Consistency-Checking Commands Other Than DBCC CHECKDB 723

DBCC CHECKALLOC . 724

DBCC CHECKTABLE . 725

DBCC CHECKFILEGROUP . 725

DBCC CHECKCATALOG . 726

DBCC CHECKIDENT . 726

DBCC CHECKCONSTRAINTS . . 727

Summary . 727

Index . 729

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

626249.indb 18 3/10/11 11:53 AM

		 xix

Foreword
The developers who create products such as Microsoft SQL Server typically become experts
in one area of the technology, such as access methods or query execution. They live and
experience the product inside out and often know their component so deeply they acquire a
“curse of knowledge”: they possess so much detail about their particular domain, they find it
difficult to describe their work in a way that helps customers get the most out of the product.

Technical writers who create product-focused books, on the other hand, experience a
product outside in. Most of these authors acquire a broad, but somewhat shallow, surface
knowledge of the products they write about and produce valuable books, usually filled with
many screenshots, which help new and intermediate users quickly learn how to get things
done with the product.

When the curse of knowledge meets surface knowledge, it leaves a gap where many of
the great capabilities created by product developers don’t get communicated in a way
that allows customers, particularly intermediate to advanced users, to use a product to
its full potential. This is where Microsoft SQL Server 2008 Internals comes in. This book,
like those in the earlier “Inside SQL Server” series, is the definitive reference for how SQL
Server really works. Kalen Delaney has been working with the SQL Server product team for
over a decade, spending countless hours with developers breaking through the curse of
knowledge and then capturing the result in an incredibly clear form that allows intermediate
to advanced users to wring the most from the capabilities of SQL Server. In Microsoft SQL
Server 2008 Internals, Kalen is joined by four SQL Server experts who also share the gift
of breaking the curse. Conor Cunningham and Paul Randal have years of experience as
SQL Server product developers, and each of them is both a deep technical expert and a
gifted communicator. Kimberly Tripp and Adam Machanic both combine a passion to really
understand how things work and to then effectively share it with others. Kimberly and Adam
are both standing-room-only speakers at SQL Server events. This team has captured and
incorporated the details of key architectural changes for SQL Server 2008, resulting in a new,
comprehensive internals reference for SQL Server.

There is a litmus test you can use to determine if a technical product title deserves a
“definitive reference” classification. It’s a relatively easy test but a hard one for everybody to
conduct. The test, quite simply, is to look at how many of the developers who created the
product in question have a copy of the book on their shelves—and reference it. I can assure
you that each version of Inside Microsoft SQL Server that Kalen has produced has met this
test. Microsoft SQL Server 2008 Internals will, too.

Dave Campbell

Technical Fellow
Microsoft SQL Server

626249.indb 19 3/10/11 11:53 AM

626249.indb 20 3/10/11 11:53 AM

		 xxi

Introduction
The book you are now holding is the evolutionary successor to the Inside SQL Server series,
which included Inside SQL Server 6.5, Inside SQL Server 7, Inside SQL Server 2000, and Inside
SQL Server 2005 (in four volumes). The Inside series was becoming too unfocused, and the
name “Inside” had been usurped by other authors and even other publishers. I needed a title
that was much more indicative of what this book is really about.

SQL Server 2008 Internals tells you how SQL Server, Microsoft’s flagship relational database
product, works. Along with that, I explain how you can use the knowledge of how it works
to help you get better performance from the product, but that is a side effect, not the goal.
There are dozens of other books on the market that describe tuning and best practices for
SQL Server. This one helps you understand why certain tuning practices work the way they
do, and it helps you determine your own best practices as you continue to work with SQL
Server as a developer, data architect, or DBA.

Who This Book Is For
This book is intended to be read by anyone who wants a deeper understanding of what
SQL Server does behind the scenes. The focus of this book is on the core SQL Server
engine—in particular, the query processor and the storage engine. I expect that you have
some experience with both the SQL Server engine and with the T-SQL language. You don’t
have to be an expert in either, but it helps if you aspire to become an expert and would like
to find out all you can about what SQL Server is actually doing when you submit a query
for execution.

This series doesn’t discuss client programming interfaces, heterogeneous queries, business
intelligence, or replication. In fact, most of the high-availability features are not covered, but
a few, such as mirroring, are mentioned at a high level when we discuss database property
settings. I don’t drill into the details of some internal operations, such as security, because
that’s such a big topic it deserves a whole volume of its own.

My hope is that you’ll look at the cup as half full instead of half empty and appreciate this
book for what it does include. As for the topics that aren’t included, I hope you’ll find the
information you need in other sources.

626249.indb 21 3/10/11 11:53 AM

xxii	 Introduction

What This Book Is About
SQL Server Internals provides detailed information on the way that SQL Server processes
your queries and manages your data. It starts with an overview of the architecture of the SQL
Server relational database system and then continues looking at aspects of query processing
and data storage in 10 additional chapters, as follows:

n	 Chapter 1  SQL Server 2008 Architecture and Configuration

n	 Chapter 2  Change Tracking, Tracing, and Extended Events

n	 Chapter 3  Databases and Database Files

n	 Chapter 4  Logging and Recovery

n	 Chapter 5  Tables

n	 Chapter 6  Indexes: Internals and Management

n	 Chapter 7  Special Storage

n	 Chapter 8  The Query Optimizer

n	 Chapter 9  Plan Caching and Recompilation

n	 Chapter 10  Transactions and Concurrency

n	 Chapter 11  DBCC Internals

A twelfth chapter covering the details of reading query plans is available in the companion
content (which is described in the next section). This chapter, called “Query Execution,” was
part of my previous book, Inside SQL Server 2005: Query Tuning and Optimization. Because
99 percent of the chapter is still valid for SQL Server 2008, we have included it “as is” for your
additional reference.

Companion Content
This book features a companion Web site that makes available to you all the code used
in the book, organized by chapter. The companion content also includes an extra chapter
from my previous book, as well as the “History of SQL Server” chapter from my book
SQL Server 2000. The site also provides extra scripts and tools to enhance your experience
and understanding of SQL Server internals. As errors are found and reported, they will also
be posted online. You can access this content from the companion site at this address:
http://www.SQLServerInternals.com/companion.

System Requirements
To use the code samples, you’ll need Internet access and a system capable of running SQL
Server 2008 Enterprise or Developer edition. To get system requirements for SQL Server 2008
and to obtain a trial version, go to http://www.microsoft.com/downloads.

626249.indb 22 3/10/11 11:53 AM

	 Introduction	 xxiii

Support for This Book
Every effort has been made to ensure the accuracy of this book and the contents of the
companion Web site. As corrections or changes are collected, they will be added to a
Microsoft Knowledge Base article.

Microsoft Press provides support for books at the following Web site:

http://www.microsoft.com/learning/support/books/

Questions and Comments
If you have comments, questions, or ideas regarding the book, or questions that are
not answered by visiting the sites above, please send them to Microsoft Press via e-mail to

mspinput@microsoft.com

Or via postal mail to

Microsoft Press
Attn: Microsoft SQL Server 2008 Internals Editor
One Microsoft Way
Redmond, WA 98052-6399

Please note that Microsoft software product support is not offered through the above addresses.

Acknowledgments
As always, a work like this is not an individual effort, and for this current volume, it
is truer than ever. I was honored to have four other SQL Server experts join me in writing
SQL Server 2008 Internals, and I truly could not have written this book alone. I am grateful to
Adam Machanic, Paul Randal, Conor Cunningham, and Kimberly Tripp for helping to make
this book a reality. In addition to my brilliant co-authors, this book could never have seen the
light of day with help and encouragement from many other people.

First on my list is you, the readers. Thank you to all of you for reading what I have written.
Thank you to those who have taken the time to write to me about what you thought of the
book and what else you want to learn about SQL Server. I wish I could answer every question
in detail. I appreciate all your input, even when I’m unable to send you a complete reply. One
particular reader of one of my previous books, Inside SQL Server 2005: The Storage Engine,
deserves particular thanks. I came to know Ben Nevarez as a very astute reader who found
some uncaught errors and subtle inconsistencies and politely and succinctly reported them
to me through my Web site. After a few dozen e-mails, I started to look forward to Ben’s
e-mails and was delighted when I finally got the chance to meet him. Ben is now my most
valued technical reviewer, and I am deeply indebted to him for his extremely careful reading
of every one of the chapters.

626249.indb 23 3/10/11 11:53 AM

xxiv	 Introduction

As usual, the SQL Server team at Microsoft has been awesome. Although Lubor Kollar and Sunil
Agarwal were not directly involved in much of the research for this book, I always knew they
were there in spirit, and both of them always had an encouraging word whenever I saw them.

Boris Baryshnikov, Kevin Farlee, Marcel van der Holst, Peter Byrne, Sangeetha Shekar, Robin
Dhamankar, Artem Oks, Srini Acharya, and Ryan Stonecipher met with me and responded
to my (sometimes seemingly endless) e-mails. Jerome Halmans, Joanna Omel, Nikunj Koolar,
Tres London, Mike Purtell, Lin Chan, and Dipti Sangani also offered valuable technical
insights and information when responding to my e-mails. I hope they all know how much
I appreciated every piece of information I received.

I am also indebted to Bob Ward, Bob Dorr, and Keith Elmore of the SQL Server Product
Support team, not just for answering occasional questions but for making so much
information about SQL Server available through white papers, conference presentations,
and Knowledge Base articles. I am grateful to Alan Brewer and Gail Erickson for the great
job they and their User Education team did putting together the SQL Server documentation
in SQL Server Books Online.

And, of course, Buck Woody deserves my gratitude many times over. First from his job in the User
Education group, then as a member of the SQL Server development team, he was always there
when I had an unanswered question. His presentations and blog posts are always educational as
well as entertaining, and his generosity and unflagging good spirits are a true inspiration.

I would also like to thank Leona Lowry and Cheryl Walter for finding me office space in the same
building as most of the SQL Server team. The welcome they gave me was much appreciated.

I would like to extend my heartfelt thanks to all of the SQL Server MVPs, but most especially
Erland Sommarskog. Erland wrote the section in Chapter 5 on collations just because he
thought it was needed, and that someone who has to deal with only the 26 letters of the
English alphabet could never do it justice. Also deserving of special mention are Tibor Karaszi
and Roy Harvey, for all the personal support and encouragement they gave me. Other MVPs
who inspired me during the writing of this volume are Tony Rogerson, John Paul Cook, Steve
Kass, Paul Nielsen, Hugo Kornelis, Tom Moreau, and Linchi Shea. Being a part of the SQL Server
MVP team continues to be one of the greatest honors and privileges of my professional life.

I am deeply indebted to my students in my “SQL Server Internals” classes, not only for their
enthusiasm for the SQL Server product and for what I have to teach and share with them,
but for all they have to share with me. Much of what I have learned has been inspired by
questions from my curious students. Some of my students, such as Cindy Gross and Lara
Rubbelke, have become friends (in addition to becoming Microsoft employees) and continue
to provide ongoing inspiration.

Most important of all, my family continues to provide the rock-solid foundation I need to
do the work that I do. My husband, Dan, continues to be the guiding light of my life after
24 years of marriage. My daughter, Melissa, and my three sons, Brendan, Rickey, and Connor,

626249.indb 24 3/10/11 11:53 AM

	 Introduction	 xxv

are now for the most part all grown, and are all generous, loving, and compassionate people.
I feel truly blessed to have them in my life.

Kalen Delaney

Paul Randal
I’ve been itching to write a complete description of what DBCC CHECKDB does for many
years now—not least to get it all out of my head and make room for something else! When
Kalen asked me to write the “Consistency Checking” chapter for this book, I jumped at the
chance, and for that my sincere thanks go to Kalen. I’d like to give special thanks to two
people from Microsoft, among the many great folks I worked with there (and in many cases
still do). The first is Ryan Stonecipher, who I hired away from being an Escalation Engineer
in SQL Product Support in late 2003 to work with me on DBCC, and who was suddenly
thrust into complete ownership of 100,000+ lines of DBCC code when I become the team
manager two months later. I couldn’t have asked for more capable hands to take over my
precious DBCC. . . . The second is Bob Ward, who heads up the SQL Product Support team
and has been a great friend since my early days at Microsoft. We must have collaborated
on hundreds of cases of corruption over the years, and I’ve yet to meet someone with more
drive for solving customer problems and improving Microsoft SQL Server. Thanks must also
go to Steve Lindell, the author of the original online consistency checking code for SQL
Server 2000, who spent many hours patiently explaining how it worked in 1999. Finally, I’d
like to thank my wife, Kimberly, who is, along with Katelyn and Kiera, the other passions in
my life apart from SQL Server.

Kimberly Tripp
First, I want to thank my good friend Kalen, for inviting me to participate in this title. After
working together in various capacities—even having formed a company together back
in 1996—it’s great to finally have our ideas and content together in a book as deep and
technical as this. In terms of performance tuning, indexes are critical; there’s no better way
to improve a system than by creating the right indexes. However, knowing what’s right takes
multiple components, some of which is only known after experience, after testing, and
after seeing something in action. For this, I want to thank many of you—readers, students,
conference attendees, customers—those of you who have asked the questions, shown me
interesting scenarios, and stayed late to “play” and/or just figure it out. It’s the deep desire
to know why something is working the way that it is that keeps this product interesting to
me and has always made me want to dive deeper and deeper into understanding what’s
really going on. For that, I thank the SQL team in general—the folks that I’ve met and
worked with over the years have been inspiring, intelligent, and insightful. Specifically,
I want to thank a few folks on the SQL team who have patiently, quickly, and thoroughly
responded to questions about what’s really going on and often, why: Conor Cunningham,

626249.indb 25 3/10/11 11:53 AM

xxvi	 Introduction

Cesar Galindo-Legaria, and from my early days with SQL Server, Dave Campbell, Nigel Ellis,
and Rande Blackman. Gert E. R. Drapers requires special mention due to the many hours
spent together over the years where we talked, argued, and figured it out. And, to Paul, my
best friend and husband, who before that was also a good source of SQL information. We
just don’t talk about it anymore . . . at home. OK, maybe a little.

Conor Cunningham
I’d like to thank Bob Beauchemin and Milind Joshi for their efforts to review my chapter,
“The Query Optimizer,” in this book for technical correctness. I’d also like to thank Kimberly
Tripp and Paul Randal for their encouragement and support while I wrote this chapter. Finally,
I’d like to thank all the members of the SQL Server Query Processor team who answered
many technical questions for me.

Adam Machanic
I would like to, first and foremost, extend my thanks to Kalen Delaney for leading the effort
of this book from conception through reality. Kalen did a great job of keeping us focused
and on task, as well as helping to find those hidden nuggets of information that make a
book like this one great. A few Microsoft SQL Server team members dedicated their time to
helping review my work: Jerome Halmans and Fabricio Voznika from the Extended Events
team, and Mark Scurrell from the Change Tracking team. I would like to thank each of you for
keeping me honest, answering my questions, and improving the quality of my chapter.
Finally, I would like to thank Kate and Aura, my wife and daughter, who always understand
when I disappear into the office for a day or two around deadline time.

626249.indb 26 3/10/11 11:53 AM

		 125

Chapter 3

Databases and Database Files
Kalen Delaney

Simply put, a Microsoft SQL Server database is a collection of objects that hold and
manipulate data. A typical SQL Server instance has only a handful of databases, but it’s not
unusual for a single instance to contain several dozen databases. The technical limit for one
SQL Server instance is 32,767 databases. But practically speaking, this limit would never
be reached.

To elaborate a bit, you can think of a SQL Server database as having the following properties
and features:

n	 It is a collection of many objects, such as tables, views, stored procedures, and
constraints. The technical limit is 231–1 (more than 2 billion) objects. The number of
objects typically ranges from hundreds to tens of thousands.

n	 It is owned by a single SQL Server login account.

n	 It maintains its own set of user accounts, roles, schemas, and security.

n	 It has its own set of system tables to hold the database catalog.

n	 It is the primary unit of recovery and maintains logical consistency among objects
within it. (For example, primary and foreign key relationships always refer to other
tables within the same database, not in other databases.)

n	 It has its own transaction log and manages its own transactions.

n	 It can span multiple disk drives and operating system files.

n	 It can range in size from 2 MB to a technical limit of 524,272 terabytes.

n	 It can grow and shrink, either automatically or manually.

n	 It can have objects joined in queries with objects from other databases in the same
SQL Server instance or on linked servers.

n	 It can have specific properties enabled or disabled. (For example, you can set a
database to be read-only or to be a source of published data in replication.)

And here is what a SQL Server database is not:

n	 It is not synonymous with an entire SQL Server instance.

n	 It is not a single SQL Server table.

n	 It is not a specific operating system file.

626249.indb 125 3/10/11 11:54 AM

126	 Microsoft SQL Server 2008 Internals

Although a database isn’t the same thing as an operating system file, it always exists in two
or more such files. These files are known as SQL Server database files and are specified either
at the time the database is created, using the CREATE DATABASE command, or afterward,
using the ALTER DATABASE command.

System Databases
A new SQL Server 2008 installation always includes four databases: master, model, tempdb,
and msdb. It also contains a fifth, “hidden” database that you never see using any of the
normal SQL commands that list all your databases. This database is referred to as the
resource database, but its actual name is mssqlsystemresource.

master
The master database is composed of system tables that keep track of the server installation
as a whole and all other databases that are subsequently created. Although every database
has a set of system catalogs that maintain information about objects that the database
contains, the master database has system catalogs that keep information about disk space,
file allocations and usage, system-wide configuration settings, endpoints, login accounts,
databases on the current instance, and the existence of other servers running SQL Server
(for distributed operations).

The master database is critical to your system, so always keep a current backup copy of it.
Operations such as creating another database, changing configuration values, and modifying
login accounts all make modifications to master, so you should always back up master after
performing such actions.

model
The model database is simply a template database. Every time you create a new database,
SQL Server makes a copy of model to form the basis of the new database. If you’d like every
new database to start out with certain objects or permissions, you can put them in model,
and all new databases inherit them. You can also change most properties of the model
database by using the ALTER DATABASE command, and those property values then are used
by any new database you create.

tempdb
The tempdb database is used as a workspace. It is unique among SQL Server databases because
it’s re-created—not recovered—every time SQL Server is restarted. It’s used for temporary tables
explicitly created by users, for worktables that hold intermediate results created internally by
SQL Server during query processing and sorting, for maintaining row versions used in snapshot

626249.indb 126 3/10/11 11:54 AM

	 Chapter 3  Databases and Database Files	 127

isolation and certain other operations, and for materializing static cursors and the keys of
keyset cursors. Because the tempdb database is re-created, any objects or permissions that you
create in the database are lost the next time you start your SQL Server instance. An alternative
is to create the object in the model database, from which tempdb is copied. (Keep in mind that
any objects that you create in the model database also are added to any new databases you
create subsequently. If you want objects to exist only in tempdb, you can create a startup stored
procedure that creates the objects every time your SQL Server instance starts.)

The tempdb database sizing and configuration is critical for optimal functioning and
performance of SQL Server, so I’ll discuss tempdb in more detail in its own section later in
this chapter.

The Resource Database
As mentioned, the mssqlsystemresource database is a hidden database and is usually
referred to as the resource database. Executable system objects, such as system stored
procedures and functions, are stored here. Microsoft created this database to allow very fast
and safe upgrades. If no one can get to this database, no one can change it, and you can
upgrade to a new service pack that introduces new system objects by simply replacing the
resource database with a new one. Keep in mind that you can’t see this database using any of
the normal means for viewing databases, such as selecting from sys.databases or executing
sp_helpdb. It also won’t show up in the system databases tree in the Object Explorer pane of
SQL Server Management Studio, and it does not appear in the drop-down list of databases
accessible from your query windows. However, this database still needs disk space.

You can see the files in your default binn directory by using Microsoft Windows Explorer.
My data directory is at C:\Program Files\Microsoft SQL Server\MSSQL10.MSSQLSERVER\
MSSQL\Binn; I can see a file called mssqlsystemresource.mdf, which is 60.2 MB in size, and
mssqlsystemresource.ldf, which is 0.5 MB. The created and modified date for both of these files
is the date that the code for the current build was frozen. It should be the same date that you
see when you run SELECT @@version. For SQL Server 2008, Service Pack 1, this is Mar 29 2009.

If you have a burning need to “see” the contents of mssqlsystemresource, a couple of
methods are available. The easiest, if you just want to see what’s there, is to stop SQL Server,
make copies of the two files for the resource database, restart SQL Server, and then attach
the copied files to create a database with a new name. You can do this by using Object
Explorer in Management Studio or by using the CREATE DATABASE FOR ATTACH syntax to
create a clone database, as shown here:

CREATE DATABASE resource_COPY

ON (NAME = data, FILENAME = 'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\binn

 \mssqlsystemresource_COPY.mdf'),

 (NAME = log, FILENAME =

 'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\binn\mssqlsystemresource_COPY.ldf')

 FOR ATTACH;

626249.indb 127 3/10/11 11:54 AM

128	 Microsoft SQL Server 2008 Internals

SQL Server treats this new resource_COPY database like any other user database, and it
does not treat the objects in it as special in any way. If you want to change anything in the
resource database, such as the text of a supplied system stored procedure, changing it in
resource_COPY obviously does not affect anything else on your instance. However, if you
start your SQL Server instance in single-user mode, you can make a single connection to
your SQL Server, and that connection can use the mssqlsystemresource database. Starting an
instance in single-user mode is not the same thing as setting a database to single-user mode.
For details on how to start SQL Server in single-user mode, see the SQL Server Books Online
entry for the sqlservr.exe application. In Chapter 6, “Indexes: Internals and Management,”
when I discuss database objects, I’ll discuss some of the objects in the resource database.

msdb
The msdb database is used by the SQL Server Agent service and other companion services,
which perform scheduled activities such as backups and replication tasks, and the Service
Broker, which provides queuing and reliable messaging for SQL Server. In addition to backups,
objects in msdb support jobs, alerts, log shipping, policies, database mail, and recovery of
damaged pages. When you are not actively performing these activities on this database,
you can generally ignore msdb. (But you might take a peek at the backup history and other
information kept there.) All the information in msdb is accessible from Object Explorer in
Management Studio, so you usually don’t need to access the tables in this database directly.
You can think of the msdb tables as another form of system table: Just as you can never directly
modify system tables, you shouldn’t directly add data to or delete data from tables in msdb
unless you really know what you’re doing or are instructed to do so by a SQL Server technical
support engineer. Prior to SQL Server 2005, it was actually possible to drop the msdb database;
your SQL Server instance was still usable, but you couldn’t maintain any backup history, and
you weren’t able to define tasks, alerts, or jobs or set up replication. There is an undocumented
traceflag that allows you to drop the msdb database, but because the default msdb database is
so small, I recommend leaving it alone even if you think you might never need it.

Sample Databases
Prior to SQL Server 2005, the installation program automatically installed sample databases
so you would have some actual data for exploring SQL Server functionality. As part of
Microsoft’s efforts to tighten security, SQL Server 2008 does not automatically install any
sample databases. However, several sample databases are widely available.

AdventureWorks
AdventureWorks actually comprises a family of sample databases that was created by the
Microsoft User Education group as an example of what a “real” database might look like. The
family includes: AdventureWorks2008, AdventureWorksDW2008, and AdventureWorksLT2008,

626249.indb 128 3/10/11 11:54 AM

	 Chapter 3  Databases and Database Files	 129

as well as their counterparts created for SQL Server 2005: AdventureWorks, AdventureWorksDW,
and AdventureWorksLT. You can download these databases from the Microsoft codeplex
site at http://www.codeplex.com/SqlServerSamples. The database was designed to showcase
SQL Server features, including the organization of objects into different schemas. These
databases are based on data needed by the fictitious Adventure Works Cycles company.
The AdventureWorks and AdventureWorks2008 databases are designed to support OLTP
applications and AdventureWorksDW and AdventureWorksDW2008 are designed to support the
business intelligence features of SQL Server and are based on a completely different database
architecture. Both designs are highly normalized. Although normalized data and many separate
schemas might map closely to a real production database’s design, they can make it quite
difficult to write and test simple queries and to learn basic SQL.

Database design is not a major focus of this book, so most of my examples use simple tables that
I create; if more than a few rows of data are needed, I’ll sometimes copy data from one or more
AdventureWorks2008 tables into tables of my own. It’s a good idea to become familiar with the
design of the AdventureWorks family of databases because many of the examples in SQL Server
Books Online and in white papers published on the Microsoft Web site (http://www.microsoft.com/
sqlserver/2008/en/us/white-papers.aspx) use data from these databases.

Note that it is also possible to install an AdventureWorksLT2008 (or AdventureWorksLT)
database, which is a highly simplified and somewhat denormalized version of the
AdventureWorks OLTP database and focuses on a simple sales scenario with a single schema.

pubs

The pubs database is a sample database that was used extensively in earlier versions of SQL
Server. Many older publications with SQL Server examples assume that you have this database
because it was installed automatically on versions of SQL Server prior to SQL Server 2005. You can
download a script for building this database from Microsoft’s Web site, and I have also included
the script with this book’s companion content at http://www.SQLServerInternals.com/companion.

The pubs database is admittedly simple, but that’s a feature, not a drawback. It provides good
examples without a lot of peripheral issues to obscure the central points. You shouldn’t worry
about making modifications in the pubs database as you experiment with SQL Server features.
You can rebuild the pubs database from scratch by running the supplied script. In a query
window, open the file named Instpubs.sql and execute it. Make sure there are no current
connections to pubs because the current pubs database is dropped before the new one is created.

Northwind
The Northwind database is a sample database that was originally developed for use with
Microsoft Office Access. Much of the pre–SQL Server 2005 documentation dealing with
application programming uses Northwind. Northwind is a bit more complex than pubs,
and, at almost 4 MB, it is slightly larger. As with pubs, you can download a script from the

626249.indb 129 3/10/11 11:54 AM

130	 Microsoft SQL Server 2008 Internals

Microsoft Web site to build it, or you can use the script provided with the companion
content. The file is called Instnwnd.sql. In addition, some of the sample scripts for this book
use a modified copy of Northwind called Northwind2.

Database Files
A database file is nothing more than an operating system file. (In addition to database files,
SQL Server also has backup devices, which are logical devices that map to operating system
files or to physical devices such as tape drives. In this chapter, I won’t be discussing files that
are used to store backups.) A database spans at least two, and possibly several, database files,
and these files are specified when a database is created or altered. Every database must span
at least two files, one for the data (as well as indexes and allocation pages) and one for the
transaction log.

SQL Server 2008 allows the following three types of database files:

n	 Primary data files  Every database has one primary data file that keeps track of all the
rest of the files in the database, in addition to storing data. By convention, a primary
data file has the extension .mdf.

n	 Secondary data files  A database can have zero or more secondary data files. By
convention, a secondary data file has the extension .ndf.

n	 Log files  Every database has at least one log file that contains the information necessary
to recover all transactions in a database. By convention, a log file has the extension .ldf.

In addition, SQL Server 2008 databases can have filestream data files and full-text data files.
Filestream data files will be discussed in the section “Filestream Filegroups,” later in this
chapter, and in Chapter 7, “Special Storage.” Full-text data files are created and managed
completely, separately from your other database files and are beyond the scope of this book.

Each database file has five properties that can be specified when you create the file: a logical
filename, a physical filename, an initial size, a maximum size, and a growth increment.
(Filestream data files have only the logical and physical name properties.) The value of these
properties, along with other information about each file, can be seen through the metadata
view sys.database_files, which contains one row for each file used by a database. Most of the
columns shown in sys.database_files are listed in Table 3-1. The columns not mentioned here
contain information dealing with transaction log backups relevant to the particular file, and
I’ll discuss the transaction log in Chapter 4, “Logging and Recovery.”

Table 3-1  The sys.database_files Catalog View

 Column Description

 fileid The file identification number (unique for each database).

 file_guid GUID for the file.

NULL = Database was upgraded from an earlier version of SQL Server.

626249.indb 130 3/10/11 11:54 AM

	 Chapter 3  Databases and Database Files	 131

Table 3-1  The sys.database_files Catalog View

 Column Description

 type File type:

0 = Rows (includes full-text catalogs upgraded to or created in
SQL Server 2008)

1 = Log

2 = FILESTREAM

3 = Reserved for future use

4 = Full-text (includes full-text catalogs from versions earlier than
SQL Server 2008)

 type_desc Description of the file type:

ROWS

LOG

FILESTREAM

FULLTEXT

 data_space_id ID of the data space to which this file belongs. Data space is a
filegroup.

0 = Log file.

 name The logical name of the file.

 physical_name Operating-system file name.

 state File state:

0 = ONLINE

1 = RESTORING

2 = RECOVERING

3 = RECOVERY_PENDING

4 = SUSPECT

5 = Reserved for future use

6 = OFFLINE

7 = DEFUNCT

 state_desc Description of the file state:

ONLINE

RESTORING

RECOVERING

RECOVERY_PENDING

SUSPECT

OFFLINE

DEFUNCT

 size Current size of the file, in 8-KB pages.

0 = Not applicable

For a database snapshot, size reflects the maximum space that the snapshot
can ever use for the file.

626249.indb 131 3/10/11 11:54 AM

132	 Microsoft SQL Server 2008 Internals

Table 3-1  The sys.database_files Catalog View

 Column Description

 max_size Maximum file size, in 8-KB pages:

0 = No growth is allowed.

–1 = File will grow until the disk is full.

268435456 = Log file will grow to a maximum size of 2 terabytes.

 growth 0 = File is a fixed size and will not grow.

>0 = File will grow automatically.

If is_percent_growth = 0, growth increment is in units of 8-KB pages,
rounded to the nearest 64 KB.

If is_percent_growth = 1, growth increment is expressed as a whole number
percentage.

 is_media_read_only 1 = File is on read-only media.

0 = File is on read/write media.

 is_read_only 1 = File is marked read-only.

0 = File is marked read/write.

 is_sparse 1 = File is a sparse file.

0 = File is not a sparse file.

(Sparse files are used with database snapshots, discussed later in this
chapter.)

 is_percent_growth See description for growth column, above.

 is_name_reserved 1 = Dropped file name (name or physical_name) is reusable only after the
next log backup. When files are dropped from a database, the logical names
stay in a reserved state until the next log backup. This column is relevant
only under the full recovery model and the bulk-logged recovery model.

Creating a Database
The easiest way to create a database is to use Object Explorer in Management Studio, which
provides a graphical front end to the T-SQL commands that actually create the database
and set its properties. Figure 3-1 shows the New Database dialog box, which represents
the T-SQL CREATE DATABASE command for creating a new user database. Only someone
with the appropriate permissions can create a database, either through Object Explorer
or by using the CREATE DATABASE command. This includes anyone in the sysadmin role,
anyone who has been granted CONTROL or ALTER permission on the server, and any user
who has been granted CREATE DATABASE permission by someone with the sysadmin or
dbcreator role.

When you create a new database, SQL Server copies the model database. If you have an object
that you want created in every subsequent user database, you should create that object in
model first. You can also use model to set default database options in all subsequently created

626249.indb 132 3/10/11 11:54 AM

	 Chapter 3  Databases and Database Files	 133

databases. The model database includes 53 objects—45 system tables, 6 objects used for SQL
Server Query Notifications and Service Broker, 1 table used for helping to manage filestream
data, and 1 table for helping to manage change tracking. You can see these objects by
selecting from the system table called sys.objects. However, if you run the procedure sp_help
in the model database, it will list 1,978 objects. It turns out that most of these objects are not
really stored in the model database but are accessible through it. In Chapter 5, “Tables,” I’ll
tell you what the other kinds of objects are and how you can tell whether an object is really
stored in a particular database. Most of the objects you see in model will show up when you
run sp_help in any database, but your user databases will probably have more objects added
to this list. The contents of model are just the starting point.

Figure 3-1  The New Database dialog box, where you can create a new database

A new user database must be 3 MB or larger (including the transaction log), and the primary
data file size must be at least as large as the primary data file of the model database.
(The model database only has one file and cannot be altered to add more. So the size of
the primary data file and the size of the database are basically the same for model.) Almost
all the possible arguments to the CREATE DATABASE command have default values, so it’s
possible to create a database using a simple form of CREATE DATABASE, such as this:

CREATE DATABASE newdb;

626249.indb 133 3/10/11 11:54 AM

134	 Microsoft SQL Server 2008 Internals

This command creates the newdb database, with a default size, on two files whose
logical names—newdb and newdb_log—are derived from the name of the database.
The corresponding physical files, newdb.mdf and newdb_log.ldf, are created in the default
data directory, which is usually determined at the time SQL Server is installed.

The SQL Server login account that created the database is known as the database owner, and
that information is stored with the information about the database properties in the master
database. A database can have only one actual owner, who always corresponds to a login
name. Any login that uses any database has a user name in that database, which might be
the same name as the login name but doesn’t have to be. The login that is the owner of a
database always has the special user name dbo when using the database it owns. I’ll discuss
database users later in this chapter when I tell you about the basics of database security. The
default size of the data file is the size of the primary data file of the model database (which
is 2 MB by default), and the default size of the log file is 0.5 MB. Whether the database
name, newdb, is case-sensitive depends on the sort order that you chose during setup. If you
accepted the default, the name is case-insensitive. (Note that the actual command CREATE
DATABASE is case-insensitive, regardless of the case sensitivity chosen for data.)

Other default property values apply to the new database and its files. For example, if the LOG
ON clause is not specified but data files are specified, SQL Server creates a log file with a size
that is 25 percent of the sum of the sizes of all data files.

If the MAXSIZE clause isn’t specified for the files, the file grows until the disk is full. (In other
words, the file size is considered unlimited.) You can specify the values for SIZE, MAXSIZE, and
FILEGROWTH in units of terabytes, GB, and MB (the default), or KB. You can also specify the
FILEGROWTH property as a percentage. A value of 0 for FILEGROWTH indicates no growth. If
no FILEGROWTH value is specified, the default growth increment for data files is 1 MB. The log
file FILEGROWTH default is specified as 10 percent.

A CREATE DATABASE Example
The following is a complete example of the CREATE DATABASE command, specifying three
files and all the properties of each file:

CREATE DATABASE Archive

ON

PRIMARY

(NAME = Arch1,

FILENAME =

 'c:\program files\microsoft sql server\mssql.1\mssql\data\archdat1.mdf',

SIZE = 100MB,

MAXSIZE = 200MB,

FILEGROWTH = 20MB),

(NAME = Arch2,

FILENAME =

 'c:\program files\microsoft sql server\mssql.1\mssql\data\archdat2.ndf',

626249.indb 134 3/10/11 11:54 AM

	 Chapter 3  Databases and Database Files	 135

SIZE = 10GB,

MAXSIZE = 50GB,

FILEGROWTH = 250MB)

LOG ON

(NAME = Archlog1,

FILENAME =

 'c:\program files\microsoft sql server\mssql.1\mssql\data\archlog1.ldf',

SIZE = 2GB,

MAXSIZE = 10GB,

FILEGROWTH = 100MB);

Expanding or Shrinking a Database
Databases can be expanded and shrunk automatically or manually. The mechanism for
automatic expansion is completely different from the mechanism for automatic shrinkage.
Manual expansion is also handled differently from manual shrinkage. Log files have their own
rules for growing and shrinking; I’ll discuss changes in log file size in Chapter 4.

Warning  Shrinking a database or any data file is an extremely resource-intensive operation,
and the only reason to do it is if you absolutely must reclaim disk space. Shrinking a data file can
also lead to excessive logical fragmentation within your database. We’ll discuss fragmentation in
Chapter 6 and shrinking in Chapter 11, “DBCC Internals.”

Automatic File Expansion
Expansion can happen automatically to any one of the database’s files when that particular file
becomes full. The file property FILEGROWTH determines how that automatic expansion happens.
The FILEGROWTH property that is specified when the file is first defined can be qualified using
the suffix TB, GB, MB, KB, or %, and it is always rounded up to the nearest 64 KB. If the value is
specified as a percentage, the growth increment is the specified percentage of the size of the file
when the expansion occurs. The file property MAXSIZE sets an upper limit on the size.

Allowing SQL Server to grow your data files automatically is no substitute for good capacity
planning before you build or populate any tables. Enabling autogrow might prevent some
failures due to unexpected increases in data volume, but it can also cause problems. If a
data file is full and your autogrow percentage is set to grow by 10 percent, if an application
attempts to insert a single row and there is no space, the database might start to grow by a
large amount (10 percent of 10,000 MB is 1,000 MB). This in itself can take a lot of time if fast
file initialization (discussed in the next section) is not being used. The growth might take so
long that the client application’s timeout value is exceeded, which means the insert query fails.
The query would have failed anyway if autogrow weren’t set, but with autogrow enabled, SQL
Server spends a lot of time trying to grow the file, and you won’t be informed of the problem
immediately. In addition, file growth can result in physical fragmentation on the disk.

626249.indb 135 3/10/11 11:54 AM

136	 Microsoft SQL Server 2008 Internals

With autogrow enabled, your database files still cannot grow the database size beyond the
limits of the available disk space on the drives on which files are defined, or beyond the size
specified in the MAXSIZE file property. So if you rely on the autogrow functionality to size your
databases, you must still independently check your available hard disk space or the total file
size. (The undocumented extended procedure xp_fixeddrives returns a list of the amount of free
disk space on each of your local volumes.) To reduce the possibility of running out of space, you
can watch the Performance Monitor counter SQL Server: Databases Object: Data File Size and
set up a performance alert to fire when the database file reaches a certain size.

Manual File Expansion
You can expand a database file manually by using the ALTER DATABASE command with the
MODIFY FILE option to change the SIZE property of one or more of the files. When you alter
a database, the new size of a file must be larger than the current size. To decrease the size of
a file, you use the DBCC SHRINKFILE command, which I’ll tell you about shortly.

Fast File Initialization
SQL Server 2008 data files (but not log files) can be initialized instantaneously. This allows
for fast execution of the file creation and growth. Instant file initialization adds space to the
data file without filling the newly added space with zeros. Instead, the actual disk content
is overwritten only as new data is written to the files. Until the data is overwritten, there is
always the chance that a hacker using an external file reader tool can see the data that was
previously on the disk. Although the SQL Server 2008 documentation describes the instant
file initialization feature as an “option,” it is not really an option within SQL Server. It is
actually controlled through a Windows security setting called SE_MANAGE_VOLUME_NAME,
which is granted to Windows administrators by default. (This right can be granted to other
Windows users by adding them to the Perform Volume Maintenance Tasks security policy.) If
your SQL Server service account is in the Windows Administrator role and your SQL Server is
running on a Windows XP, Windows Server 2003, or Windows Server 2008 filesystem, instant
file initialization is used. If you want to make sure your database files are zeroed out as they
are created and expanded, you can use traceflag 1806 or deny SE_MANAGE_VOLUME_NAME
rights to the account under which your SQL Server service is running.

Automatic Shrinkage
The database property autoshrink allows a database to shrink automatically. The effect is the
same as doing a DBCC SHRINKDATABASE (dbname, 25). This option leaves 25 percent free space
in a database after the shrink, and any free space beyond that is returned to the operating
system. The thread that performs autoshrink shrinks databases at very frequent intervals, in
some cases as often as every 30 minutes. Shrinking data files is so resource-intensive that it
should be done only when there is no other way to reclaim needed disk space.

626249.indb 136 3/10/11 11:54 AM

	 Chapter 3  Databases and Database Files	 137

Important  Automatic shrinking is never recommended. In fact, Microsoft has announced that
the autoshrink option will be removed in a future version of SQL Server and you should avoid
using it.

Manual Shrinkage
You can shrink a database manually using one of the following DBCC commands:

DBCC SHRINKFILE ({file_name | file_id }

[, target_size][, {EMPTYFILE | NOTRUNCATE | TRUNCATEONLY}])

DBCC SHRINKDATABASE (database_name [, target_percent]

[, {NOTRUNCATE | TRUNCATEONLY}])

DBCC SHRINKFILE
DBCC SHRINKFILE allows you to shrink files in the current database. When you specify target_size,
DBCC SHRINKFILE attempts to shrink the specified file to the specified size in megabytes. Used
pages in the part of the file to be freed are relocated to available free space in the part of the
file that is retained. For example, for a 15-MB data file, a DBCC SHRINKFILE with a target_size of
12 causes all used pages in the last 3 MB of the file to be reallocated into any free slots in the
first 12 MB of the file. DBCC SHRINKFILE doesn’t shrink a file past the size needed to store the
data. For example, if 70 percent of the pages in a 10-MB data file are used, a DBCC SHRINKFILE
command with a target_size of 5 shrinks the file to only 7 MB, not 5 MB.

DBCC SHRINKDATABASE
DBCC SHRINKDATABASE shrinks all files in a database but does not allow any file to be
shrunk smaller than its minimum size. The minimum size of a database file is the initial size
of the file (specified when the database was created) or the size to which the file has been
explicitly extended or reduced, using either the ALTER DATABASE or DBCC SHRINKFILE
command. If you need to shrink a database smaller than its minimum size, you should use
the DBCC SHRINKFILE command to shrink individual database files to a specific size. The size
to which a file is shrunk becomes the new minimum size.

The numeric target_percent argument passed to the DBCC SHRINKDATABASE command is
a percentage of free space to leave in each file of the database. For example, if you’ve used
60 MB of a 100-MB database file, you can specify a shrink percentage of 25 percent. SQL
Server then shrinks the file to a size of 80 MB, and you have 20 MB of free space in addition
to the original 60 MB of data. In other words, the 80-MB file has 25 percent of its space free.
If, on the other hand, you’ve used 80 MB or more of a 100-MB database file, there is no way
that SQL Server can shrink this file to leave 25 percent free space. In that case, the file size
remains unchanged.

626249.indb 137 3/10/11 11:54 AM

138	 Microsoft SQL Server 2008 Internals

Because DBCC SHRINKDATABASE shrinks the database on a file-by-file basis, the mechanism
used to perform the actual shrinking of data files is the same as that used with DBCC
SHRINKFILE (when a data file is specified). SQL Server first moves pages to the front of files to
free up space at the end, and then it releases the appropriate number of freed pages to the
operating system. The actual internal details of how data files are shrunk will be discussed in
Chapter 11.

Note  Shrinking a log file is very different from shrinking a data file, and understanding
how much you can shrink a log file and what exactly happens when you shrink it requires an
understanding of how the log is used. For this reason, I will postpone the discussion of shrinking
log files until Chapter 4.

As the warning at the beginning of this section indicated, shrinking a database or any data
files is a resource-intensive operation. If you absolutely need to recover disk space from the
database, you should plan the shrink operation carefully and perform it when it has the least
impact on the rest of the system. You should never enable the AUTOSHRINK option, which will
shrink all the data files at regular intervals and wreak havoc with system performance. Because
shrinking data files can move data all around a file, it can also introduce fragmentation, which
you then might want to remove. Defragmenting your data files can then have its own impact
on productivity because it uses system resources. Fragmentation and defragmentation will be
discussed in Chapter 6.

It is possible for shrink operations to be blocked by a transaction that has been enabled for
either of the snapshot-based isolation levels. When this happens, DBCC SHRINKFILE and
DBCC SHRINKDATABASE print out an informational message to the error log every five
minutes in the first hour and then every hour after that. SQL Server also provides progress
reporting for the SHRINK commands, available through the sys.dm_exec_requests view.
Progress reporting will be discussed in Chapter 11.

Using Database Filegroups
You can group data files for a database into filegroups for allocation and administration
purposes. In some cases, you can improve performance by controlling the placement of data
and indexes into specific filegroups on specific drives or volumes. The filegroup containing
the primary data file is called the primary filegroup. There is only one primary filegroup, and
if you don’t ask specifically to place files in other filegroups when you create your database,
all of your data files are in the primary filegroup.

In addition to the primary filegroup, a database can have one or more user-defined
filegroups. You can create user-defined filegroups by using the FILEGROUP keyword in the
CREATE DATABASE or ALTER DATABASE command.

626249.indb 138 3/10/11 11:54 AM

	 Chapter 3  Databases and Database Files	 139

Don’t confuse the primary filegroup and the primary file. Here are the differences:

n	 The primary file is always the first file listed when you create a database, and it typically
has the file extension .mdf. The one special feature of the primary file is that it has pointers
into a table in the master database (which you can access through the catalog view
sys.database_files) that contains information about all the files belonging to the database.

n	 The primary filegroup is always the filegroup that contains the primary file. This filegroup
contains the primary data file and any files not put into another specific filegroup. All
pages from system tables are always allocated from files in the primary filegroup.

The Default Filegroup
One filegroup always has the property of DEFAULT. Note that DEFAULT is a property of
a filegroup, not a name. Only one filegroup in each database can be the default filegroup.
By default, the primary filegroup is also the default filegroup. A database owner can change
which filegroup is the default by using the ALTER DATABASE command. When creating
a table or index, it is created in the default filegroup if no specific filegroup is specified.

Most SQL Server databases have a single data file in one (default) filegroup. In fact, most
users probably never know enough about how SQL Server works to know what a filegroup
is. As a user acquires greater database sophistication, she might decide to use multiple
devices to spread out the I/O for a database. The easiest way to do this is to create a
database file on a RAID device. Still, there would be no need to use filegroups. At the next
level of sophistication and complexity, the user might decide that she really wants multiple
files—perhaps to create a database that uses more space than is available on a single drive.
In this case, she still doesn’t need filegroups—she can accomplish her goals using CREATE
DATABASE with a list of files on separate drives.

More sophisticated database administrators might decide to have different tables assigned
to different drives or to use the table and index partitioning feature in SQL Server 2008. Only
then will they need to use filegroups. They can then use Object Explorer in Management
Studio to create the database on multiple filegroups. Then they can right-click the database
name in Object Explorer and create a script of the CREATE DATABASE command that includes
all the files in their appropriate filegroups. They can save and reuse this script when they
need to re-create the database or build a similar database.

Why Use Multiple Files?
You might wonder why you would want to create a database on multiple files located
on one physical drive. There’s usually no performance benefit in doing so, but it gives
you added flexibility in two important ways.

First, if you need to restore a database from a backup because of a disk crash, the new
database must contain the same number of files as the original. For example, if your
original database consisted of one large 120-GB file, you would need to restore it to

626249.indb 139 3/10/11 11:54 AM

140	 Microsoft SQL Server 2008 Internals

a database with one file of that size. If you don’t have another 120-GB drive immediately
available, you cannot restore the database. If, however, you originally created the database
on several smaller files, you have added flexibility during a restoration. You might be more
likely to have several 40-GB drives available than one large 120-GB drive.

Second, spreading the database onto multiple files, even on the same drive, gives you
the flexibility of easily moving the database onto separate drives if you modify your
hardware configuration in the future. (Please refer to the section “Moving or Copying a
Database,” later in this chapter, for details.)

Objects that have space allocated to them, namely tables and indexes, are created on a
particular filegroup. (They can also be created on a partition scheme, which is a collection
of filegroups. I’ll discuss partitioning and partition schemes in Chapter 7.) If the filegroup
(or partition scheme) is not specified, objects are created on the default filegroup. When you
add space to objects stored in a particular filegroup, the data is stored in a proportional fill
manner, which means that if you have one file in a filegroup with twice as much free space
as another, the first file has two extents (or units of space) allocated from it for each extent
allocated from the second file. (I’ll discuss extents in more detail in the section entitled
“Space Allocation,” later in this chapter.) It’s recommended that you create all of your files to
be the same size to avoid the issues of proportional fill.

You can also use filegroups to allow backups of parts of the database. Because a table is created
on a single filegroup, you can choose to back up just a certain set of critical tables by backing
up the filegroups in which you placed those tables. You can also restore individual files or
filegroups in two ways. First, you can do a partial restore of a database and restore only a subset
of filegroups, which must always include the primary filegroup. The database will be online
as soon as the primary filegroup has been restored, but only objects created on the restored
filegroups will be available. Partial restore of just a subset of filegroups can be a solution to allow
very large databases to be available within a mandated time window. Alternatively, if you have
a failure of a subset of the disks on which you created your database, you can restore backups
of the filegroups on those disks on top of the existing database. This method of restoring also
requires that you have log backups, so I’ll discuss this topic in more detail in Chapter 4.

A FILEGROUP CREATION Example
This example creates a database named sales with three filegroups:

n	 The primary filegroup, with the files salesPrimary1 and salesPrimary2. The FILEGROWTH
increment for both of these files is specified as 100 MB.

n	 A filegroup named SalesGroup1, with the files salesGrp1File1 and salesGrp1Fi1e2.

n	 A filegroup named SalesGroup2, with the files salesGrp2File1 and salesGrp2Fi1e2.

626249.indb 140 3/10/11 11:54 AM

	 Chapter 3  Databases and Database Files	 141

CREATE DATABASE Sales

ON PRIMARY

(NAME = salesPrimary1,

FILENAME =

 'c:\program files\microsoft sql server\mssql.1\mssql\data\salesPrimary1.mdf',

SIZE = 100,

MAXSIZE = 500,

FILEGROWTH = 100),

(NAME = salesPrimary2,

FILENAME =

 'c:\program files\microsoft sql server\mssql.1\mssql\data\salesPrimary2.ndf',

SIZE = 100,

MAXSIZE = 500,

FILEGROWTH = 100),

FILEGROUP SalesGroup1

(NAME = salesGrp1Fi1e1,

FILENAME =

 'c:\program files\microsoft sql server\mssql.1\mssql\data\salesGrp1Fi1e1.ndf',

SIZE = 500,

MAXSIZE = 3000,

FILEGROWTH = 500),

(NAME = salesGrp1Fi1e2,

FILENAME =

 'c:\program files\microsoft sql server\mssql.1\mssql\data\salesGrp1Fi1e2.ndf',

SIZE = 500,

MAXSIZE = 3000,

FILEGROWTH = 500),

FILEGROUP SalesGroup2

(NAME = salesGrp2Fi1e1,

FILENAME =

 'c:\program files\microsoft sql server\mssql.1\mssql\data\salesGrp2Fi1e1.ndf',

SIZE = 100,

MAXSIZE = 5000,

FILEGROWTH = 500),

(NAME = salesGrp2Fi1e2,

FILENAME =

 'c:\program files\microsoft sql server\mssql.1\mssql\data\salesGrp2Fi1e2.ndf',

SIZE = 100,

MAXSIZE = 5000,

FILEGROWTH = 500)

LOG ON

(NAME = 'Sales_log',

FILENAME =

 'c:\program files\microsoft sql server\mssql.1\mssql\data\saleslog.ldf',

SIZE = 5MB,

MAXSIZE = 25MB,

FILEGROWTH = 5MB);

Filestream Filegroups
I briefly mentioned filestream storage in Chapter 1, “SQL Server 2008 Architecture and
Configuration,” when I talked about configuration options. Filestream filegroups can be
created when you create a database, just like regular filegroups can be, but you must specify

626249.indb 141 3/10/11 11:54 AM

142	 Microsoft SQL Server 2008 Internals

that the filegroup is for filestream data by using the phrase CONTAINS FILESTREAM. Unlike
regular filegroups, each filestream filegroup can contain only one file reference, and that file
is specified as an operating system folder, not a specific file. The path up to the last folder
must exist, and the last folder must not exist. So in my example, the path C:\Data must
exist, but the Reviews_FS subfolder cannot exist when you execute the CREATE DATABASE
command. Also unlike regular filegroups, there is no space preallocated to the filegroup and
you do not specify size or growth information for the file within the filegroup. The file and
filegroup will grow as data is added to tables that have been created with
filestream columns:

CREATE DATABASE MyMovieReviews

ON

PRIMARY

 (NAME = Reviews_data,

 FILENAME = 'c:\data\Reviews_data.mdf'),

FILEGROUP MovieReviewsFSGroup1 CONTAINS FILESTREAM

 (NAME = Reviews_FS,

 FILENAME = 'c:\data\Reviews_FS')

LOG ON (NAME = Reviews_log,

 FILENAME = 'c:\data\Reviews_log.ldf');

GO

If you run the previous code, you should see a Filestream.hdr file and an $FSLOG folder in
the C:\Data\Reviews_FS folder. The Filestream.hdr file is a FILESTREAM container header file.
This file should not be modified or removed. For existing databases, you can add a filestream
filegroup using ALTER DATABASE, which I’ll cover in the next section. All data in all columns
placed in the MovieReviewsFSGroup1 is maintained and managed with individual files created
in the Reviews_FS folder. I’ll tell you more about the file organization within this folder in
Chapter 7, when I talk about special storage formats.

Altering a Database
You can use the ALTER DATABASE command to change a database’s definition in one of the
following ways:

n	 Change the name of the database.

n	 Add one or more new data files to the database. If you want, you can put these files in
a user-defined filegroup. All files added in a single ALTER DATABASE command must go
in the same filegroup.

n	 Add one or more new log files to the database.

n	 Remove a file or a filegroup from the database. You can do this only if the file or
filegroup is completely empty. Removing a filegroup removes all the files in it.

626249.indb 142 3/10/11 11:54 AM

	 Chapter 3  Databases and Database Files	 143

n	 Add a new filegroup to a database. (Adding files to those filegroups must be done
in a separate ALTER DATABASE command.)

n 	 Modify an existing file in one of the following ways:

o	 Increase the value of the SIZE property.

o	 Change the MAXSIZE or FILEGROWTH property.

o	 Change the logical name of a file by specifying a NEWNAME property. The value of
NEWNAME is then used as the NAME property for all future references to this file.

o	 Change the FILENAME property for files, which can effectively move the files to a new
location. The new name or location doesn’t take effect until you restart SQL Server.
For tempdb, SQL Server automatically creates the files with the new name in the new
location; for other databases, you must move the file manually after stopping your
SQL Server instance. SQL Server then finds the new file when it restarts.

n	 Mark the file as OFFLINE. You should set a file to OFFLINE when the physical file has
become corrupted and the file backup is available to use for restoring. (There is also
an option to mark the whole database as OFFLINE, which I'll discuss shortly when I talk
about database properties.) Marking a file as OFFLINE allows you to indicate that you
don’t want SQL Server to recover that particular file when it is restarted.

n 	 Modify an existing filegroup in one of the following ways:

o	 Mark the filegroup as READONLY so that updates to objects in the filegroup
aren’t allowed. The primary filegroup cannot be made READONLY.

o	 Mark the filegroup as READWRITE, which reverses the READONLY property.

o	 Mark the filegroup as the default filegroup for the database.

o	 Change the name of the filegroup.

n	 Change one or more database options. (I’ll discuss database options later in the chapter.)

The ALTER DATABASE command can make only one of the changes described each time it is
executed. Note that you cannot move a file from one filegroup to another.

ALTER DATABASE Examples

The following examples demonstrate some of the changes that you can make using the
ALTER DATABASE command.

This example increases the size of a database file:

USE master

GO

ALTER DATABASE Test1

MODIFY FILE

(NAME = 'test1dat3',

SIZE = 2000MB);

626249.indb 143 3/10/11 11:54 AM

144	 Microsoft SQL Server 2008 Internals

The following example creates a new filegroup in a database, adds two 500-MB files to
the filegroup, and makes the new filegroup the default filegroup. You need three ALTER
DATABASE statements:

ALTER DATABASE Test1

ADD FILEGROUP Test1FG1;

GO

ALTER DATABASE Test1

ADD FILE

(NAME = 'test1dat4',

FILENAME =

 'c:\program files\microsoft sql server\mssql.1\mssql\data\t1dat4.ndf',

SIZE = 500MB,

MAXSIZE = 1000MB,

FILEGROWTH = 50MB),

(NAME = 'test1dat5',

FILENAME =

 'c:\program files\microsoft sql server\mssql.1\mssql\data\t1dat5.ndf',

SIZE = 500MB,

MAXSIZE = 1000MB,

FILEGROWTH = 50MB)

TO FILEGROUP Test1FG1;

GO

ALTER DATABASE Test1

MODIFY FILEGROUP Test1FG1 DEFAULT;

GO

Databases Under the Hood
A database consists of user-defined space for the permanent storage of user objects such as
tables and indexes. This space is allocated in one or more operating system files.

Databases are divided into logical pages (of 8 KB each), and within each file the pages are
numbered contiguously from 0 to x, with the value x being defined by the size of the file.
You can refer to any page by specifying a database ID, a file ID, and a page number. When
you use the ALTER DATABASE command to enlarge a file, the new space is added to the end
of the file. That is, the first page of the newly allocated space is page x + 1 on the file you’re
enlarging. When you shrink a database by using the DBCC SHRINKDATABASE or DBCC
SHRINKFILE command, pages are removed starting at the highest-numbered page in the
database (at the end) and moving toward lower-numbered pages. This ensures that page
numbers within a file are always contiguous.

When you create a new database using the CREATE DATABASE command, it is given a unique
database ID, and you can see a row for the new database in the sys.databases view. The rows
returned in sys.databases include basic information about each database, such as its name,
database_id, and creation date, as well as the value for each database option that can be
set with the ALTER DATABASE command. I’ll discuss database options in more detail later in
the chapter.

626249.indb 144 3/10/11 11:54 AM

	 Chapter 3  Databases and Database Files	 145

Space Allocation
The space in a database is used for storing tables and indexes. The space is managed in units
called extents. An extent is made up of eight logically contiguous pages (or 64 KB of space).
To make space allocation more efficient, SQL Server 2008 doesn’t allocate entire extents to
tables with small amounts of data. SQL Server 2008 has two types of extents:

n	 Uniform extents  These are owned by a single object; all eight pages in the extent can
be used only by the owning object.

n	 Mixed extents  These are shared by up to eight objects.

SQL Server allocates pages for a new table or index from mixed extents. When the table or
index grows to eight pages, all future allocations use uniform extents.

When a table or index needs more space, SQL Server needs to find space that’s available to
be allocated. If the table or index is still less than eight pages total, SQL Server must find a
mixed extent with space available. If the table or index is eight pages or larger, SQL Server
must find a free uniform extent.

SQL Server uses two special types of pages to record which extents have been allocated and
which type of use (mixed or uniform) the extent is available for:

n	 Global Allocation Map (GAM) pages  These pages record which extents have been
allocated for any type of use. A GAM has a bit for each extent in the interval it covers.
If the bit is 0, the corresponding extent is in use; if the bit is 1, the extent is free. After
the header and other overhead are accounted for, there are 8,000 bytes, or 64,000 bits,
available on the page, so each GAM can cover about 64,000 extents, or almost 4 GB of
data. This means that one GAM page exists in a file for every 4 GB of file size.

n	 Shared Global Allocation Map (SGAM) pages  These pages record which extents are
currently used as mixed extents and have at least one unused page. Just like a GAM,
each SGAM covers about 64,000 extents, or almost 4 GB of data. The SGAM has a bit
for each extent in the interval it covers. If the bit is 1, the extent being used is a mixed
extent and has free pages; if the bit is 0, the extent isn’t being used as a mixed extent,
or it’s a mixed extent whose pages are all in use.

Table 3-2 shows the bit patterns that each extent has set in the GAM and SGAM pages, based
on its current use.

Table 3-2  Bit Settings in GAM and SGAM Pages

Current Use of Extent GAM Bit Setting SGAM Bit Setting

Free, not in use 1 0

Uniform extent or full mixed extent 0 0

Mixed extent with free pages 0 1

626249.indb 145 3/10/11 11:54 AM

146	 Microsoft SQL Server 2008 Internals

There are several tools available for actually examining the bits in the GAMs and SGAMs.
Chapter 5 discusses the DBCC PAGE command which allows you to view the contents of a
SQL Server database page using a query window. Because the page numbers of the GAMs
and SGAMs are known, we can just look at pages 2 or 3. If we use format 3, which gives the
most details, we can see that output displays which extents are allocated and which are not.
Figure 3-2 shows the last section of the output using DBCC PAGE with format 3 for the first
GAM page of my AdventureWorks2008 database.

(1:0) - (1:24256) = ALLOCATED

(1:24264) - = NOT ALLOCATED

(1:24272) - (1:29752) = ALLOCATED

(1:29760) - (1:30168) = NOT ALLOCATED

(1:30176) - (1:30240) = ALLOCATED

(1:30248) - (1:30256) = NOT ALLOCATED

(1:30264) - (1:32080) = ALLOCATED

(1:32088) - (1:32304) = NOT ALLOCATED

Figure 3-2  GAM page contents indicating allocation status of extents in a file

This output indicates that all the extents up through the one that starts on page 24,256 are
allocated. This corresponds to the first 189 MB of the file. The extent starting at 24,264 is not
allocated, but the next 5,480 pages are allocated.

We can also use a graphical tool called SQL Internals Viewer to look at which extents have been
allocated. SQL Internals Viewer is a free tool available from http://www.SQLInternalsViewer.com,
and is also available on this book’s companion Web site. Figure 3-3 shows the main allocation
page for my master database. GAMs and SGAMs have been combined in one display and
indicate the status of every page, not just every extent. The green squares indicate that the
SGAM is being used but the extent is not used, so there are pages available for single-page
allocations. The blue blocks indicate that both the GAM bit and the SGAM bit are set, so the
corresponding extent is completely unavailable. The gray blocks indicate that the extent is free.

Figure 3-3  SQL Internals Viewer indicating the allocation status of each page

626249.indb 146 3/10/11 11:54 AM

	 Chapter 3  Databases and Database Files	 147

If SQL Server needs to find a new, completely unused extent, it can use any extent with a
corresponding bit value of 1 in the GAM page. If it needs to find a mixed extent with available
space (one or more free pages), it finds an extent with a value in the SGAM of 1 (which always
has a value in the GAM of 0). If there are no mixed extents with available space, it uses the
GAM page to find a whole new extent to allocate as a mixed extent, and uses one page from
that. If there are no free extents at all, the file is full.

SQL Server can locate the GAMs in a file quickly because a GAM is always the third page in
any database file (that is, page 2). An SGAM is the fourth page (that is, page 3). Another GAM
appears every 511,230 pages after the first GAM on page 2, and another SGAM appears
every 511,230 pages after the first SGAM on page 3. Page 0 in any file is the File Header
page, and only one exists per file. Page 1 is a Page Free Space (PFS) page. In Chapter 5, I’ll
say more about how individual pages within a table look and tell you about the details of PFS
pages. For now, because I’m talking about space allocation, I’ll examine how to keep track of
which pages belong to which tables.

IAM pages keep track of the extents in a 4-GB section of a database file used by an allocation
unit. An allocation unit is a set of pages belonging to a single partition in a table or index
and comprises pages of one of three storage types: pages holding regular in-row data, pages
holding Large Object (LOB) data, or pages holding row-overflow data. I’ll discuss these regular
in-row storage in Chapter 5, and LOB, row-overflow storage, and partitions in Chapter 7.

For example, a table on four partitions that has all three types of data (in-row, LOB, and
row-overflow) has at least 12 IAM pages. Again, a single IAM page covers only a 4-GB section
of a single file, so if the partition spans files, there will be multiple IAM pages, and if the file is
more than 4 GB in size and the partition uses pages in more than one 4-GB section, there will
be additional IAM pages.

An IAM page contains a 96-byte page header, like all other pages followed by an IAM page
header, which contains eight page-pointer slots. Finally, an IAM page contains a set of bits
that map a range of extents onto a file, which doesn’t necessarily have to be the same file
that the IAM page is in. The header has the address of the first extent in the range mapped
by the IAM. The eight page-pointer slots might contain pointers to pages belonging to the
relevant object contained in mixed extents; only the first IAM for an object has values in
these pointers. Once an object takes up more than eight pages, all of its additional extents
are uniform extents—which means that an object never needs more than eight pointers to
pages in mixed extents. If rows have been deleted from a table, the table can actually use
fewer than eight of these pointers. Each bit of the bitmap represents an extent in the range,
regardless of whether the extent is allocated to the object owning the IAM. If a bit is on,
the relative extent in the range is allocated to the object owning the IAM; if a bit is off, the
relative extent isn’t allocated to the object owning the IAM.

626249.indb 147 3/10/11 11:54 AM

148	 Microsoft SQL Server 2008 Internals

For example, if the bit pattern in the first byte of the IAM is 1100 0000, the first and second
extents in the range covered by the IAM are allocated to the object owning the IAM and
extents 3 through 8 aren’t allocated to the object owning the IAM.

IAM pages are allocated as needed for each object and are located randomly in the database
file. Each IAM covers a possible range of about 512,000 pages.

The internal system view called sys.system_internals_allocation_units has a column called
first_iam_page that points to the first IAM page for an allocation unit. All the IAM pages for
that allocation unit are linked in a chain, with each IAM page containing a pointer to the next
in the chain. You can find out more about IAMs and allocation units in Chapters 5, 6, and 7
when I discuss object and index storage.

In addition to GAMs, SGAMs, and IAMs, a database file has three other types of special
allocation pages. PFS pages keep track of how each particular page in a file is used. The second
page (page 1) of a file is a PFS page, as is every 8,088th page thereafter. I’ll talk about them
more in Chapter 5. The seventh page (page 6) is called a Differential Changed Map (DCM)
page. It keeps track of which extents in a file have been modified since the last full database
backup. The eighth page (page 7) is called a Bulk Changed Map (BCM) page and is used when
an extent in the file is used in a minimally or bulk-logged operation. I’ll tell you more about
these two kinds of pages when I talk about the internals of backup and restore operations in
Chapter 4. Like GAM and SGAM pages, DCM and BCM pages have 1 bit for each extent in the
section of the file they represent. They occur at regular intervals—every 511,230 pages.

You can see the details of IAMs and PFS pages, as well as DCM and BCM pages, using either
DBCC PAGE or the SQL Internals Viewer. I’ll show you more examples of the output of DBCC
PAGE in later chapters as we cover more details of the different types of allocation pages.

Setting Database Options
You can set several dozen options, or properties, for a database to control certain behavior
within that database. Some options must be set to ON or OFF, some must be set to one of
a list of possible values, and others are enabled by just specifying their name. By default,
all the options that require ON or OFF have an initial value of OFF unless the option was
set to ON in the model database. All databases created after an option is changed in model
have the same values as model. You can easily change the value of some of these options by
using Management Studio. You can set all of them directly by using the ALTER DATABASE
command. (You can also use the sp_dboption system stored procedure to set some of the
options, but that procedure is provided for backward compatibility only and is scheduled to
be removed in the next version of SQL Server.)

Examining the sys.databases catalog view can show you the current values of all the options.
The view also contains other useful information, such as database ID, creation date, and the
Security ID (SID) of the database owner. The following query retrieves some of the most

626249.indb 148 3/10/11 11:54 AM

	 Chapter 3  Databases and Database Files	 149

important columns from sys.databases for the four databases that exist on a new default
installation of SQL Server:

SELECT name, database_id, suser_sname(owner_sid) as owner,

 create_date, user_access_desc, state_desc

FROM sys.databases

WHERE database_id <= 4;

The query produces this output, although the created dates may vary:

name database_id owner create_date user_access_desc state_desc

------ ----------- ----- ----------------------- ---------------- ----------

master 1 sa 2003-04-08 09:13:36.390 MULTI_USER ONLINE

tempdb 2 sa 2008-04-19 12:02:35.327 MULTI_USER ONLINE

model 3 sa 2003-04-08 09:13:36.390 MULTI_USER ONLINE

msdb 4 sa 2008-03-21 01:54:05.240 MULTI_USER ONLINE

The sys.databases view actually contains both a number and a name for the user_access
and state information. Selecting all the columns from sys.databases would show you that
the user_access_desc value of MULTI_USER has a corresponding user_access value of 0, and
the state_desc value of ONLINE has a state value of 0. SQL Server Books Online shows the
complete list of number and name relationships for the columns in sys.databases. These are
just two of the database options displayed in the sys.databases view. The complete list of
database options is divided into seven main categories: state options, cursor options, auto
options, parameterization options, SQL options, database recovery options, and external
access options. There are also options for specific technologies that SQL Server can use,
including database mirroring, Service Broker activities, change tracking, database encryption,
and snapshot isolation. Some of the options, particularly the SQL options, have corresponding
SET options that you can turn on or off for a particular connection. Be aware that the ODBC or
OLE DB drivers turn on a number of these SET options by default, so applications act as if the
corresponding database option has already been set.

Here is a list of the options, by category. Options listed on a single line and values separated
by vertical bars (|) are mutually exclusive.

State options

	 1.	 SINGLE_USER | RESTRICTED_USER | MULTI_USER

	 2.	 OFFLINE | ONLINE | EMERGENCY

	 3.	 READ_ONLY | READ_WRITE

Cursor options

	 1.	 CURSOR_CLOSE_ON_COMMIT { ON | OFF }

	 2.	 CURSOR_DEFAULT { LOCAL | GLOBAL }

626249.indb 149 3/10/11 11:54 AM

150	 Microsoft SQL Server 2008 Internals

Auto options

	 1.	 AUTO_CLOSE { ON | OFF }

	 2.	 AUTO_CREATE_STATISTICS { ON | OFF }

	 3.	 AUTO_SHRINK { ON | OFF }

	 4.	 AUTO_UPDATE_STATISTICS { ON | OFF }

	 5.	 AUTO_UPDATE_STATISTICS_ASYNC { ON | OFF }

Parameterization options

	 1.	 DATE_CORRELATION_OPTIMIZATION { ON | OFF }

	 2.	 PARAMETERIZATION { SIMPLE | FORCED }

SQL options

	 1.	 ANSI_NULL_DEFAULT { ON | OFF }

	 2.	 ANSI_NULLS { ON | OFF }

	 3.	 ANSI_PADDING { ON | OFF }

	 4.	 ANSI_WARNINGS { ON | OFF }

	 5.	 ARITHABORT { ON | OFF }

	 6.	 CONCAT_NULL_YIELDS_NULL { ON | OFF }

	 7.	 NUMERIC_ROUNDABORT { ON | OFF }

	 8.	 QUOTED_IDENTIFIER { ON | OFF }

	 9.	 RECURSIVE_TRIGGERS { ON | OFF }

Database recovery options

	 1.	 RECOVERY { FULL | BULK_LOGGED | SIMPLE }

	 2.	 TORN_PAGE_DETECTION { ON | OFF }

	 3.	 PAGE_VERIFY { CHECKSUM | TORN_PAGE_DETECTION | NONE }

External access options

	 1.	 DB_CHAINING { ON | OFF }

	 2.	 TRUSTWORTHY { ON | OFF }

Database mirroring options

	 1.	 PARTNER { = ‘partner_server’ }

	 2.	 | FAILOVER

626249.indb 150 3/10/11 11:54 AM

	 Chapter 3  Databases and Database Files	 151

	 3.	 | FORCE_SERVICE_ALLOW_DATA_LOSS

	 4.	 | OFF

	 5.	 | RESUME

	 6.	 | SAFETY { FULL | OFF }

	 7.	 | SUSPEND

	 8.	 | TIMEOUT integer

	 9.	 }

	 10.	 WITNESS { = ‘witness_server’ }| OFF }

Service Broker options

	 1.	 ENABLE_BROKER | DISABLE_BROKER

	 2.	 NEW_BROKER

	 3.	 ERROR_BROKER_CONVERSATIONS

Change Tracking options

	 1.	 CHANGE_TRACKING {= ON [<change_tracking_settings> | = OFF}

Database Encryption options

	 1.	 ENCRYPTION {ON | OFF}

Snapshot Isolation options

	 1.	 ALLOW_SNAPSHOT_ISOLATION {ON | OFF }

	 2.	 READ_COMMITTED_SNAPSHOT {ON | OFF } [WITH <termination>]

State Options
The state options control who can use the database and for what operations. There are three
aspects to usability: The user access state determines which users can use the database;
the status state determines whether the database is available to anybody for use; and the
updateability state determines what operations can be performed on the database. You
control each of these aspects by using the ALTER DATABASE command to enable an option
for the database. None of the state options uses the keywords ON and OFF to control the
state value.

SINGLE_USER | RESTRICTED_USER | MULTI_USER
The three options SINGLE_USER, RESTRICTED_USER, and MULTI_USER describe the user
access property of a database. They are mutually exclusive; setting any one of them unsets

626249.indb 151 3/10/11 11:54 AM

152	 Microsoft SQL Server 2008 Internals

the others. To set one of these options for your database, you just use the option name. For
example, to set the AdventureWorks2008 database to single-user mode, use the following code:

ALTER DATABASE AdventureWorks2008 SET SINGLE_USER;

A database in SINGLE_USER mode can have only one connection at a time. A database
in RESTRICTED_USER mode can have connections only from users who are considered
“qualified”—those who are members of the dbcreator or sysadmin server role or the db_owner
role for that database. The default for a database is MULTI_USER mode, which means anyone
with a valid user name in the database can connect to it. If you attempt to change a database’s
state to a mode that is incompatible with the current conditions—for example, if you try to
change the database to SINGLE_USER mode when other connections exist—the behavior of
SQL Server is determined by the TERMINATION option you specify. I’ll discuss termination
options shortly.

To determine which user access value is set for a database, you can examine the sys.databases
catalog view, as shown here:

SELECT USER_ACCESS_DESC FROM sys.databases

WHERE name = '<name of database>';

This query will return one of MULTI_USER, SINGLE_USER, or RESTRICTED_USER.

OFFLINE | ONLINE | EMERGENCY
You use the OFFLINE, ONLINE, and EMERGENCY options to describe the status of a database.
They are mutually exclusive. The default for a database is ONLINE. As with the user access
options, when you use ALTER DATABASE to put the database in one of these modes, you
don’t specify a value of ON or OFF—you just use the name of the option. When a database
is set to OFFLINE, it is closed and shut down cleanly and marked as offline. The database
cannot be modified while the database is offline. A database cannot be put into OFFLINE
mode if there are any connections in the database. Whether SQL Server waits for the other
connections to terminate or generates an error message is determined by the TERMINATION
option specified.

The following code examples show how to set a database’s status value to OFFLINE and how
to determine the status of a database:

ALTER DATABASE AdventureWorks2008 SET OFFLINE;

SELECT state_desc from sys.databases

WHERE name = 'AdventureWorks2008';

A database can be explicitly set to EMERGENCY mode, and that option will be discussed in
Chapter 11, in conjunction with DBCC commands.

As shown in the preceding query, you can determine the current status of a database by
examining the state_desc column of the sys.databases view. This column can return status

626249.indb 152 3/10/11 11:54 AM

	 Chapter 3  Databases and Database Files	 153

values other than OFFLINE, ONLINE, and EMERGENCY, but those values are not directly
settable using ALTER DATABASE. A database can have the status value RESTORING while it
is in the process of being restored from a backup. It can have the status value RECOVERING
during a restart of SQL Server. The recovery process is performed on one database at a
time, and until SQL Server has finished recovering a database, the database has a status of
RECOVERING. If the recovery process cannot be completed for some reason (most likely
because one or more of the log files for the database is unavailable or unreadable), SQL
Server gives the database the status of RECOVERY_PENDING. Your databases can also be put
into RECOVERY_PENDING mode if SQL Server runs out of either log or data space during
rollback recovery, or if SQL Server runs out of locks or memory during any part of the startup
process. I’ll go into more detail about the difference between rollback recovery and startup
recovery in Chapter 4.

If all the needed resources, including the log files, are available, but corruption is detected
during recovery, the database may be put in the SUSPECT state. You can determine the state
value by looking at the state_desc column in the sys.databases view. A database is completely
unavailable if it’s in the SUSPECT state, and you will not even see the database listed if you
run sp_helpdb. However, you can still see the status of a suspect database in the sys.databases
view. In many cases, you can make a suspect database available for read-only operations by
setting its status to EMERGENCY mode. If you really have lost one or more of the log files
for a database, EMERGENCY mode allows you to access the data while you copy it to a new
location. When you move from RECOVERY_PENDING to EMERGENCY, SQL Server shuts down
the database and then restarts it with a special flag that allows it to skip the recovery process.
Skipping recovery can mean you have logically or physically inconsistent data—missing index
rows, broken page links, or incorrect metadata pointers. By specifically putting your database
in EMERGENCY mode, you are acknowledging that the data might be inconsistent but that
you want access to it anyway.

READ_ONLY | READ_WRITE
These options describe the updatability of a database. They are mutually exclusive. The default
for a database is READ_WRITE. As with the user access options, when you use ALTER DATABASE
to put the database in one of these modes, you don’t specify a value of ON or OFF, you just
use the name of the option. When the database is in READ_WRITE mode, any user with the
appropriate permissions can carry out data modification operations. In READ_ONLY mode, no
INSERT, UPDATE, or DELETE operations can be executed. In addition, because no modifications
are done when a database is in READ_ONLY mode, automatic recovery is not run on this
database when SQL Server is restarted, and no locks need to be acquired during any SELECT
operations. Shrinking a database in READ_ONLY mode is not possible.

A database cannot be put into READ_ONLY mode if there are any connections to the
database. Whether SQL Server waits for the other connections to terminate or generates an
error message is determined by the TERMINATION option specified.

626249.indb 153 3/10/11 11:54 AM

154	 Microsoft SQL Server 2008 Internals

The following code shows how to set a database’s updatability value to READ_ONLY and how
to determine the updatability of a database:

ALTER DATABASE AdventureWorks2008 SET READ_ONLY;

SELECT name, is_read_only FROM sys.databases

WHERE name = 'AdventureWorks2008';

When READ_ONLY is enabled for database, the is_read_only column returns 1; otherwise, for
a READ_WRITE database, it returns 0.

Termination Options
As I just mentioned, several of the state options cannot be set when a database is in use or
when it is in use by an unqualified user. You can specify how SQL Server should handle this
situation by indicating a termination option in the ALTER DATABASE command. You can have
SQL Server wait for the situation to change, generate an error message, or terminate the
connections of unqualified users. The termination option determines the behavior of SQL
Server in the following situations:

n	 When you attempt to change a database to SINGLE_USER and it has more than one
current connection

n	 When you attempt to change a database to RESTRICTED_USER and unqualified users
are currently connected to it

n	 When you attempt to change a database to OFFLINE and there are current connections
to it

n	 When you attempt to change a database to READ_ONLY and there are current
connections to it

The default behavior of SQL Server in any of these situations is to wait indefinitely. The following
TERMINATION options change this behavior:

n	 ROLLBACK AFTER integer [SECONDS]  This option causes SQL Server to wait for the
specified number of seconds and then break unqualified connections. Incomplete
transactions are rolled back. When the transition is to SINGLE_USER mode, all
connections are unqualified except the one issuing the ALTER DATABASE command.
When the transition is to RESTRICTED_USER mode, unqualified connections are those
of users who are not members of the db_owner fixed database role or the dbcreator
and sysadmin fixed server roles.

n	 ROLLBACK IMMEDIATE  This option breaks unqualified connections immediately. All
incomplete transactions are rolled back. Keep in mind that although the connection
may be broken immediately, the rollback might take some time to complete. All work
done by the transaction must be undone, so for certain operations, such as a batch
update of millions of rows or a large index rebuild, you could be in for a long wait.
Unqualified connections are the same as those described previously.

626249.indb 154 3/10/11 11:54 AM

	 Chapter 3  Databases and Database Files	 155

n	 NO_WAIT  This option causes SQL Server to check for connections before attempting
to change the database state and causes the ALTER DATABASE command to fail if
certain connections exist. If the database is being set to SINGLE_USER mode, the
ALTER DATABASE command fails if any other connections exist. If the transition is
to RESTRICTED_USER mode, the ALTER DATABASE command fails if any unqualified
connections exist.

The following command changes the user access option of the AdventureWorks2008 database
to SINGLE_USER and generates an error if any other connections to the AdventureWorks2008
database exist:

ALTER DATABASE AdventureWorks2008 SET SINGLE_USER WITH NO_WAIT;

Cursor Options
The cursor options control the behavior of server-side cursors that were defined using one
of the following T-SQL commands for defining and manipulating cursors: DECLARE, OPEN,
FETCH, CLOSE, and DEALLOCATE.

n	 CURSOR_CLOSE_ON_COMMIT {ON | OFF}  When this option is set to ON, any open
cursors are closed (in compliance with SQL-92) when a transaction is committed or
rolled back. If OFF (the default) is specified, cursors remain open after a transaction
is committed. Rolling back a transaction closes any cursors except those defined as
INSENSITIVE or STATIC.

n	 CURSOR_DEFAULT {LOCAL | GLOBAL}  When this option is set to LOCAL and cursors
aren’t specified as GLOBAL when they are created, the scope of any cursor is local to
the batch, stored procedure, or trigger in which it was created. The cursor name is
valid only within this scope. The cursor can be referenced by local cursor variables in
the batch, stored procedure, or trigger, or by a stored procedure output parameter.
When this option is set to GLOBAL and cursors aren’t specified as LOCAL when they are
created, the scope of the cursor is global to the connection. The cursor name can be
referenced in any stored procedure or batch executed by the connection.

Auto Options
The auto options affect actions that SQL Server might take automatically. All these options
are Boolean options, with a value of ON or OFF.

n	 AUTO_CLOSE  When this option is set to ON, the database is closed and shut down
cleanly when the last user of the database exits, thereby freeing any resources. All file
handles are closed, and all in-memory structures are removed so that the database is
not using any memory. When a user tries to use the database again, it reopens. If the
database was shut down cleanly, the database isn’t initialized (reopened) until a user

626249.indb 155 3/10/11 11:54 AM

156	 Microsoft SQL Server 2008 Internals

tries to use the database the next time SQL Server is restarted. The AUTO_CLOSE option
is handy for personal SQL Server databases because it allows you to manage database
files as normal files. You can move them, copy them to make backups, or even e-mail
them to other users. However, you shouldn’t use this option for databases accessed
by an application that repeatedly makes and breaks connections to SQL Server. The
overhead of closing and reopening the database between each connection will
hurt performance.

n	 AUTO_SHRINK  When this option is set to ON, all of a database’s files are candidates
for periodic shrinking. Both data files and log files can be automatically shrunk by
SQL Server. The only way to free space in the log files so that they can be shrunk
is to back up the transaction log or set the recovery model to SIMPLE. The log
files shrink at the point that the log is backed up or truncated. This option is never
recommended.

n	 AUTO_CREATE_STATISTICS  When this option is set to ON (the default), the SQL
Server Query Optimizer creates statistics on columns referenced in a query’s WHERE
or ON clause. Adding statistics improves query performance because the SQL Server
Query Optimizer can better determine how to evaluate a query.

n	 AUTO_UPDATE_STATISTICS  When this option is set to ON (the default), existing
statistics are updated if the data in the tables has changed. SQL Server keeps a
counter of the modifications made to a table and uses it to determine when statistics
are outdated. When this option is set to OFF, existing statistics are not automatically
updated. (They can be updated manually.) Statistics will be discussed in more detail in
Chapter 6 and Chapter 8, “The Query Optimizer.”

SQL Options
The SQL options control how various SQL statements are interpreted. They are all Boolean
options. The default for all these options is OFF for SQL Server, but many tools, such as the
Management Studio, and many programming interfaces, such as ODBC, enable certain
session-level options that override the database options and make it appear as if the ON
behavior is the default.

n	 ANSI_NULL_DEFAULT  When this option is set to ON, columns comply with the ANSI
SQL-92 rules for column nullability. That is, if you don’t specifically indicate whether a
column in a table allows NULL values, NULLs are allowed. When this option is set to
OFF, newly created columns do not allow NULLs if no nullability constraint is specified.

n	 ANSI_NULLS  When this option is set to ON, any comparisons with a NULL value
result in UNKNOWN, as specified by the ANSI-92 standard. If this option is set to OFF,
comparisons of non-Unicode values to NULL result in a value of TRUE if both values
being compared are NULL.

626249.indb 156 3/10/11 11:54 AM

	 Chapter 3  Databases and Database Files	 157

n	 ANSI_PADDING  When this option is set to ON, strings being compared with each
other are set to the same length before the comparison takes place. When this option
is OFF, no padding takes place.

n	 ANSI_WARNINGS  When this option is set to ON, errors or warnings are issued when
conditions such as division by zero or arithmetic overflow occur.

n	 ARITHABORT  When this option is set to ON, a query is terminated when an
arithmetic overflow or division-by-zero error is encountered during the execution of a
query. When this option is OFF, the query returns NULL as the result of the operation.

n	 CONCAT_NULL_YIELDS_NULL  When this option is set to ON, concatenating two
strings results in a NULL string if either of the strings is NULL. When this option is set
to OFF, a NULL string is treated as an empty (zero-length) string for the purposes of
concatenation.

n	 NUMERIC_ROUNDABORT  When this option is set to ON, an error is generated
if an expression will result in loss of precision. When this option is OFF, the result is
simply rounded. The setting of ARITHABORT determines the severity of the error.
If ARITHABORT is OFF, only a warning is issued and the expression returns a NULL. If
ARITHABORT is ON, an error is generated and no result is returned.

n	 QUOTED_IDENTIFIER  When this option is set to ON, identifiers such as table and
column names can be delimited by double quotation marks, and literals must then
be delimited by single quotation marks. All strings delimited by double quotation
marks are interpreted as object identifiers. Quoted identifiers don’t have to follow the
T-SQL rules for identifiers when QUOTED_IDENTIFIER is ON. They can be keywords
and can include characters not normally allowed in T-SQL identifiers, such as spaces
and dashes. You can’t use double quotation marks to delimit literal string expressions;
you must use single quotation marks. If a single quotation mark is part of the literal
string, it can be represented by two single quotation marks (''). This option must be
set to ON if reserved keywords are used for object names in the database. When
it is OFF, identifiers can’t be in quotation marks and must follow all T-SQL rules
for identifiers.

n	 RECURSIVE_TRIGGERS  When this option is set to ON, triggers can fire recursively,
either directly or indirectly. Indirect recursion occurs when a trigger fires and performs
an action that causes a trigger on another table to fire, thereby causing an update to
occur on the original table, which causes the original trigger to fire again. For example,
an application updates table T1, which causes trigger Trig1 to fire. Trig1 updates table T2,
which causes trigger Trig2 to fire. Trig2 in turn updates table T1, which causes Trig1
to fire again. Direct recursion occurs when a trigger fires and performs an action that
causes the same trigger to fire again. For example, an application updates table T3,
which causes trigger Trig3 to fire. Trig3 updates table T3 again, which causes trigger Trig3
to fire again. When this option is OFF (the default), triggers can’t be fired recursively.

626249.indb 157 3/10/11 11:54 AM

158	 Microsoft SQL Server 2008 Internals

Database Recovery Options
The database option RECOVERY (FULL, BULK_LOGGED or SIMPLE) determines how much
recovery can be done on a SQL Server database. It also controls how much information is
logged and how much of the log is available for backups. I’ll cover this option in more detail
in Chapter 4.

Two other options also apply to work done when a database is recovered. Setting the
TORN_PAGE_DETECTION option to ON or OFF is possible in SQL Server 2008, but that particular
option will go away in a future version. The recommended alternative is to set the PAGE_VERIFY
option to a value of TORN_PAGE_DETECTION or CHECKSUM. (So TORN_PAGE_DETECTION
should now be considered a value, rather the name of an option.)

The PAGE_VERIFY options discover damaged database pages caused by disk I/O path errors,
which can cause database corruption problems. The I/O errors themselves are generally
caused by power failures or disk failures that occur when a page is being written to disk.

n	 CHECKSUM  When the PAGE_VERIFY option is set to CHECKSUM, SQL Server
calculates a checksum over the contents of each page and stores the value in the page
header when a page is written to disk. When the page is read from disk, a checksum is
recomputed and compared with the value stored in the page header. If the values do
not match, error message 824 (indicating a checksum failure) is reported.

n	 TORN_PAGE_DETECTION  When the PAGE_VERIFY option is set to TORN_PAGE_
DETECTION, it causes a bit to be flipped for each 512-byte sector in a database page
(8 KB) whenever the page is written to disk. It allows SQL Server to detect incomplete
I/O operations caused by power failures or other system outages. If a bit is in the
wrong state when the page is later read by SQL Server, it means that the page was
written incorrectly. (A torn page has been detected.) Although SQL Server database
pages are 8 KB, disks perform I/O operations using 512-byte sectors. Therefore,
16 sectors are written per database page. A torn page can occur if the system crashes
(for example, because of power failure) between the time the operating system writes
the first 512-byte sector to disk and the completion of the 8-KB I/O operation. When
the page is read from disk, the torn bits stored in the page header are compared
with the actual page sector information. Unmatched values indicate that only part of
the page was written to disk. In this situation, error message 824 (indicating a torn
page error) is reported. Torn pages are typically detected by database recovery if it is
truly an incomplete write of a page. However, other I/O path failures can cause a torn
page at any time.

n	 NONE (No Page Verify Option)  You can specify that that neither the CHECKSUM nor
the TORN_PAGE_DETECTION value will be generated when a page is written, and these
values will not be verified when a page is read.

Both checksum and torn page errors generate error message 824, which is written to
both the SQL Server error log and the Windows event log. For any page that generates an

626249.indb 158 3/10/11 11:54 AM

	 Chapter 3  Databases and Database Files	 159

824 error when read, SQL Server inserts a row into the system table suspect_pages in the
msdb database. (SQL Server Books Online has more information on “Understanding and
Managing the suspect_pages Table.”)

SQL Server retries any read that fails with a checksum, torn page, or other I/O error four
times. If the read is successful in any one of those attempts, a message is written to the error
log and the command that triggered the read continues. If the attempts fail, the command
fails with error message 824.

You can “fix” the error by restoring the data or potentially rebuilding the index if the failure
is limited to index pages. If you encounter a checksum failure, you can run DBCC CHECKDB
to determine the type of database page or pages affected. You should also determine the
root cause of the error and correct the problem as soon as possible to prevent additional or
ongoing errors. Finding the root cause requires investigating the hardware, firmware drivers,
BIOS, filter drivers (such as virus software), and other I/O path components.

In SQL Server 2008 and SQL Server 2005, the default is CHECKSUM. In SQL Server 2000,
TORN_PAGE_DETECTION was the default, and CHECKSUM was not available. If you upgrade
a database from SQL Server 2000, the PAGE_VERIFY value will be NONE or TORN_PAGE_
DETECTION. You should always consider using CHECKSUM. Although TORN_PAGE_DETECTION
uses fewer resources, it provides less protection than CHECKSUM. Keep in mind that if you
enable CHECKSUM on a database upgraded from SQL Server 2000, that a checksum value is
computed only on pages that are modified.

Note  Prior to SQL Server 2008, neither CHECKSUM nor TORN_PAGE_DETECTION was available
in the tempdb database.

Other Database Options
Of the other categories of database options, two more will be covered in later chapters. The
snapshot isolation options will be discussed in Chapter 10, “Transactions and Concurrency.”
and the change tracking options were covered in Chapter 2. The others are beyond the scope
of this book.

Database Snapshots
An interesting feature added to the product in SQL Server 2005 Enterprise Edition is
database snapshots, which allow you to create a point-in-time, read-only copy of any
database. In fact, you can create multiple snapshots of the same source database at different
points in time. The actual space needed for each snapshot is typically much less than the
space required for the original database because the snapshot stores only pages that have
changed, as will be discussed shortly.

626249.indb 159 3/10/11 11:54 AM

160	 Microsoft SQL Server 2008 Internals

Database snapshots allow you to do the following:

n	 Turn a database mirror into a reporting server. (You cannot read from a database
mirror, but you can create a snapshot of the mirror and read from that.)

n	 Generate reports without blocking or being blocked by production operations.

n	 Protect against administrative or user errors.

You’ll probably think of more ways to use snapshots as you gain experience working with them.

Creating a Database Snapshot
The mechanics of snapshot creation are straightforward—you simply specify an option for
the CREATE DATABASE command. There is no graphical interface for creating a database
snapshot through Object Explorer, so you must use the T-SQL syntax. When you create a
snapshot, you must include each data file from the source database in the CREATE DATABASE
command, with the original logical name and a new physical name and path. No other
properties of the files can be specified, and no log file is used.

Here is the syntax to create a snapshot of the AdventureWorks2008 database, putting the
snapshot files in the SQL Server 2008 default data directory:

CREATE DATABASE AdventureWorks_snapshot ON

(NAME = N'AdventureWorks_Data',

 FILENAME =

 N'C:\Program Files\Microsoft SQL Server\MSSQL10.MSSQLSERVER\MSSQL\

 Data\AW_data_snapshot.mdf')

AS SNAPSHOT OF AdventureWorks2008;

Each file in the snapshot is created as a sparse file, which is a feature of the NTFS file system.
(Don’t confuse sparse files with sparse columns available in SQL Server 2008.) Initially, a
sparse file contains no user data, and disk space for user data has not been allocated to it.
As data is written to the sparse file, NTFS allocates disk space gradually. A sparse file can
potentially grow very large. Sparse files grow in 64-KB increments; thus, the size of a sparse
file on disk is always a multiple of 64 KB.

The snapshot files contain only the data that has changed from the source. For every file, SQL
Server creates a bitmap that is kept in cache, with a bit for each page of the file, indicating
whether that page has been copied to the snapshot. Every time a page in the source is updated,
SQL Server checks the bitmap for the file to see if the page has already been copied, and if it
hasn’t, it is copied at that time. This operation is called a copy-on-write operation. Figure 3-4 shows
a database with a snapshot that contains 10 percent of the data (one page) from the source.

When a process reads from the snapshot, it first accesses the bitmap to see whether the page
it wants is in the snapshot file or is still the source. Figure 3-5 shows read operations from the
same database as in Figure 3-4. Nine of the pages are accessed from the source database,
and one is accessed from the snapshot because it has been updated on the source. When a
process reads from a snapshot database, no locks are taken no matter what isolation level

626249.indb 160 3/10/11 11:54 AM

	 Chapter 3  Databases and Database Files	 161

Unallocated

Original page
Updated page

Copy-on-write
operation

Percent copied 10%

Source database
Page

Snapshot
Page

Figure 3-4  A database snapshot that contains one page of data from the source database

Source database
Page

Snapshot

Unallocated

Original page
Updated page

Percent copied 10%

Page

Read operation
on the snapshot

Figure 3-5  Read operations from a database snapshot, reading changed pages from the snapshot and
unchanged pages from the source database

626249.indb 161 3/10/11 11:54 AM

162	 Microsoft SQL Server 2008 Internals

you are in. This is true whether the page is read from the sparse file or from the source
database. This is one of the big advantages of using database snapshots.

As mentioned earlier, the bitmap is stored in cache, not with the file itself, so it is always readily
available. When SQL Server shuts down or the database is closed, the bitmaps are lost and need
to be reconstructed at database startup. SQL Server determines whether each page is in the
sparse file as it is accessed, and then it records that information in the bitmap for future use.

The snapshot reflects the point in time when the CREATE DATABASE command is
issued—that is, when the creation operation commences. SQL Server checkpoints the
source database and records a synchronization Log Sequence Number (LSN) in the source
database’s transaction log. As you’ll see in Chapter 4, when I talk about the transaction log,
the LSN is a way to determine a specific point in time in a database. SQL Server then runs
recovery on the source database so that any uncommitted transactions are rolled back in
the snapshot. So although the sparse file for the snapshot starts out empty, it might not
stay that way for long. If transactions are in progress at the time the snapshot is created,
the recovery process has to undo uncommitted transactions before the snapshot database
can be usable, so the snapshot contains the original versions of any page in the source that
contains modified data.

Snapshots can be created only on NTFS volumes because they are the only volumes that
support the sparse file technology. If you try to create a snapshot on a FAT or FAT32 volume,
you’ll get an error like one of the following:

Msg 1823, Level 16, State 2, Line 1

A database snapshot cannot be created because it failed to start.

Msg 5119, Level 16, State 1, Line 1

Cannot make the file "E:\AW_snapshot.MDF" a sparse file. Make sure the file system supports

sparse files.

The first error is basically the generic failure message, and the second message provides
more details about why the operation failed.

Space Used by Database Snapshots
You can find out the number of bytes that each sparse file of the snapshot is currently using
on disk by looking at the Dynamic Management Function sys.dm_io_virtual_file_stats, which
returns the current number of bytes in a file in the size_on_disk_bytes column. This function
takes database_id and file_id as parameters. The database ID of the snapshot database
and the file IDs of each of its sparse files are displayed in the sys.master_files catalog view.
You can also view the size in Windows Explorer by right-clicking the file name and looking at
the properties, as shown in Figure 3-6. The Size value is the maximum size, and the size on
disk should be the same value that you see using sys.dm_io_virtual_file_stats. The maximum
size should be about the same size the source database was when the snapshot was created.

626249.indb 162 3/10/11 11:54 AM

	 Chapter 3  Databases and Database Files	 163

Figure 3-6  The snapshot file’s Properties dialog box in Windows Explorer showing the current size of the
sparse file as the size on disk

Because it is possible to have multiple snapshots for the same database, you need to make
sure you have enough disk space available. The snapshots start out relatively small, but as
the source database is updated, each snapshot grows. Allocations to sparse files are made
in fragments called regions, in units of 64 KB. When a region is allocated, all the pages
are zeroed out except the one page that has changed. There is then space for seven more
changed pages in the same region, and a new region is not allocated until those seven
pages are used.

It is possible to overcommit your storage. This means that under normal circumstances,
you can have many times more snapshots than you have physical storage for, but if the
snapshots grow, the physical volume might run out of space. (Note that this can happen
when running online DBCC CHECKDB, and related commands, which use a hidden
snapshot during processing. You have no control of the placement of the hidden snapshot
that the commands use—they’re placed on the same volume that the files of the parent
database reside on. If this happens, the DBCC uses the source database and acquires table
locks. You can read lots more details of the internals of the DBCC commands in Chapter 11.)
Once the physical volume runs out of space, the write operations to the source cannot
copy the Before image of the page to the sparse file. The snapshots that cannot write their
pages out are marked as suspect and are unusable, but the source database continues
operating normally. There is no way to “fix” a suspect snapshot; you must drop the
snapshot database.

626249.indb 163 3/10/11 11:54 AM

164	 Microsoft SQL Server 2008 Internals

Managing Your Snapshots
If any snapshots exist on a source database, the source database cannot be dropped,
detached, or restored. In addition, you can basically replace the source database with one of
its snapshots by reverting the source database to the way it was when a snapshot was made.
You do this by using the RESTORE command:

RESTORE DATABASE AdventureWorks2008

FROM DATABASE_SNAPSHOT = 'AdventureWorks_snapshot';

During the revert operation, both the snapshot and the source database are unavailable and
are marked as “In restore.” If an error occurs during the revert operation, the operation tries
to finish reverting when the database starts again. You cannot revert to a snapshot if multiple
snapshots exist, so you should first drop all snapshots except the one you want to revert to.
Dropping a snapshot is like using any other DROP DATABASE operation. When the snapshot
is deleted, all the NTFS sparse files are also deleted.

Keep in mind these additional considerations regarding database snapshots:

n	 Snapshots cannot be created for the model, master, or tempdb database. (Internally,
snapshots can be created to run the online DBCC checks on the master database, but
they cannot be created explicitly.)

n	 A snapshot inherits the security constraints of its source database, and because it is
read-only, you cannot change the permissions.

n	 If you drop a user from the source database, the user is still in the snapshot.

n	 Snapshots cannot be backed up or restored, but backing up the source database works
normally; it is unaffected by database snapshots.

n	 Snapshots cannot be attached or detached.

n	 Full-text indexing is not supported on database snapshots, and full-text catalogs are
not propagated from the source database.

The tempdb Database
In some ways, the tempdb database is just like any other database, but it has some unique
behaviors. Not all of them are relevant to the topic of this chapter, so I will provide some
references to other chapters where you can find additional information.

As mentioned previously, the biggest difference between tempdb and all the other databases
in your SQL Server instance is that tempdb is re-created—not recovered—every time SQL
Server is restarted. You can think of tempdb as a workspace for temporary user objects and
internal objects explicitly created by SQL Server itself.

Every time tempdb is re-created, it inherits most database options from the model database.
However, the recovery model is not copied because tempdb always uses simple recovery,

626249.indb 164 3/10/11 11:54 AM

	 Chapter 3  Databases and Database Files	 165

which will be discussed in detail in Chapter 4. Certain database options cannot be set for
tempdb, such as OFFLINE and READONLY. You also cannot drop the tempdb database.

In the SIMPLE recovery model, the tempdb database’s log is constantly being truncated, and
it can never be backed up. No recovery information is needed because every time SQL Server
is started, tempdb is completely re-created; any previous user-created temporary objects
(that is, all your tables and data) disappear.

Logging for tempdb is also different than for other databases. (Normal logging will be
discussed in Chapter 4.) Many people assume that there is no logging in tempdb, but this is
not true. Operations within tempdb are logged so that transactions on temporary objects
can be rolled back, but the records in the log contain only enough information to roll back
a transaction, not to recover (or redo) it.

As I mentioned previously, recovery is run on a database as one of the first steps in creating
a snapshot. We can’t recover tempdb, so we cannot create a snapshot of it, and this means
we can’t run DBCC CHECKDB using a snapshot (or, in fact, most of the DBCC validation
commands). Another difference with running DBCC in tempdb is that SQL Server skips all
allocation and catalog checks. Running DBCC CHECKDB (or CHECKTABLE) in tempdb acquires
a Shared Table lock on each table as it is checked. (Locking will be discussed in Chapter 10.)

Objects in tempdb
Three types of objects are stored in tempdb: user objects, internal objects, and the version
store, used primarily for snapshot isolation.

User Objects
All users have the privileges to create and use local and global temporary tables that reside
in tempdb. (Local and global table names have the # or ## prefix, respectively. However, by
default, users don’t have the privileges to use tempdb and then create a table there, unless the
table name is prefaced with # or ##.) But you can easily grant the privileges in an autostart
procedure that runs each time SQL Server is restarted.

Other user objects that need space in tempdb include table variables and table-valued functions.
The user objects that are created in tempdb are in many ways treated just like user objects in any
other database. Space must be allocated for them when they are populated, and the metadata
needs to be managed. You can see user objects by examining the system catalog views, such as
sys.objects, and information in the sys.partitions and sys.allocation_units views will allow you to
see how much space is taken up by user objects. I’ll discuss these views in Chapters 5 and 7.

Internal Objects
Internal objects in tempdb are not visible using the normal tools, but they still take up space
from the database. They are not listed in the catalog views because their metadata is stored only
in memory. The three basic types of internal objects are work tables, work files, and sort units.

626249.indb 165 3/10/11 11:54 AM

166	 Microsoft SQL Server 2008 Internals

Work tables are created by SQL Server during the following operations:

n	 Spooling, to hold intermediate results during a large query

n	 Running DBCC CHECKDB or DBCC CHECKTABLE

n	 Working with XML or varchar(MAX) variables

n	 Processing SQL Service Broker objects

n	 Working with static or keyset cursors

Work files are used when SQL Server is processing a query that uses a hash operator, either
for joining or aggregating data.

Sort units are created when a sort operation takes place, and this occurs in many situations
in addition to a query containing an ORDER BY clause. SQL Server uses sorting to build an
index, and it might use sorting to process queries involving grouping. Certain types of joins
might require that SQL Server sort the data before performing the join. Sort units are created
in tempdb to hold the data as it is being sorted. SQL Server can also create sort units in user
databases in addition to tempdb, in particular when creating indexes. As you’ll see in Chapter 6,
when you create an index, you have the option to do the sort in the current user database or
in tempdb.

Version Store
The version store supports technology for row-level versioning of data. Older versions of
updated rows are kept in tempdb in the following situations:

n	 When an AFTER trigger is fired

n	 When a Data Modification Language (DML) command is executed in a database that
allows snapshot transactions

n	 When multiple active result sets (MARS) are invoked from a client application

n	 During online index builds or rebuilds when there is concurrent DML on the index

Versioning and snapshot transactions are discussed in detail in Chapter 10.

Optimizations in tempdb
Because tempdb is used for many more internal operations in SQL Server 2008 than in previous
versions, you have to take care in monitoring and managing it. The next section presents
some best practices and monitoring suggestions. In this section, I tell you about some
of the internal optimizations in SQL Server that allow tempdb to manage objects much more
efficiently.

626249.indb 166 3/10/11 11:54 AM

	 Chapter 3  Databases and Database Files	 167

Logging Optimizations
As you know, every operation that affects your user database in any way is logged. In tempdb,
however, this is not entirely true. For example, with logging update operations, only the
original data (the “before” image) is logged, not the new values (the after image). In addition,
the commit operations and committed log records are not flushed to disk synchronously in
tempdb, as they are in other databases.

Allocation and Caching Optimizations
Many of the allocation optimizations are used in all databases, not just tempdb. However,
tempdb is most likely the database in which the greatest number of new objects are created
and dropped during production operations, so the impact on tempdb is greater than on user
databases. In SQL Server 2008, allocation pages are accessed very efficiently to determine
where free extents are available; you should see far less contention on the allocation pages
than in previous versions. SQL Server 2008 also has a very efficient search algorithm for
finding an available single page from mixed extents. When a database has multiple files, SQL
Server 2008 has a very efficient proportional fill algorithm that allocates space to multiple
data files, proportional to the amount of free space available in each file.

Another optimization specific to tempdb prevents you from having to allocate any new space
for some objects. If a work table is dropped, one IAM page and one extent are saved (for a
total of nine pages), so there is no need to deallocate and then reallocate the space if the same
work table needs to be created again. This dropped work table cache is not very big and
has room for only 64 objects. If a work table is truncated internally and the query plan that
uses that worktable is still in the plan cache, again the first IAM page and the first extent are
saved. For these truncated tables, there is no specific limitation on the number of objects that
can be cached; it depends only on the available memory space.

User objects in tempdb can also have some of their space cached if they are dropped. For a
small table of less than 8 MB, dropping a user object in tempdb causes one IAM page and
one extent to be saved. However, if the table has had any additional DDL performed, such
as creating indexes or constraints, or if the table was created using dynamic SQL, no caching
is done.

For a large table, the entire drop is performed as a deferred operation. Deferred drop
operations are in fact used in every database as a way to improve overall throughput
because a thread does not need to wait for the drop to complete before proceeding with
its next task. Like the other allocation optimizations that are available in all databases, the
deferred drop probably provides the most benefit in tempdb, which is where tables are
most likely to be dropped during production operations. A background thread eventually
cleans up the space allocated for dropped tables, but until then, the allocated space remains.
You can detect this space by looking at the sys.allocation_units system view for rows with a
type value of 0, which indicates a dropped object; you will also see that the column called

626249.indb 167 3/10/11 11:54 AM

168	 Microsoft SQL Server 2008 Internals

container_id is 0, which indicates that the allocated space does not really belong to any
object. I’ll look at sys.allocation_units and the other system views that keep track of space
usage in Chapter 5.

Best Practices
By default, your tempdb database is created on only one data file. You will probably find that
multiple files give you better I/O performance and less contention on the global allocation
structures (the GAM, SGAM, and PFS pages). An initial recommendation is that you have one file
per CPU, but your own testing based on your data and usage patterns might indicate more or
less than that. For the greatest efficiency with the proportional fill algorithm, the files should be
the same size. The downside of multiple files is that every object will have multiple IAM pages
and there will be more switching costs as objects are accessed. It will also take more effort just
to manage the files. No matter how many files you have, they should be on the fastest disks you
can afford. One log file should be sufficient, and that should also be on a fast disk.

To determine the optimum size of your tempdb, you must test your own applications with
your data volumes, but knowing when and how tempdb is used can help you make preliminary
estimates. Keep in mind that there is only one tempdb for each SQL Server instance, so one
badly behaving application can affect all other users in all other applications. In Chapter 10,
I’ll explain how to determine the size of the version store. All these factors affect the space
needed for your tempdb. Finally, in Chapter 11, I’ll look at how the DBCC consistency
checking commands use tempdb and how to determine the tempdb space requirements.

Database options for tempdb should rarely be changed, and some options are not applicable
to tempdb. In particular, the autoshrink option is ignored in tempdb. In any case, shrinking
tempdb is not recommended unless your workload patterns have changed significantly. If
you do need to shrink your tempdb, you’re probably better off shrinking each file individually.
Keep in mind that the files might not be able to shrink if any internal objects or version store
pages need to be moved. The best way to shrink tempdb is to ALTER the database, change
the files’ sizes, and then stop and restart SQL Server so tempdb is rebuilt to the desired size.
You should allow your tempdb files to autogrow only as a last resort and only to prevent
errors due to running out of room. You should not rely on autogrow to manage the size
of your tempdb files. Autogrow causes a delay in processing when you can probably least
afford it, although the impact is somewhat less if you use instant file initialization. You should
determine the size of tempdb through testing and planning so that tempdb can start with as
much space as it needs and won’t have to grow while your applications are running.

Here are some tips for making optimum use of your tempdb. Later chapters will elaborate on
why these suggestions are considered best practices:

n	 Take advantage of tempdb object caching.

n	 Keep your transactions short, especially those that use snapshot isolation, MARS,
or triggers.

626249.indb 168 3/10/11 11:54 AM

	 Chapter 3  Databases and Database Files	 169

n	 If you expect a lot of allocation page contention, force a query plan that uses tempdb less.

n	 Avoid page allocation and deallocation by keeping columns that are to be updated at
a fixed size rather than a variable size (which can implement the UPDATE as a DELETE
followed by an INSERT).

n	 Do not mix long and short transactions from different databases (in the same instance)
if versioning is being used.

tempdb Space Monitoring
Quite a few tools, stored procedures, and system views report on object space usage, as
discussed in Chapters 5 and 7. However, one set of system views reports information only for
tempdb. The simplest view is sys.dm_db_file_space_usage, which returns one row for each data
file in tempdb. It returns the following columns:

n	 database_id (even though the DBID 2 is the only one used)

n	 file_id

n	 unallocated_extent_page_count

n	 version_store_reserved_page_count

n	 user_object_reserved_page_count

n	 internal_object_reserved_page_count

n	 mixed_extent_page_count

These columns can show you how the space in tempdb is being used for the three types of
storage: user objects, internals objects, and version store.

Two other system views are similar to each other:

n	 sys.dm_db_task_space_usage  This view returns one row for each active task and
shows the space allocated and deallocated by the task for user objects and internal
objects. If no tasks are being run by a session, this view still gives you one row for the
session, with all the space values showing 0. No version store information is reported
because that space is not associated with any particular task or session. Every running
task starts with zeros for all the space allocation and deallocation values.

n	 sys.dm_db_session_space_usage  This view returns one row for each session, with the
cumulative values for space allocated and deallocated by the session for user objects
and internal objects, for all tasks that have been completed. In general, the space
allocated values should be the same as the space deallocated values, but if there are
deferred drop operations, allocated values will be greater than the deallocated values.
Keep in mind that this information is not available to all users; a special permission
called VIEW SERVER STATE is needed to select from this view.

626249.indb 169 3/10/11 11:54 AM

170	 Microsoft SQL Server 2008 Internals

Database Security
Security is a huge topic that affects almost every action of every SQL Server user, including
administrators and developers, and it deserves an entire book of its own. However, some
areas of the SQL Server security framework are crucial to understanding how to work with a
database or with any objects in a SQL Server database, so I can’t leave the topic completely
untouched in this book.

SQL Server manages a hierarchical collection of entities. The most prominent of these entities
are the server and databases in the server. Underneath the database level are objects. Each
of these entities below the server level is owned by individuals or groups of individuals. The
SQL Server security framework controls access to the entities within a SQL Server instance.
Like any resource manager, the SQL Server security model has two parts: authentication and
authorization.

Authentication is the process by which the SQL Server validates and establishes the identity
of an individual who wants to access a resource. Authorization is the process by which SQL
Server decides whether a given identity is allowed to access a resource.

In this section, I’ll discuss the basic issues of database access and then describe the metadata
where information on database access is stored. I’ll also tell you about the concept of
schemas and describe how they are used to access objects.

The following two terms now form the foundation for describing security control in SQL
Server 2008:

n	 Securable  A securable is an entity on which permissions can be granted. Securables
include databases, schemas, and objects.

n	 Principal  A principal is an entity that can access securables. A primary principal
represents a single user (such as a SQL Server login or a Windows login); a secondary
principal represents multiple users (such as a role or a Windows group).

Database Access
Authentication is performed at two different levels in SQL Server. First, anyone who wants to
access any SQL Server resource must be authenticated at the server level. SQL Server 2008
security provides two basic methods for authenticating logins: Windows Authentication
and SQL Server Authentication. In Windows Authentication, SQL Server login security is
integrated directly with Windows security, allowing the operating system to authenticate
SQL Server users. In SQL Server Authentication, an administrator creates SQL Server login
accounts within SQL Server, and any user connecting to SQL Server must supply a valid SQL
Server login name and password.

626249.indb 170 3/10/11 11:54 AM

	 Chapter 3  Databases and Database Files	 171

Windows Authentication uses trusted connections, which rely on the impersonation feature
of Windows. Through impersonation, SQL Server can take on the security context of the
Windows user account initiating the connection and test whether the SID has a valid privilege
level. Windows impersonation and trusted connections are supported by any of the available
network libraries when connecting to SQL Server.

Under Windows Server 2003 and Windows Server 2008, SQL Server can use Kerberos to
support mutual authentication between the client and the server, as well as to pass a client’s
security credentials between computers so that work on a remote server can proceed using
the credentials of the impersonated client. With Windows Server 2003 and Windows Server
2008, SQL Server uses Kerberos and delegation to support Windows authentication as well as
SQL Server authentication.

The authentication method (or methods) used by SQL Server is determined by its security mode.
SQL Server can run in one of two security modes: Windows Authentication mode (which uses
only Windows authentication) and Mixed mode (which can use either Windows authentication
or SQL Server authentication, as chosen by the client). When you connect to an instance of SQL
Server configured for Windows Authentication mode, you cannot supply a SQL Server login
name, and your Windows user name determines your level of access to SQL Server.

One advantage of Windows authentication has always been that it allows SQL Server to take
advantage of the security features of the operating system, such as password encryption,
password aging, and minimum and maximum length restrictions on passwords. When running
on Windows Server 2003 or Windows Server 2008, SQL Server authentication can also take
advantage of Windows password policies. Take a look at the ALTER LOGIN command in SQL
Server Books Online for the full details. Also note that if you choose Windows Authentication
during setup, the default SQL Server sa login is disabled. If you switch to Mixed mode after
setup, you can enable the sa login using the ALTER LOGIN command. You can change the
authentication mode in Management Studio by right-clicking on the server name, choosing
Properties, and then selecting the Security page. Under Server authentication, select the new
server authentication mode, as shown in Figure 3-7.

Under Mixed mode, Windows-based clients can connect using Windows authentication,
and connections that don’t come from Windows clients or that come across the Internet can
connect using SQL Server authentication. In addition, when a user connects to an instance of
SQL Server that has been installed in Mixed mode, the connection can always supply a SQL
Server login name explicitly. This allows a connection to be made using a login name distinct
from the user name in Windows.

All login names, whether from Windows or SQL Server authentication, can be seen in the
sys.server_principals catalog view, which also contains a SID for each server principal. If the
principal is a Windows login, the SID is the same one that Windows uses to validate the user’s
access to Windows resources. The view contains rows for server roles, Windows groups, and
logins mapped to certificates and asymmetric keys, but I will not discuss those principals here.

626249.indb 171 3/10/11 11:54 AM

172	 Microsoft SQL Server 2008 Internals

Figure 3-7  Choosing an authentication mode for your SQL Server instance in the
Server Properties dialog box

Managing Database Security
Login names can be the owners of databases, as seen in the sys.databases view, which has a
column for the SID of the login that owns the database. Databases are the only resource owned
by login names. As you’ll see, all objects within a database are owned by database principals.

The SID used by a principal determines which databases that principal has access to. Each
database has a sys.database_principals catalog view, which you can think of as a mapping
table that maps login names to users in that particular database. Although a login name and
a user name can have the same value, they are separate things. The following query shows
the mapping of users in the AdventureWorks2008 database to login names, and it also shows
the default schema (which I will discuss shortly) for each database user:

SELECT s.name as [Login Name], d.name as [User Name],

 default_schema_name as [Default Schema]

 FROM sys.server_principals s

 JOIN sys.database_principals d

 ON d.sid = s.sid;

626249.indb 172 3/10/11 11:54 AM

	 Chapter 3  Databases and Database Files	 173

In my AdventureWorks2008 database, these are the results I receive:

Login Name User Name Default Schema

---------- ---------- --------------

sa dbo dbo

sue sue sue

Note that the login sue has the same value for the user name in this database. There is no
guarantee that other databases that sue has access to will use the same user name. The dbo
is a special database principal that is mapped to the login owning the database and it is also
used by all logins in the sysadmin server role. Within a database, it is users, not logins, who
own objects, and users, not logins, to whom permissions are granted.

The preceding results also indicate the default schema for each user in my AdventureWorks2008
database. In this case, the default schema is the same as the user name, but that doesn’t have to
be the case, as you’ll see in the next section.

Databases vs. Schemas
In the ANSI SQL-92 standard, a schema is defined as a collection of database objects that are
owned by a single user and form a single namespace. A namespace is a set of objects that
cannot have duplicate names. For example, two tables can have the same name only if they
are in separate schemas, so no two tables in the same schema can have the same name. You
can think of a schema as a container of objects. (In the context of database tools, a schema
also refers to the catalog information that describes the objects in a schema or database.
In SQL Server Analysis Services, a schema is a description of multidimensional objects such as
cubes and dimensions.)

Principals and Schemas
Prior to SQL Server 2005, there was a CREATE SCHEMA command, but it effectively did
nothing because there was an implicit relationship between users and schemas that could not be
changed or removed. In fact, the relationship was so close that many users of these earlier
versions of SQL Server were unaware that users and schemas are different things. Every user
was the owner of a schema that has the same name as the user. If you created a user sue, for
example, SQL Server 2000 created a schema called sue, which was sue’s default schema.

In SQL Server 2005 and SQL Server 2008, users and schemas are two separate things.
To understand the difference between users and schemas, think of the following: Permissions
are granted to users, but objects are placed in schemas.

The command GRANT CREATE TABLE TO sue refers to the user sue. Let’s say sue then creates
a table, as follows:

CREATE TABLE mytable (col1 varchar(20));

C03626249.indd 173 3/30/12 10:17 AM

174	 Microsoft SQL Server 2008 Internals

This table is placed in sue’s default schema, which may be the schema sue. If another user
wants to retrieve data from this table, he can issue this statement:

SELECT col1 FROM sue.mytable;

In this statement, sue refers to the schema that contains the table.

Schemas can be owned by either primary or secondary principals. Although every object in a
SQL Server 2008 database is owned by a user, you never reference an object by its owner; you
reference it by the schema in which it is contained. In most cases, the owner of the schema
is the same as the owner of all objects within the schema. The metadata view sys.objects
contains a column called principal_id, which contains the user_id of an object’s owner if it
is not the same as the owner of the object’s schema. In addition, a user is never added to a
schema; schemas contain objects, not users. For backward compatibility, if you execute the
sp_adduser or sp_grantdbaccess procedure to add a user to a database, SQL Server 2008
creates both a user and a schema of the same name, and it makes the schema the default
schema for the new user. However, you should get used to using the new DDL CREATE USER
and CREATE SCHEMA commands because sp_adduser and sp_grantdbaccess have been
deprecated. When you create a user, you can specify a default schema if you want, but the
default for the default schema is the dbo schema.

Default Schemas
When you create a new database in SQL Server 2008, several schemas are included in it.
These include dbo, INFORMATION_SCHEMA, and guest. In addition, every database has a
schema called sys, which provides a way to access all the system tables and views. Finally,
every fixed database role except public has a schema of the same name in SQL Server 2008.

Users can be assigned a default schema that might or might not exist when the user is
created. A user can have at most one default schema at any time. As mentioned earlier, if no
default schema is specified for a user, the default schema for the user is dbo. A user’s default
schema is used for name resolution during object creation or object reference. This can be
both good news and bad news for backward compatibility. The good news is that if you’ve
upgraded a database from SQL Server 2000, which has many objects in the dbo schema, your
code can continue to reference those objects without having to specify the schema explicitly.
The bad news is that for object creation, SQL Server tries to create the object in the dbo
schema rather than in a schema owned by the user creating the table. The user might not
have permission to create objects in the dbo schema, even if that is the user’s default schema.
To avoid confusion, in SQL Server 2008 you should always specify the schema name for all
object access as well as object management.

Note  When a login in the sysadmin role creates an object with a single part name, the schema
is always dbo. However, a sysadmin can explicitly specify an alternate schema in which to create
an object.

626249.indb 174 3/10/11 11:54 AM

	 Chapter 3  Databases and Database Files	 175

To create an object in a schema, you must satisfy the following conditions:

n	 The schema must exist.

n	 The user creating the object must have permission to create the object (through
CREATE TABLE, CREATE VIEW, CREATE PROCEDURE, and so on), either directly or
through role membership.

n	 The user creating the object must be the owner of the schema or a member of the role
that owns the schema, or the user must have ALTER rights on the schema or have the
ALTER ANY SCHEMA permission in the database.

Moving or Copying a Database
You might need to move a database before performing maintenance on your system, after
a hardware failure, or when you replace your hardware with a newer, faster system. Copying
a database is a common way to create a secondary development or testing environment. You
can move or copy a database by using a technique called detach and attach or by backing up
the database and restoring it in the new location.

Detaching and Reattaching a Database
You can detach a database from a server by using a simple stored procedure. Detaching
a database requires that no one is using the database. If you find existing connections that
you can’t terminate, you can use the ALTER DATABASE command and set the database to
SINGLE_USER mode using one of the termination options that breaks existing connections.
Detaching a database ensures that no incomplete transactions are in the database and that
there are no dirty pages for this database in memory. If these conditions cannot be met, the
detach operation fails. Once the database is detached, the entry for it is removed from the
sys.databases catalog view and from the underlying system tables.

Here is the command to detach a database:

EXEC sp_detach_db <name of database>;

Once the database has been detached, from the perspective of SQL Server, it’s as if you
had dropped the database. No metadata for the database remains within the SQL Server
instance, and the only time there might be a trace of it is when your msdb database contains
backup and restore history for the database that has not yet been deleted. But the history of
when backups and restores were done would provide no information about the structure or
content of the database. If you are planning to reattach the database later, it’s a good idea to
record the properties of all the files that were part of the database.

626249.indb 175 3/10/11 11:54 AM

176	 Microsoft SQL Server 2008 Internals

Note  The DROP DATABASE command also removes all traces of the database from your
instance, but dropping a database is more severe than detaching. SQL Server makes sure that no
one is connected to the database before dropping it, but it doesn’t check for dirty pages or open
transactions. Dropping a database also removes the physical files from the operating system, so
unless you have a backup, the database is really gone.

To attach a database, you can use the CREATE DATABASE command with the FOR
ATTACH option. (There is a stored procedure, sp_attach_db, but it is deprecated and not
recommended in SQL Server 2008.) The CREATE DATABASE command gives you control over
all the files and their placement and is not limited to only 16 files like sp_attach_db is. CREATE
DATABASE has no such limit—in fact, you can specify up to 32,767 files and 32,767 file groups
for each database. The syntax summary for the CREATE DATABASE command showing the
attach options is shown here:

CREATE DATABASE database_name

 ON <filespec> [,...n]

 FOR { ATTACH

 | ATTACH_REBUILD_LOG }

Note that only the primary file is required to have a <filespec> entry because the primary file
contains information about the location of all the other files. If you’ll be attaching existing
files with a different path than when the database was first created or last attached, you must
have additional <filespec> entries. In any event, all the data files for the database must be
available, whether or not they are specified in the CREATE DATABASE command. If there are
multiple log files, they must all be available.

However, if a read/write database has a single log file that is currently unavailable and if the
database was shut down with no users or open transactions before the attach operation,
FOR ATTACH rebuilds the log file and updates information about the log in the primary file.
If the database is read-only, the primary file cannot be updated, so the log cannot be rebuilt.
Therefore, when you attach a read-only database, you must specify the log file or files in the
FOR ATTACH clause.

Alternatively, you can use the FOR ATTACH_REBUILD_LOG option, which specifies that the
database will be created by attaching an existing set of operating system files. This option
is limited to read/write databases. If one or more transaction log files are missing, the log is
rebuilt. There must be a <filespec> entry specifying the primary file. In addition, if the log
files are available, SQL Server uses those files instead of rebuilding the log files, so the FOR
ATTACH_REBUILD_LOG will function as if you used FOR ATTACH.

If your transaction log is rebuilt by attaching the database, using the FOR ATTACH_REBUILD_
LOG puts the database to SIMPLE recovery. If the database was originally in FULL or
BULK_LOGGED recovery, it is recommended that you switch back to that original recovery
model, and make a full backup after performing the ATTACH operation.

626249.indb 176 3/10/11 11:54 AM

	 Chapter 3  Databases and Database Files	 177

You typically use FOR ATTACH_REBUILD_LOG when you copy a read/write database with
a large log to another server where the copy will be used mostly or exclusively for read
operations and therefore require less log space than the original database.

Although the documentation says that you should use CREATE DATABASE FOR ATTACH only
on databases that were previously detached using sp_detach_db, sometimes following this
recommendation isn’t necessary. If you shut down the SQL Server instance, the files are closed,
just as if you had detached the database. However, you are not guaranteed that all dirty pages
from the database were written to disk before the shutdown. This should not cause a problem
when you attach such a database if the log file is available. The log file has a record of all
completed transactions, and a full recovery is performed when the database is attached to
make sure the database is consistent. One benefit of using the sp_detach_db procedure is that
SQL Server records the fact that the database was shut down cleanly, and the log file does not
have to be available to attach the database. SQL Server builds a new log file for you. This can be
a quick way to shrink a log file that has become much larger than you would like, because the
new log file that sp_attach_db creates for you would be the minimum size—less than 1 MB.

Backing Up and Restoring a Database
You can also use backup and restore to move a database to a new location, as an alternative
to detach and attach. One benefit of this method is that the database does not need to come
offline at all because backup is a completely online operation. Because this book is not a how-to
book for database administrators, you should refer to the bibliography in the companion
content for several excellent book recommendations about the mechanics of backing up and
restoring a database and to learn best practices for setting up a backup-and-restore plan for
your organization. Nevertheless, some issues relating to backup-and-restore processes can help
you understand why one backup plan might be better suited to your needs than another, so I
will discuss backup and restore briefly in Chapter 4. Most of these issues involve the role of the
transaction log in backup-and-restore operations.

Moving System Databases
You might need to move system databases as part of a planned relocation or scheduled
maintenance operation. If you move a system database and later rebuild the master
database, you must move the system database again because the rebuild operation installs
all system databases to their default location. The steps for moving tempdb, model, and msdb
are slightly different than for moving the master database.

Note  In SQL Server 2008, the mssqlsystemresource database cannot be moved. If you move the
files for this database, you will not be able to restart your SQL Server service. This is incorrectly
documented in the RTM edition of SQL Server 2008 Books Online, which indicates that the
mssqlsystemresource database can be moved, but this misinformation may be corrected in a
later refresh.

626249.indb 177 3/10/11 11:54 AM

178	 Microsoft SQL Server 2008 Internals

Here are the steps for moving an undamaged system database (that is, not the master
database):

	 1.	 For each file in the database to be moved, use the ALTER DATABASE command with the
MODIFY FILE option to specify the new physical location.

	 2.	 Stop the SQL Server instance.

	 3.	 Physically move the files.

	 4.	 Restart the SQL Server instance.

	 5.	 Verify the change by running the following query:

SELECT name, physical_name AS CurrentLocation, state_desc

FROM sys.master_files

WHERE database_id = DB_ID(N'<database_name>');

If the system database needs to be moved because of a hardware failure, the solution is a
bit more problematical because you might not have access to the server to run the ALTER
DATABASE command. Here are the steps to move a damaged system database (other than
the master database or the resource database):

	 1.	 Stop the instance of SQL Server if it has been started.

	 2.	 Start the instance of SQL Server in master-only recovery mode (by specifying traceflag
3608) by entering one of the following commands at the command prompt:

-- If the instance is the default instance:

NET START MSSQLSERVER /f /T3608

-- For a named instance:

NET START MSSQL$instancename /f /T3608

	 3.	 For each file in the database to be moved, use the ALTER DATABASE command with
the MODIFY FILE option to specify the new physical location. You can use either
Management Studio or the SQLCMD utility.

	 4.	 Exit Management Studio or the SQLCMD utility.

	 5.	 Stop the instance of SQL Server.

	 6.	 Physically move the file or files to the new location.

	 7.	 Restart the instance of SQL Server without traceflag 3608. For example, run NET START
MSSQLSERVER.

	 8.	 Verify the change by running the following query:

SELECT name, physical_name AS CurrentLocation, state_desc

FROM sys.master_files

WHERE database_id = DB_ID(N'<database_name>');

626249.indb 178 3/10/11 11:54 AM

	 Chapter 3  Databases and Database Files	 179

Moving the master Database
Full details on moving the master database can be found in SQL Server Books Online, but I will
summarize the steps here. The biggest difference between moving this database and moving
other system databases is that you must go through the SQL Server Configuration Manager.

To move the master database, follow these steps.

	 1.	 Open the SQL Server Configuration Manager. Right-click the desired instance of SQL
Server, choose Properties, and then click the Advanced tab.

	 2.	 Edit the Startup Parameters values to point to the new directory location for the master
database data and log files. If you want, you can also move the SQL Server error log
files. The parameter value for the data file must follow the –d parameter, the value for
the log file must follow the –l parameter, and the value for the error log must follow
the –e parameter, as shown here:

-dE:\SQLData\master.mdf;

-lE:\SQLData\mastlog.ldf;

-eE:\SQLData\LOG\ERRORLOG

	 3.	 Stop the instance of SQL Server and physically move the files to the new location.

	 4.	 Restart the instance of SQL Server.

	 5.	 Verify the file change for the master database by running the following query:

SELECT name, physical_name AS CurrentLocation, state_desc

FROM sys.master_files

WHERE database_id = DB_ID('master');

Compatibility Levels
Each new version of SQL Server includes a large number of new features, many of which require
new keywords and also change certain behaviors that existed in earlier versions. To provide
maximum backward compatibility, Microsoft allows you to set the compatibility level of a
database running on a SQL Server 2008 instance to one of the following modes: 100, 90, or 80.
All newly created databases in SQL Server 2008 have a compatibility level of 100 unless you
change the level for the model database. A database that has been upgraded or attached from an
older version has its compatibility level set to the version from which the database was upgraded.

All the examples and explanations in this book assume that you’re using a database in
100 compatibility mode, unless otherwise noted. If you find that your SQL statements
behave differently than the ones in the book, you should first verify that your database is
in 100 compatibility mode by executing this command:

SELECT compatibility_level FROM sys.databases

WHERE name = '<database name>';

626249.indb 179 3/10/11 11:54 AM

180	 Microsoft SQL Server 2008 Internals

To change to a different compatibility level, use the ALTER DATABASE command:

ALTER DATABASE <database name>

SET COMPATIBILITY_LEVEL = <compatibility-level>;

Note  The compatibility-level options are intended to provide a transition period while you’re
upgrading a database or an application to SQL Server 2008. I strongly suggest that you try
to change your applications so that compatibility options are not needed. Microsoft doesn’t
guarantee that these options will continue to work in future versions of SQL Server.

Not all changes in behavior from older versions of SQL Server can be duplicated by changing
the compatibility level. For the most part, the differences have to do with whether new
reserved keywords and new syntax are recognized, and they do not affect how your queries
are processed internally. For example, if you change to compatibility level 80, you don’t make
the system tables viewable or do away with schemas. But because the word MERGE is a new
reserved keyword in SQL Server 2008 (compatibility level 100), by setting your compatibility
level to 80 or 90, you can create a table called MERGE without using any special delimiters—or
a table that you already have in a SQL Server 2005 database continues to be accessible if the
database stays in the 90 compatibility level.

For a complete list of the behavioral differences between the compatibility levels and the
new reserved keywords, see the documentation for ALTER DATABASE Compatibility Level in
SQL Server Books Online.

Summary
A database is a collection of objects such as tables, views, and stored procedures. Although
a typical SQL Server installation has many databases, it always includes the following three:
master, model, and tempdb. An installation usually also includes msdb, but that database can
be removed. (To remove msdb requires a special traceflag and is rarely recommended.) A SQL
Server instance also includes the mssqlsystemresource database that cannot be seen using
the normal tools. Every database has its own transaction log; integrity constraints among
objects keep a database logically consistent.

Databases are stored in operating system files in a one-to-many relationship. Each database
has at least one file for data and one file for the transaction log. You can increase and
decrease the size of databases and their files easily, either manually or automatically.

626249.indb 180 3/10/11 11:54 AM

		 587

Chapter 10

Transactions and Concurrency
Kalen Delaney

Concurrency can be defined as the ability of multiple processes to access or change shared
data at the same time. The greater the number of concurrent user processes that can be active
without interfering with each other, the greater the concurrency of the database system.

Concurrency is reduced when a process that is changing data prevents other processes from
reading that data or when a process that is reading data prevents other processes from
changing that data. I use the terms reading or accessing to describe the impact of using
the SELECT statement on your data. Concurrency is also affected when multiple processes
attempt to change the same data simultaneously and they cannot all succeed without
sacrificing data consistency. I use the terms modifying, changing, or writing to describe the
impact of using the INSERT, UPDATE, MERGE, or DELETE statements on your data. (Note that
MERGE is a new data modification statement in SQL Server 2008, and you can think of it as a
combination of INSERT, UPDATE, and DELETE.)

In general, database systems can take two approaches to managing concurrent data access:
optimistic or pessimistic. Microsoft SQL Server 2008 supports both approaches. Pessimistic
concurrency was the only concurrency model available before SQL Server 2005. As of SQL
Server 2005, you specify which model to use by using two database options and a SET option
called TRANSACTION ISOLATION LEVEL.

After I describe the basic differences between the two models, we look at the five possible
isolation levels in SQL Server 2008, as well as the internals of how SQL Server controls
concurrent access using each model. We look at how to control the isolation level, and we
look at the metadata that shows you what SQL Server is doing.

Concurrency Models
In either concurrency model, a conflict can occur if two processes try to modify the same
data at the same time. The difference between the two models lies in whether conflicts can
be avoided before they occur or can be dealt with in some manner after they occur.

Pessimistic Concurrency
With pessimistic concurrency, the default behavior is for SQL Server to acquire locks to
block access to data that another process is using. Pessimistic concurrency assumes that
enough data modification operations are in the system that any given read operation is likely

626249.indb 587 3/10/11 11:57 AM

588	 Microsoft SQL Server 2008 Internals

affected by a data modification made by another user. In other words, the system behaves
pessimistically and assumes that a conflict will occur. Pessimistic concurrency avoids conflicts
by acquiring locks on data that is being read, so no other processes can modify that data. It
also acquires locks on data being modified, so no other processes can access that data for
either reading or modifying. In other words, readers block writers and writers block readers
in a pessimistic concurrency environment.

Optimistic Concurrency
Optimistic concurrency assumes that there are sufficiently few conflicting data modification
operations in the system that any single transaction is unlikely to modify data that another
transaction is modifying. The default behavior of optimistic concurrency is to use row
versioning to allow data readers to see the state of the data before the modification occurs.
Older versions of data rows are saved, so a process reading data can see the data as it was
when the process started reading and not be affected by any changes being made to that
data. A process that modifies the data is unaffected by processes reading the data because
the reader is accessing a saved version of the data rows. In other words, readers do not block
writers and writers do not block readers. Writers can and will block writers, however, and this
is what causes conflicts. SQL Server generates an error message when a conflict occurs, but it
is up to the application to respond to that error.

Transaction Processing
No matter what concurrency model you’re working with, an understanding of transactions
is crucial. A transaction is the basic unit of work in SQL Server. Typically, it consists of several
SQL commands that read and update the database, but the update is not considered final
until a COMMIT command is issued (at least for an explicit transaction). In general, when I
talk about a modification operation or a read operation, I am talking about the transaction
that performs the data modification or the read, which is not necessarily a single SQL
statement. When I say that writers will block readers, I mean that so long as the transaction that
performed the write operation is active, no other process can read the modified data.

The concept of a transaction is fundamental to understanding concurrency control. The
mechanics of transaction control from a programming perspective are beyond the scope
of this book, but I discuss basic transaction properties. I also go into detail about the
transaction isolation levels because that has a direct impact on how SQL Server manages the
data being accessed in your transactions.

An implicit transaction is any individual INSERT, UPDATE, DELETE, or MERGE statement. (You
can also consider SELECT statements to be implicit transactions, although SQL Server does
not write to the log when SELECT statements are processed.) No matter how many rows are
affected, the statement must exhibit all the ACID properties of a transaction, which I tell you

626249.indb 588 3/10/11 11:57 AM

	 Chapter 10  Transactions and Concurrency	 589

about in the next section. An explicit transaction is one whose beginning is marked with a
BEGIN TRAN statement and whose end is marked by a COMMIT TRAN or ROLLBACK TRAN
statement. Most of the examples I present use explicit transactions because it is the only way
to show the state of SQL Server in the middle of a transaction. For example, many types of
locks are held for only the duration of the transaction. I can begin a transaction, perform some
operations, look around in the metadata to see what locks are being held, and then end the
transaction. When the transaction ends, the locks are released; I can no longer look at them.

ACID Properties
Transaction processing guarantees the consistency and recoverability of SQL Server databases.
It ensures that all transactions are performed as a single unit of work—even in the presence
of a hardware or general system failure. Such transactions are referred to as having the ACID
properties, with ACID standing for atomicity, consistency, isolation, and durability. In addition
to guaranteeing that explicit multistatement transactions maintain the ACID properties, SQL
Server guarantees that an implicit transaction also maintains the ACID properties.

Here’s an example in pseudocode of an explicit ACID transaction:

BEGIN TRANSACTION DEBIT_CREDIT

Debit savings account $1000

Credit checking account $1000

COMMIT TRANSACTION DEBIT_CREDIT

Now let’s take a closer look at each of the ACID properties.

Atomicity
SQL Server guarantees the atomicity of its transactions. Atomicity means that each
transaction is treated as all or nothing—it either commits or aborts. If a transaction commits,
all its effects remain. If it aborts, all its effects are undone. In the preceding DEBIT_CREDIT
example, if the savings account debit is reflected in the database but the checking account
credit isn’t, funds essentially disappear from the database—that is, funds are subtracted from
the savings account but never added to the checking account. If the reverse occurs (if the
checking account is credited and the savings account is not debited), the customer’s checking
account mysteriously increases in value without a corresponding customer cash deposit or
account transfer. Because of the atomicity feature of SQL Server, both the debit and credit must
be completed or else neither event is completed.

Consistency
The consistency property ensures that a transaction won’t allow the system to arrive at an
incorrect logical state—the data must always be logically correct. Constraints and rules are
honored even in the event of a system failure. In the DEBIT_CREDIT example, the logical rule

626249.indb 589 3/10/11 11:57 AM

590	 Microsoft SQL Server 2008 Internals

is that money can’t be created or destroyed: a corresponding, counterbalancing entry must
be made for each entry. (Consistency is implied by, and in most situations redundant with,
atomicity, isolation, and durability.)

Isolation
Isolation separates concurrent transactions from the updates of other incomplete transactions.
In the DEBIT_CREDIT example, another transaction can’t see the work in progress while the
transaction is being carried out. For example, if another transaction reads the balance of the
savings account after the debit occurs, and then the DEBIT_CREDIT transaction is aborted,
the other transaction is working from a balance that never logically existed.

SQL Server accomplishes isolation among transactions automatically. It locks data or creates
row versions to allow multiple concurrent users to work with data while preventing side
effects that can distort the results and make them different from what would be expected if
users were to serialize their requests (that is, if requests were queued and serviced one at a
time). This serializability feature is one of the isolation levels that SQL Server supports. SQL
Server supports multiple isolation levels so that you can choose the appropriate tradeoff
between how much data to lock, how long to hold locks, and whether to allow users access
to prior versions of row data. This tradeoff is known as concurrency vs. consistency.

Durability
After a transaction commits, the durability property of SQL Server ensures that the effects
of the transaction persist even if a system failure occurs. If a system failure occurs while a
transaction is in progress, the transaction is completely undone, leaving no partial effects
on the data. For example, if a power outage occurs in the middle of a transaction before the
transaction is committed, the entire transaction is rolled back when the system is restarted.
If the power fails immediately after the acknowledgment of the commit is sent to the calling
application, the transaction is guaranteed to exist in the database. Write-ahead logging and
automatic rollback and roll-forward of transactions during the recovery phase of SQL Server
startup ensure durability.

Transaction Dependencies
In addition to supporting all four ACID properties, a transaction might exhibit several
other behaviors. Some people call these behaviors “dependency problems” or “consistency
problems,” but I don’t necessarily think of them as problems. They are merely possible
behaviors, and except for lost updates, which are never considered desirable, you can
determine which of these behaviors you want to allow and which you want to avoid.
Your choice of isolation level determines which of these behaviors is allowed.

626249.indb 590 3/10/11 11:57 AM

	 Chapter 10  Transactions and Concurrency	 591

Lost Updates
Lost updates occur when two processes read the same data and both manipulate the data,
changing its value, and then both try to update the original data to the new value. The second
process might overwrite the first update completely. For example, suppose that two clerks in a
receiving room are receiving parts and adding the new shipments to the inventory database.
Clerk A and Clerk B both receive shipments of widgets. They both check the current inventory
and see that 25 widgets are currently in stock. Clerk A’s shipment has 50 widgets, so he adds
50 to 25 and updates the current value to 75. Clerk B’s shipment has 20 widgets, so she adds
20 to the value of 25 that she originally read and updates the current value to 45, completely
overriding the 50 new widgets that Clerk A processed. Clerk A’s update is lost.

Lost updates are only one of the behaviors described here that you probably want to avoid in
all cases.

Dirty Reads
Dirty reads occur when a process reads uncommitted data. If one process has changed data but
not yet committed the change, another process reading the data will read it in an inconsistent
state. For example, say that Clerk A has updated the old value of 25 widgets to 75, but
before he commits, a salesperson looks at the current value of 75 and commits to sending
60 widgets to a customer the following day. If Clerk A then realizes that the widgets are
defective and sends them back to the manufacturer, the salesperson has done a dirty read
and taken action based on uncommitted data.

By default, dirty reads are not allowed. Keep in mind that the process updating the data
has no control over whether another process can read its data before the first process is
committed. It’s up to the process reading the data to decide whether it wants to read data
that is not guaranteed to be committed.

Nonrepeatable Reads
A read is nonrepeatable if a process might get different values when reading the same data
in two separate reads within the same transaction. This can happen when another process
changes the data in between the reads that the first process is doing. In the receiving room
example, suppose that a manager comes in to do a spot check of the current inventory.
She walks up to each clerk, asking the total number of widgets received today and adding
the numbers on her calculator. When she’s done, she wants to double-check the result, so
she goes back to the first clerk. However, if Clerk A received more widgets between the
manager’s first and second inquiries, the total is different and the reads are nonrepeatable.
Nonrepeatable reads are also called inconsistent analysis.

Phantoms
Phantoms occur when membership in a set changes. It can happen only when a query
with a predicate—such as WHERE count_of_widgets < 10—is involved. A phantom occurs

626249.indb 591 3/10/11 11:57 AM

592	 Microsoft SQL Server 2008 Internals

if two SELECT operations using the same predicate in the same transaction return a
different number of rows. For example, let’s say that our manager is still doing spot checks
of inventory. This time, she goes around the receiving room and notes which clerks have
fewer than 10 widgets. After she completes the list, she goes back around to offer advice to
everyone with a low total. However, if during her first walkthrough, a clerk with fewer than
10 widgets returned from a break but was not spotted by the manager, that clerk is not on
the manager’s list even though he meets the criteria in the predicate. This additional clerk
(or row) is considered to be a phantom.

The behavior of your transactions depends on the isolation level. As mentioned earlier, you
can decide which of the behaviors described previously to allow by setting an appropriate
isolation level using the command SET TRANSACTION ISOLATION LEVEL <isolation_level>.
Your concurrency model (optimistic or pessimistic) determines how the isolation level is
implemented—or, more specifically, how SQL Server guarantees that the behaviors you don’t
want will not occur.

Isolation Levels
SQL Server 2008 supports five isolation levels that control the behavior of your read
operations. Three of them are available only with pessimistic concurrency, one is available
only with optimistic concurrency, and one is available with either. We look at these levels
now, but a complete understanding of isolation levels also requires an understanding of
locking and row versioning. In my descriptions of the isolation levels, I mention the locks or
row versions that support that level, but keep in mind that locking and row versioning are
discussed in detail later in the chapter.

Read Uncommitted
In Read Uncommitted isolation, all the behaviors described previously, except lost updates,
are possible. Your queries can read uncommitted data, and both nonrepeatable reads and
phantoms are possible. Read Uncommitted isolation is implemented by allowing your read
operations to not take any locks, and because SQL Server isn’t trying to acquire locks, it won’t
be blocked by conflicting locks acquired by other processes. Your process is able to read data
that another process has modified but not yet committed.

In addition to reading individual values that are not yet committed, the Read Uncommitted
isolation level introduces other undesirable behaviors. When using this isolation level
and scanning an entire table, SQL Server can decide to do an allocation order scan (in
page-number order), instead of a logical order scan (which would follow the page pointers).
If there are concurrent operations by other processes that change data and move rows to a
new location in the table, your allocation order scan can end up reading the same row twice.
This can happen when you’ve read a row before it is updated, and then the update moves
the row to a higher page number than your scan encounters later. In addition, performing an

626249.indb 592 3/10/11 11:57 AM

	 Chapter 10  Transactions and Concurrency	 593

allocation order scan under Read Uncommitted can cause you to miss a row completely. This
can happen when a row on a high page number that hasn’t been read yet is updated and
moved to a lower page number that has already been read.

Although this scenario isn’t usually the ideal option, with Read Uncommitted, you can’t get
stuck waiting for a lock, and your read operations don’t acquire any locks that might affect
other processes that are reading or writing data.

When using Read Uncommitted, you give up the assurance of strongly consistent data in
favor of high concurrency in the system without users locking each other out. So when
should you choose Read Uncommitted? Clearly, you don’t want to use it for financial
transactions in which every number must balance. But it might be fine for certain
decision-support analyses—for example, when you look at sales trends—for which complete
precision isn’t necessary and the tradeoff in higher concurrency makes it worthwhile. Read
Uncommitted isolation is a pessimistic solution to the problem of too much blocking activity
because it just ignores the locks and does not provide you with transactional consistency.

Read Committed
SQL Server 2008 supports two varieties of Read Committed isolation, which is the default
isolation level. This isolation level can be either optimistic or pessimistic, depending on the
database setting READ_COMMITTED_SNAPSHOT. Because the default for the database option
is off, the default for this isolation level is to use pessimistic concurrency control. Unless
indicated otherwise, when I refer to the Read Committed isolation level, I am referring to both
variations of this isolation level. I refer to the pessimistic implementation as Read Committed
(locking), and I refer to the optimistic implementation as Read Committed (snapshot).

Read Committed isolation ensures that an operation never reads data that another
application has changed but not yet committed. (That is, it never reads data that logically
never existed.) With Read Committed (locking), if another transaction is updating data and
consequently has exclusive locks on data rows, your transaction must wait for those locks to
be released before you can use that data (whether you’re reading or modifying). Also, your
transaction must put share locks (at a minimum) on the data that are visited, which means
that data might be unavailable to others to use. A share lock doesn’t prevent others from
reading the data, but it makes them wait to update the data. By default, share locks can be
released after the data has been processed—they don’t have to be held for the duration of
the transaction, or even for the duration of the statement. (That is, if shared row locks are
acquired, each row lock can be released as soon as the row is processed, even though the
statement might need to process many more rows.)

Read Committed (snapshot) also ensures that an operation never reads uncommitted data,
but not by forcing other processes to wait. In Read Committed (snapshot), every time a row
is updated, SQL Server generates a version of the changed row with its previous committed
values. The data being changed is still locked, but other processes can see the previous
versions of the data as it was before the update operation began.

626249.indb 593 3/10/11 11:57 AM

594	 Microsoft SQL Server 2008 Internals

Repeatable Read
Repeatable Read is a pessimistic isolation level. It adds to the properties of Committed Read
by ensuring that if a transaction revisits data or a query is reissued, the data does not change.
In other words, issuing the same query twice within a transaction cannot pick up any changes
to data values made by another user’s transaction because no changes can be made by
other transactions. However, the Repeatable Read isolation level does allow phantom rows to
appear.

Preventing nonrepeatable reads is a desirable safeguard in some cases. But there’s no free
lunch. The cost of this extra safeguard is that all the shared locks in a transaction must be held
until the completion (COMMIT or ROLLBACK) of the transaction. (Exclusive locks must always
be held until the end of a transaction, no matter what the isolation level or concurrency
model, so that a transaction can be rolled back if necessary. If the locks were released sooner,
it might be impossible to undo the work because other concurrent transactions might have
used the same data and changed the value.) No other user can modify the data visited by
your transaction as long as your transaction is open. Obviously, this can seriously reduce
concurrency and degrade performance. If transactions are not kept short or if applications
are not written to be aware of such potential lock contention issues, SQL Server can appear to
stop responding when a process is waiting for locks to be released.

Note  You can control how long SQL Server waits for a lock to be released by using the session
option LOCK_TIMEOUT. It is a SET option, so the behavior can be controlled only for an individual
session. There is no way to set a LOCK_TIMEOUT value for SQL Server as a whole. You can read
about LOCK_TIMEOUT in SQL Server Books Online.

Snapshot
Snapshot isolation (sometimes referred to as SI) is an optimistic isolation level. Like Read
Committed (snapshot), it allows processes to read older versions of committed data if the
current version is locked. The difference between Snapshot and Read Committed (snapshot)
has to do with how old the older versions have to be. (We see the details in the section
entitled “Row Versioning,” later in this chapter.) Although the behaviors prevented by
Snapshot isolation are the same as those prevented by Serializable, Snapshot is not truly a
Serializable isolation level. With Snapshot isolation, it is possible to have two transactions
executing simultaneously that give us a result that is not possible in any serial execution.
Table 10-1 shows an example of two simultaneous transactions. If they run in parallel, they
end up switching the price of two books in the titles table in the pubs database. However,
there is no serial execution that would end up switching the values, whether we run
Transaction 1 and then Transaction 2, or run Transaction 2 and then Transaction 1. Either
serial order ends up with the two books having the same price.

626249.indb 594 3/10/11 11:57 AM

	 Chapter 10  Transactions and Concurrency	 595

Table 10-1  Two Simultaneous Transactions in Snapshot Isolation That
Cannot Be Run Serially

Time Transaction 1 Transaction 2

1 USE pubs

SET TRANSACTION ISOLATION LEVEL

SNAPSHOT

DECLARE @price money

BEGIN TRAN

USE pubs

SET TRANSACTION ISOLATION LEVEL

SNAPSHOT

DECLARE @price money

BEGIN TRAN

2 SELECT @price = price

FROM titles

WHERE title_id = 'BU1032'

SELECT @price = price

FROM titles

WHERE title_id = 'PS7777'

3 UPDATE titles

SET price = @price

WHERE title_id = 'PS7777'

UPDATE titles

SET price = @price

WHERE title_id = 'BU1032'

4 COMMIT TRAN COMMIT TRAN

Serializable
Serializable is also a pessimistic isolation level. The Serializable isolation level adds to the
properties of Repeatable Read by ensuring that if a query is reissued, rows were not added in
the interim. In other words, phantoms do not appear if the same query is issued twice within
a transaction. Serializable is therefore the strongest of the pessimistic isolation levels because
it prevents all the possible undesirable behaviors discussed earlier—that is, it does not allow
uncommitted reads, nonrepeatable reads, or phantoms, and it also guarantees that your
transactions can be run serially.

Preventing phantoms is another desirable safeguard. But once again, there’s no free lunch.
The cost of this extra safeguard is similar to that of Repeatable Read—all the shared locks in a
transaction must be held until the transaction completes. In addition, enforcing the Serializable
isolation level requires that you not only lock data that has been read, but also lock data that
does not exist! For example, suppose that within a transaction, we issue a SELECT statement to
read all the customers whose ZIP code is between 98000 and 98100, and on first execution,
no rows satisfy that condition. To enforce the Serializable isolation level, we must lock that
range of potential rows with ZIP codes between 98000 and 98100 so that if the same query
is reissued, there are still no rows that satisfy the condition. SQL Server handles this situation
by using a special kind of lock called a key-range lock. Key-range locks require that there be
an index on the column that defines the range of values. (In this example, that would be the
column containing the ZIP codes.) If there is no index on that column, Serializable isolation
requires a table lock. I discuss the different types of locks in detail in the section on locking.
The Serializable level gets its name from the fact that running multiple serializable transactions
at the same time is the equivalent of running them one at a time—that is, serially.

For example, suppose that transactions A, B, and C run simultaneously at the Serializable
level and each tries to update the same range of data. If the order in which the transactions
acquire locks on the range of data is B, C, and then A, the result obtained by running all three

626249.indb 595 3/10/11 11:57 AM

596	 Microsoft SQL Server 2008 Internals

simultaneously is the same as if they were run sequentially in the order B, C, and then A.
Serializable does not imply that the order is known in advance. The order is considered a chance
event. Even on a single-user system, the order of transactions hitting the queue would be
essentially random. If the batch order is important to your application, you should implement it
as a pure batch system. Serializable means only that there should be a way to run the transactions
serially to get the same result you get when you run them simultaneously. Table 10-1 illustrates a
case where two transactions cannot be run serially and get the same result.

Table 10-2 summarizes the behaviors that are possible in each isolation level and notes the
concurrency control model that is used to implement each level. You can see that Read
Committed and Read Committed (snapshot) are identical in the behaviors they allow,
but the behaviors are implemented differently—one is pessimistic (locking), and one is
optimistic (row versioning). Serializable and Snapshot also have the same No values for all the
behaviors, but one is pessimistic and one is optimistic.

Table 10-2  Behaviors Allowed in Each Isolation Level

Isolation Level Dirty Read Nonrepeatable Read Phantom Concurrency Control

Read Uncommitted Yes Yes Yes Pessimistic

Read Committed
(locking)

No Yes Yes Pessimistic

Read Committed
(snapshot)

No Yes Yes Optimistic

Repeatable Read No No Yes Pessimistic

Snapshot No No No Optimistic

Serializable No No No Pessimistic

Locking
Locking is a crucial function of any multiuser database system, including SQL Server. Locks
are applied in both the pessimistic and optimistic concurrency models, although the way
other processes deal with locked data is different in each. The reason I refer to the pessimistic
variation of Read Committed isolation as Read Committed (locking) is because locking allows
concurrent transactions to maintain consistency. In the pessimistic model, writers always block
readers and writers, and readers can block writers. In the optimistic model, the only blocking
that occurs is that writers block other writers. But to really understand what these simplified
behavior summaries mean, we need to look at the details of SQL Server locking.

Locking Basics
SQL Server can lock data using several different modes. For example, read operations acquire
shared locks, and write operations acquire exclusive locks. Update locks are acquired
during the initial portion of an update operation, while SQL Server is searching for the data

626249.indb 596 3/10/11 11:57 AM

	 Chapter 10  Transactions and Concurrency	 597

to update. SQL Server acquires and releases all these types of locks automatically. It also
manages compatibility between lock modes, resolves deadlocks, and escalates locks if necessary.
It controls locks on tables, on the pages of a table, on index keys, and on individual rows
of data. Locks can also be held on system data—data that’s private to the database system,
such as page headers and indexes.

SQL Server provides two separate locking systems. The first system affects all fully shared
data and provides row locks, page locks, and table locks for tables, data pages, Large Object
(LOB) pages, and leaf-level index pages. The second system is used internally for index
concurrency control, controlling access to internal data structures and retrieving individual
rows of data pages. This second system uses latches, which are less resource-intensive than
locks and provide performance optimizations. You could use full-blown locks for all locking,
but because of their complexity, they would slow down the system if you used them for all
internal needs. If you examine locks using the sp_lock system stored procedure or a similar
mechanism that gets information from the sys.dm_tran_locks view, you cannot see latches—
you see only information about locks.

Another way to look at the difference between locks and latches is that locks ensure the
logical consistency of the data and latches ensure the physical consistency. Latching happens
when you place a row physically on a page or move data in other ways, such as compressing
the space on a page. SQL Server must guarantee that this data movement can happen
without interference.

Spinlocks
For shorter-term needs, SQL Server achieves mutual exclusion with a spinlock. Spinlocks are
used purely for mutual exclusion and never to lock user data. They are even more lightweight
than latches, which are lighter than the full locks used for data and index leaf pages. The
requester of a spinlock repeats its request if the lock is not immediately available. (That is, the
requester “spins” on the lock until it is free.)

Spinlocks are often used as mutexes within SQL Server for resources that are usually not busy. If
a resource is busy, the duration of a spinlock is short enough that retrying is better than waiting
and then being rescheduled by the operating system, which results in context switching between
threads. The savings in context switches more than offsets the cost of spinning as long as you
don’t have to spin too long. Spinlocks are used for situations in which the wait for a resource is
expected to be brief (or if no wait is expected). The sys.dm_os_tasks dynamic management view
(DMV) shows a status of SPINLOOP for any task that is currently using a spinlock.

Lock Types for User Data
We examine four aspects of locking user data. First we look at the mode of locking (the type
of lock). I already mentioned shared, exclusive, and update locks, and I go into more detail

626249.indb 597 3/10/11 11:57 AM

598	 Microsoft SQL Server 2008 Internals

about these modes as well as others. Next we look at the granularity of the lock, which
specifies how much data is covered by a single lock. This can be a row, a page, an index key,
a range of index keys, an extent, a partition, or an entire table. The third aspect of locking is
the duration of the lock. As mentioned earlier, some locks are released as soon as the data
has been accessed, and some locks are held until the transaction commits or rolls back. The
fourth aspect of locking concerns the ownership of the lock (the scope of the lock). Locks can
be owned by a session, a transaction, or a cursor.

Lock Modes
SQL Server uses several locking modes, including shared locks, exclusive locks, update locks,
and intent locks, plus variations on these. It is the mode of the lock that determines whether
a concurrently requested lock is compatible with locks that have already been granted. We
see the lock compatibility matrix at the end of this section in Figure 10-2.

Shared Locks
Shared locks are acquired automatically by SQL Server when data is read. Shared locks can be
held on a table, a page, an index key, or an individual row. Many processes can hold shared
locks on the same data, but no process can acquire an exclusive lock on data that has a shared
lock on it (unless the process requesting the exclusive lock is the same process as the one
holding the shared lock). Normally, shared locks are released as soon as the data has been
read, but you can change this by using query hints or a different transaction isolation level.

Exclusive Locks
SQL Server automatically acquires exclusive locks on data when the data is modified by an
INSERT, UPDATE, or DELETE operation. Only one process at a time can hold an exclusive lock
on a particular data resource; in fact, as you see when we discuss lock compatibility later
in this chapter, no locks of any kind can be acquired by a process if another process has
the requested data resource exclusively locked. Exclusive locks are held until the end of the
transaction. This means the changed data is normally not available to any other process until
the current transaction commits or rolls back. Other processes can decide to read exclusively
locked data by using query hints.

Update Locks
Update locks are really not a separate kind of lock; they are a hybrid of shared and exclusive
locks. They are acquired when SQL Server executes a data modification operation but first,
SQL Server needs to search the table to find the resource that needs to be modified. Using
query hints, a process can specifically request update locks, and in that case, the update locks
prevent the conversion deadlock situation presented in Figure 10-6 later in this chapter.

626249.indb 598 3/10/11 11:57 AM

	 Chapter 10  Transactions and Concurrency	 599

Update locks provide compatibility with other current readers of data, allowing the process
to later modify data with the assurance that the data hasn’t been changed since it was last
read. An update lock is not sufficient to allow you to change the data—all modifications
require that the data resource being modified have an exclusive lock. An update lock acts
as a serialization gate to queue future requests for the exclusive lock. (Many processes can
hold shared locks for a resource, but only one process can hold an update lock.) So long as a
process holds an update lock on a resource, no other process can acquire an update lock or
an exclusive lock for that resource; instead, another process requesting an update or exclusive
lock for the same resource must wait. The process holding the update lock can convert it
into an exclusive lock on that resource because the update lock prevents lock incompatibility
with any other processes. You can think of update locks as “intent-to-update” locks, which
is essentially the role they perform. Used alone, update locks are insufficient for updating
data—an exclusive lock is still required for actual data modification. Serializing access for the
exclusive lock lets you avoid conversion deadlocks. Update locks are held until the end of the
transaction or until they are converted to an exclusive lock.

Don’t let the name fool you: update locks are not just for UPDATE operations. SQL Server uses
update locks for any data modification operation that requires a search for the data prior to the
actual modification. Such operations include qualified updates and deletes, as well as inserts
into a table with a clustered index. In the latter case, SQL Server must first search the data
(using the clustered index) to find the correct position at which to insert the new row. While
SQL Server is only searching, it uses update locks to protect the data; only after it has found the
correct location and begins inserting does it convert the update lock to an exclusive lock.

Intent Locks
Intent locks are not really a separate mode of locking; they are a qualifier to the modes
previously discussed. In other words, you can have intent shared locks, intent exclusive locks,
and even intent update locks. Because SQL Server can acquire locks at different levels of
granularity, a mechanism is needed to indicate that a component of a resource is already
locked. For example, if one process tries to lock a table, SQL Server needs a way to determine
whether a row (or a page) of that table is already locked. Intent locks serve this purpose. We
discuss them in more detail when we look at lock granularity.

Special Lock Modes
SQL Server offers three additional lock modes: schema stability locks, schema modification
locks, and bulk update locks. When queries are compiled, schema stability locks prevent
other processes from acquiring schema modification locks, which are taken when a table’s
structure is being modified. A bulk update lock is acquired when the BULK INSERT command
is executed or when the bcp utility is run to load data into a table. In addition, the bulk
import operation must request this special lock by using the TABLOCK hint. Alternatively, the
table owner can set the table option called table lock on bulk load to True, and then any bulk
copy IN or BULK INSERT operation automatically requests a bulk update lock. Requesting

626249.indb 599 3/10/11 11:57 AM

600	 Microsoft SQL Server 2008 Internals

this special bulk update table lock does not necessarily mean it is granted. If other processes
already hold locks on the table, or if the table has any indexes, a bulk update lock cannot be
granted. If multiple connections have requested and received a bulk update lock, they can
perform parallel loads into the same table. Unlike exclusive locks, bulk update locks do not
conflict with each other, so concurrent inserts by multiple connections is supported.

Conversion Locks
Conversion locks are never requested directly by SQL Server, but are the result of a conversion
from one mode to another. The three types of conversion locks supported by SQL Server 2008
are SIX, SIU, and UIX. The most common of these is the SIX, which occurs if a transaction is
holding a shared (S) lock on a resource and later an IX lock is needed. The lock mode is indicated
as SIX. For example, suppose that you issue the following batch:

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

BEGIN TRAN

SELECT * FROM bigtable

UPDATE bigtable

 SET col = 0

 WHERE keycolumn = 100

If the table is large, the SELECT statement acquires a shared table lock. (If the table has only
a few rows, SQL Server acquires individual row or key locks.) The UPDATE statement then
acquires a single exclusive key lock to perform the update of a single row, and the X lock at
the key level means an IX lock at the page and table level. The table then shows SIX when
viewed through sys.dm_tran_locks. Similarly, SIU occurs when a process has a shared lock
on a table and an update lock on a row of that table, and UIX occurs when a process has an
update lock on the table and an exclusive lock on a row.

Table 10-3 shows most of the lock modes, as well as the abbreviations used in sys.dm_tran_locks.

Table 10-3  SQL Server Lock Modes

Abbreviation Lock Mode Description

S Shared Allows other processes to read but not change the locked
resource.

X Exclusive Prevents another process from modifying or reading data
in the locked resource.

U Update Prevents other processes from acquiring an update or
exclusive lock; used when searching for the data to
modify.

IS Intent shared Indicates that a component of this resource is locked with
a shared lock. This lock can be acquired only at the table
or page level.

IU Intent update Indicates that a component of this resource is locked with
an update lock. This lock can be acquired only at the table
or page level.

626249.indb 600 3/10/11 11:57 AM

	 Chapter 10  Transactions and Concurrency	 601

Table 10-3  SQL Server Lock Modes

Abbreviation Lock Mode Description

IX Intent exclusive Indicates that a component of this resource is locked with
an exclusive lock. This lock can be acquired only at the
table or page level.

SIX Shared with intent
exclusive

Indicates that a resource holding a shared lock also has a
component (a page or row) locked with an exclusive lock.

SIU Shared with intent
update

Indicates that a resource holding a shared lock also has a
component (a page or row) locked with an update lock.

UIX Update with intent
exclusive

Indicates that a resource holding an update lock also has a
component (a page or row) locked with an exclusive lock.

Sch-S Schema stability Indicates that a query using this table is being compiled.

Sch-M Schema modification Indicates that the structure of the table is being changed.

BU Bulk update Used when a bulk copy operation is copying data into
a table and the TABLOCK hint is being applied (either
manually or automatically).

Key-Range Locks
Additional lock modes—called key-range locks—are taken only in the Serializable isolation
level for locking ranges of data. Most lock modes can apply to almost any lock resource. For
example, shared and exclusive locks can be taken on a table, a page, a row, or a key. Because
key-range locks can be taken only on keys, I describe the details of key-range locks later in
this chapter in the section on key locks.

Lock Granularity
SQL Server can lock user data resources (not system resources, which are protected with
latches) at the table, page, or row level. (If locks are escalated, SQL Server can also lock a single
partition of a table or index.) In addition, SQL Server can lock index keys and ranges of index
keys. Figure 10-1 shows the basic lock levels in a table that can be acquired when a resource is
first accessed. Keep in mind that if the table has a clustered index, the data rows are at the leaf
level of the clustered index and they are locked with key locks instead of row locks.

The sys.dm_tran_locks view keeps track of each lock and contains information about the
resource, which is locked (such as a row, key, or page), the mode of the lock, and an identifier
for the specific resource. Keep in mind that sys.dm_tran_locks is only a dynamic view that
is used to display the information about the locks that are held. The actual information
is stored in internal SQL Server structures that are not visible to us at all. So when I talk
about information being in the sys.dm_tran_locks view, I am referring to the fact that the
information can be seen through that view.

626249.indb 601 3/10/11 11:57 AM

602	 Microsoft SQL Server 2008 Internals

RowRow Row

Page Page Page

Table

Figure 10-1  Levels of granularity for SQL Server locks on a table

When a process requests a lock, SQL Server compares the lock requested to the resources
already listed in sys.dm_tran_locks and looks for an exact match on the resource type and
identifier. However, if one process has a row exclusively locked in the Sales.SalesOrderHeader
table, for example, another process might try to get a lock on the entire Sales.SalesOrderHeader
table. Because these are two different resources, SQL Server does not find an exact match
unless additional information is already in sys.dm_tran_locks. This is what intent locks are for.
The process that has the exclusive lock on a row of the Sales.SalesOrderHeader table also has an
intent exclusive lock on the page containing the row and another intent exclusive lock on the
table containing the row. We can see those locks by first running this code:

USE Adventureworks2008;

BEGIN TRAN

UPDATE Sales.SalesOrderHeader

SET ShipDate = ShipDate + 1

WHERE SalesOrderID = 43666;

This statement should affect a single row. Because I have started a transaction and not yet
terminated it, the exclusive locks acquired are still held. I can look at those locks using the
sys.dm_tran_locks view:

SELECT resource_type, resource_description,

 resource_associated_entity_id, request_mode, request_status

FROM sys.dm_tran_locks

WHERE resource_associated_entity_id > 0;

I give you more details about the data in the section entitled “sys.dm_tran_locks” later in this
chapter, but for now, just note that the reason for the filter in the WHERE clause is that I am

626249.indb 602 3/10/11 11:57 AM

	 Chapter 10  Transactions and Concurrency	 603

interested only in locks that are actually held on data resources. If you are running a query on a
SQL Server instance that others are using, you might have to provide more filters to get just the
rows you’re interested in. For example, you could include a filter on request_session_id to limit
the output to locks held by a particular session. Your results should look something like this:

resource_type resource_description  resource_associated_entity_id request_mode request_status

------------- -------------------- ----------------------------    ------------ ---------------

KEY    (92007ad11d1d)     72057594045857792    X    GRANT

PAGE 1:5280 72057594045857792   IX GRANT

OBJECT 722101613   IX GRANT

Note that there are three locks, even though the UPDATE statement affected only a single
row. For the KEY and the PAGE locks, the resource_associated_entity_id is a partition_id.
For the OBJECT locks, the resource_associated_entity_id is a table. We can verify what table it
is by using the following query:

SELECT object_name(722101613)

The results should tell us that the object is the Sales.SalesOrderHeader table. When the sec-
ond process attempts to acquire an exclusive lock on that table, it finds a conflicting row al-
ready in sys.dm_tran_locks on the same lock resource (the Sales.SalesOrderHeader table), and
it is blocked. The sys.dm_tran_locks view shows us the following row, indicating a request for
an exclusive lock on an object that is unable to be granted. The process requesting the lock is
in a WAIT state:

resource_type resource_description  resource_associated_entity_id      request_mode request_status

------------- -------------------- ------------------------------   ------------   ------------

OBJECT 722101613 X WAIT

Not all requests for locks on resources that are already locked result in a conflict. A conflict
occurs when one process requests a lock on a resource that is already locked by another
process in an incompatible lock mode. For example, two processes can each acquire shared
locks on the same resource because shared locks are compatible with each other. I discuss
lock compatibility in detail later in this chapter.

Key Locks
SQL Server 2008 supports two kinds of key locks, and which one it uses depends on the
isolation level of the current transaction. If the isolation level is Read Committed, Repeatable
Read, or Snapshot, SQL Server tries to lock the actual index keys accessed while processing
the query. With a table that has a clustered index, the data rows are the leaf level of the
index, and you see key locks acquired. If the table is a heap, you might see key locks for the
nonclustered indexes and row locks for the actual data.

If the isolation level is Serializable, the situation is different. We want to prevent phantoms, so
if we have scanned a range of data within a transaction, we need to lock enough of the table

626249.indb 603 3/10/11 11:57 AM

604	 Microsoft SQL Server 2008 Internals

to make sure no one can insert a value into the range that was scanned. For example, we can
issue the following query within an explicit transaction in the AdventureWorks2008 database:

BEGIN TRAN

SELECT * FROM Sales.SalesOrderHeader

WHERE CustomerID BETWEEN 100 and 110;

When you use Serializable isolation, locks must be acquired to make sure no new rows with
CustomerID values between 100 and 110 are inserted before the end of the transaction.
Much older versions of SQL Server (prior to 7.0) guaranteed this by locking whole pages or
even the entire table. In many cases, however, this was too restrictive—more data was locked
than the actual WHERE clause indicated, resulting in unnecessary contention. SQL Server
2008 uses the key-range locks mode, which is associated with a particular key value in an
index and indicates that all values between that key and the previous one in the index are
locked.

The AdventureWorks2008 database includes an index on the Person table with the LastName
column as the leading column. Assume that we are in TRANSACTION ISOLATION LEVEL
SERIALIZABLE and we issue this SELECT statement inside a user-defined transaction:

SELECT * FROM Person.Person

WHERE LastName BETWEEN 'Freller' AND 'Freund';

If Fredericksen, French, and Friedland are sequential leaf-level index keys in an index on the
LastName column, the second two of these keys (French and Friedland) acquire key-range
locks (although only one row, for French, is returned in the result set). The key-range locks
prevent any inserts into the ranges ending with the two key-range locks. No values greater
than Fredericksen and less than or equal to French can be inserted, and no values greater
than French and less than or equal to Friedland can be inserted. Note that the key-range
locks imply an open interval starting at the previous sequential key and a closed interval
ending at the key on which the lock is placed. These two key-range locks prevent anyone
from inserting either Fremlich or Frenkin, which are in the range specified in the WHERE
clause. However, the key-range locks would also prevent anyone from inserting Freedman
(which is greater than Fredericksen and less than French), even though Freedman is not in the
query’s specified range. Key-range locks are not perfect, but they do provide much greater
concurrency than locking whole pages or tables, while guaranteeing that phantoms are
prevented.

There are nine types of key-range locks, and each has a two-part name: the first part
indicates the type of lock on the range of data between adjacent index keys, and the second
part indicates the type of lock on the key itself. These nine types of key-range locks are
described in Table 10-4.

626249.indb 604 3/10/11 11:57 AM

	 Chapter 10  Transactions and Concurrency	 605

Table 10-4  Types of Key-Range Locks

Abbreviation Description

RangeS-S Shared lock on the range between keys; shared lock on the key at the end
of the range

RangeS-U Shared lock on the range between keys; update lock on the key at the end
of the range

RangeIn-Null Exclusive lock to prevent inserts on the range between keys; no lock on the keys
themselves

RangeX-X Exclusive lock on the range between keys; exclusive lock on the key at the end of
the range

RangeIn-S Conversion lock created by S and RangeIn_Null lock

RangeIn-U Conversion lock created by U and RangeIn_Null lock

RangeIn-X Conversion of X and RangeIn_Null lock

RangeX-S Conversion of RangeIn_Null and RangeS_S lock

RangeX-U Conversion of RangeIn_Null and RangeS_U lock

Many of these lock modes are very rare or transient, so you do not see them very often in
sys.dm_tran_locks. For example, the RangeIn-Null lock is acquired when SQL Server attempts
to insert into the range between keys in a session using Serializable isolation. This type of
lock is not often seen because it is typically very transient. It is held only until the correct
location for insertion is found, and then the lock is converted into an X lock. However, if
one transaction scans a range of data using the Serializable isolation level and then another
transaction tries to insert into that range, the second transaction has a lock request with a WAIT
status with the RangeIn-Null mode. You can observe this by looking at the status column in
sys.dm_tran_locks, which we discuss in more detail later in the chapter.

Additional Lock Resources
In addition to locks on objects, pages, keys, and rows, a few other resources can be locked
by SQL Server. Locks can be taken on extents—units of disk space that are 64 KB in size
(eight pages of 8 KB each). This kind of locking occurs automatically when a table or an
index needs to grow and a new extent must be allocated. You can think of an extent lock as
another type of special-purpose latch, but it does show up in sys.dm_tran_locks. Extents can
have both shared extent and exclusive extent locks.

When you examine the contents of sys.dm_tran_locks, you should notice that most processes
hold a lock on at least one database (resource_type = DATABASE). In fact, any process holding
locks in any database other than master or tempdb has a lock for that database resource.
These database locks are always shared locks if the process is just using the database. SQL
Server checks for these database locks when determining whether a database is in use, and
then it can determine whether the database can be dropped, restored, altered, or closed.
Because few changes can be made to master and tempdb and they cannot be dropped

626249.indb 605 3/10/11 11:57 AM

606	 Microsoft SQL Server 2008 Internals

or closed, DATABASE locks are unnecessary. In addition, tempdb is never restored, and to
restore the master database, the entire server must be started in single-user mode, so again,
DATABASE locks are unnecessary. When attempting to perform one of these operations,
SQL Server requests an exclusive database lock, and if any other processes have a shared lock
on the database, the request blocks. Generally, you don’t need to be concerned with extent or
database locks, but you see them if you are perusing sys.dm_tran_locks.

You might occasionally see locks on ALLOCATION_UNIT resources. Although all table and
index structures contain one or more ALLOCATION_UNITs, when these locks occur, it means
SQL Server is dealing with one of these resources that is no longer tied to a particular object.
For example, when you drop or rebuild large tables or indexes, the actual page deallocation
is deferred until after the transaction commits. Deferred drop operations do not release
allocated space immediately, and they introduce additional overhead costs, so a deferred
drop is done only on tables or indexes that use more than 128 extents. If the table or index
uses 128 or fewer extents, dropping, truncating, and rebuilding are not deferred operations.
During the first phase of a deferred operation, the existing allocation units used by the
table or index are marked for deallocation and locked until the transaction commits. This
is where you see ALLOCATION_UNIT locks in sys.dm_tran_locks. You can also look in the
sys.allocation_units view to find allocation units with a type_desc value of DROPPED to see
how much space is being used by the allocation units that are not available for reuse but are
not currently part of any object. The actual physical dropping of the allocation unit’s space
occurs after the transaction commits.

Finally, you occasionally have locks on individual partitions, which are indicated in the
lock metadata as HOBT locks. This can happen only when locks are escalated, and only
if you have specified that escalation to the partition level is allowed (and, of course, only
when the table or index has been partitioned). We look at how you can specify that you
want partition-level locking in the section entitled “Lock Escalation,” later in this chapter.

Identifying Lock Resources
When SQL Server tries to determine whether a requested lock can be granted, it checks the
sys.dm_tran_locks view to determine whether a matching lock with a conflicting lock mode
already exists. It compares locks by looking at the database ID (resource_database_ID), the
values in the resource_description and resource_associated_entity_id columns, and the type of
resource locked. SQL Server knows nothing about the meaning of the resource description.
It simply compares the strings identifying the lock resources to look for a match. If it finds
a match with a request_status value of GRANT, it knows the resource is already locked; it
then uses the lock compatibility matrix to determine whether the current lock is compatible
with the one being requested. Table 10-5 shows many of the possible lock resources that
are displayed in the first column of the sys.dm_tran_locks view and the information in the
resource_description column, which is used to define the actual resource locked.

626249.indb 606 3/10/11 11:57 AM

	 Chapter 10  Transactions and Concurrency	 607

Table 10-5  Lockable Resources in SQL Server

Resource_Type Resource_Description Example

DATABASE None; the database is always indicated in the resource_
database_ID column for every locked resource.

 12

OBJECT The object ID (which can be any database object, not
necessarily a table) is reported in the resource_associated_
entity_id column.

69575286

HOBT hobt_id is reported in the resource_associated_entity_id
column. Used only when partition locking has been
enabled for a table.

72057594038779904

EXTENT File number:page number of the first page of the extent. 1:96

PAGE File number:page number of the actual table or
index page.

1:104

KEY A hashed value derived from all the key components and
the locator. For a nonclustered index on a heap, where
columns c1 and c2 are indexed, the hash will contain
contributions from c1, c2, and the RID.

ac0001a10a00

ROW File number:page number:slot number of the actual row. 1:161:3

Note that key locks and key-range locks have identical resource descriptions because key
range is considered a mode of locking, not a locking resource. When you look at output from
the sys.dm_tran_locks view, you see that you can distinguish between these types of locks by
the value in the lock mode column.

Another type of lockable resource is METADATA. More than any other resource, METADATA
resources are divided into multiple subtypes, which are described in the resource_subtype
column of sys.dm_tran_locks. You might see dozens of subtypes of METADATA resources,
but most of them are beyond the scope of this book. For some, however, even though SQL
Server Books Online describes them as “for internal use only,” it is pretty obvious what they
refer to. For example, when you change properties of a database, you can see a resource_type
of METADATA and a resource_subtype of DATABASE. The value in the resource_description
column of that row is database_id =<ID>, indicating the ID of the database whose metadata is
currently locked.

Associated Entity ID
For locked resources that are part of a larger entity, the resource_associated_entity_id column
in sys.dm_tran_locks displays the ID of that associated entity in the database. This can be an
object ID, a partition ID, or an allocation unit ID, depending on the resource type. Of course,
for some resources, such as DATABASE and EXTENT, there is no resource_associated_entity_id.
An object ID value is given in this column for OBJECT resources, and an allocation unit ID is
given for ALLOCATION_UNIT resources. A partition ID is provided for resource types PAGE,
KEY, and RID.

626249.indb 607 3/10/11 11:57 AM

608	 Microsoft SQL Server 2008 Internals

There is no simple function to convert a partition ID value to an object name; you have to
actually select from the sys.partitions view. The following query translates all the resource_
associated_entity_id values for locks in the current database by joining sys.dm_tran_locks to
sys.partitions. For OBJECT resources, the object_name function is applied to the resource_
associated_entity_id column. For PAGE, KEY, and RID resources, I use the object_name function
with the object_id value from the sys.partitions view. For other resources for which there is no
resource_associated_entity_id, the code just returns n/a. Because the code references the
sys.partitions view, which occurs in each database, this code is filtered to return only lock
information for resources in the current database. The output is organized to reflect the
information returned by the sp_lock procedure, but you can add any additional filters or
columns that you need. I will use this query in many examples later in this chapter, so I create
a VIEW based on the SELECT and call it DBlocks:

CREATE VIEW DBlocks AS

SELECT request_session_id as spid,

 db_name(resource_database_id) as dbname,

 CASE

 WHEN resource_type = 'OBJECT' THEN

 object_name(resource_associated_entity_id)

 WHEN resource_associated_entity_id = 0 THEN 'n/a'

 ELSE object_name(p.object_id)

 END as entity_name, index_id,

 resource_type as resource,

 resource_description as description,

 request_mode as mode, request_status as status

FROM sys.dm_tran_locks t LEFT JOIN sys.partitions p

 ON p.partition_id = t.resource_associated_entity_id

WHERE resource_database_id = db_id();

Lock Duration
The length of time that a lock is held depends primarily on the mode of the lock and
the transaction isolation level in effect. The default isolation level for SQL Server is Read
Committed. At this level, shared locks are released as soon as SQL Server has read and
processed the locked data. In Snapshot isolation, the behavior is the same—shared locks
are released as soon as SQL Server has read the data. If your transaction isolation level is
Repeatable Read or Serializable, shared locks have the same duration as exclusive locks; that
is, they are not released until the transaction is over. In any isolation level, an exclusive lock
is held until the end of the transaction, whether the transaction is committed or rolled back.
An update lock is also held until the end of the transaction unless it has been promoted to
an exclusive lock, in which case the exclusive lock, as is always the case with exclusive locks,
remains for the duration of the transaction.

In addition to changing your transaction isolation level, you can control the lock duration by
using query hints. I discuss query hints for locking, briefly, later in this chapter.

626249.indb 608 3/10/11 11:57 AM

	 Chapter 10  Transactions and Concurrency	 609

Lock Ownership
Lock duration is also directly affected by the lock ownership. Lock ownership has nothing
to do with the process that requested the lock, but you can think of it as the “scope” of the
lock. There are four types of lock owners, or lock scopes: transactions, cursors, transaction_
workspaces, and sessions. The lock owner can be viewed through the request_owner_type
column in the sys.dm_tran_locks view.

Most of our locking discussion deals with locks with a lock owner of TRANSACTION. As we’ve
seen, these locks can have two different durations depending on the isolation level and lock
mode. The duration of shared locks in Read Committed isolation is only as long as the locked
data is being read. The duration of all other locks owned by a transaction is until the end of
the transaction.

A lock with a request_ownertype value of CURSOR must be requested explicitly when the
cursor is declared. If a cursor is opened using a locking mode of SCROLL_LOCKS, a cursor
lock is held on every row fetched until the next row is fetched or the cursor is closed. Even if
the transaction commits before the next fetch, the cursor lock is not released.

In SQL Server 2008, locks owned by a session must also be requested explicitly and apply
only to APPLICATION locks. A session lock is requested using the sp_getapplock procedure.
Its duration is until the session disconnects or the lock is released explicitly.

Transaction_workspace locks are acquired every time a database is accessed, and the
resource associated with these locks is always a database. A workspace holds database locks
for sessions that are enlisted into a common environment. Usually, there is one workspace
per session, so all DATABASE locks acquired in the session are kept in the same workspace
object. In the case of distributed transactions, multiple sessions are enlisted into the same
workspace, so they share the database locks.

Every process acquires a DATABASE lock with an owner of SHARED_TRANSACTION_
WORKSPACE on any database when the process issues the USE command. The exception
is any processes that use master or tempdb, in which case no DATABASE lock is taken. That
lock isn’t released until another USE command is issued or until the process is disconnected.
If a process attempts to ALTER, RESTORE, or DROP the database, the DATABASE lock
acquired has an owner of EXCLUSIVE_TRANSACTION_WORKSPACE. SHARED_TRANSACTION_
WORKSPACE and EXCLUSIVE_TRANSACTION_WORKSPACE locks are maintained by the same
workspace and are just two different lists in one workspace. The use of two different owner
names is misleading in this case.

Viewing Locks
To see the locks currently outstanding in the system, as well as those that are being waited
for, the best source of information is the sys.dm_tran_locks view. I’ve shown you some queries

626249.indb 609 3/10/11 11:57 AM

610	 Microsoft SQL Server 2008 Internals

from this view in previous sections, and in this section, I show you a few more and explain what
more of the output columns mean. This view replaces the sp_lock procedure. Although calling
a procedure might require less typing than querying the sys.dm_tran_locks view, the view is
much more flexible. Not only are there many more columns of information providing details
about your locks, but as a view, sys.dm_tran_locks can be queried to select just the columns
you want, or only the rows that meet your criteria. It can be joined with other views and
aggregated to get summary information about how many locks of each kind are being held.

sys.dm_tran_locks
All the columns (with the exception of the last column called lock_owner_address) in
sys.dm_tran_locks start with one of two prefixes. The columns whose names begin with
resource_ describe the resource on which the lock request is being made. The columns whose
names begin with request_ describe the process requesting the lock. Two requests operate on
the same resource only if all the resource_ columns are the same.

resource_ Columns  I’ve mentioned most of the resource_ columns already, but I referred
only briefly to the resource_subtype column. Not all resources have subtypes, and some have
many. The METADATA resource type, for example, has over 40 subtypes.

Table 10-6 lists all the subtypes for resource types other than METADATA.

Table 10-6  Subtype Resources

Resource Type Resource Subtypes Description

DATABASE BULKOP_BACKUP_DB Used for synchronization of database backups with
bulk operations

BULKOP_BACKUP_LOG Used for synchronization of database log backups
with bulk operations

DDL Used to synchronize Data Definition Language (DDL)
operations with File Group operations (such as DROP)

STARTUP Used for database startup synchronization

TABLE UPDSTATS Used for synchronization of statistics updates on
a table

COMPILE Used for synchronization of stored procedure
compiles

INDEX_OPERATION Used for synchronization of index operations

HOBT INDEX_REORGANIZE Used for synchronization of heap or index
reorganization operations

BULK_OPERATION Used for heap-optimized bulk load operations with
concurrent scan, in the Snapshot, Read Uncommitted,
and Read Committed SI levels

ALLOCATION_UNIT PAGE_COUNT Used for synchronization of allocation unit page
count statistics during deferred drop operations

626249.indb 610 3/10/11 11:57 AM

	 Chapter 10  Transactions and Concurrency	 611

As previously mentioned, most METADATA subtypes are documented as being for INTERNAL
USE ONLY, but their meaning is often pretty obvious. Each type of metadata can be locked
separately as changes are made. Here is a partial list of the METADATA subtypes:

n	 INDEXSTATS

n	 STATS

n	 SCHEMA

n	 DATABASE_PRINCIPAL

n	 DB_PRINCIPAL_SID

n	 USER_TYPE

n	 DATA_SPACE

n	 PARTITION_FUNCTION

n	 DATABASE

n	 SERVER_PRINCIPAL

n	 SERVER

Most of the other METADATA subtypes not listed here refer to elements of SQL Server 2008
that are not discussed in this book, including CLR routines, XML, certificates, full-text search,
and notification services.

request_ Columns  I’ve also mentioned a couple of the most important request_ columns in
sys.dm_tran_locks, including request_mode (the type of lock requested), request_owner_type
(the scope of the lock requested), and request_session_id. Here are some of the others:

n	 request_type  In SQL Server 2008, the only type of resource request tracked in sys.
dm_tran_locks is for a LOCK. Future versions may include other types of resources that
can be requested.

n	 request_status  Status can be one of three values: GRANT, CONVERT, or WAIT. A status
of CONVERT indicates that the requestor has already been granted a request for the
same resource in a different mode and is currently waiting for an upgrade (convert)
from the current lock mode to be granted. (For example, SQL Server can convert a
U lock to X.) A status of WAIT indicates that the requestor does not currently hold a
granted request on the resource.

n	 request_reference_count  This value is a rough count of number of times the same
requestor has requested this resource and applies only to resources that are not
automatically released at the end of a transaction. A granted resource is no longer
considered to be held by a requestor if this field decreases to 0 and request_lifetime is also 0.

n	 request_lifetime  This value is a code that indicates when the lock on the resource is
released.

626249.indb 611 3/10/11 11:57 AM

612	 Microsoft SQL Server 2008 Internals

n	 request_session_id  This value is the ID of the session that has requested the lock.
The owning session ID can change for distributed and bound transactions. A value
of –2 indicates that the request belongs to an orphaned DTC transaction. A value of
–3 indicates that the request belongs to a deferred recovery transaction. (These are
transactions whose rollback has been deferred at recovery because the rollback could
not be completed successfully.)

n	 request_exec_context_id  This value is the execution context ID of the process that
currently owns this request. A value greater than 0 indicates that this is a subthread
used to execute a parallel query.

n	 request_request_id  This value is the request ID (batch ID) of the process that currently
owns this request. This column is populated only for the requests coming in from a
client application using Multiple Active Result Sets (MARS).

n	 request_owner_id  This value is currently used only for requests with an owner of
TRANSACTION, and the owner ID is the transaction ID. This column can be joined with
the transaction_id column in the sys.dm_tran_active_transactions view.

n	 request_owner_guid  This value is currently used only by DTC transactions when it
corresponds to the DTC GUID for that transaction.

n	 lock_owner_address  This value is the memory address of the internal data structure
that is used to track this request. This column can be joined with the resource_address
column in sys.dm_os_waiting_tasks if this request is in the WAIT or CONVERT state.

Locking Examples
The following examples show what many of the lock types and modes discussed earlier look
like when reported using the DBlocks view that I described previously.

Example 1: SELECT with Default Isolation Level
SQL BATCH

USE Adventureworks2008;

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

BEGIN TRAN

SELECT * FROM Production.Product

WHERE Name = 'Reflector';

SELECT * FROM DBlocks WHERE spid = @@spid;

COMMIT TRAN

RESULTS FROM DBlocks

spid dbname  entity_name     index_id resource   description    mode status

-----    ----------------- ------------ -------- --------- ----------- ----- ------

60 Adventureworks2008    n/a NULL       DATABASE S  GRANT

60 AdventureWorks2008    DBlocks NULL  OBJECT IS  GRANT

There are no locks on the data in the Production.Product table because the batch was
performing only SELECT operations that acquired shared locks. By default, the shared locks

626249.indb 612 3/10/11 11:57 AM

	 Chapter 10  Transactions and Concurrency	 613

are released as soon as the data has been read, so by the time the SELECT from the view is
executed, the locks are no longer held. There is only the ever-present DATABASE lock, and an
OBJECT lock on the view.

Example 2: SELECT with Repeatable Read Isolation Level
SQL BATCH

USE AdventureWorks2008;

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;

BEGIN TRAN

SELECT * FROM Production.Product

WHERE Name LIKE 'Racing Socks%';

SELECT * FROM DBlocks

WHERE spid = @@spid

AND entity_name = 'Product';

COMMIT TRAN

RESULTS FROM DBlocks

spid dbname   entity_name index_id    resource    description mode status

---- ------------------- ------------ --------- ---------- -------------- -------- ------

54 AdventureWorks2008 Product  NULL  OBJECT     IS  GRANT

54 AdventureWorks2008 Product   1     PAGE 1:16897  IS  GRANT

54 AdventureWorks2008 Product  1 KEY      (6b00b8eeda30)    S  GRANT

54 AdventureWorks2008 Product   1 KEY      (6a00dd896688)    S  GRANT

54 AdventureWorks2008 Product 3  KEY      (9502d56a217e)    S  GRANT

54 AdventureWorks2008 Product 3 PAGE 1:1767 IS  GRANT

54 AdventureWorks2008 Product 3 KEY       (9602945b3a67)    S  GRANT

This time, I filtered out the database lock and the locks on the view and the rowset, just to keep
the focus on the data locks. Because the Production.Product table has a clustered index, the rows
of data are all index rows in the leaf level. The locks on the two individual data rows returned are
listed as key locks. There are also two key locks at the leaf level of the nonclustered index on the
table used to find the relevant rows. In the Production.Product table, that nonclustered index is
on the Name column. You can tell the clustered and nonclustered indexes apart by the value in
the index_id column: the data rows (the leaf rows of the clustered index) have an index_id value
of 1, and the nonclustered index rows have an index_id value of 3. (For nonclustered indexes,
the index_id value can be anything between 2 and 250 or between 356 and 1005.) Because the
transaction isolation level is Repeatable Read, the shared locks are held until the transaction is
finished. Note that the index rows have shared (S) locks, and the data and index pages, as well as
the table itself, have intent shared (IS) locks.

Example 3: SELECT with Serializable Isolation Level
SQL BATCH

USE AdventureWorks2008 ;

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

BEGIN TRAN

SELECT * FROM Production.Product

WHERE Name LIKE 'Racing Socks%';

626249.indb 613 3/10/11 11:57 AM

614	 Microsoft SQL Server 2008 Internals

SELECT * FROM DBlocks

WHERE spid = @@spid

AND entity_name = 'Product';

COMMIT TRAN

RESULTS FROM DBlocks

spid dbname entity_name index_id resource description mode status

---- ------------------ ------------ ---------- ---------- ------------ ------- ------

54 AdventureWorks2008 Product NULL OBJECT IS GRANT

54 AdventureWorks2008 Product 1 PAGE 1:16897 IS GRANT

54 AdventureWorks2008 Product 1 KEY (6b00b8eeda30) S GRANT

54 AdventureWorks2008 Product 1 KEY (6a00dd896688) S GRANT

54 AdventureWorks2008 Product 3 KEY (9502d56a217e) RangeS-S GRANT

54 AdventureWorks2008 Product 3 PAGE 1:1767 IS GRANT

54 AdventureWorks2008 Product 3 KEY (23027a50f6db) RangeS-S GRANT

54 AdventureWorks2008 Product 3 KEY (9602945b3a67) RangeS-S GRANT

The locks held with the Serializable isolation level are almost identical to those held with the
Repeatable Read isolation level. The main difference is in the mode of the lock. The two-part
mode RangeS-S indicates a key-range lock in addition to the lock on the key itself. The first
part (RangeS) is the lock on the range of keys between (and including) the key holding the
lock and the previous key in the index. The key-range locks prevent other transactions from
inserting new rows into the table that meet the condition of this query; that is, no new rows
with a product name starting with Racing Socks can be inserted. The key-range locks are held
on ranges in the nonclustered index on Name (index_id = 3) because that is the index used
to find the qualifying rows. There are three key locks in the nonclustered index because three
different ranges need to be locked. The two Racing Socks rows are Racing Socks, L and Racing
Socks, M. SQL Server must lock the range from the key preceding the first Racing Socks
row in the index up to the first Racing Socks. It must lock the range between the two rows
starting with Racing Socks, and it must lock the range from the second Racing Socks to the
next key in the index. (So actually nothing could be inserted between Racing Socks and the
previous key, Pinch Bolt, or between Racing Socks and the next key, Rear Brakes. For example,
we could not insert a product with the name Portkey or Racing Tights.)

Example 4: Update Operations
SQL BATCH

USE AdventureWorks2008;

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

BEGIN TRAN

UPDATE Production.Product

SET ListPrice = ListPrice * 0.6

WHERE Name LIKE 'Racing Socks%';

SELECT * FROM DBlocks

WHERE spid = @@spid

AND entity_name = 'Product';

COMMIT TRAN

626249.indb 614 3/10/11 11:57 AM

	 Chapter 10  Transactions and Concurrency	 615

RESULTS FROM DBlocks

spid dbname entity_name index_id resource description  mode    status

---- ------------------- ----------- ---------- ---------- -------------- ----- -------

54 AdventureWorks2008 Product NULL OBJECT IX GRANT

54 AdventureWorks2008 Product 1 PAGE 1:16897 IX GRANT

54 AdventureWorks2008 Product 1 KEY (6b00b8eeda30) X GRANT

54 AdventureWorks2008 Product 1 KEY (6a00dd8966 88) X GRANT

The two rows in the leaf level of the clustered index are locked with X locks. The page and
the table are then locked with IX locks. I mentioned earlier that SQL Server actually acquires
update locks while it looks for the rows to update. However, these are converted to X locks
when the actual update is performed, and by the time we look at the DBLocks view, the
update locks are gone. Unless you actually force update locks with a query hint, you might
never see them in the lock report from DBLocks or by direct inspection of sys.dm_tran_locks.

Example 5: Update with Serializable Isolation Level Using an Index
SQL BATCH

USE AdventureWorks2008;

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

BEGIN TRAN

UPDATE Production.Product

SET ListPrice = ListPrice * 0.6

WHERE Name LIKE 'Racing Socks%';

SELECT * FROM DBlocks

WHERE spid = @@spid

AND entity_name = 'Product';

COMMIT TRAN

RESULTS FROM DBlocks

spid dbname entity_name index_id resource description mode status

---- ------------------- ------------ ----------- ---------- --------------- -------- ------

54 AdventureWorks2008 Product NULL OBJECT IX GRANT

54 AdventureWorks2008 Product 1 PAGE 1:16897 IX GRANT

54 AdventureWorks2008 Product 1 KEY (6a00dd896688) X GRANT

54 AdventureWorks2008 Product 1 KEY (6b00b8eeda30) X GRANT

54 AdventureWorks2008 Product 3 KEY (9502d56a217e) RangeS-U GRANT

54 AdventureWorks2008 Product 3 PAGE 1:1767 IU GRANT

54 AdventureWorks2008 Product 3 KEY (23027a50f6db) RangeS-U GRANT

54 AdventureWorks2008 Product 3 KEY (9602945b3a67) RangeS-U GRANT

Again, notice that the key-range locks are on the nonclustered index used to find the relevant
rows. The range interval itself needs only a shared lock to prevent insertions, but the searched
keys have U locks so no other process can attempt to update them. The keys in the table itself
(index_id = 1) obtain the exclusive lock when the actual modification is made.

Now let’s look at an UPDATE operation with the same isolation level when no index can be
used for the search.

626249.indb 615 3/10/11 11:57 AM

616	 Microsoft SQL Server 2008 Internals

Example 6: Update with Serializable Isolation Not Using an Index
SQL BATCH

USE AdventureWorks2008;

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

BEGIN TRAN

UPDATE Production.Product

SET ListPrice = ListPrice * 0.6

WHERE Color = 'White';

SELECT * FROM DBlocks

WHERE spid = @@spid

AND entity_name = 'Product';

COMMIT TRAN

RESULTS FROM DBlocks (Abbreviated)

spid dbname entity_name index_id resource description mode status

---- ------------------- ------------ ----------- ---------- -------------- -------- -------

54 AdventureWorks2008 Product NULL OBJECT IX GRANT

54 AdventureWorks2008 Product 1 KEY (7900ac71caca) RangeS-U GRANT

54 AdventureWorks2008 Product 1 KEY (6100dc0e675f) RangeS-U GRANT

54 AdventureWorks2008 Product 1 KEY (5700a1a9278a) RangeS-U GRANT

54 AdventureWorks2008 Product 1 PAGE 1:16898 IU GRANT

54 AdventureWorks2008 Product 1 PAGE 1:16899 IU GRANT

54 AdventureWorks2008 Product 1 PAGE 1:16896 IU GRANT

54 AdventureWorks2008 Product 1 PAGE 1:16897 IX GRANT

54 AdventureWorks2008 Product 1 PAGE 1:16900 IU GRANT

54 AdventureWorks2008 Product 1 PAGE 1:16901 IU GRANT

54 AdventureWorks2008 Product 1 KEY (5600c4ce9b32) RangeS-U GRANT

54 AdventureWorks2008 Product 1 KEY (7300c89177a5) RangeS-U GRANT

54 AdventureWorks2008 Product 1 KEY (7f00702ea1ef) RangeS-U GRANT

54 AdventureWorks2008 Product 1 KEY (6b00b8eeda30) RangeX-X GRANT

54 AdventureWorks2008 Product 1 KEY (c500b9eaac9c) RangeX-X GRANT

54 AdventureWorks2008 Product 1 KEY (c6005745198e) RangeX-X GRANT

54 AdventureWorks2008 Product 1 KEY (6a00dd896688) RangeX-X GRANT

The locks here are similar to those in the previous example except that all the locks are on
the table itself (index_id = 1). A clustered index scan (on the entire table) had to be done, so
all keys initially received the RangeS-U lock, and when four rows were eventually modified,
the locks on those keys were converted to RangeX-X locks. You can see all the RangeX-X
locks, but not all the RangeS-U locks are shown for space reasons (the table has 504 rows).

Example 7: Creating a Table
SQL BATCH

USE AdventureWorks2008;

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

BEGIN TRAN

SELECT *

INTO newProducts

FROM Production.Product

WHERE ListPrice between 1 and 10;

SELECT * FROM DBlocks

WHERE spid = @@spid;

COMMIT TRAN

626249.indb 616 3/10/11 11:57 AM

	 Chapter 10  Transactions and Concurrency	 617

RESULTS FROM DBlocks (Abbreviated)

spid dbname entity_name index_id resource description mode status

---- ------------------ ------------ ----------- ---------- ---------------- ------ ------

54 AdventureWorks2008 n/a NULL DATABASE NULL GRANT

54 AdventureWorks2008 n/a NULL DATABASE NULL GRANT

54 AdventureWorks2008 n/a NULL DATABASE S GRANT

54 AdventureWorks2008 n/a NULL METADATA user_type_id = 258   Sch-S GRANT

54 AdventureWorks2008 n/a NULL METADATA data_space_id = 1  Sch-S GRANT

54 AdventureWorks2008 n/a NULL DATABASE S GRANT

54 AdventureWorks2008 n/a NULL METADATA $seq_type = 0, objec Sch-M GRANT

54 AdventureWorks2008 n/a NULL METADATA user_type_id = 260 Sch-S GRANT

54 AdventureWorks2008 sysrowsetcol NULL OBJECT IX GRANT

54 AdventureWorks2008 sysrowsets NULL OBJECT IX GRANT

54 AdventureWorks2008 sysallocunit NULL OBJECT IX GRANT

54 AdventureWorks2008 syshobtcolum NULL OBJECT IX GRANT

54 AdventureWorks2008 syshobts NULL OBJECT IX GRANT

54 AdventureWorks2008 sysserefs NULL OBJECT IX GRANT

54 AdventureWorks2008 sysschobjs NULL OBJECT IX GRANT

54 AdventureWorks2008 syscolpars NULL OBJECT IX GRANT

54 AdventureWorks2008 sysidxstats NULL OBJECT IX GRANT

54 AdventureWorks2008 sysrowsetcol 1 KEY (15004f6b3486) X GRANT

54 AdventureWorks2008 sysrowsetcol 1 KEY (0a00862c4e8e) X GRANT

54 AdventureWorks2008 sysrowsets 1 KEY (000000aaec7b) X GRANT

54 AdventureWorks2008 sysallocunit 1 KEY (00001f2dcf47) X GRANT

54 AdventureWorks2008 syshobtcolum 1 KEY (1900f7d4e2cc) X GRANT

54 AdventureWorks2008 syshobts 1 KEY (000000aaec7b) X GRANT

54 AdventureWorks2008 NULL NULL RID 1:6707:1 X GRANT

54 AdventureWorks2008 DBlocks NULL OBJECT IS GRANT

54 AdventureWorks2008 newProducts NULL OBJECT Sch-M GRANT

54 AdventureWorks2008 sysserefs 1 KEY (010025fabf73) X GRANT

54 AdventureWorks2008 sysschobjs 1 KEY (3b0042322c99) X GRANT

54 AdventureWorks2008 syscolpars 1 KEY (4200c1eb801c) X GRANT

54 AdventureWorks2008 syscolpars 1 KEY (4e00092bfbc3) X GRANT

54 AdventureWorks2008 sysidxstats 1 KEY (3b0006e110a6) X GRANT

54 AdventureWorks2008 sysschobjs 2 KEY (9202706f3e6c) X GRANT

54 AdventureWorks2008 syscolpars 2 KEY (6c0151be80af) X GRANT

54 AdventureWorks2008 syscolpars 2 KEY (2c03557a0b9d) X GRANT

54 AdventureWorks2008 sysidxstats 2 KEY (3c00f3332a43) X GRANT

54 AdventureWorks2008 sysschobjs 3 KEY (9202d42ddd4d) X GRANT

54 AdventureWorks2008 sysschobjs 4 KEY (3c0040d00163) X GRANT

54 AdventureWorks2008 newProducts 0 PAGE 1:6707 X GRANT

54 AdventureWorks2008 newProducts 0 HOBT Sch-M GRANT

Very few of these locks are actually acquired on elements of the newProducts table. In the
entity_name column, you can see that most of the objects are undocumented, and normally
invisible, system table names. As the new table is created, SQL Server acquires locks on nine
different system tables to record information about this new table. In addition, notice the
schema modification (Sch-M) lock and other metadata locks on the new table.

The final example looks at the locks held when there is no clustered index on the table and
the data rows are being updated.

626249.indb 617 3/10/11 11:57 AM

618	 Microsoft SQL Server 2008 Internals

Example 8: Row Locks
SQL BATCH

USE AdventureWorks2008;

SET TRANSACTION ISOLATION LEVEL READ COMMITTED

BEGIN TRAN

UPDATE newProducts

SET ListPrice = 5.99

WHERE name = 'Road Bottle Cage';

SELECT * FROM DBlocks

WHERE spid = @@spid

AND entity_name = 'newProducts';

COMMIT TRAN

RESULTS FROM DBlocks

spid dbname entity_name index_id resource description mode status

---- ------------------- ------------ ----------- ---------- ------------ -------- --------

54 AdventureWorks2008 newProducts NULL OBJECT IX GRANT

54 AdventureWorks2008 newProducts 0 PAGE 1:6708 IX GRANT

54 AdventureWorks2008 newProducts 0 RID 1:6708:5 X GRANT

There are no indexes on the newProducts table, so the lock on the actual row meeting our
criteria is an exclusive (X) lock on the row (RID). For RID locks, the description actually reports
the specific row in the form File number:Page number:Slot number. As expected, IX locks are
taken on the page and the table.

Lock Compatibility
Two locks are compatible if one lock can be granted while another lock on the same resource
is held by a different process. If a lock requested for a resource is not compatible with a
lock currently being held, the requesting connection must wait for the lock. For example, if
a shared page lock exists on a page, another process requesting a shared page lock for the
same page is granted the lock because the two lock types are compatible. But a process that
requests an exclusive lock for the same page is not granted the lock because an exclusive
lock is not compatible with the shared lock already held. Figure 10-2 summarizes the
compatibility of locks in SQL Server 2008. Along the top are all the lock modes that a process
might already hold. Along the left edge are the lock modes that another process might
request.

At the point where the held lock and requested lock meet, there can be three possible
values. N indicates that there is no conflict, C indicates that there will be a conflict and the
requesting process will have to wait, and I indicates an invalid combination that could never
occur. All the I values in the chart involve range locks, which can be applied only to KEY
resources, so any type of lock that can never be applied to KEY resources indicates an invalid
comparison.

626249.indb 618 3/10/11 11:57 AM

	 Chapter 10  Transactions and Concurrency	 619

NL
SCH-S
SCH-M

S
U
X
IS
IU
IX

SIU
SIX
UIX
BU

RS-S
RI-U
RI-N
RI-S
RI-U
RI-X
RX-S
RX-U
RX-X

NL
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

SCH-S
N
N
C
N
N
N
N
N
N
N
N
N
N
I
I
I
I
I
I
I
I
I

SCH-M
N
C
C
C
C
C
C
C
C
C
C
C
C
I
I
I
I
I
I
I
I
I

S
N
N
C
N
N
C
N
N
C
N
C
C
C
N
N
N
N
N
C
N
N
C

U
N
N
C
N
C
C
N
C
C
C
C
C
C
N
C
N
N
C
C
N
C
C

X
N
N
C
C
C
C
C
C
C
C
C
C
C
C
C
N
C
C
C
C
C
C

IS
N
N
C
N
N
C
N
N
N
N
N
N
C
I
I
I
I
I
I
I
I
I

IU
N
N
C
N
C
C
N
N
N
N
N
C
C
I
I
I
I
I
I
I
I
I

IX
N
N
C
C
C
C
N
N
N
C
C
C
C
I
I
I
I
I
I
I
I
I

SIU
N
N
C
N
C
C
N
N
C
N
C
C
C
I
I
I
I
I
I
I
I
I

SIX
N
N
C
C
C
C
N
N
C
C
C
C
C
I
I
I
I
I
I
I
I
I

UIX
N
N
C
C
C
C
N
C
C
C
C
C
C
I
I
I
I
I
I
I
I
I

BU
N
N
C
C
C
C
C
C
C
C
C
C
N
I
I
I
I
I
I
I
I
I

RS-S
N
I
I
N
N
C
I
I
I
I
I
I
I
N
N
C
C
C
C
C
C
C

RS-U
N
I
I
N
C
C
I
I
I
I
I
I
I
N
C
C
C
C
C
C
C
C

RI-N
N
I
I
N
N
N
I
I
I
I
I
I
I
C
C
N
N
N
N
C
C
C

RI-S
N
I
I
N
N
C
I
I
I
I
I
I
I
C
C
N
N
N
C
C
C
C

RI-U
N
I
I
N
C
C
I
I
I
I
I
I
I
C
C
N
N
C
C
C
C
C

RI-X
N
I
I
C
C
C
I
I
I
I
I
I
I
C
C
N
C
C
C
C
C
C

RX-S
N
I
I
N
N
C
I
I
I
I
I
I
I
C
C
C
C
C
C
C
C
C

RX-U
N
I
I
N
C
C
I
I
I
I
I
I
I
C
C
C
C
C
C
C
C
C

RX-X
N
I
I
C
C
C
I
I
I
I
I
I
I
C
C
C
C
C
C
C
C
C

Figure 10-2  SQL Server lock compatibility matrix

Lock compatibility comes into play between locks on different resources, such as table locks
and page locks. A table and a page obviously represent an implicit hierarchy because a table
is made up of multiple pages. If an exclusive page lock is held on one page of a table, another
process cannot get even a shared table lock for that table. This hierarchy is protected using
intent locks. A process acquiring an exclusive page lock, update page lock, or intent exclusive
page lock first acquires an intent exclusive lock on the table. This intent exclusive table lock
prevents another process from acquiring the shared table lock on that table. (Remember that
intent exclusive locks and shared locks on the same resource are not compatible.)

Similarly, a process acquiring a shared row lock must first acquire an intent shared lock for the
table, which prevents another process from acquiring an exclusive table lock. Or if the exclusive
table lock already exists, the intent shared lock is not granted and the shared page lock has
to wait until the exclusive table lock is released. Without intent locks, process A can lock a
page in a table with an exclusive page lock and process B can place an exclusive table lock
on the same table and hence think that it has a right to modify the entire table, including the
page that process A has exclusively locked.

Note  Obviously, lock compatibility is an issue only when the locks affect the same object. For
example, two or more processes each can hold exclusive page locks simultaneously so long as
the locks are on different pages or different tables.

Even if two locks are compatible, the requester of the second lock might still have to wait if
an incompatible lock is waiting. For example, suppose that process A holds a shared page
lock. Process B requests an exclusive page lock and must wait because the shared page
lock and the exclusive page lock are not compatible. Process C requests a shared page lock

626249.indb 619 3/10/11 11:57 AM

620	 Microsoft SQL Server 2008 Internals

that is compatible with the shared page already granted to process A. However, the shared
page lock cannot be granted immediately. Process C must wait for its shared page lock
because process B is ahead of it in the lock queue with a request (exclusive page) that is not
compatible.

By examining the compatibility of locks not only with processes granted locks, but also processes
waiting, SQL Server prevents lock starvation, which can result when requests for shared locks
keep overlapping so that the request for the exclusive lock can never be granted.

Internal Locking Architecture
Locks are not on-disk structures. You won’t find a lock field directly on a data page or a table
header, and the metadata that keeps track of locks is never written to disk. Locks are internal
memory structures—they consume part of the memory used for SQL Server. A lock is identified
by lock resource, which is a description of the resource that is locked (a row, index key, page,
or table). To keep track of the database, the type of lock, and the information describing the
locked resource, each lock requires 64 bytes of memory on a 32-bit system and 128 bytes of
memory on a 64-bit system. This 64-byte or 128-byte structure is called a lock block.

Each process holding a lock also must have a lock owner, which represents the relationship
between a lock and the entity that is requesting or holding the lock. The lock owner requires
32 bytes of memory on a 32-bit system and 64 bytes of memory on a 64-bit system. This
32-byte or 64-byte structure is called a lock owner block. A single transaction can have
multiple lock owner blocks; a scrollable cursor sometimes uses several. Also, one lock can
have many lock owner blocks, as is the case with a shared lock. As mentioned, the lock owner
represents a relationship between a lock and an entity, and the relationship can be granted,
waiting, or in a state called waiting-to-convert.

The lock manager maintains a lock hash table. Lock resources, contained within a lock block,
are hashed to determine a target hash slot in the hash table. All lock blocks that hash to the
same slot are chained together from one entry in the hash table. Each lock block contains a
15-byte field that describes the locked resource. The lock block also contains pointers to lists of
lock owner blocks. There is a separate list for lock owners in each of the three states. Figure 10-3
shows the general lock architecture.

The number of slots in the hash table is based on the system’s physical memory, as shown
in Table 10-7. There is an upper limit of 231 slots. All instances of SQL Server on the same
machine have a hash table with the same number of slots. Each entry in the lock hash table
is 16 bytes in size and consists of a pointer to a list of lock blocks and a spinlock to guarantee
serialized access to the same slot.

626249.indb 620 3/10/11 11:57 AM

	 Chapter 10  Transactions and Concurrency	 621

All owner blocks from
same transaction are

linked together.

Lock hash table

Lock block

Convert Grant Wait

Lock resource block

Lock block

Convert Grant Wait

Lock resource block

Lock
owner
block

Lock
owner
block

Lock
owner
block

Lock block

Convert Grant Wait

Lock resource block

Figure 10-3  SQL Server locking architecture

Table 10-7  Number of Slots in the Internal Lock Hash Table

Physical Memory (MB) Number of Slots Memory Used

< 32 214 = 16384 128 KB

>= 32 and < 64 215 = 32768 256 KB

>= 64 and < 128 216 = 65536 512 KB

>= 128 and < 512 218 = 262144 2048 KB

>= 512 and < 1024 219 = 524288 4096 KB

>= 1024 and < 4096 221 = 2097152 16384 KB

>= 4096 and < 8192 222 = 4194304 32768 KB

>= 8192 and < 16384 223 = 8388608 65536 KB

>= 16384 225 = 33554432 262144 KB

The lock manager allocates in advance a number of lock blocks and lock owner blocks at
server startup. On NUMA configurations, these lock and lock owner blocks are divided
among all NUMA nodes. So when a lock request is made, local lock blocks are used. If the
number of locks has been set by sp_configure, it allocates that configured number of lock

626249.indb 621 3/10/11 11:57 AM

622	 Microsoft SQL Server 2008 Internals

blocks and the same number of lock owner blocks. If the number is not fixed (0 means
auto-tune), it allocates 2,500 lock blocks for your SQL Server instance. It allocates twice as
many (2 * # lock blocks) of the lock owner blocks. At their maximum, the static allocations
can’t consume more than 25 percent of the committed buffer pool size.

When a request for a lock is made and no free lock blocks remain, the lock manager
dynamically allocates new lock blocks instead of denying the lock request. The lock manager
cooperates with the global memory manager to negotiate for server allocated memory.
When necessary, the lock manager can free the dynamically allocated lock blocks. The lock
manager is limited to 60 percent of the buffer manager’s committed target size allocation to
lock blocks and lock owner blocks.

Lock Partitioning
For large systems, locks on frequently referenced objects can become a performance
bottleneck. The process of acquiring and releasing locks can cause contention on the internal
locking resources. Lock partitioning enhances locking performance by splitting a single
lock resource into multiple lock resources. For systems with 16 or more CPUs, SQL Server
automatically splits certain locks into multiple lock resources, one per CPU. This is called
lock partitioning, and there is no way for a user to control this process. (Do not confuse
lock partitioning with partition locks, which are discussed in the section entitled “Lock
Escalation,” later in this chapter.) An informational message is sent to the error log whenever
lock partitioning is active. The error message is “Lock partitioning is enabled. This is an
informational message only. No user action is required.” Lock partitioning applies only to full
object locks (for example, tables and views) in the following lock modes: S, U, X, and SCH-M.
All other modes (NL, SCH_S, IS, IU, and IX) are acquired on a single CPU. SQL Server assigns a
default lock partition to every transaction when the transaction starts. During the life of that
transaction, all lock requests that are spread over all the partitions use the partition assigned
to that transaction. By this method, access to lock resources of the same object by different
transactions is distributed across different partitions.

The resource_lock_partition column in sys.dm_tran_locks indicates which lock partition a
particular lock is on, so you can see multiple locks for the exact same resource with different
resource_lock_partition values. For systems with fewer than 16 CPUs, for which lock partitioning
is never used, the resource_lock_partition value is always 0.

For example, consider a transaction acquiring an IS lock in REPEATABLE READ isolation, so
that the IS lock is held for the duration of the transaction. The IS lock is acquired on the
transaction’s default partition—for example, partition 4. If another transaction tries to acquire
an X lock on the same table, the X lock must be acquired on ALL partitions. SQL Server
successfully acquires the X lock on partitions 0 to 3, but it blocks when attempting to acquire
an X lock on partition 4. On partition IDs 5 to 15, which have not yet acquired the X lock for
this table, other transactions can continue to acquire any locks that do not cause blocking.

626249.indb 622 3/10/11 11:57 AM

	 Chapter 10  Transactions and Concurrency	 623

With lock partitioning, SQL Server distributes the load of checking for locks across multiple
spinlocks, and most accesses to any given spinlock are from the same CPU (and practically
always from the same node), which means the spinlock should not spin often.

Lock Blocks
The lock block is the key structure in SQL Server’s locking architecture, shown earlier in
Figure 10-3. A lock block contains the following information:

n	 Lock resource information containing the lock resource name and details about
the lock.

n	 Pointers to connect the lock blocks to the lock hash table.

n	 Pointers to lists of lock owner blocks for locks on this resource that have been granted.
Four grant lists are maintained to minimize the amount of time it takes to find a
granted lock.

n	 A pointer to a list of lock owner blocks for locks on this resource that are waiting to be
converted to another lock mode. This is called the convert list.

n	 A pointer to a list of lock owner blocks for locks that have been requested on this
resource but have not yet been granted. This is called the wait list.

The lock resource uniquely identifies the data being locked. Its structure is shown in Figure 10-4.
Each “row” in the figure represents 4 bytes, or 32 bits.

31 0

DBID
Resource

type

Resource-specific data 2

Resource
flags

Resource-specific data 1

Resource-specific data 3

Figure 10-4  The structure of a lock resource

The meanings of the fields shown in Figure 10-4 are described in Table 10-8. The value in the
resource type byte is one of the locking resources described earlier in Table 10-5. The number
in parentheses after the resource type is the code number for the resource type (which we
see in the syslockinfo table a little later in the chapter). The meaning of the values in the
three data fields varies depending on the type of resource being described. SR indicates a
subresource (which I describe shortly).

626249.indb 623 3/10/11 11:57 AM

624	 Microsoft SQL Server 2008 Internals

Table 10-8  Fields in the Lock Resource Block

Resource Content

Resource Type Data 1 Data 2 Data 3

Database (2) SR 0 0

File (3) File ID 0 0

Index (4) Object ID SR Index ID

Table (5) Object ID SR 0

Page (6) Page number 0

Key (7) Partition ID Hashed key

Extent (8) Extent ID 0

RID (9) RID 0

The following are some of the possible SR (SubResource) values. If the lock is on a Database
resource, SR indicates one of the following:

n	 Full database lock

n	 Bulk operation lock

If the lock is on a Table resource, SR indicates one of the following:

n	 Full table lock (default)

n	 Update statistics lock

n	 Compile lock

If the lock is on an Index resource, SR indicates one of the following:

n	 Full index lock (default)

n	 Index ID lock

n	 Index name lock

Lock Owner Blocks
Each lock owned or waited for by a session is represented in a lock owner block. Lists of
lock owner blocks form the grant, convert, and wait lists that hang off the lock blocks. Each
lock owner block for a granted lock is linked with all other lock owner blocks for the same
transaction or session so they can be freed as appropriate when the transaction or session ends.

syslockinfo Table
Although the recommended way of retrieving information about locks is through the
sys.dm_tran_locks view, there is another metadata object called syslockinfo that provides
internal information about locks. Prior to the introduction of the DMVs in SQL Server 2005,
syslockinfo was the only internal metadata available for examining locking information.

626249.indb 624 3/10/11 11:57 AM

	 Chapter 10  Transactions and Concurrency	 625

In fact, the stored procedure sp_lock is still defined to retrieve information from syslockinfo
instead of from sys.dm_tran_locks. I will not go into full detail about syslockinfo because
almost all the information from that table is available, in a much more readable form, in the
sys.dm_tran_locks view. However, syslockinfo is available in the master database for you to
take a look at. One column, however, is of particular interest—the rsc_bin column, which
contains a 16-byte description of a locked resource.

You can analyze the syslockinfo.rsc_bin field as the resource block. Let’s look at an example.
I select a single row from the Person table in AdventureWorks2008 using the REPEATABLE
READ isolation level, so my shared locks continue to be held for the duration of the transaction.
I then look at the rsc_bin column in syslockinfo for key locks, page locks, and table locks:

USE AdventureWorks2008

GO

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

GO

BEGIN TRAN

SELECT * FROM Person.Person

WHERE BusinessEntityID = 249;

GO

SELECT rsc_bin, rsc_type

FROM master..syslockinfo

WHERE rsc_type IN (5,6,7);

GO

Here are the three rows in the result set:

rsc_bin rsc_type

---------------------------------- --------

0x805EFA59000000000000000007000500 5

0x19050000010000000000000007000600 6

0x710000000001F900CE79D52507000700 7

The last 2 bytes in rsc_bin are the resource mode, so after byte-swapping, you can see
the same value as in the rsc_type column—for example, you byte-swap 0500 to 0005 to
resource mode 5 (a table lock). The next 2 bytes at the end indicate the database ID, and
for all three rows, the value after byte-swapping is 0007, which is the database ID of my
AdventureWorks2008 database.

The rest of the bytes vary depending on the type of resource. For a table, the first 4 bytes
represent the object ID. The preceding row for the object lock (rsc_type = 5) after byte
swapping has a value of 59FA5E80, which is 1509580416 in decimal. I can translate this to an
object name as follows:

SELECT object_name(1509580416)

This shows me the Person table.

For a PAGE (rsc_type = 6), the first 6 bytes are the page number followed by the file
number. After byte-swapping, the file number is 0001, or 1 decimal, and the page number
is 00000519, or 9889 in decimal. So the lock is on file 1, page 1305.

626249.indb 625 3/10/11 11:57 AM

626	 Microsoft SQL Server 2008 Internals

Finally, for a KEY (rsc_type = 7), the first 6 bytes represent the partition ID but the translation
is a bit trickier. We need to add another 2 bytes of zeros to the value after byte-swapping, so
we end up with 0100000000710000, which translates to 72057594045333504 in decimal. To
see which object this partition belongs to, I can query the sys.partitions view:

SELECT object_name(object_id)

FROM sys.partitions

WHERE partition_ID = 72057594045333504;

Again, the result is that this partition is part of the Person table. The next 6 bytes of rsc_bin
for the KEY resource are F900CE79D525. This is a character field, so no byte-swapping
is needed. However, the value is not further decipherable. Key locks have a hash value
generated for them, based on all the key columns of the index. Indexes can be quite long, so
for almost any possible data type, SQL Server needs a consistent way to keep track of which
keys are locked. The hashing function therefore generates a 6-byte hash string to represent
the key. Although you can’t reverse-engineer this value and determine exactly which index
row is locked, you can use it to look for matching entries, just like SQL Server does. If two rsc_bin
values have the same 6-byte hash string, they are referring to the same lock resource.

In addition to detecting references to the same lock resource, you can determine which
specific keys are locked by using the undocumented value %%lockres%%, which can return
the hash string for any key. Selecting this value, along with data from the table, returns the
lock resource for every row in the result set, based on the index used to retrieve the data.
Consider the following example, which creates a clustered and nonclustered index on a tiny
table and then selects the %%lockres%% value for each row, first using the clustered index
and then using the nonclustered index:

CREATE TABLE lockres (c1 int, c2 int);

GO

INSERT INTO lockres VALUES (1,10);

INSERT INTO lockres VALUES (2,20);

INSERT INTO lockres VALUES (3,30);

GO

CREATE UNIQUE CLUSTERED INDEX lockres_ci ON lockres(c1);

CREATE UNIQUE NONCLUSTERED INDEX lockres_nci ON lockres(c2);

GO

SELECT %%lockres%% AS lock_resource, * FROM lockres WITH (INDEX = lockres_ci);

SELECT %%lockres%% AS lock_resource, * FROM lockres WITH (INDEX = lockres_nci);

GO

I get the following results. The first set of rows shows the lock resource for the clustered
index keys, and the second set shows the lock resources for the nonclustered index:

lock_resource c1 c2

-------------------------------- ----------- -----------

(010086470766) 1 10

(020068e8b274) 2 20

(03000d8f0ecc) 3 30

626249.indb 626 3/10/11 11:57 AM

	 Chapter 10  Transactions and Concurrency	 627

lock_resource c1 c2

-------------------------------- ----------- -----------

(0a0087c006b1) 1 10

(14002be0c001) 2 20

(1e004f007d6e) 3 30

I can use this lock resource to find which row in a table matches a locked resource. For
example, if sys.dm_tran_locks indicates that a row with the lock resource (010086470766) is
holding a lock in the lockres table, I could find which row that resource corresponds to with
the following query:

SELECT * FROM lockres

WHERE %%lockres%% = '(010086470766)'

Note that if the table is a heap and I look for the lock resource when scanning the table, the
lock resource is the actual row ID (RID). The value returned looks just like the special value
%%physloc%%, which I told you about in Chapter 5, “Tables”:

CREATE TABLE lockres_on_heap (c1 int, c2 int);

GO

INSERT INTO lockres_on_heap VALUES (1,10);

INSERT INTO lockres_on_heap VALUES (2,20);

INSERT INTO lockres_on_heap VALUES (3,30);

GO

SELECT %%lockres%% AS lock_resource, * FROM lockres_on_heap;

Here are my results:

lock_resource c1 c2

-------------------------------- ----------- ----

1:169:0 1 10

1:169:1 2 20

1:169:2 3 30

Caution  You need to be careful when trying to find the row in a table with a hash string that
matches a particular lock resource. These queries have to perform a complete scan of the table
to find the row you are interested in, and with a large table, that process can be very expensive.

Row-Level Locking vs. Page-Level Locking
Although SQL Server 2008 fully supports row-level locking, in some situations, the lock
manager decides not to lock individual rows and instead locks pages or the whole table. In
other cases, many smaller locks are escalated to a table lock, as I discuss in the upcoming
section entitled “Lock Escalation.”

Prior to SQL Server 7.0, the smallest unit of data that SQL Server could lock was a page. Even
though many people argued that this was unacceptable and it was impossible to maintain
good concurrency while locking entire pages, many large and powerful applications were written

626249.indb 627 3/10/11 11:57 AM

628	 Microsoft SQL Server 2008 Internals

and deployed using only page-level locking. If they were well designed and tuned, concurrency
was not an issue, and some of these applications supported hundreds of active user connections
with acceptable response times and throughput. However, with the change in page size
from 2 KB to 8 KB for SQL Server 7.0, the issue has become more critical. Locking an entire
page means locking four times as much data as in previous versions. Beginning with SQL
Server 7.0, the software implements full row-level locking, so any potential problems due to
lower concurrency with the larger page size should not be an issue. However, locking isn’t
free. Resources are required to manage locks. Recall that a lock is an in-memory structure of
64 or 128 bytes (for 32-bit or 64-bit machines, respectively) with another 32 or 64 bytes for
each process holding or requesting the lock. If you need a lock for every row and you scan a
million rows, you need more than 64 MB of RAM just to hold locks for that one process.

Beyond memory consumption issues, locking is a fairly processing-intensive operation.
Managing locks requires substantial bookkeeping. Recall that, internally, SQL Server uses a
lightweight mutex called a spinlock to guard resources, and it uses latches—also lighter than
full-blown locks—to protect non-leaf level index pages. These performance optimizations
avoid the overhead of full locking. If a page of data contains 50 rows of data, all of which
are used, it is obviously more efficient to issue and manage one lock on the page than to
manage 50. That’s the obvious benefit of page locking—a reduction in the number of lock
structures that must exist and be managed.

Let’s say two processes each need to update a few rows of data, and even though the rows
are not the same ones, some of them happen to exist on the same page. With page-level
locking, one process would have to wait until the page locks of the other process were
released. If you use row-level locking instead, the other process does not have to wait. The
finer granularity of the locks means that no conflict occurs in the first place because each
process is concerned with different rows. That’s the obvious benefit of row-level locking.
Which of these obvious benefits wins? Well, the decision isn’t clear-cut, and it depends on
the application and the data. Each type of locking can be shown to be superior for different
types of applications and usage.

The ALTER INDEX statement lets you manually control the unit of locking within an index
with options to disallow page locks or row locks within an index. Because these options are
available only for indexes, there is no way to control the locking within the data pages of
a heap. (But remember that if a table has a clustered index, the data pages are part of the
index and are affected by a value set with ALTER INDEX.) The index options are set for each
table or index individually. Two options, ALLOW_ROW_LOCKS and ALLOW_PAGE_LOCKS, are
both set to ON initially for every table and index. If both of these options are set to OFF for a
table, only full table locks are allowed.

As mentioned earlier, during the optimization process, SQL Server determines whether to
lock rows, pages, or the entire table initially. The locking of rows (or keys) is heavily favored.
The type of locking chosen is based on the number of rows and pages to be scanned, the
number of rows on a page, the isolation level in effect, the update activity going on, the
number of users on the system needing memory for their own purposes, and so on.

626249.indb 628 3/10/11 11:57 AM

	 Chapter 10  Transactions and Concurrency	 629

Lock Escalation
SQL Server automatically escalates row, key, or page locks to coarser table or partition locks
as appropriate. This escalation protects system resources—it prevents the system from using
too much memory for keeping track of locks—and increases efficiency. For example, after
a query acquires many row locks, the lock level can be escalated because it probably makes
more sense to acquire and hold a single lock than to hold many row locks. When lock escalation
occurs, many locks on smaller units (rows or pages) are released and replaced by one lock on
a larger unit. This escalation reduces locking overhead and keeps the system from running out
of locks. Because a finite amount of memory is available for the lock structures, escalation is
sometimes necessary to make sure the memory for locks stays within reasonable limits.

The default in SQL Server is to escalate to table locks. However, SQL Server 2008
introduces the ability to escalate to a single partition using the ALTER TABLE statement. The
LOCK_ESCALATION option of ALTER TABLE can specify that escalation is always to a table level,
or that it can be to either a table or partition level. The LOCK_ESCALATION option can also
be used to prevent escalation entirely. Here’s an example of altering the TransactionHistory
table (which you may have created if you ran the partitioning example in Chapter 7, “Special
Storage”), so that locks can be escalated to either the table or partition level:

ALTER TABLE TransactionHistory

SET (LOCK_ESCALATION = AUTO);

Lock escalation occurs in the following situations:

n	 The number of locks held by a single statement on one object, or on one partition of
one object, exceeds a threshold. Currently that threshold is 5,000 locks, but it might
change in future service packs. The lock escalation does not occur if the locks are
spread over multiple objects in the same statement—for example, 3,000 locks in one
index and 3,000 in another.

n	 Memory taken by lock resources exceeds 40 percent of the non-AWE (32-bit) or regular
(64-bit) enabled memory and the locks configuration option is set to 0. (In this case,
the lock memory is allocated dynamically as needed, so the 40 percent value is not a
constant.) If the locks option is set to a nonzero value, memory reserved for locks is
statically allocated when SQL Server starts. Escalation occurs when SQL Server is using
more than 40 percent of the reserved lock memory for lock resources.

When the lock escalation is triggered, the attempt might fail if there are conflicting locks.
So, for example, if an X lock on a RID needs to be escalated and there are concurrent X locks
on the same table or partition held by a different process, the lock escalation attempt fails.
However, SQL Server continues to attempt to escalate the lock every time the transaction
acquires another 1,250 locks on the same object. If the lock escalation succeeds, SQL Server
releases all the row and page locks on the index or the heap.

626249.indb 629 3/10/11 11:57 AM

630	 Microsoft SQL Server 2008 Internals

Note  SQL Server never escalates to page locks. The result of a lock escalation is always a table
or partition. In addition, multiple partition locks are never escalated to a table lock.

Controlling Lock Escalation
Lock escalation can potentially lead to blocking of future concurrent access to the index or
the heap by other transactions needing row or page locks on the object. SQL Server cannot
de-escalate the lock when new requests are made. So lock escalation is not always a good
idea for all applications.

SQL Server 2008 also supports disabling lock escalation for a single table using the ALTER TABLE
statement. Here is an example of disabling lock escalation on the TransactionHistory table:

ALTER TABLE TransactionHistory

SET (LOCK_ESCALATION = DISABLE);

SQL Server 2008 also supports disabling lock escalation using trace flags. Note that these
trace flags affect lock escalation on all tables in all databases in a SQL Server instance.

n	 Trace flag 1211 completely disables lock escalation. It instructs SQL Server to ignore
the memory acquired by the lock manager up to the maximum statically allocated lock
memory (specified using the locks configuration option) or 60 percent of the non-AWE
(32-bit) or regular (64-bit) dynamically allocated memory. At that time, an out-of-lock
memory error is generated. You should exercise extreme caution when using this trace
flag as a poorly designed application can exhaust the memory and seriously degrade
the performance of your SQL Server instance.

n	 Trace flag 1224 also disables lock escalation based on the number of locks acquired,
but it allows escalation based on memory consumption. It enables lock escalation when
the lock manager acquires 40 percent of the statically allocated memory (as per the
locks option) or 40 percent of the non-AWE (32-bit) or regular (64-bit) dynamically
allocated memory. You should note that if SQL Server cannot allocate memory for
locks due to memory use by other components, the lock escalation can be triggered
earlier. As with trace flag 1211, SQL Server generates an out-of-memory error when
memory allocated to the lock manager exceeds the total statically allocated memory or
60 percent of non-AWE (32-bit) or regular (64-bit) memory for dynamic allocation.

If both trace flags (1211 and 1224) are set at the same time, trace flag 1211 takes precedence.
Remember that these trace flags affect the entire SQL Server instance. In many cases, it is
desirable to control the escalation threshold at the object level, so you should consider using
the ALTER TABLE command when possible.

Deadlocks
A deadlock occurs when two processes are waiting for a resource and neither process can
advance because the other process prevents it from getting the resource. A true deadlock is

626249.indb 630 3/10/11 11:57 AM

	 Chapter 10  Transactions and Concurrency	 631

a Catch-22 in which, without intervention, neither process can ever make progress. When a
deadlock occurs, SQL Server intervenes automatically. I refer mainly to deadlocks acquired
due to conflicting locks, although deadlocks can also be detected on worker threads, memory,
and parallel query resources.

Note  A simple wait for a lock is not a deadlock. When the process that’s holding the lock
completes, the waiting process can acquire the lock. Lock waits are normal, expected,
and necessary in multiuser systems.

In SQL Server, two main types of deadlocks can occur: a cycle deadlock and a conversion
deadlock. Figure 10-5 shows an example of a cycle deadlock. Process A starts a transaction,
acquires an exclusive table lock on the Product table, and requests an exclusive table lock
on the PurchaseOrderDetail table. Simultaneously, process B starts a transaction, acquires
an exclusive lock on the PurchaseOrderDetail table, and requests an exclusive lock on the
Product table. The two processes become deadlocked—caught in a “deadly embrace.” Each
process holds a resource needed by the other process. Neither can progress, and, without
intervention, both would be stuck in deadlock forever. You can actually generate the
deadlock in SQL Server Management Studio, as follows:

	 1.	 Open a query window, and change your database context to the AdventureWorks2008
database. Execute the following batch for process A:

BEGIN TRAN

UPDATE Production.Product

 SET ListPrice = ListPrice * 0.9

WHERE ProductID = 922;

	 2.	 Open a second window, and execute this batch for process B:

BEGIN TRAN

UPDATE Purchasing.PurchaseOrderDetail

 SET OrderQty = OrderQty + 200

 WHERE ProductID = 922

 AND PurchaseOrderID = 499;

	 3.	 Go back to the first window, and execute this UPDATE statement:

UPDATE Purchasing.PurchaseOrderDetail

 SET OrderQty = OrderQty - 200

 WHERE ProductID = 922

 AND PurchaseOrderID = 499;

At this point, the query should block. It is not deadlocked yet, however. It is waiting for
a lock on the PurchaseOrderDetail table, and there is no reason to suspect that it won’t
eventually get that lock.

	 4.	 Go back to the second window, and execute this UPDATE statement:

UPDATE Production.Product

 SET ListPrice = ListPrice * 1.1

 WHERE ProductID = 922;

626249.indb 631 3/10/11 11:57 AM

632	 Microsoft SQL Server 2008 Internals

At this point, a deadlock occurs. The first connection never gets its requested lock on the
PurchaseOrderDetail table because the second connection does not give it up until it gets a
lock on the Product table. Because the first connection already has the lock on the Product
table, we have a deadlock. One of the processes receives the following error message.
(Of course, the actual process ID reported will probably be different.)

Msg 1205, Level 13, State 51, Line 1

Transaction (Process ID 57) was deadlocked on lock resources with another process and has

been chosen as the deadlock victim. Rerun the transaction.

DEADLOCK

Process A Process B

Product PurchaseOrderDetail

Acquires
exclusive
lock on
Product

Requests
exclusive lock on

PurchaseOrderDetail
(held by B)

Acquires
exclusive
lock on

PurchaseOrderDetail

Requests
exclusive lock
on Product
(held by A)

ProductPurchaseOrderDetail

Figure 10-5  A cycle deadlock resulting from two processes, each holding a resource needed by the other

Figure 10-6 shows an example of a conversion deadlock. Process A and process B each hold
a shared lock on the same page within a transaction. Each process wants to promote its
shared lock to an exclusive lock but cannot do so because of the other process’s lock. Again,
intervention is required.

SQL Server automatically detects deadlocks and intervenes through the lock manager,
which provides deadlock detection for regular locks. In SQL Server 2008, deadlocks can also
involve resources other than locks. For example, if process A is holding a lock on Table1 and
is waiting for memory to become available and process B has some memory that it can’t
release until it acquires a lock on Table1, the processes deadlock. When SQL Server detects a
deadlock, it terminates one process’s batch, rolling back the active transaction and releasing
all that process’s locks to resolve the deadlock. In addition to deadlocks on lock resources and
memory resources, deadlocks can also occur with resources involving worker threads, parallel
query execution–related resources, and MARS resources. Latches are not involved in deadlock
detection because SQL Server uses deadlock-proof algorithms when it acquires latches.

626249.indb 632 3/10/11 11:57 AM

	 Chapter 10  Transactions and Concurrency	 633

Shared lock #1

Process A wants to
convert shared lock on
page 100 to exclusive
but cannot because

process B also has a
shared lock on

page 100.

Process A

Page 100

DEADLOCK

Shared lock #2

Process B

Page 100

DEADLOCK

Process B wants to
convert shared lock on
page 100 to exclusive
but cannot because

process A also has a
shared lock on

page 100.

Figure 10-6  A conversion deadlock resulting from two processes wanting to promote their locks on the
same resource within a transaction

In SQL Server, a separate thread called LOCK_MONITOR checks the system for deadlocks
every five seconds. As deadlocks occur, the deadlock detection interval is reduced and can
go as low as 100 milliseconds. In fact, the first few lock requests that cannot be satisfied after
a deadlock has been detected will immediately trigger a deadlock search rather than wait for
the next deadlock detection interval. If the deadlock frequency declines, the interval can go
back to every five seconds.

This LOCK_MONITOR thread checks for deadlocks by inspecting the list of waiting locks
for any cycles, which indicate a circular relationship between processes holding locks and
processes waiting for locks. SQL Server attempts to choose as the victim the process that
would be least expensive to roll back, considering the amount of work the process has
already done. That process is killed and error message 1205 is sent to the corresponding
client connection. The transaction is rolled back, meaning all its locks are released, so other
processes involved in the deadlock can proceed. However, certain operations are marked as
golden, or unkillable, and cannot be chosen as the deadlock victim. For example, a process
involved in rolling back a transaction cannot be chosen as a deadlock victim because the
changes being rolled back could be left in an indeterminate state, causing data corruption.

Using the SET DEADLOCK_PRIORITY statement, a process can determine its priority for
being chosen as the victim if it is involved in a deadlock. There are 21 different priority levels,
from –10 to 10. You can also specify the value LOW, which is equivalent to –5, NORMAL, which
is equivalent to 0, and HIGH, which is equivalent to 5. Which session is chosen as the deadlock
victim depends on each session’s deadlock priority. If the sessions have different deadlock

626249.indb 633 3/10/11 11:57 AM

634	 Microsoft SQL Server 2008 Internals

priorities, the session with the lowest deadlock priority is chosen as the deadlock victim.
If both sessions have set the same deadlock priority, SQL Server selects as the victim the
session that is less expensive to roll back.

Note  The lightweight latches and spinlocks used internally do not have deadlock detection
services. Instead, deadlocks on latches and spinlocks are avoided rather than resolved. Avoidance is
achieved via strict programming guidelines used by the SQL Server development team. These
lightweight locks must be acquired in a hierarchy, and a process must not have to wait for a
regular lock while holding a latch or spinlock. For example, one coding rule is that a process
holding a spinlock must never directly wait for a lock or call another service that might have to
wait for a lock, and a request can never be made for a spinlock that is higher in the acquisition
hierarchy. By establishing similar guidelines for your development team for the order in which SQL
Server objects are accessed, you can go a long way toward avoiding deadlocks in the first place.

In the example in Figure 10-5, the cycle deadlock could have been avoided if the processes
had decided on a protocol beforehand—for example, if they had decided always to access the
Product table first and the PurchaseOrderDetail table second. Then one of the processes gets
the initial exclusive lock on the table being accessed first, and the other process waits for the
lock to be released. One process waiting for a lock is normal and natural. Remember, waiting
is not a deadlock.

You should always try to have a standard protocol for the order in which processes access
tables. If you know that the processes might need to update the row after reading it, they
should initially request an update lock, not a shared lock. If both processes request an update
lock rather than a shared lock, the process that is granted an update lock is assured that the
lock can later be promoted to an exclusive lock. The other process requesting an update lock
has to wait. The use of an update lock serializes the requests for an exclusive lock. Other
processes needing only to read the data can still get their shared locks and read. Because the
holder of the update lock is guaranteed an exclusive lock, the deadlock is avoided.

In many systems, deadlocks cannot be completely avoided, but if the application handles
the deadlock appropriately, the impact on any users involved, and on the rest of the
system, should be minimal. (Appropriate handling implies that when error 1205 occurs,
the application resubmits the batch, which most likely succeeds on the second try. Once
one process is killed, its transaction is aborted, and its locks are released, the other process
involved in the deadlock can finish its work and release its locks, so the environment is
not conducive to another deadlock.) Although you might not be able to avoid deadlocks
completely, you can minimize their occurrence. For example, you should write your
applications so that your processes hold locks for a minimal amount of time; in that way,
other processes won’t have to wait too long for locks to be released. Although you don’t
usually invoke locking directly, you can influence locking by keeping transactions as short as
possible. For example, don’t ask for user input in the middle of a transaction. Instead, get the
input first and then quickly perform the transaction.

626249.indb 634 3/10/11 11:57 AM

	 Chapter 10  Transactions and Concurrency	 635

Row Versioning
At the beginning of this chapter, I described two concurrency models that SQL Server
can use. Pessimistic concurrency uses locking to guarantee the appropriate transactional
behavior and avoid problems such as dirty reads, according to the isolation level you are
using. Optimistic concurrency uses a new technology called row versioning to guarantee your
transactions. Starting in SQL Server 2005, optimistic concurrency is available after you enable
one or both of the database properties called READ_COMMITTED_SNAPSHOT and
ALLOW_SNAPSHOT_ ISOLATION. Exclusive locks can be acquired when you use optimistic
concurrency, so you still need to be aware of all issues related to lock modes, lock resources,
and lock duration, as well as the resources required to keep track of and manage locks.
The difference between optimistic and pessimistic concurrency is that with optimistic
concurrency, writers and readers do not block each other. Or, using locking terminology, a
process requesting an exclusive lock does not block when the requested resource currently
has a shared lock. Conversely, a process requesting a shared lock does not block when the
requested resource currently has an exclusive lock.

It is possible to avoid blocking because as soon as one of the new database options is
enabled, SQL Server starts using tempdb to store copies (versions) of all rows that have
changed, and it keeps those copies as long as there are any transactions that might need to
access them. The space in tempdb used to store previous versions of changed rows is called
the version store.

Overview of Row Versioning
In earlier versions of SQL Server, the tradeoff in concurrency solutions is that we can avoid
having writers block readers if we are willing to risk inconsistent data—that is, if we use Read
Committed isolation. If our results must always be based on committed data, we need to be
willing to wait for changes to be committed.

SQL Server 2005 introduced a new isolation level called Snapshot isolation and a new
nonblocking flavor of Read Committed isolation called Read Committed Snapshot Isolation (RCSI).
These row versioning–based isolation levels allow a reader to get to a previously committed
value of the row without blocking, so concurrency is increased in the system. For this to work,
SQL Server must keep old versions of a row when it is updated or deleted. If multiple updates are
made to the same row, multiple older versions of the row might need to be maintained. Because
of this, row versioning is sometimes called multiversion concurrency control.

To support storing multiple older versions of rows, additional disk space is used from the
tempdb database. The disk space for the version store must be monitored and managed
appropriately, and I point out some of the ways you can do that later in this section.
Versioning works by making any transaction that changes data keep the old versions of
the data around so that a snapshot of the database (or a part of the database) can be
constructed from these old versions.

626249.indb 635 3/10/11 11:57 AM

636	 Microsoft SQL Server 2008 Internals

Row Versioning Details
When a row in a table or index is updated, the new row is stamped with the transaction
sequence number (XSN) of the transaction that is doing the update. The XSN is a monotonically
increasing number that is unique within each SQL Server database. The concept of XSN is
not the same as Log Sequence Numbers (LSNs), which I discussed in Chapter 4, “Logging and
Recovery.” I discuss XSNs in more detail later. When updating a row, the previous version is
stored in the version store, and the new row contains a pointer to the old row in the version
store. Old rows in the version store might contain pointers to even older versions. All the old
versions of a particular row are chained in a linked list, and SQL Server might need to follow
several pointers in a list to reach the right version. Version rows must be kept in the version
store only as long as there are operations that might require them.

In Figure 10-7, the current version of the row is generated by transaction T3, and it is stored
in the normal data page. The previous versions of the row, generated by transaction T2 and
transaction Tx, are stored in pages in the version store (in tempdb).

Row versioning gives SQL Server an optimistic concurrency model to work with when an
application requires it or when the concurrency reduction of using the default pessimistic
model is unacceptable. Before you switch to the row versioning–based isolation levels, you
must carefully consider the tradeoffs of using this new concurrency model. In addition to
requiring extra management to monitor the increased use of tempdb for the version store,
versioning slows the performance of update operations due to the extra work involved in
maintaining old versions. Update operations bear this cost, even if there are no current
readers of the data. If there are readers using row versioning, they have the extra cost of
traversing the link pointers to find the appropriate version of the requested row.

Current Row(K=1, A=11) created by
Transaction T3

Previous Version Row(K=1, A=9)
created by transaction T2

Previous Version(K=1, A=5)
created by transaction Tx

Figure 10-7  Versions of a row

In addition, because the optimistic concurrency model of Snapshot isolation assumes
(optimistically) that not many update conflicts will occur, you should not choose the Snapshot
isolation level if you are expecting contention for updating the same data concurrently. Snapshot
isolation works well to enable readers not to be blocked by writers, but simultaneous writers are

626249.indb 636 3/10/11 11:57 AM

	 Chapter 10  Transactions and Concurrency	 637

still not allowed. In the default pessimistic model, the first writer will block all subsequent writers,
but using Snapshot isolation, subsequent writers could actually receive error messages and the
application would need to resubmit the original request. Note that these update conflicts occur
only with the full Snapshot isolation, not with the enhanced RCSI.

Snapshot-Based Isolation Levels
SQL Server 2008 provides two types of snapshot-based isolation, both of which use row
versioning to maintain the snapshot. One type, RCSI, is enabled simply by setting a database
option. Once enabled, no further changes need to be made. Any transaction that would have
operated under the default Read Committed isolation will run under RCSI. The other type,
Snapshot isolation must be enabled in two places. You must first enable the database with
the ALLOW_SNAPSHOT_ISOLATION option, and then each connection that wants to use SI
must set the isolation level using the SET TRANSACTION ISOLATION LEVEL command. Let’s
compare these two types of Snapshot-based isolation.

Read Committed Snapshot Isolation
RCSI is a statement-level Snapshot-based isolation, which means any queries see the most
recent committed values as of the beginning of the statement. For example, let’s look at the
scenario in Table 10-9. Assume that two transactions are running in the AdventureWorks2008
database, which has been enabled for RCSI, and that before either transaction starts running,
the ListPrice value of product 922 is 8.89.

Table 10-9  A SELECT Running in RCSI

Time Transaction 1 Transaction 2

1 BEGIN TRAN

UPDATE Production.Product

SET ListPrice = 10.00

WHERE ProductID = 922;

BEGIN TRAN

2 SELECT ListPrice

FROM Production.Product

WHERE ProductID = 922;

-- SQL Server returns 8.89

3 COMMIT TRAN

4 SELECT ListPrice

FROM Production.Product

WHERE ProductID = 922;

-- SQL Server returns 10.00

5 COMMIT TRAN

We should note that at Time = 2, the change made by Transaction 1 is still uncommitted, so
the lock is still held on the row for ProductID = 922. However, Transaction 2 does not block
on that lock; it has access to an old version of the row with a last committed ListPrice value

626249.indb 637 3/10/11 11:57 AM

638	 Microsoft SQL Server 2008 Internals

of 8.89. After Transaction 1 has committed and released its lock, Transaction 2 sees the new
value of ListPrice. This is still Read Committed isolation (just a nonlocking variation), so there is
no guarantee that read operations are repeatable.

You can consider RCSI to be just a variation of the default isolation level Read Committed.
The same behaviors are allowed and disallowed, as indicated back in Table 10-2.

RCSI is enabled and disabled with the ALTER DATABASE command, as shown in this
command to enable RCSI in the AdventureWorks2008 database:

ALTER DATABASE AdventureWorks2008

 SET READ_COMMITTED_SNAPSHOT ON;

Ironically, although this isolation level is intended to help avoid blocking, if there are any
users in the database when the preceding command is executed, the ALTER statement
blocks. (The connection issuing the ALTER command can be in the database, but no other
connections can be.) Until the change is successful, the database continues to operate as if it
is not in RCSI mode. The blocking can be avoided by specifying a TERMINATION clause for
the ALTER command, as discussed in Chapter 3, “Databases and Database Files”:

ALTER DATABASE AdventureWorks2008

 SET READ_COMMITTED_SNAPSHOT ON WITH NO_WAIT;

If there are any users in the database, the preceding ALTER fails with the following error:

Msg 5070, Level 16, State 2, Line 1

Database state cannot be changed while other users are using

the database 'AdventureWorks2008'

Msg 5069, Level 16, State 1, Line 1

ALTER DATABASE statement failed.

You can also specify one of the ROLLBACK termination options, basically to break any current
database connections.

The biggest benefit of RCSI is that you can introduce greater concurrency because readers
do not block writers and writers do not block readers. However, writers do block writers
because the normal locking behavior applies to all UPDATE, DELETE, and INSERT operations.
No SET options are required for any session to take advantage of RCSI, so you can reduce the
concurrency impact of blocking and deadlocking without any change in your applications.

Snapshot Isolation
Snapshot isolation requires using a SET command in the session, just like for any other
change of isolation level (for example, SET TRANSACTION ISOLATION LEVEL SERIALIZABLE). For a
session-level option to take effect, you must also allow the database to use SI by altering the
database:

ALTER DATABASE AdventureWorks2008

 SET ALLOW_SNAPSHOT_ISOLATION ON;

626249.indb 638 3/10/11 11:57 AM

	 Chapter 10  Transactions and Concurrency	 639

When altering the database to allow SI, a user in the database does not necessarily block the
command from completing. However, if there is an active transaction in the database, the
ALTER is blocked. This does not mean that there is no effect until the statement completes.
Changing the database to allow full SI can be a deferred operation. The database can actually
be in one of four states with regard to ALLOW_SNAPSHOT_ISOLATION. It can be ON or OFF,
but it can also be IN_TRANSITION_TO_ON or IN_TRANSITION_TO_OFF.

Here is what happens when you ALTER a database to ALLOW_SNAPSHOT_ISOLATION:

n	 SQL Server waits for the completion of all active transactions, and the database status is
set to IN_TRANSITION_TO_ON.

n	 Any new UPDATE or DELETE transactions start generating versions in the version store.

n	 New snapshot transactions cannot start because transactions that are already
in progress are not storing row versions as the data is changed. New snapshot
transactions would have to have committed versions of the data to read. There is
no error when you execute the SET TRANSACTION ISOLATION LEVEL SNAPSHOT
command; the error occurs when you try to SELECT data, and you get this message:

Msg 3956, Level 16, State 1, Line 1

Snapshot isolation transaction failed to start in database 'AdventureWorks2008'

because the ALTER DATABASE command which enables snapshot isolation for this database

has not finished yet. The database is in transition to pending ON state. You must wait

until the ALTER DATABASE Command completes successfully.

n	 As soon as all transactions that were active when the ALTER command began have
finished, the ALTER can finish and the state change are complete. The database now is
in the state ALLOW_SNAPSHOT_ISOLATION.

Taking the database out of ALLOW_SNAPSHOT_ISOLATION mode is similar, and again, there
is a transition phase.

n	 SQL Server waits for the completion of all active transactions, and the database status is
set to IN_TRANSITION_TO_OFF.

n	 New snapshot transactions cannot start.

n	 Existing snapshot transactions still execute snapshot scans, reading from the version store.

n	 New transactions continue generating versions.

Snapshot Isolation Scope
SI gives you a transactionally consistent view of the data. Any rows read are the most recent
committed version of the rows as of the beginning of the transaction. (For RCSI, we get the
most recent committed version as of the beginning of the statement.) A key point to keep in
mind is that the transaction does not start at the BEGIN TRAN statement; for the purposes
of SI, a transaction starts the first time the transactions accesses any data in the database.

626249.indb 639 3/10/11 11:57 AM

640	 Microsoft SQL Server 2008 Internals

As an example of SI, let’s look at a scenario similar to the one in Table 10-9. Table 10-10
shows activities in a database with ALLOW_SNAPSHOT_ISOLATION set to ON. Assume
two transactions are running in the AdventureWorks2008 database and that before either
transaction starts, the ListPrice value of Product 922 is 10.00.

Table 10-10  A SELECT Running in a SNAPSHOT Transaction

Time Transaction 1 Transaction 2

1 BEGIN TRAN

2 UPDATE Production.Product

SET ListPrice = 12.00

WHERE ProductID = 922;

SET TRANSACTION ISOLATION

LEVEL SNAPSHOT

3 BEGIN TRAN

4 SELECT ListPrice

FROM Production.Product

WHERE ProductID = 922;

-- SQL Server returns 10.00

-- This is the beginning of

-- the transaction

5 COMMIT TRAN

6 SELECT ListPrice

FROM Production.Product

WHERE ProductID = 922;

-- SQL Server returns 10.00

-- Return the committed

-- value as of the beginning

-- of the transaction

7 COMMIT TRAN

SELECT ListPrice

FROM Production.Product

WHERE ProductID = 922;

-- SQL Server returns 12.00

Even though Transaction 1 has committed, Transaction 2 continues to return the initial value
it read of 10.00 until Transaction 2 completes. Only after Transaction 2 is complete does
the connection read a new value for ListPrice.

Viewing Database State
The catalog view sys.databases contains several columns that report on the Snapshot
isolation state of the database. A database can be enabled for SI and/or RCSI. However,
enabling one does not automatically enable or disable the other. Each one has to be enabled
or disabled individually using separate ALTER DATABASE commands.

The column snapshot_isolation_state has possible values of 0 to 4, indicating each of the four
possible SI states, and the snapshot_isolation_state_desc column spells out the state. Table 10-11
summarizes what each state means.

626249.indb 640 3/10/11 11:58 AM

	 Chapter 10  Transactions and Concurrency	 641

Table 10-11  Possible Values for the Database Option ALLOW_SNAPSHOT_ISOLATION

Snapshot Isolation State Description

OFF Snapshot isolation state is disabled in the database. In other words,
transactions with Snapshot isolation are not allowed. Database
versioning state is initially set to OFF during recovery. If versioning is
enabled, versioning state is set to ON after recovery.

IN_TRANSITION_TO_ON The database is in the process of enabling SI. It waits for the
completion of all UPDATE transactions that were active when the
ALTER DATABASE command was issued. New UPDATE transactions in this
database start paying the cost of versioning by generating row versions.
Transactions using Snapshot isolation cannot start.

ON SI is enabled. New snapshot transactions can start in this database.
Existing snapshot transactions (in another snapshot-enabled session)
that start before versioning state is turned ON cannot do a snapshot
scan in this database because the snapshot those transactions are
interested in is not properly generated by the UPDATE transactions.

IN_ TRANSITION_TO_OFF The database is in the process of disabling the SI state and is unable to
start new snapshot transactions. UPDATE transactions still pay the cost
of versioning in this database. Existing snapshot transactions can still do
snapshot scans. IN_TRANSITION_TO_OFF does not become OFF until all
existing transactions finish.

The is_read_committed_snapshot_on column has a value of 0 or 1. Table 10-12 summarizes
what each state means.

Table 10-12  Possible Values for the Database Option READ_COMMITTED_SNAPSHOT

READ_COMMITTED_SNAPSHOT State Description

0 READ_COMMITTED_SNAPSHOT is disabled.

1 READ_COMMITTED_SNAPSHOT is enabled. Any
query with Read Committed isolation executes in the
nonblocking mode.

You can see the values of each of these snapshot states for all your databases with the
following query:

SELECT name, snapshot_isolation_state_desc,

 is_read_committed_snapshot_on , *

FROM sys.databases;

Update Conflicts
One crucial difference between the two optimistic concurrency levels is that SI can
potentially result in update conflicts when a process sees the same data for the duration of
its transaction and is not blocked simply because another process is changing the same
data. Table 10-13 illustrates two processes attempting to update the Quantity value of the
same row in the ProductInventory table in the AdventureWorks2008 database. Two clerks

626249.indb 641 3/10/11 11:58 AM

642	 Microsoft SQL Server 2008 Internals

have each received shipments of ProductID 872 and are trying to update the inventory. The
AdventureWorks2008 database has ALLOW_SNAPSHOT_ISOLATION set to ON, and before
either transaction starts, the Quantity value of Product 872 is 324.

Table 10-13  An Update Conflict in SNAPSHOT Isolation

Time Transaction 1 Transaction 2

1 SET TRANSACTION ISOLATION

LEVEL SNAPSHOT

2 BEGIN TRAN

3 SELECT Quantity

FROM Production.ProductInventory

WHERE ProductID = 872;

-- SQL Server returns 324

-- This is the beginning of

-- the transaction

4 BEGIN TRAN

UPDATE Production.ProductInventory

SET Quantity=Quantity + 200

WHERE ProductID = 872;

-- Quantity is now 524

5 UPDATE Production.ProductInventory

SET Quantity=Quantity + 300

WHERE ProductID = 872;

-- Process will block

6 COMMIT TRAN

7 -- Process receives error 3960

The conflict happens because Transaction 2 started when the Quantity value was 324. When
that value was updated by Transaction 1, the row version with 324 was saved in the version
store. Transaction 2 continues to read that row for the duration of the transaction. If both
UPDATE operations were allowed to succeed, we would have a classic lost update situation.
Transaction 1 added 200 to the quantity, and then Transaction 2 would add 300 to the
original value and save that. The 200 added by Transaction 1 would be completely lost. SQL
Server does not allow that.

When Transaction 2 first tries to perform the UPDATE, it doesn’t get an error immediately—
it is simply blocked. Transaction 1 has an exclusive lock on the row, so when Transaction 2
attempts to get an exclusive lock, it is blocked. If Transaction 1 had rolled back its transaction,
Transaction 2 would have been able to complete its UPDATE. But because Transaction 1
committed, SQL Server detects a conflict and generates the following error:

Msg 3960, Level 16, State 2, Line 1

Snapshot isolation transaction aborted due to update conflict. You cannot use snapshot

isolation to access table 'Production.ProductInventory' directly or indirectly in database'

AdventureWorks2008' to update, delete, or insert the row that has been modified or deleted

by another transaction. Retry the transaction or change the isolation level for the

update/delete statement.

626249.indb 642 3/10/11 11:58 AM

	 Chapter 10  Transactions and Concurrency	 643

Conflicts are possible only with SI because that isolation level is transaction-based, not
statement-based. If the example in Table 10-13 were executed in a database using RCSI, the
UPDATE statement executed by Transaction 2 would not use the old value of the data. It
would be blocked when trying to read the current Quantity, and then when Transaction 1
finished, it would read the new updated Quantity as the current value and add 300 to that.
Neither update would be lost.

If you choose to work in SI, you need to be aware that conflicts can happen. They can be
minimized, but as with deadlocks, you cannot be sure that you will never have conflicts.
Your application must be written to handle conflicts appropriately and not assume that the
UPDATE has succeeded. If conflicts occur occasionally, you might consider it part of the price
to be paid for using SI, but if they occur too often, you might need to take extra steps.

You might consider whether SI is really necessary, and if it is, you should determine whether
the statement-based RCSI might give you the behavior you need without the cost of detecting
and dealing with conflicts. Another solution is to use a query hint called UPDLOCK to make
sure no other process updates data before you’re ready to update it. In Table 10-13, Transaction 2
could use UPDLOCK on its initial SELECT as follows:

SELECT Quantity

FROM Production.ProductInventory WITH (UPDLOCK)

WHERE ProductID = 872;

The UPDLOCK hint forces SQL Server to acquire update locks for Transaction 2 on the row
that is selected. When Transaction 1 then tries to update that row, it blocks. It is not using
SI, so it does not see the previous value of Quantity. Transaction 2 can perform its update
because Transaction 1 is blocked, and it commits. Transaction 1 can then perform its update
on the new value of Quantity, and neither update is lost.

I will provide a few more details about locking hints at the end of this chapter.

Data Definition Language and SNAPSHOT Isolation
When working with SI, you need to be aware that although SQL Server keeps versions of all
the changed data, that metadata is not versioned. Therefore, certain DDL statements are
not allowed inside a snapshot transaction. The following DDL statements are disallowed in a
snapshot transaction:

n	 CREATE / ALTER / DROP INDEX

n	 DBCC DBREINDEX

n	 ALTER TABLE

n	 ALTER PARTITION FUNCTION / SCHEME

626249.indb 643 3/10/11 11:58 AM

644	 Microsoft SQL Server 2008 Internals

On the other hand, the following DDL statements are allowed:

n	 CREATE TABLE

n	 CREATE TYPE

n	 CREATE PROC

Note that the allowable DDL statements are ones that create brand-new objects. In SI, there
is no chance that any simultaneous data modifications affect the creation of these objects.
Table 10-14 shows a pseudo-code example of a snapshot transaction that includes both
CREATE TABLE and CREATE INDEX.

Table 10-14  DDL Inside a SNAPSHOT Transaction

Time Transaction 1 Transaction 2

1 SET TRANSACTION ISOLATION

LEVEL SNAPSHOT;

2 BEGIN TRAN

3 SELECT count(*)

FROM Production.Product;

-- This is the beginning of

-- the transaction

4 BEGIN TRAN

5 CREATE TABLE NewProducts

(<column definitions>)

-- This DDL is legal

INSERT Production.Product

 VALUES (9999,)

-- A new row is insert into

-- the Product table

6 COMMIT TRAN

7 CREATE INDEX PriceIndex

 ON Production.Product

 (ListPrice)

-- This DDL will generate an

-- error

The CREATE TABLE statement succeeds even though Transaction 1 is in SI because it is not
affected by anything any other process can do. The CREATE INDEX statement is a different
story. When Transaction 1 started, the new row with ProductID 9999 did not exist. But when
the CREATE INDEX statement is encountered, the INSERT from Transaction 2 has been
committed. Should Transaction 1 include the new row in the index? There is actually no way
to avoid including the new row, but that would violate the snapshot that Transaction 1 is
using, and SQL Server generates an error instead of creating the index.

Another aspect of concurrent DDL to consider is what happens when a statement outside
the snapshot transaction changes an object referenced by a snapshot transaction. The DDL is
allowed, but you can get an error in the snapshot transaction when this happens. Table 10-15
shows an example.

626249.indb 644 3/10/11 11:58 AM

	 Chapter 10  Transactions and Concurrency	 645

Table 10-15  Concurrent DDL Outside the SNAPSHOT Transaction

Time Transaction 1 Transaction 2

1 SET TRANSACTION ISOLATION

LEVEL SNAPSHOT;

2 BEGIN TRAN

3 SELECT TOP 10 *

FROM Production.Product;

-- This is the start of

-- the transaction

4 BEGIN TRAN

ALTER TABLE Purchasing.Vendor

 ADD notes varchar(1000);

COMMIT TRAN

5 SELECT TOP 10 *

FROM Production.Product;

-- Succeeds

-- The ALTER to a different

-- table does not affect

-- this transaction

6 BEGIN TRAN

ALTER TABLE Production.Product

 ADD LowestPrice money;

COMMIT TRAN

7 SELECT TOP 10 * FROM Production.

Product;

-- ERROR

For the preceding situation, in Transaction 1, the repeated SELECT statements should always
return the same data from the Product table. An external ALTER TABLE on a completely
different table has no effect on the snapshot transaction, but Transaction 2 then alters the
Product table to add a new column. Because the metadata representing the former table
structure is not versioned, Transaction 1 cannot produce the same results for the third
SELECT. SQL Server generates this error:

Msg 3961, Level 16, State 1, Line 1

Snapshot isolation transaction failed in database 'AdventureWorks2008' because the object

accessed by the statement has been modified by a DDL statement in another concurrent

transaction since the start of this transaction. It is disallowed because the metadata is

not versioned. A concurrent update to metadata can lead to inconsistency if mixed with

snapshot isolation.

In this version, any concurrent change to metadata on objects referenced by a snapshot
transaction generates this error, even if there is no possibility of anomalies. For example, if
Transaction 1 issues a SELECT count(*), which is not affected by the ALTER TABLE statement,
SQL Server still generates error 3961.

626249.indb 645 3/10/11 11:58 AM

646	 Microsoft SQL Server 2008 Internals

Summary of Snapshot-Based Isolation Levels
SI and RCSI are similar in the sense that they are based on the versioning of rows in a
database. However, there are some key differences in how these options are enabled from
an administration perspective and also in how they affect your applications. I have discussed
many of these differences already, but for completeness, Table 10-16 lists both the similarities
and the differences between the two types of snapshot-based isolation.

Table 10-16  Snapshot vs. Read Committed Snapshot Isolation

Snapshot Isolation Read Committed Snapshot Isolation

The database must be configured to allow SI,
and the session must issue the command SET
TRANSACTION ISOLATION LEVEL SNAPSHOT.

The database must be configured to use RCSI, and
sessions must use the default isolation level. No
code changes are required.

Enabling SI for a database is an online
operation. It allows a DBA to turn on
versioning for one particular application such
as one that is creating large reports. The DBA
can then turn off versioning after the reporting
transaction has started to prevent new
snapshot transactions from starting. Turning
on SI in an existing database is synchronous.
When the ALTER DATABASE command is given,
control does not return to the DBA until all
existing update transactions that need to
create versions in the current database finish.
At this time, ALLOW_SNAPSHOT_ISOLATION
is changed to ON. Only then can users start a
snapshot transaction in that database. Turning
off SI is also synchronous.

Enabling RCSI for a database requires a SHARED_
TRANSACTION_WORKSPACE lock on the database.
All users must be kicked out of a database to
enable this option.

There are no restrictions on active sessions
in the database when this database option is
enabled.

There should be no other sessions active in the
database when you enable this option.

If an application runs a snapshot transaction
that accesses tables from two databases,
the DBA must turn on ALLOW_SNAPSHOT_
ISOLATION in both databases before the
application starts a snapshot transaction.

RCSI is really a table-level option, so tables
from two different databases, referenced in the
same query, can each have their own individual
setting. One table might get its data from the
version store, while the other table is reading
only the current versions of the data. There is no
requirement that both databases must have the
RCSI option enabled.

The IN_TRANSITION versioning states do not
persist. Only the ON and OFF states are
remembered on disk.

There are no IN_TRANSITION states here. Only ON
and OFF states persist.

626249.indb 646 3/10/11 11:58 AM

	 Chapter 10  Transactions and Concurrency	 647

Table 10-16  Snapshot vs. Read Committed Snapshot Isolation

Snapshot Isolation Read Committed Snapshot Isolation

When a database is recovered after a server
crash, or after your SQL Server instance is shut
down, restored, attached, or made ONLINE,
all versioning history for that database is lost.
If database versioning state is ON, SQL Server
can allow new snapshot transactions to access
the database, but must prevent previous
snapshot transactions from accessing the
database. Those previous transactions would
need to access data from a point in time before
the database recovers.

This is an object-level option; it is not at the
transaction level, so it is not applicable.

If the database is in the IN_TRANSITION_
TO_ON state, ALTER DATABASE SET ALLOW_
SNAPSHOT_ ISOLATION OFF waits for about
six seconds and might fail if the database state
is still in the IN_TRANSITION_TO_ON state. The
DBA can retry the command after the database
state changes to ON.

This option can be enabled only when there is no
other active session in the database, so there are no
transitional states.

For read-only databases, versioning is
automatically enabled. You still can use ALTER
DATABASE SET ALLOW_SNAPSHOT_ISOLATION
ON for a read-only database. If the database is
made read-write later, versioning for the
database is still enabled.

As for SI, versioning is enabled automatically for
read-only databases.

If there are long-running transactions, a DBA
might need to wait a long time before the
versioning state change can finish. A DBA can
cancel the wait, and the versioning state is
rolled back and set to the previous one.

This option can be enabled only when there is no
other active session in the database, so there are no
transitional states.

You can change the versioning state of tempdb.
The versioning state of tempdb is preserved
when SQL Server restarts, although the content
of tempdb is not preserved.

You cannot turn this option ON for tempdb.

You can change the versioning state of the
master database.

You cannot change this option for the master
database.

You can change the versioning state of model.
If versioning is enabled for model, every new
database created will have versioning enabled
as well. However, the versioning state of
tempdb is not automatically enabled if you
enable versioning for model.

Similar to the behavior for SI, except that there are
no implications for tempdb.

626249.indb 647 3/10/11 11:58 AM

648	 Microsoft SQL Server 2008 Internals

Table 10-16  Snapshot vs. Read Committed Snapshot Isolation

Snapshot Isolation Read Committed Snapshot Isolation

You can turn this option ON for msdb. You cannot turn on this option ON for msdb
because this can potentially break the applications
built on msdb that rely on blocking behavior of Read
Committed isolation.

A query in a SI transaction sees data that was
committed before the start of the transaction,
and each statement in the transaction sees the
same set of committed changes.

A statement running in RCSI sees everything
committed before the start of the statement. Each
new statement in the transaction picks up the most
recent committed changes.

SI can result in update conflicts that might
cause a rollback or abort the transaction.

There is no possibility of update conflicts.

The Version Store
As soon as a database is enabled for ALLOW_SNAPSHOT_ISOLATION or READ_COMMITTED_
SNAPSHOT, all UPDATE and DELETE operations start generating row versions of the
previously committed rows, and they store those versions in the version store on data pages
in tempdb. Version rows must be kept in the version store only so long as there are snapshot
queries that might need them.

SQL Server 2008 provides several DMVs that contain information about active snapshot
transactions and the version store. We won’t examine all the details of all those DMVs, but we
look at some of the crucial ones to help you determine how much use is being made of your
version store and what snapshot transactions might be affecting your results. The first DMV
we look at, sys.dm_tran_version_store, contains information about the actual rows in the
version store. Run the following script to make a copy of the Production.Product table, and
then turn on ALLOW_SNAPSHOT_ISOLATION in the AdventureWorks2008 database. Finally,
verify that the option is ON and that there are currently no rows in the version store. You
might need to close any active transactions currently using AdventureWorks2008:

USE AdventureWorks2008

SELECT * INTO NewProduct

FROM Production.Product;

GO

ALTER DATABASE ADVENTUREWORKS2008 SET ALLOW_SNAPSHOT_ISOLATION ON;

GO

SELECT name, snapshot_isolation_state_desc,

 is_read_committed_snapshot_on

FROM sys.databases

WHERE name= AdventureWorks2008;

GO

SELECT COUNT(*) FROM sys.dm_tran_version_store;

GO

As soon as you see that the database option is ON and there are no rows in the version store,
you can continue. What I want to illustrate is that as soon as ALLOW_SNAPSHOT_ ISOLATION

626249.indb 648 3/10/11 11:58 AM

	 Chapter 10  Transactions and Concurrency	 649

is enabled, SQL Server starts storing row versions, even if no snapshot transactions need to
read those versions. So now run this UPDATE statement on the NewProduct table and look at
the version store again:

UPDATE NewProduct

SET ListPrice = ListPrice * 1.1;

GO

SELECT COUNT(*) FROM sys.dm_tran_version_store;

GO

You should see that there are now 504 rows in the version store because there are 504 rows
in the NewProduct table. The previous version of each row, prior to the update, has been
written to the version store in tempdb.

Note  SQL Server starts generating versions in tempdb as soon as a database is enabled for one
of the snapshot-based isolation levels. In a heavily updated database, this can affect the behavior
of other queries that use tempdb, as well as the server itself.

As shown earlier in Figure 10-7, the version store maintains link lists of rows. The current row
points to the next older row, which can point to an older row, and so on. The end of the list is
the oldest version of that particular row. To support row versioning, a row needs 14 additional
bytes of information to keep track of the pointers. Eight bytes are needed for the actual pointer
to the file, page, and row in tempdb, and 6 bytes are needed to store the XSN to help SQL
Server determine which rows are current, or which versioned row is the one that a particular
transaction needs to access. I tell you more about the XSN when we look at some of the other
snapshot transaction metadata. In addition, one of the bits in the first byte of each data row
(the TagA byte) is turned on to indicate that this row has versioning information in it.

Any row inserted or updated when a database is using one of the snapshot-based isolation
levels will contain these 14 extra bytes. The following code creates a small table and inserts
two rows into it in the AdventureWorks2008 database, which already has ALLOW_SNAPSHOT_
ISOLATION enabled. I then find the page number using DBCC IND (it is page 6,709) and use
DBCC to look at the rows on the page. The output shows only one of the rows inserted:

CREATE TABLE T1 (T1ID char(1), T1name char(10));

GO

INSERT T1 SELECT 'A', 'aaaaaaaaaa';

INSERT T1 SELECT 'B', 'bbbbbbbbbb';

GO

DBCC IND (AdventureWorks2008, 'T1',-1); -- page 6709

DBCC TRACEON (3604);

DBCC PAGE('AdventureWorks2008', 1, 6709, 1);

OUTPUT ROW:

Slot 0, Offset 0x60, Length 32, DumpStyle BYTE

Record Type = PRIMARY_RECORD

Record Attributes = NULL_BITMAP VERSIONING_INFO

626249.indb 649 3/10/11 11:58 AM

650	 Microsoft SQL Server 2008 Internals

Memory Dump @0x6207C060

00000000: 50000f00 41616161 61616161 61616102 †P...Aaaaaaaaaaa.

00000010: 00fc0000 00000000 0000020d 00000000 †................

I have highlighted the new header information that indicates this row contains versioning
information, and I have also highlighted the 14 bytes of the versioning information. The
XSN is all 0’s in the row because it was not modified as part of a transaction that Snapshot
isolation needs to keep track of. INSERT statements create new data that no snapshot
transaction needs to see. If I update one of these rows, the previous row is written to the
version store and the XSN is reflected in the row versioning information:

UPDATE T1 SET T1name = '2222222222' where T1ID = 'A';

GO

DBCC PAGE('AdventureWorks2008', 1, 6709, 1);

GO

OUTPUT ROW:

Slot 0, Offset 0x60, Length 32, DumpStyle BYTE

Record Type = PRIMARY_RECORD

Record Attributes = NULL_BITMAP VERSIONING_INFO

Memory Dump @0x61C4C060

00000000: 50000f00 41323232 32323232 32323202 †P...A2222222222.

00000010: 00fc1804 00000100 0100590d 00000000 †..........Y.....

As mentioned, if your database is enabled for one of the snapshot-based isolation levels, every
new row has an additional 14 bytes added to it whether or not that row is ever actually involved
in versioning. Every row updated also has the 14 bytes added to it, if they aren’t already part of
the row, and the update is done as a DELETE followed by an INSERT. This means that for tables
and indexes on full pages, a simple UPDATE could result in page splitting.

When a row is deleted in a database enabled for snapshots, a pointer is left on the page as
a ghost record to point to the deleted row in the version store. These ghost records are very
similar to the ones we saw in Chapter 6, “Indexes: Internals and Management,” and they’re
cleaned up as part of the versioning cleanup process, as I discuss shortly. Here’s an example
of a ghost record under versioning:

DELETE T1 WHERE T1ID = 'B';

DBCC PAGE('AdventureWorks2008 ', 1, 6709, 1);

GO

--Partial Results:

Slot 4, Offset 0x153, Length 15, DumpStyle BYTE

Record Type = GHOST_VERSION_RECORD

Record Attributes = VERSIONING_INFO

Memory Dump @0x5C0FC153

00000000: 4ef80300 00010000 00210200 000000††††N........!.....

The record header indicates that this row is a GHOST_VERSION_RECORD and that it contains
versioning information. The actual data, however, is not on the row, but the XSN is, so that
snapshot transactions know when this row was deleted and whether they should access

626249.indb 650 3/10/11 11:58 AM

	 Chapter 10  Transactions and Concurrency	 651

the older version of it in their snapshot. The sys.dm_db_index_physical_stats DMV that was
discussed in Chapter 6 contains the count of ghost records due to versioning (version_
ghost_record_count) and the count of all ghost records (ghost_record_count), which includes
the versioning ghosts. If an update is performed as a DELETE followed by an INSERT (not
in place), both the ghost for the old value and the new value must exist simultaneously,
increasing the space requirements for the object.

If a database is in a snapshot-based isolation level, all changes to both data and index rows must
be versioned. A snapshot query traversing an index still needs access to index rows pointing to
the older (versioned) rows. So in the index levels, we might have old values, as ghosts, existing
simultaneously with the new value, and the indexes can require more storage space.

The extra 14 bytes of versioning information can be removed if the database is changed
to a non-snapshot isolation level. Once the database option is changed, each time a row
containing versioning information is updated, the versioning bytes are removed.

Management of the Version Store
The version store size is managed automatically, and SQL Server maintains a cleanup thread to
make sure versioned rows are not kept around longer than needed. For queries running under
SI, the row versions must be kept until the end of the transaction. For SELECT statements
running under RCSI, a particular row version is not needed once the SELECT statement has
executed and it can be removed.

The regular cleanup function is performed every minute as a background process to reclaim
all reusable space from the version store. If tempdb actually runs out of free space, the cleanup
function is called before SQL Server increases the size of the files. If the disk gets so full that
the files cannot grow, SQL Server stops generating versions. If that happens, a snapshot query
fails if it needs to read a version that was not generated due to space constraints. Although a
full discussion of troubleshooting and monitoring is beyond the scope of this book, I will point
out that SQL Server 2008 includes more than a dozen performance counters to monitor tempdb
and the version store. These include counters to keep track of transactions that use row
versioning. The following counters are contained in the SQLServer:Transactions performance
object. Additional details and additional counters can be found in SQL Server Books Online.

n	 Free Space in tempdb  This counter monitors the amount of free space in the tempdb
database. You can observe this value to detect when tempdb is running out of space,
which might lead to problems keeping all the necessary version rows.

n	 Version Store Size  This counter monitors the size in kilobytes of the version store.
Monitoring this counter can help determine a useful estimate of the additional space
you might need for tempdb.

n	 Version Generation Rate and Version Cleanup Rate  These counters monitor the rate
at which space is acquired and released from the version store, in kilobytes per second.

626249.indb 651 3/10/11 11:58 AM

652	 Microsoft SQL Server 2008 Internals

n	 Update Conflict Ratio  This counter monitors the ratio of update snapshot
transactions that have update conflicts. It is the ratio of the number of conflicts
compared to the total number of update snapshot transactions.

n	 Longest Transaction Running Time  This counter monitors the longest running
time in seconds of any transaction using row versioning. It can be used to determine
whether any transaction is running for an unreasonable amount of time, as well as help
you determine the maximum size needed in tempdb for the version store.

n	 Snapshot Transactions  This counter monitors the total number of active snapshot
transactions.

Snapshot Transaction Metadata
The most important DMVs for observing snapshot transaction behavior are sys.dm_tran_version_
store (which we briefly looked at earlier in this chapter), sys.dm_tran_transactions_snapshot, and
sys.dm_tran_active_snapshot_database_transactions.

All these views contain a column called transaction_sequence_num, which is the XSN that
I mentioned earlier. Each transaction is assigned a monotonically increasing XSN value when
it starts a snapshot read or when it writes data in a snapshot-enabled database. The XSN
is reset to 0 when your SQL Server instance is restarted. Transactions that do not generate
version rows and do not use snapshot scans do not receive an XSN.

Another column, transaction_id, is also used in some of the snapshot transaction metadata.
A transaction ID is a unique identification number assigned to the transaction. It is used
primarily to identify the transaction in locking operations. It can also help you identify which
transactions are involved in snapshot operations. The transaction ID value is incremented for
every transaction across the whole server, including internal system transactions, so whether
or not that transaction is involved in any snapshot operations, the current transaction ID
value is usually much larger than the current XSN.

You can check current transaction number information using the view sys.dm_tran_current_
transaction, which returns a single row containing the following columns:

n	 transaction_id  This value displays the transaction ID of the current transaction. If you
are selecting from the view inside a user-defined transaction, you should continue to
see the same transaction_id every time you select from the view. If you are running a
SELECT from sys.dm_tran_current_transaction outside of transaction, the SELECT itself
generates a new transaction_id value and you see a different value every time you
execute the same SELECT, even in the same connection.

n	 transaction_sequence_num  This value is the XSN of the current transaction, if it has
one. Otherwise, this column returns 0.

n	 transaction_is_snapshot  This value is 1 if the current transaction was started under
SNAPSHOT isolation; otherwise, it is 0. (That is, this column is 1 if the current session
has set TRANSACTION ISOLATION LEVEL to SNAPSHOT explicitly.)

626249.indb 652 3/10/11 11:58 AM

	 Chapter 10  Transactions and Concurrency	 653

n	 first_snapshot_sequence_num  When the current transaction started, it took a
snapshot of all active transactions, and this value is the lowest XSN of the transactions
in the snapshot.

n	 last_transaction_sequence_num  This value is the most recent XSN generated by the
system.

n	 first_useful_sequence_num  This value is an XSN representing the upper bound of
version store rows that can be cleaned up without affecting any transactions. Any rows
with an XSN less than this value are no longer needed.

I now create a simple versioning scenario to illustrate how the values in the snapshot
metadata get updated. This is not a complete overview, but it should get you started in
exploring the versioning metadata for your own queries. I use the AdventureWorks2008
database, which has ALLOW_SNAPSHOT_ISOLATION set to ON, and I create a simple table:

CREATE TABLE t1

(col1 int primary key, col2 int);

GO

INSERT INTO t1 SELECT 1,10;

INSERT INTO t1 SELECT 2,20;

INSERT INTO t1 SELECT 3,30;

We call this session Connection 1. Change the session’s isolation level, start a snapshot
transaction, and examine some of the metadata:

SET TRANSACTION ISOLATION LEVEL SNAPSHOT

GO

BEGIN TRAN

SELECT * FROM t1;

GO

select * from sys.dm_tran_current_transaction;

select * from sys.dm_tran_version_store;

select * from sys.dm_tran_transactions_snapshot;

The sys.dm_tran_current_transaction view should show you something like this: the current
transaction does have an XSN, and the transaction is a snapshot transaction. Also, you can
note that the first_useful_sequence_num value is the same as this transaction’s XSN because
no other snapshot transactions are valid now. I refer to this transaction’s XSN as XSN1.

The version store should be empty (unless you’ve done other snapshot tests within the last
minute). Also, sys.dm_tran_transactions_snapshot should be empty, indicating that there were
no snapshot transactions that started when other transactions were in process.

In another connection (Connection 2), run an update and examine some of the metadata for
the current transaction:

BEGIN TRAN

 UPDATE T1 SET col2 = 100

 WHERE col1 = 1;

SELECT * FROM sys.dm_tran_current_transaction;

626249.indb 653 3/10/11 11:58 AM

654	 Microsoft SQL Server 2008 Internals

Note that although this transaction has an XSN because it generates versions, it is not running
in SI, so the transaction_is_snapshot value is 0. I refer to this transaction’s XSN as XSN2.

Now start a third transaction in a Connection 3 to perform another SELECT. (Don’t worry, this
is the last one and we won’t be keeping it around.) It is almost identical to the first, but there
is an important difference in the metadata results:

SET TRANSACTION ISOLATION LEVEL SNAPSHOT

GO

BEGIN TRAN

SELECT * FROM t1;

GO

select * from sys.dm_tran_current_transaction;

select * from sys.dm_tran_transactions_snapshot;

In the sys.dm_tran_current_transaction view, you see a new XSN for this transaction (XSN3),
and you see that the value for first_snapshot_sequence_num and first_useful_sequence_num
are both the same as XSN1. In the sys.dm_tran_transactions_snapshot view, you see that this
transaction with XSN3 has two rows, indicating the two transactions that were active when
this one started. Both XSN1 and XSN2 show up in the snapshot_sequence_num column. You
can now either commit or roll back this transaction, and then close the connection.

Go back to Connection 2, where you started the UPDATE, and commit the transaction.

Now let’s go back to the first SELECT transaction in Connection 1 and rerun the SELECT
statement, staying in the same transaction:

SELECT * FROM t1;

Even though the UPDATE in Connection 2 has committed, we still see the original data values
because we are running a snapshot transaction. We can examine the sys.dm_tran_active_
snapshot_database_transactions view with this query:

SELECT transaction_sequence_num, commit_sequence_num,

 is_snapshot, session_id,first_snapshot_sequence_num,

 max_version_chain_traversed, elapsed_time_seconds

FROM sys.dm_tran_active_snapshot_database_transactions;

I am not showing you the output here because it is too wide for the page, but there are
many columns that you should find interesting. In particular, the transaction_sequence_num
column contains XSN1, which is the XSN for the current connection. You could actually run
the preceding query from any connection; it shows all active snapshot transactions in the
SQL Server instance, and because it includes the session_id, you can join it to sys.dm_exec_
sessions to get information about the connection that is running the transaction:

SELECT transaction_sequence_num, commit_sequence_num,

 is_snapshot, t.session_id,first_snapshot_sequence_num,

 max_version_chain_traversed, elapsed_time_seconds,

 host_name, login_name, transaction_isolation_level

626249.indb 654 3/10/11 11:58 AM

	 Chapter 10  Transactions and Concurrency	 655

FROM sys.dm_tran_active_snapshot_database_transactions t

 JOIN sys.dm_exec_sessions s

 ON t.session_id = s.session_id;

Another value to note is in the column called max_version_chain_traversed. Although now
it should be 1, we can change that. Go back to Connection 2 and run another UPDATE
statement. Even though the BEGIN TRAN and COMMIT TRAN are not necessary for a single
statement transaction, I am including them to make it clear that this transaction is complete:

BEGIN TRAN

 UPDATE T1 SET col2 = 300

 WHERE col1 = 1;

COMMIT TRAN;

Examine the version store if desired, to see rows being added:

SELECT *

 FROM sys.dm_tran_version_store;

When you go back to Connection 1 and run the same SELECT inside the original transaction
and look again at the max_version_chain_traversed column in sys.dm_tran_active_snapshot_
database_transactions, you should see that the number keeps growing. Repeated UPDATE
operations, either in Connection 2 or a new connection, cause the max_version_chain_traversed
value to just keep increasing, as long as Connection 1 stays in the same transaction. Keep this
in mind as an added cost of using Snapshot isolation. As you perform more updates on data
needed by snapshot transactions, your read operations take longer because SQL Server must
traverse a longer version chain to get the data needed by your transactions.

This is just the tip of the iceberg regarding how the snapshot and transaction metadata can
be used to examine the behavior of your snapshot transactions.

Choosing a Concurrency Model
Pessimistic concurrency is the default in SQL Server 2008 and was the only choice in all versions
of SQL Server prior to SQL Server 2005. Transactional behavior is guaranteed by locking, at
the cost of greater blocking. When accessing the same data resources, readers can block
writers and writers can block readers. Because SQL Server was initially designed and built to
use pessimistic concurrency, you should consider using that model unless you can verify that
optimistic concurrency really will work better for you and your applications. If you find that the
cost of blocking is becoming excessive you can consider using optimistic concurrency.

In most situations, RCSI is recommended over Snapshot isolation for several reasons:

n	 RCSI consumes less tempdb space than SI.

n	 RCSI works with distributed transactions; SI does not.

n	 RCSI does not produce update conflicts.

626249.indb 655 3/10/11 11:58 AM

656	 Microsoft SQL Server 2008 Internals

n	 RCSI does not require any change in your applications. All that is needed is one
change to the database options. Any of your applications written using the default Read
Committed isolation level automatically uses RCSI after making the change at the
database level.

You can consider using SI in the following situations:

n	 The probability is low that any of your transactions have to be rolled back because of
an update conflict.

n	 You have reports that need to be generated based on long-running, multistatement
queries that must have point-in-time consistency. Snapshot isolation provides the benefit
of repeatable reads without being blocked by concurrent modification operations.

Optimistic concurrency does have benefits, but you must also be aware of the costs. To
summarize the benefits:

n	 SELECT operations do not acquire shared locks, so readers and writers do not block
each other.

n	 All SELECT operations retrieve a consistent snapshot of the data.

n	 The total number of locks needed is greatly reduced compared to pessimistic
concurrency, so less system overhead is used.

n	 SQL Server needs to perform fewer lock escalations.

n	 Deadlocks are less likely to occur.

Now let’s summarize the other side. When weighing your concurrency options, you must
consider the cost of the snapshot-based isolation levels:

n	 SELECT performance can be affected negatively when long-version chains must be
scanned. The older the snapshot, the more time it takes to access the required row in
an SI transaction.

n	 Row versioning requires additional resources in tempdb.

n	 Whenever either of the snapshot-based isolation levels are enabled for a database,
UPDATE and DELETE operations must generate row versions. (Although I mentioned
earlier that INSERT operations do not generate row versions, there are some cases
where they might. In particular, if you insert a row into a table with a unique index, if
there was an older version of the row with the same key value as the new row and that
old row still exists as a ghost, your new row generates a version.)

n	 Row versioning information increases the size of every affected row by 14 bytes.

n	 UPDATE performance might be slower due to the work involved in maintaining the row
versions.

626249.indb 656 3/10/11 11:58 AM

	 Chapter 10  Transactions and Concurrency	 657

n	 UPDATE operations using SI might have to be rolled back because of conflict detection.
Your applications must be programmed to deal with any conflicts that occur.

n	 The space in tempdb must be carefully managed. If there are very long-running
transactions, all the versions generated by update transactions during the time must be
kept in tempdb. If tempdb runs out of space, UPDATE operations won’t fail, but SELECT
operations that need to read versioned data might fail.

To maintain a production system using SI, you should allocate enough disk space for
tempdb so that there is always at least 10 percent free space. If the free space falls below this
threshold, system performance might suffer because SQL Server expends more resources
trying to reclaim space in the version store. The following formula can give you a rough
estimate of the size required by version store. For long-running transactions, it might be
useful to monitor the generation and cleanup rate using Performance Monitor, to estimate
the maximum size needed:

[size of common version store] =

2 * [version store data generated per minute]

* [longest running time (minutes) of the transaction]

Controlling Locking
The SQL Server Query Optimizer usually chooses the correct type of lock and the lock
mode. You should override this behavior only if thorough testing has shown that a different
approach is preferable. Keep in mind that by setting an isolation level, you have an impact
on the locks that are held, the conflicts that cause blocking, and the duration of your locks. Your
isolation level is in effect for an entire session, and you should choose the one that provides
the data consistency required by your application. Table-level locking hints can be used to
change the default locking behavior only when necessary. Disallowing a locking level can
adversely affect concurrency.

Lock Hints
T-SQL syntax allows you to specify locking hints for individual tables when they are
referenced in SELECT, INSERT, UPDATE, and DELETE statements. The hints tell SQL Server the
type of locking or row versioning to use for a particular table in a particular query. Because
these hints are specified in a FROM clause, they are called table-level hints. SQL Server
Books Online lists other table-level hints besides locking hints, but the vast majority of them
affect locking behavior. They should be used only when you absolutely need finer control
over locking at the object level than what is provided by your session’s isolation level. The SQL
Server locking hints can override the current transaction isolation level for the session. In this
section, I will mention only some of the locking hints that you might need to obtain the desired
concurrency behavior.

626249.indb 657 3/10/11 11:58 AM

658	 Microsoft SQL Server 2008 Internals

Many of the locking hints work only in the context of a transaction. However, every INSERT,
UPDATE, and DELETE statement is automatically in a transaction, so the only concern is when
you use a locking hint with a SELECT statement. To get the benefit of most of the following hints
when used in a SELECT query, you must use an explicit transaction, starting with BEGIN TRAN and
terminating with either COMMIT TRAN or ROLLBACK TRAN. The lock hint syntax is as follows:

SELECT select_list

FROM object [WITH (locking hint)]

DELETE [FROM] object [WITH (locking hint)]

[WHERE <search conditions>]

UDPATE object [WITH (locking hint)]

SET <set_clause>

[WHERE <search conditions>]

INSERT [INTO] object [WITH (locking hint)]

<insert specification>

Tip  Not all the locking hints require the keyword WITH, but the syntax without WITH will go
away in a future version of SQL Server. It is recommended that all hints be specified using WITH.

You can specify one of the following keywords for the locking hint:

n	 HOLDLOCK  This hint is equivalent to the SERIALIZABLE hint. Using this hint is similar
to specifying SET TRANSACTION ISOLATION LEVEL SERIALIZABLE, except that the SET
option affects all tables, not only the one specified in this hint.

n	 UPDLOCK  This hint forces SQL Server to take update locks instead of shared locks
while reading the table and holds them until the end of the transaction. Taking update
locks can be an important technique for eliminating conversion deadlocks.

n	 TABLOCK  This hint forces SQL Server to take a shared lock on the table even if page
locks would be taken otherwise. This hint is useful when you know you escalate to a
table lock or if you need to get a complete snapshot of a table. You can use this hint
with HOLDLOCK if you want the table lock held until the end of the transaction block
to operate in Repeatable Read isolation. If you use this hint with a DELETE statement on
a heap, it allows SQL Server to deallocate the pages as the rows are deleted. (If row or
page locks are obtained when deleting from a heap, space will not be deallocated and
cannot be reused by other objects.)

n	 PAGLOCK  This hint forces SQL Server to take shared page locks when a single shared
table lock might otherwise be taken. (To request an exclusive page lock, you must use
the XLOCK hint along with the PAGLOCK hint.)

n	 TABLOCKX  This hint forces SQL Server to take an exclusive lock on the table that is
held until the end of the transaction block. (All exclusive locks are held until the end of

626249.indb 658 3/10/11 11:58 AM

	 Chapter 10  Transactions and Concurrency	 659

a transaction, regardless of the isolation level in effect. This hint has the same effect as
specifying both the TABLOCK and the XLOCK hints together.)

n	 ROWLOCK  This hint specifies that a shared row lock should be taken when a single
shared page or table lock is normally taken.

n	 READUNCOMMITTED | REPEATABLEREAD | SERIALIZABLE  These hints specify that SQL
Server should use the same locking mechanisms as when the transaction isolation level is
set to the level of the same name. However, the hint controls locking for a single table in a
single statement, as opposed to locking all tables in all statements in a transaction.

n	 READCOMMITTED  This hint specifies that SELECT operations comply with the rules
for the Read Committed isolation level by using either locking or row versioning. If the
database option READ_COMMITTED_SNAPSHOT is OFF, SQL Server uses shared locks
and releases them as soon as the read operation is completed. If the database option
READ_COMMITTED_SNAPSHOT is ON, SQL Server does not acquire locks and uses row
versioning.

n	 READCOMMITTEDLOCK  This hint specifies that SELECT statements use the locking
version of Read Committed isolation (the SQL Server default). No matter what the
setting is for the database option READ_COMMITTED_SNAPSHOT, SQL Server acquires
shared locks when it reads the data and releases those locks when the read operation is
completed.

n	 NOLOCK  This hint allows uncommitted, or dirty, reads. Shared locks are not
requested so that the statement does not block when reading data that is holding
exclusive locks. In other words, no locking conflict is detected. This hint is equivalent to
READUNCOMMITTED.

n	 READPAST  This hint specifies that locked rows are skipped (read past). READPAST
applies only to transactions operating at the READ COMMITTED isolation level and
reads past row-level locks only.

n	 XLOCK  This hint specifies that SQL Server should take an exclusive lock that is held
until the end of the transaction on all data processed by the statement. This lock can be
specified with either PAGLOCK or TABLOCK, in which case the exclusive lock applies to
the specified resource.

Setting a Lock Timeout
Setting a LOCK_TIMEOUT also lets you control SQL Server locking behavior. By default, SQL
Server does not time out when waiting for a lock; it assumes optimistically that the lock
will be released eventually. Most client programming interfaces allow you to set a general
timeout limit for the connection so a query is canceled by the client automatically if no
response comes back after a specified amount of time. However, the message that comes
back when the time period is exceeded does not indicate the cause of the cancellation; it
could be because of a lock not being released, it could be because of a slow network, or it
could just be a long-running query.

626249.indb 659 3/10/11 11:58 AM

660	 Microsoft SQL Server 2008 Internals

Like other SET options, SET LOCK_TIMEOUT is valid only for your current connection. Its
value is expressed in milliseconds and can be accessed by using the system function
@@LOCK_TIMEOUT. This example sets the LOCK_TIMEOUT value to five seconds and then
retrieves that value for display:

SET LOCK_TIMEOUT 5000;

SELECT @@LOCK_TIMEOUT;

If your connection exceeds the lock timeout value, you receive the following error message:

Server: Msg 1222, Level 16, State 50, Line 1

Lock request time out period exceeded.

Setting the LOCK_TIMEOUT value to 0 means that SQL Server does not wait at all for locks.
It basically cancels the entire statement and goes on to the next one in the batch. This is not
the same as the READPAST hint, which skips individual rows.

The following example illustrates the difference between READPAST, READUNCOMMITTED,
and setting LOCK_TIMEOUT to 0. All these techniques let you avoid blocking problems,
but the behavior is slightly different in each case.

	 1.	 In a new query window, execute the following batch to lock one row in the
HumanResources.Department table:

USE AdventureWorks2008;

BEGIN TRAN;

UPDATE HumanResources.Department

SET ModifiedDate = getdate()

WHERE DepartmentID = 1;

	 2.	 Open a second connection, and execute the following statements:

USE AdventureWorks2008;

SET LOCK_TIMEOUT 0;

SELECT * FROM HumanResources.Department;

SELECT * FROM Sales.SalesPerson;

Notice that after error 1222 is received, the second SELECT statement is executed,
returning all 17 rows from the SalesPerson table. The batch is not cancelled when error
1222 is encountered.

Warning  Not only is a batch not cancelled when a lock timeout error is encountered,
but any active transaction will not be rolled back. If you have two UPDATE statements in a
transaction and both must succeed if either succeeds, a lock timeout for one of the UPDATE
statements will still allow the other statement to be processed. You must include error
handling in your batch to take appropriate action in the event of an error 1222.

626249.indb 660 3/10/11 11:58 AM

	 Chapter 10  Transactions and Concurrency	 661

	 3.	 Open a third connection, and execute the following statements:

USE AdventureWorks2008 ;

SELECT * FROM HumanResources.Department (READPAST);

SELECT * FROM Sales.SalesPerson;

SQL Server skips (reads past) only one row, and the remaining 15 rows of Department
are returned, followed by all the SalesPerson rows. The READPAST hint is frequently
used in conjunction with a TOP clause, in particular TOP 1, where your table is serving
as a work queue. Your SELECT must get a row containing an order to be processed, but
it really doesn’t matter which row. So SELECT TOP 1 * FROM <OrderTable> returns the
first unlocked row, and you can use that as the row to start processing.

	 4.	 Open a fourth connection, and execute the following statements:

USE AdventureWorks2008 ;

SELECT * FROM HumanResources.Department (READUNCOMMITTED);

SELECT * FROM Sales.SalesPerson;

In this case, SQL Server does not skip anything. It reads all 16 rows from Department,
but the row for Department 1 shows the dirty data that you changed in step 1. This
data has not yet been committed and is subject to being rolled back.

The READUNCOMMITTED hint is probably the least useful because of the availability of
row versioning. In fact, anytime you find yourself needing to use this hint, or the equivalent
NOLOCK, you should consider whether you can actually afford the cost of one of the
snapshot-based isolation levels.

Summary
SQL Server lets you manage multiple users simultaneously and ensure that transactions
observe the properties of the chosen isolation level. Locking guards data and the internal
resources that make it possible for a multiuser system to operate like a single-user system.
You can choose to have your databases and applications use either optimistic or pessimistic
concurrency control. With pessimistic concurrency, the locks acquired by data modification
operations block users trying to retrieve data. With optimistic concurrency, the locks are
ignored and older committed versions of the data are read instead. In this chapter, we looked
at the locking mechanisms in SQL Server, including full locking for data and leaf-level index
pages and lightweight locking mechanisms for internally used resources. We also looked at
the details of how optimistic concurrency avoids blocking on locks and still has access to data.

It is important to understand the issues of lock compatibility and escalation if you want to
design and implement high-concurrency applications. You also need to understand the costs
and benefits of the two concurrency models.

626249.indb 661 3/10/11 11:58 AM

626249.indb 662 3/10/11 11:58 AM

		 729

Index

Symbols and
Numbers
$FSLOG, 394–95
.trc file extension, 101
/3GB flag, 36
–k option, 33–34
@@IDENTITY function, 247–48
\Log subdirectory, 72
{HASH | ORDER} group, 514–15
{MERGE | HASH | CONCAT}

UNION, 515
<filespec>, 176
32-bit operating systems

buffer pool sizing, 36–38
Max Worker Threads default

settings, 66
64-bit operating systems

buffer pool sizing, 36–38
Max Worker Threads setting, 66

A
accent sensitivity/insensitivity, 226
access methods

code, 14–16
database, 150, 170–71
memory, NUMA, 19–20
storage engine, 14–16

ACID properties, 16–17, 589–90
action columns, 495–96
actions, 114–15
Active VLF state, 187
active_workers_count DMO, 25
activity ID, 119–20
actual text facts, 669
Address Windowing Extensions

(AWE) memory, 36
allocation, 39
AWE enabled option, 63
buffer pool sizing, 36–38
mapped, 562
multiple server instances, 63

adhoc caching, 568
Adhoc objects, 555
adhoc queries, 528–30
Admin events, 110
AdventureWorks2008 database,

128–29, 576–77, 581, 604, 625,
631–32, 640, 648–49, 653

affinity, 26
Affinity I/O Mask setting, 64, 67

affinity mask configuration, 21, 23
binding schedulers to CPUs,

24–27
dynamic affinity, 23–24

Affinity64 I/O Mask setting, 64, 67
aggregation

fact, 669
plan hinting, 515
Query Optimizer, 488
query processor, 671–72

aligned indexes, 442
ALL_ERRORMSGS option, 716
all-in-one insert, 494
allocation

consistency checks, 679–83
multipage, 570
order, 675
pages, 167
storage engine, 15
structures, heap modification,

289–90
unit ID, 668–70
units, 606

ALLOCATION_UNIT locks, 606
Allow Updates option, 71
ALLOW_PAGE_LOCKS option,

371, 628
ALLOW_ROW_LOCKS option, 628
ALLOW_SNAPSHOT_ISOLATION

option, 635, 637, 639
values, 641
version store, 648–49

ALTER ANY SCHEMA permissions,
175

ALTER ASSEMBLY command, 674
ALTER COLUMN clause, 283
ALTER DATABASE command, 77–78,

142–43
collation types, 225
compatibility mode, 180
database expansion, 136
detaching databases, 175–76
filestream filegroup file addition,

390
option setting, 148
plan removal, 551–52
Read Committed Snapshot level

enabling, 638
sample syntax, 143–44
state options, 151
termination options, 154–55

ALTER EVENT SESSION
command, 121

ALTER INDEX command, 365–68
constraint modification, 285
fragmentation removal, 369–71
index disabling, 366
index rebuilding, 172–73
locking, 628
ONLINE option, 372–74
options, 365–67
row compression enabling,

414–16
Snapshot isolation level, 643

ALTER INDEX REBUILD command,
200

ALTER LOGIN command, 171
ALTER PARTITION FUNCTION

command, 643
ALTER permissions, 132, 175, 212
ALTER RESOURCE GOVERNOR

command, 43
ALTER RESOURCE GOVERNOR

DISABLE command, 52
ALTER RESOURCE GOVERNOR

RECONFIGURE command, 52
ALTER TABLE command, 80, 83, 286

column dropping, 285
constraint modifications, 284–85
lock escalation disabling, 630
LOCK_ESCALATION option, 629
partition-level lock escalation, 507
row compression enabling,

414–16
Snapshot isolation level, 643
SPARSE columns, 402–03
SWITCH option, partitioning,

439–42
trigger disabling, 286

ALTER TRACE permission, 88
Analytic events, 110
anchor record, page

compression, 428
AND clause, 469
And operator, 101
ANSI

code pages, 232
null default, 242
nulls option, 242–43
schema definition, 173
SQL standard, 211–12

ANSI_DEFAULTS option, 243
ANSI_NULL_DEFAULT option, 156
ANSI_NULLS option, 156
ANSI_PADDING option, 157
ANSI_WARNING option, 157

626249.indb 729 3/10/11 11:58 AM

730	 application event log

application event log, 713
APPLICATION locks, 609
application programming interface

(API), Database Engine
communication, 11

Apply operators, 453–54
approximate numeric values, 216–17
ARITHABORT option, 157
assemblies, unchecked, 674
ASSEMBLYPROPERTY function, 7
associated entity ID, 607–08
assumptions, Query Optimizer,

469, 476
asynchronous I/O, 19
asynchronous_file_target, 116
atomicity, 16, 589
attributes, plan handles, 545
Audit Login event, 90–91
Audit Logout event, 90–91
auditing, 186–87, 685–87
authentication, 170–71
Authentication mode, 171
authorization, 170
auto/automatic

autogrow, 135–36
database options, 150, 155–56
parameterization, 457–58, 534,

536–38, 571–72
scrolling, 92
shrinking, 136–37, 196
statistics, 462–63, 550, 573
truncation, 32, 192–93

AUTO_CLEANUP, 79
AUTO_CLOSE option, 155–56
AUTO_CREATE_STATISTICS option,

114–56
AUTO_SHRINK option, 156
AUTO_UPDATE_STATISTICS option,

156, 547–48
STATISTICS_NORECOMPUTE

option, 317
avg_fragmentation_in_percent

value, 369
AWE (Address Windowing

Extension). See Address
Windowing Extension (AWE)

AWE enabled option, 63
awe_allocated_kb, 39

B
back pointer, 420
Backup Compression feature,

67–68
BACKUP LOG command, 197, 203
backups. See also recovery

attaching databases, 176
Backup Compression feature,

67–68

checkpoints, 33–34
compression, 203
database, 177–79, 197–98
database snapshots, 164
devices, 130
differential, 203–05
filegroups, 140, 197, 205–06
fuzzy, 198
log, 203
log recovery, 193–95
master database, 126
mirroring, 203–04
page compression, 433
partial, 206
pubs database, 194–95
types, selection, 203

backupset table, 67–68
bandwidth

Resource Governor allocation,
51–52

resource pools allocation, 47–48
workload group allocation, 45–46

base tables, 211. See also tables
nonclustered indexes, 315
non-matched index views, 483

base views, 5
baseline

Change Tracking, 77
table joins, 84–85

batches
DBCCs, 673–74
workload groups, 44–47

BCM (Bulk Changed Map) pages.
See Bulk Changed Map (BCM)
pages

bcp command, 362
bcp executable, 199
bcp utility, 247
BEGIN TRAN statement, 588–89

lock hints, 658
bigint data type, 217

storage requirements, 411
BIN1 collations, 231–32
BIN2 collations, 231–32
binary collation, 226–27, 230–32
binary data types, 238
binding, 443
binn directory, 127
bit data type, 238

storage requirements, 411
bit mask, 106
bit settings, GAM and SGAM,

145–46
bitmaps

allocation combinations, 681–83
database snapshot, 160–62
DCM pages as, 197
IAM allocation order, 675
NULL values, 241, 270–72, 406–07

operators, 491
row properties, 260–62
SET options, 544

bits
CD format header, 416–17
PFS pages, 289–90

blackbox trace, 72
BLOB (binary large object) data

type, 464–65
filestream data, 68

Blocked Process Threshold option,
69–70

blocked_event_fire_time, 119
blocking_exec_context_id DMO, 27
blocking_session_id DMO, 27
blocking_task_address DMO, 27
blocks

locks/locking, 623–24
owner, 624

[bookmark] lookup, 311, 314
Boolean options, 71, 155–57
Bound Trees cache store, 554–55
bpool columns, 37–38
bracketed identifiers, 214–15
Browser Service, 56
B-trees, 300–03

compression, 423
consistency checks, 696–99
index operations, 15
page compression, 431
row deletion, 355–58

buckets columns, 40
Buffer Manager, 181–82
buffer pool, 29

auditing, 685–87
memory sizing, 35–36
sizing, 36–42

buffers
checkpoints, 32–34
data cache page management,

30–31
filestream data, 400
free buffer list, 31–32
I/O trace providers, 87–88
visible memory, 562
XE targets, 117–18

Bulk Changed Map (BCM) pages,
15, 148

minimal logging, 200
BULK INSERT command, 199, 362

colmodctr values, 549
locks, 599–600

bulk operations, 199–201
bulk update locks, 599–601
BULK_LOGGED recovery mode,

199–201
backups, 204
file and filegroup backup, 205
switching modes, 202

626249.indb 730 3/10/11 11:58 AM

	 columns	 731

bytes
CD format, 421–22
CD region, CD format, 417
long data region, CD format, 419
page compression dictionary,

428–29
plan stub, 530–31
short data region, CD format,

417–18
sparse vector, 407–08

C
C programming, 215
cache key, 554–55
cache stores, 34–35, 553–55

eviction policy, 561–63
global memory pressure, 564
health snapshot, 39
local memory pressure, 563–64
pressure limit, 562–63

caches. See caching; data cache;
plan cache

caching, 525
adhoc, 568
adhoc queries, 528–30
adhoc workload optimization,

530–32
cache size management, 561–63
cache stores. See case stores
compiled objects, 540–43
costing, 564–65
forced parameterization, 535–36
global memory pressure, 564
local memory pressure, 563–64
mechanisms, 527–28
optimization hints, 573–75
parameterization, 533–38
plan cache. See plan cache
prepared queries, 538–40
recompilation. See recompilation
removing plans, 550–53
simple parameterization, 533–38
stored procedures, 568–69
troubleshooting, 569–85

cardinality estimation, 462–63,
470–75, 513

filtered statistics, 468–69
limitations, 474–75
OPTIMIZE FOR hint, 518–20

case sensitivity/insensitivity, 226
catalog views. See also specific

catalog views
consistency checks, 677–79
constraint names, 280–81
cross-catalog consistency checks,

707
metadata, 4–5
Resource Governor, 52–53

sys schema, 213
table metadata, 249

causality tracking, 119–20
CD (Column Descriptor) format, 375,

416–22
Change Data Capture, 77
Change Tracking, 76–77

CHANGETABLE function, 83–85
column tracking, 83
Commit Table, 78–79
database options, 151
database-level configuration,

77–78
hidden columns, 81
internal change table, 80–81
internal cleanup task, 79–80
query processing and DML, 82–83
table-level configuration, 129–30

CHANGE_RETENTION, 79
CHANGE_TRACKING_CONTEXT, 82
CHANGE_TRACKING_CURRENT_

VERSION() function, 84
CHANGE_TRACKING_IS_COLUMN_

IN_MASK function, 83
CHANGE_TRACKING_MIN_VALID_

VERSION() function, 80
CHANGES mode, 84–85
CHANGETABLE function, 82–85
CHANGETABLES(CHANGES)

function, 83
char characters, 221–22
character data, 221–24

collation, 224–38
single-byte, 227–28

CHARINDEX function, 238
CHECK constraint, 279

disabling, 284–85
partitioning, 441

checkpoints, 32–34
garbage collection, filestream

data, 207
Recovery Interval option, 66–67
transaction log, 183, 186
truncation, 193

checksum errors, 158–59, 207
CHECKSUM option, 158–59
CI record rebuilding, 430–31
classifier function, 42–43
cleanup

Change Tracking, 79–80
tempdb database, 651
version store, 651

client
network configuration, 55
network protocol configuration, 54
protocols, 11

Client Tools Connectivity, 54
clock algorithm, 34–35, 40
clock_hand, 40

clock_status, 40
CLOSE cursor command, 155
CLR

data types, 376
Distributed Query, 509
metadata consistency checks, 684
non-sargable predicates, 479

clustered indexes, 250–51, 253,
319–26

clustering key, 311–14
computed columns, 341
consistency checks, 678–79
non-leaf level, 320–21
online rebuilding, 374
sample structure, 321–26
SPARSE columns, 403
uniquifiers, 320

clustering keys, 311–14
CMEMTHREAD waits, 569
code pages

collation, 227
SQL collations, 232

COLLATE clause, 225
collation

binary, 226–27, 230–32
character data, 224–38
code pages, 227
designator, 226
errors, 227
Install Wizard, 235–37
performance and, 237
server, 225
sort order, 228–30, 232–33
SQL. See SQL collation
type, performance and, 237
Unicode, 227–28
Windows, 226

collationproperty function, 227
colmodctr values, 549
Column Descriptor (CD) format, 375,

416–22
Column Tracking, 80
COLUMN_SET, 403–05
COLUMNPROPERTY function, 6, 409

computed columns, 341
columns, 211

action, 495–96
adding, 284
altering, 283
antimatter, 687
bpool, 37–38
buckets, 40
computed. See computed

columns
copying, COLUMN_SET, 405
dropping, 285
events, 86
filestream data, 390–92
fragmentation information, 368

626249.indb 731 3/10/11 11:58 AM

732	 columns

columns (continued)
hidden, 81
IDENTITY property, 245–48
included, 336, 442
internal Change Tracking table,

80–81
limit, 400–01
LOB, data appendage, 387–88
modification counters, 548–49
naming, 7, 212–13, 215
nonsparse, converting, 402–03
packages, XE, 109
partitioning, 442
persisted, 341–42
prefix compression, 424–25
processing, DBCC, 689–92
rowset trace, 107–08
sets, 403–05
snapshot transaction metadata

views, 652–55
SPARSE. See SPARSE columns
statistics and. See statistics
trace events, 102–03
tracking, 83
variable- vs. fixed-length, 221–24
VLF, 189
XE buffers, 119
XE events, 111

command-line DAC access, 27–28
commands. See also DBCC;

specific commands
DDL, sample, 50
parser, 12

COMMIT command, 588
Commit record, 182
Commit Table, 78–79
COMMIT TRAN statement, 588–89

lock hints, 658
Common Sequence Number (CSN),

78–79
common subexpression spool, 455
compatibility

database recovery, 201–02
databases, 179–80
locking/locks, 547–48, 619–20
metadata views, 3–4

compensation log records, 182
compilation

compiled plans, caching, 555
objects caching, 540–43
plan cache, problems, 572–73
plan stubs, adhoc workloads,

530–32
composite keys, 313
compression. See also data

compression
backups, 67, 203
column prefix, 424–25
logging and, 433

vardecimal, 413–14
version store and, 433

Compute Scalar operator,
450, 494, 504

Halloween Protection, 494–95
indexed views, 485

Compute Sequence operator, 451
computed columns

consistency checks, 689–90
indexes, 337–45
SPARSE columns and, 403
statistics, 464

concat null yields null option, 242
CONCAT UNION hint, 515
concurrency, 587. See also optimistic

concurrency; pessimistic
concurrency

model selection, 655–57
models, 587–88
transaction services, 17

Configuration Manager, 54–56, 68
filestream enabling, 389

configuration, operating system
connectivity, 59
firewall setting, 59
nonessential services, 59
paging file location, 58
task management, 57–58

configuration, SQL Server, 54
Configuration Manager, 54
default trace, 71–72
disk I/O options, 66–68
managing services, 55–56
memory options, 62–64
network configuration, default, 55
network protocols, 54
operating system, 57–59
query processing options, 69–71
scheduling options, 64–66
server system, 57
settings, 60–71
trace flags, 60

CONNECTIONPROPERTY function, 7
connectivity

configuration, 59
firewall setting, 59

consistency, 16, 589–90, 664–66
allocation checks, 679–83
B-tree checks, 696–99
column processing, 689–92
commands, 723–27
cross-catalog checks, 707
cross-page checks, 694–05
cross-table checks, 705–09
data page processing, 687–89
data purity checks, 690–92
filestream checks, 700–03
heap checks, 695
index page processing, 687–89

indexed view checks, 707–08
LOB linkage checks, 699–700
metadata checks, 684–85
nonclustered index checks,

703–05
NULL and length checks, 690
page audit, 685–87
partitioning, 692
per-table checks, 683–05
Service Broker checks, 706
SPARSE column checks, 692
spatial index checks, 709
system catalog checks, 677–79
text page processing, 693–94
XML index checks, 708–09

Constant Scan operator, 448, 504, 511
INSERT statement, 492

constraints, 279–80. See also specific
constraints

CREATE INDEX command, 315,
318, 365

DROP INDEX command, 365
failures, 281–82
IDENTITY property, 280
indexes, 315, 318, 365
names and catalog view

information, 280–81
table alteration, 284–85

CONTACT_NULL_YIELDS_NULL
option, 157

Containment assumption, 469
CONTAINS FILESTREAM, 141–42
context_switches_count, 27
CONTINUE_AFTER_ERROR

option, 722
contradiction detection, 448, 483
CONTROL permissions, 132
conversion

deadlocks, 631–34
locks, 600–01

CONVERT operation, 219
copy-on-write operations, 160
correctness-based recompilation,

543–46
correlated nested loops join, 453
Cost Threshold For Parallelism

option, 70–71
costing, 34–35, 461–63, 475–77

caching, 564–65
query optimization, 13

COUNT(*) operation, 488
counters

longest transaction running, 652
modification, 548–49
performance, 571–72, 651–52
snapshot transactions, 652
Target Server Pages, 37
update conflict ratio, 652
version store and tempdb, 651–52

626249.indb 732 3/10/11 11:58 AM

	 database	 733

covering indexes, 314
cpu_id, 25
CPUs

Affinity Mask and Affinity64 Mask
options, 64

binding to schedulers, 24–27
dynamic affinity, 23–24
NUMA and, 19–20
overhead, page compression and,

432
PHYSICAL_ONLY option, 718
plan guides for use, 576–77
Resource Governor controls,

51–52
resource pools allocation, 47–48
Server schedulers, 21
workgroup allocations, 45–46

crash recovery, 182
CREATE DATABASE command,

132–34, 300
attaching databases, 176–77
database ID, 144
sample syntax, 134
snapshot creation, 160

CREATE DATABASE FOR ATTACH
command, 127

CREATE EVENT SESSION command,
121–23

CREATE INDEX command, 200,
299–00, 316

constraints, 315, 318, 365
filtered index creation, 480–81
index placement, 317
index rebuilding, 371–72
logging, 199
ONLINE option, 372–74
Snapshot isolation level, 643–44

CREATE LOGIN command, 89
CREATE PARTITION SCHEME

command, 435
CREATE PROC command

Snapshot isolation level, 644
CREATE SCHEMA command, 173
CREATE STATISTICS command, 466
CREATE TABLE command, 211–12

constraints, 280–81
partitioning, 436
Snapshot isolation level, 644

CREATE TYPE command
Snapshot isolation level, 644

CREATE VIEW command, 300
WITH SCHEMABINDING option,

339–40
creation_time, 26
CROSS APPLY operator, 453–54
CSN (Common Sequence Number),

78–79
Cunningham, Conor, 443
current_tasks_count, 25

CURRENT_TIMESTAMP function, 219
current_workers_count, 25
cursor data type, 239
cursor options, database, 149, 155
CURSOR_CLOSE_ON_COMMIT

option, 155
CURSOR_DEFAULT option, 155
cursors lock owner, 609
cycle deadlocks, 631–34

D
DAC (dedicated administrator

connection). See dedicated
administrator connection (DAC)

data. See also specific types
cache. See data cache
compression. See data

compression
constraint failures, 281–82
constraints, 279–82
encryption, 67
heap modification, 289–97
in-row. See in-row data
integrity, 279
maps, 111–12
modification, concurrency,

587–88. See also concurrency
NULL values. See NULL values
numeric, 216–17
pages. See data pages
purity checks, 690–92. See also

consistency
row overflow, 147
scalar, 111–12
special types, 238–41
storage. See data storage
types, 111–12, 215–41
types, changes, 283
types, statistics and, 464
user-defined, 244–45, 376
XML format, 123–24

data backup. See backups
data cache, 29

page access, 30
page management, 30–31

data compression, 412–13
encryption, 67
pages, 423–33
rows, 414–22

Data Definition Language (DDL)
Snapshot isolation level,

643–45
table creation, 211–12
triggers, 75–76

Data Manipulation Language (DML)
Query Optimizer, 12–13

Data Manipulation Language (DML)
triggers, 75–76

data pages, 29, 144
access, 30
finding, 262–64
LSNs, 185–86
management, 30–31
processing, DBCC, 687–89
read-ahead feature, 41–42
storage, 254–60
transaction log, 183

data recovery. See database
recovery; recovery

data storage, 249–50
data pages, 254–60
date and time data, 272–75
internal, 249–79
metadata, 251–54
pages, finding, 262–64
rows, 260–62
rows, fixed-length, 265–67
rows, variable-length, 267–72
sql_variant, 275–79
sys.indexes, 250–51

data warehousing, Query Optimizer,
490–91

DATA_PURITY option, 719
database, 125–26. See also specific

databases
access,security, 170–71
altering, 142–44
auto options, 150, 155–56
backups, 177–79, 197–98
backups, snapshots, 164
Change Tracking, 77–78, 151
compatibility levels, 179–80
consistency, 664–66
copying, 175–79
creation, 132–34
cursor options, 149, 155
detaching and reattaching, 175–77
encryption options, 151
expanding, 135–38
external access options, 150
filegroups. See filegroups
files. See database files
filestream data, creation, 390
filestream filegroup, 68
fragmentation, 135
hidden, 3, 712
locks, 605–06
master. See master database
mirroring options, 150–51
moving, 175–79
option setting, 148–59
organization, 144
parameterization options, 150
physical organization, 15
repairs, 719–23
restoration, 177–79, 203–09.

See also database recovery

626249.indb 733 3/10/11 11:58 AM

734	 database

database (continued)
sample, 128–30
security, 170–75
Service Broker options, 151
shrinking, 135–38
snapshots. See database

snapshots
space allocation, 145–48
SQL options, 150, 156–57
state options, 149, 151–54
statistics and. See statistics
system, 126–28
termination options, 154–55
truncation, 193–95
very large (VLDBs), partial

backup, 206
vs. schema, 173–74

Database Engine, 1
configuration. See configuration,

SQL Server
protocols, 11–12
relational engine, 12–14
SQLOS, 18–19
storage engine, 14–18

database files, 125–26, 130–32
properties, 130–32
types, 130

database ID, 144, 625
DATABASE locks, 609
database owner, 134
database pages. See data pages
database recovery, 139–40.

See also recovery
backup selection, 203
BULK_LOGGED recovery model,

199–01
compatibility, 201–02
filegroups and, 139–40
FULL recovery model, 198–99
model view, 7
models, 198–02
multiple filegroups, 139–40
options, 150, 158–59
rollback vs. startup, 152–53
SIMPLE recovery model, 165, 201

database snapshots, 159–64,
665–66

alternatives, 667
creating, 160–62
disk space, 162–63, 666
dropping, 164
isolation options, 151
managing, 163–64

database_id parameter, 304
DATABASEPROPERTY function, 6
DATABASEPROPERTYEX function, 6
date and time data, 218–21

storage, 272–75
date data type, 218–21

storage requirements, 412

datetime data type, 218–21, 274
storage requirements, 412

datetime2 data type, 218–21
datetimeoffset data type, 218–21, 274

storage requirements, 412
db_ddladmin role, 212
DB_ID function, 306–07
db_owner role, 212
DBCC, 663–64. See also specific

commands
allocation consistency checks,

679–83
batches, 673–74
consistency checking commands,

723–27
consistent view, 664–67
cross-table consistency checks,

705–09
database repairs, 719–23
fact generation, 668–70
pages, reading, 674–75
parallelism, 675–77
per-table logical consistency

checks, 683–05
processing efficiency, 668–77
query processor, 670–73
system catalog consistency

checks, 677–79
DBCC CHECKALLOC

parallelism, 677
DBCC CHECKCATALOG, 707, 726
DBCC CHECKCONSTRAINTS, 727
DBCC CHECKDB, 159, 163, 664

disk space, 666
options, 715–19
output, 709–15
phases, 714
query parts, 673
tempdb database, 165

DBCC CHECKFILEGROUP, 725–26
parallelism, 677

DBCC CHECKIDENT, 248, 726–27
DBCC CHECKTABLE, 725

parallelism, 677
phases, 715

DBCC commands
snapshots, 163

DBCC DBREINDEX, 200, 365
Snapshot isolation level, 643

DBCC FLUSHPROCINDB, 526, 551
DBCC FREEPROCCACHE, 526,

551, 561
multipage allocations, 570
plan removal, 552–53

DBCC FREESYSTEMCACHE, 526, 551
DBCC IND, 294–95, 308–10

bigrows table, 377–78
clustered indexes, 323
filtered indexes, 337
nonclustered index, 328

nonclustered indexes, 333
page compression, 423–24
page splitting, 350
rows, moving, 359
sparse vector bytes, 407–08
sql_variant, 276
text in row option, 384
version store, 649

DBCC INDEXDEFRAG, 368
DBCC LOGINFO, 188–92
DBCC MEMORYSTATUS, 513
DBCC OPENTRAN, 186
DBCC PAGE, 146, 256–60

bigrows table, 378
B-tree row deletion, 355–58
CD format, 421–22
clustered indexes, 324–26
compressed pages, 427, 429
date and time values, 272–75
DBCC IND and, 310
filtered indexes, 337
nonclustered indexes, 328–29, 334
page splitting, 350–52
parameters, 256
physical pages, finding, 262–64
row deletion, 291–93
row heap deletion, 352–55
row updating, 295–96
rows, moving, 360
sparse vector bytes, 407–08
sql_varaint, 276
table alterations, 286–88
text in row option, 384–85

DBCC SHOW_STATISTICS, 466, 473
DBCC SHRINKDATABASE,

137–38, 187
DBCC SHRINKFILE, 136–38
DBCC SQLPERF(logspace), 196
DBCC TRACEOFF, 60
DBCC TRACEON, 60
dbcreator permissions, 132
dbo schema, 5, 174–75
dbo.bigrows table, 376–80
DCM (Differential Change Map)

pages. See Differential Change
Map (DCM) pages

DDL (Data Definition Language). See
Data Definition Language (DDL)

DDL CREATE SCHEMA, 174
DDL CREATE USER, 174
deadlocks, 18, 630–34
DEALLOCATE cursor command, 155
DEBIT_CREDIT example, 589–90
Debug events, 110
debugging. See also errors

actions, 114–15
query plans, 513–14

decimal/numeric data type, 216–17
compression, 413–14
storage requirements, 412

626249.indb 734 3/10/11 11:58 AM

	 errors	 735

declarative data integrity, 279
DECLARE cursor command, 155
dedicated administrator connection

(DAC), 27–29
Commit Table view, 78–79
system base tables, 2–3, 76–77

deep-dive check, 704–05
DEFAULT constraints, 279
DEFAULT property, 139
default resource pool, 48

MIN and MAX values, 49
default trace, 71–72
Default Trace Enabled option, 71–72
default workload group, 44–47

MIN and MAX values, 49
deferred drop feature, 681
deferred drop operations, 167–68
Delaney, Kalen, 125, 181, 211, 299,

375, 525, 587
DELETE statement

access methods code, 14
B-tree row deletion, 355–58
colmodctr values, 549
concurrency, 587
filestream data deletion, 394
ghost records, 650–51
index row addition, 347–48
lock hints, 657–58
logging, 198, 363
not-in-place updates, 361–62
page splitting, 349–50
Query Optimizer, 12–13,

491–92
remote server, 509
row updating, 297
shared locks, 598
Snapshot isolation level, 656
Split/Sort/Collapse, 495–97
USE PLAN hints, 521
version store, 648

delimited identifiers, 214–15
density information, Query

Optimizer, 466–68
dependencies, transaction, 590–92
derived views, 5
DETAILED parameter, 305
deterministic functions, 339
dictionary compression, 426, 428–29
differential backup, 197, 203

database restoration, 203–05
Differential Changed Map (DCM)

pages, 15, 148
allocation consistency checks, 680
differential backup, 197

dirty page table (DPT), 184
dirty reads, 591

allowable, by isolation level, 596
DISABLE option, 579
disk I/O. See I/O
disk pages, allocation operations, 15

disk space. See memory; storage
Distribute Streams operation,

455–56
Distributed Partitioned View (DPV),

507–08
Distributed Query, 507–09
distributed transactions, 16
distribution statistics, 13
divides_by_uint64 function, 122
division by zero errors, 157
dm_db_*, 10
dm_db_index_physical_stats,

304–08
dm_exec_*, 10
dm_io_*, 10
dm_os_*, 10
dm_tran_*, 10
DML (Data Manipulation Language).

See Data Manipulation
Language (DML)

DMOs (Dynamic Management
Objects). See Dynamic
Management Views (DMVs)

DMVs (Dynamic Management
Views). See Dynamic
Management Views (DMVs)

domain integrity, 279
DONE task state, 27
DPT (dirty page table), 184
DPV (Distributed Partitioned View),

507–08
DROP option, 579
DROP DATABASE command, 176

garbage collection, filestream
data, 395–97

DROP INDEX command, 200
constraints, 365
index rebuilding, 371–72
Snapshot isolation level, 643

DROP_EXISTING option, 316, 365,
367

dropped_buffer_count, 119
dropped_event_count, 119
durability, 16, 590
duration, lock, 608
dynamic affinity, 23–24
Dynamic Management Objects

(DMOs). See Dynamic
Management Views (DMVs)

Dynamic Management Views
(DMVs), 2–3, 9–12. See also
specific objects and views

asynchronous buffer
monitoring, 119

cache costing, 565
cache store size, 564
cache stores, 553–55
CROSS APPLY operator, 454
data types and maps, 112
filtered indexes, 337

ghost records, 650–51
index analysis, 304–08
index reorganization, 371
locks, 329
log file size, 196
memory interval observance,

38–40
multipage memory

allocations, 570
packages, XE, 109
partitioning, 434
plan cache metadata, 556–61
plan cache objects, 565–67
pseudotable correlation, 4
Resource Governor, 53
scheduler information, 24–27
SET options, 338, 544
snapshot transaction metadata,

652–55
spinlocks, 597
target execution problems, 121
version store, 648
visible memory, 562
wait statistics, 569

dynamic ports, 59

E
EditionID property, 2
editions, SQL Server, 1–2
EMERGENCY mode repair, 721–22
EMERGENCY option, 152–53
Employee table example

clustered index, 321–26
nonclustered index, 326–34

EmployeeHeap table example,
326–34

Employees_pagecompressed table,
423–24

Employees_rowcompressed table,
414–16, 420–22

ENABLE option, 579
ENABLE_CHANGE_TRACKING, 80
encryption

database options, 151
tracing security, 89

EngineEdition property, 1–2
entity integrity, 279
entries_count, 40
equality operator, 122
errors

208, 2–3
459, 227
823, 207, 685–86
824, 158–59, 685–86
1222, 660
1701, 402
1783, 23
1823, 162
2508, 685

626249.indb 735 3/10/11 11:58 AM

736	 errors

errors (continued)
2511 and 2512, 688
2515, 687
2518 and 2519, 684
2531, 696
2533 and 2534, 698–99
2537, 689–90, 693
2540, 719
2570, 692
2574, 689
2575 and 2576, 682
2577, 682
2579, 683
2591, 685
3956, 639
3960, 642
3961, 645
5070, 638
5119, 162
5228 and 5229, 687
5235, 712
5250, 679
5256, 686
5260, 688, 693
5262, 688, 693
5268, 704
5274, 687
5275, 704
7903, 701
7904 through 7908, 701–02
7931 through 7936, 702
7937, 702
7938, 703
7941, 703
7961, 690
7963, 703
7965, 680
8147, 248
8645, 69
8901, 685
8902, 673
8903, 682
8904, 681–82
8906, 682
8907 through 8908, 709
8909, 686
8910, 682
8913, 682
8914, 689, 694
8919, 688, 694
8925, 700
8926, 698
8927, 688, 694
8928, 699, 722–23
8929, 694, 700
8930, 685
8931, 696
8933 and 8934, 698
8935 through 8937, 696

8938, 686
8940 through 8944, 686
8946, 680
8947, 682
8948, 682
8951 and 8952, 703–04
8955 and 8956, 703–04
8959, 682
8960, 689
8962, 693
8963, 693
8964 and 8965, 699
8968 and 8969, 682
8970, 690
8971, 695
8972, 695
8973, 696
8974, 700
8976, 697
8977, 697
8978 through 8982, 697–98
8984, 692
8986, 716
8992, 707
8993 and 8994, 695
8995, 681
8996, 682
8998, 680
ALL_ERRORMSGS, 716
allocation checks, 680–83
boot and file header page, 679
B-tree consistency checks, 696–99
cardinality estimation, 474–75,

513–14
checksum, 158–59, 207
collation types, 227
column processing, 689
computed columns, 689–90
constraint failures, 281–82
CREATE TABLE statement, 375–76
DAC connection, 28
data and index pages, 687–89
data purity checks, 692
DB_ID and OBJECT ID functions,

306–07
DBCC CHECKDB, 666, 673,

678–79
deallocated page, 207
division by zero, 157
dropped folders, 392
ERROR_SHARING_VIOLATION, 394
exception handling, 18
filestream data, 394, 701–03
heap consistency checks, 695
I/O, 207
IDENTITY property, 248
invalid tabular data stream, 227
LOB linkage, 699–00
lock partitioning, 622

lock timeout, 660
log, 182, 712–13
metadata consistency checks,

684–85
Microsoft reporting, 712
nonclustered index checks,

703–05
NULL and length checks, 690
out-of-lock memory, 630
page audit, 685–87
partitioning checks, 692
path not found, 392
plan guide validation, 583–84
query timeout, 69
Read Committed Snapshot

isolation level, 638
recompilation, 572–73
repair options, 716, 719–23
repaired page, 207
restored page, 207
ROLLBACK, 181
Schedule Monitor, 23
snapshot creation, 162
Snapshot isolation level, 636–37,

639, 642–45
SPARSE columns, 401–03
spatial index checks, 709
subquery plans, 451–53
suspect pages, 206–07
syntax, command parser, 12
termination, 153
text page processing, 693–94
timeout, 46, 463
torn page, 158–59, 207
transaction, 281–82
XML data size limit, 405
XML index checks, 708–09

escalation, lock, 629–30
ESTIMATEONLY option, 717–18
Ethernet/Token Ring address, 240
etw_classic_sync_target, 116
event log, 713
event notifications, triggers, 75–76
event producers, 86–87
event sessions, 118–21

creating, 121–23
querying event data, 121–24
removing, 124
session-scoped, 118–20
stopping, 124

Event Sub Class element, 32
events, 75, 86, 109–11

Admin, 110
Analytic, 110
channels, 110–11
columns, 86
Debug, 110
default trace, 72
extended. See Extended Events (XE)

626249.indb 736 3/10/11 11:58 AM

	 foreign memory	 737

lifecycle, 120–21
memory, 32
notification, 70
Operational, 110
Profiler, 90–91
sessions. See event sessions
template, 93–94
tracking, 18–19
types and maps, 111–12

eviction policy, 561–63
exact numeric values, 216–17
exception handling, 18
Exchange operator, 455–56
exclusive (X) locks, 363, 372, 505,

596–98, 600
EXCLUSIVE_TRANSACTION_

WORKSPACE owner, 609
EXEC statement, 530
exec_context_id, 27
executable plans, 555–56
EXECUTE statement

user-defined scalar functions,
541–43

WITH RECOMPILE option, 540–41
execution, 443
execution contents, 555
execution plan, 12–14, 70–71, 561
executor, query, 12, 14
ExistingConnection event, 90–91
explicit transactions, 588–89
exploration rules, 446, 461
Extended Events (XE), 108

actions, 114–15
DDL and querying, 121–24
event lifecycle, 120–21
events, 109–11
infrastructure, 108–18
packages, 109
predicates, 112–13
sessions, 118–21
session-scoped catalog metadata,

118–19
session-scoped configuration

options, 119–20
targets, 115–18
tracking, 18–19
types and maps, 111–12

Extended Events Engine, 75
extended indexes, 510–11
Extended Stored Procedures cache

store, 554–55
EXTENDED_LOGICAL_CHECKS

option, 708, 717
extents, 145–48

differential backup, 197
fragmentation, 364

external access options,
database, 150

external code, actions, 114

external fragmentation, 364
external global memory

pressure, 564

F
fact(s)

checking, 681–83
collection, 679–81
forwarding/forwarded records,

695
generation, 668–70

failover clustering, 63
FAST <number_rows>, 517–18
fast file initialization, 135–36
FAST N hint, 476–77
fast recovery, 185
FAT volumes, snapshot creation, 162
FAT32 volumes, snapshot

creation, 162
FETCH cursor command, 155
fibers

Lightweight Pooling option,
64–65

scheduler, 20–22
scheduler workers, 21

file ID, 144
file provider, 87

server-side traces, 97–05
file sequence number (FSeqNo),

189–92, 194
FILEGROUPPROPERTY function, 7
filegroups, 138–39

altering, 142–43
backups, 140, 197, 205–06
creation, example, 140
creation, sample syntax, 140,

143–44
default, 139–40
filestream, 141–42. See also

filestream data
moving files, 143
partitioning, 435–36

FILEGROWTH property, 134–35
altering, 143

FileID, 190–92
FILENAME property, 143
FILEPROPERTY function, 6
files

altering, 142–43
backing up and restoring, 205–06
backups, 197, 205–06
database. See database files
formats, traces and, 95
moving, 143
multiple, 139–40
OFFLINE, 143
sparse, 160–63
work, 166

filestream data, 130
consistency checks, 700–03
database creation, 390
deleting, 394
enabling, 389
filegroups, 141–42
garbage collection, 395–97
inserting, 392–93
logging changes, 394–95
manipulation, 392–97
metadata, 397–99
partitioning, 439
performance considerations,

399–400
storage, 388–400
table creation, 390–92
transactions and, 394
updating, 393

Filestream feature, 68
FILLFACTOR option, 316, 366–67

fragmentation removal, 370
page splitting, 352

Filtered Index feature, 468
filtering/filters

indexes, 336–37, 347, 480–81
nonclustered index rows, 336–37
statistics, 468–69, 491
trace, 86, 91–92
XE events, 111. See also

predicates; targets
firewall setting, 59
fixed-length data, 221–24

NULL values, 243
row storage, 265–67
row structure, 260–62

FixedVar format, 260, 375, 416
float data type, 339

storage requirements, 411
fn_trace_geteventinfo, 102–03
fn_trace_getfilterinfo, 103–04
fn_trace_getinfo function, 102
fn_trace_gettable function, 72, 104
FOR ATTACH option, 176–77
FOR_ ATTACH_REBUILD_LOG

option, 176–77
FORCE ORDER, {LOOP | MERGE |

HASH} JOIN, 516
forced parameterization, 459

caching, 535–36, 568
disallowed constructs, 535–36

FORCED PARAMETRIZATION hint,
520

FORCESEEK, 517
FOREIGN KEY constraint,

279, 315
disabling, 284–85
dropping, 365

foreign keys, 211
foreign memory, 41

626249.indb 737 3/10/11 11:58 AM

738	 forward pointers

forward pointers, 296, 360–61
CD format, 420

forwarding/forwarded records, 695
fragmentation

database, 135
detecting, 368
indexes, 363–64, 368–71
removing, 369–71

free buffer list, 31–32
FREESYSTEMCACHE DBCC, 40
frequency information, Query

Optimizer, 466–68
friendly name columns, 7
FROM clause, NOEXPAND hint, 345
FSeqNo (file sequence number),

189–92, 194
fsutil utility, 399
full backup, 197
FULL recovery mode, 198–99

file and filegroup backup, 205
switching modes, 202

full-text catalogs, database
snapshots, 164

full-text data files, 130
full-text indexes, 345–46, 510

database snapshots, 164
functions. See also specific functions

aggregate, 488
classifier, 42–43
date and time data, 221
deterministic vs. nondeterministic,

339
partitioning, 434–36
property, 6–7, 43
scalar, user-defined, 540–43
system, 43

fuzzy backup, 198

G
GAM (Global Allocation Map) pages,

15, 145–48
Gather Stream operation, 455–56
gather-write operation, 33
generation number, 33
geometry data type, 239
GETANSINULL option, 242
ghost records, 355–58, 368, 650
Global Allocation Map (GAM) pages,

15, 145–48
allocation consistency checks,

679–83
GLOBAL cursors, 155
global memory management,

34–35
global memory pressure, 564
Global Positioning Satellite

(GPS), 239

GPS (Global Positioning
Satellite), 239

GRANT statement, 88
granularity, locks, 601–05
Gray, Jim, 399
GROUP BY operation, 342–43, 447

cardinality estimates, 467, 473–77
GROUP BY operations

plan hinting, 514–15
group properties, 449
GROUP_MAX_REQUESTS

property, 47
groups, Memo, 460
guest schema, 174–75
GUID (globally unique identifier),

240–41, 313

H
Halloween Protection, 494–95
handles, 544. See also plan_handle

attributes, 545
plan cache, 556–57

hardware NUMA. See NUMA
hash buckets, 30, 40
HASH JOIN hint, 516
hash key, 554–55
Hash Match operator, 511
hash tables, 30, 554

bucket count, 40
locks, 620–22
metadata cache, 685
nonclustered index checks,

703–04
HASH UNION hint, 515
hash value

query execution plan, 561
query text, 561

hashing, 30
lock table, 620–22

header
CD format, 416–17
compressed pages, 427

heap modification, 289
allocation structures, 289–90
row addition, 290–91
row deletion, 291–94
row updating, 294–97

heaps
consistency checks, 695
locked resources matching, 627
modification. See heap

modification
page compression, 431

hidden columns,
Change Tracking, 81

hidden database, 3, 712
hidden schedulers, 23

hierarchyid data type, storage
requirements, 412

hints. See also specific hints
locking/locks, 657–59
optimization, 573–75
plan guides. See plan hinting
query, 573–75, 598
query vs. table vs. join, 573
table, 657

histograms, 463, 466
cardinality estimation, 230–32
step limits, 491

hobt, 251
HOBT locks, 606
HOLDLOCK hint, 658
Hungarian-style notation, 215

I
I/O

Affinity Mask and Affinity 64
Mask setting, 67

asynchronous, 19
cache costing, 564–65
configuration, 66–68
consistency checking, 663. See

also consistency
costing, 475–77
DBCC CHECKDB, 674–75
errors, 207
FORCESEEK hint, 517
minimal logging and, 200
NUMA and, 40–41
options setting, 66–67
providers, trace, 87–88
settings, 66–67
Split/Sort/Collapse, 495–97
subsystem checkpoints, 33–34
synchronous vs. asynchronous, 19
tempdb database, performance

and, 168
variable-length character data,

222–24
I/O Completion Port (IOCP), 23

DAC connection, 28
IAM pages, 15, 147–48, 289–90

allocation consistency checks,
679–83

repair, 720
row-overflow pages, 376–80

ICommandPrepare, 539
IDENT_CURRENT function, 248
IDENT_INCR property, 245
IDENT_SEED function, 245
identifiers, 157

delimited, 214–15
GUID and UUID, 240–41
primary key, 211

626249.indb 738 3/10/11 11:58 AM

	 isolation levels	 739

quoted, 214–15
table names, 213

IDENTITY property, 245–48, 280
IDENTITYCOL keyword, 108, 247
idle workers, 21
IF statements, DDL and, 573
IGNORE_DUP_KEY, 316
image data type, 380–81,

386–87, 464
impersonation, 171
implementation rules, 446, 461
implicit transactions, 588–89
IMPORTANCE property, 45–46
INCLUDE option

leaf levels, 302
nonclustered index rows, 336

included columns, partitioning, 442
inconsistent analysis, 591
identifiers

bracketed, 214–15
Independence assumption, 469
Index Allocation Map (IAM) pages.

See IAM pages
Index Create Memory option, 70
index ID, 668–70
index pages, 15, 29, 318

processing, DBCC, 687–89
read-ahead feature, 41–42
reclaiming, 358
splitting, 348–52

index_id parameter, 305
INDEX_KEYPROPERTY function, 6
INDEX=<indexname> | <indexid>,

516–17
indexed views

change tracking, 549
computed columns and, 337–45
consistency checks, 707–08
index creation, 337–45
partition-aligned, 490
Query Optimizer, 482–86

Indexed Views feature, 480, 482–86
indexes, 299–300

aligned, 442
ALTER INDEX command, 365–68
analyzing, 304–10
B-trees, 300–03
clustered. See clustered indexes
clustering key, 311–14
computed columns and index

views, 337–45
constraints, 315, 318, 365
covering, 314
creation, 316–18
data modification internals, 347
data modification vs. table-level

modification, 362
DBCC IND, 308–10

disabling, 366
dm_db_index_physical_stats DMV,

304–08
extended, Query Optimizer,

510–11
filtered, 336–37, 347, 480–81
fragmentation, 363–64, 368–71
full-text, 345–46, 510
IGNORE_DUP_KEY, 316
intermediate page splitting, 349
locking/locks, 363
logging, 363
management, 364–74
MAXDOP, 317
memory allocation, 70
nonclustered. See nonclustered

indexes
operations logging, 200
options setting, 366–67
pages. See index pages
partitioning, 434–42. See also

partitioning
placement, 317
Query Optimizer selection, 477–86
ranges, read-ahead feature, 41–42
rebuilding, 365, 371–74
reorganizing, 368
root page splitting, 349
row deletion, 352–58
row formats, 318–19
row insertion, 347–48
row updating, 358–62
scalability, 300–03
space allocation, 145–48
spatial, 346, 510–11, 709
STATISTICS_NORECOMPUTE, 317
storage engine operations, 14–15
structure, 310–15, 318–37
views. See indexed views
XML, 346–47, 510, 708–09

IndexInternals sample
database, 321

INDEXPROPERTY function, 6, 265
information schema views

metadata, 6
INFORMATION_SCHEMA schema,

6, 174–75
in-row data, 147, 254–56

index pages, 318
INSENSITIVE cursors, 155
INSERT INTO statement, 199
INSERT statement

@@IDENTITY function, 247–48
colmodctr values, 549
concurrency, 587
filestream data insertion, 392–93
ghost records, 650–51
IGNORE_DUP_KEY option, 316

index row addition, 347–48
lock hints, 657–58
logging, 198, 363
not-in-place updates, 361–62
page splitting, 348–50
Query Optimizer, 12–13, 491–92
remote server, 509
row updating, 297
shared locks, 598
SPARSE columns, 401–03
Split/Sort/Collapse, 495–97
USE PLAN hints, 521

inserts, all-in-one/per-row, 494
Inside Microsoft SQL Server 2005:

Query Tuning and
Optimization, 446

Inside Microsoft SQL Server 2008:
T-SQL Programming, 71,
239, 242

Installation Wizard, collation setting,
235–37

instances. See server instances
Instant File Initialization, 433
instead-of trigger, 13
int data type, 217

storage requirements, 411
integer values, 216–17
integrity checks, 282
intent locks, 599–01
Intent-Shared (IS) locks, 372–74
internal cleanup task, 79–80
internal fragmentation, 358–64
internal global memory

pressure, 564
internal resource pool, 48

MIN and MAX values, 49
internal workload group, 44–47

MIN and MAX values, 49
IO_COMPLETION, 87
IS (Intent-Shared) locks, 372–74
is_fiber, 26
is_online, 25
is_preemptive, 26
isolation, 16, 590
isolation levels, 592–96. See also

specific levels
allowable behaviors, 596
CHANGETABLE function, 85
concurrency, 16–17
filestream data manipulation, 394
key locks, 603–04
lock release, 608
locking examples, 612–17
row versioning, 635
selecting, 655–57
transaction dependencies, 590
transaction services, 16–17
T-SQL access, 394

626249.indb 739 3/10/11 11:58 AM

740	 join operations

J
join operations, 444

associativity, 460–61
hints, 573
join order, 516
outer joins, 85
partitioned tables, 489
semi-join operator, 451–53
table, 84–85

K
kanatype sensitivity/insensitivity,

226
KEEP PLAN hint, 548, 572, 574
KEEPFIXED PLAN hint, 572, 574–75

recompilation, skipping, 550
Kerberos, 171
key locks, 603–05, 626
KeyHashValue, 329
key-range locks, 595, 601, 605
keywords

full-text indexes, 510
reserved, 180, 213

L
LANs (local area networks), Named

Pipe protocol, 11
Large Object (LOB) data. See LOB

(Large Object) data type
latches, 597, 634
latency, 119
LAZYK constant, 574
lazywriter, 23, 31–32

NUMA and, 40–41
leaf level

B-tree, 300–03
clustered indexes, 311–14
consistency checks,

678–79
nonclustered indexes, 314–15,

326–35
page splitting, 349–52

Least Frequently Used (LFU) policy,
30–31

Least Recently Used (LRU) policy,
30–31, 34–35

LEFT JOIN operator, partitions, 438
Left semi-join, 453
LFU (Least Frequently Used) policy,

30–31
Lightweight Pooling option, 22,

64–65
LIMITED parameter, 305
linked lists, 30
load_factor, 26

LOB (Large Object) data type, 147,
238–39, 250–51, 254–56

compaction, 370
fact generation, 668–70
filestream. See filestream data
fragmentation removal, 370
index pages, 318
linkage consistency checks,

699–700
MAX-length, storage, 386–88
online index rebuilding, 374
pages, 15
query processor, 671
restricted-length, storage, 376–80
row operations, 15
row-overflow data storage,

376–80
storage, 375–88
unrestricted-length, storage,

380–86
local area networks (LANs), Named

Pipe protocol, 11
LOCAL cursors, 155
local memory management, 34–35
local memory pressure, 563–64
locale, 26
Lock Pages in Memory option,

36–37
LOCK_ESCALATION option, 629
LOCK_MONITOR, 633
LOCK_TIMEOUT option, 594, 659–61
locking/locks, 587, 596–97. See also

specific locks
architecture, 620–22
associated entity ID, 607–08
blocks, 623–24
compatibility, 547–48
control, 657–61
DAC troubleshooting, 28–29
deadlocks, 630–34
duration, 608
escalation, 629–30
examples, 612–18
granularity, 601–05
hints, 657–59
indexes, 363
Intent-Shared, 372–74
key-range locks, 595, 601, 605
lock manager, 632
modes, 598–600
online index builds, 372
operations, 17
owner blocks, 624
ownership, 609
partitioning, 622–23
partition-level escalation, Query

Optimizer, 507
Read Committed isolation

level, 593

Read Uncommitted isolation
level, 592–93

release/timeout, 594
Repeatable Read isolation

level, 594
resources, 605–07
row- vs. page-level, 627–28
Schema-Modification, 373–74
Server tasks, 22
Shared, 372–74
spinlocks, 597
syslockinfo table, 624–27
table, 595
timeout setting, 659
transaction services, 16
types, user data, 597–98
updates, Query Optimizer, 505–07
viewing, 609–12

Locks option, 64
log backup, 197, 203
log files, 130

multiple, 189–92
log manager, 18, 193, 196
log marks, 198
LOG ON clause, 134
Log Sequence Number (LSN), 162,

181–82, 185–86, 198
maximum, 206
restored pages, 208

logging, 181. See also transaction log
compression and, 433
filestream changes, 394–95
indexes, 363
minimal, 199–201
tempdb database, 165
write-ahead, 16

logical fragmentation, 364
logical operators, 101
logical properties, 448–49
login names

authentication, 171
security, 172–73

long data region, CD format, 419
longest transaction running time

counter, 652
LOOP JOIN hint, 516
lost updates, 591
LRU (Least Recently Used) policy,

30–31, 34–35
LRU-K algorithm, 30–31
LSN (Log Sequence Number).

See Log Sequence
Number (LSN)

M
m_typeFlagBits value, 427
Machanic, Adam, 75
Management Data Warehouse, 9–10

626249.indb 740 3/10/11 11:58 AM

	 multiple-page memory	 741

Management Studio
ALL_ERRORMSGS option, 716
authentication mode, 171
DAC connection, 27–28
deadlock generation, 631–32
Object Explorer, 127, 132, 139
QUOTED_IDENTIFIER, 214
recovery interval, setting, 192
table creation, 211–12

master database, 126
backups, 126
consistency checks, 667
locks, 605–06
metadata views, 5
moving, 179
snapshots, 164
sp_cachedobjects, 566
sp_loginfo, 189–92
syslockinfo, 625
system base tables, 2

materialized views, 342–43
MAX attribute, LOB data, 238–39
Max Degree of Parallelism option,

70–71
Max Server Memory option, 37,

41, 62
MAX specifier, data storage, 386–88
MAX values

resource pools, 47–49
workload groups, 48–49

Max Worker Threads setting, 21,
65–66

MAX_CPU_PERCENT value, 47
MAX_DOP property, 46
MAX_MEMORY_PERCENT value, 48
MAXDOP, 317
MAXDOP <N>, 518
MAXSIZE property, 134–36

altering, 143
MDAC 2.8

client protocols, 11
network configuration, 55

media recovery, 183
Memo, 449, 459–62
memory, 29. See also storage

Address Windowing Extensions
(AWE), 36

buffer pool, 29, 36–38
cache management, 34–35
checkpoints, 32–34
configuration, 62–64
data cache, 29
events, 32
foreign, 41
free buffer list, 31–32
global vs. local management,

34–35
in-memory data page access, 30
interval observance, 38–40

lazywriter, 31–32
lock escalation, 629–30
lock owner block, 620–22
locks, 627–28
Memory Broker, 35
nonlocal, 41
NUMA, 19–20, 40–41. See also

NUMA
page management, 30–31
physical, 37–38
pressure, 562–63
pressure, cache costing, 564–65
pressure, global, 564
pressure, local, 563–64
read-ahead, 41–42
Resource Governor controls,

51–52
resource pools allocation, 47–48
Server worker use, 21
sizing, 35–36
SQL Server 2008 configurations,

37–38
target, 562
virtual, 39
visible, 562
visible target, 562
workload groups, 46

Memory Broker, 35
memory brokers, 18
MERGE JOIN hint, 516
MERGE statement

compatibility levels, 180
concurrency, 587
Query Optimizer, 491–92
USE PLAN hints, 521

MERGE UNION hint, 515
Merge, updates, 497–99
metadata

cache, 34–35
catalog views, 4–5
catalog, session-scoped, 118–19
compatibility views, 3–4
consistency checks, 684–85
data storage, 251–54
filestream data, 397–99
information schema views, 6
locking subtypes, 611
locks, 607
page compression, 431–32
partitioning, 436–39
plan cache, 525–26, 556–61
Resource Governor, 52–53
snapshot transaction, 652–55
SPARSE columns, 409
SQL Server, 2–3, 8
statistics, 463
Storage Engine, 680–81
system functions, 6–7
system stored procedures, 7–8

metadata cache, 684–85
Microsoft codeplex site, 128–29
Microsoft Customer Support

Services, 22, 24
Microsoft Distributed Transaction

Coordinator (MS DTC), 16
Microsoft SQL Server 2008.

See SQL Server 2008
Microsoft SQL Server 2008: T-SQL

Programming, 218
Microsoft User Education, 128–29
Microsoft Visual Source Safe, 212
Microsoft Windows. See Windows

operating system
Microsoft.SqlServer.Management.

Trace namespace, 107–08
Min Memory Per Query option, 69
Min Server Memory option, 38, 62
MIN values

resource pools, 47–49
workload groups, 48–49

MIN_CPU_PERCENT value, 47
MIN_MEMORY_PERCENT value, 47
minimal logging, 199–201
Minimally Logged Map (ML Map)

pages, 680
mirroring backups, 203–04
mirroring options, database, 150–51
mirroring recovery, 185
mixed extents, 145
Mixed mode, 171
ML MAP (Minimally Logged Map)

pages, 680
mode parameter, 305
model database, 126

database creation, 132–34
options setting, 148
recovery mode, changing, 202
snapshots, 164

modification counters, 548–49
MODIFY FILE option, 136
money data type, 216–17

storage requirements, 412
msdb database, 128

backupset table, 67–68
suspect_pages table, 206–07

mssqlsystem resource database.
See resource database

mssqlsystemresource database, 712
multi_pages_in_use_kb, 40
multi_pages_kb, 39
MULTI_USER option, 151–52
multipage allocations, 570
multiple files, 139–40

log, 189–92
tempdb database, 168

multiple-page memory
allocation, 39
use, 40

626249.indb 741 3/10/11 11:58 AM

742	 Named Pipes

N
Named Pipes

network configuration, 55
Named Pipes protocol, 11
namespaces, 173
naming

constraints, 280–81
constraints, catalog view and,

280–91
conventions, 215
delimited identifiers, 214–15
objects, schema name

qualification, 568
reserved keywords, 213
tables, 215
tables and columns, 212–13
T-SQL code, 573
Windows collations, 226

nchar characters, 221–22
nested transactions, 16
network configuration, default, 55
network protocol

configuration, 54
libraries, 11

newdb database, 134
NEWID function, 240–41
NEWNAME property, 143
NEWSEQUENTIALID function,

240–41
NO_INFOMSGS option, 711, 717
NO_TRUNCATE option, 203–04
NO_WAIT option, 155
NOEXPAND hint, 345, 521
NOINDEX option, 715–16
NOLOCK hint, 659, 661
nonclustered indexes, 314–15,

326–37
consistency checks, 703–05
forward pointers, 360–61
nonunique rows, 334–35
online rebuilding, 372–74
rows, 326–31
rows on clustered table,

331–34
rows with included columns, 336
rows, with filters, 336–37

nondeterministic functions, 339
non-leaf level

B-trees, 300–03
clustered indexes, 320–21
nonclustered indexes, 334–35
row deletion, 358

nonlocal memory, 41
nonrepeatable reads, 591

allowable, by isolation level, 596
nonunique nonclustered index rows,

334–35
non-updating updates, 501–02

normalization, query, 13
Northwind2 database, 129–65, 528,

533, 537, 540, 571
NOT NULL, 241–43
NOWAIT option, 33
ntext data type, 380–81,

386–87, 464
NTFS file system, 160–62

filestream data, 399
NULL values, 241–43

actions, 115
column addition, 284
consistency checks, 690
database_id parameter, 304
DB_ID function, 306–07
filestream data, 392–93
fixed-length rows, 267
index row filters, 336–37
mode parameter, 305
object_id parameter, 304
partition_number parameter, 305
PRIMARY KEY constraints, 315
SPARSE columns, 400–01, 405–06,

409–12, 502, 692
SQL options, 156
SQL plan guides, 576–77
sys.dm_exec_cached_plan_

dependent_objects, 559
sys.dm_exec_query_plan, 558
table alterations, 286–87
variable-length columns, 270–72

numeric data, 216–17. See also
decimal/numeric data type

NUMA
architecture, 19–20
hardware, 19–20
locks, 621–22
memory and, 40–41
nodes, 19
schedulers and, 23

NUMERIC_ROUNDABORT option, 157
nvarchar data type, 221–22

SQL collations, 237–38
storage requirements, 412

O
Object Explorer

database creation, 132
database creation, multiple

filegroups, 139
resource database view, 127

object ID, 625, 668–70
sys.change_tracking_[object id],

80–81
Object plan guide, 576, 579–80
Object Plans cache store, 553–55

compiled plans, 555
executable plans, 555–56

object stores, 34
object_definition function, 5
OBJECT_ID function, 306–07
object_id parameter, 304
OBJECTPROPERTY function, 6, 546

determinism property, 339
IsIndexable property, 343–44

OBJECTPROPERTYEX function, 6
objects

compiled, caching, 540–43
correctness-based recompiles,

543–46
dependent, 559
ID, 249
internal, 165–66
lock compatibility, 619–20
partitioned, 434
plan cache, 565–67
schema changes, 543–44
schema creation, 174–75
schema name qualification, 568
user, 165

ODBC
prepare and execute method, 539
QUOTED_IDENTIFIER, 214
SET option, 149

OFFLINE file marker, 143
OFFLINE option, 152–53

partial restore, 208
offsets, page compression, 428
OGC (Open Geospatial

Consortium), 239
OLE DB, 12

Distributed Query feature, 507–09
network configuration, 55
prepare and execute method, 539
QUOTED IDENTIFIER, 214
SET options, 149

OLTP (Online Transaction Processing),
FORCESEEK hint, 517

ON/OFF options, 148
O’Neil, Elizabeth, 30–31
O’Neil, Patrick, 30–31
online index building, 372–74
ONLINE option, 152–53,

316, 372–74
online page restore, 207
Online Transaction Processing

(OLTP), FORCESEEK hint, 517
OPEN cursor command, 155
Open Geospatial Consortium

(OGC), 239
operating systems

buffer pool sizing, 36–38
configuration, 57–59. See also

configuration, operating system
memory available, 31–32

Operational events, 110
operations, bulk, 199–201

626249.indb 742 3/10/11 11:58 AM

	 pending_disk_io_count	 743

operators. See also specific
operators

equality, 122
predicates and, 113
Query Optimizer, 444–45
query plan, 450–56

optimality-based recompilation,
546–50

optimistic concurrency, 17, 587–88,
636–37

advantages and disadvantages,
656–57

isolation levels, 592, 596
Read Committed isolation level, 593
row versioning. See row

versioning
Snapshot isolation level, 594–95

optimization, 445
adhoc workloads, 530–32
hints, 573–75
query. See Query Optimizer
tempdb, 166–68

Optimize for Ad Hoc Workloads
option, 530–32

OPTIMIZE FOR hint, 518–20,
574, 582

OPTION (FAST N), 476–77
or operator, 101
OUTER APPLY operator, 453–54, 566
OUTER JOIN, 85
OUTPUT clause, filestream data

deletion, 394
owner blocks, 624
ownership, lock, 609

P
P_Customers procedure, 541
package0, 109, 112
packages, 109
PAD_INDEX option, 316,

366–67
page compression, 423–24

analysis, 429–30
backups, 433
CI record rebuilding, 430–31
column prefix, 424–25
dictionary, 426
metadata, 431–32
performance issues, 432–33
physical storage, 426–31

Page Free Space (PFS) pages, 15,
148, 289–90

allocation consistency checks,
679–83

page ID, 668–70
PAGE_VERIFY option, 158–59
PageModCount, 428, 430–31

pages. See also data pages; index
pages

allocation, 167
allocation operations, storage

engine, 15
allocation structure,

289–90
auditing, 685–87
BCM. See Bulk Changed Map

(BCM) pages
chain, 311
code, 227, 232
compression. See page

compression
cross-page consistency checks,

694–705
DCM. See Differential Changed

Map (DCM) pages
density, 364
finding, 262–64
GAM, 15, 145–48
header, 254–55
IAM. See IAM pages
ID, 207–08
LOB, 380–83
locking/locks, 597, 627–28, 630
numbering, 144
PAGE VERIFY option, 158–59
PFS, 15, 148, 289–90
reading, 674–75
restoration, 206–08
row-overflow, 376–80
SGAM, 15, 145–48
space allocation, 145–48
splitting, 348–52
text, 693–94
TEXT_MIXED and TEXT_DATA,

382–83
TORN PAGE DETECTION option,

158–59
paging file, 58
PAGLOCK hint, 658
pair_matching target, 116
parallel queries, 46, 70–71,

488, 518
Parallel Scan feature, 488
parallelism, 675–77

MAX_DOP, 46
MAXDOP <N> hint, 518
query plans, 455–56

parameterization
automatic, 457–58, 534, 536–38,

571–72
caching, 533–38, 568
database options, 150
failures, plan guides, 581
forced. See forced

parameterization;
PARAMETERIZATION FORCED

queries, 458
simple. See PARAMETERIZATION

SIMPLE; simple
parameterization

PARAMETERIZATION FORCED, 520,
537–38, 575

parameterization failures, 581
Template guide plans, 577

PARAMETERIZATION FORCED
option, 535–36

PARAMETERIZATION SIMPLE, 520, 575
parameterization failures, 581
Template plan guides, 577

parameterized queries, 458–59
parameters

cache plan removal, 552–53
OPTIMIZE FOR hint, 518–20
PathName function, 398
sniffing, 541
system stored procedures, 7–8
vs. variables, 574

parent node, 25
parent text facts, 669
parent_node_id DMO, 25
parsing, 443–45
partial backups, 206
partial restore, 208
partition ID, 668–70
partition keys, 403
partition_number parameter, 305
partitioned views, 434
partitioning

compression and, 423
consistency checks, 692
filestream data, 439
functions and schemas,

434–36
ID, 502
lock escalation, 507
locks/locking, 606, 622–23
metadata, 436–39
partition ID, 490
partition-aligned index views, 490
partitioned tables, 486–90,

502–05
partitioned updates, Query

Optimizer, 502–05
row compression and, 416
sliding window benefits, 439–42
tables, Query Optimizer, 486–90

passwords
Configuration Manager, 56
tracing security, 89
Windows authentication, 171

PATHINDEX function, 238
PathName function, 397–99

parameters, 398
PENDING task state, 26
pending_disk_io_count, 26

626249.indb 743 3/10/11 11:58 AM

744	 pending_io_byte_average

pending_io_byte_average, 27
pending_io_byte_count, 27
pending_io_count, 27
performance

collation type and, 237
counters, 571–72, 651–52
filestream data and, 399–400
fragmentation and, 369
lock escalation, 630
locks, 627–28
page compression, 432–33
plan guides, 575
plan hinting, 515
reports, 9–10
tempdb and version store

monitoring, 651
per-index update plans, 499–501
permissions. See also sysadmin role

ALTER, 132, 175, 212
ALTER ANY SCHEMA, 175
ALTER TRACE, 88
CONTROL, 132
database creation, 132
dbo object creation, 174
schema creation and altering,

174–75
server level, 88
tracing, 88–89
View Server State, 25, 38–39

per-row insert, 494
persisted columns, 341–42

computed, 464
pessimistic concurrency, 17, 587–88,

636–37
advantages and disadvantages,

655–57
isolation levels, 592, 596
locking/locks. See locks/locking
Read Committed isolation level, 593
Repeatable Read isolation level, 594
Serializable isolation level, 595–96

PFS (Page Free Space) pages. See
Page Free Space (PFS) pages

phantoms, 591–92
allowable, by isolation level, 596
Serializable isolation level, 595–96

physical fragmentation, 364
physical memory, 37–38
physical properties, 448–49
physical storage, 426–31
physical_memory_in_bytes, 37
PHYSICAL_ONLY option, 718
plan cache, 29, 34–35, 525–27

cache stores, 553–55
clearing, 526–27
compilation and recompilation

problems, 572–73
compiled plans, 555
costing, 564–65

execution contents, 555–56
handles, 556–57
internals, 553–65
metadata, 525–26, 556–61
multiple plans, 567–68
objects, 565–67
plan freezing, 584–85
plan guides, 573–75, 584–85.

See also plan guides
plan removal, 550–53
size limit, 561–63
sys.dm_exec_cached_plan_

dependent_objects, 559
sys.dm_exec_cached_plans, 559
sys.dm_exec_query_plan, 558
sys.dm_exec_query_stats, 560–61
sys.dm_exec_requests, 560
sys.dm_exec_sql_text, 557–58
troubleshooting, 569–85
wait statistics, 569–71

plan caching. See caching
plan guides, 522, 573–85

considerations, 579–83
management, 579
plan freezing, 584–85
purpose, 575
types, 575–79
validation, 583–84

plan handles. See handles;
plan_handles

plan hinting, 511–13
{HASH | ORDER} group, 514–15
{MERGE | HASH | CONCAT}

UNION, 515
debugging plans, 513–14
FAST <number_rows>, 517–18
FORCE ORDER, {LOOP | MERGE |

HASH} JOIN, 516
FORCESEEK, 517
INDEX=<indexname> | <indexid>,

516–17
MAXDOP <N>, 518
NOEXPAND, 521
OPTIMIZE FOR, 518–20
PARAMETERIZATION

{SIMPLE | FORCED}, 520
USE PLAN Nxml plan, 521–22

plan_handle, 525–26, 544, 552, 556–57
attributes, 545
plan freezing, 584–85
sys.dm_exec_cached_plan_

dependent_objects, 559
sys.dm_exec_cached_plans, 559
sys.dm_exec_query_plan, 558
sys.dm_exec_query_stats, 560–61
sys.dm_exec_requests, 560
sys.dm_exec_sql_text, 557–58
sys.dm_exec_text_query_plan,

558–59

pool_name, 553
ports

dynamic, 59
firewall configuration, 59
server instances, 56

precision, 216, 220
pred_compare, 112–13
pred_source, 112–13
predicates, 111–13

index searching, 477–80
prefix compression, column, 424–25
prepare and execute method, 569
Prepared object type, 538–40, 571

compiled plans, cache store, 555
prepared queries

caching, 538–40
parameter verification, 571–72

primary data files, 130
primary filegroups, 138–39
primary key, 211

clustered indexes, 312–13
joins, 84–85

PRIMARY KEY constraint,
246, 279–81, 315, 318

dropping, 365
filestream data, 390–91

primary principals, 170, 174
principals, 170, 173–74
Priority Boost setting, 65
private targets, 116
Proc objects, 540–41, 555
procedure cache, 525
procedures, stored. See stored

procedures
processes

deadlocks, 632–34
lock compatibility, 619
query. See queries
transactions. See transactions

processing
columns, DBCC, 689–92
data and index pages, DBCC,

687–89
efficiency, DBCC, 668–77
parallelism, 675–77
text pages, DBCC, 693–94

processor affinity, 23–24
Profiler, 86, 89–97, 105–08, 513
programmatic data integrity, 279
progress reporting, 714–15
Project operator, 450
properties. See also specific

properties
ACID, 16–17, 589
database files, 130–32
group, 449
logical vs. physical, 448–49
Query Optimizer, 447–49
workload groups, 45–47

626249.indb 744 3/10/11 11:58 AM

	 recovery	 745

property functions, 6–7
proportional fill, 140
protocol layer, engine

configuration, 8–9
protocols

Database Engine, 11–12
endpoints, 12

pseudotables, 4, 9–10, 565–67
public targets, 116
pubs sample database, 129,

194–95, 541

Q
qualified retrieval, 14
queries

adhoc, 528–30
Blocked Process Threshold option,

69–70
caching. See caching
Cost Threshold For Parallelism

option, 70–71
execution plan, 70–71, 561
hash value, 561
hints, 573–75, 598
Index Create Memory option, 70
index views, 345
longest-running, 560
Max Degree of Parallelism option,

70–71
Min Memory Per Query option, 69
normalization, 13
optimization, 445. See also

optimization; Query Optimizer
parallel, 46, 70–71, 488, 518
parameterized, 458–59
plan. See query plan
prepared, 538–40
processing options, 69–71
processing, Change Tracking,

82–83
processing, DML, 82–83
Query Governor Cost Limit

option, 70
Query Wait option, 69
remote, 508–09
serial, 46
server-side trace metadata,

102–04
shell, 533–34, 540
timeout errors, 463
updates. See updates
workload groups, 46–47

query covering, 314
query executor, 12, 14
Query Governor Cost

Limit option, 70
Query Optimizer, 12–14, 443–45

architecture, 456–62
auto-parameterization, 457–58

cardinality estimation, 462–63,
470–75

costing, 461–63, 475–77
data warehousing, 490–91
Distributed Query, 507–09
extended indexes, 510–11
index constraints, 315
index selection, 477–86
index views, 345
index- vs. table-level

modifications, 362
limitations, 459
MAXDOP option, 317
optimization, 445
parallel queries, 70–71
partitioned tables, 486–90
plan hinting, 511–22. See also plan

hinting
query plan, 446–56. See also

query plan
simplification, 457
statistics, 462–70
STATISTICS_NORECOMPUTE

option, 317
the Memo, 449, 459–62
tree format, 444–45
trivial plans, 457–59, 484
updates, 491–507. See also updates

query plan, 446–56. See also plan
hinting

alternatives storage, 449
guides. See plan guides
operators, 450–56
parallelism, 455–56
properties, 447–49
rules, 446
subquery plans, 451–53

query processor, 8–9, 12
DBCCs and, 670–73
fact storage, 670
parallelism, 675–77

query tree, 12
Query Wait option, 69
quotation marks, 214–15

identifiers, 157
USE PLAN hints, 522

quoted identifiers, 214–15
QUOTED_IDENTIFIER option, 157,

214–15

R
RAID

filestream data, 399
mirroring, 203–04

Randal, Paul, 299, 358, 399, 663
Range locks, 605
RANGE values, 472
RangePartitionNew function, 503
ranges, sort order, 228–30

Read Committed isolation level,
394, 593, 596, 635

lock duration, 608
lock example, 612–13

Read Committed Snapshot isolation
level, 394, 635, 637–38

advantages of, 655–56
CHANGETABLE function, 85
vs. Snapshot, 646–48

Read Uncommitted isolation level,
394, 592–93, 596

READ_COMMITTED_SNAPSHOT
option, 593, 635, 659

values, 641–42
READ_ONLY option, 153–54
READ_WRITE option, 153–54
read-ahead feature, 41–42
READCOMMITTED hint, 659
READCOMMITTEDLOCK hint, 659
readers, blocking/locks

concurrency, 17
locking operations, 17

read-only databases, 176
READONLY filegroups, 143
read-only files

backups, 205
partial backup, 206

READPAST hint, 659–61
reads

dirty, 591
nonrepeatable, 591

READUNCOMMITTED hint, 659–61
READWRITE filegroups, 143
read-write files

backups, 205
partial backup, 206

real data type, 339
storage requirements, 411

REBUILD option, 366
recompilation, 525

causes, 543–53
correctness-based, 543–46
multiple, 550
optimality-based, 546–50
problems, 572–73
skipping, 549–50
temporary tables, 572

recompilation threshold (RT), 548
RECOMPILE hint, 573–74
RECONFIGURE command, 62, 389
RECONFIGURE WITH OVERRIDE

command, 62
Recoverable VLF state, 187
recovery, 181

analysis phase, 184
checkpoints, 32–34
crash, 182
database. See database recovery
fast, 185
interval, 32–33, 66–67, 192

626249.indb 745 3/10/11 11:58 AM

746	 recovery

recovery (continued)
LSNs, 185–86
media, 183
mirroring, 185
models, 198–202
modes, changing, 202
modes, switching between, 202
phases, 184–86
redo phase, 183–84
restart, 182, 205
restore, 183, 205
undo phase, 183–84

Recovery Interval option, 66–67
RECOVERY option, 158–59
RECOVERY_PENDING state,

152–53
RECURSIVE_TRIGGERS option, 157
referential integrity, 279
regions, 163
relational engine, 8–9, 12–14
Remote Admin Connection, 28
remote queries, 508–09
removed_all_rounds_count, 40
REORGANIZE option, 368–71
REPAIR options, 716
repair, database, 719–23

EMERGENCY mode, 721–22
REPAIR_ALLOW_DATA_LOSS

option, 722
Repartition Streams operation,

455–56
Repeatable Read isolation level, 394,

594, 596
lock duration, 608
lock example, 613

REPEATABLEREAD SERIALIZABLE
hint, 659

Replay options, traces, 93–97
REPLICATE function, 268

filestream data insertion, 392
Request_ columns, 611–12
REQUEST_MAX_CPU_TIME_SEC

property, 46
REQUEST_MAX_MEMORY_GRANT_

PERCENT property, 46
REQUEST_MEMORY_GRANT_

TIMEOUT_SEC property, 46
requests, Server worker, 22
reserved keywords, 180, 213
resource database, 127–28
Resource Governor, 42–43

cache plan clearing, 553
classifier function, 43
controls, 51–52
DMOs, 53
enabling, 43
extended events, 18–19
metadata, 52–53
pool sizing, 48–49

resource pools, 47–48
sample syntax, 50
workload groups, 44–47

Resource Monitor, 23, 34–35
resource pools, 42–43, 47–48

MIN and MAX values, 49
sizing, 48–49

resource_ columns, 610–11
resource_address, 27
resource_description, 27
RESOURCE_SEMAPHORE_QUERY_

COMPILE waits, 570
resources, lock, 605–07
restart recovery, 182, 205
restoration

database, 203–09. See also
backups; database recovery

page, 206–08
partial, 208
with standby, 208–09

RESTORE command, 204–05
RESTORE commands

snapshots, 164
RESTORE DATABASE command, 206

PAGE clause, 208
restore recovery, 183, 205
RESTORING state, 152–53
RESTRICTED_USER option, 151–52

termination, 154–55
result sets, 12
Reusable VLF state, 188
RID, 329–31
Right semi-join, 453
ring buffer target, 123–24
ring_buffer target, 116, 122
ROLLBACK AFTER option, 154
ROLLBACK IMMEDIATE option, 154
ROLLBACK options, 638
ROLLBACK TRAN command, 181,

588–89
lock hints, 658

rollover files, 100
rounds_count, 40
row versioning, 15–16, 635–37

snapshot transaction metadata,
652–55

snapshot-based isolation levels,
637–48

version store, 648–52
ROWCOUNT operation, 492
ROWGUIDCOL property, 241,

390–91
ROWLOCK hint, 659
row-overflow data, 147, 250–51,

253–56
index pages, 318
storage, 376–80

row-overflow pages, 15
row-overflow pointer bytes, 378–79

rows, 211
addition, heap modification,

290–91
bigrowstable, 377
B-tree deletion, 355–58
compression, 414–22
compression, page compression

and, 423
constraint failures, 281–82
deletion, heap modification,

291–94
deletion, indexes, 352–58
deletion, non-leaf level, 358
FAST <number_rows> hint,

517–18
fixed-length, storage, 265–67
heap deletion, 352–55
index formats, 318–19
in-place updates, 361
in-row data, 255
insertion, indexes, 347–48
leaf-level, 300–03
locked resources matching,

626–27
locking example, 616–17
locks, 597
locks, row- vs. page-level, 627–28
moving, index, 359–60
new format, 416–22
nonclustered indexes, 314, 326–31
nonclustered indexes, clustered

table, 331–34
nonclustered indexes, filters,

336–37
nonclustered indexes, included

columns, 336
nonclustered indexes, nonunique,

334–35
non-leaf level, 300–03
overflow data. See row-overflow

data
row offset array, 255–56
sets, 12
storage, 260–62
storage engine operations, 14–15
structure, 260–62
updating, heap modification,

294–97
updating, indexes, 358–62
updating, not-in-place, 361–62
variable- vs. fixed-length, 221–24
variable-length, storage, 267–72
versioning. See row versioning
VLF, 189

rowset provider, 87, 105–08
rowversion data type, 239
RPC:Completed event, 90–91,

105–06, 579–80
rules, Query Optimizer, 446

626249.indb 746 3/10/11 11:58 AM

	 SGAM (Shared Global Allocation Map) pages	 747

RUNNABLE task state, 26
runnable_tasks_count, 25
RUNNING task state, 26
run-time events, 75. See also events

S
S locks. See shared (S) locks
sample databases, 128–30. See also

specific databases
SAMPLED parameter, 305
sargable predicates, 478–80
SATA/IDE disk drives, filestream

data, 399
scalability, NUMA, 19
scalar data, 111–12
scale, 216, 220–21
Scan operations, 477–80

parallel, 488
Schedule Monitor, 23
scheduler_id, 25, 27
schedulers, 20–21

binding to CPUs, 24–27
dedicated administrator

connection (DAC), 27–29
dynamic affinity, 23–24
Dynamic Management Objects,

24–27
hidden, 23
NUMA and, 23
preemptive vs. cooperative, 20–21
Server, 21
Server tasks, 22
Server workers, 21
threads vs. fibers, 22

scheduling
configuration, 64–66

schemas
binding, 339–40
default, 174–75
ID, 249
modification locks, 373–74,

599–01
names, 4–5, 212–13
object name qualification, 568
partitioning, 434–36
principals and, 173–74
stability locks, 599–01
table creation, 212
vs. databases, 173
XE events, 110

Sch-M-lock, 373–74
SCOPE_IDENTITY function, 248
scripting, 97–101
SCROLL_LOCKS, 609
SCSI disk drives, filestream data, 399
SE_MANAGE_VOLUME_NAME, 136
SecAudit package, 109
secondary data files, 130

secondary principals, 170, 174
securable, 170
security

database, 170–75
tracing, 88–89

Seek operation, 477–80
SELECT INTO command, 191, 199,

201–02
select into/bulkcopy option, 201–02
SELECT statement, 5

access methods code, 14
catalog view shortcuts, 7
concurrency, 587
default isolation level lock

example, 612–13
DMOs, 9–10
GO separator, 530
lock hints, 657–58
multiple cache plans, 568
optimistic concurrency, 656
phantoms, 591–92
property functions, 6
Query Optimizer, 12–13
Read Committed Snapshot

isolation level, 637–38, 651
RECOMPILE hint, 573–74
Repeatable Read isolation level

lock example, 613
Serializable isolation level lock

example, 613–14
Snapshot isolation level, 640, 645,

656–57
Template plan guides, 578
transaction ID, 652

SELECT: statement
COLUMN_SET, 403–05

SELECT@@version, 127
semi-join operator, 451–53
Sequence operator, 500
Sequence Project operator, 451
serial queries, 46
Serializable isolation level, 394,

595–96
lock duration, 608
lock example, 613–16

server collation, 225
server instance

authentication, 171
AWE. See Address Windowing

Extensions (AWE)
configuration, 57
CPU binding, 24
filestream enabling, 389
lazywriter. See lazywriter
memory, 38. See also memory
network protocols, 11
remote, Distributed Query,

508–09
resource pools. See resource pools

SQL Server Browser service, 56
tasks. See tasks
tempdb database, 168
transaction management, 16
workload groups. See workload

groups
Server Memory Change events, 32
Server Profiler, 579–80
server system configuration, 57
Server workers, 21–24
SERVERPROPERTY function, 6
server-side tracing,

97–108
Service Broker

consistency checks, 706
database options, 151
msdb database, 128

services
management, 55–56
nonessential, configuration, 59

session ID (SPID)
NUMA and schedulers, 23
Server tasks, 22

session_id, 27
SESSIONPROPERTY function, 338
sessions

lock owner, 609
workload groups, 44–47

session-scoped catalog metadata,
118–19

session-scoped configuration
options, 119–20

SET DEADLOCK_PRIORITY
statement, 633–34

SET IDENTITY_INSERT option, 246
SET LOCK_TIMEOUT,

659–61
SET options, 149

compilation and recompilation
problems, 572

computed columns and index
views, 338

correctness-based
recompiles, 544

lock_timeout, 594
multiple cache plans,

558, 567
recompiles, 545–46

SET QUOTED_IDENTIFIER ON,
214–15

SET SHOWPLAN_XML ON,
575, 580

SET STATISTICS PROFILE ON, 475
SET TRANSACTION ISOLATION

LEVEL command, 592
Set Working Size option, 63
SGAM (Shared Global Allocation

Map) pages. See Shared Global
Allocation Map (SGAM) pages

626249.indb 747 3/10/11 11:58 AM

748	 shared (S) locks

shared (S) locks, 372–74, 505,
596–98, 600–01

Repeatable Read isolation
level, 594

Serializable isolation level, 595
Shared Global Allocation Map

(SGAM) pages, 15, 145–48
allocation consistency checks,

679–83
Shared Memory protocol, 11, 54

network configuration, 55
SHARED_TRANSACTION_

WORKSPACE owner, 609
shell queries, 533–34, 540
short data region, CD format,

417–18
SHUTDOWN WITH NOWAIT

command, 33
sibling facts, 669
SIDs, database security, 172–73
simple parameterization

caching, 533–38, 568
disallowed constructs, 534–35
drawbacks, 536–38

SIMPLE PARAMETERIZATION
hint, 520

SIMPLE recovery model, 165,
195, 201

file and filegroup backup, 205
partial backup, 206
switching modes, 202
truncation, 201

Simplification phase, Query
Optimizer, 457

single_pages_in_use_kb, 40
single_pages_kb, 39
SINGLE_USER option, 151–52

detaching databases, 175–76
termination, 155

single-byte character data, 227–28
single-page memory

allocation, 39
use, 40

single-user mode, 128
SIU locks, 600–01
SIX locks, 600–01
SIZE property, 143
sliding window benefits,

partitioning, 439–42
smalldatetime data type,

218–21, 274
storage requirements, 412

smallint data type, 217
storage requirements, 411

smallmoney data type, 216–17
storage requirements, 412

SMP (symmetric
multiprocessing), 19

Snapshot isolation level, 394,
594–96, 638–39

advantages, 656
CHANGETABLE function, 85
database options, 151
database state viewing, 640–43
DDL, 643–45
disadvantages, 656–57
errors, 636–37
locking operations, 17
page compression, 433
row overhead, 224
scope, 639–40
vs. Read Committed Snapshot,

646–48
snapshot transactions

counter, 652
metadata, 652–55

snapshot-based isolation levels,
637–48

snowflake schema, 490
soft-NUMA, 19

memory and, 40–41
schedulers, 23

sort order
collations, 228–30
SQL collations, 232–33

sort units, 166
SORT_IN_TEMPDB option, 316, 367
SOS scheduler, 20–21.

See also schedulers
SOS_RESERVEDMEMBLOCKLIST

waits, 570
sp_adduser, 174
sp_attach_db, 177
sp_cache_objects, 566

Template guide plans,
577–78

sp_clean_db_file_free_space, 356
sp_clean_db_free_space, 356
sp_configure, 33, 57, 61–62

recovery interval, 192
sp_control_plan_guide, 579
sp_create_plan_guide

Template plan guides, 578
sp_create_plan_guide procedure,

575–76
sp_create_plan_guide_from_handle,

584–85
sp_db_vardecimal_storage_format,

413
sp_dboption, 148, 201–02
sp_estimate_data_compression_

savings, 431–32
sp_executesql, 538–39, 569

adhoc queries, 530
forced parameterization, 571

sp_get_query_template, 578, 582
sp_grantdbaccess, 174
sp_help, 132–33
sp_helpdb, 4, 7–8
sp_helptext, 5

sp_lock, 505, 597
sp_loginfo, 189–92
sp_password, 89
sp_recompile, 543–44, 572
sp_statement_completed, 122
sp_tableoption, 413
sp_tablepages, 382–83
sp_trace_create, 98, 100–01,

105–06
sp_trace_getdata, 106–07
sp_trace_setevent, 98, 101
sp_trace_setfilter, 98
sp_trace_setstatus, 98, 101,

104–05
SPARSE columns, 400

column sets and column
manipulation, 403–05

consistency checks, 692
converting, 402–03
index rows, 318
management, 400–03
metadata, 409
NULL vs. non-NULL storage

requirements, 405–06,
409–12

physical storage, 405–08
restrictions, 401–03
row compression and, 416
storage savings, 409–12
table alterations, 402–03
table creation, 401–02
updates, Query Optimizer, 502

sparse files, 160–63
sparse vectors, 406–08
spatial data type, 239
spatial indexes, 346, 510–11

consistency checks, 709
spinlocks, 597, 634
SPINLOOP task state, 27
Split/Sort/Collapse,

495–97
Spool operations, 454–55
SQL Audit, 109
SQL collations, 232

defined at startup, 234–35
sort order, 232–33
tertiary, 233–34
traps, 237–38

SQL Customer Advisory Team, 347
SQL Internals Viewer, 146
SQL Manager Cache (SQLMGR), 556
SQL Native Client, 54–55
SQL options, database, 150
SQL Plan cache store, 553–55

compiled plans, 555
eviction policy, 561–63
executable plans, 555–56

SQL plan guides, 576–77, 581
SQL Server 2000

cache store pressure limit, 562–63

626249.indb 748 3/10/11 11:58 AM

	 statistics profile output	 749

consistency checking, 663
database recovery method,

default, 159
pseudotables, 4, 9–10, 565–66
scheduler, 20
scripting traces, 100
sp_helpdb, 4
sys.traces vs. fn_trace_get info,

102
system base tables, 3–4

SQL Server 2005
Apply operator, 486–87
cache store pressure limit,

562–63
caching changes, 570
consistency checking, 663
database recovery method,

default, 159
MAX specifier, 386
out-of-bounds data import, 690
plan caching, 525
plan guide limitations, 583
recompilation, statement-level,

550
sys.indexes, 250–51
system base tables, 3–4
Vardecimal Storage property, 217

SQL Server 2008, 1, 73
authentication, 170–71
cache store pressure limit,

562–64
collation types, 225–27, 234–37
compatibility modes, 179–80
components, 8–18
configuration, 54–2. See also

configuration, SQL Server
consistency checking, 663
databases. See databases
Dedicated Administrator

Connection (DAC), 27–29
editions, 1–2
Extended Events Engine. See

Extended Events Engine
fiber mode, 22
filestream enabling, 389
indexes, 299. See also indexes
Installation Wizard, 235–37
instances. See server instances
lock compatibility matrix, 618
lockable resources, 607
MAX specifier, 386
memory, 29–2. See also memory
metadata, 2–8. See also metadata
NUMA architecture, 19–20
out-of-bounds data import, 690
partitioning, 487. See also

partitioning
plan caching, 525. See also plan

caching
plan guides, 575

pseudotables, 565
reserved keywords, 180, 213
Resource Governor, 42–53.

See also Resource Governor
scheduler, 20–27. See also

schedulers
server configuration, 57–72
single-use mode, 128
SQLOS, 18–19
storage. See storage
trace flags, 60
upgrading to, 551
USE PLAN hints, 521–22
Vardecimal Storage property, 217
wide update plans, 501

SQL Server 2008 Developer edition, 2
network configuration, 55
page compression, 423
row compression, 415

SQL Server 2008 Enterprise edition, 2
network configuration, 55
page compression, 423
Resource Governor. See Resource

Governor
row compression, 415

SQL Server 2008 Evaluation edition, 2
network configuration, 55

SQL Server 2008 Express edition
DAC support, 29
network configuration, 55

SQL Server 2008 Standard edition,
network configuration, 55

SQL Server 2008 Web edition,
network configuration, 55

SQL Server 2008 Workgroup
edition, network
configuration, 55

SQL Server 7.0
property functions, 6
scheduler, 20

SQL Server Agent service,
55–56, 128

SQL Server Authentication, 170–71
SQL Server collations. See SQL

collations
SQL Server Configuration Manager.

See Configuration Manager
SQL Server Database Engine. See

Database Engine
SQL Server FullText Search service,

55–56
SQL Server Integration Services

(SSIS), 55–56
SQL Server Profiler, 72. See also

Profiler
SQL Server Resolution Protocol

(SSRP), 56
SQL Server TechCenter, 108
SQL Server: Memory Manager

object, 37

SQL Text
handles, 556–57
sys.dm_exec_cached_plans, 559
sys.dm_exec_sql_text, 557–58

SQL Trace, 18–19
SQL Trace text, 572
SQL: Batch Completed event, 90–91,

579–80
SQL: Batch Starting event, 90–91
sql_handle, 552, 556–57

sys.dm_exec_query_stats, 560–61
sys.dm_exec_requests, 560
sys.dm_exec_sql_text, 557–58

sql_server.checkpoint_begin, 33
sql_server.checkpoint_end, 33
sql_statement_completed, 122
sql_variant data type, 239

storage, 275–79
storage requirements, 412

SQL_VARIANT_PROPERTY function, 6
SQL-92 standard, reserved

keywords, 213
sqlcmd, 716
SQLCMD command-line tool, 27–28
SQLOS, 8–9, 18–19

NUMA architecture, 19–20
sqlos package, 109
SQLPrepare/SQLExecute, 539
sqlserver package, 109
SQLSERVER: SQL Statistics object, 538
SQLTRACE_LOCK, 87
stack_bytes_used DMO, 26
STANDBY option, 208–09
standby, restoration with, 208–09
star schema, 490
started_by_sqlserver, 26
statement_completed session, 122
statements

DML, Query Optimizer, 12–13
workload groups, 44–47

STATIC cursors, 155
statistics

asynchronous statistics
update, 463

auto-create and auto-update,
462–63

auto-update, 573
density/frequency information,

466–68
design, 463–66
filtered, 468–69, 491
optimality-based recompiles, 547
out-of-date, 547–48
Query Optimizer, 462–70
query performance, 560–61
stale, 547–48
String Statistics, 469–70
wait, plan cache, 569–71

STATISTICS IO output, 583
statistics profile output, 513–14, 516

626249.indb 749 3/10/11 11:58 AM

750	 STATISTICS PROFILE output

STATISTICS PROFILE output, 467
STATISTICS XML output, 583
STATISTICS_NORECOMPUTE, 317
STATMAN function, 465
storage, 375. See also memory

cache size management, 561–63
caching, 563–64
compressed pages, 426–29
data. See data storage
data compression, 412–33. See

also data compression
date and time data, 218
DBCC CHECKDB disk space, 666
decimal and numeric data, 217
filestream data, 388–400
fixed-length rows, 265–67
integer data types, 217
LOB, 375–88
partitioning, table and index,

434–42
Query Optimizer, 445
scale values, time data, 220
SPARSE columns, 407–12. See also

SPARSE columns
variable-length rows, 267–70
version store, 635

storage engine, 8–9, 14–18
access methods, 14–16
consistency checks, 680–81
transaction services, 16–17
utility commands, 18

stored procedures
caching, 568–69
metadata, 7–8
traces, 97–101

String Statistics feature, 469–70
STVF plan, 510–11
subquery plans, 451–53
substitution rules, 446
SUSPECT state, 153
suspect_pages table, 206–07
SUSPENDED task state, 27
SWITCH operation

Query Optimizer, 490
SWITCH option

partitioning, 439–42
symmetric multiprocessing

(SMP), 19
synchronization, SQLOS, 18
synchronous I/O, 19
synchronous targets, 116
synchronous_event_counter

target, 116
syntax errors, command parser, 12
sys admin role

DAC connection, 28
sys schema, 213
sys.all_columns, 78

sys.allocation_units, 165, 167–68, 251
partitioning metadata, 436–39
querying, 252–54
SPARSE columns storage, 411

sys.allocunits
consistency checks, 677–79

sys.change_tracking_databases, 79
sys.columns

PathName function, 398
SPARSE metadata, 409
user-defined data, 244–45

sys.configurations, 60, 62
sys.data_spaces

PathName function, 398
sys.database_files, 130–32

PathName function, 398
sys.database_prinicpals, 172
sys.database_recovery_status, 194
sys.databases catalog view, 4–5
sys.databses

recovery mode, 202
sys.dm metadata, 5
sys.dm_db_file_space_usage, 169
sys.dm_db_index_operational_stats,

431
sys.dm_db_index_physical_stats,

296, 361, 650–51
fragmentation detection, 368
OBJECT_ID and DB_ID functions,

306–07
sys.dm_db_partition_stats, 293
sys.dm_db_session_space_usage,

169
sys.dm_db_task_space_usage, 169
sys.dm_exe_objects, 115
sys.dm_exec_cached_plan_

dependent_objects,
555–56, 559

sys.dm_exec_cached_plans, 525–26,
556–57, 559, 564

vs. sys.dm_exec_query_stats, 561
sys.dm_exec_connections, 54
sys.dm_exec_plan_attributes, 544
sys.dm_exec_query_plan, 558
sys.dm_exec_query_stats, 557,

560–61, 567
vs. sys.dm_exec_cached_plans,

561
sys.dm_exec_requests, 23, 138,

371, 560
progress reporting, 714–15

sys.dm_exec_sessions, 338
sys.dm_exec_sql_text, 525–26,

557–58
sys.dm_io_virtual_file_stats, 162–63
sys.dm_memory_objects, 554
sys.dm_os_memory_cache_clock_

hands, 34–35, 40

sys.dm_os_memory_cache_counters,
39, 553–54, 570

sys.dm_os_memory_cache_entries,
565

sys.dm_os_memory_cache_hash_
tables, 40, 554

sys.dm_os_memory_clerks, 35–36, 39
sys.dm_os_performance_counters,

196
sys.dm_os_schedulers, 23, 25
sys.dm_os_sys_info, 37

visible memory, 562
sys.dm_os_tasks, 26, 71, 597
sys.dm_os_threads, 26
sys.dm_os_wait_stats, 569
sys.dm_os_workers, 23, 26
sys.dm_tran_active_snapshot_

database_transactions,
652–55

sys.dm_tran_commit_table, 79
sys.dm_tran_current_transaction,

652–53
sys.dm_tran_locks, 329, 597, 605–06
sys.dm_tran_transactions_snapshot,

652–55
sys.dm_tran_version_store, 648,

652–55
sys.dm_trans_lock, 601–03
sys.dm_xe_map_values, 112
sys.dm_xe_object_columns, 110
sys.dm_xe_objects, 109, 112–14
sys.dm_xe_packages, 109
sys.dm_xe_sessions, 119
sys.dm_xe_sessions_targets, 121
sys.filegroups, 398
sys.fn_PhysLocFormatter, 264
sys.fn_validate_plan_guide, 583–84
sys.fn_xe_file_target_read_file, 124
sys.indexes, 4–5, 548–49

data storage, 250–51
partitioning metadata, 436–39
querying, 252–54

sys.internal_tables, 80, 398–99
sys.lockinfo, 624–27
sys.objects, 3–4
sys.partitions, 165, 251

compression metadata, 431
partitioning metadata, 436–39
querying, 252–54

sys.plan_guides, 579
sys.processes, 4
sys.server_event_session_actions,

118–19
sys.server_event_session_fields,

118–19
sys.server_event_session_targets,

118–19
sys.server_event_sessions, 118

626249.indb 750 3/10/11 11:58 AM

	 threads, scheduler	 751

sys.server_event_sessions_events,
118–19

sys.server_principals, 171
sys.stats, 468
sys.syscacheobjects, 565–67

Template plan guides, 577–78
sys.syscommitab, 78–79
sys.sysrcols

consistency checks,
677–79

sys.sysrowsets
consistency checks, 677–79

sys.system_internals_allocation_
units, 148

sys.system_sql_modules, 5
sys.tables, 5

partitioning metadata, 436–39
PathName function, 398
text in row option, 383

sys.traces, 102
sys.trans_locks, 605
sys.users, 3
sysadmin role, 212, 256.

See also permissions
database creation, 132
schema creation, 174
suspect_pages table

alterations, 207
syscacheobjects

compatibility view, 4
sysdatabases compatibility view, 3
sysindexes compatibility view, 3
system base tables, 2–3, 8
system catalog consistency checks,

677–79
system databases, 126–28. See also

specific databases
system functions metadata, 6–7
System Monitor

compilation and recompilation
problems, 572

system stored procedures metadata,
7–8

T
table alteration, 282

columns, adding, 284
columns, dropping, 285
constraints, 284–85
data type changes, 283
heap modification. See

heap modification
internals, 286–88
SPARSE columns, 402–03
trigger enabling and disabling,

286
table data type, 239

tables, 211
altering, 282–88. See also table

alteration
base. See base tables
batches, 673–74
Change Tracking, 80,

129–30, 549
cleanup, Change Tracking, 79–80
clustered, 331–34
Column Tracking, 80
Commit Table, 78–79. See also

Commit Table
consistency checks, cross-table,

705–09
consistency checks, per-table,

683–05
creating, 211–43
for filestream data, creation,

390–92
hash. See hash tables
heap modification, 289–97. See

also heap modification
hints, 573, 657
IDENTITY property, 245–48
internal change table, 80–81
internal storage, 249–79. See also

data storage
joins, 84–85
lock escalation, 629
locking example, 616–17
locks, 595, 597
modification counters, 548–49
naming, 212–13
partitioned, Query Optimizer,

486–90
partitioning, 434–42. See also

partitioning
plan guide errors, 583–84
pseudotables. See pseudotables
scans, read-ahead feature,

41–42
space allocation, 145–48
SPARSE column creation, 401–02
statistics and. See statistics
table-level vs. index-level

modification, 362
temporary vs. permanent, 548, 572
work, 166–68

TABLOCK hint, 599–00, 658
TABLOCK option, 717
TABLOCKX hint, 658
tabular data stream (TDS) packets,

11–12
target memory, 562
Target Memory value, 37
Target Server Pages counter, 37
target_percent argument, 137
targets, 111, 115–18
task_state DMO, 26–27

tasks
blocked, notification, 69–70
management, operating system

configuration, 57–58
Server worker, 22

TCP/IP
network configuration, 55

TCP/IP protocol, 11
NUMA configuration, 20
port configuration, 59

TDS (tabular data stream) packets,
11–12

tempdb database, 126–27, 164–69,
605–06

best practices, 168–69
cleanup, 651
concurrency, 17
consistency checks, 667
DBCC CHECKDB, 165
ESTIMATEONLY option, 717–18
fact storage, 670
free space counter, 651
internal objects, 165–66
logging, 165
optimizations, 166–68
snapshots, 164
SORT_IN_TEMPDB option, 367
space monitoring, 169–70, 657
user objects, 165
version store, 166, 649. See

version store
Template plan guides, 577–80
temporary tables, 548, 572
termination

errors, 153
options, 154–55

TERMINATION option, 152, 154–55
tertiary collations, 233–34
TERTIARY_WEIGHTS function, 234
text data type, 380–81,

386–87, 464
text in row option, 383–86
text pages, processing, 693–94
TEXT_DATA pages, 382
TEXT_MIXED pages, 382
threads

I/O. See I/O
lazywriter. See lazywriter
Lightweight Pooling option,

64–65
Max Worker Threads setting,

65–66
parallel processing, 677
priority setting, 57–58
trace management,

background, 87
threads, scheduler, 20–22

DAC connection, 28
workers, 21

626249.indb 751 3/10/11 11:58 AM

752	 time and date data type

time and date data type, 218–21
storage, 272–75

time data type, 218–21
storage requirements, 412

timeout errors, 46, 69, 463
timeouts, locks, setting, 659
timestamps, 76
tinyint data type, 217

storage requirements, 411
tokens, collation names, 226
TOMBSTONE objects, 398–99
torn page errors, 158–59, 207
TORN_PAGE_DETECTION option,

158–59
trace controller, 86–87
Trace File option, 95
trace flags, 60

1211, 630
1224, 630
1806, 136
2528, 677
3604, 308
7806, 29
DBCC PAGE and DBCC IND, 308

trace I/O providers, 87–88
trace log files, 72
Trace Table option, 95
Trace XML File For Replay, 95
Trace XML File option, 95
traces

closing, 104
reading data, 104
rowset, 105–08
stopping, 104–05

TRACEWRITE, 87
tracing, 86

architecture and terminology,
86–88

blackbox trace, 72
Default Trace enabled option,

71–72
filters, 91–92
log files, 72
Profiler. See Profiler
security and permissions, 88–89
server-side, 97–08

TRACK_COLUMNS_UPDATED, 83
tracking

causality, 119–20
Change Tracking. See Change

Tracking
transaction ID, 78–81, 83–85, 652
TRANSACTION ISOLATION LEVEL

option, 587, 637
transaction lock owner, 609
transaction log, 16, 18, 181–83

attaching databases, 176
autotruncate mode, 32

checkpoints, 32–34
compensation log records, 182
file and filegroup backups,

205–06
reading, 186–87
recovery phases, 184–86
shrinking, 195
shrinking, automatic, 196
size changes, 187–96
truncation, 186, 192–94, 196
virtual log files, 187–96. See also

virtual log files
transaction processing, 588–89

ACID properties, 589–90
isolation levels, 592–96
transaction dependencies, 590–92

transaction sequence number (XSN),
636, 652–53

version store, 649–50
transaction services, 16–17
transaction_workspaces lock

owner, 609
TransactionHistory table, 434–36

partitioning, 438–42
TransactionHistoryArchive table,

434–36
partitioning, 439–42

transactions, 588–89
atomicity, 589
consistency, 589–90, 664–66
constraint failures, 281–82
deadlocks, 630–34
dependencies, 590–92
distributed, 16
durability, 590
errors, 281–82
filestream data and, 394
implicit vs. explicit, 588–89
isolation, 590
logging process, 182–83. See also

transaction log
longest running counter, 652
nested, 16
processing. See transaction

processing
snapshot counter, 652
Snapshot level, DDL and, 644
snapshot metadata, 652–55
tempdb best practices, 168–69
timeout errors, 463

transfer block, 119–20
tree format, Query Optimizer,

444–45
Trie Trees feature, 469–70
triggers, 75–25

DDL, 75–76
DML, 75–76
enabling and disabling, 286

query optimization, 13–14
recursive, 157

Tripp, Kimberly L., 299
trivial plans, 448, 457–59, 484

recompilation, skipping, 549–50
troubleshooting. See also errors

cached plans and recompilation,
559–61

caching, 569–85
DAC. See dedicated administrator

connection (DAC)
plan guides, 579–83

TRUNCATE statement, 549
TRUNCATE TABLE statement, 394
truncation, 186, 196

automatic, 192–93
manual, 194
pubs database, 193–95
SIMPLE recovery model, 201

trunk. log on chkpt., 201–02
trusted connections, 171
T-SQL, 5

adhoc batch, 532
binary file format, traces, 95
BULK INSERT command, 247
cache stores, 553–54
code optimization hints,

573–75
command parser, 12
compilation and recompilation

problems, 572
cursor options, 155
database creation, 132
event session creation, 122
filestream access, 389
filestream data, 392–94
handles, 556
identifiers, 157
lock hints, 657
Merge operation, 497
non-sargable predicates, 479
object naming, 573
partitioning, 434
querying data, 124
sys.dm_exec_cached_plan_

dependent_objects, 559
trace file reading, 104
Trace Table option, 95
uniqueidentifier data types, 240

tsql_stack action, 114
tuple. See also rows
tuples, 211
TVFs

caching, 542–43
sys.dm_exec_query_plan, 558
sys.dm_exec_text_query_plan,

558–59
TYPEPROPERTY function, 7

626249.indb 752 3/10/11 11:58 AM

	 Windows operating system	 753

U
U lock, 505–06
UIX locks, 600–01
UNC value, 397
unchecked assemblies, 674
Unicode

character strings, 221–22
collations, 227–28

uniform extents, 145
Uniformity assumption, 469
UNION ALL statement, 515
UNION ALL view, 507–08
UNION statement

plan hinting, 515
Query Optimizer, 456–57

UNIQUE constraint, 246, 279
dropping, 365
filestream data, 390–91
IGNORE_DUP_KEY option, 316

UNIQUE KEY constraints, 315
UNIQUE keyword, clustered indexes,

312
uniqueidentifier data type, 240–41

storage requirements, 412
uniquifier, 312

clustered index rows, 320
universal unique identifier (UUID),

240–41
Unused VLF state, 188
update conflict ratio counter, 652
UPDATE statement

access methods code, 14
colmodctr values, 549
concurrency, 587
deadlock generation, 631–32
filestream data updating, 393
IGNORE_DUP_KEY option, 316
index row addition, 347–48
lock hints, 657–58
lock timeout errors, 660
logging, 198, 363
non-updating updates, 501
page splitting, 349–50
Query Optimizer, 12–13, 491–94
remote server, 509
shared locks, 598
Snapshot isolation level, 642–43,

656–57
SPARSE columns, 403
Split/Sort/Collapse, 495–97
USE PLAN hints, 521
version store, 648, 650

UPDATE STATISTICS command, 547
updates, 491–94

conflict ratio counter, 652
Halloween Protection, 494–95
indexed views, 486
locking example, 614–15

locking/locks, 363, 505–07,
596–01, 634

lost, 591
Merge, 497–99
non-updating, 501–02
partitioned, 502–05
per-index plans, 499–01
Query Optimizer, 491–07
Serializable isolation level, locking

example, 615–16
SPARSE column, 502
Split/Sort/Collapse, 495–97
wide update plans, 499–02

UPDATETEXT statement, 200
UPDLOCK hint, 643, 658
USE PLAN hint, 575
USE PLAN Nxml plan, 521–22
usecount query, 525–26, 528–29,

533, 541, 543
User Connections option, 63–64
user data lock types, 597–98
User Mode Scheduler (UMS), 20
user stores, 34–35, 39
user-defined data, 244–45, 376
user-defined filegroups, 138–39
user-defined scalar functions,

caching, 540–43
users vs. schema, 173–74
utility commands, storage engine, 18
UUID (universal unique identifier),

240–41
UuidCreateSequential function,

225–41

V
varbinary data type, 238

storage requirements, 412
varbinary(MAX) data type, 392, 394
varchar data type, 221–22, 253

SQL collations, 237–38
storage requirements, 412

varchar(MAX) data type, 386, 392
Vardecimal property, 217, 413–14
variable-length data

character, 221–24
columns, NULL values, 243
row storage, 267–72
row structure, 260–62

variables, vs. parameters, 574
VAS (virtual address space), 36–37
VERSION mode, 84–85
version store, 648–52

compression and, 433
concurrency, 17
generation and cleanup rate

counters, 651
size counter, 651
versioning operations, 15–16

versioning. See also row versioning
CD format information, 420
example scenario, 653–55
storage engine operations, 15

very large databases (VLDBs), partial
backup, 206

View Server State permissions, 25,
38–39, 169, 243

virtual address space (VAS), 36–37
Virtual Interface Adapter (VIA)

protocol, 11
network configuration, 55
NUMA configuration, 20

virtual log files, 187–88
automatic shrinking, 196
automatic truncation, 192–93
observing, 188–92
recoverable, 193–95

virtual memory
committed, 39
reserved, 39

virtual_memory_committed_kb, 39
virtual_memory_in_bytes, 37
virtual_memory_reserved_kb, 39
visible memory, 562
visible target memory, 562
Visual Source Safe, 212
VLDBs (very large databases), partial

backup, 206

W
wait statistics, 569–71
wait_duration_ms, 27
wait_type, 27
Weikum, Gerhard, 30–31
WHERE clause

event session creation, 122
filtered index creation, 480–81
filtered statistics, 469
index selection, 477
partitioned indexes, 437–38
Query Optimizer, 492

wide update plans, 499–02
WIDE-TABLE feature. See SPARSE

columns
width sensitivity/insensitivity, 226
Win32 API, 389, 392
Windows Authentication, 170–71
Windows operating system

authentication, 170–71
collation types, 225–27
fast file initialization, 136
nonessential services, disabling, 59

626249.indb 753 3/10/11 11:58 AM

754	 Windows operating system

Windows operating system
(continued)

priority setting, threads,
57–58

scheduler, 20–21
WITH CHANGE_TRACKING_

CONTEXT option,
81–83

WITH CHECK option,
284–85

WITH clause, CREATE INDEX
command, 316

WITH DATA_PURITY
option, 690

WITH keyword, locking hints, 658
WITH LOB_COMPACTION option, 388
WITH NORECOVERY option,

204–05
WITH PASSWORD option, 89
WITH RECOMPILE option,

540–41, 573
WITH RECOVERY option,

204–05
WITH SCHEMABINDING option,

339–40

WITH STANDBY option, 209
WITH UNCHECKED DATA

option, 674
WITH(NOEXPAND) hint,

482, 484
work files, 166
work tables, 166–68
work_queue_count, 25
workers, server. See Server workers
workload groups, 42–47

MIN and MAX values, 48–49
properties, 45–47

WRITE clause, BULK_LOGGED
recovery model, 199

write-ahead logging, 16,
181–82

writers, blocking/locks
concurrency, 17
locking operations, 17

WRITETEXT statement, 200
www.SQLServerInternals.com

Web site
memory problems, 35
memory troubleshooting, 42
pubs database script, 129

X
X (exclusive) locks, 363, 372, 505,

596–98, 600
XACT_ABORT, 251
XE (Extended Events). See Extended

Events (XE)
XLOCK hint, 658–59
XML

data size limit, 405
format, 123–24
index consistency checks, 705–06,

708–09
indexes, 346–47, 510
plans, 566, 580
SPARSE columns, 405
USE PLAN hint, 575
USE PLAN Nxml plan hint,

521–22
xml data type, 239

storage requirements, 412
XQuery operations, 510
XSN (transaction sequence number).

See transaction sequence
number (XSN)

626249.indb 754 3/10/11 11:58 AM

About the Authors

Kalen Delaney
Kalen Delaney has been working with Microsoft SQL Server for over
21 years, and she provides advanced SQL Server training to clients
around the world. She has been a SQL Server MVP (Most Valuable
Professional) since 1992 and has been writing about SQL Server almost
as long. Kalen has spoken at dozens of technical conferences, including
every PASS Community Summit held in the United States since the
organization’s founding in 1999. Kalen is a partner and Director of
Training for SQL Tuners (www.sqltuners.net), a SQL Server tuning and
managed services company based in the northwestern United States.

Kalen is a contributing editor and columnist for SQL Server Magazine and the author or
co-author of several Microsoft Press books on SQL Server, including Inside Microsoft SQL
Server 7, Inside Microsoft SQL Server 2000, Inside Microsoft SQL Server 2005: The Storage
Engine, and Inside Microsoft SQL Server 2005: Query Tuning and Optimization. Kalen blogs at
www.sqlblog.com, and her personal Web site can be found at www.SQLServerInternals.com.

Paul S. Randal
Paul is the managing director of SQLskills.com, which he runs with
his wife, Kimberly L. Tripp. He is also a SQL Server MVP and one of
the contributing editors of TechNet Magazine. Paul joined Microsoft
in 1999 after spending five years at DEC working on the OpenVMS
file system. He wrote various DBCC commands for SQL Server 2000
and then rewrote all of DBCC CHECKDB for SQL Server 2005 before
moving into management on the SQL Server team. During SQL Server
2008 development, he was responsible for the entire Storage Engine.

Paul regularly teaches classes on topics such as database maintenance, high availability,
disaster recovery, and SQL Server internals. He is a top-rated presenter at worldwide Tech·Ed
and co-chairs the SQL Server Connections conferences. In the last year, Paul has written a
large number of SQL Server 2008 materials, including white papers, and articles for TechNet
Magazine. Paul’s popular blog is at www.SQLskills.com/blogs/paul, and he can be reached at
Paul@SQLskills.com.

626249.indb 755 3/10/11 11:58 AM

Kimberly L. Tripp
Kimberly is the president/founder of SQLskills.com, which
she started in 1995 after leaving Microsoft, where she held
multiple positions, including technical writer for the SQL
Server Team and subject matter expert/trainer for Microsoft
University. She is a SQL Server MVP, a Microsoft regional
director, and a contributing editor of SQL Server Magazine.
Since 1990, Kimberly has focused on many aspects of SQL
Server availability, with emphasis on performance tuning
and optimization.

Kimberly regularly teaches classes on topics such as database design, performance
tuning, database maintenance, and SQL Server internals. She is a top-rated
presenter at worldwide Tech·Ed conferences and the PASS Community Summit, and
she co-chairs the SQL Server Connections conferences with Paul Randal. Kimberly
has worked with all releases of SQL Server since version 1.0 and has written
numerous resources, including online content and webcasts, white papers, and
most recently, the Microsoft SQL 2008 JumpStart training class for DBAs. Kimberly’s
popular blog is at www.SQLskills.com/blogs/kimberly and she can be reached at
Kimberly@SQLskills.com.

Conor Cunningham
Conor Cunningham is principal architect of the SQL Server
Core Engine Team, with over 10 years experience building
database engines for Microsoft. He specializes in query
processing and query optimization, and he designed and/
or implemented a number of the query processing features
available in SQL Server. Conor holds a number of patents
in the field of query optimization, and he has written
numerous academic papers on query processing. Conor
blogs at “Conor vs. SQL” at http://blogs.msdn.com/
conor_cunningham_msft/default.aspx.

626249.indb 756 3/10/11 11:58 AM

Adam Machanic
Adam Machanic is a Boston-based independent database
consultant, writer, and speaker. He has been involved
in dozens of SQL Server implementations for both
high-availability OLTP and large-scale data warehouse
applications, and he has optimized data access layer
performance for several data-intensive applications.
Adam has written for numerous Web sites and magazines,
including SQLBlog, Simple Talk, Search SQL Server, SQL
Server Professional, CoDe, and Visual Systems Journal. He

has also contributed to several books on SQL Server, including Expert SQL Server
2005 Development (Apress, 2007) and Inside SQL Server 2005: Query Tuning
and Optimization (Microsoft Press, 2007). Adam regularly speaks at user groups,
community events, and conferences on a variety of SQL Server– and .NET-related
topics. He is a SQL Server MVP, a Microsoft Certified IT Professional (MCITP), and a
member of the INETA North American Speakers Bureau.

Technical Reviewer: Benjamin Nevarez
Ben Nevarez has 15 years of experience with relational
databases and has worked with SQL Server since version 6.5.
He holds a master’s degree in computer science and has
been a speaker at several technology conferences, including
the PASS Community Summit. Ben is currently a senior
database administrator with the American International
Group (AIG). When he is not working with SQL Server, Ben
spends time with his wife, Rocio, and his three sons, David,
Benjamin, and Diego.

626249.indb 757 3/10/11 11:58 AM

	Cover
	Table of Contents
	Chapter 3
	Chapter 10
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ARA <FFFE270633062A062E062F0645062000470630064706200027064406250639062F0627062F0627062A0620004406250646063406270621062000450633062A0646062F0627062A062000410064006F0062006500200050004400460020004A064506430646062000270644062A06390627064506440620004506390647062706200048062A062A063606450646062000390644062706450627062A0620002A0645064A064A063206200048063106480627062806370620002A063406390628064A06290620004806250634062706310627062A062000450631062C0639064A062906200048063906460627063506310620002A0641062706390644064A0629062000480637062806420627062A062E0020004A06450643064606200041062A062D062000450633062A0646062F0627062A0620005000440046002000270644064506460634062306290620002806270633062A062E062F062706450620004100630072006F0062006100740020004806410064006F00620065002000520065006100640065007200200037002E003000200023064806200023062D062F062B062E0029000D000A00>
 /CHS <FEFF4F7F75288FD94E9B8BBE7F6E6765521B5EFA7684002000410064006F006200650020005000440046002065876863517759078F8552A95DE55177FF0C53735305542B68077B7E30018D8594FE63A530014E667B7E30014EA44E9251437D20548C56FE5C423002521B5EFA76840020005000440046002065874EF653EF4EE54F7F75280020004100630072006F0062006100740020548C002000410064006F00620065002000520065006100640065007200200037002E00300020621666F49AD87248672C676562535F003002>
 /CHT <FEFF4F7F752890194E9B8A2D5B9A5EFA7ACB7684002000410064006F006200650020005000440046002065874EF651775099535452A95DE55177FF0C53735305542B6A197C6430018D8590237D50300166F87C6430014E9252D551437D20548C57165C6430025EFA7ACB76840020005000440046002065874EF653EF4EE54F7F75280020004100630072006F0062006100740020548C002000410064006F00620065002000520065006100640065007200200037002E00300020621666F49AD87248672C958B555F3002>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200073006E00610064006E006F00200070015900ED0073007400750070006E00FD0063006800200064006F006B0075006D0065006E0074016F002000410064006F006200650020005000440046002C0020006B00740065007200E90020006F00620073006100680075006A00ED00200074006100670079002C00200068007900700065007200760061007A00620079002C0020007A00E1006C006F017E006B0079002C00200069006E0074006500720061006B007400690076006E00ED0020007000720076006B0079002000610020007600720073007400760079002E00200056007900740076006F01590065006E00E900200064006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000410064006F00620065002000520065006100640065007200200037002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /DAN <FEFF004200720075006700200064006900730073006500200069006E0064007300740069006C006C0069006E006700650072002000740069006C0020006100740020006F0070007200650074007400650020006C0065007400740069006C006700E6006E00670065006C006900670065002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E007400650072002C002000640065007200200069006E006400650068006F006C0064006500720020006B006F006400650072002C002000680079007000650072006C0069006E006B0073002C00200062006F0067006D00E60072006B00650072002C00200069006E0074006500720061006B007400690076006500200065006C0065006D0065006E0074006500720020006F00670020006C00610067002E0020004400650020006F007000720065007400740065006400650020005000440046002D0064006F006B0075006D0065006E0074006500720020006B0061006E002000E50062006E00650073002000690020004100630072006F00620061007400200065006C006C006500720020004100630072006F006200610074002000520065006100640065007200200037002E00300020006F00670020006E0079006500720065002E>
 /DEU <FEFFFEFF00560065007200770065006E00640065006E0020005300690065002000640069006500730065002000450069006E007300740065006C006C0075006E00670065006E0020007A0075006D002000450072007300740065006C006C0065006E00200076006F006E0020007A0075006700E4006E0067006C0069006300680065006E002000410064006F006200650020005000440046002D0044006F006B0075006D0065006E00740065006E0020006D0069007400200054006100670073002C002000480079007000650072006C0069006E006B0073002C0020004C006500730065007A00650069006300680065006E002C00200069006E0074006500720061006B0074006900760065006E00200045006C0065006D0065006E00740065006E00200075006E00640020004500620065006E0065006E002E002000450072007300740065006C006C007400650020005000440046002D0044006F006B0075006D0065006E007400650020006B00F6006E006E0065006E0020006D006900740020004100630072006F00620061007400200075006E0064002000410064006F00620065002000520065006100640065007200200037002E00300020006F0064006500720020006800F600680065007200200067006500F600660066006E00650074002000770065007200640065006E002E>
 /ENU (Use these settings to create accessible Adobe PDF documents that include tags, hyperlinks, bookmarks, interactive elements, and layers. Created PDF documents can be opened with Acrobat and Adobe Reader 7.0 and later.)
 /ESP <FEFF005500740069006C0069006300650020006500730074006100200063006F006E0066006900670075007200610063006900F3006E0020007000610072006100200063007200650061007200200064006F00630075006D0065006E0074006F0073002000500044004600200061006300630065007300690062006C00650073002000640065002000410064006F00620065002000710075006500200069006E0063006C007500790061006E0020006500740069007100750065007400610073002C002000680069007000650072007600ED006E00630075006C006F0073002C0020006D00610072006300610064006F0072006500730020006400650020007000E100670069006E0061002C00200065006C0065006D0065006E0074006F007300200069006E00740065007200610063007400690076006F007300200079002000630061007000610073002E002000530065002000700075006500640065006E00200061006200720069007200200064006F00630075006D0065006E0074006F00730020005000440046002000630072006500610064006F007300200063006F006E0020004100630072006F006200610074002C002000410064006F00620065002000520065006100640065007200200037002E003000200079002000760065007200730069006F006E0065007300200070006F00730074006500720069006F007200650073002E>
 /FRA <FEFF005500740069006C006900730065007A00200063006500730020006F007000740069006F006E007300200070006F0075007200200063007200E900650072002000640065007300200064006F00630075006D0065006E00740073002000410064006F006200650020005000440046002000610063006300650073007300690062006C0065007300200064006F007400E90073002000640065002000620061006C0069007300650073002C00200064002700680079007000650072006C00690065006E0073002C0020006400650020007300690067006E006500740073002C00200064002700E9006C00E9006D0065006E0074007300200069006E007400650072006100630074006900660073002000650074002000640065002000630061006C0071007500650073002E0020004C0065007300200064006F00630075006D0065006E0074007300200050004400460020006F006200740065006E00750073002000730027006F0075007600720065006E0074002000640061006E00730020004100630072006F006200610074002000650074002000410064006F00620065002000520065006100640065007200200037002E00300020002800650074002000760065007200730069006F006E007300200075006C007400E900720069006500750072006500730029002E>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003C003C103BF03C303C003B503BB03AC03C303B903BC03B1002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003C403B1002003BF03C003BF03AF03B1002003C003B503C103B903BB03B103BC03B203AC03BD03BF03C503BD002003B503C403B903BA03AD03C403B503C2002C002003C503C003B503C103C303C503BD03B403AD03C303B503B903C2002C002003C303B503BB03B903B403BF03B403B503AF03BA03C403B503C2002C002003B103BB03BB03B703BB03B503C003B903B403C103B103C303C403B903BA03AC002003C303C403BF03B903C703B503AF03B1002003BA03B103B9002003B503C003AF03C003B503B403B1002E002003A403B1002003AD03B303B303C103C603B10020005000440046002003C003BF03C5002003B403B703BC03B903BF03C503C103B303BF03CD03BD03C403B103B9002003BC03C003BF03C103BF03CD03BD002003BD03B1002003B103BD03BF03B903C703B803BF03CD03BD002003BC03B5002003C403BF0020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200037002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B7002E>
 /HEB <FEFF05d405e905ea05de05e905d5002005d105e705d105d905e205d505ea002005d005dc05d4002005dc05d905e605d905e805ea002005de05e105de05db05d9002000410064006f006200650020005000440046002005e005d205d905e905d905dd002005d405db05d505dc05dc05d905dd002005ea05d205d905dd002c002005e705d905e905d505e805d9002d05e205dc002c002005e105d905de05e005d905d505ea002c002005e805db05d905d105d905dd002005d005d905e005d805e805d005e705d805d905d105d905d905dd002005d505e905db05d105d505ea002e002005de05e105de05db05d90020005000440046002005e905e005d505e605e805d5002005e005d905ea05df002005dc05e405ea05d505d7002005d1002d0020004100630072006f006200610074002005d505d1002d002000410064006f00620065002000520065006100640065007200200037002e0030002005d505d205e805e105d005d505ea002005de05ea05e705d305de05d505ea002005d905d505ea05e8002e>
 /HUN <FEFF004100200062006500E1006C006C00ED007400E10073006F006B0020006800610073007A006E00E1006C0061007400E100760061006C0020006300ED006D006B00E9006B00650074002C002000680069007600610074006B006F007A00E10073006F006B00610074002C0020006B00F6006E00790076006A0065006C007A0151006B00650074002C00200069006E0074006500720061006B007400ED007600200065006C0065006D0065006B00650074002000E900730020007200E90074006500670065006B00650074002000740061007200740061006C006D0061007A00F300200068006F007A007A00E1006600E900720068006500740151002000410064006F00620065002000500044004600200064006F006B0075006D0065006E00740075006D006F006B0061007400200068006F007A0068006100740020006C00E9007400720065002E002000410020006C00E90074007200650068006F007A006F00740074002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061007A002000410064006F00620065002000520065006100640065007200200037002E003000200061006C006B0061006C006D0061007A00E10073006F006B006B0061006C002C0020007600610067007900200061007A002000610074007400F3006C0020006B00E9007301510062006200690020007600650072007A006900F3006B006B0061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /ITA <FEFF005500740069006C0069007A007A006100720065002000710075006500730074006500200069006D0070006F007300740061007A0069006F006E00690020007000650072002000630072006500610072006500200064006F00630075006D0065006E00740069002000410064006F0062006500200050004400460020006100630063006500730073006900620069006C0069002000630068006500200069006E0063006C00750064006F006E006F0020007400610067002C0020006C0069006E006B00200069007000650072007400650073007400750061006C0069002C0020007300650067006E0061006C0069006200720069002C00200065006C0065006D0065006E0074006900200069006E007400650072006100740074006900760069002000650020006C006900760065006C006C0069002E002000C800200070006F00730073006900620069006C006500200061007000720069007200650020006900200064006F00630075006D0065006E007400690020005000440046002000630072006500610074006900200063006F006E0020004100630072006F00620061007400200065002000410064006F00620065002000520065006100640065007200200037002E003000200065002000760065007200730069006F006E006900200073007500630063006500730073006900760065002E>
 /JPN <FEFF30BF30B0300130CF30A430D130FC30EA30F330AF30013057304A308A300130A430F330BF30E930AF30C630A330D6306A89817D20300130EC30A430E430FC3092542B308030A230AF30BB30B730D630EB306A002000410064006F0062006500200050004400460020658766F830924F5C62103059308B306B306F30013053308C3089306E8A2D5B9A30924F7F75283057307E305930024F5C62103055308C305F00200050004400460020306F0020004100630072006F0062006100740020304A30883073002000410064006F00620065002000520065006100640065007200200037002E003000204EE5964D3067958B304F30533068304C3067304D307E30593002>
 /KOR <FEFFD0DCADF8002C0020D558C774D37CB9C1D06C002C0020CC45AC08D53C002C0020B300D654D6150020C694C18C0020BC0F0020B808C774C5B4AC000020D3ECD568B418C5B40020C788C5B40020C0ACC6A9C790AC000020C27DAC8C0020C561C138C2A4D5600020C2180020C788B294002000410064006F0062006500200050004400460020BB38C11CB97C0020C791C131D558B824BA740020C774B7ECD55C0020C124C815C7440020C0ACC6A9D569B2C8B2E4002E0020C774C6400020AC19C7400020C635C158C7440020C0ACC6A9D558C5EC0020C791C131B41C00200050004400460020BB38C11CB2940020004100630072006F0062006100740020BC0F002000410064006F00620065002000520065006100640065007200200037002E00300020C774C0C1C5D0C11C0020C5F40020C2180020C788C2B5B2C8B2E4002E>
 /NLD (Gebruik deze instellingen om toegankelijke Adobe PDF-documenten met labels, hyperlinks, bladwijzers, interactieve elementen en lagen te maken. U kunt gemaakte PDF-documenten openen met Acrobat en Adobe Reader 7.0 en hoger.)
 /NOR <FEFF004200720075006B00200064006900730073006500200069006E006E007300740069006C006C0069006E00670065006E0065002000740069006C002000E50020006F0070007000720065007400740065002000740069006C0067006A0065006E00670065006C006900670065002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E00740065007200200073006F006D00200069006E006E00650068006F006C0064006500720020006B006F006400650072002C002000680079007000650072006B006F0062006C0069006E006700650072002C00200062006F006B006D00650072006B00650072002C00200069006E0074006500720061006B007400690076006500200065006C0065006D0065006E0074006500720020006F00670020006C00610067002E0020004F0070007000720065007400740065006400650020005000440046002D0064006F006B0075006D0065006E0074006500720020006B0061006E002000E50070006E00650073002000690020004100630072006F0062006100740020006F0067002000410064006F00620065002000520065006100640065007200200037002E00300020006F0067002000730065006E006500720065002E>
 /POL <FEFF005A006100200070006F006D006F00630105002000740079006300680020007500730074006100770069006501440020006D006F017C006E0061002000740077006F0072007A0079010700200142006100740077006F00200064006F0073007401190070006E006500200064006F006B0075006D0065006E00740079002000410064006F006200650020005000440046002C0020007A006100770069006500720061006A0105006300650020007A006E00610063007A006E0069006B0069002C002000680069007000650072014201050063007A0061002C0020007A0061006B014200610064006B0069002C00200065006C0065006D0065006E0074007900200069006E0074006500720061006B007400790077006E00650020006900200077006100720073007400770079002E0020005500740077006F0072007A006F006E006500200077002000740065006E002000730070006F007300F3006200200064006F006B0075006D0065006E0074007900200050004400460020006D006F017C006E00610020006F007400770069006500720061010700200077002000700072006F006700720061006D0061006300680020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200037002E00300020006900200069006300680020006E006F00770073007A00790063006800200077006500720073006A006100630068002E>
 /PTB <FEFF00550073006500200065007300740061007300200063006F006E00660069006700750072006100E700F5006500730020007000610072006100200063007200690061007200200064006F00630075006D0065006E0074006F007300200061006300650073007300ED00760065006900730020005000440046002000410064006F00620065002000710075006500200069006E0063006C00750065006D00200074006100670073002C002000680079007000650072006C0069006E006B0073002C0020006D00610072006300610064006F007200650073002C00200065006C0065006D0065006E0074006F007300200069006E0074006500720061007400690076006F007300200065002000630061006D0061006400610073002E0020004F007300200064006F00630075006D0065006E0074006F00730020005000440046002000630072006900610064006F007300200070006F00640065006D0020007300650072002000610062006500720074006F007300200063006F006D0020004100630072006F00620061007400200065002000410064006F00620065002000520065006100640065007200200037002E00300020006F007500200070006F00730074006500720069006F007200650073002E>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610063006300650073006900620069006c00650020006300610072006500200069006e0063006c007500640020007400610067007500720069002c002000680069007000650072006c0069006e006b007500720069002c002000730065006d006e0065002000640065002000630061007200740065002c00200065006c0065006d0065006e0074006500200069006e0074006500720061006300740069007600650020015f0069002000730074007200610074007500720069002e00200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f0062006100740020015f0069002000410064006f00620065002000520065006100640065007200200037002e0030002c002000700072006500630075006d0020015f00690020006300750020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043D0430044104420440043E0439043A043800200434043B044F00200441043E043704340430043D0438044F00200434043E044104420443043F043D044B0445002000410064006F006200650020005000440046002D0434043E043A0443043C0435043D0442043E0432002C00200441043E0434043504400436043004490438044500200442043504330438002C002004330438043F0435044004410441044B043B043A0438002C002004370430043A043B04300434043A0438002C00200438043D0442043504400430043A044204380432043D044B04350020044D043B0435043C0435043D0442044B0020043800200441043B043E0438002E00200421043E043704340430043D043D044B04350020005000440046002D0434043E043A0443043C0435043D0442044B0020043C043E0436043D043E0020043E0442043A0440044B043204300442044C002004410020043F043E043C043E0449044C044E0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200037002E00300020043800200431043E043B043504350020043F043E04370434043D043804450020043204350440044104380439002E>
 /SUO <FEFF004B00E40079007400E40020006E00E40069007400E4002000610073006500740075006B0073006900610020006C0075006F0064006500730073006100730069002000680065006C00700070006F006B00E400790074007400F600690073006900E4002000410064006F0062006500200050004400460020002D0064006F006B0075006D0065006E007400740065006A0061002C0020006A006F0074006B0061002000730069007300E4006C007400E4007600E400740020006B006F006F00640069006D00650072006B0069006E007400F6006A00E4002C002000680079007000650072006C0069006E006B006B0065006A00E4002C0020006B00690072006A0061006E006D00650072006B006B0065006A00E4002C002000760075006F0072006F007600610069006B0075007400740065006900730069006100200065006C0065006D0065006E007400740065006A00E40020006A00610020007400610073006F006A0061002E002000410073006500740075007300740065006E0020006100760075006C006C00610020006C0075006F0064007500740020005000440046002D0064006F006B0075006D0065006E00740069007400200076006F00690020006100760061007400610020004100630072006F0062006100740020006A0061002000410064006F00620065002000520065006100640065007200200037002E0030003A006C006C0061002000740061006900200075007500640065006D006D0061006C006C0061002000760065007200730069006F006C006C0061002E>
 /SVE <FEFF0041006E007600E4006E00640020006400650020006800E4007200200069006E0073007400E4006C006C006E0069006E006700610072006E00610020006600F60072002000610074007400200073006B0061007000610020006C00E4007400740069006C006C006700E4006E0067006C006900670061002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E007400200073006F006D00200069006E006E0065006800E5006C006C006500720020007400610067006700610072002C002000680079007000650072006C00E4006E006B00610072002C00200062006F006B006D00E40072006B0065006E002C00200069006E0074006500720061006B007400690076006100200065006C0065006D0065006E00740020006F006300680020006C0061006700650072002E00200044006500200064006F006B0075006D0065006E007400200064007500200073006B00610070006100720020006B0061006E002000F600700070006E00610073002000690020004100630072006F0062006100740020006F00630068002000410064006F00620065002000520065006100640065007200200037002E003000200065006C006C00650072002000730065006E006100720065002E>
 /TUR <FEFF0130006D006C00650072002C002000680069007000650072002000620061011F006C00610072002C002000790065007200200069006D006C006500720069002C002000650074006B0069006C0065015F0069006D006C0069002000F6011F0065006C006500720020007600650020006B00610074006D0061006E006C006100720020006900E7006500720065006E0020006500720069015F0069006C006500620069006C00690072002000410064006F006200650020005000440046002000620065006C00670065006C0065007200690020006F006C0075015F007400750072006D0061006B0020006900E70069006E00200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E0020004F006C0075015F0074007500720075006C0061006E0020005000440046002000620065006C00670065006C0065007200690020004100630072006F006200610074002000760065002000410064006F00620065002000520065006100640065007200200037002E003000200076006500200073006F006E00720061006B00690020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f002000410064006f006200650020005000440046002d0434043e043a0443043c0435043d044204560432002c0020044f043a04560020043c045604410442044f0442044c00200442043504330438002c002004330456043f04350440043f043e04410438043b0430043d043d044f002c002004370430043a043b04300434043a0438002c00200456043d0442043504400430043a044204380432043d045600200435043b0435043c0435043d044204380020043900200448043004400438002e0020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004320020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200037002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive true
 /IncludeLayers true
 /IncludeProfiles true
 /MultimediaHandling /EmbedAll
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

