M N
= 5
<C .w
28
C ==
a.._up
— O O
EeA
®N.._H
,mDu.hb
Soh 2
MAAW

Dino Esposito

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2009 by Dino Esposito

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2008940527

Printed and bound in the United States of America.

123456789 QWT 432109

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly at
fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to msinput@microsoft.com.

Microsoft, Microsoft Press, ActiveX, Expression, IntelliSense, Internet Explorer, MS, MSDN, Natural, Silverlight,
SQL Server, Visual Basic, Visual C#, Visual InterDev, Visual Studio, Windows, Windows Media, Windows Server and
Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries. Other product and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted
herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, logo,
person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ben Ryan

Developmental Editor: Lynn Finnel

Project Editor: Tracy Ball

Editorial Production: S4Carlisle Publishing Services

Technical Reviewer: Kenn Scribner; Technical Review services provided by Content Master, a member of
CM Group, Ltd.

Cover: Tom Draper Design

Body Part No. X15-28134

http://www.microsoft.com/mspress

To the people who help me to smile and often smile, play and laugh with me.

—Dino

This page intentionally left blank

Contents at a Glance

Part |

Part Il

00 N OGO U

The (Much Needed) Facelift for the Old Web

Underthe Umbrella of AJAX. oot 3
The Easy Way to AJAXot i 27
AJAX Architectures. 61

Power to the Client

A Better and Richer JavaScript 101
JavaScript Libraries i 129
AJAX Design Patterns.t 163
Client-Side DataBinding oiiiia... 223
Rich Internet Applications 269

This page intentionally left blank

Table of Contents

Acknowledgments e i Xi

Introduction e xiii
Part| The (Much Needed) Facelift for the Old Web

1 UndertheUmbrellaof AJAX., 3

What Web DoWe Want? e 4

[t's All About User EXperienceovuueeeeennn .. 4

Originsofthe Web 7

Paradox of the Web 9

The Biggest Benefit of AJAX. 11

What's AJAX, Exactly? 12

The Paradigm Shift 14

AJAX and New Web Projects. ... 17

Adding AJAX Capabilitieso i 17

Architecture Isthe Concern. ... i 18

The Case for Rich Internet Applications. 22

UMM et e e 24

2 TheEasyWay to AJAXttt i 27

The ASP.NET AJAX Infrastructure 28

The Page's Script Manager. ... 28

The Microsoft JavaScript Library.............. 35

Partial Rendering 37

The UpdatePanel Control 37

Programming Updatable Panels. 43

Minimizing Data Transfer......... i i i 47

Shades of Partial Rendering. ... 48

AJAX and JavaScript Injections. ... 53

Remote Methods. 54

Widgets and Effects. ... 56

SUMIMIAIY ot e 60

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

vii

http://www.microsoft.com/learning/booksurvey/

viii Table of Contents

3 AJAX Architectures. e 61
The AJAX Service Layer Pattern. ... i 62
Architectural Overview 62
Insidethe HTTP Facade 70

The AJAX Presentation Layer.oouiiiiiiiiiiiinn... 79
Security Considerations i 83

The AJAX Server Pages Pattern............. i, 87
Architectural Overviewt 88

The Classic Postback Model Revisited 90
Libraries in ACtion 92
SUMMIAIY .« .t e e e e e e 97

Part I Power to the Client

4 A Better and RicherJavaScript, 101
JavaScript Today 102
The Language and the Browser., 102
Pillars of the Languageo 105
JavaScript (If Any) of the Future 108

The Microsoft AJAX Library ... 110
Overview of the Library 110
JavaScript Language Extensions o 112
Object-Oriented Extensions. 115
Framework Facilities 119
SUMMIAIY . e e 126
5 JavaScriptLibraries.......... ... i 129
From Server Controls to JavaScript Widgets............................ 130
The ASPINET Factor. ...t 130

The Widget Factor. s 132

The jQuery Library. ... 137
The LibraryataGlance.......... ... 138

The Core Libraryo 140
JQuery Selectors. 142
Working on Wrapped Sets.t 149
JQuery Utilitieso oo 151

SUMMIAIY .t e e e 161

Table of Contents ix

6 AJAXDesignPatterns........... 163
Design Patterns and Code Development..................... .o ... 163
Generalities About Design Patterns o L. 164
Patterns in AJAX Development. ..., 166
Patterns for JavaScript Development, 168
The Singleton Pattern....... i 169

The Model-View-Controller Pattern................ 170

The On-Demand JavaScript Pattern.............................. 175

The Predictive Fetch Pattern i 178
Generalities of the Predictive Fetch Pattern 178
Creating a Reference Implementation, 180

The Timeout Pattern e 186
Generalities of the Timeout Pattern............ 187

A Timeout Pattern Reference Implementation..................... 188
Related Patterns.o 192

The Progress Indicator Pattern i i i 194
Generalities of the Progress Indicator Pattern 194

A Progress Indicator Reference Implementation................... 196
Canceling an Ongoing Remote Task. 206
Other Patterns e 213
The Micro-Link Pattern....... ... o i 213

The Cross-Domain Proxy Pattern 215

The Submission Throttling Pattern........... 218
SUMIMIAIY .« e e 221
7 Client-SideDataBindingc i, 223
An Architectural Tour of ASP.NET Data Binding......................... 224
Defining the HTML Template. 224
Definingthe DataSource...... ...t 230

Data Binding at the Time of AJAX i 232

The Browser-Side Template Pattern 235
Generalities of the BST Pattern o i it 235
Creating a BST Reference Implementation........................ 238

The HTML Message Pattern. i, 250
Generalities of the HM Pattern i, 250

Developing an HM Reference Implementation 253

Table of Contents

A Look at ASPNET AJAX 4.0, ...t 260
ASP.NET AJAX Templates s 260
ASP.NET Library for ADO.NET Data Services. 266

SUMMAY . .o e 268

8 Rich Internet Applications.............. 269

Looking foraRicherWeb...... i 269
The Dream of Binary Code Running overtheWeb 270
Browser PlUg-ins o 271

Microsoft SilverlightataGlance i i, 274
Elements of the Silverlight Architecture. 275
Graphics and Multimedia............... 277
Building Applications 279

The Programming Model of Microsoft Silverlight 282
WPF-Based User Interface ..., 282
The .NET Base Class Library i 286
Isolated Storaget 289
Networking.o 295

Microsoft Silverlight and Code Security 302
The Security Model 302
Security Attributes. 303
Secure by Designot 306

SUMMIAIY .« .t e e e 308

INdeX . oo e 309

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

http://www.microsoft.com/learning/booksurvey/

Acknowledgments

A team of people helped me to assemble this book.

Ben Ryan was sneakily convinced to support the project on a colorful Las Vegas night,
during an ethnic dinner during which we watched waiters coming up from and going down
to the wine cellar in transparent elevators.

Lynn Finnel just didn't want to let Dino walk alone in this key project after brilliantly
coordinating at least five book projects in the past.

Kenn Scribner is now Dino’s official book alter ego. Kenn started working with Dino on
books back in 1998 in the age of COM and the Active Template Library. How is it possible
that a book with Dino’s name on the cover isn't reviewed and inspired (and fixed) by Kenn's
unique and broad perspective on the world of software? The extent to which Kenn can be
helpful is just beyond human imagination.

Roger LeBlanc joined the team to make sure that all these geeks sitting together at the
same virtual desktop could still communicate using true English syntax and semantics.

| owe you all the (non-rhetorically) monumental “Thank you” for being so kind, patient,
and accurate.

—Dino

Xi

This page intentionally left blank

Introduction

This book is the Web counterpart to another recently released book | co-authored with
Andrea Saltarello: Microsoft .NET: Architecting Applications for the Enterprise (Microsoft
Press, 2008). | wrote it, in part, in response to the many architectural questions—both small
questions and big ones—that | was asked repeatedly while teaching ASP.NET, AJAX, and
Silverlight classes.

Everybody in the industry is committed to AJAX. Everybody understands the impact of it.
Everybody recognizes the enormous power that can be derived from its employment in
real-world solutions.

Very few, though, know exactly how to make it happen. There are so many variations to AJAX
and so many implementations that even after you have found one that suits your needs, you
are left wondering whether that is the best possible option.

The fact is that AJAX triggered a chain reaction in the world of the Web. AJAX represents a
change of paradigm for Web applications. And, as the history of science proves, a paradigm
shift has always had a deep impact, especially in scenarios that were previously stable and
consolidated.

| estimate that it will take about five years to absorb the word AJAX (and all of its background)
into the new definition of the Web. And the clock started ticking about four years ago. The
time at which we say “the Web" without feeling the need to specify whether it contains AJAX
or not...well, that time is getting closer and closer. But it is not that time yet.

Tools and programming paradigms for AJAX, which were very blurry just a few years ago,
are getting sharper every day. Whether we are talking about JavaScript libraries or suites
of server controls, | feel that pragmatic architectures can be identified. You find them
thoroughly discussed in Chapter 3, "AJAX Architectures.”

Architecting a Web application today is mostly about deciding whether to prefer the richness
of the solution over the reach of the solution. Silverlight and ASP.NET AJAX are the two
platforms to choose from as long as you remain in the Microsoft ecosystem. But the rich vs.
reach dilemma is a general one and transcends platforms and vendors. A neat answer to that
dilemma puts you on the right track to developing your next-generation Web solution.

Who This Book Is For

| believe that this book is ideal reading for any professionals involved with the ASP.NET
platform and who are willing or needing to find a solution that delivers a modern and rich
user experience.

xiii

Xiv Introduction

Companion Content

Examples of techniques and patterns discussed in the book can be found at the following
site: http://www.microsoft.com/learning/en/us/books/12926.aspx.

Hardware and Software Requirements

You'll need the following hardware and software to work with the companion content
included with this book:

® Nearly any version of Microsoft Windows, including Vista (Home Premium Edition,
Business Edition, or Ultimate Edition), Windows Server 2003 and 2008, and
Windows XP Pro.

B Microsoft Visual Studio 2008 Standard Edition, Visual Studio 2008 Enterprise Edition,
or Microsoft Visual C# 2008 Express Edition, and Microsoft Visual Web Developer 2008
Express Edition.

B Microsoft SQL Server 2005 Express Edition, Service Pack 2 or Microsoft SQL Server 2005,
Service Pack 3, or Microsoft SQL Server 2008.

B The Northwind database of Microsoft SQL Server 2000 is used to demonstrate data-access
techniques. You can obtain the Northwind database from the Microsoft Download Center
(http://www.microsoft.com/downloads/details.aspx?FamilylD=06616212-0356-46A0-8DA2-
EEBC53A68034&displaylang=en).

B 1.6 GHz Pentium lll+ processor, or faster.

® 1 GB of available, physical RAM.

B Video (800 by 600 or higher resolution) monitor with at least 256 colors.
B CD-ROM or DVD-ROM drive.

B Microsoft mouse or compatible pointing device.

Find Additional Content Online

As new or updated material becomes available that complements this book, it will be posted
online on the Microsoft Press Online Developer Tools Web site. The type of material you
might find includes updates to book content, articles, links to companion content, errata,
sample chapters, and more. This Web site is available at http.//www.microsoft.com/learning/
books/online/developer and is updated periodically.

http://www.microsoft.com/learning/en/us/books/12926.aspx
http://www.microsoft.com/downloads/details.aspx?FamilyID=06616212-0356-46A0-8DA2-EEBC53A68034&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=06616212-0356-46A0-8DA2-EEBC53A68034&displaylang=en
http://www.microsoft.com/learning/books/online/developer
http://www.microsoft.com/learning/books/online/developer

Introduction XV

Support for This Book

Every effort has been made to ensure the accuracy of this book and the companion content.
As corrections or changes are collected, they will be added to a Microsoft Knowledge
Base article.

Microsoft Press provides support for books and companion content at the following Web site:

http://www.microsoft.com/learning/support/books

Questions and Comments

If you have comments, questions, or ideas regarding the book or the companion content, or
questions that are not answered by visiting the sites above, please send them to Microsoft
Press via e-mail to

mspinput@microsoft.com
Or via postal mail to

Microsoft Press

Attn: Microsoft ASP.NET and AJAX: Architecting Web Applications Editor
One Microsoft Way

Redmond, WA 98052-6399

Please note that Microsoft software product support is not offered through the above
addresses.

http://www.microsoft.com/learning/support/books

This page intentionally left blank

This page intentionally left blank

Chapter 4
A Better and Richer JavaScript

Language is the source of misunderstandings.

—Antoine de Saint-Exupery

Aside from the social implications of it, the Web 2.0 from a technology viewpoint is mostly
about running more JavaScript code on the client. You can't just take the standard JavaScript
language that most browsers support today and ask any developer to write immensely
capable applications using it. As a projectwide approach, it just doesn’t scale and work

the way you might expect. JavaScript is not like, say, C#. JavaScript is a very special type of
language; it's probably not the language everybody would choose to use today to power up
the client side of the Web. However, it's the only common language we have, and we have to
stick to it to reach the largest audience.

So what if you want (or more likely need) more power on the client?

Be ready to write more JavaScript code; more importantly, be ready to import more
JavaScript code written by others. Either of these two ways of using JavaScript is OK, as they
are not mutually exclusive options.

JavaScript is not the perfect language, and, amazingly, it was not designed to be the super
language to rule the Web. JavaScript is popular, and this is its major strength and most
significant weakness. It's a strength because it allows you to reach virtually every browser and
every user; it's a weakness because its widespread use makes implementing any important
change or extension painful in terms of achieving compatibility.

In summary, | firmly believe that for the time being you can't just transform JavaScript into
something else that is radically different from what the language is today. However, the
Web has repeatedly proven to be a surprisingly dynamic and agile environment; so who
really knows what could happen in five years? Giving a judgment today, | would say that

a winning approach needs to evolve the language without breaking compatibility with all
of today's browsers. It ultimately means creating new libraries that add new features to
the language. However, these libraries must be created using the same core language and,
ideally, they should also be stacked up and composed together in a recipe that suits any
given application.

In this chapter and the next, I'll review two JavaScript libraries that work well together today
and that will probably evolve together in the near future: the Microsoft AJAX library and
the jQuery library.

101

102 Part Il Power to the Client

JavaScript Today

AJAX would not be possible without JavaScript. And this happens not because JavaScript is
such a powerful language, but because JavaScript is so popular and built in nearly the same
form in virtually all browsers released in the past five years.

Three ingredients, combined in the right doses, almost spontaneously originated the AJAX
paradigm shift: a standard browser-hosted programming language (JavaScript), a standard object
model to fully represent the document being viewed (the W3C's Document Object Model), and

a sufficiently rich browser object model that includes the key XMLHttpRequest object.

Separating these elements is almost impossible nowadays. JavaScript is more than a simple
programming language and, as you'll see later in the chapter, modern libraries reflect that.

The Language and the Browser

JavaScript is a language tailor-made for the Web and, more specifically, for the browser. In
fact, there's no compiler currently available that allows you to create binaries from a bunch of
JavaScript source files.

The only exception I'm aware of is the Managed JScript compiler for the .NET Framework.
However, | don't recall ever meeting someone who used it concretely to build applications
and not simply as a proof of some concepts.

| won't stray too far from the truth by saying that there's no life for JavaScript outside the
realm of a Web browser. Of course, this is largely due to where JavaScript originated and the
purpose it fulfilled at the time. Let's briefly recall the origins of the language.

Original Goals of the Language

The first appearance of JavaScript as a browser-hosted language dates back to late 1995,
when the first beta of Netscape Navigator 2 was released. JavaScript was introduced to give
authors of Web documents the ability to incorporate some logic and action in HTML pages.
Before then, a Web page was essentially a static collection of HTML tags and text. Historically,
the first significant enhancement made to the syntax of HTML was the support for tags to
include script code.

JavaScript was not designed to be a classic and cutting-edge programming language—not even
by the standards of 15 years ago. The primary goal of its designers was to create a language
that resembled a simpler Java that could be used with ease by nonexpert page authors.

To some extent, the design of JavaScript was influenced by many languages, but the
predominant factor was simplicity. It was named JavaScript because the language was essentially
meant to be a powerful language (like Java) but focused on scripting. No other relationships,
beyond the deliberate reference in the name, exist between Java and JavaScript.

As a result, JavaScript is an interpreted and weakly typed language that also supports
dynamic binding and objects. JavaScript, however, is not a fully object-oriented language.

Chapter 4 A Better and Richer JavaScript 103

Note Originally developed at Netscape by Brendan Eich, JavaScript was first named LiveScript.
The name was changed to JavaScript when Netscape added support for Java technology in

its Navigator browser. The script suffix was simply meant to be the script version of an
excellent programming language like Java. In no way was the language supposed to be a
spinoff of Java.

Later, Microsoft created a similar language for its Internet Explorer browser and named it
JScript to avoid trademark issues. In 1997, JavaScript was submitted to the European Computer
Manufacturers Association (ECMA) International for standardization. The process culminated a
couple of years later in the standardized version of the language named ECMAScript.

The Scripting Engine

Being an interpreted language, JavaScript requires an ad hoc run-time environment to
produce visible effects from the source code. The run-time environment is often referred
to as the browser’s scripting engine. As such, the JavaScript’s run-time environment can
be slightly different from one browser to the next. The result is that the same JavaScript
language feature might provide a different performance on different browsers and might
be flawed on one browser while working efficiently on another one.

This fact makes it hard to write good, cross-browser JavaScript code and justifies the love/hate
relationship (well, mostly hate) that many developers have developed with the language over
the years.

The diagram in Figure 4-1 shows the overall structure of a scripting engine.

Scripting Engine —

Source
Code

JavaScript Language

Interpreter
DOM Your Browser
Objects Objects Objects

FIGURE 4-1 The browser's scripting engine

104

Part Il Power to the Client

The engine is a component that is hosted in the browser and receives the source code to
process. Armed with language knowledge, the engine can resolve any name in the source code
that can be mapped to a syntax element—keywords, variables, local functions, and objects.

In addition, the source code processed within a Web browser is likely populated with

specific objects coming from a variety of sources. For example, you can find DOM objects

to access the content being displayed in the page as well as browser-specific objects such as
XMLHttpRequest and window. Furthermore, any libraries you reference from the page are also
published to the engine. After the script has been loaded, the browser runs the script through
the engine. This action results in the functionality defined by the commands in the code.

As mentioned, although JavaScript is definitely a stable language that hasn't faced significant
changes for 10 years now, virtually any broadly used library is packed with forks in code to
distinguish the behavior of different browsers and ensure the same overall interface.

One of the first rules—if not the first rule—you should follow to write good AJAX applications
is get yourself a powerful JavaScript library that adds abstraction and features to the JavaScript
language and that works in a cross-browser manner.

Note As far as the ASP.NET platform is concerned, the good news is that you have neither to
reinvent the wheel nor to invent your own wheel to proceed. In fact, the AJAX extensions

to ASP.NET include a cross-browser core library that you can use as the foundation for any
JavaScript code you might need beyond ready-made objects and functionalities.

Recognized Flaws

As you'll see in a moment, JavaScript has a number of drawbacks, both technical and
infrastructural. In spite of all these factors, though, JavaScript works just great for the majority
of Web applications. And nothing any better has been invented yet.

All things considered, the limitations of JavaScript can be summarized as two elements: it is
an interpreted language, and it is not fully object oriented. The former drawback makes
the language significantly slower than a compiled language. The latter makes it harder for
developers to write complex code.

These were not limitations in the beginning, about 10 years ago. Nonetheless, they are
now limitations that become more evident every day. Replacing JavaScript, however, is not
something that can happen overnight.

JavaScript is so popular and widely used that making any breaking changes to it would break
too many applications. Yet the direction that JavaScript is taking in light of AJAX addresses
the two aforementioned limitations.

The Google Chrome browser (which you can read more about at http.//www.google.com/chrome)
comes with an open-source JavaScript engine that compiles source code to native machine code
before executing it. As a result, Chrome runs JavaScript applications at the speed of a compiled
binary, which is significantly better than any bytecode or interpreted code.

http://www.google.com/chrome

Chapter 4 A Better and Richer JavaScript 105

The Microsoft AJAX library, as well as other popular JavaScript libraries, such as Prototype, offers
some built-in features to add inheritance to JavaScript objects and flavors of object orientation.

Note Chrome and its V8 JavaScript engine are taking an innovative approach to dealing with
the growth in size and complexity of JavaScript code in AJAX applications. Other libraries are
trying to offer more powerful instruments to raise the abstraction level of the original JavaScript
language. We are not seeing either a brand new language or an improved core language, but
something is happening on the client side to make JavaScript code more effective.

Pillars of the Language

In more than 10 years of existence, JavaScript has never been as central a technology in the
world of Web computing as it is today following the arrival of AJAX. JavaScript code in the
average Web page has grown from just a few lines of trivial code that just scripts page elements
to hundreds of kilobytes of code providing rich object models, if not true frameworks.

Because it was not created to be a spinoff of a true compiled programming language,
JavaScript supports all the syntax elements of a common structured programming language,
such as if, switch, for, and while statements. Types are not strongly enforced and are associated
with values rather than with variables. Let's briefly review the pillars of the JavaScript language.

Note Any piece of source code written in JavaScript and completely delivered to a browser is
immediately executable. Clearly, this provides the potential for malicious code to be downloaded
and run on the client computer. To contain the risk, the browser runs any script within a sandbox.
A sandbox is a virtual environment where hosted programs can perform only controlled actions
and are typically not granted permissions to operate on the file system and the local hardware.

In addition, browsers also commonly restrict scripts from accessing any information from an
external site. This is known as a same origin policy. Violating the same origin policy may result in
a cross-site scripting attack.

Objects as Dictionaries

The JavaScript language allows you to use objects, but it doesn't natively support all principles
of object-oriented programming (OOP), such as inheritance, encapsulation, and polymorphism.
To some extent, some of these principles can be recognized here and there in the language’s
capabilities; however, JavaScript can't be described as a fully object-oriented (OO) language.

The primary reason for not cataloging JavaScript as an OO language is that the definition of
an object you get from JavaScript is different from the commonly accepted idea of an object
you get out of classic OO languages such as C++ or C#.

In C# and C++, you create new objects by telling the runtime which class you want to instantiate.
A class is a fixed template used for the object creation. A class defines the properties and

106

Part Il Power to the Client

methods an object will have, and these properties and methods are forever fixed. In C# and
C++, you can't manipulate the structure of an object by adding or removing properties and
methods at runtime.

In JavaScript, objects are essentially dictionaries of values or associative arrays. An object is
a container of name/value pairs that can be added at any time, and especially at runtime. In
an attempt to express a JavaScript object via a C# notation, you would probably resort to
something similar to the following:

Dictionary<string, object>
The property name is a string that acts as the key in the dictionary, as shown here:

var obj = new YourJavaScriptObject(Q);
obj["Property"] = "Hello";

You can also use an alternate syntax based on the dot notation. The effect is the same:
obj.Property = "Hello";

JavaScript objects contain more than just a dictionary of values. In particular, they contain
the prototype object. The prototype is like a directory that defines the public interface of the
object. By acting on the prototype, you can augment the capabilities of the object in a fully
dynamic manner.

Functions as Objects

Another fundamental characteristic of JavaScript is that functions are first-class language
elements and objects themselves. In other words, functions might have properties and can
be passed around and interacted with as you would do with any other object.

You can use the new operator with a function. When you do so, you get an entirely new object
and can reference it internally using the this keyword. Just like any other object, the function
has its own prototype property that determines the public interface of the new object:

MyPet = function (name, isDog)
{
this._name = name;
this._isDog = isDog;
}
MyPet.prototype = {
get_Name = function() {return this._name;},
get_IsDog = function() {return this._isDog;}
}

Given the preceding code, you can use the new operator on the MyPet function and invoke
the members in the prototype.
Dynamic Typing

The nature of objects and functions makes JavaScript a very dynamic language. Types are not an
exception and don't force developers to follow strict rules as in a classic programming language.

Chapter 4 A Better and Richer JavaScript 107

Like many other scripting languages, JavaScript recognizes a few primitive types (string,
number, date, Boolean) but doesn't let you declare a variable of a given, fixed type.
Variables are untyped on declaration and can hold values of different types during their
lifetime. As mentioned, in JavaScript types are associated with values rather than with
variables.

="1"; // It is a string
X = 1; // It is a number

For this reason, equality operators work in a slightly different manner. Given the following
lines of code, what would be the result of the expression x == y?

x = "1
y =1

If you look at the code from an OO perspective, you can have only one answer: false. Quite
surprisingly, instead, in JavaScript x==y returns true because the comparison is made on the
value, not the type. To get the expected result, you must switch to the === operator, which
checks value and type.

JavaScript provides the typeof built-in function to test the type of an object. Another
approach is duck typing. Duck typing basically consists of providing the freedom of invoking
on an object any methods it seems to have. If it does not have a particular method, you just
get a run-time exception. Duck typing originates from the statement: If it walks like a duck
and quacks like a duck, | would call it a duck.

Closures and Prototypes

The three pillars of object orientation can be implemented in JavaScript to various

degrees. For example, encapsulation is easy to get via the var keyword in a closure model.
Encapsulation is impossible to achieve if you are working with a prototype model. The
prototype model makes it easy to build inheritance, and polymorphism can be obtained via
a combination of functions and duck typing.

There are two main models for designing classes in JavaScript: closures and prototypes. The
models are not entirely equivalent, so choosing one over the other is a matter of evaluating
the tradeoffs. Also, the performance you get for both models in the major browsers is not the
same. Let's learn more about the closure model.

In the closure model, a custom object is a single function where all members are defined
together within the same (closed) context, as shown here:

// The Person object is entirely defined here
Person = function()
{
var _firstName; // private member
var _TlastName; // private member
this.get_FirstName = function() { return this._firstName; }
this.get_LastName = function() { return this._TastName; }

108

Part Il Power to the Client

The use of the var keyword keeps a member declaration local to the context and ensures
data encapsulation. Accessing _firstName and _lastName members from outside the closure
is impossible, as is the case when accessing a private member from outside a class definition
in C# or C++. Members not tagged with the var keyword are meant to be public. The object
declaration occurs in a single place and through a unique constructor. Using objects built as
closures can be memory intensive because a new instance is required for any work—just like
in C# or C++.

The prototype model defines the public structure of the class through the built-in prototype
object. The definition of an object, however, is not centered around a single point of scope.
Here's how the object definition changes if you opt for the prototype model:

Person = function (firstName, lastName)
{
this._firstName = firstName;
this._lastName = TastName;
}
Person.prototype {
get_FirstName = function() {return this._firstName;},
get_LastName = function() {return this._lastName;}

}

As you can see, the object constructor and members are clearly separated. Members are
shared by all instances and are private only by convention. Using the var keyword in the
definition of, say, _firstName would make it private and inaccessible. On the other hand, not
using the var keyword keeps the member public and therefore visible from the outside.

Because members of the prototype are global and static, the prototype model reduces the amount
of memory required by each instance of the object and makes object instantiation a bit faster.

Note Prototypes have a good load time in nearly all modern-day browsers, and load times are
excellent in Firefox. On the other hand, closures are faster than prototypes in all recent versions
of Internet Explorer.

JavaScript (If Any) of the Future

Two pillars carry the whole weight of the Web: HTML and JavaScript. Neither of them seems
to be entirely appropriate in the age of AJAX. And neither can be blissfully dismissed and
replaced for compatibility and interoperability reasons. Regarding JavaScript, what can we do?

Like HTML, JavaScript is very efficient in doing the few and relatively simple things it was
originally designed to do. The point is that the community of developers needs much
more—more programming power and more performance.

Personally, | value programming power and language expressivity more than performance.
To some extent, performance and JavaScript still sound to me like incompatible concepts.

Chapter 4 A Better and Richer JavaScript 109

Performance is especially relevant in a scenario where an ounce of performance lost in some
task might be automatically multiplied by some factor, such as the growing number of requests.
With JavaScript, frankly, there are no such risks. The JavaScript code runs on the client and on a
computer that serves a single user at a time. There's no bad performance multiplier around.

JavaScript performance can become an issue—but not really a showstopper—only when you
have so many lines of code (something like several hundred kilobytes) that it just takes too
much to produce a user-friendly result.

Improving JavaScript might be desirable. But if so, how should that be done? There are two
main schools of thought, plus a clever ploy.

Overhauling the Language

The specification for JavaScript 2.0 is currently being discussed and defined. You can find
more details at http.//www.mozilla.org/js/language/evolvingJS.pdf. JavaScript 2.0 is expected
to be a significant overhaul of the language.

The most radical change that will come with JavaScript 2.0 is support for real classes and
interfaces. The following syntax should be acceptable in the next version:

class Person

{
this.FirstName = "dino";
this.LastName = "esposito";

3

var p = new Person();

Compile-time type checking is another aspect waiting for improvement. A component that
requires strict mode will have static type checking and a number of other checks performed
before execution, such as verification that all referenced names are known and that only
comparisons between valid types are made.

Namespaces and packages complete the set of hot features slated for the next JavaScript.
A package is a library of code that is automatically loaded only on demand.

It's All About Security

Another camp sees the future of JavaScript in a different manner. This camp is well
represented by Douglas Crockford—one of the creators of JSON. According to Douglas,
security is the biggest concern for JavaScript developers. So by simply making JavaScript a
more secure programming environment, we would make JavaScript a better environment.

Douglas suggests adding a verifier to analyze the source and spot unsafe code and a
transformer to add indirection and run-time checks around critical instructions. More in
general, the vision put forth by Douglas is centered on the idea of improving the language
by making today’s de facto standard solutions a native part of the language.

http://www.mozilla.org/js/language/evolvingJS.pdf

110

Part Il Power to the Client

Google's V8 Engine

As mentioned, a new approach to JavaScript programming is coming out with Google's Chrome
browser—the V8 engine. V8 is a new JavaScript engine specifically designed for optimized
execution of large JavaScript applications.

The basic idea is that the browser operates as a just-in-time JavaScript compiler, wrapping
functions into memory objects and turning them into machine code. In addition to dynamic
machine-code generation, the increment of improved performance is the result of a couple
of other factors: fast property access and efficient garbage collection. For more information,
check out http://code.google.com/p/v8.

The Microsoft AJAX Library

A truly powerful JavaScript library today can't ignore the dependencies existing between the
language itself and the Document Object Model (DOM) and Browser Object Model (BOM).
Subsequently, a modern JavaScript library is made of three fundamental pieces: a flavor of
object orientation, facilities for visual effects, and a network stack.

It is not coincidental that this is also the recipe for the Microsoft AJAX library—one of the
pillars of the Microsoft strategy for AJAX. Initially developed to back up the ASP.NET AJAX
Extensions 1.0, and successively integrated in ASP.NET 3.5, the library is still being improved
and enhanced for ASP.NET 4.0.

The next release of ASP.NET is expected to ship a stronger and more powerful client platform
that results from the integration of the newer AJAX library and the newest version of another
quite popular and largely complementary library—the jQuery library.

Overview of the Library

The Microsoft AJAX library is written in JavaScript, although with a strong sense of object
orientation. ASP.NET AJAX takes the JavaScript language to the next level by adding some
type-system extensions, the notion of namespace and interface, plus facilities for inheritance.
In addition, the ASP.NET AJAX JavaScript supports enumerations and reflection, and it has a
number of helper functions to manipulate strings and arrays.

Constituent Files

The Microsoft AJAX library is coded using the base set of instructions that characterize the
core JavaScript language, and it is persisted to a set of s files. These s files are not installed
as distinct files on the Web server when you install ASP.NET. They are embedded as resources
into the ASP.NET AJAX assembly—system.web.extensions. If you want them available as
distinct files (for example, for your home perusal), go to http.//msdn2.microsoft.com/en-us/
asp.net/bb944808.aspx, check the license agreement, and get them as a single downloaded
compressed file.

http://code.google.com/p/v8
http://msdn2.microsoft.com/en-us/asp.net/bb944808.aspx
http://msdn2.microsoft.com/en-us/asp.net/bb944808.aspx

Chapter 4 A Better and Richer JavaScript 111

We already hinted at it in Chapter 2, “The Easy Way to AJAX," but let's briefly review in Table 4-1
the files that make up the library.

TABLE 4-1 Files That Form the Microsoft AJAX Library

Script Description

MicrosoftAjax.js A core part of the library, this file contains object-oriented
extensions, the network stack, and a number of facilities, such as
those for tracing and debugging.

MicrosoftAjaxWebForms.js This file contains script functions to support ASP.NET partial
rendering. In particular, it defines the client-side engine and
programming interface for partial rendering.

MicrosoftAjaxTimer.js This file contains the client-side programming interface of the
Timer server control, a built-in control that comes with ASP.NET
AJAX. The control creates a timer on the client and makes it post
back upon timeout.

As you can see, these are plain JavaScript files that can be linked from any sort of Web page
regardless of the technology it is written for—PHP, classic ASP.NET, ASP, or even plain HTML.

Linking the Microsoft AJAX Library

In ASP.NET 3.5 pages, you don't need to load files from the Microsoft AJAX library explicitly.
This is a viable option when you don't have a customized version of the files to load. If you
embed a ScriptManager control in your pages, the control will automatically recognize the
Microsoft AJAX library files you need and will download them as required.

By default, script files will be extracted from the resources of the system.web.extensions
assembly. If you hold your own copies of the scripts and want to reference them instead, you
use the ScriptManager control as shown here:

<asp:ScriptReference Name="MicrosoftAjax.js"
Path="./MyScripts/MicrosoftAjax.js" />

You need the Name property to identify the name of the embedded resource that contains
the client script file. The Path property can optionally be used to specify the physical server
location where the named script file has to be loaded from.

When both Name and Path are specified, Path is the winner. Does it really make sense to
specify both? Sure it does. When both properties are specified, you actually replace the
standard MicrosoftAjax.js with the specified script.

Tip This trick can be used to take advantage of the script-related services of the ScriptManager
control and also in scenarios where your pages are not dependent on the Microsoft AJAX library.
By setting the Name property to MicrosoftAjax.js and the Path property to, say, jquery.js, you

load jQuery instead of Microsoft AJAX while taking advantage of all the extra facilities of the
ScriptManager control that we reviewed in Chapter 2. Read the full story at http.//weblogs.asp.net/
bleroy/archive/2008/07/07/using-scriptmanager-with-other-frameworks.aspx.

http://weblogs.asp.net/bleroy/archive/2008/07/07/using-scriptmanager-with-other-frameworks.aspx
http://weblogs.asp.net/bleroy/archive/2008/07/07/using-scriptmanager-with-other-frameworks.aspx

112

Part Il Power to the Client

Note As general advice, | suggest that to reference a script file you don't strictly need the
ScriptManager control. However, you should always consider using the ScriptManager control
because of the handy services it provides, such as its ability to detect script duplicates and its free
compression and localization.

No Bells and Whistles

As you'll see in greater detail in a moment, the Microsoft AJAX library provides core JavaScript
services such as type extensions, OOP flavors, and an AJAX-enabled network stack. It doesn't
provide any facilities for adding visual effects to your pages.

The integration between Microsoft AJAX library and jQuery that is coming out with the next
version of ASP.NET will make up for this. You'll have a script framework that offers a richer
JavaScript with advanced and commonly used widgets such as those provided by jQuery.

Let’s dig out now the key capabilities of the Microsoft AJAX library.

JavaScript Language Extensions

The JavaScript language features a set of built-in objects, including Function, Object, Boolean,
Array, Number, and String. All intrinsic objects have a read-only property named prototype.
The prototype property provides a base set of functionality shared by any new instance of an
object of that class.

New functionality can be added to each object by extending and improving its prototype.
This is exactly what the Microsoft AJAX library does.

Primitive Types

The Microsoft AJAX library contains code that defines new objects and extends existing
JavaScript objects with additional functionality. Table 4-2 lists the main global objects defined
in the library and explains how they relate to original JavaScript types.

TABLE 4-2 Top-Level Objects in the Microsoft AJAX Library

Object Description

Array Extends the native Array object. This object groups static methods to add, insert,
remove, and clear elements of an array. It also includes static methods to enumerate
elements and check whether a given element is contained in the array.

Boolean Extends the native Boolean object. This object defines a static parse method to infer a
Boolean value from a string or any expression that evaluates to a Boolean value.

Date Extends the native Date object with a couple of instance methods: localeFormat
and format. These methods format the date using the locale or invariant culture
information.

Chapter 4 A Better and Richer JavaScript 113
TABLE 4-2 Top-Level Objects in the Microsoft AJAX Library

Object Description

Error Defines a static create method to wrap the JavaScript Error object and add a richer
constructor to it. This object incorporates a couple of properties—message and
name—to provide a description of the error that occurred and identify the error by
name. A number of built-in error objects are used to simulate exceptions. In this case,
the name property indicates the name of the exception caught.

Function Extends the native Function object. This object groups methods to define classes,
namespaces, delegates, and a bunch of other object-oriented facilities.

Number Extends the native Number object. This object defines a static parse method to infer
a numeric value from a string or any expression that evaluates to a numeric value.
In addition, it supports a pair of static formatting methods: localeFormat and format.

Object Extends the native Object object. This object groups methods to read type information,
such as the type of the object being used.

RegExp Wraps the native RegExp object.

String Extends the native String object. This object groups string manipulation methods, such
as trim methods and endsWith and startsWith methods. In addition, it defines static
localeFormat and format methods that are close relatives of the String.Format method
of the managed String type.

After the Microsoft AJAX library has been added to an application, the following code will
work just fine:

var s = "Dino";
alert(s.startsWith('D'));

The native JavaScript String object doesn't feature either a startsWith or an endsWith method;
the extended AJAX String object, instead, does.

New Types

As mentioned, it's only in a future version of JavaScript that you can start creating new
complex and custom types as you do today in classic object-oriented languages. The
Microsoft AJAX library, though, provides its own application programming interface (API) to
let you register new objects—essentially custom JavaScript functions—with the library and
use them as classes with an object-oriented flavor.

No new keyword is added for compatibility reasons, but a couple of new methods must be
used to wrap the definition of a new type, as shown next for the sample MyClass type:

Type.registerNamespace("Samples");
Samples.MyClass = function ()

{

}

// Other blocks of code here for class members

SampTles.MyClass.registerClass("Samples.MyClass");

114

Part Il Power to the Client

Enumerations are a special breed of a new type in JavaScript. As in the .NET Framework, an
enumeration represents an easily readable alternative to integers. Here's a sample definition
for an enumerated type in JavaScript:

Type.registerNamespace("Samples");

// Define an enumeration type and register it.
Samples.Color = function() {};
Samples.Color.prototype =

{
Red: 0xFF0000,
Blue: 0x0000FF,
Green: Ox00FFO0O0,
White: OxFFFFFF
}

SampTles.Color.registerEnum("Samples.Color™);

To register an enumerated type, you use a tailor-made registration function—the registerEnum
function.

Shorthand Functions

I would find it hard to believe that most of you reading this book have never made the mistake
of using the name of the HTML element in a page as a shortcut to get the corresponding

DOM reference. Suppose you have a text box element named TextBox1 in the client page. The
following script code won't work on all browsers:

alert(TextBoxl.value);

The correct form ratified by the World Wide Web Consortium (W3C) paper for the HTML
DOM standard is shown here:

alert(document.getETementById("TextBox1").value);

The correct form is clearly more verbose and bothersome to write over and over again.

The Microsoft AJAX library comes to the rescue with the $get global function. Simply put, the
$get function is a shortcut for the document.getElementByld function. If the Microsoft AJAX
library is in use, the following expression is fully equivalent to the one just shown:

alert($get("TextBox1l").value);

The $get function has two overloads. If you call $get passing the sole ID, the function falls
back into document.getElementByld. Alternatively, you can specify a container as the second
argument, as shown here:

var parent = $get("Div1l");
$get("TextBox1l", parent);

If the container element supports the getElementByld method, the function returns the output
of element.getElementByld; otherwise, the $get function uses the DOM interface to explore the
contents of the subtree rooted in the element to locate any node with the given ID.

Chapter 4 A Better and Richer JavaScript 115

Although $get is only an alias for a regular JavaScript function, it is often mistaken for a new
language element. Other similar shortcuts exist in the library to create objects and add or
remove event handlers.

Note The $get function has a lot in common with jQuery’s § root object. To be precise, early
builds of the Microsoft AJAX library were still using the same $ expression that was renamed later
to avoid collisions. The $get object in the Microsoft AJAX library is merely a direct DOM selector
that just filters by ID. The $ object in jQuery, instead, is a full selector that supports a much richer
CSS-based syntax to filter DOM elements to return.

Object-Oriented Extensions

In JavaScript, the Function object is the main tool you use to combine code with properties
and forge new components. In the Microsoft AJAX library, the Function object is extended
to incorporate type information, as well as namespaces, inheritance, interfaces, and
enumerations.

Namespaces and Classes

A namespace provides a way of grouping and classifying the types belonging to a library.
Not a type itself, a namespace adds more information to the definition of each type in the
library to better qualify it.

All custom JavaScript functions belong to the global space of names. In the Microsoft
AJAX library, you can associate a custom function with a particular namespace, for purely
organizational reasons. When declaring a custom type in the Microsoft AJAX library, you
can do as follows:

Type.registerNamespace("Samples");
Samples.Person = function Samples$Person(firstName, TastName)
{

this._firstName = firstName;

this._TastName = lastName;

}

// Define the body of all members
function Samples$Person$ToString()
{

return this._lastName + ", + this._firstName;

}

// Define the prototype of the class

Samples.Person.prototype =

{
ToString: Samples$Person$ToString,
get_FirstName: Samples$Person$get_FirstName,
set_FirstName: Samples$Person$set_FirstName,

116

Part Il Power to the Client

get_LastName: Samples$Person$get_LastName,
set_LastName: Samples$Person$set_LastName

}

// Register the class
Samples.Person.registerClass("Samples.Person");

The Type.registerNamespace method adds the specified namespace to the run-time
environment. In a way, the registerNamespace method is equivalent to using the namespace
{...} construct in C#. The Samples.Person function defined following the namespace
declaration describes a Person type in the Samples namespace. Finally, the newly defined
function must be registered as a class with the Microsoft AJAX library framework. You use
the registerClass method on the current function.

The registerClass method takes a number of parameters. The first parameter is mandatory,

and it indicates the public name that will be used to expose the JavaScript function as a class.
Additional and optional parameters (not shown in the preceding code) are the parent class, if
there is any, and any interface implemented by the class. We'll get into this in just a moment.

The Microsoft AJAX library follows the prototype model (as opposed to closures) to define its
own custom types. The goal of the ASP.NET AJAX team was to deliver a model that provided
the best quality and performance on the largest number of browsers. Prototypes have a
good load time in all browsers; and indeed, they have excellent performance in Firefox.
Furthermore, prototypes lend themselves well, more than closures do, to debugging as far as
object instantiation and access to private members are concerned.

Note In the definition of a new class, you can use an anonymous function or a named function.
In terms of syntax, both solutions are acceptable. The convention, though, is that you opt for
named functions and name each function after its fully qualified name, replacing the dot symbol
() with a dollar symbol ($). The convention is justified by the help this approach provides to
IntelliSense in Microsoft Visual Studio 2008.

Inheritance and Polymorphism
Let's now define a new class, Citizen, that extends Person by adding a new property: a

national identification number. Here's the skeleton of the code you need:

// Declare the class
Samples.Citizen = function Samples$Citizen(firstName, TastName, id)

{

}

// Define the prototype of the class
Samples.Citizen.prototype =

{

3

Chapter 4 A Better and Richer JavaScript 117

// Register the class
Samples.Citizen.registerClass("Samples.Citizen", Samples.Person);

Note that the first argument of registerClass is a string, but the second one has to be an
object reference. The second argument indicates the object acting as the parent of the newly
created object. Let's flesh out this code a bit.

In the constructor, you'll set some private members and call the base constructor to initialize
the members defined on the base class. The initializeBase method (defined on the revisited
Function object you get from the library) retrieves and invokes the base constructor:

Samples.Citizen = function Samples$Citizen(firstName, TlastName, id)
{
Samples.Citizen.initializeBase(this, [firstName, TastName]);
this._id = id;
}

You pass initializeBase the reference to the current object as well as an array with any
parameters that the constructor to call requires. You can use the [...] notation to define an
array inline. If you omit the [...] notation, be ready to handle a parameter count exception.

Quite often, developers derive a class because they need to add new members or alter the
behavior of an existing method or property. Object-oriented languages define a proper
keyword to flag members as overridable. How is that possible in JavaScript?

Any member listed in the prototype of an object is automatically public and overridable.
Here's the prototype of the Citizen class:

Samples.Citizen.prototype =

{
ToString: Samples$Citizen$ToString,
get_ID: SampTles$Citizen$get_ID

}

The class has a read-only ID property and overrides the ToString method defined in the
parent class. Let's have a look at the implementation of the overriding method:

function Samples$Citizen$ToString()

{
var temp = Samples.Citizen.callBaseMethod(this, 'ToString');
temp += " [" + this._id + "]";
return temp;

}

You use callBaseMethod to invoke the same method on the parent class. Defined on the
Function class, the callBaseMethod method takes up to three parameters: the instance, the
name of the method, plus an optional array of arguments for the base method.

As mentioned earlier, the ToString method on the Person class returns a LastName, FirstName
string. The ToString method on the Citizen class returns a string in the following format:
LastName, FirstName [ID].

118

Part Il Power to the Client

Note When the prototype model is used, JavaScript has no notion of private members because
no common closure can be provided for all methods contributing to the same object. As a result,
private members are conventionally indicated by the underscore symbol (_) prefixing their
names. They're still public and accessible, though.

Interfaces

An interface describes a group of related behaviors that are typical of a variety of classes. In
general, an interface can include methods, properties, and events; in JavaScript, it contains
only methods.

Keeping in mind the constraints of the JavaScript language, to define an interface you create
a regular class with a constructor and a prototype. The constructor and each prototyped
method, though, will just throw a not-implemented exception. Here's the code for the
sample Sys.IDisposable built-in interface:

Type.registerNamespace("Sys");
Sys.IDisposable = function Sys$IDisposable()

{ throw Error.notImplemented();
iunction Sys$IDisposable$dispose()

{ throw Error.notImplemented();
éys.IDisposab1e.prototype =

{ dispose: Sys$IDisposable$dispose
3

Sys.IDisposable.registerInterface('Sys.IDisposable');

The following statement registers the Citizen class, makes it derive from Person, and implements
the IDisposable interface:

Samples.Citizen.registerClass('Samples.Citizen',
Samples.Person, Sys.IDisposable);

To implement a given interface, a JavaScript class simply provides all methods in the interface
and lists the interface while registering the class:

function Samples$Citizen$dispose

{
this._id = "";
}

Samples.Citizen.prototype =
{

dispose: Samples$Citizen$dispose

Chapter 4 A Better and Richer JavaScript 119

Note, though, that you won't receive any run-time error if the class that claims to implement
a given interface doesn't really support all the methods. You will receive an error if a caller
happens to invoke an interface function your class didn't implement, so by convention all
interface methods should be implemented.

If a class implements multiple interfaces, you simply list all required interfaces in the registerClass
method as additional parameters. Here's an example:

Sys.Component.registerClass('Sys.Component', null,
Sys.IDisposable,
Sys.INotifyPropertyChange,
Sys.INotifyDisposing);

As you can see, in this case you don't have to group interfaces in an array.

Framework Facilities

Many layers of code form the Microsoft AJAX library, including a layer specifically created to
smooth the creation of rich Ul controls with AJAX capabilities. (See http.//www.codeplex.com/
AjaxControlToolkit for example controls.) This particular aspect of the library, though, is expected
to evolve significantly in the next release of ASP.NET.

Let's focus instead on other core facilities you find in the library, such as event handling,
debugging, and networking. To start out, let’s attack with reflection capabilities.

Reflection

While debugging some JavaScript code, isn't it a bit frustrating when you need to know the
actual type of a variable and cannot get it exact? In general, reflection refers to the ability of
a function to examine the structure of an object at runtime. When it comes to reflection, the
JavaScript language doesn't offer much. The Microsoft AJAX library largely makes up for this.

In plain JavaScript, the built-in typeof operator returns information about the type of the
variable you are dealing with. The operator, though, is limited to the core set of JavaScript
types. Let's consider the following code snippet:

Samples.Citizen = new function() {

}
var ¢ = new Samples.Citizen();
alert(typeof c);

As expected, the displayed string is a generic object.

Adding a thick object-oriented infrastructure, the Microsoft AJAX library makes it easy to
track the exact name of the pseudo-type of a given object. The following code returns a
more precise message, as shown in Figure 4-2.

// Returns "Samples.Citizen"
var ¢ = new Samples.Citizen();
alert(Object.getTypeName(c));

http://www.codeplex.com/AjaxControlToolkit
http://www.codeplex.com/AjaxControlToolkit

120

Part Il Power to the Client

Windows Internet Explerer l—i-J

I Samples.Citizen

|_ oK

¥

FIGURE 4-2 The “real” type name of a JavaScript object

Whenever a new object is registered with the Microsoft AJAX framework, its name and
pseudo-type are added to an internal list. Reflection functions just look up these internal
dictionaries and return what they read.

Note | use the expression pseudo-type to indicate a type that has its own fully qualified name
according to the Microsoft AJAX library, such as Person in the preceding code snippet. It should
be noted, though, that at the lower level of the JavaScript engine there remains a plain object type.

In the Microsoft AJAX library, reflection capabilities are offered as extensions of the Type
object. These methods enable you to collect information about an object, such as what it
inherits from, whether it implements a particular interface, and whether it is an instance
of a particular class. Note that the Type class aliases the built-in JavaScript Function object.
Therefore, many of the methods exposed through the general interface of the Type object
are also available through the instance of any custom type (that is, function) you create.

Table 4-3 lists the members of the Type object, which is also a compendium of the reflection
capabilities of the Microsoft AJAX library.

TABLE 4-3 Members of the Type Object

Member Description

callBaseMethod Invokes a base class method with specified arguments

getBaseMethod Gets the implementation of a method from the base class of the specified
instance

getBaseType Gets the base type of the specified instance

getinterfaces Returns the list of interfaces that the type implements

getName Gets the name of the type of the specified instance

implementsinterface Indicates whether a given instance implements the specified interface

inheritsFrom Indicates whether the type inherits from the specified base type
initializeBase Invokes the base constructor of a given type

isClass Indicates whether the specified type is a Microsoft AJAX library class
islmplementedBy Indicates whether the specified interface is implemented by the object
islnstanceOfType Indicates whether the object is an instance of the specified type

isInterface Indicates whether the specified type is an interface

Chapter 4 A Better and Richer JavaScript 121

TABLE 4-3 Members of the Type Object

Member Description

isNamespace Indicates whether the specified object is a namespace

Parse Returns an instance of the type that is specified by a type name
registerClass Registers an object as a Microsoft AJAX library class
registerEnum Registers an object as a Microsoft AJAX library enumeration
registerinterface Registers an object as a Microsoft AJAX library interface
registerNamespace Creates a namespace

Finally, here's a brief example of how to use reflection in practice:

var t = Samples.Components.Timer;
var obj = new Samples.Components.Timer();
if (obj.isInstanceOfType(t))

{
alert(t.getName() + " is a " + obj.getName() + ".™);

3

The Application Object

The execution of each Web page that links the Microsoft AJAX library is controlled by an
application object. This object is an instance of a private class—the Sys._Application class.
An instance of the application object is created in the body of the library, specifically in the
MicrosoftAjax.s file:

// Excerpt from MicrosoftAjax.js
Sys.Application = new Sys._Application();

If properly initialized, the application object invokes a pair of page-level callbacks with fixed
names—pageload and pageUnload:

function pagelLoad(sender, args)

{
// sender is the Sys.Application instance
// args s of type Sys.ApplicationLoadEventArgs

3

function pageUnload(sender, args)

{
// sender is the Sys.Application instance
// args s of type Sys.ApplicationLoadEventArgs

3

In particular, pageLoad is a good place for the page to perform any initialization tasks that
require the Microsoft AJAX library. This is more reliable than using the window's onload event.

The pageload callback receives a Sys.ApplicationLoadEventArgs data structure packed with
the list of Microsoft AJAX library components already created and a Boolean flag to indicate
that the callback is invoked within a regular postback or a partial rendering operation.

122

Part Il Power to the Client

Beyond page loading events, the Sys.Application object serves one main purpose: providing
access to client-side page components. Generally, the term component denotes an object
that is reusable and can interact with other objects in the context of a framework. In the
Microsoft AJAX framework, a component is a JavaScript object that inherits from the
Sys.Component class. These objects are tracked by the library infrastructure and exposed via
methods on the Sys.Application object.

In particular, the findComponent method scrolls the run-time hierarchy of Microsoft AJAX
components for the current page until it finds a component with a matching ID. The method
has two possible prototypes:

Sys.Application.findComponent(id);
Sys.Application.findComponent(id, parent);

The former overload takes the ID of the component, uses it to look up the component,

and then navigates the hierarchy all the way down from the root. When a non-null parent
argument is specified, the search is restricted to the subtree rooted in the context object. The
id parameter must be a string; the parent parameter must be a Microsoft AJAX library object.
The method returns the object that matches the ID, or it returns null if no such object is found.

The Microsoft AJAX library also supports a shortcut for retrieving run-time components—the
$find method. The $find method is an alias for findComponent:

var $find = Sys.Application.findComponent;

You can use this method to locate all components created by server controls that use the
Microsoft AJAX library (for example, extenders in the AJAX Control Toolkit and new controls
in ASP.NET 4.0), as well as by your own JavaScript code. You can't use $find to locate DOM
elements; for DOM elements, you must resort to $get.

String Manipulation

The Sys.StringBuilder class adds advanced text manipulation capabilities to Web pages
based on the library. As the name suggests, the class mimics the behavior of the managed
StringBuilder class defined in the .NET Framework.

When you create an instance of the builder object, you specify initial text. The builder caches the
text in an internal array by using an element for each added text or line. The Sys.StringBuilder
object doesn’t accept objects other than non-null strings. You add text using the append and
appendLine methods. The toString method composes the text by using the join method of the
JavaScript array class.

// Build an HTML table as a string

var header = "<table><thead> ... </thead>";
var footer = "<tfoot> ... </tfoot></table>";
var builder = new Sys.StringBuilder(header);

bui1der.append(f00ter);
alert(builder.toString(Q);

Chapter 4 A Better and Richer JavaScript 123

The Microsoft AJAX library String class is also enriched with a format method that mimics the
behavior of the Format method on the .NET Framework String class:

alert(String.format("Today is: {0}", new Date()));

You define placeholders in the format string using {n} elements. The real value for placeholders
is determined by looking at the n.th argument in the format method call.

Debugging
Another class that is worth mentioning is the Sys._Debug class. An instance of this internal
class is assigned to the Sys.Debug global object:

Sys.Debug = new Sys._Debug();

In your pages, you use the Sys.Debug object to assert conditions, break into the debugger, or
trace text. For example, the traceDump method writes the contents of the specified object in
a human-readable format in the Microsoft AJAX library trace area. The trace area is expected
to be a <textarea> element with a mandatory ID of traceConsole. You can place this element
anywhere in the page:

<textarea id="traceConsole" cols="40" rows="10" />
The traceDump method accepts two parameters, as shown here:
Sys.Debug.traceDump(object, name)

The name parameter indicates descriptive text to display as the heading of the object dump.
The text can contain HTML markup. Figure 4-3 shows the output of a trace dump.

.

& Sample script inheritance - Windows Internet Explarer =HECAL X
st |g httpifflocalhosti 4194/ Care35/5ar » | *9| A ‘ | Google L ~|
»
0 4R | @& Sarnple script inheritance Ef_ [E] ~ o= = |-k Page = i(} Tools =
John Smith 11111111
Create object

Samples.Citizen {Samples.Citizen}
_firstHame: John
_lastHame: Smith
_id: 111111111

Daone @ € Internet | Protected Mode: On T 100% -

¢

FIGURE 4-3 The Microsoft AJAX library debugging tracer in action

124

Part Il Power to the Client

You use the clearTrace method to clear the output console. The fail method breaks into the
debugger and the method assert displays a message if the specified condition is false.

The Network Stack

The most relevant feature of an AJAX library is the ability to execute out-of-band Web
requests from the client browser. In particular, AJAX extensions to ASP.NET let you invoke
Web service methods without dismissing the currently displayed page. This ability leverages
the networking support built into the Microsoft AJAX library.

In the Microsoft AJAX library, a remote request is represented by an instance of the
Sys.Net.WebRequest class. Table 4-4 lists the properties of the class.

TABLE 4-4 Members of the Sys.Net.WebRequest Object

Member Description

body Gets and sets the body of the request

executor Gets and sets the Microsoft AJAX library object that will take care of executing the
request

headers Gets the headers of the request

httpVerb Gets and sets the HTTP verb for the request

timeout Gets and sets the timeout, if any, for the request

url Gets and sets the URL of the request

The WebRequest class defines the url property to get and set the target URL and the headers
property to add header strings to the request. If the request is going to be a POST, you set
the body of the request through the body property. A request executes through the method
invoke. The completed event informs you about the completion of the request.

Each Web request is executed through an internal class—the Web request manager—that
employs an “executor” to open the socket and send the packet. All executors derive from a
common base class—the Sys.Net.WebRequestExecutor class.

The Microsoft AJAX library defines just one HTTP executor—the Sys.Net. XMLHttpExecutor
class. As the name suggests, this executor uses the popular XMLHttpRequest object to
execute the HTTP request.

The Sys.Net.WebRequest class is essentially a framework class that other higher level
classes use, but page authors hardly ever use it. I've seen this class used only a few times in
real-world JavaScript code. As you saw in Chapter 2, the ASP.NET AJAX framework makes
it so easy to invoke a Web service method or perhaps a static method on a page that you
hardly feel the need to invoke another type of HTTP endpoint.

If you need to download a resource such as a JavaScript file, you need quite a bit of code if
you go through this class.

Chapter 4 A Better and Richer JavaScript 125

var endpoint = "ondemand.js";

var request = new Sys.Net.WebRequest();
request.set_url(endpoint);
request.add_completed(function() {...});
request.invoke();

With other AJAX libraries—for instance, jQuery—this code reduces to just one line. I'll return
to jQuery in the next chapter.

Note All AJAX libraries are associated with the XMLHttpRequest browser object. So what else
could an executor be other than a reference to the XMLHttpRequest browser object? In general,
an HTTP executor is any means you can use to carry out a Web request. An alternative executor
might be based on HTTP frames. The idea is to use a dynamically created inline frame to
download the response of a given request and then parse that result into usable objects.

The Eventing Model

Building cross-browser compatibility for events is not an easy task. Internet Explorer has its
own eventing model, and so do Firefox and Safari. For this reason, the event model of the
Microsoft AJAX library is a new abstract API that joins together the standard W3C API and
the Internet Explorer model. The new APl is closely modeled after the standard W3C API.

In addition to using different method names (add/removeEventListener is for Firefox, and
attach/detachEvent is for Internet Explorer), browsers differ in the way they pass event data
down to handlers. In Internet Explorer, an event handler receives its data through the global
window.event object; in Firefox, the event data is passed as an argument to the handler.

In the Microsoft AJAX library, event handlers receive a parameter with proper event data.

Another significant difference is in the way mouse and keyboard events are represented. The
Microsoft AJAX library abstracts away any differences between browsers by providing ad hoc
enumerated types, such as Sys.Ul.Key and Sys.Ul.MouseButton. Here's some sample code:

function Buttonl_Click(e)

{
if (e.button === Sys.UI.MouseButton.leftButton)
{

}

}

function keyboard_EnterPressed(e)

{
if (e.keyCode === Sys.UI.Key.enter)
{

.
}

126 Part Il Power to the Client

The Microsoft AJAX library provides a shorthand notation to create DOM event hookups and
removal. For example, you can use the $addHandler and $removeHandler aliases to add and
remove a handler. Here's the syntax:

$addHandler(element, "eventName", handler);
$removeHandler(element, "eventName", handler);

In many cases, you'll want to hook up several handlers to a DOM event for a component.
Rather than manually creating all the required delegates and related handlers, you can use a
condensed syntax to add and remove multiple handlers:

initialize: function()
{
var elem = this.get_element();
$addHandlers(
elem,
{[
'mouseover': this._mouseHoverHandler,
'mouseout': this._mouseOutHandler,
'focus', this._focusHandler,
'bTur', this_blurHandler

13,
this);
}

The $clearHandlers alias, conversely, removes all handlers set for a particular DOM element in
a single shot.

If you write a component and wire up some events, it's essential that you clear all handlers
when the component is unloaded, or even earlier, if you don't need the handler any longer.
For example, you should do that from the component’s dispose method to break circular
references between your JavaScript objects and the DOM. Correctly applied, this trick easily
prevents nasty memory leaks.

Summary

JavaScript is one of the pillars of the Web. Now that the arrival of AJAX is shaking the
foundation of the Web, what about JavaScript? Is JavaScript going to change in the
near future?

For years, the JavaScript language has remained very stable, and this stability created the
environmental conditions for AJAX to flourish and thrive. AJAX means more and more code
hosted and running within the client browser. This code can only be written in JavaScript.

The perception of a language is different when you have only a few lines of code to write as
opposed to when you have to use it to write large sections of the application. For this more
exacting job, JavaScript seems more inadequate every day. And JavaScript 2.0 is slowly but
steadily emerging. JavaScript 2.0 is not a thing of the immediate future, though.

Chapter 4 A Better and Richer JavaScript 127

For now, a better and richer JavaScript is possible only through libraries that cover the parts
of client-side programming that the language doesn’t natively cover. Classes, networking,
static type checking, and a common and cross-browser model for managing events and
exploring the document are all features required in modern JavaScript code. Popular libraries,
such as the Microsoft AJAX library, provide just this.

The key trait of the Microsoft AJAX library is the set of extensions to transform JavaScript into
an object-oriented language. JavaScript is not a true OOP language even though it always
has supported objects and also provides a rudimentary mechanism for prototyping classes
and derived classes. The Microsoft AJAX library builds on top of this basic functionality to
add namespace and interface support in addition to a number of helpful facilities.

In the next chapter, I'll cover another extremely popular library that addresses Ul enhancements
and makes it so easy and effective to add AJAX capabilities to Web pages. This library is jQuery.

This page intentionally left blank

Index

Symbols and

Numbers

(hash) symbol, 168, 236, 245

(pound) symbol, 33

symbol, 143

#id selector, 142

#PropertyName expression,

241, 245

#Quote placeholder, 236

#Stylel expression, 248

#Word expression, 247-48

$.getScript method, 176

$ function, 59, 140-41
helper methods, 141-42
parameters, 140

$ root object, 115

$ shorthand notation, 159

$addHandler alias, 126

$clearHandlers alias, 126

$create shortcut, 263

$find method, 122

$G function, 94

$get function, 114-15

$removeHandler alias, 126

:animated()filter, 145

:button filter, 148

:checkbox filter, 148

:«checked filter, 148

:contains(text) filter, 146

:disabled filter, 148

:empty filter, 146

:enabled filter, 148

:eq(index) filter, 144-45

-even filter, 144

file filter, 148

first filter, 144

-first-child filter, 145

:gt(index) filter, 144

:has(selector) filter, 146

:header()filter, 145

:hidden filter, 148

:image filter, 148

sinput filter, 148

‘last filter, 144

:last-child filter, 145

It(index) filter, 144

:not(selector) filter, 144

:nth-child filter, 145

:nth-child(expression)

filter, 145
:odd filter, 144
:only-child filter, 145

:parent filter, 146
:password filter, 148
:radio filter, 148
reset filter, 148
:selected filter, 148
:submit filter, 148
‘text filter, 148
wvisible filter, 148
... (ellipses), 291
* (asterisk) symbol, 263
* selector, 143
.asmx, 65
.asmx endpoints, 32
.asmx requests, 76, 78
.aspx source file, 55
.class selector, 142
Jjs files, 110
.NET Base Class Library, 286
LINQ support, 286-87
thread support, 287-88
timer support, 289
.NET Framework
classes, as data source, 230
classes, Silverlight and, 23
code security, 302
data binding, 223-24
data transfer to JavaScript,
232-33
DataContractSerializer class, 166
enumerations, 114
isolated storage, 289-90, 308.
See also storage
jQuery library, 137, 139
Managed Jscript compiler, 102
presentation platform, 23
security attributes, 306
Silverlight, 274-75,
279, 308
StringBuilder class, 122
Web Forms model, 19
XBAP applications, 276
.NET Framework 2.0, 75
.NET Framework 3.5
binding, 68
HTTP endpoint, 64
LINQ-to-SQL, 166
Service Pack 1, 33, 66, 78, 266
WCEF services, 66-67, 72
.svc endpoint, 32
svc file, 74
.svc requests, 72, 78
/js prefix, 80
/jsdebug prefix, 80

@Page directive
Culture attribute, 32
Ul culture attribute, 31
@ServiceHost directive, 74
_ (underscore) symbol, 118
_firstName members, 108
_initialize method, 40
_lastName members, 108
[...] notation, 117
[attribute != value] filter, 146
[attribute $= value] filter, 146
[attribute *= value] filter, 146
[attribute A= value] filter, 146
[attribute = value] filter, 146
[attribute] filter, 146
~~ operator, 166
+ (plus) character, 265
<body> tag, 263
<div> dialog method, 161
<div> element, 21, 185
<div> tag, 44, 248
as template, 261
HTML template, 240
<domain> element, 301
<form> element, 143
<grant-to> node, 301
<h2> element, 144
 tag, 77-78
Same Origin Policy, 216
<input> elements, 143-44, 148
color, 149
extenders, 58
widgets, 59-60
<object> tag, 277
plug-ins, 273
<p> element, 144
<script> tag, 29, 77-78, 139
cross-domain requests, 301
cross-site scripting attacks, 85
Same Origin Policy, 216
script downloads, 176-78
<select> element, 148
 element, 144
 tag, 47, 205
color, 265
<table> tag, 205
<tbody> element, 262
<td> element, 146-47, 248
<textarea> element, 123, 148
= = = operator, 107
3D API, 276
3D graphics, 277
401 errors, 86

309

310

abortPostBack method

A

abortPostBack method, 208
abstract base classes, 55
access, unauthorized, 85-86
Accordion widget, 160
ActionLink component, 260
Active Server Pages (ASP), 88, 276
ActiveX, 270
security, 272-73
Add member, 230
addClass function, 150
administrator permissions, 302-03
ADO.NET Data Services, 21, 78-79
ASP.NET library, 266-68
container classes, 230
content display, 267-68
HTTP facade, 66-67
proxy class, 267
Silverlight, 300
Adobe, 272
Adobe Flash, 22, 271
cross-domain requests, 301
plug-ins, 274
AdoNetDataSource object, 268
AJAX, 3,221
API, script downloads, 176
architecture, 61-62. See also
architecture
ASP.NET 4.0 data binding, 260-68
aspects, 94-96
benefits, 11, 18
connectivity, Yahoo!
Ul library, 136
costs, 7, 18
data binding, 232
defined, 12
design patterns. See AJAX design
patterns
history feature, 33-34, 167-68
implementation, 27
infrastructure, 28-37
JavaScript injections, 53-60
JavaScript library, 35-37
jQuery library functions, 157-58
library. See Microsoft AJAX library
network stack, 67
page script manager, 28-34
paradigm change, 27
partial rendering, 37-53, 61.
See also partial rendering
PrototypelS library, 133-34
pure applications, 49
refactoring to, 16-17
Silverlight, 308
templates, 260-66
vs. Silverlight, 23, 275
WCEF services, 73-74

Web and, 4-11
Web site development, 17
AJAX 4.0, 260-68
AJAX Control Toolkit, 57-59, 258
obtaining, 57
AJAX design patterns, 163, 213, 221
applying, 164
code development, 163-68
Cross-Domain Proxy pattern,
215-17
dynamic data download, 166
generalities, 164-66
Heartbeat pattern, 193-94
idioms, 165-66
JavaScript development, 168-78
Micro-Link pattern, 213-15
On-Demand JavaScript pattern,
175-78
page DOM manipulation,
166-67
Periodic Refresh pattern, 192-93
Predictive Fetch pattern, 178-86
Progress Indicator pattern,
194-213
Singleton pattern, 169-70
Submission Throttling pattern,
218-20
Timeout pattern, 186-92
unique URL, 167-68
user actions, 167
value of, 164-65
AJAX Extensions 1.0, 75
Ajax.request function, 133-34
Ajax.Updater function, 134
AjaxOptions settings, 260
AjaxSetting element, 93
aliases, 115
findComponent, 122
Function object, 21
handler addition and removal,
126
handlers, 126
jQuery object, 159
Always value, 44
exceptions, 45
ancestor descendant selector, 143
animate function, 156-57
animate() call, 157
animation, Silverlight, 278
anonymous functions, 116
asynchronous requests,
Silverlight, 295-96
API (application programming
interface). See application
programming interface (API)
append method, 122
appendLine method, 122
appHeader class, 144

application code, 306-07
safe critical code, 304-06
application object, 121-22
application programming interface
(API), 27
3D, 276
browser, 168
caching, jQuery, 158
client progress, 196, 200-05,
211-12
custom JavaScript functions,
113-14
DOM, 233
dual, 24
event handling, 151-55
HTTP facade, 62-63
jQuery library, 137
server, 197-98
Silverlight communication,
296-98
task server, 198
W3C, 125
applyFormatting method, 248
architecture, 61-62, 97-98
data binding, 224-34
HTTP fagade, 70-79
multitier, 21
patterns, 61-62, 163. See also
Server Pages pattern; Service
Layer pattern
presentation layer, 79-82
Silverlight, 275-77
Web, 18-19
Aristotle, 163
Array object, 112
arrays, 117
custom, 230
interfaces, 119
wrapped sets, 141
as keyword, 166
ASCX, template creation, 229
ASMX Web services, 21
ASP (Active Server Pages), 88, 276
ASP.NET, 12
compatibility mode, 87
controls, Server Pages pattern,
88-89
controls, YUIAsp.Net library, 135
data binding, 224-34.
See also data binding
data sources, 230
flexibility, 21-22
Forms authentication, 86-87
future of, 18-19, 69
IPostBackDataHandler
interface, 41
JavaScript, 130-31
JavaScript libraries, 104

jQuery library, 137-39
layers, 22
library, 266-68
panels, 39
partial rendering. See partial
rendering
ScriptManager. See ScriptManager
control
server controls, 69
server-side Web development,
130-31
template properties, 46
templates, 260-66
timeouts, 187-88
UpdateProgress control, 195
view state, 42
WCF services, 72
Web service, 65-67
Web services, HTTP facade, 75-78
ASP.NET 2.0
control state, 48
partial rendering, 28
view state, 42
ASP.NET 3.5
CompositeScript collection, 175
Microsoft AJAX library, 110-11
partial rendering, 28
UpdateProgress control, 195
ASP.NET 4.0, 69, 79, 88
data binding, 260-68
Microsoft AJAX library, 110
ASP.NET AJAX. See AJAX
ASP.NET AJAX Extensions 1.0, 110
ASP.NET MVC
applications, 70
HTML Message pattern demo,
259-60
jQuery library, 137-38
aspect ratio, 160
aspects, 94-96
Aspects property, 95-96
AspNetCompatibilityRequirements
attribute, 87
Assembly object, 298
AssemblyPart class, 298
assert method, 124
asterisk (*) symbol, 263
ASX formats, 278
async parameter, 157
async postback, 38
Asynchronous JavaScript And XML.
See AJAX
asynchronous pages, 46—47
asynchronous postbacks, 45
authentication and
authorization, 46
canceling, 52
Gaia, 94

multiple, 52-53
partial rendering, 52-53
UpdateMode property, 44
user feedback, 50-52
asynchronous requests, 87-88,
91-92
Partial Fetch method, 181-82
Silverlight, 289
AsyncPostBackSourceElementID
property, 30
AsyncPostBackTrigger, 45
attr function, 150
attribute filters, 143, 146-47
audio formats, 278
authentication, 10
ASP.NET Forms, 85-87
asynchronous postbacks, 46
cookie, 85-86
HTTP and, 83
authorization, 10
asynchronous postbacks, 46
HTTP and, 83
AutoComplete extender, 218-19
autocompletion, 218-19
automated factories, HTML, 225
autonomous views, 171
autopostback feature, 39
autosave, 192
AvailableFreeSpace property, 294

Back/Forward navigation, 34
BackBase, 24, 97
BackgroundWorker class, 288
bandwidth

BST vs. HM pattern, 253

conserving, 187, 223

Periodic Refresh pattern, 192

streaming, 278
Base CSS file, 135
basicHttpBinding, 75, 84
BeginGetResponse method, 298
Begininvoke method, 288
BeginRead/BeginWrite method, 292
BeginRequestStream method, 298
behaviorConfiguration attribute, 74
Betamax, 136
Bibeault, Bear, 150
binary code

ActiveX, 270

Flash, 271

interoperability, 270-71

over Web, 270-71

security, 270-71
BinaryReader class, 293
BinaryWriter class, 293
bind function, 152

Builder design pattern

bind method, 241, 244-45
binding. See data binding
Binding class, 284
Binding element, 285
black box, 88-89, 131
blur(fn) helper, 154
body member, 124
body property, 124
Boolean object, 112
Boolean parameters, 70
Boolean properties, 44, 208
MVC pattern, 175
Boolean values, 295
brackets
curly, 262
JSON and XML, 69
browser, 62
API, 168
basic model, 8-9
cross-browser compatibility, 18,
125-26, 132, 150
high-end, 15
history, 167-68
HTML data conversion, 233
JavaScript and, 102-05
navigation, 33-34, 167-68
optimization, 6-7
plug-ins. See plug-ins
Same Origin Policy (SOP),
66, 215-16
sandbox, 274
scripting engine, 103-04
session termination, 187-88
technologies, 12
wars, 1990s, 8
Browser Object Model (BOM), 13
JavaScript dependencies, 110
Browser-Side Template (BST)
pattern, 133-34, 235, 268
data and template mixing, 236-37
dual-side templating, 237-38
HTML builder, 241-45
HTML template, 236
item rendering, customized,
245-47
jQuery library effects, 249-50
markup rendering, customized,
247-48
page preparation, 239-41
reference implementation,
238-50
vs. HTML Message pattern,
252-53
BST (Browser-Side Template)
pattern. See Browser-Side
Template (BST) pattern
buffer, 245
Builder design pattern, 140

311

312

builder script

builder script, 135
building applications, Silverlight,
279-81

bulleted lists, 228

business layer, 22, 63-64

business logic, 97
HTML Message pattern, 252
protecting, 83, 85

Button control, 94, 283-84
disabling, 48

button handlers, 175

bytecode, 104

C

C#,19
~~ operator, 166
code-behind class, 280
HM pattern, 253
keywords, 286
namespaceq.. .} construct, 116
objects in, 36, 105-06
Silverlight, 22
Singleton pattern, 169
C++, 19
objects in, 105-06
cache parameter, 157
caching, 158
client-side, 178

Predictive Fetch pattern, 183-86

size, performance, 198
Calendarextender control, 57-59
call chaining. See chaining

callback functions, 80-82, 149, 157

arguments for, 81

Partial Fetch method, 181-82

script downloads, 176
callback manager, 92
callback parameter, 215
callbacks

fade effects, 249

GetCurrentStatus method, 204-05

HTML template, 245

JavaScript, 246-47

pageload and pageUnload, 121

startMonitor method, 202,

205-06

success and failure, 204-05

timer, 289

updateProgress function, 205
callBaseMethod, 117
callBaseMethod member, 120
calls. See requests
camelCase, 156
Cancel button, 51-52, 207-08, 211
cancellation requests, 195
CanRead property, 292
Canvas element, 282-83

CanWrite property, 292

CAS (Code Access Security) model,

302-03
Cascading Style Sheets (CSS), 10
attributes, 155-56
future of, 37
hiding HTML, 236

property naming convention, 156

selectors, 142-44

server controls, 131

Server Pages pattern, 88

user feedback, 50

Yahoo! Ul library, 135
CERN, 8
CGl, 21
chaining, 151

animations, 157

call, 137

jQuery library, 137, 139
Change method, 289
Change property, 247, 265
change(fn) helper, 154
CheckBox control, 283
CheckBox control (Gaia), 94
CheckBoxList control (Gaia), 94
child controls, 44-45

adding, programmatic, 46

page methods, 55
child filters, 145
ChildrenAsTriggers property, 44
circular references, 126
Citizen class, 116-18
classes, 36. See also specific classes

ADO.NET container, 230

as data source, 230

bindable, 230

code-behind. See code-behind

class

creating, Dojo syntax, 134

CSS, 150

custom, 230

data readers, 230

derived, 117, 127

finder, 255-57

formatter, 105

in C# and C++, 105-06

inheritance rules, 307

interfaces, 118-19

JavaScript, 36-37

JSON, 68

managed, 67

object-oriented extensions,

115-16

proxy, 79-82

renderer, 255-57

Service Layer pattern, 64

Silverlight, 79

Singleton pattern, 169-70

template creation, 229
timer, 190
Web services, proxy, 67
clearTrace method, 124
click event, 39, 152, 202, 207
registering, 154
triggering, 153
click handler, 211
click(fn) helper, 154
ClickOnce technology, 276
client browser. See browser
client certificates, 10
client side, 20
API, 200-05, 211-12
BST pattern, 133-34
caching, 158, 178, 183-86
Cancel button, 51-52
cancellation request, 195
controls, 89-90
data binding. See data binding
data transfer, 232-33
focus, 61
JavaScript, 28
JavaScript API, 196
monitoring, Timeout pattern, 187
object model, 90, 92, 95-96
out-of-band requests, 124-25
page-component access, 122
power, JavaScript, 101
programming, JavaScript
library, 35
task ID, 198-99
task interruption, 211-12
task termination, 211-12
user actions, 167
Web development, 130
ClientAccessPolicy.xml file, 301
ClientBin Web server folder, 281
Close method, 292
closure model, 107-08
CLR (Common Language Runtime).
See Common Language
Runtime (CLR)
code
access security, 302
application, 304-06
application vs. platform, 306-07
binary. See binary code
BST vs. HM pattern, 252-53
bytecode, 104
compatibility, 279
compatibility, WPF, 285-86
critical, 303-04
development, design patterns,
163-68
flexibility, 233
GZIP compression, 136
idioms, 165-66

interpreted, 104
jQuery minimization, 137
machine, 110
malicious, 105
managed, 90
manual iteration, 149
Microsoft AJAX library, 119
minification, 136
MVC pattern improvements, 170
performance and, 109
safe vs. unsafe, 303
safe-critical, 304-06
sample, plug-ins, 159
security, Silverlight. See code
security, Silverlight
server side, 66-68, 252
Silverlight, 279-80
source, 104-05
source code file pairs, 282
transparency, 302-03
Code Access Security (CAS) model,
302-03
Code activity, 212-13
code group, 302
code security, Silverlight, 302
access security, 302
application code vs. platform
code, 306-07
code transparency, 302-03
critical code, 303-04
design security, 306-07
inheritance rules, 307
safe-critical code, 304-06
security attributes, 303-06
security model, 302-03
code-behind class, 21-22
HTTP facade, 64
page methods, 54-55
partial rendering, 41
Server Pages pattern, 88, 90
Silverlight, 279-80
source code file pairs, 282
collections, custom, 230
color values, 248
ColorAnimation class, 278
combo boxes, 92-93
Common Language Runtime (CLR)
Silverlight, 24
Silverlight instancing, 281
Silverlight security, 302. See also
CoreCLR
compatibility
.NET and Silverlight, 279
code, 279, 285-86
code, WPF, 285-86
cross-browser, 18, 125-26, 132, 150
JavaScript changes, 101, 108-09
JSON vs. XML, 69

compatibility mode, 78, 87
compiled programming languages,
104-05
compilers
AJAX solutions, 24
JavaScript, 110
Managed Jscript, 102
completed event, 124
Component Object Model
(COM), 273
ComponentArt, 18, 96-97
components, 122
CompositeScript collection, 175
concatenation, 146
concurrent requests, 92
partial rendering, 52-53
conditional updates, 44-45
Conditional value, 44
config file, 87
constructors, 117
initialize method, 134
interfaces, 118
jQuery object, 140
templates, 242
container classes, 230
container element, 114-15
content filters, 146
Content property, 284
ContentTemplate property, 46
ContentTemplateContainer
property, 46
content-type headers, 77
context argument, 81
context parameter, 186
context, query, 140-41
contextKey parameter, 259
contract attribute, 74
contracts, 80
progress server API, 209
control state, 48
controller classes, 175
controller, MVC pattern,
171-72
controls. See also server controls
button, 89
design time, 88-89
script, 135
Controls collection, 46
cookies, 85-86, 289
Dojo library, 133
Yahoo! Ul library, 136
CopyTo member, 230
CoreCLR, 274, 302-03
application code vs. platform
code, 306-07
code transparency, 303
safe-critical code, 304-05
Count member, 230

data

Create, Read, Update, Delete (CRUD)

operations, 267, 291
CreateFile method, 292
createlnstance method, 262
critical code, 303-04
Crockford, Douglas, 109, 136
cross-browser compatibility, 18,

125-26, 132, 150
Cross-Domain Proxy pattern, 215

error handling, 217

Same Origin Policy, 215-16

Web remoting via JavaScript, 216
cross-domain requests, Silverlight,

300-01
CrossDomain.xml file, 301
Cross-Domain-Proxy pattern, 257
cross-page method calls, 55
cross-site scripting attacks, 77-78,

85, 216
CRUD operations, 267, 291
CRUDy user interface, 66
CSS (Cascading Style Sheets). See

Cascading Style Sheets (CSS)
css function, 150
Culture attribute, 32
Culture property, 32
culture settings, 32
Culturelnfo class, 286
Current property, 56
custom arrays, 230
custom collections, 230
custom dictionaries, 230
custom events, 135
custom handlers, 78
custom HTML tags, 236
custom item rendering, 245-47
custom markup rendering, 247-48
custom objects, 230
custom services, 78

D

data

binding. See data binding

caching, 158

contract, 75

deletion, 294

downloads. See downloads

encapsulation, JavaScript, 107-08

exchange, HTTP facade, 66

exchange, Service Layer pattern,
62-63

fetching. See Predictive Fetch
pattern

formats, Service Layer pattern,
67-68

items, 43

preloading, 178

313

data

data (continued)
serialization, 20-21
server-to-client transport, 232-33
services, 78-79
source controls, 21-22
source, definition, 230-34
storage. See storage
storage, Dojo library, 133
transfer latency, 178
transfer minimization, 47-48
transfer, Service Layer pattern,
67-68
data access layer, 22
data attribute, 277
<object> tag, 274
data binding, 68, 73-74,
223-24, 268
AJAX, 232
ASP.NET, 224-34
ASP.NET 4.0, 260-68
Browser-Side Template (BST)
pattern, 235-50. See also
Browser-Side Template (BST)
pattern
data source definition, 230-34
HTML Message pattern, 250-60.
See also HTML message pattern
HTML template, 224-30
jQuery library, 152
partial rendering, 234
properties, 231-32
Silverlight programming, 284-85
tools for, 232-33
data function, 157-58, 184
data parameter, 215
data property, 152
data reader classes, 230
data source component, 267-68
data source properties, 223
DataBind method, 231
data-bound controls, 227
properties, 231-32
data-bound items, 239-41
DataContext property, 285
DataContract attribute, 75
DataContractSerializer class, 166
Data-for-Data model, 15-16
DataGrid control, 225, 237, 246,
282-83
DataKeyField property, 232
Datalist control, 226
DataMember attribute, 75
DataMember property, 232
DataServiceContext class, 79
DataSet class, 230-31
DataSets, typed, 21-22
DataSource property, 231-32
DataSourcelD property, 231-32
DataTable class, 230-31

DataTextField property, 232
dataType parameter, 157
DataValueField property, 232
DataView class, 230
DataView component, 262-64, 268
Date data types, 32
Date object, 112
date picker widget, 57-59, 160
DatePicker control, 282-83
dblclick(fn) helper, 154
de Saint-Exupery, Antoine, 101
debug mode, 80
debug script files, 31
debugging, 123-24
reflection, 119
Deep Zoom, 278-79
Deep Zoom Composer, 279
defaultSucceededCallback
property, 81
defaultUserContext property, 81
deferred loading, 267
delta, 89-90
size, 48
derived classes, 117, 127
deserialization, 75
design patterns. See AJAX design
patterns
Design Patterns (Gamma, Helm,
Johnson, and Vlissides), 164
design-time controls, 88—-89
desktop applications
AJAX and, 3-4
Rich Internet Applications
and, 22-24
developers, 6-7
DHTML (Dynamic HTML), 13, 281
dialog box creation, 161
dialog method, 161
Dialog widget, 160
Dickens, Charles, 269
dictionaries
as objects, 105-06
custom, 230
directories, storage, 291-92
Directorylnfo class, 291-92
disabling of visual elements during
updates, 52
discrete interpolation, 278
disk quotas, 294-95
Dispatcher object, 288
display attribute, 214
DisplayAfter property, 51-52
displayCustomer function, 185
DisplayName property, 285
dispose method, 126
Document Object Model (DOM),
8-10,12-13
$get method, 122
API, 233

circular references, 126
CLR instancing, 281
handler hookup and removal, 126
ID, 143
JavaScript dependencies, 110
JavaScript downloads, 176
JavaScript library, 35-36
On-Demand JavaScript pattern,
177-78
page manipulation, 166—-67
queries, 140-41
retrieval, 143
script downloads, 177-78
smooth page updates, 42-43
visual effects. See visual effects
document.getElementByld function,
95, 114-15, 135
documentation files, 140
Documents and Settings folder, 291
Dojo library, 36, 133
JS Dojo Minifier, 136
domain attribute, 301
DoSomething function, 287
dot notation, 106
DoubleAnimation class, 278
downloads, 166, 175-76
binary content, 297
Silverlight, 296-98
XAP packages, 281
DownloadStringAsync method, 296
DownloadStringCompleted
event, 296
DoWork event, 288
drag-drop script, 135
draggable interaction, 160
DropDownlList control, 39
droppable interaction, 160
dual application programming
interface, 24
Dual-Side Templating pattern, 254
duck typing, 107
dynamic data download, 166
Dynamic HTML (DHTML), 13, 281
dynamic programming
languages, 106
dynamic table, 205-06
dynamic templates, 46
dynamic typing, 106
DynamicPopulate extender, 258-59

E

each method, 149

each(callback) method, 142

ECMA (European Computer
Manufacturers Association), 103

ECMAScript, 103

EF (Entity Framework), 79, 230, 300

effects script, 135

Eich, Brendan, 103
eleml variable, 145
elem?2 variable, 145
element selector, 142
elements
adding/removing, 151
aspects, 160
caching, 158
chaining, 151
hidden, 148
interactivity, 159-61
loop processing, 149
selecting, 143-44
Silverlight layout manager,
282-83
visual effects, 155-57
wrapping, 149-50
Elements of User Experience,
The (Garrett), 5
ellipses (...), 291
EnableHistory property, 34
EnablePageManager attribute, 200
EnablePageMethods property, 55
EnablePartialRendering property, 30
EnableScriptGlobalization
property, 32
EnableScriptLocalization property, 31
enableWebScript attribute, 80
enableWebScript element, 73
encapsulation, 37
JavaScript, 107-08
endpoints, 21
.svc file, 74
event sink, 199-200
HTTP. See HTTP endpoints
IS, 86
page, 70
periodic refresh, 192
public service, 33
script downloads, 176
service, 70
endsWith method, 113
entity data model, 79
Entity Framework (EF), 79,
230, 300
entry points, static, 170
enumerations, 180-81
eq(position) method, 142
error handling, 217
Error object, 113
error(fn) helper, 154
errors
code 401, 86
handling, 217
interfaces, 119
Esposito, Dino, 172
European Computer Manufacturers
Association (ECMA), 103

European Organization for Nuclear
Research, 8
eval function, 21, 67, 69, 176
event handlers, 125. See also
handlers; HTTP handlers; REST
handlers
adding/removing, 115
grouping, controller class, 175
JavaScript, 61-62
MVC pattern, 172
postbacks, 47
server side, 93
threads, 288
event handling, 151-55
event object properties, 153
event scheduling, 196
event sink, 196, 199-200
eventing model, 125-26
events
as idioms, 166
custom, 135
helpers, 154
keyboard, 125, 135, 188, 191
mouse, 125, 135, 188
exceptions
CoreCLR, 304
data binding, 231
directories and files, 291-92
disk quota, 295
duck typing, 107
invalid operation, 231
not-implemented, 118
parameter count, 117
RequirementsMode, 87
Update method, 45
ExecuteTask method, 202
executor class, 208
executor member, 124
executors, 124
HTTP, 125
Exists property, SecuritySafeCritical
attribute, 305
explicit contracts, 75
Explicit Submission, 220
explicit triggers, 44-45
extenders, 57-59
extensibility, jQuery library, 139
extensions. See JavaScript language
extensions; object-oriented
extensions
ExtJS library, 133

F

factories
HTML templates, 229-30
HTML, automated, 225
HTML, template-based, 225-27

functions

Factory attribute, 74
fadeln function, 155
fadeOut function, 155
fadeout method, 250
fadeTo function, 155
fading effects, 156
fail method, 124
failure callbacks, 204-05
file streams, storage, 292-93
FileInfo class, 291-92
FileMode value, 292
files, storage, 291-92
filters, 144-48
attribute, 143, 146-47
child, 145
content, 146
positional, 144-45
Financelnfoservice, 81
findComponent method, 122
findCustomer function, 181
finder class, 255-57
FindQuotelnfo method, 257
Firefox, 125
Dojo library compatibility, 133
NAPI, 272
prototypes, 108
textElement property, 150
firewall, 85
FishEye control (Gaia), 94
Flash, 271
cross-domain requests, 301
plug-ins, 274
flexibility, 233
Flush method, 292
focus(fn) helper, 154
footer
HTML template, 228, 239-41
list items, 226, 237
foreach construct, 166
form filters, 148-49
form submission, 167, 220
Format method, 123
Format property, 57-58
formatter classes, 67
forms, 14-15
Franklin, Benjamin, 27
free content, 217
Function class, 117
Function object, 112-13, 115
aliases, 120
function(i), 149
functions. See also specific functions
AJAX, jQuery library, 157-58
anonymous, 116
as objects, 106
event handling, 151-55
JavaScript, 106
JavaScript, custom, 113-14

315

functions

functions (continued)
named, 116
registration, 114
shorthand, 114-15, 135
timer, 190
visibility, 155-56
vs. methods, jQuery library, 159

G

Gaia AJAX library, 97

Gaiaware, 18, 94-96

Gamma, Erich, 164

Gandhi, Mahatma, 61

Garrett, Jesse James, 3-5, 7

GenerateHtm| method, 257

Generateltem method, 227

Get call, 220

get function, 158

GET request, 215

GET verb, 72-73, 77-78, 158

security, 84

get() method, 142

get(index) method, 142, 145

getBaseMethod member, 120

getBaseType member, 120

GetCurrentStatus method, 200, 204

GetCustomerDetails method, 260

GetData member, 231

GetDirectoryNames method, 291

getElementByld method, 143

getElementsByName method, 143

GetFileNames method, 291

getinstance method, 170

getinterfaces member, 120

getJSON function, 158

getName member, 120

GetQuotes method, 81

GetQuotesFromConfig method,
70-71, 263

GetStatus method, 198

getTaskID method, 202

GetUserStoreForApplication
method, 290, 293-94

GetUserStoreForSite method, 290

global members, 108

Global object, 135, 169

globalization, 32, 286

Google, 24

Google Chrome browser,
104-05, 110

Google V8 engine, 105, 110

Google Web Toolkit, 24, 97

graphics, Silverlight, 277-79

grid element, 241

caching, 158
Grid element, 282-83
grids, 160

GridView control, 246

GridView control, disabling, 48

GUID, 199, 202

GZIP compression, 136
jQuery library, 138

H

handlers. See also event handlers;
HTTP handlers; REST handlers
adding and removing, 126
binding/unbinding, 152
button, 175
custom, 78
factory, 76-77
IPostBackDataHandler
interface, 41
MVC pattern, 174-75
onclick, 174-75
OnTick, 189
partial rendering, 40-41
REST, 76
handles, 160
hash (#) symbol, 168, 236, 245
hash strings, 33-34
header
HTML template, 228, 239-41
list items, 226
headers, 43
concurrent call issues, 52
content-type, 77
HTTP request, 70
headers member, 124
headers property, 124
Heartbeat pattern, 193-94
Helm, Richard, 164
helper methods, $ function,
141-42
helpers
event, 154
parameters, 154
hidden elements, 148
hidden HTML, 236
template, 261
hide function, 155
history feature, 33-34, 167-68
history point addition, 33-34
hosting applications, plug-ins, 274
hover function, 153
HTML, 10-11
binding/unbinding, 152
browser/server basic model, 8-9
builder, BST pattern, 241-45
changing/replacing, 10-11
custom tags, 236
Data-for-Data model, 15
Document Object Model (DOM).
See Document Object
Model (DOM)

factories, 225-27, 229-30
generating, 257-58
hiding, 236
JavaScript limitations, 108-09
limitations, 49
origins, 8
Pages-for-Forms model, 14-15
plain type, 248
plain, future of, 37
presentation layer. See
presentation layer
purpose of, 9
renderer, 257-58
Rich Internet Applications, 23
script files, linking to page, 30-31
standardization, 10
string creation, 233, 235
table, 205-06
tables, 225-26
template, 224-30, 236
template-based factories, 225-27
templates, hidden, 261
HTML 4.0 DOM standard, 40, 114
HTML 4.0 standard, 270
html function, 150
HTML Message pattern, 134,
250-51, 268
ASP.NET MVC demo, 259-60
Dual-Side Templating pattern,
combined, 254
DynamicPopulate extender,
258-59
markup rendering, 257-58
motivation for, 252
reference implementation,
253-60
remote service, 254-57
vs. BST pattern, 252-53
HtmlListBuilder class, 239-41, 250
HTTP, 10-11
401 error code, 86
binding, 73-74
Data-for-Data model, 15-16
direct calls, 54-56
executor, 124-25
origins, 8
purpose of, 9
requests. See requests
security, 10, 83
statelessness, 14
verbs, 66, 78. See also
specific verbs
HTTP endpoints, 30, 64, 66-67,
70, 124
HTML Message pattern, 252
requests, 70-71
script downloads, 176
HTTP facade, 62-64, 70-79
ADO.NET services, 78-79

ASP.NET Web services, 75-78

custom services, 78

HTTP request, 70-71

proxy, 80-82

security, 83-84

Server Pages pattern, 90

Service Layer pattern, 64

technologies for, 65-67

trusting, 86-87

WOCF services, 72-75
HTTP handler

custom, 66-67, 78

factory, 76-77

load method, 215-16
HttpContext, 56
HttpContext.Current object, 78
HTTPS, 10, 83
httpVerb member, 124
HyperlinkButton control, 283
hyperlinks, 213-14

ICollection interface, 230

id parameter, 122

ID property, 117

IDE (integrated development
environment), 131

idioms, 165-66

IDisposable interface, 118

IEnumerable interface, 230-31

IFinancelnfoRenderer interface, 257

IFRAME elements, 133

IIS (Internet Information Services).
See Internet Information
Services (lIS)

IList interface, 230

IListSource interface, 230-31

images

Deep Zoom, 278-79
JPG and PNG, 279

impedance mismatch, 67

implementsinterface member, 120

implicit contracts, 75

implicit triggers, 44-45

IncreaseQuotaTo property, 294-95

independent software vendors
(ISVs), 69-70

index(element) method, 142

information architecture, 5

Infragistics, 18

inheritance, 36-37, 116-18, 307

inheritsFrom member, 120

Init event, partial
rendering, 41

initialize method, 134

initializeBase member, 120

initializeBase method, 117

inner text, 150

innerHTML property, 42, 150, 233,
235,254
DynamicPopulate extender, 258
fade effects, 250
HTML Message pattern, 251
scripting, 248
innerText property, 150
input controls, 57-59
input elements, 61-62. See also
<input> elements
disabling, 52, 137, 150
Instantiateln method, 227
integer functions, 149
integrated development
environment (IDE), 131
IntelliSense, 116
jQuery library, 139
interactivity, 167
JavaScript, 132
jQuery Ul, 159-61
widgets, 132
interfaces, 118-19
Internet Explorer, 103, 125
closures and prototypes, 108
Dojo library compatibility, 133
GZIP, 138
innerText property, 150
Internet Explorer 4.0, 13
Internet Explorer 5.0, 13
Internet Explorer 8,
XDomainRequest object, 301
Internet Explorer 8.0, 168, 216
Internet Information Services (l1S)
endpoints, 86
HM pattern, 253
Smooth Streaming, 278
WOCEF services, 72
interoperability. See also
compatibility
ActiveX, 271
finder and renderer classes, 255
JavaScript, 108-09
JSON vs. XML, 68
Web binary code, 270-71
interpolation, 278
interpreted code, 104
interpreted programming
languages, 104
interruptible server tasks,
208-10
invoke function, 259
invoke method, 124
IronPython, 280
IronRuby, 280
ISAPI, 21
isClass member, 120
islmplementedBy member, 120
isinstanceOfType member, 120
isinterface member, 120

JavaScript

isNamespace member, 121
isOffline argument, 263
isOffline parameter, 70
isolated storage
safe critical code, 306
Silverlight, 289-95
IsolatedStorageFile class, 290-92
IncreaseQuotaTo property,
294-95
Quota property, 294
IsolatedStorageFileStream class,
292-93
ISVs (independent software
vendors), 69-70
itemCreated event, 264
ItemDataBound event, 237
ITemplate interface, 50, 227-29
items, customized rendering,
245-47
ItemSource property, 285
Iterator pattern, 166
ITransaction interface, 213

J

Java Server Pages, 276
Java, vs. JavaScript, 11
JavaScript, 10, 12, 101-02, 126-27,
129-30
AJAX design patterns, 168-78.
See also specific patterns
AJAX injections, 53-60
ASP.NET, 130-31
callbacks, 246-47
changing/replacing, 10-11
client API, 196
compatibility, changes and,
104-05
compiler, 110
data binding. See data binding
data transfer from .NET, 232-33
Data-for-Data model, 16
flaws, 104-05
future of, 37, 108-10, 126-27
Google V8 engine, 110
GZIP compression, 136
hiding from view, 28
HTML builder, 236-39, 241-45
injections, polling, 54
interactivity, 132
language, 109
language and browser, 102-08
libraries. See JavaScript libraries;
Microsoft JavaScript client
library
mashups, 216
minification, 136
Model-Controller pattern, 82
MVC pattern, 172-75

317

318 JavaScript

JavaScript (continued)
MVC pattern sample, 172-75
object-orientation addition,
36-37
On-Demand pattern, 175-78
overhaul, 109
parsing, 235
presentation layer. See
presentation layer
pros and cons of, 36
proxy, 33, 73, 75, 80-81
Rich Internet Applications,
23-24
security, 109
selective updates, 18
server controls, 131-32
Server Pages pattern, emissions
increasing, 89-90
Silverlight, 280
standardization, 10
syntax, 49
timers, 219-20
types, 106-07
variables, 107
versions, 36
vs. Java, 11
Web remoting, 216
widgets, 56-60
Yahoo! Ul library, 135-36
JavaScript 2.0, 109, 126
JavaScript language extensions
new, 113-14
primitive, 112-13
shorthand functions, 114-15
JavaScript libraries, 105, 127,
129-30, 161
Dojo library, 133
ExtJS library, 133
jQuery library, 137-61. See also
jQuery library
list of, 132-33
memory requirements, 133
popular, 132-33
PrototypelS library, 133-34
Script.aculo.us library,
134-35
selection, 136-37
server controls and widgets,
130-37
size, 136
synthesis of features, 136-37
JavaScript Notation. See JSON
Johnson, Ralph, 164
JPG images, 279
jQuery function, 140-41
jQuery in Action (Bibeault, Katz,
and Resig), 150
jQuery library, 36, 137-38, 161

$ function, 140-42
$ root object, 115
AJAX functions, 157-58
benefits of, 136-37
BST pattern, 249-50
caching, 158, 184
core library, 140-42
downloading, 138
fundamentals, 138-39
jQuery UI, 138
methods vs. functions, 159
micro-links, 215
obtaining, 59
plug-ins, 139, 158-59
Predictive Fetch pattern, 180
selectors, 142-49
size, 138
Ul framework, 159-61
utilities, 151-61
visual effects, 155-57
Visual Studio 2008, 139-40
widgets, 138
wrapped sets, 141, 149-51

jQuery object, 140-41
alias, 159
CSS selectors, 142-43
helper methods, $ function,

141-42

plug-ins, 158-59
wrapped sets, 141

jQuery Ul
downloading, 161
widgets, 160

jQuery.fn object, 159

JS Dojo Minifier, 136

Jscript, 103

JSMin, 136

JSON, 232
endpoints, 21
page methods, 54
serialization, 62, 67-68, 77
services, invoking, 33
strings, 21, 67-68, 70-71
vs. XML, 20-21, 67-69
Web services, 7677

VG, 136

K

Katz, Yehuda, 150
keyboard events, 125, 135
timeouts, 188, 191
keydown(fn) helper, 154
keypress event, 219
keypress(fn) helper, 154
keyup(fn) helper, 154
keywords, 286
Konqueror, 272

L

Label control, 89, 94

Labell control, 285

LastName, FirstName string, 117

last-win discipline, 53

latency, 193

layers, ASP.NET, 22

layout manager, 282-83

IblWait element, 260

Left property, 283

legitimate users, 83

length method, 142

Length property, 141, 292

libraries, 97, 168-69
.NET Base Class Library, 286—-89
ASP.NET, 266-68
binary, 273. See also plug-ins
Gaiaware's Gaia AJAX, 94-96

JavaScript. See JavaScript libraries

jQuery. See jQuery library
Microsoft AJAX. See Microsoft
AJAX library
RadControls library, 92-94
Server Pages pattern, 92-96
YUIAsp.Net library, 135
linear interpolation, 278
links, 213-14
micro-links. See micro-links
LINQ, .NET Base Class Library,
286-87
LINQ-to-JSON, 286-87
LINQ-to-Objects, 286
LINQ-to-SQL, 166, 230, 267
LINQ-to-XML, 286-87
Linux platform, 271, 277
list items, 226, 228
ListBox control, 283
ListView control, 226
Live Form pattern, 220
Livequotes.svc, 263
LiveScript, 103
Load event, 41
load function, 158
load method, 216
micro-links, 215
load times, 108
load(fn) helper, 154
Loaded attribute, 280
loadFooter method, 244
loadHeader method, 244
loading, deferred, 267
loadltemTemplate method, 244
local storage, 290
localeFormat method, 32
logical tokens, 290
login page, 85-86
London, Jack, 129

looping
plug-ins, 158-59
Repeater control, 225-27
wrapped sets, 149

Lowy, Juval, 75

M

Mac platform, 271
machine code, 110
managed classes, 67
managed code, 90
Managed Jscript compiler, 102
managers, 7
manual iteration, 149
mapping, MVC pattern, 172
markup, 80, 87-90, 92
ASP.NET, 130
asynchronous postbacks, 94
BST vs. HM pattern, 252-53
customized rendering, 247-48
DataGrid control, 225
HTML Message pattern, 251
HTML templates, 226-28
incomplete/invalid, 236
load function, 158
object dump, 123
RadControls, 94
rendering, HTML Message
pattern, 257-58
server controls, 131
server side, 252
Silverlight, 279-80
source code file, 282
startMonitor task, 205-06
template creation, 229-30
Markup slot, 158
mashups, 215, 223
error handling, 217
JavaScript, 216
master page, ScriptManager, 29-30
match method, 245
Math object, 202
media formats, 278
media pack, Silverlight, 277-78
MediaElement control, 277-78
members. See also specific members
global and static, 108
overridable, 117
private, 118
public vs. private, 108
Sys.Net.WebRequest class, 124
Type object, 120-21
var keyword, 108
Memento pattern, 166
memory
cache size, 186

JavaScript libraries, 133
Predictive Fetch pattern, 179
metadata, service, 73
methodCompleted callback,
55-56
methodName argument, 81
methods. See also specific methods
ad hoc, 291
MVC pattern, 172
overriding, 117, 307
static, 170, 290
vs. functions, jQuery library, 159
Micro-Link pattern, 213-15
micro-links, 213-14
actions, 214
jQuery library, 215
Microsoft, 270
Microsoft .NET: Architecting
Applications for the Enterprise
(Esposito and Saltarello),
90, 172
Microsoft AJAX library, 89,
110, 127
constituent files, 110-11
framework facilities, 119-26
JavaScript language extensions,
112-15
linking, 111-12
object-oriented extensions,
115-19
Singleton pattern, 169-70
Microsoft JavaScript client
library, 28
downloading, 35
files of, 35-36
object-orientation addition,
36-37
pros and cons, 36
Microsoft Metadirectory Services
(MMS), 278
Microsoft Product Support Services,
137-38
Microsoft Visual Studio 2008,
IntelliSense, 116
MicrosoftAjax.js, 35
MicrosoftAjax.js file, 111, 121
MicrosoftAjaxTemplates.js, 261
MicrosoftAjaxTimer.js,
35,111
MicrosoftAjaxWebForms.js,
35,111
middle tier
HTTP facade, 63-64
security, 87
unauthorized access, 85
minification, 136, 159
MMS (Microsoft Metadirectory
Services), 278

naming conventions

modality, 95

Model2, 171

model, MVC pattern,
171-72

Model-View-Controller (MVC)
pattern, 82, 170-75

HM pattern demo, 259-60

Model-View-Presenter (MVP)
pattern, 90, 171

monitoring, progress indication,
195-96

Mono project, 277

monolithic views, 171

Moonlight group, 277

mouse events, 125, 135

timeouts, 188

mousedown(fn) helper, 154

mousemove(fn) helper, 154

mouseout(fn) helper, 154

mouseover(fn) helper, 154

mouseup(fn) helper, 154

MP3 format, 278

multimedia, Silverlight,
277-79

Multistage Downlaod
pattern, 175

multithreading, 219-20

MVC (Model-View-Controller)
pattern. See Model-View
Controller (MVC) pattern

MVP (Model-View-Presenter)
pattern, 90, 171

MyControllerClass, 260

MyPet function, 106

MySourceObject class, 285

N

name parameter, 123
Name property, 75, 80
Microsoft AJAX library, 111
named functions, 116
namespace, DataView
class, 263
Namespace property, 75, 80
namespaceq.. .} construct, 116
namespaces, 36-37
JavaScript, 109
object-oriented extensions,
115-16
naming conventions. See also
shorthand notation
brackets, 69
camelCase, 156
files, 291
plug-in file, 159
semicolon, 159

319

320

NAPI (Netscape Plug-in Application Programming Interface)

NAPI (Netscape Plug-in Application
Programming Interface). See
Netscape Plug-in Application
Programming Interface (NAPI)

Navigate event, 34

navigation, 33-34, 167-68

nesting, 46

Netscape, 103, 272

Netscape Navigator, 113, 272

Netscape Navigator 2.0, 10

Netscape Plug-in Application
Programming Interface
(NAPI), 272

security, 272-73

network stack, 67, 124-25

networking, Silverlight, 295-301

new operator, 106

not-implemented exceptions, 118

npruntime, 272

null values, 166

Number data types, 32

Number object, 112-13

NumericUpDown extender, 58

(0

Object object, 112-13
ObjectAnimationUsingKeyFrames
object, 278
ObjectDataSource control, 231
object-oriented extensions
classes, 115-16
inheritance and polymorphism,
116-18
interfaces, 118-19
namespaces, 115-16
object-oriented languages, 36, 102,
104-06, 127
ASP.NET, 130-41
JavaScript, 36-37
objects. See also specific objects
as dictionaries, 105-06
bindable, 230
circular references, 126
custom, 230
functions as, 106
global, 169
JavaScript, 36, 105-06
JSON strings, 67-68
plain type, 119-20
pseudo-type, 119-20
reflection, 119-21
ObservableCollection type, 285
Observer pattern, 166
OLE2, 273
onclick handlers, 174-75
onDataAvailable parameter, 81
On-Demand JavaScript pattern,
175-78
one function, 152

one method, 153
OnSearchComplete callback
function, 181
OnSearchComplete
function, 185
OnTick handler, 189
OpenFile method, 292
OpenReadAsync method, 297
Opera, 272
OperationContract attribute, 74
operators, JavaScript, 106
optimization, 6-7
options argument, 160
origin, 216
outsiders, 83
protecting from, 85-86
overriding, methods, 117, 307

P

P/Invoke subsystem, 303
packages, JavaScript, 109
page. See Web page
Page class
Culture property, 32
UlCulture property, 31
page endpoints, 70
page methods, 54-55
as page endpoints, 70
event sink, 199-200
invoking, 55-56
vs. services, 56
Page.ClientScriptRegisterArray
Declaration method, 202
pageload, 121
PageMethods class, 55-56
PageMethods proxy, 202
PageRequestManager class,
170, 208
PageRequestManager object,
43,208
Pages-for-Forms model, 14-15
pageUnload, 121
pageX property, 153
pageY property, 153
panel refresh
conditional updates, 44-45
programmatic updates, 45
paradigm shift, 14
parameters
$ function, 140
ajax function, 157
application object, 122
constructor, 117
helpers, 154
integer, 149
interfaces, 119
load method, 215
registerClass method, 116
traceDump method, 123

unbind method, 153
visibility functions, 155
parent > child selector, 143
parent argument, 122
parent class, 55
parent parameter, 122
Parse member, 121
parser, XML, 68-69
parsing, JavaScript, 235
partial page updates, 129
partial rendering, 27
concurrent call issues, 52-53
data binding, 234
disabling of visual elements
during updates, 52
limitations, 48-53, 61
mechanics, 40-41
motivation, 38
page updates, 42-43
polling, 53
postback model, 91-92
Predictive Fetch pattern, 181
Server Pages pattern, 88
server-side, 41-42
size of, 48
syntax, 38-39
task cancellation, 207
UpdateProgress control, 195
user feedback, 49-52
view state, 42
vs. Server Pages pattern,
91-92
partial trust Web client, 63-64
partial view state, 95
Path attribute, 31
Path class, 291
Path property, 81-82, 111
patterns. See also AJAX design
patterns; specific patterns
architectural, 61-62
architectural vs. design, 163
performance
cache size, 198
Data-for-Data model and, 16
JavaScript, 108-09
services vs. page methods, 56
Periodic Refresh pattern,
192-93
permissions, 302-03
Person class, 117
PHP Hypertext Preprocessor, 276
piecemeal submission, 218-19
placeholders, 123, 236, 238
Dual-Side Templating
pattern, 238
HM pattern, 254
plain-old XML (POX), 72
plain-type HTML, 248
plain-type objects, 119-20
platform code, 306-07

plug-ins, 271
<object> tag, 273
characteristics, 273
downloading, 158
file naming conventions, 159
history, 272
hosting applications, 274
jQuery library, 137, 139, 158-59
jQuery Ul, 159-61
Rich Internet Applications, 22
security, 272-73
Silverlight, 23
plus (+) character, 265
PNG images, 279
pnlDetails element, 260
Point property, 278
PointAnimation class, 278
polling, 51
partial rendering, 53
Timeout pattern, 186-87
polymorphism, 116-18
PopupButtonID property, 57-58
ports, HTTP/HTTPS, 83
Position property, 292
positional filters, 144-45
post function, 158
POST request, 215, 220
POST verb, 73, 77, 158
WebRequest class, 298
PostAuthenticateRequest
event, 72
postback model, 90-91
partial rendering, 91-92
postbacks, 19
asynchronous. See asynchronous
postbacks
autopostback feature, 39
conditional updates, 44-45
delta, 90
headers, 43
lengthy tasks, 46-47
model. See postback model
partial rendering, 40-41
queue, 52
server controls, 89
Server Pages pattern, 87-88
triggers, 91-92
view state, 42
pound (#) symbol, 33
POX (plain-old XML), 72
Predictive Fetch pattern, 178-79
caching, 183-86
reference implementation
creation, 180-86
sample scenario for, 180-81
Prelnit event, 46
PreRender event handler, 41
presentation layer, 62-63, 79, 97
commercial frameworks, 57
HTTP facade proxy, 80-82

JavaScript Model-Controller
pattern, 82
MVC pattern, 170-71
presentation logic, 250
separating from user
interface, 235
preventDefault method, 153
previous ~ sibling selector, 143
previous + next selector, 143
private members, 118
productivity
Predictive Fetch pattern, 179
server controls, 88, 131-32
programmatic updates, 45
programming languages, 102-05.
See also object-oriented
languages; specific languages
idioms, 165-66
Silverlight, 280
Programming WCF (Lowy), 75
progress bar display, 196, 205
Progress Indicator pattern,
194-213
ASP.NET UpdateProgress
control, 195
reference implementation,
196-213
sample scenario, 196-213
progress meter, 205
progress template, 207-08
ProgressChanged callback, 288
ProgressMonitor class,
197-98
ProgressTemplate property, 50
PropertyName property, 241
Prototype, 36
Prototype library, 105
prototype model, 107-08
Microsoft AJAX library, 116
prototype object, 106, 108
prototype property, 37, 106
Dojo library, 134
PrototypelS library, 133-34
prototypes
findComponent method, 122
interfaces, 118-19
overridable, 117
ProviderName property, 257
proxy
ADO.NET Data Services, 267
classes, 79-82
classes, Web services, 67
JavaScript, 73, 75, 80-81
JavaScript, Web remoting, 216
page methods, 55-56
remote services invoking, 33
REST handler, 80
ScriptManager, 29-30
pseudo-type object, 119-20
Python, 24

removeData function

Q

queries, 140

query chaining. See chaining
query method, 267

Query Object pattern, 166
queue:false flag, 157
QuickTime, 272

Quota property, 294

Quote property, 247

R

RadAjaxManager control,
93-94
RadControls library, 97
RadioButton control, 283
RadioButtonList control (Gaia), 94
RandComboBox, 93-94
reach, 22
vs. rich, 23, 308
Read/Write method, 292
read-only properties, 117
ready function, 153
RealPlayer, 272
Real-Time Streaming Protocol
(RTSP), 278
refactoring, 16-17
reference implementation, 180-86
Browser-Side Template (BST)
pattern, 238-50
HTML Message pattern, 253-60
Progress Indicator pattern,
196-213
Timeout pattern, 188-92
reflection, 119-21
example, 121
refresh. See page updates
RegExp object, 113
RegisterASyncPostBackControl
method, 45
registerClass member, 121
registerClass method, 116-17, 119
registerEnum function, 114
registerEnum member, 121
registerinterface member, 121
registerNamespace member, 121
registerNamespace method, 116
registration functions, 114
release script files, 31
remote methods, 54-56
remote requests, 124-25, 181-83
remote services
HTML message pattern, 254-57
invoking, 33
remote tasks, canceling, 206-08
remote URLs, 251
Remove member, 230
removeClass function, 150
removeData function, 158, 186

321

322

renderer class

renderer class, 255-57
RenderMode property, 47
Repeater control, 225-27
replaceWith method, 150
replay attacks, 85
ReportProgress method, 288
Representational State Transfer
(REST), 66
request-for-markup Web
model, 252
requests
ajax function, 157
asynchronous, 87-88, 91-92, 166
cancellation, 195
concurrent, 92
cross-domain, Silverlight,
300-01
HTTP endpoints, 70-71
out-of-band, 124-25
partial rendering, 52-53
payloads, 94-95
remote, 124-25, 181-83
Silverlight, 298-99
synchronous, 296
RequestTermination method,
209-10
RequirementsMode property, 87
Reset CSS file, 135
Resig, John, 59, 138, 150
resize(fn) helper, 154
resizeable interaction, 160
ResourceUlCultures property, 31
response time, 178-79
responsiveness, 178
REST (Representational State
Transfer), 66
REST handler, 76, 84
proxy class, 80
REST services, 21, 267
RESTful interface, 78
results argument, 81
RIA (Rich Internet Application). See
Rich Internet Application (RIA)
rich, vs. reach, 308
Rich Internet Application (RIA),
17, 269, 308
binary code, 270-71
browser plug-ins, 271-74
HTML and, 23
JavaScript, 23-24
Silverlight, 274-81. See also
Silverlight
rich user experience, 56-57
richness, vs. reach, 23
RichTextBox control, 283, 286
rollbacks, 212-13
RowDataBound event, 246
RTSP (Real-Time Streaming
Protocol), 278
Ruby, 24

Ruby on Rails, 133
run-time
errors, interfaces, 119
HTML templates, 227
JavaScript, 103-04
modules, headers, 43
Russell, Bertrand, 223

S

S function, 135
Safari, 125
Dojo library compatibility, 133
NAPI, 272
safe-critical code, 304-06
application code, 304-06
Saltarello, Andrea, 172
Same Origin Policy (SOP), 66, 105
Cross-Domain Proxy pattern,
215-16
Silverlight, 300-01
Samples.HtmlListBuilder object,
241-45
Samples.Person function, 116
Samples.Progress class, 202-04
Samples.Services, 81
Samples.Services.
FinancelnfoService, 81
sandbox, 105
save point, 168
scalability, postbacks, 47
script code/files
cross-site scripting attacks,
77-78, 85
debug and release, 31
download, 175
globalization, 32
JavaScript library, 35
linking, 30-31
loading files, 157
localizable elements, 31
optional and custom, loading,
30-31
sandbox, 105
Script.aculo.us library, 135
user-interface elements, 31
Script.aculo.us, 36, 133
Script.aculo.us library, 134-35
scriptaculous.js file, 134
scripting attacks, 105, 216
scripting engine, 103-04
scripting languages, 107
ScriptManager control, 28
code for, basic, 29
ID, 41
jQuery library, 139
Microsoft AJAX library,
111-12
partial rendering, 30. See also
partial rendering

RadControls library, 93
Services section, 32-33
ScriptManagerProxy, 29-30
ScriptMethod attribute, 77
ScriptModule, 55
Scripts collection, 30-31
ScriptService attribute, 75-76
scroll(fn) helper, 154
scrollbars, 283
ScrollViewer element, 282-83
Secure Sockets Layer (SSL), 83
security, 83
ActiveX, 270-73
binary code over Web, 270-71
code, Silverlight, 302-07. See also
code security, Silverlight
countermeasures, 84-85
GET verb, 77-78
HTTP and, 10
HTTP facade, 63-64
HTTP facade, trusting, 86-87
inheritance rules, 307
JavaScript, 109
middle tier, HTTP facade as,
83-84
NAPI, 272-73
outsiders discrimination, 85-86
plug-ins, 272-73
replay attacks, 85
Same Origin Policy (SOP), 66
timeouts, 192
security model, Silverlight, 302-03
SecurityCritical attribute, 303, 306
SecuritySafeCritical attribute,
303, 306
SecurityTransparent attribute,
303, 306
SecurityTreatAsSafe attribute, 306
Seek method, 292
select(fn) helper, 154
selectable interaction, 160
SelectindexChanged event, 39
selective updates, 17-18
selectorl, ..., selectorN selector, 143
selectors, 142
CSS, 142-44
filters, 144-48. See filters
form filters, 148-49
query, 140-41
separation of concerns (SoC),
170-71
serialization, 20-21, 62, 67-68
contracts, 75
JSON, 77
partial rendering, 41
view state, 42
XML, 77
server
basic model, 8-9
resources, 187, 192

server code, 62
server controls, 37, 69-70, 82, 129
ASP.NET, 88-89, 131
data binding, 223-24
data-bound controls, 224
future of, 132
Gaia AJAX library, 94-96
JavaScript and, 131-32
RadControls, 92-94
Server Pages pattern. See Server
Pages pattern
Silverlight, 276-77
strengths and weaknesses, 131-32
view state, 131
Server Pages pattern, 87-88
advantages and disadvantages,
96-97
ASP.NET classic controls, 88—89
code-behind and Service Layer
pattern, 90
HTTP fagade, 90
JavaScript emissions, increasing,
89-90
libraries, 92
postback model, classic, 90-92
vs. partial rendering, 91-92
vs. Service Layer pattern, 96-97
server side, 20
API, 197-98
ASP.NET development, 130-31
ASyncPostBackTrigger, 45
code, 66-68, 88-89, 252
controls, 61-62
data binding, 224, 232, 246
data transfer, 232-33
event handler, 93
focus, 61
HTML Message pattern. See HTML
Message pattern
HTTP endpoints, 64
interruptible tasks, 208-10
markup, 252
mashup, 223-24
optimization, 6
partial rendering, 41-42
processing overhead, 178
security, 63-64
session termination, 192
storage, 289
task ID, 199
task termination, 208-10
service endpoints, 70
Service Layer pattern, 62-63
HTML presentation layer, 69-70
HTTP fagade, 63-67, 70-79
JSON vs. XML, 68-69
presentation layer, 62-63, 79-82
security, 83-87
Server Pages pattern and
code-behind, 90

vs. Server Pages pattern, 96-97
ServiceContract attribute, 75, 80
service-level agreements, 217
ServiceMethod attribute, 259
services. See Web services

references, adding to pages,

32-33
Services collection, 32
Services section, 32-33
setInterval function, 189-90
SetLength method, 292
sets, wrapped. See wrapped sets
SetStatus method, 198
setTimeout function, 190, 204
SFChange function, 95
shorthand functions, 114-15, 135
shorthand notation

$ symbol, 159

DOM hookup and removal, 126
ShouldTerminate method, 209-10
show function, 155
Silverlight, 3, 308

NET Framework, 279

animation, 278

applications, running, 276-77

architecture, 275-77

building applications, 279-81

CLR, 24

code and markup, 279-80

Deep Zoom, 278-79

graphics and multimedia,

277-79

HTML and, 23

instancing, CLR, 281

media pack, 277-78

platform compatibility, 271

plug-ins, 274

programming. See Silverlight

programming

programming languages, 280

Rich Internet Application (RIA),

274-81

security, 84

Service Layer pattern, 97

storage. See storage

ToolTips, 282

vs. AJAX, 275

vs. smart clients, 276

WCF, 75

XAP packages, 280-81
Silverlight 1.0, 271
Silverlight 2,

Visual Studio, 79
Silverlight programming, 282

.NET Base Class Library, 286—-89

code security, 302-07

common controls, 283-84

cross-domain requests, 300-01

data binding manager, 284-85

data downloads, 296-98

storage

isolated storage, 289-95.
See also storage
layout manager, 282-83
networking, 295-301
services, 299-300
storage. See storage
Web requests, 298-99
WPF code compatibility, 285-86
WPF-based user interface,
282-86
Singleton pattern, 169-70
slideDown function, 155
Slider control, 283
Slider extender, 58
slider script, 135
Slider widget, 160
slideToggle function, 155
slideUp function, 155
sliding effects, 156
smart client, 64, 276
Smooth Streaming, 278
SOAP, 65, 68, 72
ASP.NET services, 76-77
basicHttpBinding model, 75
disabling clients, 77
vs. REST, 84
SoC (separation of concerns),
170-71
Sony, 136
SOP (Same Origin Policy). See Same
Origin Policy (SOP)
sortable interaction, 160
source code
JavaScript, 105
scripting engine, 104
source parameter, 277
Source property, 284
SqglDataSource control, 231
src attribute, 30
SSL (Secure Sockets Layer), 83
StackPanel element, 282-83
standardization, 8, 17, 271
HTML, 10
JavaScript, 10
Web structure and, 10-11
XMLHttpRequest object, 301
startMonitor method, 202
startsWith method, 113
startTask method, 202
state objects, 14
statements, 227
static entry points, 170
static members, 108
static methods, 170, 290
static properties, 81
stopMonitor method, 202
stopPropagation method, 153
stopTask callback, 190
storage
disk quotas, 294-95

323

324

storage

storage (continued)
file streams, 292-93
files and directories, 291-92
local, 290
management, 293-94
Silverlight, 289-95
system, Silverlight, 290-91
stored procedures, 196
Stream object, 297, 299
streaming, 278
StreamReader class, 292-93
StreamWriter class, 292-93
strict mode, 109
String class, 123
String data type, 32
String object, 112-13
StringBuilder object, 233
strings
comma-separated, 31
event name, 152
hash, 33-34
HTML, creation, 233, 235
JSON. See JSON
manipulation, 122-23
plug-ins, jQuery library, 158-59
serialization, 20-21
Submission Throttling pattern, 218
Explicit Submission pattern,
218-19
Live Form pattern, 220
timers, multithreading, 219-20
submit event, 91, 208
partial rendering, 40-41
submit(fn) helper, 154
success callbacks, 204-05
success parameter, 157
Symbol property, 247, 262
synchronization, 176
synchronous requests, 296
sys:activate attribute, 263
sys:attach attribute, 264
Sys._Debug class, 123-24
Sys.Application object, 121-22
Sys.ApplicationLoadEventArgs, 121
Sys.Component class, 122
Sys.Culturelnfo object, 32
Sys.Data.AdoNetDataSource
class, 267
Sys.Data.AdoNetServiceProxy
class, 267
Sys.Data.DataSource component,
265-66
Sys.Debug object, 123
Sys.IDisposable interface, 118
Sys.Net.WebRequest class, 124-25
Sys.Net.WebRequestExecutor class,
124, 208
Sys.Net.XMLHttpExecutor class,
124, 208
Sys.StringBuilder class, 122-23

Sys.StringBuilder object, 245
Sys.Ul.DataView component,
262-64
Sys.Ul.Key, 125
Sys.Ul.MouseButton, 125
Sys.WebForms.PageRequest
Manager object, 40
System.|0.Directorylnfo class,
304-05
System.Json assembly, 287
System.Json namespace, 287
System.Net namespace, 85
system.web.extensions, 110
System.Web.Extensions assembly, 38
System.Web.Services.WebService, 78
System.Web.Ul namespace, 38
sys-template style, 261-62

T

TabControl control (Gaia), 94
table element, 283
tables, 225-26
sys-template style, 261-62
Tabs widget, 160
target property, 153
TargetControllD property, 259
task ID, 198-99
task server API, 198
tasks
client, interrupting, 211-12
implementation, 198-99
monitoring, 195-96
remote, canceling, 206-08
rollbacks, 212-13
server, interruptible, 208-10
TCP (Transmission Control Protocol), 8
TCP/IP (Transmission Control
Protocol/Internet Protocol), 269
Telerik, 18
templates
ASP.NET, 260-66
constructor, 242
creation, 229-30
data and, mixing, 236-37
defined, 223
dual-side templating, 237-38
dynamic, 46
HTML, 224-30, 236
HTML factories, 225-27
ITemplate interface, 50
logic injection, 264-65
structure, 261-62
Sys.Data.DataSource component,
265-66
Sys.Ul.DataView component,
262-64
URI, 234
URL, 74
XML data islands, 240

Temporary Internet Files folder, 281
TerminateTask method, 212
text box, 92
widgets, 57-59
text function, 150
Text property, 285
TextBlock element, 285
TextBox control, 283
AJAX Control Toolkit, 57-59
disabling, 48
TextBoxWatermark extender, 58
textElement property, 150
third-party software vendors, 69-70
this object, 149
this.each iterations, 159
Thread class, 287
ThreadPool class, 287
threads, 287-88
Time To Last Byte (TTLB), 178
timeout member, 124
Timeout pattern, 186-92
related patterns, 192-206
sample scenario, 188-91
timeout property, 81
timeouts, 193
keyboard, 188, 191
mouse, 188
timer class, 190
Timer control, 189
timers, 204
.NET Base Class Library
support, 289
autocompletion, 219
JavaScript, 219-20
multithreading, 219-20
Progress Indicator pattern,
194-95
TLS (Transport Layer Security), 83
toggle function, 153, 155
toggleClass function, 150
tokens, 290
Toolbar control (Gaia), 94
ToolTips, 282
Top property, 283
toString method, 117-18, 122
trace console element, 123
traceDump method, 123
traffic, 253
transactions, canceling, 52
TransactionScope activity, 212-13
transfer latency, 178
transformer, JavaScript, 109
Transmission Control
Protocol (TCP), 8
Transmission Control Protocol/
Internet Protocol (TCP/IP), 269
transparency, code, 302-03
Transport Layer Security (TLS), 83
trigger function, 152
trigger method, 153

triggerHandler function, 152-53
triggers
child controls, 44-45
explicit, 44-45
implicit, 44-45
partial rendering, 39
postback, 91-92
Silverlight, 285
Triggers collection, 285
TTLB (Time To Last Byte), 178
type attribute, <object> tag, 273-74
Type class, 120
Type object
extensions, 120
members, 120-21
type parameter, 157
type property, 153
Type.registerNamespace method, 116
typeof function, 107
typeof operator, 119
types, 106-07

U

Ul layer, 22
UlCulture attribute, 31
UlCulture property, 31
unauthorized access, 85-86
unbind function, 152
unbind method, 153
underscore (_) symbol, 118
Unique URL pattern, 167-68
unload(fn) helper, 154
Update method
exceptions, 45
UpdatePanel control refresh, 45
UpdateMode property, 44
exceptions, 45
update-panel, 91-92
UpdatePanel control, 28
conditional updates, 44-45
data binding, 234
data transfer minimization, 47-48
dynamic templates, 46
multiple updatable panels, 42
nesting, 46
programmatic updates, 45
RadControls, 93-94
rules for, 47-48
single, limitations of, 39
smooth page updates, 42-43
triggers, 47
Update method, 45
UpdateProgress control, 195
UpdateProgress control, 195
progress bar display, 196
updating/updates, 166-67
conditional, 44-45
dynamic templates, 46
partial rendering, 42-43

programmatic updates, 45
selective, 17-18
uri attribute, 301
URI templates, 234
UriTemplate property, 72-73
url member, 124
url property, 124
URLs
ad hoc fagade, 62
ADO.NET Data Services proxy, 267
creation, 37-38
DataView, 265
hash string modification, 33-34
history, 167-68
HTML tags, 177
HTTP facade, 65-67
HTTP verbs, 66
posting data to, 298-99
public, 86
remote, 251
syntax, ADO.NET, 79
template, 74
unique, AJAX design pattern,
167-68
user actions, 167
user context object, 81
user credentials, 85, 87
user experience, 4-6
for developers, 6-7
for managers, 7
user feedback, 49-52
user inputs. See <input> elements;
input elements
user interface
CRUDy, 66
data binding, 224. See also data
binding
HTML presentation layer, 69-70
jQuery library, 159-61
jQuery Ul, 159-61
MVC model, 172
Periodic Refresh pattern, 192
presentation logic separation, 235
refreshing, 178-79
responsiveness, 178
Silverlight, WPF-based,
282-86
updating, 205-06
widgets, 59-60
UserControl element, 282
UserControl root tag, 280
Users directory, 291

Vv

value property, extenders, 58
var keyword, 107-08
variables
JavaScript, 107
placeholders as, 236

Web development

verifier, JavaScript, 109
VHS, 136
View object, 260
view state, 27
disabling, 48
partial, 95
partial rendering, 92
server controls, 131
size, 48
views
autonomous vs. monolithic, 171
MVC pattern, 171-72
visibility attribute, 214
visibility functions, 155-56
visibility, HTML template, 261
Visual Basic .NET
code-behind class, 280
keywords, 286
Silverlight, 24
visual effects, 155-57
jQuery library, 249-50
Script.aculo.us library, 134-35
Visual GUI, 97
Visual InterDev 6.0, 88-89
Visual Studio, 21-22
ADO.NET data services, 79
Visual Studio 2008
jQuery library, 137-40
proxy class, 80
Service Pack 1, 139-40
Silverlight Web services, 299
Vlissides, John, 164
Volta, 24
vsdoc file, 140

w

W3C (World Wide Web
Consortium), 270, 301
WatermarkTextBox control, 283
WCF (Windows Communication

Foundation). See Windows
Communication
Foundation (WCF)
Web 2.0, 3, 101
Web applications.
See Web development
Web browser. See browser
Web development, 17.
See also Web page;
Web services
AJAX capability, 17
AJAX Control Toolkit, 57-59
animations, 156-57
architecture concerns, 18-22
ASP.NET, 130-31
client-side, 130
HTML presentation layer, 69-70
interactivity, jQuery Ul, 159-61
programming, 12

325

Web development

Web development (continued)
Rich Internet Application. See Rich
Internet Application (RIA)
selective updates, 17-18
service reference addition, 32-33
user experience, 4-7
visual effects, 155-57
Web applications vs. AJAX
applications, 167
widgets, 56-59
Web Development Helper tool, 206
Web Forms API, 19
Web Forms model, 42
Web page
DOM manipulation, 166-67
free content, 217
links, 213-14
mashup, 215
Pages-for-Forms model, 14-15
polling, 53
selective updates, 17-18
services reference addition, 32-33
slow, 175
updatability, 13-14
updates. See updating/updates
Web remoting, 216
Web requests. See requests
Web services
custom, 66-67
event sink, 199-200
HTTP facade, 65-67
metadata, 73
proxy class, 80-82
Same Origin Policy (SOP), 66
security, 86-87
Silverlight, 299-300
Silverlight consumption, 299-300
vs. page methods, 56
Web We Want (WWW), 5-7
web.config file
ASP.NET Web services, 76
debug mode, 80
SOAP client disabling, 77
WebClient class, 296-98
WebGet attribute, 72-73
webHttpBinding model, 73, 84
Weblnvoke attribute, 73
WebMethod attribute, 77
WebRequest class, 124, 298-99
WebUI, 96-97
widgets, 56-57, 132-35
AJAX Control Toolkit, 57-59
jQuery library, 59-60, 138
jQuery Ul, 160-61
slider, 59-60
YUIAsp.Net library, 135
Window control (Gaia), 94-95
window object, 140

window.event object, 125
Windows Communication
Foundation (WCF), 21,
72-75, 232
ASP.NET compatibility mode, 78
event sink, 199-200
HTML template, 241
HTTP fagade, 64, 66-68, 72-75
page methods, 54
proxy class, 80-82
public services, 56
runtime, 87
security, 84, 86-87
Silverlight, 75
Silverlight consumption,
299-300
Windows Media Audio (WMA)
formats, 278
Windows Media Video (WMV)
formats, 278
Windows platform, 271
Windows Presentation Foundation
(WPF)
code compatibility, 285-86
Silverlight, 23, 282
Silverlight user interface, 282-86
WPF Toolkit, 282
Windows Vista platform, 291
WMA (Windows Media Audio)
formats, 278
WMV (Windows Media Video)
formats, 278
World Wide Web (WWW). See
also Web development; Web
services
binary code over, 270-71
mechanics, 8-9
origins, 8
paradigm shift, 14-15
paradox of, 9
pillars of, 10-11
restructuring, 10-11
Rich Internet Application. See Rich
Internet Application (RIA)
security and, 10
standardization, 8, 271
World Wide Web Consortium
(W30Q), 8, 13, 114, 125, 216,
270, 301
WPF (Windows Presentation
Foundation). See Windows
Presentation Foundation (WPF)
wrap method, 150
wrapped sets, 141, 149
chaining, 151
looping, 149
methods, 159
predefined operations, 150

wrapper classes, 266
Write method, 293
WSDL, 77

X

x:Class attribute, 280
x:Name attribute, 280
XAML, 279
XAML Browser Application
(XBAP), 276
XAP packages, 277, 280-81
download example, 297
XBAP (XAML Browser
Application), 276
XDomainRequest object, 216, 301
XML
data islands, 236, 240
parser, 68—-69
plain-old (POX), 72
vs. JSON, 20-21, 67-69
XMLHttpRequest object,
12-13,125
browser history, 168
cross-domain calls, 216, 301
custom handlers, 78
Data-for-Data model, 15-16
Dojo library, 133
event sink, 196
Heartbeat pattern, 193
HTML Message pattern, 252
jQuery library, 157-58
micro-links, 214
On-Demand JavaScript pattern,
176-77
partial rendering, 15
Periodic Refresh pattern, 192-93
polling, 53
Predictive Fetch pattern, 181
PrototypelS library, 133-34
script downloads, 176-78
standardization, 301
Sys.Net. XMLHttpExecutor
class, 124
task cancellation, 208
xmins attributes, 263
xxxEntities class, 300

Y

Yahoo! Ul Compressor, 136
Yahoo! Ul library, 36, 135-36
YUIAsp.Net library, 135

y4

ZIP archive, 280

	Table of Contents
	Acknowledgments
	Introduction
	4 A Better and Richer JavaScript
	JavaScript Today
	The Microsoft AJAX Library
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ARA <FFFE270633062A062E062F0645062000470630064706200027064406250639062F0627062F0627062A0620004406250646063406270621062000450633062A0646062F0627062A062000410064006F0062006500200050004400460020004A064506430646062000270644062A06390627064506440620004506390647062706200048062A062A063606450646062000390644062706450627062A0620002A0645064A064A063206200048063106480627062806370620002A063406390628064A06290620004806250634062706310627062A062000450631062C0639064A062906200048063906460627063506310620002A0641062706390644064A0629062000480637062806420627062A062E0020004A06450643064606200041062A062D062000450633062A0646062F0627062A0620005000440046002000270644064506460634062306290620002806270633062A062E062F062706450620004100630072006F0062006100740020004806410064006F00620065002000520065006100640065007200200037002E003000200023064806200023062D062F062B062E0029000D000A00>
 /CHS <FEFF4F7F75288FD94E9B8BBE7F6E6765521B5EFA7684002000410064006F006200650020005000440046002065876863517759078F8552A95DE55177FF0C53735305542B68077B7E30018D8594FE63A530014E667B7E30014EA44E9251437D20548C56FE5C423002521B5EFA76840020005000440046002065874EF653EF4EE54F7F75280020004100630072006F0062006100740020548C002000410064006F00620065002000520065006100640065007200200037002E00300020621666F49AD87248672C676562535F003002>
 /CHT <FEFF4F7F752890194E9B8A2D5B9A5EFA7ACB7684002000410064006F006200650020005000440046002065874EF651775099535452A95DE55177FF0C53735305542B6A197C6430018D8590237D50300166F87C6430014E9252D551437D20548C57165C6430025EFA7ACB76840020005000440046002065874EF653EF4EE54F7F75280020004100630072006F0062006100740020548C002000410064006F00620065002000520065006100640065007200200037002E00300020621666F49AD87248672C958B555F3002>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200073006E00610064006E006F00200070015900ED0073007400750070006E00FD0063006800200064006F006B0075006D0065006E0074016F002000410064006F006200650020005000440046002C0020006B00740065007200E90020006F00620073006100680075006A00ED00200074006100670079002C00200068007900700065007200760061007A00620079002C0020007A00E1006C006F017E006B0079002C00200069006E0074006500720061006B007400690076006E00ED0020007000720076006B0079002000610020007600720073007400760079002E00200056007900740076006F01590065006E00E900200064006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000410064006F00620065002000520065006100640065007200200037002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /DAN <FEFF004200720075006700200064006900730073006500200069006E0064007300740069006C006C0069006E006700650072002000740069006C0020006100740020006F0070007200650074007400650020006C0065007400740069006C006700E6006E00670065006C006900670065002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E007400650072002C002000640065007200200069006E006400650068006F006C0064006500720020006B006F006400650072002C002000680079007000650072006C0069006E006B0073002C00200062006F0067006D00E60072006B00650072002C00200069006E0074006500720061006B007400690076006500200065006C0065006D0065006E0074006500720020006F00670020006C00610067002E0020004400650020006F007000720065007400740065006400650020005000440046002D0064006F006B0075006D0065006E0074006500720020006B0061006E002000E50062006E00650073002000690020004100630072006F00620061007400200065006C006C006500720020004100630072006F006200610074002000520065006100640065007200200037002E00300020006F00670020006E0079006500720065002E>
 /DEU <FEFFFEFF00560065007200770065006E00640065006E0020005300690065002000640069006500730065002000450069006E007300740065006C006C0075006E00670065006E0020007A0075006D002000450072007300740065006C006C0065006E00200076006F006E0020007A0075006700E4006E0067006C0069006300680065006E002000410064006F006200650020005000440046002D0044006F006B0075006D0065006E00740065006E0020006D0069007400200054006100670073002C002000480079007000650072006C0069006E006B0073002C0020004C006500730065007A00650069006300680065006E002C00200069006E0074006500720061006B0074006900760065006E00200045006C0065006D0065006E00740065006E00200075006E00640020004500620065006E0065006E002E002000450072007300740065006C006C007400650020005000440046002D0044006F006B0075006D0065006E007400650020006B00F6006E006E0065006E0020006D006900740020004100630072006F00620061007400200075006E0064002000410064006F00620065002000520065006100640065007200200037002E00300020006F0064006500720020006800F600680065007200200067006500F600660066006E00650074002000770065007200640065006E002E>
 /ENU (Use these settings to create accessible Adobe PDF documents that include tags, hyperlinks, bookmarks, interactive elements, and layers. Created PDF documents can be opened with Acrobat and Adobe Reader 7.0 and later.)
 /ESP <FEFF005500740069006C0069006300650020006500730074006100200063006F006E0066006900670075007200610063006900F3006E0020007000610072006100200063007200650061007200200064006F00630075006D0065006E0074006F0073002000500044004600200061006300630065007300690062006C00650073002000640065002000410064006F00620065002000710075006500200069006E0063006C007500790061006E0020006500740069007100750065007400610073002C002000680069007000650072007600ED006E00630075006C006F0073002C0020006D00610072006300610064006F0072006500730020006400650020007000E100670069006E0061002C00200065006C0065006D0065006E0074006F007300200069006E00740065007200610063007400690076006F007300200079002000630061007000610073002E002000530065002000700075006500640065006E00200061006200720069007200200064006F00630075006D0065006E0074006F00730020005000440046002000630072006500610064006F007300200063006F006E0020004100630072006F006200610074002C002000410064006F00620065002000520065006100640065007200200037002E003000200079002000760065007200730069006F006E0065007300200070006F00730074006500720069006F007200650073002E>
 /FRA <FEFF005500740069006C006900730065007A00200063006500730020006F007000740069006F006E007300200070006F0075007200200063007200E900650072002000640065007300200064006F00630075006D0065006E00740073002000410064006F006200650020005000440046002000610063006300650073007300690062006C0065007300200064006F007400E90073002000640065002000620061006C0069007300650073002C00200064002700680079007000650072006C00690065006E0073002C0020006400650020007300690067006E006500740073002C00200064002700E9006C00E9006D0065006E0074007300200069006E007400650072006100630074006900660073002000650074002000640065002000630061006C0071007500650073002E0020004C0065007300200064006F00630075006D0065006E0074007300200050004400460020006F006200740065006E00750073002000730027006F0075007600720065006E0074002000640061006E00730020004100630072006F006200610074002000650074002000410064006F00620065002000520065006100640065007200200037002E00300020002800650074002000760065007200730069006F006E007300200075006C007400E900720069006500750072006500730029002E>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003C003C103BF03C303C003B503BB03AC03C303B903BC03B1002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003C403B1002003BF03C003BF03AF03B1002003C003B503C103B903BB03B103BC03B203AC03BD03BF03C503BD002003B503C403B903BA03AD03C403B503C2002C002003C503C003B503C103C303C503BD03B403AD03C303B503B903C2002C002003C303B503BB03B903B403BF03B403B503AF03BA03C403B503C2002C002003B103BB03BB03B703BB03B503C003B903B403C103B103C303C403B903BA03AC002003C303C403BF03B903C703B503AF03B1002003BA03B103B9002003B503C003AF03C003B503B403B1002E002003A403B1002003AD03B303B303C103C603B10020005000440046002003C003BF03C5002003B403B703BC03B903BF03C503C103B303BF03CD03BD03C403B103B9002003BC03C003BF03C103BF03CD03BD002003BD03B1002003B103BD03BF03B903C703B803BF03CD03BD002003BC03B5002003C403BF0020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200037002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B7002E>
 /HEB <FEFF05d405e905ea05de05e905d5002005d105e705d105d905e205d505ea002005d005dc05d4002005dc05d905e605d905e805ea002005de05e105de05db05d9002000410064006f006200650020005000440046002005e005d205d905e905d905dd002005d405db05d505dc05dc05d905dd002005ea05d205d905dd002c002005e705d905e905d505e805d9002d05e205dc002c002005e105d905de05e005d905d505ea002c002005e805db05d905d105d905dd002005d005d905e005d805e805d005e705d805d905d105d905d905dd002005d505e905db05d105d505ea002e002005de05e105de05db05d90020005000440046002005e905e005d505e605e805d5002005e005d905ea05df002005dc05e405ea05d505d7002005d1002d0020004100630072006f006200610074002005d505d1002d002000410064006f00620065002000520065006100640065007200200037002e0030002005d505d205e805e105d005d505ea002005de05ea05e705d305de05d505ea002005d905d505ea05e8002e>
 /HUN <FEFF004100200062006500E1006C006C00ED007400E10073006F006B0020006800610073007A006E00E1006C0061007400E100760061006C0020006300ED006D006B00E9006B00650074002C002000680069007600610074006B006F007A00E10073006F006B00610074002C0020006B00F6006E00790076006A0065006C007A0151006B00650074002C00200069006E0074006500720061006B007400ED007600200065006C0065006D0065006B00650074002000E900730020007200E90074006500670065006B00650074002000740061007200740061006C006D0061007A00F300200068006F007A007A00E1006600E900720068006500740151002000410064006F00620065002000500044004600200064006F006B0075006D0065006E00740075006D006F006B0061007400200068006F007A0068006100740020006C00E9007400720065002E002000410020006C00E90074007200650068006F007A006F00740074002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061007A002000410064006F00620065002000520065006100640065007200200037002E003000200061006C006B0061006C006D0061007A00E10073006F006B006B0061006C002C0020007600610067007900200061007A002000610074007400F3006C0020006B00E9007301510062006200690020007600650072007A006900F3006B006B0061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /ITA <FEFF005500740069006C0069007A007A006100720065002000710075006500730074006500200069006D0070006F007300740061007A0069006F006E00690020007000650072002000630072006500610072006500200064006F00630075006D0065006E00740069002000410064006F0062006500200050004400460020006100630063006500730073006900620069006C0069002000630068006500200069006E0063006C00750064006F006E006F0020007400610067002C0020006C0069006E006B00200069007000650072007400650073007400750061006C0069002C0020007300650067006E0061006C0069006200720069002C00200065006C0065006D0065006E0074006900200069006E007400650072006100740074006900760069002000650020006C006900760065006C006C0069002E002000C800200070006F00730073006900620069006C006500200061007000720069007200650020006900200064006F00630075006D0065006E007400690020005000440046002000630072006500610074006900200063006F006E0020004100630072006F00620061007400200065002000410064006F00620065002000520065006100640065007200200037002E003000200065002000760065007200730069006F006E006900200073007500630063006500730073006900760065002E>
 /JPN <FEFF30BF30B0300130CF30A430D130FC30EA30F330AF30013057304A308A300130A430F330BF30E930AF30C630A330D6306A89817D20300130EC30A430E430FC3092542B308030A230AF30BB30B730D630EB306A002000410064006F0062006500200050004400460020658766F830924F5C62103059308B306B306F30013053308C3089306E8A2D5B9A30924F7F75283057307E305930024F5C62103055308C305F00200050004400460020306F0020004100630072006F0062006100740020304A30883073002000410064006F00620065002000520065006100640065007200200037002E003000204EE5964D3067958B304F30533068304C3067304D307E30593002>
 /KOR <FEFFD0DCADF8002C0020D558C774D37CB9C1D06C002C0020CC45AC08D53C002C0020B300D654D6150020C694C18C0020BC0F0020B808C774C5B4AC000020D3ECD568B418C5B40020C788C5B40020C0ACC6A9C790AC000020C27DAC8C0020C561C138C2A4D5600020C2180020C788B294002000410064006F0062006500200050004400460020BB38C11CB97C0020C791C131D558B824BA740020C774B7ECD55C0020C124C815C7440020C0ACC6A9D569B2C8B2E4002E0020C774C6400020AC19C7400020C635C158C7440020C0ACC6A9D558C5EC0020C791C131B41C00200050004400460020BB38C11CB2940020004100630072006F0062006100740020BC0F002000410064006F00620065002000520065006100640065007200200037002E00300020C774C0C1C5D0C11C0020C5F40020C2180020C788C2B5B2C8B2E4002E>
 /NLD (Gebruik deze instellingen om toegankelijke Adobe PDF-documenten met labels, hyperlinks, bladwijzers, interactieve elementen en lagen te maken. U kunt gemaakte PDF-documenten openen met Acrobat en Adobe Reader 7.0 en hoger.)
 /NOR <FEFF004200720075006B00200064006900730073006500200069006E006E007300740069006C006C0069006E00670065006E0065002000740069006C002000E50020006F0070007000720065007400740065002000740069006C0067006A0065006E00670065006C006900670065002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E00740065007200200073006F006D00200069006E006E00650068006F006C0064006500720020006B006F006400650072002C002000680079007000650072006B006F0062006C0069006E006700650072002C00200062006F006B006D00650072006B00650072002C00200069006E0074006500720061006B007400690076006500200065006C0065006D0065006E0074006500720020006F00670020006C00610067002E0020004F0070007000720065007400740065006400650020005000440046002D0064006F006B0075006D0065006E0074006500720020006B0061006E002000E50070006E00650073002000690020004100630072006F0062006100740020006F0067002000410064006F00620065002000520065006100640065007200200037002E00300020006F0067002000730065006E006500720065002E>
 /POL <FEFF005A006100200070006F006D006F00630105002000740079006300680020007500730074006100770069006501440020006D006F017C006E0061002000740077006F0072007A0079010700200142006100740077006F00200064006F0073007401190070006E006500200064006F006B0075006D0065006E00740079002000410064006F006200650020005000440046002C0020007A006100770069006500720061006A0105006300650020007A006E00610063007A006E0069006B0069002C002000680069007000650072014201050063007A0061002C0020007A0061006B014200610064006B0069002C00200065006C0065006D0065006E0074007900200069006E0074006500720061006B007400790077006E00650020006900200077006100720073007400770079002E0020005500740077006F0072007A006F006E006500200077002000740065006E002000730070006F007300F3006200200064006F006B0075006D0065006E0074007900200050004400460020006D006F017C006E00610020006F007400770069006500720061010700200077002000700072006F006700720061006D0061006300680020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200037002E00300020006900200069006300680020006E006F00770073007A00790063006800200077006500720073006A006100630068002E>
 /PTB <FEFF00550073006500200065007300740061007300200063006F006E00660069006700750072006100E700F5006500730020007000610072006100200063007200690061007200200064006F00630075006D0065006E0074006F007300200061006300650073007300ED00760065006900730020005000440046002000410064006F00620065002000710075006500200069006E0063006C00750065006D00200074006100670073002C002000680079007000650072006C0069006E006B0073002C0020006D00610072006300610064006F007200650073002C00200065006C0065006D0065006E0074006F007300200069006E0074006500720061007400690076006F007300200065002000630061006D0061006400610073002E0020004F007300200064006F00630075006D0065006E0074006F00730020005000440046002000630072006900610064006F007300200070006F00640065006D0020007300650072002000610062006500720074006F007300200063006F006D0020004100630072006F00620061007400200065002000410064006F00620065002000520065006100640065007200200037002E00300020006F007500200070006F00730074006500720069006F007200650073002E>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610063006300650073006900620069006c00650020006300610072006500200069006e0063006c007500640020007400610067007500720069002c002000680069007000650072006c0069006e006b007500720069002c002000730065006d006e0065002000640065002000630061007200740065002c00200065006c0065006d0065006e0074006500200069006e0074006500720061006300740069007600650020015f0069002000730074007200610074007500720069002e00200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f0062006100740020015f0069002000410064006f00620065002000520065006100640065007200200037002e0030002c002000700072006500630075006d0020015f00690020006300750020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043D0430044104420440043E0439043A043800200434043B044F00200441043E043704340430043D0438044F00200434043E044104420443043F043D044B0445002000410064006F006200650020005000440046002D0434043E043A0443043C0435043D0442043E0432002C00200441043E0434043504400436043004490438044500200442043504330438002C002004330438043F0435044004410441044B043B043A0438002C002004370430043A043B04300434043A0438002C00200438043D0442043504400430043A044204380432043D044B04350020044D043B0435043C0435043D0442044B0020043800200441043B043E0438002E00200421043E043704340430043D043D044B04350020005000440046002D0434043E043A0443043C0435043D0442044B0020043C043E0436043D043E0020043E0442043A0440044B043204300442044C002004410020043F043E043C043E0449044C044E0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200037002E00300020043800200431043E043B043504350020043F043E04370434043D043804450020043204350440044104380439002E>
 /SUO <FEFF004B00E40079007400E40020006E00E40069007400E4002000610073006500740075006B0073006900610020006C0075006F0064006500730073006100730069002000680065006C00700070006F006B00E400790074007400F600690073006900E4002000410064006F0062006500200050004400460020002D0064006F006B0075006D0065006E007400740065006A0061002C0020006A006F0074006B0061002000730069007300E4006C007400E4007600E400740020006B006F006F00640069006D00650072006B0069006E007400F6006A00E4002C002000680079007000650072006C0069006E006B006B0065006A00E4002C0020006B00690072006A0061006E006D00650072006B006B0065006A00E4002C002000760075006F0072006F007600610069006B0075007400740065006900730069006100200065006C0065006D0065006E007400740065006A00E40020006A00610020007400610073006F006A0061002E002000410073006500740075007300740065006E0020006100760075006C006C00610020006C0075006F0064007500740020005000440046002D0064006F006B0075006D0065006E00740069007400200076006F00690020006100760061007400610020004100630072006F0062006100740020006A0061002000410064006F00620065002000520065006100640065007200200037002E0030003A006C006C0061002000740061006900200075007500640065006D006D0061006C006C0061002000760065007200730069006F006C006C0061002E>
 /SVE <FEFF0041006E007600E4006E00640020006400650020006800E4007200200069006E0073007400E4006C006C006E0069006E006700610072006E00610020006600F60072002000610074007400200073006B0061007000610020006C00E4007400740069006C006C006700E4006E0067006C006900670061002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E007400200073006F006D00200069006E006E0065006800E5006C006C006500720020007400610067006700610072002C002000680079007000650072006C00E4006E006B00610072002C00200062006F006B006D00E40072006B0065006E002C00200069006E0074006500720061006B007400690076006100200065006C0065006D0065006E00740020006F006300680020006C0061006700650072002E00200044006500200064006F006B0075006D0065006E007400200064007500200073006B00610070006100720020006B0061006E002000F600700070006E00610073002000690020004100630072006F0062006100740020006F00630068002000410064006F00620065002000520065006100640065007200200037002E003000200065006C006C00650072002000730065006E006100720065002E>
 /TUR <FEFF0130006D006C00650072002C002000680069007000650072002000620061011F006C00610072002C002000790065007200200069006D006C006500720069002C002000650074006B0069006C0065015F0069006D006C0069002000F6011F0065006C006500720020007600650020006B00610074006D0061006E006C006100720020006900E7006500720065006E0020006500720069015F0069006C006500620069006C00690072002000410064006F006200650020005000440046002000620065006C00670065006C0065007200690020006F006C0075015F007400750072006D0061006B0020006900E70069006E00200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E0020004F006C0075015F0074007500720075006C0061006E0020005000440046002000620065006C00670065006C0065007200690020004100630072006F006200610074002000760065002000410064006F00620065002000520065006100640065007200200037002E003000200076006500200073006F006E00720061006B00690020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f002000410064006f006200650020005000440046002d0434043e043a0443043c0435043d044204560432002c0020044f043a04560020043c045604410442044f0442044c00200442043504330438002c002004330456043f04350440043f043e04410438043b0430043d043d044f002c002004370430043a043b04300434043a0438002c00200456043d0442043504400430043a044204380432043d045600200435043b0435043c0435043d044204380020043900200448043004400438002e0020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004320020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200037002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive true
 /IncludeLayers true
 /IncludeProfiles true
 /MultimediaHandling /EmbedAll
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

