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Introduction

Good judgment comes from experience, and experience comes from bad judgment.

—Fred Brooks

Every time we are engaged on a software project, we create a solution. We call the process 
architecting, and the resulting concrete artifact is the architecture. Architecture can be implicit 
or explicit.

An implicit architecture is the design of the solution we create mentally and persist on a bunch 
of Microsoft Offi ce Word documents, when not on handwritten notes. An implicit architecture 
is the fruit of hands-on experience, the reuse of tricks learned while working on similar projects, 
and an inherent ability to form abstract concepts and factor them into the project at hand. If 
you’re an expert artisan, you don’t need complex drawings and measurements to build a fence 
or a bed for your dog; you can implicitly architect it in a few moments. You just proceed and 
easily make the correct decision at each crossroad. When you come to an end, it’s fi ne. All’s well 
that ends well.

An explicit architecture is necessary when the stakeholder concerns are too complex and 
 sophisticated to be handled based only on experience and mental processes. In this case, 
you need vision, you need guidance, and you need to apply patterns and practices that, by 
 design, take you where you need to be.

What Is Architecture?

The word architecture has widespread use in a variety of contexts. You can get a defi nition for 
it from the Oxford English Dictionary or, as far as software is concerned, from the American 
National Standards Institute/Institute of Electrical and Electronics Engineers (ANSI/IEEE) 
 library of standards. In both cases, the defi nition of architecture revolves around planning, 
designing, and constructing something—be it a building or a software program. Software 
architecture is the concrete artifact that solves specifi c stakeholder concerns—read, specifi c 
user requirements.

An architecture doesn’t exist outside of a context. To design a software system, you need to 
understand how the fi nal system relates to, and is embedded into, the hosting environment. 
As a software architect, you can’t ignore technologies and development techniques for the 
environment of choice—for this book, the .NET platform.

Again, what is architecture?

We like to summarize it as the art of making hard-to-change decisions correctly. The 
 architecture is the skeleton of a system, the set of pillars that sustain the whole construction. 



xviii Introduction

The architect is responsible for the architecture. The architect’s job is multifaceted. She has 
to acknowledge requirements, design the system, ensure the implementation matches the 
expectation, and overall ensure that users get what they really need—which is not necessarily 
what they initially accept and pay for.

Software architecture has some preconditions—that is, design principles—and one post 
condition—an implemented system that produces expected results. Subsequently, this book 
is divided into two parts: principles and the design of the system.

The fi rst part focuses on the role of the architect: what he does, who he interacts with and 
who he reports to. The architect is primarily responsible for acknowledging the  requirements, 
 designing the system, and communicating that design to the development team. The 
 communication often is based on Unifi ed Modeling Language (UML) sketches; less often, 
it’s based on UML blueprints. The architect applies general software engineering principles 
fi rst, and object-oriented design principles later, to break down the system into smaller 
and smaller pieces in an attempt to separate what is architecture (points that are hard to 
change) and what is not. One of the purposes of object-oriented design is to make your 
code easy to maintain and evolve—and easy to read and understand. The architect knows 
that  maintainability, security, and testability need to be built into the system right from the 
 beginning, and so he does that.

The second part of the book focuses on the layers that form a typical enterprise system—the 
presentation layer, business layer, and data access layer. The book discusses design patterns 
for the various layers—including Domain Model, Model-View-Presenter, and Service Layer—
and arguments about the evolution of technologies and summaries of the new wave of tools 
that have become a common presence in software projects—O/R mappers and dependency 
injection containers.

So, in the end, what’s this book about?

It’s about the things you need to do and know to serve your customers in the best possible 
way as far as the .NET platform is concerned. Patterns, principles, and techniques described 
in the book are valid in general and are not specifi c to particularly complex line-of-business 
applications. A good software architecture helps in controlling the complexity of the project. 
And controlling the complexity and favoring maintainability are the sharpest tools we have 
to fi ght the canonical Murphy’s Law of technology: “Nothing ever gets built on schedule or 
within budget.”

The expert is the one who knows how to handle complexity, not the one who simply  predicts 
the job will take the longest and cost the most—just to paraphrase yet another popular 
Murphy’s Law.
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Who This Book Is For

In the previous section, we repeatedly mentioned architects. So are software architects the 
ideal target audience for this book? Architects and lead developers in particular are the 
 target  audience, but any developers of any type of .NET applications likely will fi nd this book 
 benefi cial. Everyone who wants to be an architect may fi nd this book helpful and worth 
the cost.

What about prerequisites?

Strong object-oriented programming skills are a requirement, as well as having a good 
foundation of knowledge of the .NET platform and data access techniques. We point out 
a lot of design patterns, but we explain all of them in detail in nonacademic language with 
no weird formalisms. Finally, we put in a lot of effort into making this book read well. It’s 
not a book about abstract design concepts; it is not a classic architecture book either, full of 
 cross-references and fancy strings in square brackets that hyperlink to some old paper listed 
in the bibliography available at the end of the book.

This is (hopefully) a book you’ll want to read from cover to cover, and maybe more than 
once—not a book to keep stored on a shelf for future reference. We don’t expect readers to 
pick up this book at crunch time to fi nd out how to use a given pattern. Instead, our ultimate 
goal is transferring some valuable knowledge that enables you to know what to do at any 
point. In a certain way, we would happy if, thanks to this book, you could do more implicit 
architecture design on your own.

Companion Content

In the book, we present several code snippets and discuss sample applications, but with the 
primary purpose of illustrating principles and techniques for readers to apply in their own 
projects. In a certain way, we tried to teach fi shing, but we don’t provide some sample fi sh to 
take home. However, there’s a CodePlex project that we want to point out to you. You fi nd it 
at http://www.codeplex.com/nsk.

This book also features a companion Web site where you can also fi nd the CodePlex project. 
You can download it from the companion site at this address: http://www.microsoft.com/
mspress/companion/9780735626096.

The Northwind Starter Kit (NSK) is a set of Microsoft Visual Studio 2008 projects that form a 
multitier .NET-based system. Produced by Managed Design (http://www.manageddesign.it), 
NSK is a reference application that illustrates most of the principles and patterns we discuss 
in the book. Many of the code snippets in the book come directly from some of the projects 
in the NSK solution. If you’re engaged in the design and implementation of a .NET layered 
application, NSK can serve as a sort of blueprint for the architecture.
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Refer to the Managed Design Web site for the latest builds and full source code. For an 
 overview of the reference application, have a look at the Appendix, “The Northwind Starter 
Kit,” in this book.

Hardware and Software Requirements

You’ll need the following hardware and software to work with the companion content 
 included with this book:

■ Microsoft Windows Vista Home Premium Edition, Windows Vista Business Edition, or 
Windows Vista Ultimate Edition

■ Microsoft Visual Studio 2008 Standard Edition, Visual Studio 2008 Enterprise Edition, 
or Microsoft Visual C# 2008 Express Edition and Microsoft Visual Web Developer 2008 
Express Edition

■ Microsoft SQL Server 2005 Express Edition, Service Pack 2

■ The Northwind database of Microsoft SQL Server 2000 is used by the Northwind 
Starter Kit to demonstrate data-access techniques. You can obtain the Northwind 
 database from the Microsoft Download Center (http://www.microsoft.com/downloads/
details.aspx?FamilyID=06616212-0356-46A0-8DA2-EEBC53A68034&displaylang=en).

■ 1.6 GHz Pentium III+ processor, or faster

■ 1 GB of available, physical RAM.

■ Video (800 by 600 or higher resolution) monitor with at least 256 colors.

■ CD-ROM or DVD-ROM drive.

■ Microsoft mouse or compatible pointing device

Find Additional Content Online

As new or updated material becomes available that complements this book, it will be posted 
online on the Microsoft Press Online Developer Tools Web site. The type of material you 
might fi nd includes updates to book content, articles, links to companion content, errata, 
sample chapters, and more. This Web site is available at www.microsoft.com/learning/books/
online/developer and is updated periodically.

Support for This Book

Every effort has been made to ensure the accuracy of this book and the contents of the 
companion CD. As corrections or changes are collected, they will be added to a Microsoft 
Knowledge Base article.
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Microsoft Press provides support for books and companion CDs at the following Web site:

http://www.microsoft.com/learning/support/books

Questions and Comments

If you have comments, questions, or ideas regarding the book or the companion content, or 
questions that are not answered by visiting the sites above, please send them to Microsoft 
Press via e-mail to

mspinput@microsoft.com

Or via postal mail to

Microsoft Press
Attn: Microsoft .NET: Architecting Applications for the Enterprise Editor
One Microsoft Way
Redmond, WA 98052-6399

Please note that Microsoft software product support is not offered through the above 
addresses.
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 Part I 

 Principles 

You know you’ve achieved perfection in design, not when you have nothing more to 
add, but when you have nothing more to take away.

— Antoine de Saint-Exupery, “Wind, Sand and Stars”

In this part:

Chapter 1: Architects and Architecture Today . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2: UML Essentials  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Chapter 3: Design Principles and Patterns  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63





  3

 Chapter 1 

 Architects and Architecture Today 

 The purpose of software engineering is to control complexity, not to create it. 

 —Dr. Pamela Zave 

 At the beginning of the computing age, in the early 1960s, the costs of hardware were 
 largely predominant over the costs of software. Some 40 years later, we fi nd the situation 
to be radically different.  

 Hardware costs have fallen dramatically because of the progress made by the industry. 
Software development costs, on the other hand, have risen considerably, mostly because of the 
increasing complexity of custom enterprise software development. Cheaper computers made 
it worthwhile for companies to add more and more features to their information systems. 
What in the beginning was a collection of standalone applications with no connection to one 
another that barely shared a database has grown over years into a complex system made of 
interconnected functions and modules, each with a particular set of responsibilities. 

 This situation has created the need for a set of precepts to guide engineers in the design 
of such systems. The modern software system—or the software-intensive system, as it is 
referred to in international standards papers—can be compared quite naturally to any 
 construction resulting from a set of detailed blueprints.  

 Appropriated from the construction industry, the term architecture has become the appropriate 
way to describe the art of planning, designing, and implementing software-intensive systems. 
In software, though, architecture needs less artistry than in building. Well-designed buildings 
are pleasing to the eye and functional. Software architecture is less subjective. It either functions 
as required or it does not. There is less room for artistry and interpretation, unless you want to 
consider the artistry of a well-crafted algorithm or a piece of user interface.  

 One of this book’s authors had, in the past, frequent interaction with an architecture studio. 
One day, a question popped up for discussion: What’s architecture? Is it an art? Or is it just 
building for a client?  

 In software, the term architecture precisely refers to building a system for a client. 

 In this fi rst chapter, we’ll look at some papers from the International Organization for 
Standardization (ISO), the International Electrotechnical Commission (IEC), and the Institute 
of Electrical and Electronics Engineers (IEEE) that provide an architectural description of 
 software-intensive systems. From there, we’ll give our own interpretation of software 
 architecture and voice our opinions about the role and responsibilities of software architects.  
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Note  While some defi nitions you fi nd in this book come from ISO standards, others refl ect our 
 personal opinions, experiences, and feelings. Although the reader might not agree with all of 
our personal refl ections, we all should agree that software systems that lack strong  architectural 
 design and support are nearly guaranteed to fail. So having good architects on the team is a 
 necessity. What’s a “good” architect? It is one who is experienced, educated, and qualifi ed. 

 Modern systems need more engineering and understanding, and less artistry and subjective 
guesswork. This is the direction we need to move toward as good software architects.  

 What’s a Software Architecture, Anyway? 

 Herman Melville, the unforgettable author of Moby Dick, once said that men think that by 
mouthing hard words they can understand hard things. In software, the “hard” word architecture 
was originally introduced into the fi eld to simplify the transmission and understanding of a key 
and “hard” guideline. The guideline was this: Care (much) more about the design of software 
systems than you have in the past; care about it to the point of guiding the development of a 
software system similar to guiding the development of a building.  

 It’s a hard thing to do and probably beyond many developers’ capabilities. But let’s give it a 
try. Let’s try to clarify what a “software architecture” is or, at least, what we intend it to be. 

 Applying Architectural Principles to Software 

 The word “architecture” is indissolubly bound to the world of construction. It was fi rst used 
in the software industry to express the need to plan and design before building computer 
 programs. However, a fundamental difference exists between designing and building 
 habitable structures and designing and building usable software systems. 

 Intuitively, we care if the building falls on people. But software? There is always plenty of 
money to rewrite things, right? In construction, the design must be completed entirely up 
front and based on extremely detailed calculations and blueprints. In software, you tend 
to be more agile. A few decades ago, the up-front design methodology was common and 
 popular in software, too. But, over the years, that approach increased development costs. 
And because software can be effi ciently (and safely) tested before deployment, agility got 
the upper hand over up-front design.  

 Today the architectural parallelism between construction and software is not as close as it was a 
few years ago. However, many dictionaries currently list a software-related defi nition of the term 
“architecture.” And a software architecture is described as “the composition, integration, and 
interaction of components within a computer system.” It is certainly a defi nition that everybody 
would agree on. But, in our opinion, it is rather abstract. 



 Chapter 1 Architects and Architecture Today 5

 We think that software professionals should agree on a more detailed explanation that 
breaks down that defi nition into smaller pieces and puts them into context.  

 Defi ning the Architecture from a Standard Viewpoint 

 Many seem to forget that a standard defi nition for software architecture exists. More 
 precisely, it is in ANSI/IEEE standard 1471, “Recommended Practice for Architectural 
Description of Software-intensive Systems.” The document was originally developed by 
IEEE and approved as a recommended practice in September 2000. 

 The document focuses on practices to describe the architecture of software-intensive 
 systems. Using the defi nition in the standard, a software-intensive system is any system in 
which software is essential to implementation and deployment.  

 Stakeholders are defi ned as all parties interested or concerned about the building of the 
 system. The list includes the builders of the system (architects, developers, testers) as well as 
the acquirer, end users, analysts, auditors, and chief information offi cers (CIOs). 

 In 2007, the ANSI/IEEE document was also recognized as a standard through ISO/IEC  document 
42010. Those interested in reading the full standard can navigate their browser to the following 
URL: http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=45991. 

 Examining Key Architecture-Related Points in ANSI/IEEE 1471 

 The key takeaway from the ANSI/IEEE standard for software architecture is that a software 
system exists to meet the expectations of its stakeholders. Expectations are expressed as 
functional and nonfunctional requirements. Processed by the architect, requirements are 
then communicated to the development team and fi nally implemented. All the steps occur 
and exist to ensure the quality of the software. Skipping any step introduces the possibility 
for less software quality and the potential to not meet the stakeholders’ expectations. 

 To design a software system that achieves its goals, you need to devise it using an 
 architectural metaphor. Accepting an architectural metaphor means that you recognize the 
principle that some important decisions regarding the system might be made quite early 
in the development process; just like key decisions are made very early in the development 
of civil architecture projects. For example, you wouldn’t build a skyscraper when a bridge 
was required. Similarly, requirements might steer you to a Web-oriented architecture 
 rather than a desktop application. Decisions this major must be made very early. 

 A software architecture, therefore, is concerned with the organization of a system and lays 
out the foundations of the system. The system, then, has to be designed—which entails 
 making some hard decisions up front—and described—which entails providing multiple 
views of the system, with each view covering a given set of system responsibilities. 
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 Defi ning the System from a Standard Viewpoint 

 As mentioned, a software system is universally understood to be a collection of components 
composed and integrated to accomplish a specifi c set of functions.  

 A system lives in a context; and this context infl uences the design of the system by driving some 
developmental and operational decisions. A system exists to solve a problem and achieve its 
mission in full respect of the stakeholders’ concerns. Stakeholders’ concerns include  functional 
and nonfunctional requisites as well as system aspects such as security, testability, performance, 
reliability, and extensibility. 

 Although it envisions the system as a composition of interconnected components, an 
 architecture also establishes some fi rm points that are hard to modify later. In a way, 
 expressing software development in terms of an architecture boils down to making some key 
decisions that affect the development life cycle and, ultimately, the quality of the resulting 
system. 

 Figure 1-1 illustrates the relationships between the system, architecture, and stakeholders as 
identifi ed by ANSI/IEEE standard 1471. The content of Figure 1-1 is actually an adaptation 
of one of the fi gures in the document. 

  

Mission

System ArchitectureEnvironment

Architectural
Description

has aninfluences
inhabits

has 1..*

has 1..*

described by 1

fulfills 1..*

identifies 1..*

is important to 1..*

identifies 1..*

Stakeholder

Concern

 FIGURE 1-1 A model for creating an architectural description 

 The fi gure uses the notation of the Unifi ed Modeling Language (UML) to express its 
 concepts. We’ll offer a refresher of UML in the next chapter. Even if you’re new to UML, you 
should be able to read the fi gure quite comfortably. Each connector indicates an action 
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(with a specifi ed name) that is executed by the element where the connector starts and that 
affects the target. So, for example, the System fulfi lls one or more Missions; the Environment 
(context) infl uences the System; a Concern is important to one or more Stakeholders; the 
System has an Architecture.  

 Describing the Architecture 

 As you can see in Figure 1-1, the Architecture is described by one Architectural Description. 
How would you describe the architecture to stakeholders?  

 The key messages about an architecture are its components and classes, their mapping onto 
binaries, their relationships and dependencies, usage scenarios, and detailed work fl ows for 
key operations. How would you render all these things? 

 A very popular choice is UML diagrams.  

 UML is also a recognized international standard—precisely, ISO/IEC 19501 released in 
2005. You create UML class diagrams to show relationships between classes; you employ 
 use-case diagrams to present usage scenarios; you create component diagrams to capture 
the  relationships between reusable parts of a system (components) and see more easily how 
to map them onto binaries. In some cases, you can also add some sequence diagrams to 
 illustrate in more detail the workfl ow for some key scenarios. These terms are defi ned and 
discussed in more detail in Chapter 2, “UML Essentials.” 

 At the end of the day, you serve different and concurrent views of the same architecture and 
capture its key facts.  

 Note The same principle of offering multiple views from distinct viewpoints lies behind another 
vendor-specifi c model for architectural description—IBM/Rational’s 4+1 views model. The model 
defi nes four main views—nearly equivalent to UML diagrams. These views are as follows:  

 The logical view, which describe components 

 The process view, which describes mapping and dependencies 

 The development view, which describes classes 

 The physical view, which (if necessary) describes mapping onto hardware 

 The fi fth, partially redundant, view is the scenario view, which is specifi c to use cases. 

 Validating the Architecture  

 How would you validate the design to ensure that stakeholders’ concerns are properly 
addressed?  

 There’s no magic wand and no magic formulas that take a more or less formal  defi nition 
of an architecture as input and tells you whether it is appropriate for the expressed 
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 requirements. To validate the design of a system, you can only test it—in various ways and 
at various levels.  

 So you will perform unit tests to validate single functionalities, and you will perform 
 integration tests to see how the system coexists with other systems and applications. Finally, 
you’ll run acceptance tests to verify how users actually feel about the application and 
 whether the application provides the services it was created for. (Testing is one of the key 
topics of Chapter 3, “Design Principles and Patterns.”) 

 What’s Architecture and What’s Not 

 When you think about creating or defi ning the architecture of a software system, you fi rst try 
to identify a possible collection of interacting components that, all together, accomplish the 
requested mission. In international standards, there’s no mention for any methodology you 
should use to decompose the system into more detailed pieces. Let’s say that in the fi rst step 
you a get a conceptual architecture and some different views of it. In a second step, you need 
to get closer to a functional and physical architecture. How you get there is a subjective choice, 
although a top-down approach seems to be a very reasonable strategy. You  decompose 
 components into smaller and smaller pieces, and from there you start building.  

 No System Is a Monolith 

 We’ve been told that, once upon a time, any piece of software was a monolith with an entry 
point and fi nish point. The introduction of structured programming, and the concept of a 
subroutine, in the early 1970s started shouldering such monoliths out of the way.  

 Since then, many software systems have been designed as a graph of components 
 communicating in various ways and having various levels of dependency. In practical terms, 
designing a system  consists of expanding the System element that was shown in Figure 1-1 
into a graph of subsystems and  defi ning communication policies and rules for each of them. 

 The process of breaking down these details should ideally continue until you have described 
in detail the structure and relationships for the smallest part of the system. Although fully 
completing the breakdown process up front is key for constructing habitable buildings, it is 
not that necessary for building software.  

 The actual implementation of the breakdown process depends on the methodology selected 
for the project—the more you are agile, the more the breakdown process is iterative and 
articulated in smaller and more frequent steps. (We’ll return to the topic of methodologies 
later in the chapter.)  

 The output of the breakdown process is a set of specifi cations for the development team. 
Also, the content and format of the specifi cations depend on the methodology. The more you 
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are agile, the more freedom and independence you leave to developers when  implementing 
the architecture. 

 Defi ning the Borderline Between Architecture and Implementation  

 The constituent components you identifi ed while breaking down the system represent logical 
functions to be implemented in some way. The design of components, their interface, their 
responsibilities, and their behavior are defi nitely part of the architecture. There’s a border, 
though, that physically separates architecture from implementation.  

 This border is important to identify because, to a large extent, it helps to defi ne roles on a 
development team. In particular, it marks the boundary between architects and developers. 
Over the years, we learned that architects and developers are not different types of fruit, like 
apples and oranges. They are the same type of fruit. However, if they are apples, they are like 
red apples and green apples. Distinct fl avors, but not a different type of fruit. And neither 
fl avor is necessarily tastier. 

 You have arrived at the border between architecture and implementation when you reach a 
black box of behavior. A black box of behavior is just a piece of functionality that can be  easily 
replaced or refactored without signifi cant regression and with zero or low impact on the 
rest of the architecture. What’s above a black box of behavior is likely to have architectural 
 relevance and might require making a hard-to-change decision.  

 What’s our defi nition of a good architecture? It is an architecture in which all hard-to-change 
decisions turn out to be right.  

 Dealing with Hard-to-Change Decisions 

 There are aspects and features of a software system that are hard ( just hard, not impossible) 
to change once you have entered the course of development. And there are aspects and 
features that can be changed at any time without a huge effort and without having a wide 
impact on the system. 

 In his book Patterns of Enterprise Application Architecture (Addison-Wesley, 2002), Martin 
Fowler puts it quite simply:  

 If you fi nd that something is easier to change than you once thought, then it’s 
no longer architectural. In the end architecture boils down to the important 
stuff—whatever that is. 

 To sum it up, we think that under the umbrella of the term architecture falls everything you 
must take seriously at quite an early stage of the project. Architecture is ultimately about 
 determining the key decisions to make and then making them correctly.  
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 Architecture Is About Decisions 

 When we talk about hard architectural decisions, we are not necessarily referring to irreversible 
decisions about design points that can be diffi cult and expensive to change later. Hard-to-change 
decisions are everywhere and range from the defi nition of a conceptual layers to the attributes of 
a class. 

 To illustrate our point, let’s go through a few different examples of architectural points that 
can run into budget limits and deadlines if you have to touch them in the course of the 
project.  

 Changing the Organization of the Business Logic 

 In Chapter 4, “The Business Layer,” we’ll examine various approaches to organizing the 
 business logic in the context of a layered system. Possible approaches for the design of the 
business logic include transaction script, table module, active record, and domain model. 
The selection of a pattern for the business logic is an excellent example of a design choice 
to be made very, very carefully. Once you have opted for, say, table module (which means, 
essentially, that you’ll be using typed DataSets to store an application’s data in the  business 
logic layer), moving to an object model (for example, using the LINQ-to-SQL or Entity 
Framework object model) is defi nitely hard and requires nontrivial changes in the data access 
layer and in the application (service) layer, and probably also in the presentation layer. If you 
need to change this decision later in the project, you enter into a signifi cant refactoring of 
the whole system. 

 Switching to a Different Library  

 Suppose you developed some functionality around a given library. One day, the client pops 
up and lets you know that a new company policy prevents the IT department from buying 
products from a given vendor. Now you have a new, unexpected nonfunctional requirement 
to deal with.  

 A change in the specifi cations might require a change in the architecture, but at what cost? 
In such a case, you have to comply with the new list of requirements, so there’s not much you 
can do.  

 In the best case, you can get a similar tool from an authorized vendor or, perhaps, you can 
build a similar tool yourself. Alternatively, you can consider introducing a radical change into 
the architecture that makes that library unnecessary.  

 We faced an analogous situation recently, and the type of library was an Object/Relational 
mapping tool. With, say, a UI control library, it would have been much simpler to deal with. 
Replacing an Object/Relational mapping tool is not easy; it is a task that can be accomplished 
only by getting another tool from another vendor. Unfortunately, this wasn’t possible. In other 
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words, we were left to choose between either of two unpleasant and painful options: writing 
our own Object/Relational mapping tool, or rearchitecting the middle tier to use a different 
(and much simpler) object model.  

 With over 500 presenters in the Model View Presenter–based user interface directly consuming the 
object model, having to make this decision was our worst nightmare. We knew it would  require a 
huge amount of work on the middle tier, consuming both fi nancial resources and time. We lobbied 
for more time and successfully stretched the deadline. Then we built our own tailor-made data 
 access layer for a domain model. (After you’ve read Chapter 6, “The Data Access Layer,” you’ll have 
a clear picture of what this all means.) 

 Changing the Constructor’s Signature  

 Don’t think that architecture is only about high-level decisions like those involving the design 
and implementation of parts of the middle tier. A requested change in the signature of a 
class constructor might get you in a fi ne mess, too.  

 Imagine a scenario where you handle an Order class in your application’s object model. 
You don’t see any reason to justify the introduction of a factory for the Order class. It is a 
plain class and should be instantiated freely. So you scatter tons of new Order() instructions 
throughout your code. You don’t see, though, that Order has some logical dependency on, 
say, Customer.  

 At some point, a request for change hits you—in the next release, an order will be created 
only in association with a customer. What can you do? 

 If you only add a new constructor to the Order class that accepts a Customer object, you 
 simply don’t meet the requirement, because the old constructor is still there and only new 
code will follow the new pattern. If you drop or replace the old constructor, you have tons of 
new statements to fi x that are scattered throughout the entire code base. 

 If only you had defi ned a factory for the Order class, you would have met the new requirement 
without the same pain. (By the way, domain-driven design methodology in fact suggests that 
you always use a factory for complex objects, such as aggregates.) 

 Changing a Member’s Modifi ers  

 When you design a class, you have to decide whether the class is public or internal and 
whether it is sealed or further inheritable. And then you decide whether methods are virtual 
or nonvirtual. Misusing the virtual and sealed modifi ers might take you along an ugly route.  

 In general, when you use the sealed and virtual modifi ers you take on a not-so-small 
 responsibility. In C#, by default each class is unsealed and each method on a class is  nonvirtual. 
In Java, for example, things go differently for methods, which are all virtual by default.  
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 Now what should you do with your .NET classes? Make them sealed, or go with the default 
option? 

 The answer is multifaceted—maintenance, extensibility, performance, and testability all 
might factor into your decision. We’re mostly interested in maintenance and extensibility 
here, but we’ll return to this point in Chapter 3 when we touch on design for testability and 
make some performance considerations.  

 From a design perspective, sealed classes are preferable. In fact, when a class is sealed from 
the beginning you know it—and you create your code accordingly. If something happens 
 later to justify inheritance of that class, you can change it to unsealed without breaking 
changes and without compromising compatibility. Nearly the same can be said for virtual 
methods, and the visibility of classes and class members, which are always private by default.  

 The opposite doesn’t work as smoothly. You often can’t seal a class or mark a virtual method 
as nonvirtual without potentially breaking some existing code. If you start with most-restrictive 
modifi ers, you can always increase the visibility and other attributes later. But you can never 
tighten restrictions without facing the possibility of breaking existing dependencies. And these 
broken dependencies might be scattered everywhere in your code. 

 To contrast these statements, some considerations arise on the theme of testability. A nonsealed 
class and virtual methods make testing much easier. But the degree of ease mostly depends 
on the tool you use for testing. For example, TypeMock is a tool that doesn’t suffer from these 
 particular limitations. 

 It’s hard to make a choice as far as the sealed and virtual keywords are concerned. And 
whatever choice you make in your context, it doesn’t have to be a defi nitive choice that you 
blindly repeat throughout your code for each class and member. Make sure you know the 
testability and performance implications, make sure you know the goals and scope of your 
class, and then make a decision. And, to the extent that it’s possible, make the right decision!  

 Requirements and Quality of Software 

 The mission of the system is expressed through a set of requirements. These requirements 
ultimately drive the system’s architecture.  

 In rather abstract terms, a requirement is a characteristic of the system that can either be 
functional or nonfunctional. A functional requirement refers to a behavior that the system 
must supply to fulfi ll a given scenario. A nonfunctional requirement refers to an attribute of 
the system explicitly requested by stakeholders. 

 Are the defi nitions of functional and nonfunctional requirements something standard and 
broadly accepted? Actually, an international standard to formalize quality characteristics of 
software systems has existed since 1991. 
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Examining the ISO/IEC 9126 Standard 

 As a matter of fact, failure to acknowledge and adopt quality requirements is one of the 
most common causes that lead straight to the failure of software projects. ISO/IEC 9126 
 defi nes a general set of quality characteristics required in software products.  

The standard identifi es six different families of quality characteristics articulated in 21 
subcharacteristics. The main families are functionality, reliability, usability, effi ciency, 
maintainability, and portability. Table 1-1 explains them in more detail and lists the main 
 subcharacteristics associated with each.  

TABLE 1-1 Families of Quality Characteristics According to ISO/IEC 9126 

 Family Description

 Functionality Indicates what the software does to meet expectations. It is based on 
 requirements such as suitability, accuracy, security, interoperability, and 
 compliance with standards and regulations. 

 Reliability Indicates the capability of the software to maintain a given level 
of  performance when used under special conditions. It is based on 
 requirements such as  maturity, fault tolerance, and recoverability. Maturity 
is when the software doesn’t experience interruptions in the case of internal 
software failures. Fault tolerance indicates the ability to control the failure 
and maintain a given level of behavior. Recoverability indicates the ability to 
recover after a failure.

 Usability Indicates the software’s ability to be understood by, used by, and  attractive 
to users. It dictates that the software be compliant with standards and 
 regulations for usability.

 Effi ciency Indicates the ability to provide a given level of performance both in terms of 
appropriate and timely response and resource utilization.

 Maintainability Indicates the software’s ability to support modifi cations such as corrections, 
improvements, or adaptations. It is based on requirements such as testability, 
stability, ability to be analyzed, and ability to be changed.

 Portability Indicates the software’s ability to be ported from one platform to another 
and its capability to coexist with other software in a common environment 
and  sharing common resources.

 Subcharacteristics are of two types: external and internal. An external characteristic is user 
oriented and refers to an external view of the system. An internal characteristic is  system 
 oriented and refers to an internal view of the system. External characteristics identify 
 functional requirements; internal characteristics identify nonfunctional requirements. 

 As you can see, features such as security and testability are listed as requirements in the ISO 
standard. This means that an offi cial paper states that testability and security are an inherent 
part of the system and a measure of its quality. More importantly, testability and security should 
be planned for up front and appropriate supporting functions developed. 

Family Description
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Important  If you look at the ISO/IEC 9126 standard, you should defi nitely bury the practice 
of fi rst building the system and then handing it to a team of network and security experts to 
make it run faster and more securely. You can’t test quality in either. Like security, quality has to 
be  designed in. You can’t hope to test for and fi nd all bugs, but you can plan for known failure 
 conditions and use clean coding practices to prevent (or at least minimize) bugs in the fi eld.  

 It’s surprising that such a practice has been recommended, well, since 1991. To give you an idea 
of how old this standard is, consider that at the time it was written both Windows 3.0 and Linux 
had just been introduced, and MS-DOS 5.0 was the rage, running on blisteringly fast Intel i486 
processors. It was another age. 

 In the context of a particular system, the whole set of general quality requirements set by the 
ISO/IEC 9126 standard can be pragmatically split into two types of requirements: functional 
and nonfunctional. 

 Functional Requirements 

 Functional requirements indicate what the system is expected to do and provide an appropriate 
set of functions for such specifi ed tasks and user objectives. Generally, a function consists of  input, 
behavior, and output. A team of analysts is responsible for collecting functional requirements and 
communicating them to the architect. Another common source of functional requirements are 
meetings organized with users, domain experts, and other relevant stakeholders. This process is 
referred to as elicitation.  

 Requirements play a key role in the generation of the architecture because they are the raw 
input for architects to produce specifi cations for the development team. Needless to say, 
it is recommended by ISO/IEC that software requirements be “clear, correct, unambiguous, 
 specifi c, and verifi able.”  

 However, this is only how things go in a perfect world.  

 Nonfunctional Requirements  

 Nonfunctional requirements specify overall requirements of the fi nal system that do not 
 pertain specifi cally to functions. Canonical examples of nonfunctional requirements are using 
(or not using) a particular version of a framework and having the fi nal product be interoperable 
with a given legacy system. 

 Other common nonfunctional requirements regard support for accessibility (especially in 
Web applications developed for the public sector) or perhaps the provision of a given level of 
security, extensibility, or reliability.  

 In general, a nonfunctional requirement indicates a constraint on the system and affects the 
quality of the system. Nonfunctional requirements are set by some of the system stakeholders 
and represent a part of the contract. 
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 Gathering Requirements 

 The analyst is usually a person who is very familiar with the problem’s domain. He gathers 
requirements and writes them down to guarantee the quality and suitability of the system. 
The analyst usually composes requirements in a document—even a Microsoft Offi ce Word 
document—in a format that varies with the environment, project, and people involved.  

 Typically, the analyst writes requirements using casual language and adds any wording that is 
specifi c to the domain. For example, it is acceptable to have in a requirement words such as 
Fund, Stock, Bond, and Insurance Policy because they are technical terms. It is less acceptable 
for a requirement to use terms such as table or column because these technical terms are 
likely to be foreign terms in the problem’s domain. 

 Again, requirements need to be clear and verifi able. Most importantly, they must be 
 understandable, without ambiguity, to all stakeholders—users, buyers, analysts, architects, 
testers, documentation developers, and the like. 

 Note It is not uncommon that analysts write functional requirements using relatively abstract 
use cases. As we’ll see in a moment, a use case is a document that describes a form of interaction 
between the system and its clients. Use cases created by the analysis team are not usually really 
detailed and focus on what the system does rather than how the system does it. In any case, it 
must come out in a form that stakeholders can understand. In this regard, a use case describes 
all the possible ways for an actor to obtain a value, or achieve a goal, and all possible exceptions 
that might result from that. 

 Specifi cations 

 Based on functional and nonfunctional requirements, specifi cations offer a  development 
view of the architecture and are essentially any documentation the architect uses to 
 communicate details about the architecture to the development team. The main purpose 
of specifi cations is to reach an understanding within the development team as to how the 
 program is going to perform its tasks.  

Note  Typically, an architect won’t start working on specifi cations until some requirements 
are known. In the real world, it is unlikely that requirements will be entirely known  before 
 specifi cations are made. The actual mass of requirements that triggers the generation of 
 specifi cations depends mostly on the methodology selected for the process. In an agile 
 context, you start working on specifi cations quite soon, even with a largely incomplete set of 
 requirements. 

 Specifi cations for functional requirements are commonly expressed through user stories or 
use cases.  
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 A user story is an informal and very short document that describes, in a few sentences, what 
should be done. Each story represents a single feature and ideally describes a feature that 
stands on its own. User stories work especially well in the context of an agile methodology, 
such as Extreme Programming (XP), and are not designed to be exhaustive. A typical user 
 story might be as simple as, “The user places an order; the system verifi es the order and accepts 
it if all is fi ne.” When, and if, that user story gets implemented, developers translate it into 
tasks. Next, through teamwork, they clarify obscure points and fi gure out missing details. 

 A use case is a document that describes a possible scenario in which the system is being used 
by a user. Instead of user, here, we should say actor, actually. An actor is a system’s user and 
interacts with the system. An actor can be a human as well as a computer or another piece 
of software. When not human, an actor is not a component of the system; it is an external 
 component. When human, actors are a subset of the stakeholders.  

 When used to express a functional requirement, a use case fully describes the  interaction 
 between actors and the system. It shows an actor that calls a system function and then 
 illustrates the system’s reaction. The collection of all use cases defi nes all possible ways of  using 
the system. In this context, a use case is often saved as a UML diagram. (See Chapter 2 for 
 detailed UML coverage.) The scenario mentioned a bit earlier in this section, described through 
a use case, might sound like this: “The user creates an order and specifi es a date, a shipment 
date, customer information, and order items. The system validates the information, generates 
the order ID, and saves the order to the database.” As you can see, it is a much more detailed 
description. 

 The level of detail of a specifi cation depends on a number of factors, including company 
standards currently in use and, particularly, the methodology selected to manage the  project. 
Simplifying, we can say that you typically use user stories within the context of an agile 
methodology; you use the use cases otherwise.  

Note  Note that use cases you might optionally receive from analysts are not the same as use 
cases that you, as an architect, create to communicate with the development team. More often 
than not, use cases received by analysts are plain Microsoft Offi ce Word documents. Those that 
get handed on to the development team are typically (but not necessarily) UML diagrams. And, 
more importantly, they are much more detailed and oriented to implementation. 

 Methodology and the Use of Requirements 

 Collected and communicated by analysts, requirements are then passed down the chain to the 
design team to be transformed into something that could lead to working code. The architect 
is the member on the design team who typically receives requirements and massages them 
into a form that developers fi nd easy to manage. 
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 The architect is the point of contact between developers and stakeholders, and she works 
side by side with the project manager. It is not unusual that the two roles coincide and the 
same person serves simultaneously as an architect and a project manager. 

 The project manager is responsible for choosing a methodology for developing the 
 project. To simplify, we could say that the project manager decides whether or not an agile 
 methodology is appropriate for the project.  

 The choice of methodology has a deep impact on how requirements are used in defi ning the 
architecture.  

 In the case of using an agile methodology, user stories are the typical output generated from 
requirements. For example, consider that a typical XP iteration lasts about two weeks. (An XP 
 iteration is a smaller and faster version of a classic software development cycle.) In two weeks, you 
can hardly manage complex specifi cations; you would spend all the time on the  specifi cations, 
thus making no progress toward the implementation of those specifi cations. In this context, user 
stories are just fi ne. 

 In the case of using a traditional, non-agile methodology with much longer iterations, the 
architect usually processes a large share of the requirements (if not all of them) and produces 
exhaustive specifi cations, including classes, sequences, and work fl ows. 

 Who’s the Architect, Anyway? 

 As we’ve seen, architecture is mostly about expensive and hard-to-change decisions. And 
someone has to make these decisions.  

 The design of the architecture is based on an analysis of the requirements. Analysis 
 determines what the system is expected to do; architecture determines how to do that. 
And someone has to examine the whats to determine the hows.  

 The architect is the professional tying together requirements and specifi cations. But what are 
the responsibilities of an architect? And skills? 

 An Architect’s Responsibilities 

 According to the ISO/IEC 42010 standard, an architect is the person, team, or organization 
responsible for the system’s architecture. The architect interacts with analysts and the project 
manager, evaluates and suggests options for the system, and coordinates a team of developers.  

 The architect participates in all phases of the development process, including the analysis 
of requirements and the architecture’s design, implementation, testing, integration, and 
deployment.  
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 Let’s expand on the primary responsibilities of an architect: acknowledging the requirements, 
breaking the system down into smaller subsystems, identifying and evaluating technologies, 
and formulating specifi cations. 

 Acknowledging the Requirements 

 In a software project, a few things happen before the architect gets involved. Swarms of 
 analysts, IT managers, and executives meet, discuss, evaluate, and negotiate. Once the need 
for a new or updated system is assessed and the budget is found, analysts start eliciting 
requirements typically based on their own knowledge of the business, company processes, 
context, and feedback from end users. 

 When the list of requirements is ready, the project manager meets with the architect and 
 delivers the bundle, saying more or less, “This is what we (think we) want; now you build it.” 

 The architect acknowledges the requirements and makes an effort to have them adopted 
and fulfi lled in the design.  

 Breaking Down the System 

 Based on the requirements, the architect expresses the overall system as a composition of 
smaller subsystems and components operating within processes. In doing so, the architect 
envisions logical layers and/or services. Then, based on the context, the architect decides 
about the interface of layers, their relationships to other layers, and the level of service 
 orientation the system requires.  

Note  At this stage, the architect evaluates various architectural patterns. Layering is a common 
choice and the one we are mostly pursuing in this book. Layering entails a vertical distribution of 
functionality. Partitioning is another approach, where all parts are at the same logical level and 
scattered around some shared entities—such as an object model or a database. Service-oriented 
architecture (SOA) and hexagonal architecture (HA) are patterns that tend to have components 
(services in SOA, adapters in HA) operating and interacting at the same logical level. 

 The overall design will be consistent with the enterprise goals and requirements. In particular, 
the overall design will be driven by requirements; it will not lead requirements. 

 The resulting architecture is ideally inspired by general guidelines, such as minimizing the 
coupling between modules, providing the highest possible level of cohesion within modules, 
and giving each module a clear set of responsibilities.  

 The resulting architecture is also driven by nonfunctional requirements, such as security, 
 scalability, and technologies allowed or denied. All these aspects pose further constraints 
and, to some extent, delimit the space where the architect can look for solutions. 
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 Finally, the architect also strategizes about tasking individual developers, or teams of developers, 
with each of the components resulting from the breakdown of the system.  

Note  There are no absolute truths in software architecture. And no mathematical rules 
(or building codes like in structural engineering) to help in making choices. Company X might 
fi nd architecture A successful at the same time company Y is moving away from it to embrace 
architecture B. The nice fact is that both might be totally right. The context is king, and so is gut 
feeling.  

 Identifying and Evaluating Technologies 

 After acknowledging requirements and designing the layers of the system, the next step for 
the architect entails mapping logical components onto concrete technologies and products.  

 The architect typically knows the costs and benefi ts of products and technologies that might 
be related to the content of the project. The architect proposes the use of any technologies 
and products that he regards as benefi cial and cost-effective for the project. 

 The architect doesn’t choose the technology; based on his skills, the architect just makes 
proposals.  

 The architect might suggest using, say, Microsoft Windows 2008 Server for the Web 
server and a service-oriented architecture with services implemented through Windows 
Communication Foundation (WCF). The architect might suggest NHibernate over Entity 
Framework and Microsoft SQL Server 2008 over Oracle. And he might suggest a particular 
rich control suite for the Web presentation layer instead of, perhaps, an entirely in-house 
 developed Silverlight client. 

 Who does make the fi nal decision about which technologies and products are to be used? 

 Typically, it is the project manager or whoever manages the budget. The architect’s 
 suggestions might be accepted or rejected. If a suggestion is rejected, using or not using a 
given product or technology just becomes a new nonfunctional requirement to fulfi ll, and 
that might infl uence, even signifi cantly, the architecture. 

 Formulating Specifi cations 

 The architect is ultimately responsible for the development of the system and coordinates the 
work of a team of developers. Technical specifi cations are the means by which the architect 
communicates architectural decisions to the developers.  

 Specifi cations can be rendered in various forms: UML sketches, Word documents, Microsoft 
Visio diagrams or, even, working prototypes. 
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 Communication is key for an architect. Communication happens between the architect and 
developers, and it also happens between architects and project managers and analysts, if not 
users. A great skill for an architect is the clarity of language. 

 The interaction between architects and developers will vary depending on the  methodology 
chosen. And also the involvement of project managers, analysts, and users varies based, 
 essentially, on the level of agility you accept.  

 We’ll return to the topic of methodologies in a moment. 

 How Many Types of Architects Do You Know?  

 There are many possible defi nitions of “architect.” Defi nitions vary depending on how they 
 factor in different roles and different responsibilities. In this book, we work with the 
ISO/IEC  defi nition of an architect, which is the “person, team, or organization responsible 
for the system’s architecture.”  

 According to ISO/IEC, there are not various types of architects. An architect is an architect. 
Period.  

 Microsoft, however, recognizes four types of architects: enterprise architect (EA), infrastructure 
architect (IA), technology-specifi c architect (TSA), and solution architect (SA). The list is taken 
from the job roles recognized by the Microsoft Certifi ed Architect Program. You can read 
more about the program and job roles at http://www.microsoft.com/learning/mcp/architect/
specialties/default.mspx.  

 In our opinion, the distinctions offered by Microsoft are misleading because they attempt 
to break into parts what is ultimately an atomic, yet complex, role. It creates unnecessary 
 categorization and lays the groundwork for confusing, who-does-what scenarios.  

 For example, who’s responsible for security? Is it the SA or the IA? Ultimately, security is an 
 ISO-recognized quality attribute of a software architecture and, as such, it should be planned 
from the beginning. Security should grow with the system’s design and implementation. It cannot 
be added at a later time, by a separate team. Not if you really want security in the system.  

 Who’s ultimately responsible for picking out a technology? Is it the SA? Is it the EA? Do 
both accept suggestions from a swarm of different TSAs? At the end of the day, it’s not the 
 architect who makes this decision. Instead, it’s the customer, who holds the purse strings, that 
decides. 

 It is fi ne to have multiple architects on the same project team. Likewise, it is fi ne, if not 
 desirable, that different architects have slightly different skills. But they remain just architects, 
working on the same team on the design of the same system. And architects also have a 
 signifi cant exposure to code. They work out the design of the system but then work closely 
with developers to ensure proper implementation.  
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 As we see things, an architect is, among other things, a better and more experienced developer. 
We don’t believe there’s value in having architects who just speak in UML and Visio and leave 
any implementation details to developers. At least, we’ve never found it easy to work with these 
people when we’ve crossed paths with them. 

Note  This said, we recognize that titles like enterprise architect, solution architect, and perhaps 
security architect look much better than a plain software architect when printed out on a business 
card. But the terms are only a way to more quickly communicate your skills and expertise. When 
it comes to the actual role, either you’re an architect or you’re not. 

 Common Misconceptions About Architects 

 Although international ISO standards exist to defi ne requirements, architecture, and 
 architects, they seem not to be taken into great account by most people. Everybody seems 
to prefer crafting her own (subtly similar) defi nition for something, rather than sticking to 
(or reading) the ISO defi nition for the same something.  

 Try asking around for the defi nition of terms such as architect, architecture, or project manager. 
You can likely get distinct, and also unrelated and contrasting, answers. 

 Quite obviously, a set of misconceptions have grown out of the mass of personalized defi nitions 
and interpretations. Let’s go through a few of them and, we hope, clear up a few of them. 

 The Architect Is an Analyst 

 This is a false statement. An architect is simply not an analyst.  

 At times, an architect might assist analysts during elicitations to help clarify obscure requirements 
or smooth improbable requirements. At times, an architect might participate in meetings with 
stakeholders. But that’s it.  

 In general, an analyst is a person who is an expert on the domain. An architect is not (necessarily) 
such an expert. An analyst shares with an architect his own fi ndings about how the system should 
work and what the system should do. 

 This common misconception probably originates from the incorrect meaning attributed to 
the word analyst. If the word simply indicates someone who does some analysis on a  system, 
it is quite hard to deny the similarities between architects and analysts. Some 30 years 
ago, the term system analyst was used to indicate a professional capable of making design 
 considerations about a system. But, at the time, the software wasn’t as relevant as it is today, 
and it was merely a (small) part of an essentially hardware-based system.  
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 Today, the roles of an analyst and an architect are commonly recognized as being different. 
And hardly ever does an architect play the role of an analyst.  

Note  Given that roles are neatly separated, anyway, in small companies, it can happen that 
the same person serves as an analyst and architect. It simply means that there’s a person in 
the  company who knows the business and processes well enough to come up with functional 
 requirements and translate them into specifi cations for developers. The roles and responsibilities 
are still distinct, but the distinct skills for each can be found in the same individual. 

 The Architect Is a Project Manager 

 Is this another false statement? It depends.  

 The architect is responsible for the system’s architecture and coordinates and guides the 
 development of the system. The project manager represents stakeholders and manages the 
project by choosing, in the fi rst place, a methodology. The project manager is then  responsible 
for ensuring that the project adheres to the architecture while proceeding within the limits of 
the timeline and budget.  

 If we look at the role of the architect and the role of the project manager, we fi nd out that 
they are distinct. Period. 

 However, it is not unusual that one actor ends up playing two roles. Like in the theater, this 
hardly happens in large companies, but it happens quite frequently in small companies.  

 In summary, if you want to be a software architect when you grow up, you don’t necessarily 
have to develop project management skills. If you have skills for both roles, though, you can 
try to get double pay. 

 The Architect Never Writes Any Code  

 This is defi nitely an ongoing debate: Should architects write code? There are essentially two 
schools of thought.  

 One school thinks that architects live on the upper fl oor, maybe in an attic. Architects then step 
down to the developers’ fl oor just for the time it takes them to illustrate, using UML  diagrams, 
what they have thought about the system. After this, they take the elevator up, collect their 
things, and go out to play golf. When on the course, they switch off their cell phones and focus 
on the game. When done, if they missed a call or two, they call back and explain to dummy 
developers what was so clear in the diagram that nobody on the developers’ fl oor could 
 understand. According to this school of thought, architects never, ever dirty their hands with 
even the simplest C# statement. C#? Oh no, the latest language they’ve been exposed to is 
probably Pascal while in college and Borland Turbo Pascal at home. 
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 Another school of thought thinks, instead, that every architect is a born developer. To take 
the metaphor one step further, we could say that the class Architect inherits from the 
class Developer and adds some new methods (skills) while overriding (specializing) a few 
 others. Becoming an architect is the natural evolution in the career of some developers. 
The basic differences between an architect and a developer are experience and education. 
You gain experience by spending time on the job; you earn your education from studying 
good books and taking the right classes. In addition, an architect has the ability to focus 
her  vision of the system from a higher level than an average developer. Furthermore, an 
 architect has good customer-handling skills.  

 An architect might not write much production code. But she writes a lot of code; she 
 practices with code every day; she knows about programming languages, coding techniques, 
libraries, products, tools, Community Technology Previews (CTPs); and she uses the latest 
version of Visual Studio or Team Foundation Server. In certain areas of programming, an 
architect knows even more than many developers. An architect might be able to write tools 
and utilities to help developers be more productive. And, more often than you might think 
at fi rst, the architect is just a member of the development team. For example, an architect 
writing production code is an absolutely normal occurrence in an agile context. It is also a 
normal occurrence in small companies regardless of the methodology. At the same time, 
an architect who writes production code might be an absolutely weird occurrence in some 
large-company scenarios, especially if a traditional and non-agile methodology is used. 

 What about the two of us? To which school do we belong?  

 Well, Andrea is more of an architect than Dino because he lives on the fi fth fl oor. Dino, 
on the other hand, is closer to development because he has quite a few highly technical 
ASP .NET books on his record and, more importantly, lives on the second fl oor. We don’t 
play golf, though. Dino plays tennis regularly, whereas Andrea likes squash better. We just 
have been denied access to the fi rst school of thought. 

Note  In no other area of engineering is the distinction between those-who-design and 
 those-who-build as poorly accepted as it is in software. The distinction exists mostly through 
 postulation rather than fl owing from a public recognition of skills.  

 The canonical comparison is with civil architecture. Bricklayers have their own unique skills that 
 engineers lack. No bricklayer, though, will ever dream of questioning designs or calculations, simply 
because the bricklayer lacks the skill to make the decisions himself. Bricklayers do their own work 
the best they can, taking full advantage of having the building work delegated to them. 

 In software, the situation is different because architects and developers have common roots. The 
more skilled a developer is, the more he feels encouraged to discuss design choices—and often 
with reason. The more the architect loses contact with everyday programming, the more he loses 
the respect of other developers. This generates a sort of vicious circle, which magically becomes 
better as you switch to an agile methodology. 
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 Overview of the Software Development Process 

 For quite a few years, we’ve been highly exposed to the idea that writing software is easy, 
pleasant, and fun. You click this, you drag that, and the tool will write the code for you. You 
“declare” what you want, and the award-winning tool will do it for you. Admittedly, in this 
scenario everybody could gain the rank of architect, and the burden of writing code can be 
entirely delegated to the tool—aptly named the wizard. 

 Not all software is the same.  

 Writing a fi ling system to track the movies you’ve rented from Blockbuster is different from 
writing a line-of-business application to run a company. You probably don’t need to work on 
an architecture to build a syndication reader; you probably need more than just architecture 
if you’re working on the control system for, say, a chemical plant.  

 In some sectors of the industry (for example, in the defense sector), the need for a 
 systematic approach to the various aspects of software—development, testing,  operation, 
 maintenance—was recognized long ago, as early as the 1960s. In fact, the term software 
engineering was fi rst coined by Professor Friedrich L. Bauer during the NATO Software 
Engineering Conference in 1968. 

 Today, software engineering is a broad term that encompasses numerous aspects of software 
development and organizes them into a structured process ruled by a methodology. 

 The Software Life Cycle 

 Software development is a process created and formalized to handle complexity and with 
the primary goal of ensuring (expected) results. As in the quote at the top of the chapter, the 
ultimate goal is controlling complexity, not creating it.  

 To achieve this goal, a methodology is required that spans the various phases of a software 
project. Over the years, an international standard has been developed to formalize the 
 software life cycle in terms of processes, activities, and tasks that go from initial planning up 
to the retirement of the product.  

 This standard is ISO/IEC 12207, and it was originally released in 1995. The most recent 
 revision, however, was in March 2008. 

 Processes  

 According to the ISO/IEC 12207 standard, the software life cycle is articulated in 23 processes. 
Each process has a set of activities and outcomes associated with it. Finally, each activity has a 
number of tasks to complete.  
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 Processes are classifi ed in three types: primary, supporting, and organizational. The  production 
of the code pertains to the primary process. Supporting processes and organizational  processes 
refer to auxiliary processes, such as confi guration, auditing, quality assurance, verifi cation, 
 documentation, management, and setup and maintenance of the infrastructure (hardware, 
software, tools). Figure 1-2 offers a graphical view of the software life cycle, showing specifi c 
processes.  

Supporting OrganizationalPrimary

· Acquisition
· Supply
· Development
· Operation
· Maintenance

· Management
· Infrastructure
· Improvement
· Training

Life cycle

· Documentation
· Configuration management
· Quality Assurance
· Validation
· Verification
· Joint review
· Audit
· Problem resolution

  

 FIGURE 1-2 The overall software life cycle according to ISO/IEC 12207 

 Activities 

 The primary processes are those more directly concerned with the design and implementation 
of software. Let’s briefl y have a look at some of the activities for the primary processes.  

 The Acquisition process includes elicitation of requirements and evaluation of options, negotiations, 
and contracts. The Supply process is concerned with the development of a project management 
plan. Usually, architects are not involved in these steps unless they are also serving to some extent 
as project managers. 

 The Development process deals with the analysis of requirements, design of the system as 
well as its implementation, testing, and deployment. This is really all within the realm of the 
architect.  

 The Operation process essentially involves making the software operative within the 
 company, integrating it with the existing systems, running pilot tests, and assisting users as 
they familiarize themselves with the software. Finally, the Maintenance process aims to keep 
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the system in shape by fi xing bugs and improving features. This includes a set of activities 
that might require the architect to be involved to some extent. 

 Models for Software Development 

 Before starting on a software project, a methodology should be selected that is appropriate for 
the project and compatible with the skills and attitude of the people involved. A methodology 
is a set of recommended practices that are applied to the process of software development. 
The methodology inspires the realization and management of the project.  

 There are two main developmental models: traditional methodologies and agile methodologies. 
We’ll also touch on a third model—the Microsoft Solutions Framework. 

 Traditional Methodologies  

 The best-known and oldest methodology is the waterfall model. It is a model in which 
 software development proceeds from one phase to the next in a purely sequential manner. 
Essentially, you move to step N+1 only when step N is 100% complete and all is perfect with 
it. Figure 1-3 shows a sample of the waterfall model. 

  

Requirements

Design

Implementation

Verification

Maintenance

 FIGURE 1-3 The waterfall model 

 After the team has completed the analysis of requirements, it proceeds with the design of the 
architecture. Next, coding begins. Next, testing is started, and it continues until the system is 
shipped.  

 The waterfall model goes hand in hand with the idea of software development paired to civil 
architecture. The primary characteristic of a waterfall model is BDUF—Big Design Up Front—
which means essentially that the design must be set in stone before you start coding. 

 Waterfall is a simple and well-disciplined model, but it is unrealistic for nontrivial 
 projects. Why? Because you almost never have all requirements established up front. 
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So you inevitably must proceed to the next step at some point while leaving something 
behind you that is incomplete.  

 For this reason, variations of the waterfall method have been considered over the years, 
where the design and implementation phases overlap to some extent. This leads us to a key 
consideration. 

 Ultimately, we fi nd that all methodologies share a few common attributes: a number of 
 phases to go through, a number of iterations to produce the software, and a typical duration 
for a single iteration. All phases execute sequentially, and there’s always at least one iteration 
that ends with the delivery of the software. 

 The difference between methodologies is all in the order in which phases are entered, the 
number of iterations required, and the duration of each iteration.  

 After buying into this consideration, the step to adopting the agile methods is much smaller 
than you might think at fi rst. 

Note  We could even say that when you move to an agile methodology, you have a much 
 smaller waterfall, one that is less abundant and doesn’t last as long. But it’s more frequent and 
occurs nearly on demand. Not a waterfall. . .maybe a shower? 

 Agile Methodologies 

 Iterative development is a cyclic process that was developed in response to the waterfall 
method, and it emphasizes the incremental building of the software. After the initial startup, 
the project goes through a series of iterations that include design, coding, and testing. Each 
iteration produces a deliverable but incomplete version of the system. At each iteration, the 
team enters design changes and adds new functions until the full set of specifi cations are 
met. Figure 1-4 provides a graphical view of the iterative process. 

Iterate?
No

Yes

Analysis

CodingRequirements

Testing

Initial planning Deployment

  

 FIGURE 1-4 The iterative model  
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 Iterative development forms the foundation of agile methodologies. The term agile was 
 deliberately selected to symbolize a clear opposition to heavyweight methods such as the 
waterfall model. The principles behind agile methods are listed in the “Agile Manifesto,” 
which you can fi nd at http://agilemanifesto.org. The agile manifesto was fi rst published 
in 2001. 

 Agile methodologies put individuals at the center of the universe. As stated on the home 
page of the manifesto, agile methods focus on people working together and communicating 
rather than on software building and processes. Change and refactoring are key in an agile 
methodology. User feedback is valued over planning, and feedback is driven by regular tests 
and frequent releases of the software. In fact, one of the agile principles states, “Working 
software is the primary measure of progress.“ 

 So in the end, how is an agile methodology different? And how does it work? Let’s look at an 
example. 

 The project starts and only a few requirements are known. You know for a fact that many 
more will show up between now and the end. With an agile mindset, this is not an issue. 
You take a subset of the existing requirements that you can implement in a single iteration. 
And you go with the fi rst iteration. During the iteration, you focus on a single requirement at 
a time and implement it. At the end of the iteration, you deliver a working piece of software. 
It might be incomplete, but it works.  

 Next, you go with another iteration that focuses on another set of requirements. If something 
changed in the meantime or proved to be wrong, refactoring is in order. And the process 
continues until there’s nothing more to add.  

 Customers and developers work together daily; feedback is solicited and delivered on a timely 
basis; results are immediately visible; the architect is just one of the developers; and the team 
is highly skilled and motivated. The length of an iteration is measured in weeks—often, two 
weeks. In a word, an agile process is agile to react to changes. And changes in the business 
are the rule, not the exception.  

 Agile methodologies is a blanket term. When you refer to an agile methodology, you aren’t 
talking very precisely. Which methodology do you mean, actually?  

 The most popular agile methodology for software development is Extreme Programming (XP). 
In XP, phases are carried out in extremely short iterations that take two weeks to  terminate. 
Coding and design proceed side by side. For more information on XP, visit the site 
http://www.extremeprogramming.org. 

 Scrum is another popular agile methodology, but it is aimed at managing projects rather than 
developing code. Scrum is not prescriptive for any software development model, but it works 
very well with XP as the method to develop code. For more information on Scrum, have a 
look at Agile Project Management with Scrum by Ken Schwaber (Microsoft Press, 2004). 
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 Microsoft Solutions Framework 

 Microsoft Solutions Framework (MSF) is another methodology for software development, like 
XP or waterfall. Like XP, MSF has its own principles, roles, and vocabulary. In particular, the 
roles in MSF are Program Manager, Architect, Developer, Tester, Release Manager, DBA, and 
Business Analyst. Typical terms are iteration, release, phase, and work item (to indicate an 
 activity within the project). 

 MSF is a methodology that Microsoft developed and has used internally for the past ten 
years. Since 2006, it has also been supported by Team Foundation Server (TFS).  

 TFS is essentially a collection of Web services within an Internet Information Server (IIS) Web 
server that provide business logic specifi c to project management. Either through the TFS 
console (if you have proper administrative rights) or through a Visual Studio plug-in, you 
can create a TFS project and use TFS services to manage your project. Great, but what is the 
methodology being used? 

 TFS provides only one methodology out of the box: MSF. However TFS plug-ins exist to add 
other methodologies to TFS. In particular, plug-ins exist for the Rational Unifi ed Process 
(RUP), Feature Driven Development (FDD), and Scrum. 

 When the project manager creates a TFS project, he is fi rst asked to pick up an available 
methodology (say, MSF). When MSF is picked up, the project manager is also asked to choose 
which fl avor of MSF he likes. There are two fl avors: MSF for Agile, and MSF for CMMI.  

Note  CMMI is an acronym for Capability Maturity Model Integration. CMMI is a general 
 methodology for improving processes within a company. CMMI focuses on processes and fi ghts 
common misconceptions such as “good people are enough” and “processes hinder agility.” CMMI 
proposes a set of best practices and a framework for organizing and prioritizing activities, with 
the purpose of improving processes related to the building of a product. 

 In essence, you opt for a model that is more agile or more rigorous. In the context of MSF, 
the word agile has exactly the meaning it has in an English dictionary. It is not necessarily 
 related to agile methodologies.  

 For example, in MSF for Agile you don’t give work items an explicit duration in terms of 
hours; instead, you use an integer to indicate the level of effort (order of  magnitude) 
 required. You have to use hours in MSF for CMMI, instead. In MSF for Agile, a Developer 
can assign a task to another Developer; in MSF for CMMI, only the project manager has a 
similar right. In an agile process, therefore, it is assumed that such an action is  accomplished 
with due  forethought. In MSF for Agile, a work item can be moved from one project area to 
 another without  problems. This might not be true for another methodology.  

 In general, MSF for Agile is designed for small teams working iteratively on a project. MSF for 
CMMI is more appropriate for large and heterogeneous teams, working on long iterations 
and particularly concerned with control of quality. 
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 Summary 

 Architecture is a widely used term that has quite a few defi nitions. If you read between the 
lines, though, you mostly fi nd variations of the same concept: architecture refers to identifying 
the software components that, when interacting, make the program work. 

 In the process of identifying these components, you encounter points of decision making. When 
you design an architecture, not all decisions you make have the same impact. The approach to 
the design of the business logic, for example, is something you can hardly change at a later time 
in an inexpensive way. So architecture is about components and hard-to-change decisions.  

 The design of an architecture is qualifi ed by a number of quality parameters that are part of an 
international standard. The design of the architecture comes out of functional and nonfunctional 
requirements, gathered by business analysts and acknowledged by architects. 

 Who’s the architect and what are his responsibilities? The role of the architect is different 
from that of an analyst or a project manager, but sometimes the same individual can play 
both roles in the context of a specifi c project. Does an architect write code? Oh, yes. In our 
vision, an architect is a born developer, and even if the architect doesn’t write much, or any, 
production code, he defi nitely practices with deep code. 

 The role of the architect, and the way in which the architect and the development team work 
with requirements, largely depends on the methodology in use—whether it is agile or traditional.  

 In this chapter, we mentioned in some places the Unifi ed Modeling Language (UML) as the 
primary notation to describe architectural aspects of a system. In the next chapter, we’ll take 
a closer look at the UML language. 

 Murphy’s Laws of the Chapter  

 Murphy’s laws are the portrait of the real world. If anything happens repeatedly in the real 
world, it is then captured in a law. Software projects are a part of the real world and it is not 
surprising that laws exist to describe software-related phenomena. In all chapters, therefore, 
we’ll be listing a few Murphy’s laws.

■  Adding manpower to a late software project makes it later. 

■  Program complexity grows until it exceeds the capability of the programmers who 
must maintain it. 

■  If builders built buildings the way programmers wrote programs, the fi rst woodpecker 
that came along would destroy civilization. 

See http://www.murphys-laws.com for an extensive listing of other computer-related (and 
non-computer-related) laws and corollaries.  
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 Chapter 3 

 Design Principles and Patterns 

 Experienced designers evidently know something inexperienced others don’t. 
What is it? 

 —Erich Gamma 

 In Chapter 1, “Architects and Architecture Today,” we focused on the true meaning of  architecture 
and the steps through which architects get a set of specifi cations for the  development team. 
We focused more on the process than the principles and patterns of actual design. In Chapter 2, 
“UML Essentials,” we fi lled a gap by serving up a refresher (or a primer, depending on the reader’s 
skills) of Unifi ed Modeling Language (UML). UML is the most popular modeling language through 
which design is expressed and communicated within development teams.  

 When examining the bundle of requirements, the architect at fi rst gets a relatively blurred 
picture of the system. As the team progresses through iterations, the contours of the picture 
sharpen. In the end, the interior of the system unveils a web of interrelated classes applying 
design patterns and fulfi lling design principles.  

 Designing a software system is challenging because it requires you to focus on today’s 
 requested features while ensuring that the resulting system be fl exible enough to support 
changes and addition of new features in the future. 

 Especially in the past two decades, a lot has been done in the Information Technology (IT) 
industry to make a systematic approach to software development possible. Methodologies, 
design principles, and fi nally patterns have been developed to help guide architects to 
 envision and build systems of any complexity in a disciplined way. 

 This chapter aims to provide you with a quick tutorial about software engineering. It fi rst  outlines 
some basic principles that should always inspire the design of a modern software  system. 
The  chapter then moves on to discuss principles of object-oriented design. Along the way, 
we introduce patterns, idioms, and aspect-orientation, as well as pearls of wisdom regarding 
 requirement-driven design that affect key areas such as testability, security, and performance. 

 Basic Design Principles 

 It is one thing to write code that just works. It is quite another to write good code that works. 
Adopting the attitude of “writing good code that works” springs from the ability to view 
the system from a broad perspective. In the end, a top-notch system is not just a product 
of  writing instructions and hacks that make it all work. There’s much more, actually. And it 
 relates, directly or indirectly, to design. 
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 The attitude of “writing good code that works” leads you, for example, to value the  maintainability 
of the code base over any other quality characteristics, such as those defi ned by International 
Organization for Standardization (ISO) and International Electrotechnical Commission (IEC) 
 standard 9126. (See Chapter 1.) You adopt this  preference not so much because other aspects 
(such as extensibility or perhaps scalability) are less important than maintainability—it’s just that 
maintenance is expensive and can be highly frustrating for the developers involved.  

 A code base that can be easily searched for bugs, and in which fi xing bugs is not  problematic for 
anyone, is open to any sort of improvements at any time, including extensibility and  scalability. 
Thus, maintainability is the quality characteristic you should give the highest  priority when you 
design a system. 

 Why is software maintenance so expensive?  

 Maintenance becomes expensive if essentially you have produced unsatisfactory (should we 
say, sloppy?) software, you haven’t tested the software enough, or both. Which attributes 
make software easier to maintain and evolve? Structured design in the fi rst place, which is 
best applied through proper coding techniques. Code readability is another fundamental 
 asset, which is best achieved if the code is combined with a bunch of internal documentation 
and a change-tracking system—but this might occur only in a perfect world.  

 Before we proceed any further with the basic principles of structured design, let’s arrange 
a brief cheat-sheet to help us catch clear and unambiguous symptoms of bad code design. 

 Note Unsatisfactory software mostly springs from a poor design. But what causes a poor design? 
A poor design typically has two causes that are not mutually exclusive: the architect’s insuffi cient 
skills, and imprecise or contradictory requirements. So what about the requirements problem, 
then? Contradictory requirements usually result from bad communication. Communication is 
king, and it is one of the most important skills for an architect to cultivate and improve.  

 Not surprisingly, fi xing this communication problem drives us again straight to agile 
 methodologies. What many people still miss about the agile movement is that the primary 
 benefi t you get is not so much the iterative method itself. Instead, the major benefi t comes from 
the continuous communication that the methodology promotes within the team and between 
the team and the customers. Whatever you get wrong in the fi rst iteration will be fi xed quite 
soon in the next (or close to the next) iteration because the communication that is necessary to 
move forward will clarify misunderstood requirements and fi x bad ones. And it will do so quite 
early in the process and on a timely basis. This iterative approach simply reduces the entry point 
for the major cause of costly software maintenance: poor communication. And this is the primary 
reason why, one day, a group of (perfectly sane) developers and architects decided to found the 
agile movement. It was pragmatism that motivated them, not caprice.  

 This said, you should also keep in mind that that agile methodologies also tend to increase 
 development costs and run the risk of scope/requirements creep. You also must make sure 
everyone in the process is on board with it. If the stakeholders don’t understand their role or 
are not responsive, or can’t review the work between iterations, the agile approach fails. So the 
bottom line is that the agile approach isn’t a magic wand that works for everyone. But when it 
works, it usually works well. 
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 For What the Alarm Bell Should Ring 

 Even with the best intentions of everyone involved and regardless of their efforts, the  design 
of a system at some point can head down a slippery slope. The deterioration of a good 
 design is generally a slow process that occurs over a relatively long period of time. It happens 
by continually studding your classes with hacks and workarounds, making a large share of 
the code harder and harder to maintain and evolve. At a certain point, you fi nd yourself in 
serious trouble.  

 Managers might be tempted to call for a complete redesign, but redesigning an evolving 
system is like trying to catch a runaway chicken. You need to be in a very good shape to do 
it. But is the team really in shape at that point? 

 Note Have you ever seen the movie Rocky? Do you remember the scene where Rocky, the 
boxer, fi nally catches the chicken, thus providing evidence that he’s ready for the match? By the 
way, the scene is on http://www.youtube.com/watch?v=o8ZkY7tnpRs. During the movie, Rocky 
attempts several times to get the chicken, but he gets the chicken only when he has trained well 
enough.  

 Let’s identify a few general signs that would make the alarm bell ring to warn of a  problematic 
design. 

 Rigid, Therefore Fragile 

 Can you bend a piece of wood? What do you risk if you insist on doing it? A piece of wood 
is typically a stiff and rigid object characterized by some resistance to deformation. When 
enough force is applied, the deformation becomes permanent and the wood breaks.  

 What about rigid software? 

 Rigid software is characterized by some resistance to changes. Resistance is measured in 
terms of regression. You make a change in one module, but the effects of your change 
 cascade down the list of dependent modules. As a result, it’s really hard to predict how long 
making a change—any change, even the simplest—will actually take.  

 If you pummel glass or any other fragile material, you manage only to break it into  several 
pieces. Likewise, when you enter a change in software and break it in various places, it 
 becomes quite apparent that software is defi nitely fragile. 

 As in other areas of life, in the software world fragility and rigidity go hand in hand. 
When a change in a software module breaks (many) other modules because of (hidden) 
 dependencies, you have a clear symptom of a bad design that needs to be remedied as soon 
as possible.  
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 Easier to Use Than to Reuse 

 Imagine you have a piece of software that works in one project; you would like to reuse it in 
another project. However, copying the class or linking the assembly in the new project just 
doesn’t work.  

 Why is it so? 

 If the same code doesn’t work when moved to another project, it’s because of  dependencies. 
The real problem isn’t just dependencies, but the number and depth of dependencies. 
The risk is that to reuse a piece of functionality in another project, you have to import a 
much larger set of functions. Ultimately, no reuse is ever attempted and code is rewritten 
from scratch. 

 This is not a good sign for your design. This negative aspect of a design is often referred to as 
immobility. 

 Easier to Work Around Than to Fix 

 When applying a change to a software module, it is not unusual that you fi gure out two or 
more ways to do it. Most of the time, one way of doing things is nifty, elegant, coherent with 
the design, but terribly laborious to implement. The other way is, conversely, much smoother, 
quick to code, but sort of a hack. 

 What should you do? 

 Actually, you can solve it either way, depending on the given deadlines and your manager’s 
direction about it.  

 In summary, it is not an ideal situation when a workaround is much easier and faster to  apply 
than the right solution. And it doesn’t make a great statement about your overall design, 
 either. It is a sign that too many unnecessary dependencies exist between classes and that 
your classes do not form a particularly cohesive mass of code.  

 This aspect of a design—that it invites or accommodates workarounds more or less than 
fi xes—is often referred to as viscosity. High viscosity is bad, meaning that the software resists 
modifi cation just as highly viscous fl uids resist fl ow. 

 Structured Design  

 When the two of us started programming, which was far before we started making a  living 
from it, the old BASIC language was still around with its set of GOTO statements. Like 
many others, we wrote toy programs jumping from one instruction to the next within the 
same monolithic block of code. They worked just fi ne, but they were only toy programs in 
the end. 



 Chapter 3 Design Principles and Patterns 67

 Note Every time we looked at the resulting messy BASIC code we wrote, continually referring 
to other instructions that appeared a bunch of lines up or down in the code, we didn’t really 
like it and we weren’t really proud of it. But, at the time, we just thought we were picking up a 
cool challenge that only a few preordained souls could take on. Programming is a darned hard 
thing—we thought—but we are going to like it. 

 It was about the late 1960s when the complexity of the average program crossed the 
 signifi cant threshold that marked the need for a more systematic approach to software 
 development. That signaled the offi cial beginning of software engineering.  

 From Spaghetti Code to Lasagna Code 

 Made of a messy tangle of jumps and returns, GOTO-based code was soon belittled and 
 infamously labeled as spaghetti code. And we all learned the fi rst of a long list of  revolutionary 
concepts: structured programming. In particular, we learned to use subroutines to break our 
code into cohesive and more reusable pieces. In food terms, we evolved from spaghetti to 
lasagna. If you look at Figure 3-1, you will spot the difference quite soon. Lasagna forms a 
 layered block of noodles and toppings that can be easily cut into pieces and just exudes the 
concept of structure. Lasagna is also easier to serve, which is the food analogy for reusability.  

  

 FIGURE 3-1 From a messy tangle to a layered and ordered block 

 Note A small note (and some credits) about the fi gure is in order. First, as Italians we would 
have used the term lasagne, which is how we spell it, but we went for the international spelling 
of  lasagna. However, we eat it regardless of the spelling. Second, Dino personally ate all the food 
in the fi gure in a sort of manual testing procedure for the book’s graphics. Dino, however, didn’t 
cook anything. Dino’s mother-in-law cooked the spaghetti; Dino’s mom cooked the lasagna. 
Great stuff—if you’re in Italy, and want to give it a try, send Dino an e-mail.  
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 What software engineering really has been trying to convey since its inception is the need for 
some design to take place before coding begins and, subsequently, the need for some basic 
design principles. Still, today, when someone says “structured programming,” immediately 
many people think of subroutines. This assumption is correct, but it’s oversimplifying the 
point and missing the principal point of the structured approach.  

 Behind structured programming, there is structured design with two core principles. And these 
principles are as valid today as they were 30 and more years ago. Subroutines and Pascal-like 
programming are gone; the principles of cohesion and coupling, instead, still  maintain their 
 effectiveness in an object-oriented world. 

 These principles of structured programming, coupling and cohesion, were fi rst introduced by 
Larry Constantine and Edward Yourdon in their book Structured Design: Fundamentals of a 
Discipline of Computer Program and Systems Design (Yourdon Press, 1976).  

 Cohesion  

 Cohesion indicates that a given software module—be it a subroutine, class, or library—features a 
set of responsibilities that are strongly related. Put another way, cohesion measures the  distance 
between the logic expressed by the various methods on a class, the various functions in a library, 
and the various actions accomplished by a method.  

 If you look for a moment at the defi nition of cohesion in another fi eld—chemistry—you should 
be able to see a clearer picture of software cohesion. In chemistry, cohesion is a physical property 
of a substance that indicates the attraction existing between like molecules within a body. 

 Cohesion measurement ranges from low to high and is preferably in the highest range possible.  

 Highly cohesive modules favor maintenance and reusability because they tend to have no 
dependencies. Low cohesion, on the other hand, makes it much harder to understand the 
purpose of a class and creates a natural habitat for rigidity and fragility in the software. 
Low cohesive modules also propagate dependencies through modules, thus contributing to 
the immobility and high viscosity of the design. 

 Decreasing cohesion leads to creating modules (for example, classes) where  responsibilities 
(for example, methods) have very little in common and refer to distinct and unrelated  activities. 
Translated in a practical guideline, the principle of cohesion recommends creating extremely 
specialized classes with few methods, which refer to logically related operations. If the logical 
distance between methods grows, you just create a new class. 

 Ward Cunningham—a pioneer of Extreme Programming—offers a concise and pragmatic 
defi nition of cohesion in his wiki at http://c2.com/cgi/wiki?CouplingAndCohesion. He basically 
says that two modules, A and B, are cohesive when a change to A has no repercussion for B 
so that both modules can add new value to the system.  

 There’s another quote we’d like to use from Ward Cunningham’s wiki to reinforce a concept 
we expressed a moment ago about cohesion. Cunningham suggests that we defi ne cohesion 
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as inversely proportional to the number of responsibilities a module (for example, a class) 
has. We defi nitely like this defi nition. 

 Important Strongly related to cohesion is the Single Responsibility Principle (SRP). In the 
 formulation provided by Robert Martin (which you can see at http://www.objectmentor.com/
resources/articles/srp.pdf ), SRP indicates that each class should always have just one reason to 
change. In other words, each class should be given a single responsibility, where a  responsibility 
is defi ned as “a reason to change.” A class with multiple responsibilities has more reasons to 
change and, subsequently, a less cohesive interface. A correct application of SRP entails  breaking 
the methods of a class into logical subsets that confi gure distinct responsibilities. In the real 
world, however, this is much harder to do than the opposite—that is, aggregating distinct 
 responsibilities in the same class. 

 Coupling 

 Coupling measures the level of dependency existing between two software modules, such 
as classes, functions, or libraries. An excellent description of coupling comes, again, from 
Cunningham’s wiki at http://c2.com/cgi/wiki?CouplingAndCohesion. Two modules, A and B, 
are said to be coupled when it turns out that you have to make changes to B every time you 
make any change to A.  

 In other words, B is not directly and logically involved in the change being made to module A. 
However, because of the underlying dependency, B is forced to change; otherwise, the code 
won’t compile any longer. 

 Coupling measurement ranges from low to high and the lowest possible range is preferable.  

 Low coupling doesn’t mean that your modules are to be completely isolated from one 
 another. They are defi nitely allowed to communicate, but they should do that through a set 
of well-defi ned and stable interfaces. Each module should be able to work without intimate 
knowledge of another module’s internal implementation. 

 Conversely, high coupling hinders testing and reusing code and makes understanding it 
 nontrivial. It is also one of the primary causes of a rigid and fragile design. 

 Low coupling and high cohesion are strongly correlated. A system designed to achieve 
low coupling and high cohesion generally meets the requirements of high readability, 
 maintainability, easy testing, and good reuse. 

 Note Introduced to support a structured design, cohesion and coupling are basic design 
 principles not specifi cally related to object orientation. However, it’s the general scope that also 
makes them valid and effective in an object-oriented scenario. A good object-oriented design, in 
fact, is characterized by low coupling and high cohesion, which means that self-contained  objects 
(high cohesion) are interacting with other objects through a stable interface (low  coupling).  
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 Separation of Concerns 

 So you know you need to cook up two key ingredients in your system’s recipe. But is there a 
supermarket where you can get both? How do you achieve high cohesion and low coupling 
in the design of a software system?  

 A principle that is helpful to achieving high cohesion and low coupling is separation of  concerns 
(SoC), introduced in 1974 by Edsger W. Dijkstra in his paper “On the Role of Scientifi c Thought.” 
If you’re interested, you can download the full paper from http://www.cs.utexas.edu/users/EWD/
ewd04xx/EWD447.PDF.  

 Identifying the Concerns 

 SoC is all about breaking the system into distinct and possibly nonoverlapping features. Each 
feature you want in the system represents a concern and an aspect of the system. Terms such 
as feature, concern, and aspect are generally considered synonyms. Concerns are mapped to 
 software modules and, to the extent that it is possible, there’s no duplication of functionalities.  

 SoC suggests that you focus on one particular concern at a time. It doesn’t mean, of course, 
that you ignore all other concerns of the system. More simply, after you’ve assigned a  concern 
to a software module, you focus on building that module. From the perspective of that 
 module, any other concerns are irrelevant.  

 Note If you read Dijkstra’s original text, you’ll see that he uses the expression “separation of 
 concerns” to indicate the general principle, but switches to the word “aspect” to indicate  individual 
concerns that relate to a software system. For quite a few years, the word “aspect” didn’t mean 
anything special to software engineers. Things changed in the late 1990s when  aspect-oriented 
programming (AOP) entered the industry. We’ll return to AOP later in this  chapter, but we make 
the forward reference here to show Dijkstra’s great farsightedness. 

 Modularity  

 SoC is concretely achieved through using modular code and making heavy use of information 
hiding.  

 Modular programming encourages the use of separate modules for each signifi cant feature. 
Modules are given their own public interface to communicate with other modules and can 
contain internal chunks of information for private use.  

 Only members in the public interface are visible to other modules. Internal data is either not 
exposed or it is encapsulated and exposed in a fi ltered manner. The implementation of the 
interface contains the behavior of the module, whose details are not known or accessible to 
other modules. 
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 Information Hiding 

 Information hiding (IH) is a general design principle that refers to hiding behind a stable 
 interface some implementation details of a software module that are subject to change. In 
this way,  connected modules continue to see the same fi xed interface and are unaffected by 
changes.  

 A typical application of the information-hiding principle is the implementation of properties 
in C# or Microsoft Visual Basic .NET classes. (See the following code sample.) The property 
name represents the stable interface through which callers refer to an internal value. The class 
can obtain the value in various ways (for example, from a private fi eld, a control property, a 
cache, the view state in ASP.NET) and can even change this implementation detail without 
breaking external code. 

 // Software module where information hiding is applied
public class Customer
{
   // Implementation detail being hidden
   private string _name;

   // Public and stable interface 
   public string CustomerName
   {
        // Implementation detail being hidden 
        get {return _name;}
   }
} 

 Information hiding is often referred to as encapsulation. We like to distinguish between 
the  principle and its practical applications. In the realm of object-oriented programming, 
 encapsulation is defi nitely an application of IH.  

 Generally, though, the principle of SoC manifests itself in different ways in different 
 programming paradigms, and so it is for modularity and information hiding. 

 SoC and Programming Paradigms 

 The fi rst programming paradigm that historically supported SoC was Procedural 
Programming (PP), which we fi nd expressed in languages such as Pascal and C. In PP, you 
separate concerns using functions and procedures.  

 Next—with the advent of object-oriented programming (OOP) in languages such as Java, 
C++, and more recently C# and Visual Basic .NET—you separate concerns using classes.  

 However, the concept isn’t limited to programming languages. It also transcends the realm 
of pure programming and is central in many approaches to software architecture. In a 
 service-oriented architecture (SOA), for example, you use services to represent concerns. 
Layered architectures are based on SoC, and within a middle tier you can use an Object/
Relational Mapping tool (O/RM) to separate persistence from the domain model. 
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 Note In the preceding section, we basically went back over 40 years of computer science, and 
the entire sector of software engineering. We’ve seen how PP, OOP, and SOA are all direct or 
indirect emanations of the SoC principle. (Later in this chapter, we’ll see how AOP also fi ts this 
principle. In Chapter 7, “The Presentation Layer,” we’ll see how fundamental design patterns for 
the presentation layer, such as Model-View-Controller and Model-View-Presenter, also adhere to 
the SoC principle.) 

 You really understand the meaning of the word principle if you look at how SoC infl uenced, and 
still infl uences, the development of software. And we owe this principle to a great man who 
passed away in 2002: Edsger W. Dijkstra. We mention this out of respect for this man.  

 For more information about Dijkstra’s contributions to the fi eld, pay a visit to http://www.cs.utexas 
.edu/users/ewd.  

 Naming Conventions and Code Readability 

 When the implementation of a line-of-business application is expected to take several 
months to complete and the fi nal application is expected to remain up and running for 
a few years, it is quite reasonable to expect that many different people will work on the 
project over time.  

 With such signifi cant personnel turnover in sight, you must pay a lot of attention to 
 system characteristics such as readability and maintainability. To ensure that the code base 
is manageable as well as easily shared and understood, a set of common  programming 
rules and conventions should be used. Applied all the way through,  common naming 
 conventions, for example, make the whole code base look like it has been written by a 
single programmer rather than a very large group of people. 

 The most popular naming convention is Hungarian Notation (HN). You can read more 
about it at http://en.wikipedia.org/wiki/Hungarian_Notation. Not specifi cally bound to a 
programming language, HN became quite popular in the mid-1990s, as it was largely 
used in many Microsoft Windows applications, especially those written directly against 
the Windows Software Development Kit (SDK).  

 HN puts the accent on the type of the variable, and it prefi xes the variable name with a 
mnemonic of the type. For example, szUserName would be used for a zero-terminated 
string that contains a user name, and iPageCount would be used for an integer that 
indicates the number of pages. Created to make each variable self-explanatory, HN lost 
most of its appeal with the advent of object-oriented languages.  

 In object-oriented languages, everything is an object, and putting the accent on the 
value, rather than the type, makes much more sense. So you choose variable names 
 regardless of the type and look only at the value they are expected to contain. The 
choice of the variable name happens in a purely evocative way. Therefore, valid names 
are, for example, customer, customerID, and lowestPrice.  
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 Finally, an argument against using HN is that a variable name should be changed every 
time the type of the variable changes during development. In practice, this is often 
 diffi cult or overlooked, leading developers to make incorrect assumptions about the 
values contained within the variables. This often leads directly to bugs. 

 You can fi nd detailed design guidelines for the .NET Framework classes and  applications 
at http://msdn.microsoft.com/en-us/library/ms229042.aspx.   

 Object-Oriented Design  

 Before object orientation (OO), any program resulted from the interaction of modules and 
routines. Programming was procedural, meaning that there was a main stream of code 
 determining the various steps to be accomplished.  

 OO is a milestone in software design. 

 OO lets you envision a program as the result of interacting objects, each of which holds its 
own data and behavior. How would you design a graph of objects to represent your system? 
Which principles should inspire this design? 

 We can recognize a set of core principles for object-oriented design (OOD) and a set of 
more advanced and specifi c principles that descend from, and further specialize, the core 
principles. 

 Basic OOD Principles 

 To fi nd a broadly accepted defi nition of OOD, we need to look at the Gang of Four (Erich 
Gamma, Richard Helm, Ralph Johnson, and John Vlissides) and their landmark book 
Design Patterns: Elements of Reusable Object-Oriented Software, (Addison-Wesley, 1994). 
(We’ll make further references to this book as GoF, which is the universal acronym for 
“Gang of Four.”) 

 The entire gist of OOD is contained in this sentence: 

 You must fi nd pertinent objects, factor them into classes at the right granularity, 
defi ne class interfaces and inheritance hierarchies, and establish key relationships 
among them. 

 In GoF, we also fi nd another excerpt that is particularly signifi cant:  

 Your design should be specifi c to the problem at hand but also general enough to 
address future problems and requirements. 
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 Wouldn’t you agree that this last sentence is similar to some of the guidelines resulting 
from the ISO/IEC 9126 standard that we covered in Chapter 1? Its obvious similarity to that 
 standard cannot be denied, and it is not surprising at all.  

 The basics of OOD can be summarized in three points: fi nd pertinent objects, favor low 
 coupling, and favor code reuse.  

 Find Pertinent Objects First 

 The fi rst key step in OOD is creating a crisp and fl exible abstraction of the problem’s domain. 
To successfully do so, you should think about things instead of processes. You should focus 
on the whats instead of the hows. You should stop thinking about algorithms to focus mostly 
on interacting entities. Interacting entities are your pertinent objects. 

 Where do you fi nd them? 

 Requirements offer the raw material that must be worked out and shaped into a hierarchy 
of pertinent objects. The descriptions of the use cases you receive from the team of analysts 
provide the foundation for the design of classes. Here’s a sample use case you might get 
from an analyst: 

 To view all orders placed by a customer, the user indicates the customer ID. The 
program displays an error message if the customer does not exist. If the customer 
exists, the program displays name, address, date of birth, and all outstanding 
orders. For each order, the program gets ID, date, and all order items.  

 A common practice for fi nding pertinent objects is tagging all nouns and verbs in the 
 various use cases. Nouns originate classes or properties, whereas verbs indicate methods 
on classes. Our sample use case suggests the defi nition of classes such as User, Customer, 
Order, and OrderItem. The class Customer will have properties such as Name, Address, and 
DateOfBirth. Methods on the class Customer might be LoadOrderItems, GetCustomerByID, 
and LoadOrders.  

 Note that fi nding pertinent objects is only the fi rst step. As recommended in the statement 
that many consider to be the emblem of OOD, you then have to factor pertinent objects into 
classes and determine the right level of granularity and assign responsibilities.  

 In doing so, two principles of OOD apply, and they are listed in the introduction of GoF.  

 Favor Low Coupling  

 In an OO design, objects need to interact and communicate. For this reason, each object 
exposes its own public interface for others to call. So suppose you have a logger object 
with a method Log that tracks any code activity to, say, a database. And suppose also that 
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another object at some point needs to log something. Simply enough, the caller creates an 
instance of the logger and proceeds. Overall, it’s easy and effective. Here’s some code to 
illustrate the point: 

 class MyComponent 
{
  void DoSomeWork()
  {
    // Get an instance of the logger
    Logger logger = new Logger();

    // Get data to log
    string data = GetData(); 

    // Log
    logger.Log(data); 
  }
} 

 The class MyComponent is tightly coupled to the class Logger and its implementation. The class 
MyComponent is broken if Logger is broken and, more importantly, you can’t use another type 
of logger.  

 You get a real design benefi t if you can separate the interface from the implementation.  

 What kind of functionality do you really need from such a logger component? You 
 essentially need the ability to log; where and how is an implementation detail. So you 
might want to define an ILogger interface, as shown next, and extract it from the 
Logger class: 

 interface ILogger
{
    void Log(string data);
}

class Logger : ILogger
{
    
}  

 At this point, you use an intermediate factory object to return the logger to be used within 
the component: 

 class MyComponent 
{
  void DoSomeWork()
  {
    // Get an instance of the logger
    ILogger logger = Helpers.GetLogger();

. . .
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    // Get data to log
    string data = GetData(); 

    // Log
    logger.Log(data); 
  }
}

class Helpers
{
  public static ILogger GetLogger()
  {
    // Here, use any sophisticated logic you like
    // to determine the right logger to instantiate.

    ILogger logger = null;
    if (UseDatabaseLogger)
    {
        logger = new DatabaseLogger();
    }
    else
    {
        logger = new FileLogger();
    }
    return logger;
  }
} 
 class FileLogger : ILogger
{
    
} 

class DatabaseLogger : ILogger
{
    
}  

 The factory code gets you an instance of the logger for the component to use. The factory 
returns an object that implements the ILogger interface, and the component consumes any 
object that implements the contracted interface. 

 The dependency between the component and the logger is now based on an interface 
 rather than an implementation. 

 If you base class dependencies on interfaces, you minimize coupling between classes to 
the smallest possible set of functions—those defi ned in the interface. In doing so, you just 
 applied the fi rst principle of OOD as outlined in GoF: 

 Program to an interface, not an implementation. 

 This approach to design is highly recommended for using with the parts of your code that 
are most likely to undergo changes in their implementation. 

. . .
. . .
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 Note Should you use an interface? Or should you perhaps opt for an abstract base class? In 
object-oriented languages that do not support multiple inheritance—such as Java, C#, and 
Visual Basic .NET—an interface is always preferable because it leaves room for another base 
class of your choice. When you have multiple inheritance, it is mostly a matter of preference. 
You should consider using a base class in .NET languages in all cases where you need more than 
just an interface. If you need some hard-coded behavior along with an interface, a base class is 
the only option you have. ASP.NET providers, for example, are based on base classes and not on 
 interfaces.  

 An interesting possibility beyond base classes and interfaces are mixins, but they are an OOP 
 feature not supported by .NET languages. A mixin is a class that provides a certain  functionality 
that other classes can inherit, but it is not meant to be a standalone class. Put  another way, a  mixin 
is like an interface where some of the members might contain a predefi ned  implementation. 
Mixins are supported in some dynamic languages, including Python and Ruby. No .NET  languages 
currently support mixins, but mixins can be simulated using ad hoc  frameworks such as Castle.
DynamicProxy. With this framework, you fi rst defi ne a class that  contains all the methods you 
want to inject in an existing class—the mixin. Next, you use the framework to create a proxy 
for a given class that contains the injected methods. Castle.DynamicProxy uses Refl ection.Emit 
 internally to do the trick.  

 Real-World Example: IButtonControl in ASP.NET 

 In ASP.NET 1.x, there was no support for cross-page postbacks. Every time the user 
clicked a button, he could only post to the same page. Starting with ASP.NET 2.0,  buttons 
(and only buttons) were given the ability to trigger the post of the current form to an 
external page. 

 To support this feature, the Page class needs to know whether the control that caused 
the postback is a button or not. How many types of buttons do you know? There’s the 
Button class, but also LinkButton and fi nally ImageButton. Up until ASP.NET 2.0, these 
classes had very little in common—just a few properties, but nothing that could be 
 offi cially perceived as a contract or a formal link. 

 Having the Page class check against the three types before posting would have  limited 
the extensibility of the framework: only those three types of control would have ever 
been able to make a cross-page post.  

 The ASP.NET team extracted the core behavior of a button to the IButtonControl 
 interface and implemented that interface in all button classes. Next, they instructed the 
Page class to check the interface to verify the suitability of a posting control to make a 
cross-page post.  

 In this way, you can write custom controls that implement the interface and still add the 
ability to make your own cross-page posts. 
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 Favor Code Reuse 

 Reusability is a fundamental aspect of the object-oriented paradigm and one of the keys to 
its success and wide adoption. You create a class one day, and you’re happy with that. Next, 
on another day, you inherit a new class, make some changes here and there, and come up 
with a slightly different version of the original class.  

 Is this what code reuse is all about? Well, there’s more to consider. 

 With class inheritance, the derived class doesn’t simply inherit the code of the parent class. 
It really inherits the context and, subsequently, it gains some visibility of the parent’s state. 
Is this a problem?  

 For one thing, a derived class that uses the context it inherits from the parent can be broken 
by future changes to the parent class. 

 In addition, when you inherit from a class, you enter into a polymorphic context,  meaning 
that your derived class can be used in any scenarios where the parent is accepted. It’s not 
guaranteed, however, that the two classes can really be used interchangeably. What if the 
 derived class includes changes that alter the parent’s context to the point of  breaking the 
contract between the caller and its expected (base) class? (Providing the guarantee that 
 parent and derived classes can be used interchangeably is the goal of Liskov’s principle, 
which we’ll discuss later.)  

 In GoF, the authors recognize two routes to reusability—white-box and black-box reusability. 
The former is based on class inheritance and lends itself to the objections we just mentioned. 
The latter is based on object composition. 

 Object composition entails creating a new type that holds an instance of the base type and 
typically references it through a private member: 

 public CompositeClass
{
  private MyClass theObject;

  public CompositeClass()
  {
    // You can use any lazy-loading policy you want for instantiation.
    // No lazy loading is being used here ... 
    theObject = new MyClass();
  }

  public object DoWork()
  {
    object data = theObject.DoSomeWork();
    
    // Do some other work
    return Process(data);
  }
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  private object Process(object data)
  {
    
  }
} 

 In this case, you have a wrapper class that uses a type as a black box and does so through 
a well-defi ned contract. The wrapper class has no access to internal members and cannot 
change the behavior in any way—it uses the object as it is rather than changing it to do its 
will. External calls reach the wrapper class, and the wrapper class delegates the call internally 
to the held instance of the class it enhances. (See Figure 3-2.) 

Composite object

Original object

  

 FIGURE 3-2 Object composition and delegation 

 When you create such a wrapper object, you basically apply the second principle of OOD:  

 Favor object composition over class inheritance. 

 Does all this mean that classic class inheritance is entirely wrong and should be avoided like 
the plague? Using class inheritance is generally fi ne when all you do is add new functions to 
the base class or when you entirely unplug and replace an existing functionality. However, 
you should never lose track of the Liskov principle. (We’ll get to the details of the Liskov 
 principle in a moment.) 

 In many cases, and especially in real-world scenarios, object composition is a safer 
practice that also simplifi es maintenance and testing. With composition, changes to 
the composite object don’t affect the internal object. Likewise, changes to the internal 
 object don’t affect the outermost container as long as there are no changes to the public 
interface. 

 By combining the two principles of OOD, you can refer to the original object through 
an  interface, thus further limiting the dependency between composite and internal 
 objects. Composition doesn’t provide polymorphism even if it will provide  functionality. 
If  polymorphism is key for you, you should opt for a white-box form of reusability. 
However, keep the Liskov principle clearly in mind.  

. . .
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 Note In addition to composition, another approach is frequently used to contrast class 
 inheritance—aggregation. Both aggregation and composition refer to a has-a relationship 
 between two classes, whereas inheritance implies an is-a relationship. The difference between 
composition and aggregation is that with composition you have a static link between the 
 container and contained classes. If you dispose of the container, the contained classes are also 
disposed of. With aggregation, the link is weaker and the container is simply associated with an 
external class. As a result, when the container is disposed of, the child class blissfully survives. 

 Advanced Principles 

 You cannot go to a potential customer and sing the praises of your software by mentioning that it 
is modular, well designed, and easy to read and maintain. These are internal characteristics of the 
software that do not affect the user in any way. More likely, you’ll say that your software is correct, 
bug free, fast, easy to use, and perhaps extensible. However, you can hardly write  correct,  bug-free, 
easy-to-use, and extensible software without paying a lot of attention to the internal design.  

 Basic principles such as low coupling, high cohesion (along with the single  responsibility 
 principle), separation of concerns, plus the fi rst two principles of OOD give us enough 
 guidance about how to design a software application. As you might have noticed, all these 
principles are rather old (but certainly not outdated), as they were devised and formulated 
at least 15 years ago.  

 In more recent years, some of these principles have been further refi ned and enhanced to address 
more specifi c aspects of the design. We like to list three more advanced design  principles that, if 
properly applied, will certainly make your code easier to read, test, extend, and maintain. 

 The Open/Closed Principle  

 We owe the Open/Closed Principle (OCP) to Bertrand Meyer. The principle addresses the 
need of creating software entities (whether classes, modules, or functions) that can happily 
survive changes. In the current version of the fi ctional product “This World,” the continuous 
changes to software requirements are a well-known bug. Unfortunately, although the team 
is working to eliminate the bug in the next release, we still have to face reality and deal with 
frequent changes of requirements the best we can.  

 Essentially, we need to have a mechanism that allows us to enter changes where required without 
breaking existing code that works. The OCP addresses exactly this issue by saying the following: 

 A module should be open for extension but closed for modifi cation. 

 Applied to OOD, the principle recommends that we never edit the source code of a class that 
works in order to implement a change. In other words, each class should be conceived to be 
stable and immutable and never face change—the class is closed for modifi cation. 

 How can we enter changes, then? 
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 Every time a change is required, you enhance the behavior of the class by adding new code 
and never touching the old code that works. In practical terms, this means either using 
 composition or perhaps safe-and-clean class inheritance. Note that OCP just reinforces the 
point that we made earlier about the second principle of OOD: if you use class inheritance, 
you add only new code and do not modify any part of the inherited context. 

 Today, the most common way to comply with the OCP is by implementing a fi xed interface in 
any classes that we fi gure are subject to changes. Callers will then work against the  interface 
as in the fi rst principle of OOD. The interface is then closed for modifi cation. But you can make 
callers interact with any class that, at a minimum, implements that interface. So the overall 
model is open for extension, but it still provides a fi xed interface to dependent objects. 

 Liskov’s Substitution Principle  

 When a new class is derived from an existing one, the derived class can be used in any place 
where the parent class is accepted. This is polymorphism, isn’t it? Well, the Liskov Substitution 
Principle (LSP) restates that this is the way you should design your code. The principle says 
the following: 

 Subclasses should be substitutable for their base classes. 

 Apparently, you get this free of charge from just using an object-oriented language. If you 
think so, have a look at the next example: 

 public class ProgrammerToy 
{
    private int _state = 0;

    public virtual void SetState(int state)
    {
        _state = state;
    }

    public int GetState()
    {
        return _state;
    }
} 

 The class ProgrammerToy just acts as a wrapper for an integer value that callers can read and 
write through a pair of public methods. Here’s a typical code snippet that shows how to use it: 

 static void DoSomeWork(ProgrammerToy toy)

{

    int magicNumber = 5;

    toy.SetState(magicNumber);

    Console.WriteLine(toy.GetState());

    Console.ReadLine();

} 
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 The caller receives an instance of the ProgrammerToy class, does some work with it, and then 
displays any results. So far, so good. Let’s now consider a derived class: 

 public class CustomProgrammerToy : ProgrammerToy
{
    public override void SetState(int state)
    {
        // It inherits the context of the parent but lacks the tools
        // to fully access it. In particular, it has no way to access 
        // the private member _state.
        // As a result, this class MAY NOT be able to
        // honor the contract of its parent class. Whether or not, mostly
        // depends on your intentions and expected goals for the overridden 
        // SetState method. In any case, you CAN'T access directly the private member 
        // _state from within this override of SetState. 

        // (In .NET, you can use reflection to access a private member, 
        // but that's a sort of a trick.)
        
    }
} 

 From a syntax point of view, ProgrammerToy and CustomProgrammerToy are just the same 
and method DoSomeWork will accept both and successfully compile. 

 From a behavior point of view, though, they are quite different. In fact, when 
CustomProgrammerToy is used, the output is 0 instead of 5. This is because of the override 
made on the SetState method.  

 This is purely an example, but it calls your attention to Liskov’s Principle. It doesn’t go  without 
saying that derived classes (subclasses) can safely replace their base classes. You have to 
 ensure that. How? 

 You should handle keywords such as sealed and virtual with extreme care. Virtual 
 (overridable) methods, for example, should never gain access to private members. Access 
to private  members can’t be replicated by overrides, which makes base and derived classes 
not  semantically equivalent from the perspective of a caller. You should plan ahead of 
time which members are private and which are protected. Members consumed by virtual 
 methods must be protected, not private. 

 Generally, virtual methods of a derived class should work out of the same  preconditions 
of corresponding parent methods. They also must guarantee at least the same 
postconditions.  

 Classes that fail to comply with LSP don’t just break polymorphism but also induce violations 
of OCP on callers. 

. . .
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 Note OCP and LSP are closely related. Any function using a class that violates Liskov’s Principle 
violates the Open/Close Principle. Let’s reference the preceding example again. The method 
DoSomeWork uses a hierarchy of classes (ProgrammerToy and CustomProgrammerToy) that 
 violate LSP. This means that to work properly DoSomeWork must be aware of which type 
it really receives. Subsequently, it has to be modifi ed each time a new class is derived from 
ProgrammerToy. In other words, the method DoSomeWork is not closed for modifi cation. 

 The Dependency Inversion Principle  

 When you create the code for a class, you represent a behavior through a set of methods. 
Each method is expected to perform a number of actions. As you specify these actions, you 
proceed in a top-down way, going from high-level abstractions down the stack to more and 
more precise and specifi c functions.  

 As an illustration, imagine a class, perhaps encapsulated in a service, that is expected to 
 return stock quotes as a chunk of HTML markup: 

 public class FinanceInfoService 
{
  public string GetQuotesAsHtml(string symbols)
  {
    // Get the Finder component 
    IFinder finder = ResolveFinder();
    if (finder == null)
      throw new NullReferenceException("Invalid finder.");
 
    // Grab raw data
    StockInfo[] stocks = finder.FindQuoteInfo(symbols);

    // Get the Renderer component
    IRenderer renderer = ResolveRenderer();
    if (renderer == null)
       throw new NullReferenceException("Invalid renderer.");
    
    // Render raw data out to HTML
    return renderer.RenderQuoteInfo(stocks);
  }

  
} 

 The method GetQuotesAsHtml is expected to fi rst grab raw data and then massage it into an 
HTML string. You recognize two functionalities in the method: the fi nder and the renderer. In 
a top-down approach, you are interested in recognizing these functionalities, but you don’t 
need to specify details for these components in the fi rst place. All that you need to do is hide 
details behind a stable interface.  

. . .
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 The method GetQuotesAsHtml works regardless of the implementation of the fi nder and 
 renderer components and is not dependent on them. (See Figure 3-3.) On the other hand, 
your purpose is to reuse the high-level module, not low-level components. 

GenerateAsHtml

IFinder

IRenderer

SomeStockFinder

HtmlTableRenderer

  

 FIGURE 3-3 Lower layers are represented by an interface 

 When you get to this, you’re in full compliance with the Dependency Inversion Principle 
(DIP), which states the following: 

 High-level modules should not depend upon low-level modules. Both should 
depend upon abstractions. Abstractions should not depend upon details. Details 
should depend upon abstractions. 

 The inversion in the name of the principle refers to the fact that you proceed in a top-down 
manner during the implementation and focus on the work fl ow in high-level modules rather 
than focusing on the implementation of lower level modules. At this point, lower level  modules 
can be injected directly into the high-level module. Here’s an alternative  implementation for a 
DIP-based module: 

 public class FinanceInfoService 
{
  // Inject dependencies through the constructor. References to such external components
  // are resolved outside this module, for example by using an inversion-of-control
  // framework (more later).
  IFinder _finder = null;
  IRenderer _renderer = null;

  public FinanceInfoService(IFinder finder, IRenderer renderer)
  {
    _finder = finder;
    _renderer = renderer;
  }

  public string GetQuotesAsHtml(string symbols)
  {
    // Get the Finder component 
    if (_finder == null)
      throw new NullReferenceException("Invalid finder.");
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    // Grab raw data
    StockInfo[] stocks = _finder.FindQuoteInfo(symbols);

    // Get the Renderer component
    if (_renderer == null)
      throw new NullReferenceException("Invalid renderer.");
    
    // Render raw data out to HTML
    return _renderer.RenderQuoteInfo(stocks);
  }

  
} 

 In this case, the lower level modules are injected through the constructor of the DIP-based 
class.  

 The DIP has been formalized by Robert Martin. You can read more about it at 
http://www.objectmentor.com/resources/articles/dip.pdf.  

 Important In literature, the DIP is often referred to as inversion of control (IoC). In this book, 
we use the DIP formulation by Robert Martin to indicate the principle of dependency inversion 
and consider IoC as a pattern. In this regard, IoC and dependency injection are, for us, synonyms. 
The terminology, however, is much less important than the recognition that there’s a principle 
about inversion of control and a practical pattern. We’ll return on this in a moment with a more 
detailed explanation of our perspective. 

 From Principles to Patterns 

 It is guaranteed that by fulfi lling all the OOD principles just discussed, you can craft a good 
 design that matches requirements and is maintainable and extensible. A seasoned  development 
team, though, will not be limited to applying effective design principles over and over again; 
members of the team, in fact, will certainly draw from the well of their experience any solutions 
for similar problems that worked in the past. 

 Such building blocks are nothing more than hints and the skeleton of a solution. 
However, these very same building blocks can become more refi ned day after day and 
are  generalized after each usage to become applicable to a wider range of problems and 
 scenarios. Such building blocks might not provide a direct solution, but they usually help 
you to fi nd your (right) way. And using them is usually more effective and faster than 
starting from scratch. 

 By the way, these building blocks are known as patterns. 

. . .
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 What’s a Pattern, Anyway? 

 The word pattern is one of those overloaded terms that morphed from its common usage to 
assume a very specifi c meaning in computer science. According to the dictionary, a pattern is 
a template or model that can be used to generate things—any things. In computer science, 
we use patterns in design solutions at two levels: implementation and architecture.  

 At the highest level, two main families of software patterns are recognized: design patterns 
and architectural patterns. You look at design patterns when you dive into the implementation 
and design of the code. You look at architectural patterns when you fl y high looking for the 
overall design of the system.  

 Let’s start with design patterns. 

 Note A third family of software patterns is also worth a mention—refactoring patterns. You look 
at these patterns only when you’re engaged in a refactoring process. Refactoring is the  process 
of changing your source code to make it simpler, more effi cient, and more readable while 
 preserving the original functionality. Examples of refactoring patterns are “Extract Interface” and 
“Encapsulate Field.” Some of these refactoring patterns have been integrated into Visual Studio 
2008 on the Refactor menu. You fi nd even more patterns in ad hoc tools such as Resharper. 
(For more information, see http://www.jetbrains.com/resharper.)  

 A good book to read to learn about refactoring patterns is Refactoring to Patterns by Joshua 
Kerievsky (Addison-Wesley, 2004).  

 Design Patterns 

 We software professionals owe design patterns to an architect—a real architect, not a 
 software architect. In the late 1970s, Christopher Alexander developed a pattern language 
with the purpose of letting individuals express their innate sense of design through a sort of 
informal grammar. From his work, here’s the defi nition of a pattern:  

 Each pattern describes a problem which occurs over and over again in our 
environment, and then describes the core solution to that problem, in such a way 
that you can use the solution a million times over, without ever doing it the same 
way twice. 

 Nicely enough, although the defi nition was not written with software development in mind, 
it applies perfectly to that. So what’s a design pattern? 

 A design pattern is a known and well-established core solution applicable to a family of 
concrete problems that might show up during implementation. A design pattern is a core 
solution and, as such, it might need adaptation to a specifi c context. This feature becomes a 
major strength when you consider that, in this way, the same pattern can be applied many 
times in many slightly different scenarios.  
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 Design patterns are not created in a lab; quite the reverse. They originate from the real 
world and from the direct experience of developers and architects. You can think of a design 
 pattern as a package that includes the description of a problem, a list of actors participating 
in the problem, and a practical solution. 

 The primary reference for design patterns is GoF. Another excellent reference we want to 
 recommend is Pattern-Oriented Software Architecture by Frank Buschmann, et al. (Wiley, 1996). 

 How to Work with Design Patterns  

 Here is a list of what design patterns are not: 

■  Design patterns are not the verb and should never be interpreted dogmatically. 

■  Design patterns are not Superman and will never magically pop up to save a project in 
trouble. 

■  Design patterns are neither the dark nor the light side of the Force. They might be with 
you, but they won’t provide you with any special extra power. 

 Design patterns are just helpful, and that should be enough. 

 You don’t choose a design pattern; the most appropriate design pattern normally emerges 
out of your refactoring steps. We could say that the pattern is buried under your classes, but 
digging it out is entirely up to you. 

 The wrong way to deal with design patterns is by going through a list of patterns and 
 matching them to the problem. Instead, it works the other way around. You have a problem 
and you have to match the problem to the pattern. How can you do that? It’s quite simple to 
explain, but it’s not so easy to apply.  

 You have to understand the problem and generalize it.  

 If you can take the problem back to its roots, and get the gist of it, you’ll probably fi nd a 
tailor-made pattern just waiting for you. Why is this so? Well, if you really reached the root 
of the problem, chances are that someone else did the same in the past 15 years (the period 
during which design patterns became more widely used). So the solution is probably just 
there for you to read and apply. 

 This observation prompts us to mention the way in which all members of our teams use 
books on design patterns. (By the way, there are always plenty of such books scattered 
throughout the offi ce.) Design patterns books are an essential tool. But we never read such 
books. We use them, instead, like cookbooks. 

 What we normally do is stop reading after the fi rst few pages precisely where most books 
list the patterns they cover in detail inside. Next, we put the book aside and possibly within 
reach. Whenever we encounter a problem, we try to generalize it, and then we fl ip through 



88 Part I Principles

the pages of the book to fi nd a pattern that possibly matches it. We fi nd one much more 
 often than not. And if we don’t, we repeat the process in an attempt to come to a better 
generalization of the problem.  

 When we’ve found the pattern, we start working on its adaptation to our context. This often 
requires refactoring of the code which, in turn, might lead to a more appropriate pattern. 
And the loop goes on. 

 Note If you’re looking for an online quick reference about design patterns, you should look 
at http://www.dofactory.com. Among other things, the site offers .NET-specifi c views of most 
 popular design patterns. 

 Where’s the Value in Patterns, Exactly? 

 Many people would agree in principle that there’s plenty of value in design patterns. Fewer 
people, though, would be able to indicate what the value is and where it can be found. 

 Using design patterns, per se, doesn’t make your solution more valuable. What really matters, 
at the end of the day, is whether or not your solution works and meets requirements. 

 Armed with requirements and design principles, you are up to the task of solving a  problem. 
On your way to the solution, though, a systematic application of design principles to the 
problem sooner or later takes you into the immediate neighborhood of a known design 
 pattern. That’s a certainty because, ultimately, patterns are solutions that others have already 
found and catalogued.  

 At that point, you have a solution with some structural likeness to a known design pattern. 
It is up to you, then, to determine whether an explicit refactoring to that pattern will bring 
some added value to the solution. Basically, you have to decide whether or not the known 
pattern you’ve found represents a further, and desirable, refi nement of your current  solution. 
Don’t worry if your solution doesn’t match a pattern. It means that you have a solution that 
works and you’re happy with that. You’re just fi ne. You never want to change a winning 
solution!  

 In summary, patterns might be an end when you refactor according to them, and they might 
be a means when you face a problem that is clearly resolved by a particular pattern. Patterns 
are not an added value for your solution, but they are valuable for you as an architect or a 
developer looking for a solution.  

 Applied Design Patterns 

 We said a lot about design patterns, but we haven’t shown a single line of code or a 
 concrete  example. Patterns are everywhere, even if you don’t realize it. As we’ll see in 
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a moment,  sometimes patterns are buried in the language syntax—in which case, we’ll call 
them idioms. 

 Have you ever needed to use a global object (or a few global objects) to serve all requests to 
a given class? If you have, you used the Singleton pattern. The Singleton pattern is described 
as a way to ensure that a class has only one instance for which a global point of access is 
 required. Here’s an example: 

 public class Helpers 
{
  public static Helpers DefaultInstance = new Helpers();

  protected Helpers() {}

  public void DoWork()
  {
    
  }

  public void DoMoreWork()
  {
    
  }
} 

 In a consumer class, you take advantage of Helpers through the following syntax: 

 Helpers.DefaultInstance.DoWork(); 

 Swarms of Visual Basic 6 developers have used the Singleton pattern for years probably 
 without ever realizing it. The Singleton pattern is behind the default instance of Visual Basic 6 
forms, as shown here:  

 Form1.Show() 

 The preceding code in Visual Basic 6 invokes the Show method on the default instance of the 
type Form1. In the source, there’s no explicit mention of the default instance only because of 
the tricks played by the Visual Basic runtime. 

 Tip Admittedly, the Singleton pattern on a class is similar to defi ning the same class with only 
static methods. Is there any difference?  

 With a Singleton pattern, you can actually control the number of instances because you’re not 
actually limited to just one instance. In addition, you can derive a new (meaningful) class because 
the Singleton pattern has some instance-level behavior and is not a mere collection of static 
functions. Finally, you have more freedom to control the creation of the actual instance. For 
 example, you can add a static method, say, GetInstance, instead of the static fi eld and add there 
any logic for the factory.  

. . .
. . .
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 Another interesting pattern to briefl y mention is the Strategy pattern. The pattern identifi es a 
particular functionality that a class needs and can be hot-plugged into the class. The  functionality 
is abstracted to an interface or a base class, and the Strategy-enabled class uses it through the 
abstraction, as shown here: 

 public class MyService 
{
  // This is the replaceable strategy
  ILogger _logger;

  public MyService(ILogger logger)
  {
    this._logger = logger;
  }

  public void DoWork()
  {
    this._logger.Log("Begin method ..."); 
    
    this._logger.Log("End method ..."); 
  }
} 

 The Strategy pattern is the canonical example used to illustrate the power of composition. 
The class MyService in the example benefi ts from the services of a logger component, but it 
depends only on an abstraction of it. The external logger component can be changed with 
ease and without risking breaking changes. Moreover, you can even change the component 
(for example, the strategy) on the fl y. Try getting the same fl exibility in a scenario where the 
implementation of the strategy object is hard-coded in the MyService class and you have 
to inherit a new class to change strategy. It’s just impossible to change strategy in that case 
without recompilation and redeployment. 

 Architectural Patterns 

 Architectural patterns capture key elements of software architecture and offer support for 
making hard-to-change decisions about the structure of the system. As we saw in Chapter 1, 
software architecture is mostly about decisions regarding design points that, unlike code 
 design, are not subject to refactoring.  

 Architectural patterns are selected and applied very early in the course of design, and 
they infl uence various quality characteristics of the system, such as performance, security, 
 maintenance, and extensibility. 

 Examples of architectural patterns are Layers and SOA for modeling the application  structure, 
Model-View-Controller for the presentation, Domain Model and Service Layer for the  business 
logic, and Peer-to-Peer for the network topology. 

. . .
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 Antipatterns 

 In physics, we have matter and antimatter. Just as matter is made of particles, antimatter is 
made of antiparticles. An antiparticle is identical to a particle except for the charge—positive 
in the particles of normal matter, and negative in an element of antimatter. 

 Likewise, in software we have patterns made of solutions, and antipatterns made of 
antisolutions. What’s the difference? It is all in the “charge” of the solution. Patterns 
drive us to good solutions, whereas antipatterns drive us to bad solutions. The clearest 
defi nition for antipatterns we could fi nd comes (again) from Ward Cunningham’s wiki, 
at http://c2.com/cgi/wiki?AntiPattern:  

 An anti-pattern is a pattern that tells how to go from a problem to a bad solution. 

 Put this way, one could reasonably wonder why antipatterns are worth the effort 
of  defi ning them. For matter and antimatter, it’s all about the thirst for knowledge. 
But developers and architects are usually more pragmatic and they tend to prefer 
 knowledge with a practical application to their everyday work. What’s the link that 
 relates antipatterns to the real-world of software development? 

 The keystone of antipatterns is that they might, at fi rst, look like good ideas that can 
add new power and effectiveness to your classes. An antipattern, though, is devious 
and insidious and adds more trouble than it removes. From Cunningham’s wiki again: 

 In the old days, we used to just call these bad ideas. The new name is much more 
diplomatic. 

 Designers and antipatterns, in some way, attract each other, but the experienced 
 designer recognizes and avoids antipatterns. (This is defi nitely a characteristic that 
marks the difference between expert and nonexpert designers.) Because of the fatal 
attraction designers generally have toward antipatterns, a catalog of antipatterns is as 
valuable as a catalog of good design patterns.  

 A long list of antipatterns can be found at http://c2.com/cgi/wiki?AntiPatternsCatalog 
and also at http://en.wikipedia.org/wiki/anti-pattern. We like to briefl y address a couple 
of them—one relates to architecture and the other relates to development.  

 The Architecture-As-Requirements antipattern refers to situations where a prominent 
and infl uential member of the design team has a pet technology or product and 
 absolutely wants to use it in the project—even when there is no clear evidence of its 
usefulness and applicability in the customer’s context.  

 The Test-By-Release antipattern refers to releasing a software product without  paying 
much attention to all those boring and time-consuming chores related to unit and 
 integration testing. Are users the fi nal recipients of the product? Great, let’s give them 
the last word on whether the software works or not. 
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 Patterns vs. Idioms 

 Software patterns indicate well-established solutions to recurring design problems. This means 
that developers end up coding their way to a given solution over and over again. And they 
might be repeatedly writing the same boilerplate code in a given programming language.  

 Sometimes specifi c features of a given programming language can help signifi cantly in 
quickly and elegantly solving a recurring problem. That specifi c set of features is referred to 
as an idiom.  

 What’s an Idiom, Anyway? 

 An idiom is a pattern hard-coded in a programming language or implemented out of the 
box in a framework or technology. 

 Like a design pattern, an idiom represents a solution to a recurring problem. However, in 
the case of idioms, the solution to the problem doesn’t come through design techniques 
but merely by using the features of the programming language. Whereas a design  pattern 
 focuses on the object-oriented paradigm, an idiom focuses on the technology of the 
 programming language. 

 An idiom is a way to take advantage of the language capabilities and obtain a desired  behavior 
from the code. In general, an idiom refers to a very specifi c, common, and eye-catching piece 
of code that accomplishes a given operation—as simple as adding to a counter or as complex 
as the implementation of a design pattern. 

 In C#, for example, the ++ operator can be considered a programming idiom for the recurring 
task of adding to a counter variable. The same can be said for the as keyword when it comes to 
casting to a type and defaulting to null in case of failure.  

 Let’s see some more examples of programming idioms in C#. 

 Sample Idioms 

 Events are the canonical example of a programming idiom. Behind events, you fi nd the 
Observer pattern. The pattern refers to a class that has the ability to notify registered 
 observers of some internal states. Whenever a particular state is reached, the class loops 
through the list of registered observers and notifi es each observer of the event. It does that 
using a contracted observer interface.  

 In languages such as C# or Visual Basic .NET that support event-driven programming, you fi nd 
this pattern natively implemented and exposed through keywords. Consider the following code: 

 Button1.Click += new EventHandler(Button1_Click); 

 When it runs, a new “observer for the Click event” is added to the list maintained by object 
Button1. The observer in this case is a delegate—a special class wrapping a class method. 
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The interface through which observer and object communicate is the signature of the 
method wrapped by the delegate.  

 Similarly, the foreach keyword in C# (and For . . . Each in Visual Basic .NET) is a hard-coded 
 version of the Iterator pattern. An iterator object accomplishes two main tasks: it retrieves 
a particular element within a collection and jumps to the next element. This is exactly what 
happens under the hood of the following code: 

 foreach(Customer customer in dataContext.Customers)
{
    // The variable customer references the current element in the collection.
    // Moving to the next element is implicit.
}  

 Finally, the most recent versions of C# and Visual Basic .NET—those shipping with the .NET 
Framework 3.5—also support a set of contextual keywords for Language Integrated Query (LINQ): 
from, select, in, orderby. When you apply the set of LINQ keywords to a database-oriented object 
model, you have LINQ-to-SQL. With LINQ-to-SQL, you ultimately use language keywords to query 
the content of a database. In other words, you programmatically defi ne an object that represents 
a query and run it. This behavior is described by the Query Object pattern. And LINQ-to-SQL is a 
programming idiom for the pattern. 

 Idiomatic Design 

 We spent a lot of time pondering OOD principles and showing their benefi ts and  applicability. 
We did it by reasoning in a general context and looking at the OO paradigm rather than by 
 examining the concrete technology and platform. General principles are always valid and 
should always be given due consideration. 

 However, when you step inside the design, at some point you meet the technology. When this 
happens, you might need to review the way you apply principles in the context of the specifi c 
technology or platform you’re using. This is called idiomatic design. 

 As far as the .NET Framework is concerned, a set of idiomatic design rules exists under the 
name of Framework Design Guidelines. You can access them online from the following URL: 
http://msdn.microsoft.com/en-us/library/ms229042.aspx.  

 Note Framework Design Guidelines is also the title of a book written by Krzysztof Cwalina 
and Brad Abrams from Microsoft (Addison-Wesley, 2008). Cwalina’s blog is also an excellent 
source for tidbits and more details on guidelines. We defi nitely recommend it. The blog is 
http://blogs.msdn.com/kcwalina.  

 As an example, let’s go through a couple of these guidelines. 
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 Idiomatic Design: Structures or Classes? 

 When defi ning a type in a C# .NET application, should you use struct or class? To start out, 
a struct is not inheritable. So if you need to derive new classes from the type, you must opt 
for a class rather than a structure. This said, a class is a reference type and is allocated on 
the heap. Memorywise, a reference type is managed by the garbage collector. Conversely, 
a struct is a value type; it is allocated on the stack and deallocated when it goes out of 
scope. Value types are generally less expensive than reference types to work with, but not 
when boxing is required. In the .NET Framework, boxing is the task of storing a value type 
in an  object reference so that it can be used wherever an object is accepted. As an example, 
 consider the ArrayList class. When you add, say, an Int32 (or a struct) to an ArrayList, the 
value is automatically boxed to an object. Done all the time, this extra work might change 
the balance between class and struct. Hence, the need of an offi cial guideline on the theme 
shows up.  

 The guideline suggests that you always use a class unless the footprint of the type is  below 
16 bytes and the type is immutable. A type is immutable if the state of its instances never 
changes after they’ve been created. (The System.String type in the .NET Framework is 
 immutable because a new string is created after each modifi cation.) However, if the struct 
is going to be boxed frequently you might want to consider using a class anyway. (If you’re 
looking for the list of differences between structs and classes go here: http://msdn.microsoft.
com/en-us/library/saxz13w4.aspx.) 

 Idiomatic Design: Do Not Use List<T> in Public Signatures 

 Another guideline we want to point out has to do with the List<T> type. Their use in 
the  signature of public members is not recommended, as you can see in this blog post: 
http://blogs.gotdotnet.com/kcwalina/archive/2005/09/26/474010.aspx.  

 Why is this so? 

 One of the reasons behind the guideline is that List<T> is a rather bloated type with many 
members that are not relevant in many scenarios. This means that List<T> has low cohesion 
and to some extent violates the Single Responsibility Principle.  

 Another reason for not using List<T> in public signatures is that the class is unsealed, yes, 
but not specifi cally designed to be extended. This doesn’t mean, though, that the class 
is not LSP-safe. If you look at the source of the class, you can see that using List<T> is 
 absolutely safe in any  polymorphic context. The issue is that the class has no protected and 
virtual methods for inheritors to do  something signifi cant that alters the behavior of the 
class while preserving the core interface. The class is just not designed to be extended. 

 It is therefore recommended that you use IList<T>, or derived interfaces, in public signatures. 
Alternatively, use custom classes that directly implement IList<T>. 
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 Dependency Injection 

 As a design principle, DIP states that higher level modules should depend on abstractions 
rather than on the concrete implementation of functionalities. Inversion of control (IoC) is an 
application of DIP that refers to situations where generic code controls the execution of more 
specifi c and external components.  

 In an IoC solution, you typically have a method whose code is fi lled with one or more 
stubs. The functionality of each stub is provided (statically or dynamically) by external 
 components invoked through an abstract interface. Replacing any external  components 
doesn’t affect the high-level method, as long as LSP and OCP are fulfi lled. External 
 components and the high-level method can be developed independently. 

 A real-world example of IoC is Windows shell extensions. Whenever the user right-clicks 
and selects Properties, Windows Explorer prepares a standard dialog box and then does a 
bit of IoC. It looks up the registry and fi nds out whether custom property page extensions 
have been registered. If any are registered, it talks to these extensions through a contracted 
 interface and adds pages to the user dialog box. 

 Another real-world example of IoC is event-driven programming as originally offered by Visual 
Basic and now supported by Windows Forms and Web Forms. By writing a Button1_Click 
 method and attaching it to the Click event of, say, the Button1 control, you essentially instruct 
the (reusable and generic) code of the Button class to call back your Button1_Click method any 
time the user clicks.  

 What is dependency injection (DI), then?  

 From DIP to Inversion of Control  

 For the purpose of this discussion, IoC and DI are synonyms. They are not always considered 
synonyms in literature, as sometimes you fi nd IoC to be the principle and DI the  application 
of the principle—namely, the pattern. In reality, IoC is historically a pattern based on 
DIP. The term dependency injection was coined by Martin Fowler later, as a way to further 
 specialize the concept of inversion of control.  

 IoC/DI remains essentially a pattern that works by letting you pass high-level method 
 references to helper components. This injection can happen in three ways. One way is via the 
constructor of the class to which the method belongs. We did just this in the  implementation 
of the FinanceInfoService class. Another way consists of defi ning a method or a setter 
 property on the class to which the method belongs. Finally, the class can implement an 
 interface whose methods offer concrete implementations of the helper components to use. 

 Today, IoC/DI is often associated with special frameworks that offer a number of rather 
 advanced features.  
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 IoC Frameworks 

 Table 3-1 lists some of the most popular IoC frameworks available. 

 TABLE 3-1 Main IoC Frameworks 

 Framework More Information

 Castle Windsor http://www.castleproject.org/container/index.html

Ninject http://www.ninject.org

 Spring.NET http://www.springframework.net

 StructureMap http://structuremap.sourceforge.net/Default.htm

 Unity http://codeplex.com/unity

 Note that Ninject is also available for Silverlight and the Compact Framework. In  particular, 
Microsoft’s Unity Application Block (Unity for short) is a lightweight IoC  container with 
 support for constructor, property, and method call injection. It comes as part of the Enterprise 
Library 4.0. Let’s use that for our demos. 

 All IoC frameworks are built around a container object that, bound to some confi guration 
information, resolves dependencies. The caller code instantiates the container and passes 
the desired interface as an argument. In response, the IoC/DI framework returns a concrete 
 object that implements that interface.  

 IoC Containers in Action 

 Suppose you have a class that depends on a logger service, such as the class shown here: 

 public class Task
{
  ILogger _logger;
  public Task(ILogger logger)
  {
    this._logger = logger;
  }
  public void Execute()
  {
    this._logger.Log("Begin method ..."); 
    
    this._logger.Log("End method ..."); 
  }
} 

 The Task class receives the logger component via the constructor, but how does it locate and 
instantiate the logger service? A simple and static new statement certainly works, and so does 
a factory. An IoC container is a much richer framework that supports a confi guration section: 

 <configuration>
  <configSections>
    <section name="unity" 
             type="Microsoft.Practices.Unity.Configuration.UnityConfigurationSection,
                   Microsoft.Practices.Unity.Configuration" />   
  </configSections>
  

Framework More Information

. . .
. . .
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  <unity>
    <containers>
       <container>
          <types>
             <type type="ILogger, mdUtils" 
                   mapTo="ManagedDesign.Tools.DbLogger, mdTools" />
          </types>
       </container>
    </containers>
  </unity>
</configuration> 

 The confi guration fi le (app.confi g or web.confi g) contains mapping between interfaces and 
concrete types to be injected. Whenever the container gets a call for ILogger, it’ll return an 
instance of DbLogger: 

 IUnityContainer container = new UnityContainer();
UnityConfigurationSection section = (UnityConfigurationSection) 
                                    ConfigurationManager.GetSection("unity");
section.Containers.Default.Configure(container);
ILogger logger = container.Resolve<ILogger>();
Task t = new Task(logger);
 

 IoC/DI is extremely useful for testing purposes and for switching between implementations 
of internal components. Frameworks just make it simple and terrifi c. In Chapter 6, “The Data 
Access Layer,” we’ll return to IoC/DI to show how to inject a data access layer (DAL) in the 
middle tier of a layered system.  

 To fi nish, here are a couple of brief remarks about IoC/DI containers. Through the  confi guration 
script, you can instruct the container to treat injected objects as singletons. This means, for 
example, that the container won’t create a new instance of DbLogger every time, but will reuse 
the same one. If the DbLogger class is thread safe, this is really a performance boost.  

 In addition, imagine that the constructor of DbLogger needs a reference to another type  registered 
with the IoC/DI framework. The container will be able to resolve that dependency, too. 

 Applying Requirements by Design 

 In Chapter 1, we saw that international standard ISO/IEC 9126 lists testability and security as 
key quality characteristics for any software architecture. This means that we should consider 
testability and security as nonfunctional requirements in any software architecture and start 
planning for them very early in the design phase. 

 Testability 

 A broadly accepted defi nition for testability in the context of software architecture describes 
it as the ease of performing testing. And testing is the process of checking software to ensure 
that it behaves as expected, contains no errors, and satisfi es its requirements. 

. . .
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 A popular slogan to address the importance of software testing comes from Bruce Eckel and 
reads like this: 

 If it ain’t tested, it’s broken. 

 The key thing to keep in mind is that you can state that your code works only if you can  provide 
evidence for that it does. A piece of software can switch to the status of working not when 
someone states it works (whether stated by end users, the project manager, the customer, or 
the chief architect), but only when its correctness is proven beyond any reasonable doubt.  

 Software Testing 

 Testing happens at various levels. You have unit tests to determine whether individual 
 components of the software meet functional requirements. You have integration tests to 
determine whether the software fi ts in the environment and infrastructure and  whether 
two or more components work well together. Finally, you have acceptance tests to 
 determine whether the completed system meets customer requirements. 

 Unit tests and integration tests pertain to the development team and serve the purpose of 
making the team confi dent about the quality of the software. Test results tell the team if the 
team is doing well and is on the right track. Typically, these tests don’t cover the entire code 
base. In general, there’s no clear correlation between the percentage of code coverage and 
quality of code. Likewise, there’s also no agreement on what would be a valid percentage of 
code coverage to address. Some fi gure that 80 percent is a good number. Some do not even 
instruct the testing tool to calculate it. 

 The customer is typically not interested in the results of unit and integration tests. Acceptance 
tests, on the other hand, are all the customer cares about. Acceptance tests  address the 
 completed system and are part of the contract between the customer and the development 
team. Acceptance tests can be written by the customer itself or by the team in strict  collaboration 
with the customer. In an acceptance test, you can fi nd a checklist such as the following one: 

 1) Insert a customer with the following data ...;  

 2) Modify the customer using an existing ID; 

 3) Observe the reaction of the system and verify specific expected results; 

 Another example is the following: 

 1) During a batch, shut down one nodes on the application server; 

 2) Observe the reaction of the system and the results of the transaction; 

 Run prior to delivery, acceptance tests, if successful, signal the termination of the project and 
the approval of the product. (As a consultant, you can issue your fi nal invoice at this point.) 

 Tests are a serious matter.  
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 Testing the system by having end users poke around the software for a few days is not a 
 reliable (and exhaustive) test practice. As we saw earlier in the chapter, it is even considered 
to be an antipattern.  

 Note Admittedly, in the early 1990s Dino delivered a photographic Windows application using 
the test-by-poking-around approach. We were a very small company with fi ve developers, plus 
the boss. Our (patented?) approach to testing is described in the following paragraph.  

 The boss brings a copy of the program home. The boss spends the night playing with the 
 program. Around 8 a.m. the next day, the team gets a call from the boss, who is going to 
get a few hours of very well-deserved sleep. The boss recites a long list of serious bugs to be 
fi xed  instantly and makes obscure references to alleged features of the program, which are 
unknown to the entire team. Early in the afternoon, the boss shows up at work and discusses 
 improvements in a much more relaxed state of mind. The list of serious bugs to be fi xed instantly 
morphs into a short list of new features to add.  

 In this way, however, we delivered the application and we could say we delivered a reliable and 
fully functioning piece of software. It was the 1994, though. The old days. 

 Software Contracts 

 A software test verifi es that a component returns the correct output in response to given 
 input and a given internal state. Having control over the input and the state and being able 
to observe the output is therefore essential. 

 Your testing efforts greatly benefi t from detailed knowledge of the software contract  supported 
by a method. When you design a class, you should always be sure you can answer the following 
three questions about the class and its methods in particular: 

■  Under which conditions can the method be invoked?  

■  Which conditions are verifi ed after the method terminates?  

■  Which conditions do not change before and after the method execution? 

 These three questions are also known, respectively, as preconditions, postconditions, and 
invariants. 

 Preconditions mainly refer to the input data you pass; specifi cally, data that is of given types 
and values falling within a given range. Preconditions also refer to the state of the object 
 required for execution—for example, the method that might need to throw an exception 
if an internal member is null or if certain conditions are not met.  

 When you design a method with testability in mind, you pay attention to and validate input 
carefully and throw exceptions if any preconditions are not met. This gets you clean code, 
and more importantly, code that is easier to test.  
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 Postconditions refer to the output generated by the method and the changes produced to 
the state of the object. Postconditions are not directly related to the exceptions that might 
be thrown along the way. This is not relevant from a testing perspective. When you do 
 testing, in fact, you execute the method if preconditions are met (and if no exceptions are 
raised because of failed preconditions). The method might produce the wrong results, but 
it should not fail unless really exceptional situations are encountered. If your code needs to 
read a fi le, that the fi le exists is a precondition and you should throw a FileNotFoundException 
before attempting to read. A FileIOException, say, is acceptable only if during the test you 
lose connection to the fi le. 

 There might be a case where the method delegates some work to an internal component, 
which might also throw exceptions. However, for the purpose of testing, that component 
will be replaced with a fake one that is guaranteed to return valid data by contract. (You are 
 testing the outermost method now; you have tested the internal component already or you’ll 
test it later.) So, in the end, when you design for testability the exceptions you should care 
about most are those in the preconditions. 

 Invariants refer to property values, or expressions involving members of the object’s state, 
that do not change during the method execution. In a design for testability scenario, you 
know these invariants clearly and you assert them in tests. As an example of an  invariant, 
consider the property Status of DbConnection: it has to be Open before you invoke 
BeginTransaction, and it must remain Open afterward. 

 Software contracts play a key role in the design of classes for testability. Having a contract 
clearly defi ned for each class you write makes your code inherently more testable.  

 Unit Testing 

 Unit testing verifi es that individual units of code are working properly according to their 
software contract. A unit is the smallest part of an application that is testable—typically, 
a method.  

 Unit testing consists of writing and running a small program (referred to as a test harness) 
that instantiates classes and invokes methods in an automatic way. In the end, running a 
 battery of tests is much like compiling. You click a button, you run the test harness and, 
at the end of it, you know what went wrong, if anything. 

 In its simplest form, a test harness is a manually written program that reads test-case 
 input values and the corresponding expected results from some external fi les. Then the 
test  harness calls methods using input values and compares results with expected values. 
Needless to say, writing such a test harness entirely from scratch is, at the very minimum, 
time consuming and error prone. But, more importantly, it is restrictive in terms of the  testing 
capabilities you can take advantage of. 
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At the end of the day, the most effective way to conduct unit testing passes through the 
use of an automated test framework. An automated test framework is a developer tool that 
 normally includes a runtime engine and a framework of classes for simplifying the creation 
of test programs. Table 3-2 lists some of the most popular ones.  

TABLE 3-2 Popular Testing Tools 

Product Description

MSTest The testing tool incorporated into Visual Studio 2008 Professional, Team Tester, 
and Team Developer. It is also included in Visual Studio 2005 Team Tester and Team 
Developer. 

MBUnit An open-source product with a fuller bag of features than MSTest. However, the tight 
 integration that MSTest has with Visual Studio and Team Foundation Server largely 
makes up for the smaller feature set. For more information on MBUnit, pay a visit to 
http://www.mbunit.com. 

NUnit One of the most widely used testing tools for the .NET Framework. It is an open-source 
product. Read more at http://www.nunit.org. 

 xUnit.NET Currently under development as a CodePlex project, this tool builds on the experience 
of James Newkirk—the original author of NUnit. It is defi nitely an interesting tool to 
look at, with some interesting and innovative features. For more information, pay a visit 
to http://www.codeplex.com/xunit.  

A nice comparison of testing tools, in terms of their respective feature matrix, is available at 
http://www.codeplex.com/xunit/Wiki/View.aspx?title=Comparisons.  

Unit Testing in Action 

Let’s have a look at some tests written using the MSTest tool that comes with Visual Studio 
2008. You start by grouping related tests in a text fi xture. Text fi xtures are just test-specifi c 
classes where methods typically represent tests to run. In a text fi xture, you might also have 
code that executes at the start and end of the test run. Here’s the skeleton of a text fi xture 
with MSTest: 

using Microsoft.VisualStudio.TestTools.UnitTesting;

[TestClass]
public class CustomerTestCase
{
  private Customer customer;
  
  [TestInitialize]
  public void SetUp()
  {
    customer = new Customer();
  }

  [TestCleanup]

Product Description

. . .
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  public void TearDown()
  {
    customer = null;
  }

  // Your tests go here
  [TestMethod]
  public void Assign_ID()
  { 
    
  }
  
} 

 It is recommended that you create a separate assembly for your tests and, more importantly, 
that you have tests for each class library. A good practice is to have an XxxTestCase class for 
each Xxx class in a given assembly. 

 As you can see, you transform a plain .NET class into a test fi xture by simply adding the 
TestClass attribute. You turn a method of this class into a test method by using the TestMethod 
attribute instead. Attributes such as TestInitialize and TestCleanup have a special meaning and 
indicate code to execute at the start and end of the test run. Let’s examine an initial test: 

 [TestMethod]
public void Assign_ID()
{
  // Define the input data for the test
  string id = "MANDS";

  // Execute the action to test (assign a given value)
  customer.ID = id;

  // Test the postconditions: 
  // Ensure that the new value of property ID matches the assigned value.
  Assert.AreEqual(id, customer.ID);
} 

 The test simply verifi es that a value is correctly assigned to the ID property of the Customer class. 
You use methods of the Assert object to assert conditions that must be true when checked. 

 The body of a test method contains plain code that works on properties and methods of 
a class. Here’s another example that invokes a method on the Customer class: 

 [TestMethod]
public void TestEmptyCustomersHaveNoOrders()
{
  Customer c = new Customer();
  Assert.AreEqual<decimal>(0, c.GetTotalAmountOfOrders());
} 

 In this case, the purpose of the test is to ensure that a newly created Customer instance has 
no associated orders and the total amount of orders add up to zero. 

. . .
. . .
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 Dealing with Dependencies 

 When you test a method, you want to focus only on the code within that method. All that 
you want to know is whether that code provides the expected results in the tested scenarios. 
To get this, you need to get rid of all dependencies the method might have. If the method, 
say, invokes another class, you assume that the invoked class will always return correct 
 results. In this way, you eliminate at the root the risk that the method fails under test because 
a failure occurred down the call stack. If you test method A and it fails, the reason has to 
be found exclusively in the source code of method A—given preconditions, invariants, and 
behavior—and not in any of its dependencies.  

 Generally, the class being tested must be isolated from its dependencies.  

 In an object-oriented scenario, class A depends on class B when any of the following  conditions 
are verifi ed: 

■  Class A derives from class B. 

■  Class A includes a member of class B. 

■  One of the methods of class A invokes a method of class B. 

■  One of the methods of class A receives or returns a parameter of class B. 

■  Class A depends on a class that, in turn, depends on class B. 

 How can you neutralize dependencies when testing a method? This is exactly where manually 
written test harnesses no longer live up to your expectations, and you see the full power of 
automated testing frameworks.  

 Dependency injection really comes in handy here and is a pattern that has a huge  impact 
on testability. A class that depends on interfaces (the fi rst principle of OOD), and uses 
 dependency injection to receive from the outside world any objects it needs to do its own 
work, is inherently more testable. Let’s consider the following code snippet: 

 public class Task
{
  // Class Task depends upon type ILogger
  ILogger _logger;
  
  public Task(ILogger logger)
  {
    this._logger = logger;
  }

  public int Sum(int x, int y)
  {
    return x+y;
  }
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  public void Execute()
  {
    // Invoke an external "service"; not relevant when unit-testing this method
    this._logger.Log("Begin method ..."); 

    // Method specific code; RELEVANT when unit-testing this method
    

    // Invoke an external "service"; not relevant when unit-testing this method
    this._logger.Log("End method ..."); 
  }
} 

 We want to test the code in method Execute, but we don’t care about the logger. Because the 
class Task is designed with DI in mind, testing the method Execute in total isolation is much easier.  

 Again, how can you neutralize dependencies when testing a method? 

 The simplest option is using fake objects. A fake object is a relatively simple clone of an  object 
that offers the same interface as the original object but returns hard-coded or  programmatically 
determined values. Here’s a sample fake object for the ILogger type: 

 public class FakeLogger : ILogger
{
    public void Log(string message)
    {
        return;
    }
} 

 As you can see, the behavior of a fake object is hard-coded; the fake object has no state and 
no signifi cant behavior. From the fake object’s perspective, it makes no difference how many 
times you invoke a fake method and when in the fl ow the call occurs. Let’s see how to inject 
a fake logger in the Task class: 

 [TestMethod]
public void TestIfExecuteWorks()
{
  // Inject a fake logger to isolate the method from dependencies
  FakeLogger fake = new FakeLogger();
  Task task = new Task(fake); 

  // Set preconditions
  int x = 3;
  int y = 4;
  int expected = 7;

  // Run the method
  int actual = task.Sum(x, y);

  // Report about the code's behavior using Assert statements
  Assert.AreEqual<int>(expected, actual);
  
} 

. . .
. . .
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 In a test, you set the preconditions for the method, run the method, and then observe the 
resulting postconditions. The concept of assertion is central to the unit test. An assertion is 
a condition that might or might not be verifi ed. If verifi ed, the assertion passes. In MSTest, 
the Assert class provides many static methods for making assertions, such as AreEqual, 
IsInstanceOfType, and IsNull.  

 In the preceding example, after executing the method Sum you are expected to place one or 
more assertions aimed at verifying the changes made to the state of the object or comparing 
the results produced against expected values.  

 Note In some papers, terms such as stub and shunt are used to indicate slight variations of what 
we reference here as a fake. A broadly accepted differentiation is based on the fact that a stub 
(or a shunt) merely provides the implementation of an interface. Methods can just throw or, at 
most, return canned values.  

 A fake, on the other hand, is a slightly more sophisticated object that, in addition to  implementing 
an interface, also usually contains more logic in the methods. Methods on a fake object can 
return canned values but also programmatically set values. Both fakes and stubs can provide a 
 meaningful implementation for some methods and just throw exceptions for other methods that 
are not considered relevant for the purpose of the test. 

 A bigger and juicier differentiation, however, is the one that exists between fakes (or stubs) and 
mock objects, which is discussed next. 

 From Fakes to Mocks 

 A mock object is a more evolved and recent version of a fake. A mock does all that a fake or a stub 
does, plus something more. In a way, a mock is an object with its own personality that  mimics the 
behavior and interface of another object. What more does a mock provide to testers?  

 Essentially, a mock allows for verifi cation of the context of the method call. With a mock, you 
can verify that a method call happens with the right preconditions and in the correct order 
with respect to other methods in the class.  

 Writing a fake manually is not usually a big issue—all the logic you need is for the most part 
simple and doesn’t need to change frequently. When you use fakes, you’re mostly interested 
in verifying that some expected output derives from a given input. You are interested in the 
state that a fake object might represent; you are not interested in interacting with it.  

 You use a mock instead of a fake only when you need to interact with dependent objects 
 during tests. For example, you might want to know whether the mock has been invoked or not, 
and you might decide within the text what the mock object has to return for a given method.  

 Writing mocks manually is certainly a possibility, but is rarely an option you really want to 
consider. For the level of fl exibility you expect from a mock, you should be updating its 
source code every now and then or you should have (and maintain) a different mock for each 
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test case in which the object is being involved. Alternatively, you might come up with a very 
generic mock class that works in the guise of any object you specify. This very generic mock 
class also exposes a general-purpose interface through which you set your  expectations 
for the mocked object. This is exactly what mocking frameworks do for you. In the end, 
you never write mock objects manually; you generate them on the fl y using some mocking 
framework. 

 Table 3-3 lists and briefl y describes the commonly used mocking frameworks. 

TABLE 3-3 Some Popular Mocking Frameworks 

 Product Description

 NMock2 An open-source library providing a dynamic mocking framework for .NET  interfaces. 
The mock object uses strings to get input and refl ection to set  expectations. 

Read more at http://sourceforge.net/projects/nmock2. 

 TypeMock A commercial product with unique capabilities that basically don’t require you 
to (re)design your code for testability. TypeMock  enables testing code that was 
 previously considered untestable, such as static methods, nonvirtual methods, and 
sealed classes.

Read more at http://www.typemock.com.  

 Rhino Mocks An open-source product. Through a wizard, it generates a static mock class for 
 type-safe testing. You set mock expectations by  accessing directly the mocked 
 object, rather than going through one more level of indirection.  

Read more at http://www.ayende.com/projects/rhino-mocks.aspx. 

 Let’s go through a mocking example that uses NMock2 in MSTest. 

 Imagine you have an AccountService class that depends on the ICurrencyService type. The 
AccountService class represents a bank account with its own currency. When you transfer 
funds between accounts, you might need to deal with conversion rates, and you use the 
ICurrencyService type for that: 

 public interface ICurrencyService
{
  // Returns the current conversion rate: how many "fromCurrency" to  
  // be changed into toCurrency
  decimal GetConversionRate(string fromCurrency, string toCurrency);
} 

 Let’s see what testing the TransferFunds method looks like: 

 [TestClass]
public class CurrencyServiceTestCase
{
  private Mockery mocks;
  private ICurrencyService mockCurrencyService;
  private IAccountService accountService;

Product Description
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  [TestInitialize]
  public void SetUp()
  {
    // Initialize the mocking framework
    mocks = new Mockery();

    // Generate a mock for the ICurrencyService type
    mockCurrencyService = mocks.NewMock<ICurrencyService>();

    // Create the object to test and inject the mocked service
    accountService = new AccountService(mockCurrencyService);
  }

  [TestMethod]
  public void TestCrossCurrencyFundsTransfer()
  {
    // Create two test accounts
    Account eurAccount = new Account("12345", "EUR");
    Account usdAccount = new Account("54321", "USD");
    usdAccount.Deposit(1000);

    // Set expectations for the mocked object:
    //   When method GetConversionRate is invoked with (USD,EUR) input
    //   the mock returns 0.64
    Expect.Once.On(mockCurrencyService)
               .Method("GetConversionRate")
               .With("USD", "EUR")
               .Will(Return.Value(0.64));

    // Invoke the method to test (and transfer $500 to an EUR account)
    accountService.TransferFunds(usdAccount, eurAccount, 500);

    // Verify postconditions through assertions
    Assert.AreEqual<int>(500, usdAccount.Balance);
    Assert.AreEqual<int>(320, eurAccount.Balance);
    mocks.VerifyAllExpectationsHaveBeenMet();
  }
} 

 You fi rst create a mock object for each dependent type. Next, you programmatically set 
 expectations on the mock using the static class Expect from the NMock2 framework. 
In  particular, in this case you establish that when the method GetConversionRate on the 
mocked type is  invoked with a pair of arguments such as “USD” and “EUR”, it has to return 
0.64. This is just the value that the method TransferFunds receives when it attempts to invoke 
the currency services internally. 

 There’s no code around that belongs to a mock object, and there’s no need for developers 
to look into the implementation of mocks. Reading a test, therefore, couldn’t be easier. The 
expectations are clearly declared and correctly passed on the methods under test. 

 Note A mock is generated on the fl y using .NET refl ection to inspect the type to mimic and the 
CodeDOM API to generate and compile code dynamically. 
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 Security 

 Located at Carnegie Mellon University in Pittsburgh, Pennsylvania, the CERT Coordination 
Center (CERT/CC) analyzes the current state of Internet security. It regularly receives reports 
of vulnerabilities and researches the inner causes of security vulnerabilities. The center’s 
 purpose is to help with the development of secure coding practices.  

 Figure 3-4 shows a statistic about the number of identifi ed vulnerabilities in the past ten years. 
As you can see, the trend is impressive. Also, you should consider that the data  includes only 
the fi rst two quarters of 2008. (See http://www.cert.org/stats/vulnerability_remediation.html.)  
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 FIGURE 3-4 Identifi ed security vulnerabilities in past ten years 

 It is broadly accepted that these numbers have a common root—they refer to software created 
through methodologies not specifi cally oriented to security. On the other hand, the problem of 
security is tightly related to the explosion in the popularity of the Internet. Only ten years ago, 
the big bubble was just a tiny balloon. 

 In sharp contrast with the ISO/IEC 9126 standard, all current methodologies for  software 
 development (agile, waterfall, MSF, and the like) hardly mention the word security. Additionally, 
the use of these methodologies has not resulted (yet?) in a measurable reduction of security 
bugs. To accomplish this, you need more than these methodologies offer. 

 Security as a (Strict) Requirement 

 We can’t really say whether this is a real story or an urban legend, but it’s being said that a 
few years ago, in the early days of the .NET Framework, a consultant went to some CIA offi ce 
for a training gig. When introducing Code Access Security—the .NET Framework mechanism 
to limit access to code—the consultant asked students the following question: “Are you really 
serious about security here?” 

 Can you guess the answer? It was sort of like this: “Not only yes, but HELL YES. And you’ll 
 experience that yourself when you attempt to get out of the building.”  
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 Being serious about (software) security, though, is a subtle concept that goes far beyond 
even your best intentions. As Microsoft’s senior security program manager Michael Howard 
points out: 

 If your engineers know nothing about the basic security tenets, common security 
defect types, basic secure design, or security testing, there really is no reasonable 
chance they could produce secure software. I say this because, on the average, 
software engineers don’t pay enough attention to security. They may know quite 
a lot about security features, but they need to have a better understanding of what 
it takes to build and deliver secure features. 

 Security must be taken care of from the beginning. A secure design starts with the  architecture; 
it can’t be something you bolt on at a later time. Security is by design. To address security 
 properly, you need a methodology developed with security in mind that leads you to design 
your system with security in mind. This is just what the Security Development Lifecycle (SDL) 
is all about. 

 Security Development Lifecycle 

 SDL is a software development process that Microsoft uses internally to improve software 
security by reducing security bugs. SDL is not just an internal methodology. Based on the 
impressive results obtained internally, Microsoft is now pushing SDL out to any development 
team that wants to be really serious about security.  

 SDL is essentially an iterative process that focuses on security aspects of developing  software. 
SDL doesn’t mandate a particular software development process and doesn’t preclude any. It is 
agnostic to the methodology in use in the project—be it waterfall, agile, spiral, or  whatever else.  

 SDL is the incarnation of the SD3+C principle, which is a shortcut for “Secure by Design, 
Secure by Default, Secure in Deployment, plus Communication.” Secure by Design refers to 
identifying potential security risks starting with the design phase. Secure by Default refers 
to reducing the attack surface of each component and making it run with the least possible 
number of privileges. Secure in Deployment refers to making security requirements clear 
 during deployment. Communication refers to sharing information about fi ndings to apply 
a fi x in a timely manner.  

 Foundations of SDL: Layering 

 The foundations of SDL are essentially three: layering, componentization, and roles.  

 Decomposing the architecture to layers is important because of the resulting separation of 
concerns. Having functionality organized in distinct layers makes it easier to map functions 
to physical tiers as appropriate. This is benefi cial at various levels.  

 For example, it is benefi cial for the data server.  
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 You can isolate the data server at will, and even access it through a separate network. In this 
case, the data server is much less sensitive to denial of service (DoS) attacks because of the 
fi rewalls scattered along the way that can recognize and neutralize DoS packets.  

 You move all security checks to the business layer running on the application server and end 
up with a single user for the database—the data layer. Among other things, this results in a 
bit less work for the database and a pinch of additional scalability for the system. 

 Layers are benefi cial for the application server, too.  

 You use Code Access Security (CAS) on the business components to stop untrusted code 
from executing privileged actions. You use CAS imperatively through xxxPermission classes 
to decide what to do based on actual permissions. You use CAS declaratively on classes 
or assemblies through xxxPermission attributes to prevent unauthorized use of sensitive 
 components. If you have services, the contract helps to delimit what gets in and what gets 
out of the service.  

 Finally, if layering is coupled with thin clients, you have fewer upgrades (which are always 
a risk for the stability of the application) and less logic running on the client. Securitywise, 
this means that a possible dump of the client process would reveal much less information, 
so  being able to use the client application in partial trust mode is more likely.  

 Foundations of SDL: Componentization  

 Each layer is decomposed to components. Components are organized by functions and 
 required security privileges. It should be noted that performance considerations might lead 
you to grouping or further factorizing components in successive iterations. 

 Componentization here means identifying the components to secure and not merely  breaking 
down the logical architecture into a group of assemblies. 

 For each component, you defi ne the public contract and get to know exactly what data is 
expected to come in and out of the component. The decomposition can be hierarchical. 
From a security point of view, at this stage you are interested only in components within a 
layer that provide a service. You are not interested, for example, in the object model (that is, 
the domain model, typed DataSets, custom DTOs) because it is shared by multiple layers and 
represents only data and behavior on the data.  

 For each component, you identify the least possible set of privileges that make it run. From a 
security perspective, this means that in case of a successful attack, attackers gain the minimum 
possible set of privileges. 

 Components going to different processes run in total isolation and each has its own 
 access control list (ACL) and Windows privileges set. Other components, conversely, might 
 require their own AppDomain within the same .NET process. An AppDomain is like a virtual 
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 process within a .NET application that the Common Language Runtime (CLR) uses to  isolate 
code within a secure boundary. (Note, however, that an AppDomain doesn’t  represent 
a security barrier for applications running in full-trust mode.) An AppDomain can be 
 sandboxed to have a limited set of permissions that, for example, limit disk access, socket 
access, and the like.  

 Foundation of SDL: Roles 

 Every application has its own assets. In general, an asset is any data that attackers might 
aim at, including a component with high privileges. Users access assets through the routes 
 specifi ed by use cases. From a security perspective, you should associate use cases with 
 categories of users authorized to manage related assets.  

 A role is just a logical attribute assigned to a user. A role refers to the logical role the user 
plays in the context of the application. In terms of confi guration, each user can be assigned 
one or more roles. This information is attached to the .NET identity object, and the  application 
code can check it before the execution of critical operations. For example, an application 
might defi ne two roles—Admin and Guest, each representative of a set of application- specifi c 
 permissions. Users belonging to the Admin role can perform tasks that other users are 
 prohibited from performing. 

 Assigning roles to a user account doesn’t add any security restrictions by itself. It is the 
 responsibility of the application—typically, the business layer—to ensure that users perform 
only operations compatible with their role.  

 With roles, you employ a unique model for authorization, thus unifying heterogeneous  security 
models such as LDAP, NTFS, database, and fi le system. Also, testing is easier. By  impersonating 
a role, you can test access on any layer. 

 In a role-based security model, total risks related to the use of impersonation and 
 delegation are mitigated. Impersonation allows a process to run using the security 
 credentials of the  impersonated user but, unlike delegation, it doesn’t allow access to 
 remote resources on behalf of the impersonated user. In both cases, the original caller’s 
 security context can be used to go through computer boundaries from the user interface 
to the middle tier and then all the way down to the database. This is a risk in a security 
model in which permissions are restricted by object. However, in a role-based security 
model, the ability to execute a method that accesses specifi c resources is determined by 
role  membership, not credentials. User’s credentials might not be suffi cient to operate on 
the application and data server. 

 Authorization Manager (AzMan) is a separate Windows download that enables you to group 
individual operations together to form tasks. You can then authorize roles to perform specifi c 
tasks, individual operations, or both. AzMan offers a centralized console (an MMC snap-in) 
to defi ne manager roles, operations, and users. 
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 Note AzMan is a COM-based component that has very little to share with the .NET Framework. 
The .NET-based successor to AzMan is still in the works somewhere in Redmond. The community 
of developers expects something especially now that Microsoft has unveiled a new claims-based 
identity model that essentially factors authentication out of applications so that each request 
brings its own set of claims, including user name, e-mail address, user role, and even more 
 specifi c information.   

 Threat Model 

 Layering, componentization, and roles presuppose that, as an architect, you know the assets 
(such as sensitive data, highly privileged components) you want to protect from attackers. 
It also presupposes that you understand the threats related to the system you’re building 
and which vulnerabilities it might be exposed to after it is implemented. Design for security 
means that you develop a threat model, understand vulnerabilities, and do something to 
mitigate risks.  

 Ideally, you should not stop at designing this into your software, but look ahead to threats 
and vulnerabilities in the deployment environment and to those resulting from interaction 
with other products or systems. To this end, understanding the threats and developing a 
threat model is a must. For threats found at the design level, applying countermeasures is 
easy. Once the application has been developed, applying countermeasures is much harder. 
If an application is deployed, it’s nearly impossible to apply internal countermeasures—you 
have to rely on external security practices and devices. Therefore, it’s better to architect 
 systems with built-in security features. 

 You can fi nd an interesting primer on threat models at the following URL: http://blogs.msdn.
com/ptorr/archive/2005/02/22/GuerillaThreatModelling.aspx.  

 Threat modeling essentially consists of examining components for different types of threats. 
STRIDE is a threat modeling practice that lists the following six types of threats: 

■  Spoofi ng of user identity Refers to using false identities to get into the system. This 
threat is mitigated by fi ltering out invalid IP addresses. 

■  Tampering Refers to intercepting/modifying data during a module’s conversation. 
This threat is mitigated by protecting the communication channel (for example, SSL 
or IPSec). 

■  Repudiation Refers to the execution of operations that can’t be traced back to the 
author. This threat is mitigated by strong auditing policies.   

■  Information disclosure Refers to unveiling private and sensitive information to 
 unauthorized users. This threat is mitigated by enhanced authorization rules. 
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■  Denial of service Refers to overloading a system up to the point of blocking it. This 
threat is mitigated by fi ltering out requests and frequently and carefully checking the 
use of the bandwidth. 

■  Elevation of privilege Refers to executing operations that require a higher privilege 
than the privilege currently assigned. This threat is mitigated by assigning the least 
 possible privilege to any components. 

 If you’re looking for more information on STRIDE, you can check out the following URL: 
http://msdn.microsoft.com/en-us/magazine/cc163519.aspx.  

 After you have the complete list of threats that might apply to your application, you prioritize 
them based on the risks you see associated with each threat. It is not realistic, in fact, that 
you address all threats you fi nd. Security doesn’t come for free, and you should balance costs 
with effectiveness. As a result, threats that you regard as unlikely or not particularly harmful 
can be given a lower priority or not covered at all.  

 How do you associate a risk with a threat? You use the DREAD model. It rates the risk as the 
probability of the attack multiplied by the impact it might have on the system. You should 
focus on the following aspects: 

■  Discoverability Refers to how high the likelihood is that an attacker discovers the 
 vulnerability. It is a probability attribute.   

■  Reproducibility Refers to how easy it could be to replicate the attack. It is a  probability 
attribute.   

■  Exploitability Refers to how easy it could be to perpetrate the attack. It is a  probability 
attribute.   

■  Affected users Refers to the number of users affected by the attack. It is an impact 
attribute.   

■  Damage potential Refers to the quantity of damage the attack might produce. It is 
an impact attribute.    

 You typically use a simple High, Medium, or Low scale to determine the priority of the threats 
and decide which to address and when. If you’re looking for more information on DREAD, 
you can check out the following URL: http://msdn.microsoft.com/en-us/library/aa302419.aspx. 

 Note STRIDE and DREAD is the classic analysis model pushed by the Security Development 
Lifecycle (SDL) team and is based on the attacker’s viewpoint. It works great in an  enterprise 
scenario, but it requires a security specialist because the resulting threat model is large and 
 complex. Another, simplifi ed, model is emerging—the CIA/PI model, which stands for 
Confi dentiality Integrity Availability/Probability Impact. This model is simplifi ed and  focuses 
on the defender’s point of view. An interesting post is this one: http://blogs.msdn.com/ 
threatmodeling/archive/2007/10/30/a-discussion-on-threat-modeling.aspx.  
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 Security and the Architect 

 An inherently secure design, a good threat model, and a precise analysis of the risk 
might mean very little if you then pair them with a weak and insecure implementation. 
As an  architect, you should intervene at three levels: development, code review, and 
testing.  

 As far as development is concerned, the use of strong typing should be enforced because, 
by itself, it cuts off a good share of possible bugs. Likewise, knowledge of common security 
patterns (for example, the “all input is evil” pattern), application of a good idiomatic design, 
and static code analysis (for example, using FxCop) are all practices to apply regularly and 
rigorously. 

 Sessions of code review should be dedicated to a careful examination of the actual 
 confi guration and implementation of security through CAS, and to spot the portions 
of code prone to  amplifi ed attacks, such as cross-site scripting, SQL injection, overfl ows, 
and similar attack mechanisms.  

 Unit testing for security is also important if your system receives fi les and sequences 
of bytes. You might want to consider a technique known as fuzzing. Fuzzing is a  software 
testing  technique through which you pass random data to a component as input. 
The code might throw an appropriate exception or degrade gracefully. However, it might 
also crash or fail some expected assertions. This technique can reveal some otherwise 
hidden bugs.  

 Final Security Push 

 Although security should be planned for from the outset, you can hardly make some 
 serious security tests until the feature set is complete and the product is close to its beta 
stage. It goes without saying that any anomalies found during security tests lead the team 
to  reconsidering the design and implementation of the application, and even the threat 
model. 

 The fi nal security push before shipping to the customer is a delicate examination and should 
 preferably be delegated to someone outside the team, preferably some other  independent 
fi gure.  

 Releasing to production doesn’t mean the end of the security life cycle. As long as a system is 
up and running, it is exposed to possible attacks. You should always fi nd time for  penetration 
testing, which might lead to fi nding new vulnerabilities. So the team then starts the cycle 
again with the analysis of the design, implementation, and threat model. Over and over 
again, in an endless loop.  
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 Performance Considerations 

 You might wonder why we’re including a sidebar on performance rather than a 
full “Design for Performance” section. Performance is something that results from 
the  actual behavior of the system, not something you can put in. If you’re creating 
a  standalone, small disconnected program, you can optimize it almost at will. It is 
 radically different when we move up in scope to consider an enterprise-class system.  

 Performance is not something absolute.  

 What is performance? Is it the response time the end user perceives? Is it resource 
utilization that might or might not penalize the middle tier? Is it network latency or 
 database I/O latency? Is it related to caching or smarter algorithms? Is it a matter of 
bad design? Is it merely horsepower?  

 Too often, a design decision involves a tradeoff between performance and scalability. 
You release some performance-oriented improvement to achieve better scalability—that is, 
a better (read, faster) response when the workload grows. Performance is never  something 
absolute. 

 In an enterprise-class system, effi ciency and performance are certainly requirements 
to take into account, but they are not fundamental requirements.  

 In our opinion, a bad design infl uences performance, but there’s no special suggestion 
we can share to help you to come up with a high-performance design. The design is 
either good or bad; if it’s good, it sets the groundwork for good performance. 

 As we’ve seen in this chapter, a good design is based on interfaces, has low coupling, and 
allows for injection of external functionalities. Done in this way, the design leaves a lot of 
room for replacing components with others that might provide a better performance. 

 As Donald Knuth used to say, “Premature optimization is the root of all evil.” So optimizing 
is fi ne and necessary, but you should care about it only when you have evidence of poor 
performance. And only when you know what is doing poorly and that it can be improved. 
Optimization is timely—it is never premature, never late. 

 Performance is hardly something that works (or doesn’t work) in theory. You can hardly 
say from a design or, worse yet, from a specifi cation whether the resulting system will 
perform poorly or not. You build the system in the best and simplest way you can. You 
adhere to OOD principles and code your way to the fullest. Then you test the system.  

 If it works, but it doesn’t work as fast as it should, you profi le the system and fi gure out 
what can be improved—be it a stored procedure, an intermediate cache, or a  dynamic 
proxy injection. If the design is fl exible enough and leaves room for changes, you 
shouldn’t have a hard time applying the necessary optimization. 
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 From Objects to Aspects 

 No doubt that OOP is currently a mainstream programming paradigm. When you design 
a system, you decompose it into components and map the components to classes. Classes 
hold data and deliver a behavior. Classes can be reused and used in a polymorphic manner, 
although you must do so with the care we discussed earlier in the chapter.  

 Even with all of its undisputed positive qualities, though, OOP is not the perfect programming 
paradigm.  

 The OO paradigm excels when it comes to breaking a system down into components and 
describing processes through components. The OO paradigm also excels when you deal with 
the concerns of a component. However, the OO paradigm is not as effective when it comes 
to dealing with cross-cutting concerns.  

 A cross-cutting concern is a concern that affects multiple components in a system, such 
as logging, security, and exception handling. Not being a specifi c responsibility of a given 
 component or family of components, a cross-cutting concern looks like an aspect of the 
system that must be dealt with at a different logical level, a level beyond application classes. 
Enter a new programming paradigm: aspect-oriented programming (AOP). 

 Aspect-Oriented Programming 

 The inherent limitations of the OO paradigm were identifi ed quite a few years ago, not many 
years after the introduction of OOP. However, today AOP still is not widely implemented even 
though everybody agrees on the benefi ts it produces. The main reason for such a limited 
adoption is essentially the lack of proper tools. We are pretty sure the day that AOP is (even 
only partially) supported by the .NET platform will represent a watershed in the history of AOP. 

 The concept of AOP was developed at Xerox PARC laboratories in the 1990s. The team also 
developed the fi rst (and still most popular) AOP language: AspectJ. Let’s discover more about 
AOP by exploring its key concepts. 

 Note We owe to the Xerox PARC laboratories many software-related facilities we use every day. 
In addition to AOP (which we don’t exactly use every day), Xerox PARC is “responsible” for laser 
printers, Ethernet, and mouse-driven graphical user interfaces. They always churned out great 
ideas, but failed sometimes to push their widespread adoption—look at AOP. The lesson that 
everybody should learn from this is that technical excellence is not necessarily the key to success, 
not even in software. Some good commercial and marketing skills are always (strictly) required.  

 Cross-Cutting Concerns 

 AOP is about separating the implementation of cross-cutting concerns from the  implementation 
of core concerns. For example, AOP is about separating a logger class from a task class so that 
multiple task classes can use the same logger and in different ways.  
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 We have seen that dependency injection techniques allow you to inject—and quite easily, 
indeed—external dependencies in a class. A cross-cutting concern (for example, logging) 
can certainly be seen as an external dependency. So where’s the problem? 

 Dependency injection requires up-front design or refactoring, which is not always entirely 
possible in a large project or during the update of a legacy system.  

 In AOP, you wrap up a cross-cutting concern in a new component called an aspect. An aspect 
is a reusable component that encapsulates the behavior that multiple classes in your project 
require. 

 Processing Aspects  

 In a classic OOP scenario, your project is made of a number of source fi les, each 
 implementing one or more classes, including those representing a cross-cutting concern 
such as logging. As shown in Figure 3-5, these classes are then processed by a compiler 
to produce executable code. 

Compiler

Source
(classes)

Source
(classes

for cross-
cutting

concerns)

  

 FIGURE 3-5 The classic OOP model of processing source code 

 In an AOP scenario, on the other hand, aspects are not directly processed by the compiler. 
Aspects are in some way merged into the regular source code up to the point of  producing 
code that can be processed by the compiler. If you are inclined to employ AspectJ, you 
use the Java programming language to write your classes and the AspectJ language to 
write  aspects. AspectJ supports a custom syntax through which you indicate the expected 
 behavior for the aspect. For example, a logging aspect might specify that it will log before 
and after a certain method is invoked and will validate input data, throwing an exception 
in case of invalid data. 

 In other words, an aspect describes a piece of standard and reusable code that you 
might want to inject in existing classes without touching the source code of these classes. 
(See Figure 3-6.) 
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 FIGURE 3-6 The AOP model of processing source code 

 In the AspectJ jargon, the weaver is a sort of preprocessor that takes aspects and weaves 
their content with classes. It produces output that the compiler can render to an executable. 

 In other AOP-like frameworks, you might not fi nd an explicit weaver tool. However, in any 
case, the content of an aspect is always processed by the framework and results in some form 
of code injection. This is radically different from dependency injection. We mean that the 
code declared in an aspect will be invoked at some specifi c points in the body of classes that 
require that aspect.  

 Before we discuss an example in .NET, we need to introduce a few specifi c terms and clarify 
their intended meaning. These concepts and terms come from the original defi nition of AOP. 
We suggest that you do not try to map them literally to a specifi c AOP framework. We  suggest, 
instead, that you try to understand the concepts—the pillars of AOP—and then use this 
 knowledge to better and more quickly understand the details of a particular framework. 

 Inside AOP Aspects 

 As mentioned, an aspect is the implementation of a cross-cutting concern. In the defi nition 
of an aspect, you need to specify advice to apply at specifi c join points.  

 A join point represents a point in the class that requires the aspect. It can be the invocation 
of a method, the body of a method or the getter/setter of a property, or an exception  handler. 
In general, a join point indicates the point where you want to inject the aspect’s code. 

 A pointcut represents a collection of join points. In AspectJ, pointcuts are defi ned by criteria 
using method names and wildcards. A sample pointcut might indicate that you group all calls 
to methods whose name begins with Get. 
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 An advice refers to the code to inject in the target class. The code can be injected before, 
 after, and around the join point. An advice is associated with a pointcut. 

 Here’s a quick example of an aspect defi ned using AspectJ: 

 public aspect MyAspect 
{
  // Define a pointcut matched by all methods in the application whose name begins with 
  // Get and accepting no arguments. (There are many other ways to define criteria.)
  public pointcut allGetMethods (): 
         call (* Get*() );

  // Define an advice to run before any join points that matches the specified pointcut.
  before(): allGetMethods() 
  {
    // Do your cross-cutting concern stuff here
    // for example, log about the method being executed
    
  }
} 

 The weaver processes the aspect along with the source code (regular class-based source 
code) and generates raw material for the compiler. The code actually compiled ensures that 
an advice is invoked automatically by the AOP runtime whenever the execution fl ow reaches 
a join point in the matching pointcut.  

 AOP in .NET 

 When we turn to AOP, we essentially want our existing code to do extra things. And we want 
to achieve that without modifying the source code. We need to specify such extra things 
(advice) and where we want to execute them ( join points). Let’s briefl y go through these 
points from the perspective of the .NET Framework. 

 How can you express the semantic of aspects?  

 The ideal option is to create a custom language a là AspectJ. In this way, you can create an 
ad hoc aspect tailor-made to express advice at its confi gured pointcuts. If you have a custom 
language, though, you also need a tool to parse it—like a weaver.  

 A very cost-effective alternative is using an external fi le (for example, an XML fi le) where you 
write all the things you want to do and how to do it. An XML fi le is not ideal for defi ning 
source code; in such a fi le, you likely store mapping between types so that when a given type 
is assigned an aspect, another type is loaded that contains advice and instructions about 
how to join it to the execution fl ow. This is the approach taken by Microsoft’s Policy Injection 
Application Block (PIAB) that we’ll look at in a moment. 

 How can you inject an aspect’s advice into executable code? 

. . .
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 There are two ways to weave a .NET executable. You can do that at compile time or at 
run time. Compile-time weaving is preferable, but in our opinion, it requires a strong 
 commitment from a vendor. It can be accomplished by writing a weaver tool that reads 
the content of the aspect, parses the source code of the language (C#, Visual Basic .NET, 
and all of the other languages based on the .NET common type system), and produces 
 modifi ed source code, but source code that can still be compiled. If you want to be language 
 independent, write a weaver tool that works on MSIL and apply that past the compilation 
step. Alternatively, you can write a brand new compiler that understands an extended syntax 
with ad hoc AOP keywords. 

 If you want to weave a .NET executable at run time, you have to review all known techniques 
to inject code dynamically. One is emitting JIT classes through Refl ection.Emit; another one 
is based on the CLR’s Profi ling API. The simplest of all is perhaps managing to have a proxy 
 sitting in between the class’s aspects and its caller. In this case, the caller transparently 
 invokes a proxy for the class’s aspects. The proxy, in turn, interweaves advice with regular 
code. This is the same mechanism used in .NET Remoting and Windows Communication 
Foundation (WCF) services.  

 Using a transparent proxy has the drawback of requiring that to apply AOP to the class, the 
class must derive from ContextBoundObject or MarshalByRefObject. This solution is employed 
by PIAB.  

 AOP in Action 

 To fi nish off our AOP overview, let’s proceed with a full example that demonstrates how to 
achieve AOP benefi ts in .NET applications. We’ll use Microsoft’s Policy Injection Application 
Block in Enterprise Library 3.0 and higher to add aspects to our demo. For more information 
on PIAB, see http://msdn.microsoft.com/en-us/library/cc511729.aspx.  

 Enabling Policies 

 The following code demonstrates a simple console application that uses the Unity IoC 
 container to obtain a reference to a class that exposes a given interface—ICustomerServices: 

 public interface ICustomerServices
{
    void Delete(string customerID);
}

static void Main(string[] args)
{
    // Set up the IoC container
    UnityConfigurationSection section;
    section = ConfigurationManager.GetSection("unity") as UnityConfigurationSection;
    IUnityContainer container = new UnityContainer();
    section.Containers.Default.Configure(container);
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    // Resolve a reference to ICustomerServices. The actual class returned depends 
    // on the content of the configuration section.
    ICustomerServices obj = container.Resolve<ICustomerServices>();
    
    // Enable policies on the object (for example, enable aspects)
    ICustomerServices svc = PolicyInjection.Wrap<ICustomerServices>(obj);

    // Invoke the object
    svc.Delete("ALFKI");

    // Wait until the user presses any key
    Console.ReadLine();
} 

 After you have resolved the dependency on the ICustomerServices interface, you pass the 
object to the PIAB layer so that it can wrap the object in a policy-enabled proxy. What PIAB 
refers to here as a policy is really like what many others call, instead, an aspect.  

 In the end, the Wrap static method wraps a given object in a proxy that is driven by the  content 
of a new section in the confi guration fi le. The section policyInjection defi nes the  semantics of 
the aspect. Let’s have a look at the confi guration fi le. 

 Defi ning Policies  

 PIAB is driven by the content of an ad hoc confi guration section. There you fi nd listed the 
policies that drive the behavior of generated proxies and that ultimately defi ne aspects to 
be applied to the object within the proxy.  

 <policyInjection>
  <policies>
    <add name="Policy">
      <matchingRules>
        <add type="EnterpriseLibrary.PolicyInjection.MatchingRules.TypeMatchingRule ..."  
             name="Type Matching Rule">
          <matches>
             <add match="ArchNet.Services.ICustomerServices" ignoreCase="false" />
          </matches>
        </add>
      </matchingRules>
      <handlers>
        <add order="0" 
             type="ManagedDesign.Tools.DbLogger, mdTools"
             name="Logging Aspect" />
      </handlers>
    </add>
  </policies>
</policyInjection> 

 The matchingRules section expresses type-based criteria for a pointcut. It states that whenever 
the proxy wraps an object of type ICustomerServices it has to load and execute all listed handlers. 
The attribute order indicates the order in which the particular handler has to be invoked. 
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 From this XML snippet, the result of this is that ICustomerServices is now a log-enabled type.  

 Defi ning Handlers 

 All that remains to be done—and it is the key step, indeed—is to take a look at the code for 
a sample handler. In this case, it is the DbLogger class: 

 public interface ILogger
{
    void LogMessage(string message);
    void LogMessage(string category, string message);
} 

public class DbLogger : ILogger, ICallHandler
{
    // ILogger implementation 
    public void LogMessage(string message)
    {
        Console.WriteLine(message);
    }
    public void LogMessage(string category, string message)
    {
        Console.WriteLine(string.Format("{0} - {1}", category, message));
    }

    // ICallHandler implementation 
    public IMethodReturn Invoke(IMethodInvocation input, GetNextHandlerDelegate getNext)
    {
        // Advice that runs BEFORE
        this.LogMessage("Begin ...");

        // Original method invoked on ICustomerServices  
        IMethodReturn msg = getNext()(input, getNext);

        // Advice that runs AFTER
        this.LogMessage("End ...");

        return msg;
    }
    public int Order{ get; set; }
} 

 The class DbLogger implements two interfaces. One is its business-specifi c interface ILogger; 
the other (ICallHandler) is a PIAB-specifi c interface through which advice code is injected 
into the class’s aspect list. The implementation of ICallHandler is fairly standard. In the Invoke 
method, you basically redefi ne the fl ow you want for any aspect-ed methods. 

 In summary, whenever a method is invoked on a type that implements ICustomerServices, 
the execution is delegated to a PIAB proxy. The PIAB proxy recognizes a few handlers and 
invokes them in a pipeline. Each handler does the things it needs to do before the method 
executes. When done, it yields to the next handler delegate in the pipeline. The last handler 
in the chain yields to the object that executes its method. After that, the pipeline is retraced 
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and each registered handler has its own chance to execute its postexecution code. Figure 3-7 
shows the overall pipeline supported by PIAB. 
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 FIGURE 3-7 The PIAB handler pipeline 

 Note For completeness, we should mention that there are other AOP alternatives available for 
you to use, the most notable of which is COM+, although WCF exhibits AOP behavior as well. 
With COM+, you modify your aspects using Component Services. This assumes, of course, that 
you’ve taken the necessary steps to register the components by using System.EnterpriseServices 
or are using “services without components.” (See http://msdn.microsoft.com/en-us/library/
ms686921(VS.85).aspx.) Both COM+ and WCF AOP discussions are beyond the scope of this 
chapter, but by all means investigate the possibilities. (For a bit more information on WCF, see 
http://msdn.microsoft.com/en-us/magazine/cc136759.aspx.) 

 Practical Advice for the Software Practitioner  

 To design good software, general principles are enough. You don’t strictly need 
 patterns; but patterns, if recognized in a problem, are an effective and proven shortcut 
to get to the solution. Today, reinventing the wheel is a great sin, for yourself and your 
team.  

 Patterns are not essential to the solution of a problem. Using patterns won’t make your 
code necessarily better or faster. You can’t go to a customer and say “Hey, my product 
uses the composite pattern, a domain model, inversion of control, and strategy à gogo. 
So it’s really great.” Patterns, if correctly applied, ensure that a problem will be solved. 
Take an easy approach to patterns, and don’t try to match a given pattern to a problem 
regardless of the costs of doing so.  

 Having mixed basic and OOD principles for years, we think we have now arranged our 
own few pearls of software design wisdom. These guide us every day, and we commu-
nicate them to all people we work with:  

■  Group logically related responsibilities and factor them out to classes. In the 
factoring process, pay attention to forming extremely specialized classes. 
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■  Create concise and fl exible abstractions of functionalities in classes. In this 
context, two other adjectives are commonly used in literature to describe 
 abstractions: crisp and resilient. 

■  When it comes to implementing classes, keep in mind separation of 
 concerns—essentially, who does what—and make sure that each role is 
played by just one actor and each actor does the minimum possible; this 
is not done out of laziness, but just for simplicity and effectiveness. 

 The emphasis on simplicity is never enough. Andrea has the following motto on a 
poster in the offi ce, and Dino writes it as a dedication in each book he signs: Keep it 
as simple as possible, but no simpler. It’s a popular quotation from Albert Einstein that 
 every software professional should always keep in mind.  

 Often referred to as KISS (short for Keep It Simple, Stupid), the idea of “simplicity above 
all” emerges in various forms from a number of heuristic principles that populate 
 software design articles and conversations. The most popular principles are these: 

■  Don’t Repeat Yourself (DRY) Refers to reducing duplication of any information 
needed by the application, and suggests you store the same information only in one 
place. 

■  Once and Only Once (OAOO) Refers to reducing the number of times you write 
the code that accomplishes a given operation within an application. 

■  You Aren’t Gonna Need It (YAGNI) Refers to adding any functionality to an 
 application only when it proves absolutely necessary and unavoidable. 

 We often like to summarize the  “simplicity above all” concept by paraphrasing people’s 
rights in court: everything you write can and will be used against you in a debugging 
session. And, worse yet, it will be used in every meeting with the customer. 

 Summary 

 Just as an architect wouldn’t design a house while ignoring the law of gravity, a  software 
architect shouldn’t design a piece of software ignoring basic principles such as low  coupling 
and high cohesion. Just as an architect wouldn’t design a house  ignoring  building codes that 
apply to the context, a software architect working in an object-oriented context shouldn’t 
design a piece of software ignoring OOD principles such as the Open/Closed Principle (OCP), 
the Liskov Substitution Principle (LSP), and the Dependency Inversion Principle (DIP).  

 But other quality characteristics (defi ned in an ISO/IEC standard) exist—in particular, 
 testability and security. These aspects must be taken care of at the beginning of the  design 
process—even though magical testing tools and aspect orientation might  partially alleviate 
the pain that comes from not introducing testability and security from the very beginning.  
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 The fundamentals never go out of style, we can safely say, and they are always useful and 
essential at whatever level of detail. 

 Murphy’s Laws of the Chapter 

 This chapter is about design and proving that your design is effective and meets 
 requirements. If you think of acceptance tests, in fact, how can you help but recall the 
 original Murphy’s Law: “If anything can go wrong, it will.” We selected a few related laws 
for the chapter.  

■  The chances of a program doing what it’s supposed to do are inversely proportional to 
the number of lines of code used to write it. 

■  The probability of bugs appearing is directly proportional to the number and  importance 
of people watching. 

■  An expert is someone brought in at the last minute to share the blame. 

See http://www.murphys-laws.com for an extensive listing of other  computer-related (and 
non-computer-related) laws and corollaries.  
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design pattern, 201
multiple, presentation pattern selection, 374
testing, 369

GROUP BY statements, 298

H
HA (hexagonal architecture), 18–19
handlers

AJAX, 242–43
defi ning, 122–23
HTTP, 392–93

hard-coded
behavior, 77
fake objects, 104
fetch plans, 317–19
idioms, 92, 289
Iterator pattern, 93
queries, 256–57
SQL, 298, 334
stored procedures, 298, 334
strategy, 90
strings, 334

hardware costs, 3
hash tables, 307
Helm, Richard, 73, 265
helper method, 383–84
helper methods, 285, 295
hexagonal architecture (HA), 18–19
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Hibernate Query Language (HQL), 
330–31

high cohesion, 68–69, 201–59
high coupling, 69
HN (Hungarian Notation), 72–73
Hoare, C. A. R., 405
HomeController class, 393
Howard, Michael, 109
HQL (Hibernate Query Language), 

330–31
HTTP

Basic Authentication, 240
binding, 244
endpoints, 240–41
handlers, 392–93
module, 362, 364
security refactoring, 241

HTTP GET call, 243–44
HttpContext.Current object
HTTPS, 241
Hungarian Notation (HN), 72–73

I
IBM, 36
IBM/Rational 4+1 views model, 7
IButtonControl, 77
ICallHandler, 122
ICustomerServices interface, 120–23
IDataContext, 267, 279–80, 408

plugin creation, 270–71
IDataContext interface, 277–79

transactional semantics, 300
IDataMapper class, 281–82, 292
IDataMapper<T>, 281–82
IDEF (Integrated DEFinition) modeling language, 31
identity checking, 248–49
Identity Map pattern, 305–11
identity maps, 305–11
independence. See also dependencies
IDEs (integrated development environments), 146
IDesign, 200
idiomatic design, 93–94
idiomatic presentation, 390
idioms, 92–94, 289
IDisposable, 279–80
IEC (International Electrotechnical Commission), 64
IEEE (Institute of Electrical and Electronics 

Engineers), 5–7
IEnumerable, 377
IF statements, 284
if-then-else statements, 193
IIS (Internet Information Services), 227
IList<T> type, 94
ILogger interface, 122
ImageButton class, 77
immobility, 66
immutable types, 94
impersonation, user, 111

implementation
vs. architecture, 9
vs. interface, 75–76, 265–66

implementations
vs. interface, 74–77

in keyword, 93
INavigationWorkfl ow interface, 388
include relationships, use case diagrams, 45
independence

data model and presentation layer, 348
database, 252–53
graphics, presentation layer, 345
user interface and presentation layer, 346–47

Index method, 393
induced complexity, 144–45
information disclosure, 112
information hiding, 70–71
infrastructure architect (IA), 20–21
inherent complexity, 144–45
inheritance, class, 78–80
Initialize method, 383–84
injection, dependency. See dependency injection
in-memory model, 285–86
Insert method, 169–70
instance methods, 153, 254

Active Record pattern, 167
table module class, 159

InstanceOfType, 105
Institute of Electrical and Electronics Engineers 

(IEEE), 5–7
Integrated DEFinition (IDEF) modeling language, 31
integrated development environments (IDEs), 146
integration testing, 8, 98–99
interaction frames, sequence diagrams, 58–60
interactivity, 399
interface, 18. See also application programming 

interface (API); graphical user interface (GUI); 
user interface

aliases, 227
chatty, 237
chunky, 237
coarse- vs. fi ne-grained, 137, 204, 207, 214
common, 152–53, 196
CRUD services, 255
CRUDy, 236–37
DAL design, 263–66
enterprise-class applications, 205
layers, 196
loose-coupled, 196
low-coupling, 69, 76
multiple, 205
object-oriented, 167
public, 70, 74–75, 159, 200
remote, 204, 207
repository, 188
service layer, 194, 209–11, 250
stable, 71, 83
vs. abstract base class, 77
vs. implementation, 74–77, 265–66
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International Electrotechnical Commission (IEC), 64. 

See also ISO/IEC standards
International Standards Organization (ISO), 4–5, 64. 

See also ISO/IEC standards
international standards, software architecture, 6–7, 30
Internet Information Services (IIS), 227
Internet presentation. See Web presentation
interoperability, 229, 231
invariants, 99–100
inversion of control (IoC), 85, 95–97

frameworks, 96
inversion of control (IoC) pattern, 273–77

vs. Plugin pattern, 276–77
Invoke method, 122
IoC (inversion of control) pattern. See inversion of 

control (IoC) pattern
IP addresses, invalid, 112
IPoint attribute, 397
IsDirty data context member, 278
ISession interface, 279, 327, 329
IsInTransaction, 278, 303
IsNull, 105
ISO (International Standards Organization), 

4–5, 64
ISO/IEC document 42010, 5
ISO/IEC standards

standard 12207, 24–26
standard 19501, 7, 20
standard 9126, 64, 74, 97

ISupportsValidation, 182, 190
IsValid property, 190
Items collection, 378
iterations, 17
iterative development, 27–28, 64. See also agile 

methodology
Iterator pattern, 93
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Jackson, Michael A., 375
Jacobson, Ivar, 33
Java, 71

class diagrams, 49
sequence diagrams, 55
Table Module pattern, 158
virtual modifi ers, 11

Java Server Pages (JSP), 362
JavaScript

eval function, 246
proxies, 244–45

JavaScript clients, 239–41
AJAX, 242

JavaScript Object Notation (JSON), 238, 240–41, 243–44
vs. XML, 245–46

JIT classes, 120
Johnson, John B., 127
Johnson, Ralph, 73, 265

join points, 118–19
.NET Framework, 119–20

JOIN statements, 298
JSON (JavaScript Object Notation). See JavaScript 

Object Notation (JSON)
JSP (Java Server Pages), 362
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Kerievsky, Joshua, 86
KISS principle, 124
Knuth, Donald, 115

L
Language Integrated Query (LIQ), 93
lasagna code, 67–68
last-win policy, 311
Law of Conservation of Energy, 367
Law of Conservation of Software Complexity (LCSC), 

367–68
layering, 18–19, 109–10, 129
layers, 135. See also specifi c layers

DAL interaction, 260–63
distribution, 138
logical, 135
vs. tiers, 134–35
Web-based clients, 238

Layers architectural pattern, 90
Lazy Load pattern, 315
lazy loading, 226, 315–21
LCSC (Law of Conservation of Software Complexity), 

367–68
legacy classes, 332
legitimate users, 246–47
libraries, switching, 10–11
lifeline, sequence diagrams, 54
LinkButton class, 77
LINQ-to-Entities, 331, 340
LINQ-to-SQL, 93, 173–75, 217

data context object, 310
DataContext class, 299
data mappers, 285
lazy loading, 320–21
LoadOptions class, 226
model creation, MVC pattern, 356
O/RM tool, 325
POCO objects, 331–32
UoW implementation, 258

LIQ (Language Integrated Query), 93
Liskov’s principle, 78–79, 81–83
List<T>, 170
List<T> type, 94
ListControl, 378
LLBLGen Pro, 326

data context object, 310
O/RM tool, 335

Load method, 330
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LoadAllCustomers, 384–86
loading, lazy, 226
LoadOptions class, 226
LoadWith method, 320–21
location transparency, 137
logger classes, 116
logic. See application logic; business logic; 

presentation logic
logical layers, 135
logical tier, 134–36
logical view, 4+1 views model, 7
login pages, 247–48
LookupCustomer, 385–86
loose coupling, 228
low cohesion, 68–69
low coupling, 69, 74–77, 201
Lowy, Juval, 200

M
macro services, 204–5, 207
maintainability, 13
maintenance, 64
Maintenance process, 25–26
Managed Design, 405
mappers. See data mappers
mapping. See also data mappers
mapping, objects to tables, 

188–89
MapRoute method, 393
MarshalByRefObject, 120, 186
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MBUnit tool, 101
MDA (model-driven architecture), 35, 40
Melville, Herman, 4
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modifi ers, changing, 11–12
private and protected, 82

Members collection, 297
message-based semantics, 230–31
messages, sequence diagrams, 56–57
methodology, software development, 26–29. 

See also agile methodology
methods. See also instance methods; static methods

helper, 285, 295, 383–84
query, 291–92
read, 254
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MFC (Microsoft Foundation Classes), 362
micro services, 204–5, 207
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Microsoft Application Validation block, 408
Microsoft Certifi ed Architect Program, 20
Microsoft Data Access Application Block, 295
Microsoft Foundation Classes (MFC), 362
Microsoft Offi ce PowerPoint, 37

Microsoft Solutions Framework (MSF), 29
for Agile, 29
for CMMI, 29
roles, 29

Microsoft Transaction Server (MTS), 200
Microsoft Visio Professional. 

See Visio Professional
Microsoft Visual Studio. See Visual Studio
middle tier, 134–36
MissingCustomer class, 190
mixins, 77, 185
mobile platforms, 205
mobility, 66
Moby Dick (Melville), 4–13
mock objects, 177–79
mocking frameworks, 106
model

MVC pattern, 355–57
MVP pattern, 364–65, 367, 386
Presentation Model pattern, 371

Model2, 362–64. See also ASP.NET, MVC Framework
model-driven architecture (MDA), 35, 40
modeling, 31, 61

languages, 31–32
models, 31

active vs. passive, 361
Model-View-Controller (MVC) pattern, 90, 

353–62
Model2, 362–64
vs. MVP pattern, 366–67

Model-View-Presenter (MVP) pattern, 353, 364–70
sample design, 375–90
vs. MVC pattern, 366–67
vs. Presentation Model, 370–71
Web presentations, 390–95
Windows presentations, 395

Model-View-Presenter pattern (MVP), 201–2
Model-View-ViewModel (MVVM) pattern, 353, 

373, 398
modifi ers

member, changing, 11–12
UML, list of, 48

modularity, 70
Dependency Inversion Principle, 84

monolithic systems, 8–9
MonoRail, 395
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MSF (Microsoft Solutions Framework). See Microsoft 

Solutions Framework (MSF)
MSTest tool, 101–2
MTS (Microsoft Transaction Server), 200
multiple front ends, 205–7
multiple inheritance, 77, 185
multiple interfaces, 205–6
multitier applications

user interface pattern selection, 372–75
multitiered applications

MVC pattern, 357
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data access layer (DAL), 341
design principles, 125
presentation layer, 399
service layer, 250
software architecture, 30
system design, 192

MVC (Model-View-Controller) pattern. 
See Model-View-Controller (MVC) pattern

MVC Framework. See ASP.NET, MVC Framework
MVC# Framework, 396–97
MVMM (Model-View-ViewModel) pattern, 

353, 373, 398
MVP (Model-View-Presenter) pattern. 

See Model-View-Presenter (MVP) pattern
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NavigateTo method, 388
navigation, 360, 386–89
NavigationController class, 388
.NET Framework
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data context, 279, 326
data context object, 310, 325
dynamic proxies, 333
HQL, 340
lazy loading, 320
O/RM tool, 325
object services, 327
POCO objects, 331–32
queries, 330–31
transactions, 329

NHibernate 2.0, 406
Ninject IoC framework, 96
NMock2, 406
NMock2 framework, 106–7
nonfunctional requirements, software, 

12, 14
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Northwind Starter Kit (NSK), 405–6

Business folder, 408–9
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Data folder, 408
database, 407
downloading, 406
future evolution, 411
Presentation folder, 409–11
requirements, 406

notation
class diagrams, 47–48
messages, sequence diagram, 57
sequence diagrams, 54–55
use-case diagrams, 43–45

NotNullValidator, 183
nouns, 74
NULL values, 189–90
NUnit 2.4, 406
NUnit tool, 101
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O/R (object/relational) impedance mismatch, 

155, 181, 253
O/RM (Object/Relational Mapping) tools. 

See Object/Relational Mapping (O/RM) tools
OAOO (Once and Only Once) principle, 124
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object composition, 78–80
object lifecycle, sequence diagrams, 55–56
object model, 10, 130–31, 177
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signature changing, 11
Table Module pattern, 155–56

Object Modeling Group (OMG), 32–33
Object Modeling Technique (OMT), 33
object orientation (OO), 73
object services

O/RM tool, 327–28
object/relational (O/R) impedance mismatch, 

155, 181, 253
Object/Relational (O/R) layers, 218
Object/Relational Mapping (O/RM) tools, 10–11, 

71, 197, 321–33
DAL creation, 263, 325–33
data context, 279
database independence, 253
dynamic SQL, 339–40
listing, 324–25
mappers, 322–25
O/R mapping layer, 324
persistence ignorance, 331–33

object-based patterns, 142–44
ObjectContext, 325, 329

data context object, 310
object-oriented databases (ODMBS), 322
object-oriented design (OOD), 73–85, 

123–24
advanced principles, 80–85
basic principles, 73–80
coupling and cohesion, 69
defi ned, 73–74
services, 230

object-oriented model
Table Module pattern, 155–56

object-oriented paradigm, 31, 33
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object-oriented programming, 71
objects

ad hoc, 331
business, 131–32
command, 150–52
complex, 11
data transfer, 131–32
distributed, 137
fake, 176–79
global, 89
mapping to tables, 188–89
mock, 177–79
persistent, 255
pertinent, 74
POCO, 176, 185, 331–32
query, 159, 256–57, 331
reference, 216
repository, 188, 289–92
stub and shunt, 105
transient, 255
value, 186–87, 189, 216

Observer pattern, 92–93
Observer relationship
OCP (Open/Closed Principle), 80–81, 83
ODMBS (object-oriented databases), 322
OLE DB, 253
OLTP (online transaction processing), 140
OMG (Object Modeling Group), 32–33
OMT (Object Modeling Technique), 33
Once and Only Once (OAOO) principle, 124
on-demand data loading, 315–17
online transaction processing (OLTP), 140
OO (object orientation), 73
OOD (object-oriented design). See object-oriented 

design (OOD)
OOL (Optimistic Offl ine Lock), 259–60, 311–12
Open/Closed Principle (OCP), 80–81, 83
Operation process, 25–26
OperationContext object, 211
operations, class diagrams, 47–48, 50–51
operators, interaction frame, 59
optimistic concurrency, 259–60
Optimistic Offl ine Lock (OOL), 259–60, 311–12
optimization, 115
Order class, 11, 168–70, 210
order loading, DTOs, 222–24
Order objects, 160
order update, DTOs, 224–26
OrderAPI, 154
orderby keyword, 93
OrderClauses, 297
OrderDataMapper, 281
OrderDetail class, 187
OrderDto class, 216
OrderItem DTO, 160–225
Organization for the Advancement of Structured 

Information Standards (OASIS)
organizational processes, 25

outsiders, 246–47
detecting, 247

P
Page class, 77, 371
Page Flow Application Block (PFAB), 391–92
paradigms

programming, 71–72
vs. patterns, 354–55

parameterized
queries, 336
types, 48

parameters, class diagrams, 50–51
parent classes, 78
partitioning, 18–19
Pascal, 71
passive view, 378–79
Passive View (PV) model, 353, 364, 368
Pattern-Oriented Software Architecture 

(Buschmann et al.), 87
patterns, 85–94, 123, 213, 405. See also specifi c patterns

antipatterns, 90–91
object-based, 142–44
procedural, 141–42, 144
selection, 143–44
selection, user interface, 372–75
vs. idioms, 92–94
vs. paradigms, 354–55

Patterns of Enterprise Application Architecture (Fowler), 
9, 195

Peer-to-Peer architectural pattern, 90
performance, 115

service layer benefi ts, 204
Permission classes, 110
permissions

AJAX Service Layer, 248–49
componentization, 110–11

persistence, 251–54
persistence ignorance (PI), 185–86, 331–33
persistence layer, 147, 192, 281–89

service layer interaction, 196–98
persistent objects, 255
persistent-ignorant classes, 185–86
pertinent objects, 74
pessimistic concurrency, 259
PFAB (Page Flow Application Block), 391–92
physical layer, 135
physical model, code independence, 337
physical tier, 135–36
physical view, 4+1 views model, 7
PI (persistence ignorance), 185–86, 331–33
PIAB (Policy Injection Application Block), 119–23
pipeline, handlers, 122–23
plain-old CLR object (POCO), 176, 185, 331–32
plugin factory, 270
Plugin pattern, 267–72

vs. IoC, 276–77
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plugins, 253, 270
DAL, creation, 270–71
vs. service locator, 271–72

PM (Presentation Model) pattern, 353, 370–72
POCO (plain-old CLR object), 176, 185, 331–32
point-and-click metaphor, 350–51
pointcut, 118–19
policies

ad hoc, 311
defi ning, 121–22
enabling, 120–21

Policy Injection Application Block (PIAB), 119–23
polymorphism, 79–81, 253

List<T> type, 94
portability, 13
postbacks, cross-page, 77
postconditions, 99–100
PowerPoint, 37
POX messaging, 244
preconditions, 99–100
Presentation folder

Northwind Starter Kit (NSK), 409–11
presentation layer, 129, 343, 398–99

Active Record pattern, 165–66
application logic, 193–94
application services, 205
boundaries, 351–52
Command pattern, 152
DAL interaction, 262–63
data formatting, 138–39
design, 375–90
design, sample, MVP pattern, 375–90
DTOs vs. domain objects, 226–28
idiomatic presentation design, 390–98
Murphy’s laws, 399
NSK Presentation folder, 409–11
patterns, 352–75
pitfalls, 350–52
service layer interaction, 196–98, 205–6
table adapters, 163–64
Table Module pattern, 156
testing, 347–48
user interface and presentation logic, 344–50

presentation logic
business logic separation, 352–53
reuse, 381

Presentation Model (PM) pattern, 
353, 370–72

presentation, MVP pattern, 366
PresentationModel class, 371–72
presenter, 202–4, 366

building, 383–84
cardinality, 389–90
MVP pattern, 369
Presentation Model pattern, 372
service layer and, 385–86
view, connecting, 381–82

Presenter-First model, 367
primary processes, 25

Principles of Program Design (Jackson), 375
private members, 82
privileges

componentization, 110–11
elevation, 113

procedural patterns, 141–42, 144
Procedural Programming (PP), 71
process view, 4+1 views model, 7
ProcessAction, 302
processes, software life cycle, 24–25
production code

architects and, 23
profi les, UML, 35
programming

declarative, 352
language. See also specifi c languages
language, UML as, 40
paradigms, 71–72

project managers, 16–17, 19
vs. architects, 22

properties
class diagrams, 49
information hiding, 71

protected members, 82
proxies

dynamic, 332–33
entity, 259, 313–15
JavaScript, 244–45

proxy classes, 316–19
ad hoc, 319

proxy entities, 313–15
public signatures, 94
PV (Passive View) model, 353, 364, 368
Python, 77

Q
queries

caching, 310–11
O/RM tool, 330–31
parameterized, 336

query by criteria, 296–98
Query class, 292

query by criteria, 296–98
query language. See also Structured Query 

Language (SQL)
ad hoc, 316, 325

query object, 159, 256–57, 331
Query Object pattern, 93, 159, 257
query objects

ad hoc, 292
query services, 256–57

implementation, 289–98
QueryByExample, 216

R
RAD (rapid application development), 146, 343, 398–99
RADness, 350–51
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rapid application development (RAD), 146, 343, 
398–99

Rational Rose XDE, 36
Rational Software, 33
Rational Unifi ed Process (RUP), 29
RDG (Row Data Gateway) pattern, 

172–73
RDMBS (relational databases), 322
read methods, 254
readability, code, 72–73
record set (RS), 155, 164–65
RecordSet type, 164
refactoring

business components, 150
for functionality, 240–41
for security, 241
patterns, 86
service layer, 216, 238–41

Refactoring to Patterns (Kerievsky), 86
reference objects, 216
Refl ection.Emit, 77, 120, 320, 333
refresh

Model2, 364
MVP pattern, 365

Register method, 388
registries, 272
regression testing, 148
relational data models, 251–52. See also Table Module 

pattern; Transaction Script pattern
relational databases (RDMBS), 322
relationships, use case diagram, 43–45

extend, 45–46
generalization, 46
generic, 45
include, 45

reliability, 13
Remote Façade pattern, 213–16

service layer, 214–16
remote layers, 203

Remote Façade pattern, 214–16
remote procedure call (RPC), 230
remote software, 137
rendering, 358
Repeater control, 345
Repository class, 292
repository objects, 188, 289–92
Repository pattern, 188, 291

DAL query service, 257
Repository<T> class, 292
reproducibility, DREAD model, 113
repudiation, 112
requirements, design, 97–115
requirements, software system, 12–17

architects role, 18
RequirementsMode property, 249
Resharper tool, 86
REST, 240–41
REST handler, 243
REST services, 209

reusability
binaries, 347, 381
domain model, 179–80
presentation layer, 347, 381
SOA principles, 235

reuse
code, 66, 78–80, 347

reverse engineering, 37, 39–41
RhinoMocks, 106
RIA (Rich Internet Application), 208, 238
Rich Internet Application (RIA), 208, 238
rich Web front ends, 237–49

AJAX service design, 242–46
AJAX service security, 246–49
service layer refactoring, 238–41

rich Web-based clients, 238–40
rigid software, 65
role-based security, 130
roles

security, 111–12
service layer, 211

Rollback, 329
Rollback data context member, 278
root domain class, 181–82
round-trip engineering, 36–37
roundtrips, 39–40, 209, 216, 257, 288, 321
Row Data Gateway (RDG) pattern, 

172–73
RPC (remote procedure call), 230
RS (record set), 155, 164–65
Ruby, 77
rules engine, 132
Rumbaugh, James, 33
Run method, 152
run-time environment, service vs. class, 

199–201
run-time weaving, 120
RUP (Rational Unifi ed Process), 29

S
SA (solution architect), 20–21
SaaS (Software as a Service), 365
Save data context member, 278
Save method, 327
SaveChanges, 328–30
scalability, 136
scenario view, 4+1 views model, 7
scheduled actions, 301–3
ScheduledAction class, 301–3
schedulers, 301
Schwaber, Ken, 28
script-enabling

ASP.NET Web services, 242–44
WCF services, 244–45

ScriptMethod attribute, 243
scripts, transaction. See transaction scripts
ScriptService attribute, 243–44
Scrum, 28
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SCSF (Smart Client Software Factory), 396
SD3+C principle, 109
SDL (Security Development Lifecycle), 109
sealed classes, 11–12
sealed keyword, 82
Secure by Design, Secure by Default, Secure in 

Deployment, plus Communication (SD3+C), 109
Secure Sockets Layer (SSL), 241
security, 13–14, 114, 124

AJAX Service Layer, 246–49
architects, 114
as requirement, 108–9
BLL, 130
componentization, 110–11
declarative, 211
layering, 109–10
multiple tiers, 136
refactoring for, 241
rich Web-based clients, 238–40
role-based, 130
roles, 111–12
Security Development Lifecycle (SDL), 109
service layer, 211
SQL vs. stored procedures, 335–36
threat model, 112–13
vulnerabilities, 108

Security Development Lifecycle (SDL), 109
select keyword, 93
SelectedIndexCHanged event, 384
semantic compatibility, 232
Separated Interface pattern, 264–66
separation of concerns (SoC) principle, 70–73, 352, 354, 

367, 390
sequence diagrams, 7, 53–54

asynchronous messages, 56–57
interaction frames, 58–60
notation, 54–55
object life cycle, 55–56

serialization, 245
Velocity, 310

serializers, 217, 227
service contracts, 231. See also contracts
service layer, 193–95, 250

Active Record pattern, 167
Adapter pattern, 218–20
BLL interactions, 194–95
DAL interaction, 261–62
Data Transfer Object pattern, 

216–18
DTO vs. assembly, 221–29
DTOs, 198
example, real-world, 206–7
location, 208
Murphy’s laws, 250
patterns, 213
presenter, 385–86
refactoring, 238–41
Remote Façade pattern, 213–16

responsibilities, 195–98
rich Web front ends, 237–49
Service Layer pattern, 205–13
service-oriented architecture, 229–37
services, 198–205
SOA and, 234–37
Transaction Script, 193–94

Service Layer architectural pattern, 90
service layer class, 209–11
Service Layer pattern, 195, 205–13
Service Locator pattern, 271–72
service locator, vs. plugins, 271–72
service orientation, 198, 229
service-oriented architecture (SOA), 18–19, 71, 198, 

229–37
antipatterns, 235–36
DTOs and, 228–29
Web services and, 232–33

services, 130, 198–205, 230
autonomy, 230–31
macro and micro, 204–5, 207
vs. classes, 199–201
within service layer, 201–4

ServiceSecurityContext, 211
Session, 325

data context object, 310
Session class, 279
set modifi er, 378
set-based languages, 338
shell extensions, 95
Show method, 89
ShowCustomerDetails, 385–86
shunt objects, 105
signature

constructor, changing, 11
public, 94

Silverlight, 205
code reuse, 347
MVP pattern, 395
NSK compatibility, 411
Presentation Model, 370–71, 

397–98
presentation pattern selection, 373
reusability, presentation logic, 96
SVC model, 381
view class, 379

Silverlight 2, 238, 242, 245
proxies, 245

simplicity, 124. See also complexity
Active Record pattern, 167
Transaction Script pattern, 146–47

Single Responsibility Principle (SRP), 69
Singleton pattern, 89
SiteNavigationWorkfl ow class, 360
sketch mode, UML, 36–38
smart client applications, 396

BLL hosting, 137
Smart Client Software Factory (SCSF), 396



 structures 429

SOA (service-oriented architecture). 
See service-oriented architecture (SOA)

architectural pattern, 90
SOAP, 243–44

based communication, 204
Silverlight 2, 238

SoC (separation of concerns) principle, 70–73, 352, 354, 
367, 390

software
costs, 3
maintenance, 64
remote, 137
rigid, 65
testing, 98–99. See also testing

Software + Services, 208
software analysts, 15

use cases, 16
vs. architects, 21–22

software applications, 338
software architects, 30

collaboration, 178
misconceptions about, 21–23
requirements methodology, 16–18
responsibilities, 17–20
security, 114
system breakdown, 18–19
technologies selection, 19
types of, 20–21
vs. developers, 9

software architecture, 3–4, 30
architects, 17–23
architectural principles, 4
breakdown process, 8–9
decision making, 9–12, 30
description, 7
ISO/IEC 9126 Standard, 13–17
requirements, 12–17
specifi cations, 15–16
standards, 6–7, 30
validating, 7–8
vs. implementation, 9

Software as a Service (SaaS), 365
software contracts, 99–100
software developers

vs. architects, 9, 23
software development, 24–26, 63, 67. See also design 

principles
costs, 64
methodology, 26–29
models, 26–29
process, 25

software engineering, 24, 67–68
software life cycle, 24–26
software-intensive systems, 3–5
solution architect (SA), 20–21
source code, XML fi le, 119
spaghetti code, 67–68
Sparx Systems, 36

Special Case pattern, 189–90, 408–9
specifi cations, 15–16

formulating, 19–20
spoofi ng, 112
Spring.Net IoC framework, 96
SQL (Structured Query Language). See Structured Query 

Language (SQL)
SQL Server 2008, 288. See also Structured Query 

Language (SQL)
SqlCommand, 285
SqlConnection, 285
SqlDbType.Structured, 288
SqlHelper, 288–89
SqlHelper class, 285, 295
SqlServerDataContext, 270–71
SRP (Single Responsibility Principle), 69
SSL (Secure Sockets Layer), 241
stakeholders, 5–7

defi ned, 5
standards, software architecture, 6–7, 30. 

See also ISO/IEC standards
static methods, 153, 254

Active Record pattern, 167
table module class, 159

static SQL, 339
Status property, 100
stored procedures, 140–41, 333–39

data mappers, 285
myths, 333–37
purpose, 337–38
query repository, 291
use of, 338–39

Strategy class, 195–96
Strategy pattern, 90, 282
STRIDE threat modeling, 112–13
StringLengthValidator, 183
structural compatibility, 232
structural diagrams, 41–43
structured design, 66–69
Structured Design (Constantine and Yourdon), 66–68
structured programming, 8, 68
Structured Query Language (SQL), 60, 334

ad hoc, 256, 295
code brittleness, 337
data mapper specialization, 312–13
dynamic, 288–89, 339–40
hard-coded, 298, 334
injection, stored procedures, 336
query by criteria, 298
query objects, 256–57
query repository, 289–92
scheduled actions, 302–3
security, vs. stored procedures, 335–36
T-SQL, 188–89, 285
vs. stored procedures, 334–35

StructureMap IoC framework, 96
structures

vs. classes, 94
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stubs objects, 105
SubmitChanges method, 258
subroutines, 8, 68, 333
subviews, 386
super classes, 260
Supervising Controller (SVC) view, 353, 364, 368–69
Supply process, 25
supporting processes, 25
SVC (Supervising Controller) view, 353, 364, 368–69
switch statement, 360, 388
synchronous messages, sequence diagrams, 57
system analysts, 21. See also software analysts
system design, 127–29, 191–92

Active Record pattern, 165–76
business layer, 129–45
Domain Model pattern, 176–91
Murphy’s laws, 192
Table Module pattern, 154–65
Transaction Script pattern, 145–54

system, use case diagram, 43–45
System.EnterpriseServices, 123
System.Object class, 168
System.String type, 94

T
table adapters, 162–64
Table Data Gateway (TDG) pattern, 164–65
table model, 10
Table Module (TM) pattern, 142, 154–65, 191

DAL interaction, 261
service layer, 210
service layer actions within BLL, 194
transactions, 299
vs. Transaction Script pattern, 158–59
workfl ows, 190–91

table module class, 155
static and instant methods, 159

Table Value Parameters (TVP), 288
tables

bridging, 285–87
cross-table operations, 288–89
hash, 307
mapping objects to, 188–89

tabs, 349
Taligent, 365–66
tampering, 112
tap-and-tab metaphor, 350–51
task classes, 116
tasks, software life cycle, 24–25
TDG (Table Data Gateway) pattern, 164–65
Team Foundation Server (TFS), 29
technologies selection, architecture design, 19
technology-specifi c architect, 20–21
Template Method pattern, 282
test harness, 100
testability, 13–14, 97–102, 124, 354, 399

Test-by-Release antipattern, 91
TestCase class, 102
TestClass, 102
TestCleanup, 102
testing, 7–8

acceptance, 8, 98–99
dependencies, 103–5
graphical user interface, 369
integration, 98–99
presentation layer support, 347–48
regression, 148
sealed and virtual classes, 12
security, 114
software, 98–99
tools, 101
unit, 8, 98–102
user interface, 377

TestInitialize, 102
TestMethod, 102
text fi xtures, 101–2
Text property, 398
TextBox, 398
TFS (Team Foundation Server), 29
thin clients, 110
threat model, 112–13
tiers, 134–36

vs. layers, 134–35
timestamp column, 315
TM (Table Module) pattern. See Table Module (TM) 

pattern
traditional methodologies, 26–27
Transaction Script (TS) pattern, 

145–54, 191
DAL interaction, 261
service layer, 193–94
Service Layer pattern, 211–12
transactions, 298–99
workfl ows, 190–91

transaction scripts, 149–50
entity grouping, 154
passing data to, 153–54

transactions, 141–42
management, 257–58, 303–5
O/RM tool, 329–30
semantics, 298–305

TransactionScope class, 203, 329–30
TransactionScript, 141–42
Transfer Object pattern. See Data Transfer Object 

pattern
TransferFunds method, 107
transient objects, 255
TranslateQuery method, 297
Transport Security Layer (TSL), 241
TS (Transaction Script) pattern. See Transaction Script 

(TS) pattern
TSF (Team Foundation Server). See Team Foundation 

Server (TFS)
TSL (Transport Security Layer), 241
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T-SQL
data mappers, 285
Repository pattern, 188–89

two-way data binding, 397–98
typed DataSets, 162
TypeMock, 12
TypeMock framework, 106
types

bridging, 285–87
IList<T>, 94
immutable, 94
List<T>, 94
System.String, 94
value, 94

U
UML (Unifi ed Modeling Language). See Unifi ed 

Modeling Language (UML)
UML Distilled (Fowler), 32, 43, 61
Unifi ed Modeling Language (UML), 

6–7, 30–32, 61
as a blueprint, 38–40
as a programming language, 40
as a sketch, 36–38
diagrams, 7, 41–60. See also specifi c diagram types
diagrams, hierarchy of, 42
diagrams, list of, 42
domain object model, 130
domain-specifi c languages, 60
history, 32–33
modes, 36–41
profi les, 35
strengths and weaknesses, 34–35
usage, 35–41
use cases, 16
versions and standards, 33–34

uniquing, 305–11
vs. caching, 308–9

unit of work (UoW), 299
defi ning, 300–1
multiple-database transactions, 305

Unit of Work (UoW) pattern, 258
unit of work class, 257–58
unit testing, 8, 98–102
Unity Application Block

IoC dependency injection, 274–75
IoC framework, 96

Unity IoC, 96, 120
Update method, 169–70, 327
UPDATE statement, 312–13
up-front software design, 4
URL

navigation, 360
requests, Model2, 362–64

URLS
MVC Framework, 392–95

usability, 13

use cases, 15–16, 43–45
domain object model, 130
service layer, 209–10

use-case diagrams, 7, 43
extension, 45–46
generalization, 46
generic relationships, 45
inclusion, 45
notation, 43–45

user accounts, roles, 111–12
user actions

executing, 384–85
processing, 381–89

user credentials, 111
user feedback, 28
user impersonation, 111
user interface, 205, 399. See also graphical user 

interface (GUI)
behavior-driven development (BDD), 374–75
boundaries, 351–52
changes, service layer and, 216
data display, 349
data entry, 349
errors, 224–26
pattern selection, 372–75
presentation layer independence, 346–47
presentation logic, 344
responsibilities, 348–50
testing, 377

user stories, 15–16
users, legitimate, 246–47

V
Validate method, 182
validation, 7–8, 133

Special Case pattern, 190
Validator object, 182
Value Object pattern. See Data Transfer Object 

pattern
value objects, 186–87, 216

vs. entities, 189
value types, 94
variables, naming conventions, 72–73
Velocity, 310
verbs, 74, 87
view

cardinality, 389–90
contract, 376, 379–81
logic, 376–78
MVC pattern, 355–56, 358
MVC pattern, controller and, 359–62
MVP pattern, 364–65, 367–69
navigation, 386–89
Presentation Model pattern, 371–72
presenter, connecting, 381–82
update, 385

view class, 379
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View method, 394
ViewController class, 358
ViewData collection, 394–95
viewModel entity, 364
virtual classes, 11–12
virtual keyword, 82
Virtual Reality Modeling Language (VRML), 31
viscosity, 66
Visio Professional, 36–38, 41
Visual Basic

event-driven programming, 95
Singleton pattern, 89

Visual Basic .NET, 71
Visual Studio, 38, 40–41

data-centric approach, 176
DSL tools, 60
table adapters, 164
Table Module pattern, 158–59
TSF plug-in, 29

Visual Studio 2008
data context, 327
DataSets, 156–58
MSTest tool
Northwind Starter Kit (NSK). See Northwind Starter 

Kit (NSK)
RADness, 350–51
refactoring, 86
separation of concerns, 354
SQL Server connection, 173
templates, 391

Vlissides, John, 73, 265
VRML (Virtual Reality Modeling Language), 31

W
waterfall model, 26–27
WatiN, 369
WCF (Windows Communication Foundation) services. 

See Windows Communication Foundation (WCF) 
services

WCSF (Web Client Software Factory), 
389, 391–92

weavers, 118–19
.NET Framework, 119–20

Web applications, front end, 237–49
Web browsers, 237–38
Web Client Software Factory (WCSF), 

389, 391–92
Web Forms, 95
Web front end, code-behind class, 201–4
Web presentation

MVC pattern, 357
MVC pattern vs. Model2, 364
MVP pattern, 365, 390–95
navigation, 360
presentation pattern selection, 372–73
SVC view, 368–69

Web servers, 237–38

Web services, 205
service layer, 195, 204
Service Layer pattern, 208–9
SOA and, 232–33

web.confi g fi le, 97, 244, 268, 270
webHttpbinding, 244
WebMethod attribute, 215
webScriptBehavior, 244
WHERE clause, 259, 292, 297, 312–13, 315
white-box reusability, 78–80
Window class, 371
Windows Communication Foundation (WCF), 120, 123, 

195, 204
AJAX security, 249
ASP.NET compatibility, 249
JavaScript clients, 240–41
Remote Façade pattern, 215
script-enabling, 244–45
service layer, 208
Service Layer patterns, 208–9

Windows Forms, 95, 346
Forms class, 371
list loading, 384
presentation pattern selection, 373
services, 201
view class, 379

Windows Presentation Foundation (WPF), 205
code reuse, 347
Presentation Model, 370–71, 397–98
presentation pattern selection, 373
services, 201
view class, 379
Window class, 371

Windows presentations
MVP pattern, 395

Windows shell extensions, 95
Windows Workfl ow Foundation, 389, 391
wizards, design, 343, 350–52, 

354, 390–91
workarounds, 66
workfl ow navigation class, 388
workfl ows, 130, 133–34, 190–91, 213
WPF (Windows Presentation Foundation). 

See Windows Presentation Foundation (WPF)
Wrap method, 121
wrapper classes, 79
WS-Policy specifi cation, 232
WYSIWYG (what-you-see-is-what-you-get), 352

X
XAML markup language, 398
Xerox PARC, 116
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