

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2009 by Itzik Ben-Gan

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2008938209

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 3 2 1 0 9 8

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor mation about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly at
fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, MSDN, SQL Server, and Windows are either registered trademarks or trademarks of the
Microsoft group of companies. Other product and company names mentioned herein may be the trademarks of their
respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ken Jones
Developmental Editor: Sally Stickney
Project Editor: Maria Gargiulo
Editorial Production: S4Carlisle Publishing Services
Technical Reviewer: Ron Talmage ; Technical Review services provided by Content Master, a member of CM Group, Ltd.
Cover: Tom Draper Design

Body Part No. X15-12280

To Dato

To live in hearts we leave behind,

Is not to die.

—Thomas Campbell

 v

Contents at a Glance

 1 Background to T-SQL Querying and Programming. 1

 2 Single-Table Queries . 25

 3 Joins . 101

 4 Subqueries . 133

 5 Table Expressions . 161

 6 Set Operations. 193

 7 Pivot, Unpivot, and Grouping Sets . 213

 8 Data Modifi cation . 237

 9 Transactions and Concurrency . 279

 10 Programmable Objects . 319

 Appendix A: Getting Started. 359

 Index . 379

 vii

Table of Contents

Acknowledgments .xiii

Introduction . xv

 1 Background to T-SQL Querying and Programming. 1

Theoretical Background . 1

SQL . 2

Set Theory . 3

Predicate Logic . 4

The Relational Model . 5

The Data Life Cycle . 10

SQL Server Architecture . 12

SQL Server Instances . 13

Databases . 14

Schemas and Objects . 17

Creating Tables and Defi ning Data Integrity . 18

Creating Tables . 19

Defi ning Data Integrity . 20

Conclusion . 24

 2 Single-Table Queries . 25

Elements of the SELECT Statement . 25

The FROM Clause. 27

The WHERE Clause. 29

The GROUP BY Clause. 30

The HAVING Clause . 34

The SELECT Clause . 35

The ORDER BY Clause . 40

The TOP Option . 42

The OVER Clause . 45

Predicates and Operators . 51

Microsoft is interested in hearing your feedback so we can continually improve our books and learning

resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

viii Table of Contents

CASE Expressions . 54

NULLs . 58

All-At-Once Operations. 62

Working with Character Data. 63

Data Types. 64

Collation . 65

Operators and Functions . 66

The LIKE Predicate . 73

Working with Date and Time Data . 75

Date and Time Data Types . 75

Literals . 76

Working with Date and Time Separately . 80

Filtering Date Ranges . 81

Date and Time Functions . 82

Querying Metadata . 89

Catalog Views . 89

Information Schema Views. 90

System Stored Procedures and Functions . 90

Conclusion . 92

Exercises. 92

Solutions . 96

 3 Joins . 101

Cross Joins . 102

ANSI SQL-92 Syntax . 102

ANSI SQL-89 Syntax. 103

Self Cross Joins . 103

Producing Tables of Numbers . 104

Inner Joins . 106

ANSI SQL-92 Syntax . 106

ANSI SQL-89 Syntax. 107

Inner Join Safety. 108

Further Join Examples . 109

Composite Joins . 109

Non-Equi Joins . 110

Multi-Table Joins . 112

Outer Joins . 113

Fundamentals of Outer Joins . 113

Beyond the Fundamentals of Outer Joins . 116

 Table of Contents ix

Conclusion . 123

Exercises. 123

Solutions . 129

 4 Subqueries . 133

Self-Contained Subqueries . 134

Self-Contained Scalar Subquery Examples . 134

Self-Contained Multi-Valued Subquery
Examples . 136

Correlated Subqueries. 140

The EXISTS Predicate. 142

Beyond the Fundamentals of Subqueries . 144

Returning Previous or Next Values . 144

Running Aggregates . 145

Misbehaving Subqueries. 146

Conclusion . 151

Exercises. 152

Solutions . 156

 5 Table Expressions . 161

Derived Tables . 161

Assigning Column Aliases. 163

Using Arguments . 165

Nesting . 165

Multiple References . 166

Common Table Expressions . 167

Assigning Column Aliases. 168

Using Arguments . 168

Defi ning Multiple CTEs . 169

Multiple References . 169

Recursive CTEs . 170

Views . 172

Views and the ORDER BY Clause . 174

View Options . 176

Inline Table-Valued Functions . 179

The APPLY Operator . 181

Conclusion . 184

Exercises . 184

Solutions . 189

x Table of Contents

 6 Set Operations. 193

The UNION Set Operation . 194

The UNION ALL Set Operation . 195

The UNION DISTINCT Set Operation . 195

The INTERSECT Set Operation . 196

The INTERSECT DISTINCT Set Operation. 197

The INTERSECT ALL Set Operation . 198

The EXCEPT Set Operation . 200

The EXCEPT DISTINCT Set Operation. 201

The EXCEPT ALL Set Operation . 202

Precedence . 203

Circumventing Unsupported Logical Phases. 204

Conclusion . 206

Exercises. 206

Solutions . 210

 7 Pivot, Unpivot, and Grouping Sets . 213

Pivoting Data . 213

Pivoting with Standard SQL . 216

Pivoting with the Native T-SQL PIVOT Operator 217

Unpivoting Data . 219

Unpivoting with Standard SQL . 220

Unpivoting with the Native T-SQL UNPIVOT Operator 223

Grouping Sets . 224

The GROUPING SETS Subclause . 225

The CUBE Subclause . 226

The ROLLUP Subclause . 227

The GROUPING and GROUPING_ID Functions. 228

Conclusion . 231

Exercises. 231

Solutions . 234

 8 Data Modifi cation . 237

Inserting Data . 237

The INSERT VALUES Statement . 238

The INSERT SELECT Statement. 239

The INSERT EXEC Statement . 240

The SELECT INTO Statement . 241

The BULK INSERT Statement . 242

The IDENTITY Property . 243

 Table of Contents xi

Deleting Data . 247

The DELETE Statement . 247

The TRUNCATE Statement . 248

DELETE Based on a Join . 249

Updating Data . 250

The UPDATE Statement. 250

UPDATE Based on a Join . 252

Assignment UPDATE . 254

Merging Data . 255

Modifying Data Through Table Expressions . 259

Modifi cations with the TOP Option . 262

The OUTPUT Clause. 263

INSERT with OUTPUT. 264

DELETE with OUTPUT . 266

UPDATE with OUTPUT. 266

MERGE with OUTPUT . 267

Composable DML . 268

Conclusion . 270

Exercises. 270

Solutions . 274

 9 Transactions and Concurrency . 279

Transactions. 279

Locks and Blocking . 282

Locks . 282

Troubleshooting Blocking. 285

Isolation Levels . 292

The READ UNCOMMITTED Isolation Level . 293

The READ COMMITTED Isolation Level . 294

The REPEATABLE READ Isolation Level. 295

The SERIALIZABLE Isolation Level . 297

Snapshot Isolation Levels . 299

Summary of Isolation Levels . 305

Deadlocks . 306

Conclusion . 309

Exercises. 309

 10 Programmable Objects . 319

Variables. 319

Batches. 322

xii Table of Contents

A Batch as a Unit of Parsing . 322

Batches and Variables . 323

Statements That Cannot Be Combined in the Same Batch. 324

A Batch as a Unit of Resolution . 324

The GO n Option . 325

Flow Elements . 325

The IF . . . ELSE Flow Element . 325

The WHILE Flow Element . 327

An Example of Using IF and WHILE . 329

Cursors . 329

Temporary Tables . 333

Local Temporary Tables . 334

Global Temporary Tables . 335

Table Variables . 336

Table Types . 337

Dynamic SQL. 338

The EXEC Command . 339

The sp_executesql Stored Procedure . 341

Using PIVOT with Dynamic SQL . 343

Routines .344

User-Defi ned Functions . 345

Stored Procedures . 346

Triggers . 349

Error Handling . 353

Conclusion . 357

Appendix A: Getting Started . 359

Index . 379

Microsoft is interested in hearing your feedback so we can continually improve our books and learning

resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

 xiii

Acknowledgments

Many people have contributed to the book, directly and indirectly, and I’d like to acknowledge
their contributions.

To Ron Talmage, the book’s technical editor: I’ve asked Microsoft Press to work with you for a
reason. You seek a true understanding of things; you look for subtleties; you appreciate SQL
and logic; and on top of all this you have superb English. You’ve done an outstanding job!

To Dejan Sarka: I’d like to thank you for your help with the fi rst chapter of the book, and for
your insights regarding set theory, predicate logic, and the relational model. I like the fact
that you always question things, even those that most people take for granted. You’re one
of the people whose thoughts and ideas I heed most. Your understanding of the relational
model and your capacity for drinking beer are truly admirable, albeit that the examples you
choose for demonstrating your ideas are not always politically correct. ;-)

Several people from Microsoft Press and S4Carlisle Publishing Services are due thanks.
To Ken Jones, the project planner: it’s a real pleasure working with you. I appreciate your
 attentiveness and the way you manage to handle us authors and our tempers. I also
 appreciate your friendship. Thanks to Sally Stickney, the development editor, for lifting the
project off the ground, and to Maria Gargiulo, the project editor, for managing the project
on a day-to-day basis. It was great to work with you! Thanks is also due to Christian Holdener
and Tracy Ball, the vendor project managers, and to Becka McKay, the copy editor.

I’d like to thank my company, Solid Quality Mentors, for the best job I could ever hope for,
which mainly involves teaching, and for making me feel like I’m part of family and friends.
Fernando G. Guerrero, Brian Moran, and Douglas McDowell, who manage the company:
you have a lot to be proud of. The company has grown and matured, and has accomplished
great things. To my friends and colleagues from the company, Ron Talmage, Andrew J. Kelly,
Eladio Rincón, Dejan Sarka, Herbert Albert, Fritz Lechnitz, Gianluca Hotz, Erik Veerman,
Daniel A. Seara, Davide Mauri, Andrea Benedetti, Miguel Egea, Adolfo Wiernik, Javier Loria,
Rushabh B. Mehta, and many others: it’s an honor and pleasure to be part of the gang;
I always look forward to spending more time with you over beer talking about SQL and other
things! I’d like to thank Jeanne Reeves for making many of my classes possible, and all the
back offi ce team for their support. I’d also like to thank Kathy Blomstrom for managing our
writing projects and for your excellent edits.

To Lubor Kollar, who’s with the Microsoft SQL Server Customer Advisory Team (SQL CAT):
I’d like to thank you for being such a great example, and for your friendship. You’re always
there to help or to fi nd the right address for help when I have a question about SQL Server,
and this contributed a lot to my T-SQL understanding. I always look forward to spending
time together!

xiv Acknowledgments

I’d like to thank several people from the product team. To Michael Wang, Michael Rys, and all
others involved in the development of T-SQL: thanks for making T-SQL such a great language,
notwithstanding the fact that the OVER clause is not yet fully implemented ;-). To Umachandar
Jayachandran (UC); I know very few people who understand the true depths of T-SQL the
way you do, and I can’t tell you how glad I was when you joined the programmability team.
I knew that T-SQL was in good hands!

To Sensei Yehuda Pantanowitz: you were my greatest teacher, and a friend; your passing
away is unbearable.

To the team at SQL Server Magazine: Megan Bearly, Sheila Molnar, Mary Waterloo, Karen
Forster, Michele Crockett, Mike Otey, Lavon Peters, and Anne Grubb: we’ve been working
together for almost 10 years now, and I feel like it’s my home. Thanks for giving me the
 freedom to write every month about a subject that is burning in my veins, and for all the work
you do to enable the articles to be published.

I’d like to thank my fellow MVPs for your contribution to the SQL community and to my
 knowledge. A few deserve special thanks: Steve Kass, when I grow up, I want to be just
like you! To Erland Sommarskog, Alejandro Mesa, Aaron Bertrand, and Tibor Karaszi: your
 participation in the newsgroups is truly astounding! Erland, your papers are a great source of
information. To Marcello Poletti (Marc): I believe that we share similar feelings towards SQL
and puzzles; your puzzles are wicked and they have deprived me of sleep more than once.

My true passion is for teaching; I’d like to thank my students for enabling me to fulfi ll my
 passion. Student questions and inquiries make me do a lot of research, and a lot of my
knowledge today is due to those questions.

I’d like to thank my family for their support. To my parents, Gabriel and Emilia Ben-Gan, for
supporting me in pursuing my passion, even if it means that we see each other less. And to
my brother, Michael Ben-Gan and my sister, Ina Aviram, for being there for me.

Finally, Lilach, you give meaning to everything I do; contrary to the common cliché,
I probably could fi nish the book without you. But then, why would I want to?

 xv

Introduction

This book walks you through your fi rst steps in T-SQL (also known as Transact-SQL), which is
the Microsoft SQL Server dialect of the standard ANSI-SQL language. You’ll learn the theory
behind T-SQL querying and programming, how to develop T-SQL code to query and modify
data, and get an overview of programmable objects.

Although this book is intended for beginners, it is not merely a step-by-step book. It goes
beyond the syntactical elements of T-SQL and explains the logic behind the language and its
elements.

Occasionally the book covers subjects that may be considered advanced for readers who are
new to T-SQL; therefore, those sections are optional reading. If you already feel comfortable
with the material discussed in the book up to that point, you may want to tackle the more
advanced subjects; otherwise, feel free to skip those sections and return to them after you’ve
gained more experience. The text will indicate when a section may be considered more
 advanced and is provided as optional reading.

Many aspects of SQL are unique to the language, and are very different from other
 programming languages. This book helps you adopt the right state of mind and gain a
true understanding of the language elements. You learn how to think in terms of sets and
follow good SQL programming practices.

The book is not version-specifi c; it does, however, cover language elements that were
 introduced in recent versions of SQL Server, including SQL Server 2008. When I discuss
language elements that were introduced recently, I specify the version in which they
were added.

To complement the learning experience, the book provides exercises that enable you to
practice what you’ve learned. The book occasionally provides optional exercises that are
more advanced. Those exercises are intended for readers who feel very comfortable with
the material and want to challenge themselves with more diffi cult problems. The optional
 exercises for advanced readers are labeled as such.

Who This Book Is For

This book is intended for T-SQL programmers, DBAs, architects, analysts, and SQL Server
power users who just started working with SQL Server and need to write queries and develop
code using Transact-SQL.

xvi Introduction

What This Book Is About

The book starts with both a theoretical background to T-SQL querying and programming in
Chapter 1, laying the foundations for the rest of the book, and also coverage of creating tables
and defi ning data integrity. The book moves on to various aspects of querying and modifying
data, in Chapters 2 through 8, then to a discussion of concurrency and transactions in Chapter 9,
and fi nally provides an overview of programmable objects in Chapter 10. The following section
lists the chapter titles along with a short description:

Chapter 1, “Background to T-SQL Querying and Programming,” provides a theoretical
background about SQL, set theory, and predicate logic; examines the relational model and
more; describes SQL Server’s architecture; and explains how to create tables and defi ne data
integrity.

Chapter 2, “Single-Table Queries,” covers various aspects of querying a single table using the
SELECT statement.

Chapter 3, “Joins,” covers querying multiple tables using joins, including cross joins, inner
joins, and outer joins.

Chapter 4, “Subqueries,” covers queries within queries, otherwise known as subqueries.

Chapter 5, “Table Expressions,” covers derived tables, CTEs, views, inline table-valued functions,
and the APPLY operator.

Chapter 6, “Set Operations,” covers the set operations UNION, INTERSECT, and EXCEPT.

Chapter 7, “Pivot, Unpivot, and Grouping Sets,” covers data-rotation techniques and working
with grouping sets.

Chapter 8, “Data Modifi cation,” covers inserting, updating, deleting, and merging data.

Chapter 9, “Transactions and Concurrency,” covers concurrency of user connections that work
with the same data simultaneously; it covers concepts including transactions, locks, blocking,
isolation levels, and deadlocks.

Chapter 10, “Programmable Objects,” provides an overview to the T-SQL programming
 capabilities in SQL Server.

The book also provides an appendix, “Getting Started,” to help you set up your environment,
download the book’s source code, install the sample database TSQLFundamentals2008,
start writing code against SQL Server, and learn how to get help by working with SQL Server
Books Online.

 Introduction xvii

Companion Content

This book features a companion Web site that makes available to you all the code used
in the book, the errata, additional resources, and more. The companion Web site is
http://www.insidetsql.com. Please refer to Appendix A, “Getting Started,” for details about
the source code.

Hardware and Software Requirements

In Appendix A, “Getting Started,” I explain which editions of SQL Server 2008 you can use to
work with the code samples included with this book. Each edition of SQL Server may have
different hardware and software requirements, and those requirements are well-documented
in SQL Server Books Online under “Hardware and Software Requirements for Installing
SQL Server 2008.” Appendix A also explains how to work with SQL Server Books Online.

Find Additional Content Online

For more great information from Microsoft Press, visit the new Microsoft Press Online sites—
your one-stop online resource for access to updates, sample chapters, articles, scripts, and
e-books related to our industry-leading Microsoft Press titles. Check out the following sites:
http://www.microsoft.com/learning/books/online/developer and http://www.microsoft.com/
learning/books/online/serverclient.

Support for This Book

Every effort has been made to ensure the accuracy of this book and the contents of the
companion Web site. As corrections or changes are collected, they will be added to a
Microsoft Knowledge Base article.

Microsoft Press provides support for books at the following Web site:

http://www.microsoft.com/learning/support/books/

xviii Introduction

Questions and Comments

If you have comments, questions, or ideas regarding the book, or questions that are not
 answered by visiting the sites above, please send them to me via e-mail at:

itzik@SolidQ.com

Or via postal mail at:

Microsoft Press
Attn: Microsoft SQL Server 2008 T-SQL Fundamentals Editor
One Microsoft Way
Redmond, WA 98052-6399

Please note that Microsoft software product support is not offered through the above
addresses.

 101

Chapter 3

Joins

In this chapter:

Cross Joins . 102

Inner Joins . 106

Further Join Examples . 109

Outer Joins . 113

Conclusion . 123

Exercises . 123

Solutions . 129

 The FROM clause of a query is the fi rst clause to be logically processed, and within the FROM
clause table operators operate on input tables. Microsoft SQL Server 2008 supports four table
operators—JOIN, APPLY, PIVOT, and UNPIVOT. The JOIN table operator is standard, while APPLY,
PIVOT, and UNPIVOT are T-SQL extensions to the standard. These last three were introduced
in SQL Server 2005. Each table operator acts on tables provided to it as input, applies a set of
 logical query processing phases, and returns a table result. This chapter focuses on the JOIN
table operator. The APPLY operator will be covered in Chapter 5, “Table Expressions,” and the
PIVOT and UNPIVOT operators will be covered in Chapter 7, “Pivot, Unpivot, and Grouping Sets.”

 A JOIN table operator operates on two input tables. The three fundamental types of joins
are cross, inner, and outer. The three types of joins differ in how they apply their logical
query processing phases; each type applies a different set of phases. A cross join applies only
one phase—Cartesian Product. An inner join applies two phases—Cartesian Product and
Filter. An outer join applies three phases—Cartesian Product, Filter, and Add Outer Rows.
This chapter explains each of the join types and the phases involved in detail.

 Logical query processing describes a generic series of logical steps that for any given query
produces the correct result, while physical query processing is the way the query is processed
by the RDBMS engine in practice. Some phases of logical query processing of joins may
sound ineffi cient, but the physical implementation may be optimized. It’s important to stress
the term logical in logical query processing. The steps in the process apply operations to the
input tables based on relational algebra. The database engine does not have to follow logical
query processing phases literally as long as it can guarantee that the result that it produces
is the same as dictated by logical query processing. The SQL Server relational engine often
applies many shortcuts for optimization purposes when it knows that it can still produce the
correct result. Even though this book’s focus is to understand the logical aspects of querying,
I want to stress this point to avoid any misunderstanding and confusion.

102 Microsoft SQL Server 2008 T-SQL Fundamentals

Cross Joins

 Logically, a cross join is the simplest type of join. A cross join implements only one logical
query processing phase—a Cartesian Product. This phase operates on the two tables provided
as inputs to the join, and produces a Cartesian product of the two. That is, each row from one
input is matched with all rows from the other. So if you have m rows in one table and n rows
in the other, you get m × n rows in the result.

 SQL Server supports two standard syntaxes for cross joins—the ANSI SQL-92 and ANSI SQL-89
syntaxes. I recommend that you use the ANSI-SQL 92 syntax for reasons that I’ll describe shortly.
Therefore, ANSI-SQL 92 syntax is the main syntax that I use throughout the book. For the sake
of completeness, I describe both syntaxes in this section.

ANSI SQL-92 Syntax

 The following query applies a cross join between the Customers and Employees tables (using
the ANSI SQL-92 syntax) in the TSQLFundamentals2008 database, and returns the custid and
empid attributes in the result set:

USE TSQLFundamentals2008;

SELECT C.custid, E.empid
FROM Sales.Customers AS C
 CROSS JOIN HR.Employees AS E;

 Because there are 91 rows in the Customers table and 9 rows in the Employees table, this
query produces a result set with 819 rows, as shown here in abbreviated form:

custid empid
----------- -----------
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
...

(819 row(s) affected)

 Chapter 3 Joins 103

 Using the ANSI SQL-92 syntax, you specify the CROSS JOIN keywords between the two tables
involved in the join.

 Notice that in the FROM clause of the preceding query, I assigned the aliases C and E to the
Customers and Employees tables, respectively. The result set produced by the cross join is
a virtual table with attributes that originate from both sides of the join. Because I assigned
aliases to the source tables, the names of the columns in the virtual table are prefi xed by the
table aliases (for example, C.custid, E.empid). If you do not assign aliases to the tables in the
FROM clause, the names of the columns in the virtual table are prefi xed by the full source
table names (for example, Customers.custid, Employees.empid). The purpose of the prefi xes
is to enable the identifi cation of columns in an unambiguous manner when the same column
name appears in both tables. The aliases of the tables are assigned for brevity. Note that
you are required to use column prefi xes only when referring to ambiguous column names
 (column names that appear in more than one table); in unambiguous cases column prefi xes
are optional. However, some people fi nd it a good practice to always use column prefi xes for
the sake of clarity. Also note that if you assign an alias to a table, it is invalid to use the full
table name as a column prefi x; in ambiguous cases you have to use the table alias as a prefi x.

ANSI SQL-89 Syntax

 SQL Server also supports an older syntax for cross joins that was introduced in ANSI SQL-89.
In this syntax you simply specify a comma between the table names like so:

SELECT C.custid, E.empid
FROM Sales.Customers AS C, HR.Employees AS E;

 There is no logical or performance difference between the two syntaxes. Both syntaxes are
integral parts of the latest SQL standard (ANSI SQL:2006 at the time of this writing), and
both are fully supported by the latest version of SQL Server (SQL Server 2008 at the time of
this writing). I am not aware of any plans to deprecate the older syntax, and I don’t see any
 reason to do so while it’s an integral part of the standard. However, I recommend using the
ANSI SQL-92 syntax for reasons that will become clear after inner joins are explained.

Self Cross Joins

 You can join multiple instances of the same table. This capability is known as self-join and
is supported with all fundamental join types (cross, inner, and outer). For example, the
 following query performs a self cross join between two instances of the Employees table:

SELECT
 E1.empid, E1.firstname, E1.lastname,
 E2.empid, E2.firstname, E2.lastname
FROM HR.Employees AS E1
 CROSS JOIN HR.Employees AS E2;

104 Microsoft SQL Server 2008 T-SQL Fundamentals

 This query produces all possible combinations of pairs of employees. Because the Employees
table has 9 rows, this query returns 81 rows, shown here in abbreviated form:

empid firstname lastname empid firstname lastname
------ ---------- --------------- ------ ---------- ---------
1 Sara Davis 1 Sara Davis
2 Don Funk 1 Sara Davis
3 Judy Lew 1 Sara Davis
4 Yael Peled 1 Sara Davis
5 Sven Buck 1 Sara Davis
6 Paul Suurs 1 Sara Davis
7 Russell King 1 Sara Davis
8 Maria Cameron 1 Sara Davis
9 Zoya Dolgopyatova 1 Sara Davis
1 Sara Davis 2 Don Funk
2 Don Funk 2 Don Funk
3 Judy Lew 2 Don Funk
4 Yael Peled 2 Don Funk
5 Sven Buck 2 Don Funk
6 Paul Suurs 2 Don Funk
7 Russell King 2 Don Funk
8 Maria Cameron 2 Don Funk
9 Zoya Dolgopyatova 2 Don Funk
...

(81 row(s) affected)

 In a self-join, aliasing tables is not optional. Without table aliases, all column names in the
result of the join would be ambiguous.

Producing Tables of Numbers

 One situation in which cross joins can be very handy is when they are used to produce a
result set with a sequence of integers (1, 2, 3, and so on). Such a sequence of numbers is an
extremely powerful tool that I use for many purposes. Using cross joins you can produce the
sequence of integers in a very effi cient manner.

 You can start by creating a table called Digits with a column called digit, and populate the
table with 10 rows with the digits 0 through 9. Run the following code to create the Digits
table in the tempdb database (for test purposes) and populate it with the 10 digits:

USE tempdb;
IF OBJECT_ID('dbo.Digits', 'U') IS NOT NULL DROP TABLE dbo.Digits;
CREATE TABLE dbo.Digits(digit INT NOT NULL PRIMARY KEY);

INSERT INTO dbo.Digits(digit)
 VALUES (0),(1),(2),(3),(4),(5),(6),(7),(8),(9);

/*
Note:
Above INSERT syntax is new in Microsoft SQL Server 2008.

 Chapter 3 Joins 105

In earlier versions use:

INSERT INTO dbo.Digits(digit) VALUES(0);
INSERT INTO dbo.Digits(digit) VALUES(1);
INSERT INTO dbo.Digits(digit) VALUES(2);
INSERT INTO dbo.Digits(digit) VALUES(3);
INSERT INTO dbo.Digits(digit) VALUES(4);
INSERT INTO dbo.Digits(digit) VALUES(5);
INSERT INTO dbo.Digits(digit) VALUES(6);
INSERT INTO dbo.Digits(digit) VALUES(7);
INSERT INTO dbo.Digits(digit) VALUES(8);
INSERT INTO dbo.Digits(digit) VALUES(9);
*/

SELECT digit FROM dbo.Digits;

 This code uses a couple of syntax elements for the fi rst time in this book, so I’ll briefl y explain
them. Any text residing within a block starting with /* and ending with */ is treated as a block
comment and is ignored by SQL Server. This code also uses an INSERT statement to populate
the Digits table. If you’re not familiar with the syntax of the INSERT statement, see Chapter 8,
“Data Modifi cation,” for details. Note, however, that this code uses new syntax that was
 introduced in SQL Server 2008 for the INSERT VALUES statement, allowing a single statement
to insert multiple rows. A block comment embedded in the code explains that in earlier
 versions you need to use a separate INSERT VALUES statement for each row.

 The contents of the Digits table are shown here:

digit

0
1
2
3
4
5
6
7
8
9

 Suppose you need to write a query that produces a sequence of integers in the range 1 through
1,000. You can cross three instances of the Digits table, each representing a different power of
10 (1, 10, 100). By crossing three instances of the same table, each instance with 10 rows, you get
a result set with 1,000 rows. To produce the actual number, multiply the digit from each instance
by the power of 10 it represents, sum the results, and add 1. Here’s the complete query:

SELECT D3.digit * 100 + D2.digit * 10 + D1.digit + 1 AS n
FROM dbo.Digits AS D1
 CROSS JOIN dbo.Digits AS D2
 CROSS JOIN dbo.Digits AS D3
ORDER BY n;

106 Microsoft SQL Server 2008 T-SQL Fundamentals

 This query returns the following output, shown here in abbreviated form:

n

1
2
3
4
5
6
7
8
9
10
...
998
999
1000

(1000 row(s) affected)

 This was just an example producing a sequence of 1,000 integers. If you need more, you can
add more instances of the Digits table to the query. For example, if you need to produce a
sequence of 1,000,000 rows, you would need to join six instances.

Inner Joins

 An inner join applies two logical query processing phases—it applies a Cartesian product between
the two input tables like a cross join, and then it fi lters rows based on a predicate that you specify.
Like cross joins, inner joins have two standard syntaxes: ANSI SQL-92 and ANSI SQL-89.

ANSI SQL-92 Syntax

 Using the ANSI SQL-92 syntax, you specify the INNER JOIN keywords between the table
names. The INNER keyword is optional because an inner join is the default, so you can
specify the JOIN keyword alone. You specify the predicate that is used to fi lter rows in a
 designated clause called ON. This predicate is also known as the join condition.

 For example, the following query performs an inner join between the Employees and Orders
tables in the TSQLFundamentals2008 database, matching employees and orders based on
the predicate E.empid = O.empid:

USE TSQLFundamentals2008;

SELECT E.empid, E.firstname, E.lastname, O.orderid
FROM HR.Employees AS E
 JOIN Sales.Orders AS O
 ON E.empid = O.empid;

 Chapter 3 Joins 107

 This query produces the following result set, shown here in abbreviated form:

empid firstname lastname orderid
----------- ---------- -------------------- -----------
1 Sara Davis 10258
1 Sara Davis 10270
1 Sara Davis 10275
1 Sara Davis 10285
1 Sara Davis 10292
...
2 Don Funk 10265
2 Don Funk 10277
2 Don Funk 10280
2 Don Funk 10295
2 Don Funk 10300
...

(830 row(s) affected)

 For most people the easiest way to think of such an inner join is as matching each employee
row to all order rows that have the same employee ID as the employee’s employee ID. This is a
simplifi ed way to think of the join. The more formal way to think of the join based on relational
algebra is that fi rst the join performs a Cartesian product of the two tables (9 employee
rows × 830 order rows = 7,470 rows), and then fi lters rows based on the predicate E.empid =
O.empid, eventually returning 830 rows. As mentioned earlier, that’s just the logical way the
join is processed; in practice, physical processing of the query by the database engine can be
different.

 Recall the discussion from previous chapters about the three-valued predicate logic used
by SQL. Like with the WHERE and HAVING clauses, the ON clause also returns only rows for
which the predicate returns TRUE, and does not return rows for which the predicate evaluates
to FALSE or UNKNOWN.

 In the TSQLFundamentals2008 database all employees have related orders, so all employees
show up in the output. However, had there been employees with no related orders, they
would have been fi ltered out by the fi lter phase.

ANSI SQL-89 Syntax

 Similar to cross joins, inner joins can be expressed using the ANSI SQL-89 syntax. You specify
a comma between the table names just like in a cross join, and specify the join condition in
the query’s WHERE clause, like so:

SELECT E.empid, E.firstname, E.lastname, O.orderid
FROM HR.Employees AS E, Sales.Orders AS O
WHERE E.empid = O.empid;

 Note that the ANSI SQL-89 syntax has no ON clause.

108 Microsoft SQL Server 2008 T-SQL Fundamentals

 Again, both syntaxes are standard, fully supported by SQL Server, and interpreted the
same by the engine, so you shouldn’t expect any performance difference between the two.
But one syntax is safer, as explained in the next section.

Inner Join Safety

 I strongly recommend that you stick to the ANSI SQL-92 join syntax because it is safer in
several ways. Say you intend to write an inner join query, and by mistake forget to specify
the join condition. With the ANSI SQL-92 syntax the query becomes invalid and the parser
generates an error. For example, try to run the following code:

SELECT E.empid, E.firstname, E.lastname, O.orderid
FROM HR.Employees AS E
 JOIN Sales.Orders AS O;

 You get the following error:

Msg 102, Level 15, State 1, Line 3
Incorrect syntax near ';'.

 Even though it might not be obvious immediately that the error involves a missing join
 condition, you will fi gure it out eventually and fi x the query. However, if you forget to specify
the join condition using the ANSI SQL-89 syntax, you get a valid query that performs a cross
join:

SELECT E.empid, E.firstname, E.lastname, O.orderid
FROM HR.Employees AS E, Sales.Orders AS O;

 Because the query doesn’t fail, the logical error might go unnoticed for a while, and users of
your application might end up relying on incorrect results. It is unlikely that a programmer
would forget to specify the join condition with such short and simple queries; however,
most production queries are much more complicated and have multiple tables, fi lters, and
other query elements. In those cases the likelihood of forgetting to specify a join condition
increases.

 If I’ve convinced you that it is important to use the ANSI SQL-92 syntax for inner joins, you
might wonder whether the recommendation holds for cross joins. Because no join condition
is involved, you might think that both syntaxes are just as good for cross joins. However, I
 recommend staying with the ANSI SQL-92 syntax with cross joins for a couple of reasons—one
being consistency. Also, let’s say you do use the ANSI SQL-89 syntax. Even if you intended to
write a cross join, when other developers need to review or maintain your code, how will they
know whether you intended to write a cross join or intended to write an inner join and forgot
to specify the join condition?

 Chapter 3 Joins 109

Further Join Examples

 This section covers a few join examples that are known by specifi c names, including composite
joins, non-equi joins, and multi-table joins.

Composite Joins

 A composite join is simply a join based on a predicate that involves more than one attribute
from each side. A composite join is commonly required when you need to join two tables
based on a primary key–foreign key relationship, and the relationship is composite: that is,
based on more than one attribute. For example, suppose you have a foreign key defi ned on
dbo.Table2, columns col1, col2, referencing dbo.Table1, columns col1, col2, and you need to
write a query that joins the two based on primary key–foreign key relationship. The FROM
clause of the query would look like this:

FROM dbo.Table1 AS T1
 JOIN dbo.Table2 AS T2
 ON T1.col1 = T2.col1
 AND T1.col2 = T2.col2

 For a more tangible example, suppose that you need to audit updates to column values
against the OrderDetails table in the TSQLFundamentals2008 database. You create a custom
auditing table called OrderDetailsAudit:

USE TSQLFundamentals2008;
IF OBJECT_ID('Sales.OrderDetailsAudit', 'U') IS NOT NULL
 DROP TABLE Sales.OrderDetailsAudit;
CREATE TABLE Sales.OrderDetailsAudit
(
 lsn INT NOT NULL IDENTITY,
 orderid INT NOT NULL,
 productid INT NOT NULL,
 dt DATETIME NOT NULL,
 loginname sysname NOT NULL,
 columnname sysname NOT NULL,
 oldval SQL_VARIANT,
 newval SQL_VARIANT,
 CONSTRAINT PK_OrderDetailsAudit PRIMARY KEY(lsn),
 CONSTRAINT FK_OrderDetailsAudit_OrderDetails
 FOREIGN KEY(orderid, productid)
 REFERENCES Sales.OrderDetails(orderid, productid)
);

 Each audit row stores a log serial number (lsn), the key of the modifi ed row (orderid, productid),
the name of the modifi ed column (columnname), the old value (oldval), new value (newval),
when the change took place (dt), and who made the change (loginname). The table has a
foreign key defi ned on the attributes orderid, productid, referencing the primary key of the
OrderDetails table, which is defi ned on the attributes orderid, productid.

110 Microsoft SQL Server 2008 T-SQL Fundamentals

 Suppose that you already have in place all the required processes that audit column value
changes taking place in the OrderDetails table in the OrderDetailsAudit table.

 You need to write a query that returns all value changes that took place against the column
qty, but in each result row you need to return the current value from the OrderDetails table,
and the values before and after the change from the OrderDetailsAudit table. You need to
join the two tables based on primary key–foreign key relationship like so:

SELECT OD.orderid, OD.productid, OD.qty,
 ODA.dt, ODA.loginname, ODA.oldval, ODA.newval
FROM Sales.OrderDetails AS OD
 JOIN Sales.OrderDetailsAudit AS ODA
 ON OD.orderid = ODA.orderid
 AND OD.productid = ODA.productid
WHERE ODA.columnname = N'qty';

 Because the relationship is based on multiple attributes, the join condition is composite.

Non-Equi Joins

 When the join condition involves only an equality operator, the join is said to be an
 equi join. When the join condition involves any operator besides equality, the join is said
to be a non-equi join. As an example of a non-equi join, the following query joins two
 instances of the Employees table to produce unique pairs of employees:

SELECT
 E1.empid, E1.firstname, E1.lastname,
 E2.empid, E2.firstname, E2.lastname
FROM HR.Employees AS E1
 JOIN HR.Employees AS E2
 ON E1.empid < E2.empid;

 Notice the predicate specifi ed in the ON clause. The purpose of the query is to produce
unique pairs of employees. Had you used a cross join, you would have gotten self pairs
(for example, 1 with 1), and also mirrored pairs (for example, 1 with 2 and also 2 with 1).
Using an inner join with a join condition that says that the key in the left side must be smaller
than the key in the right side eliminates the two inapplicable cases. Self pairs are eliminated
because both sides are equal. With mirrored pairs, only one of the two cases qualifi es
 because out of the two cases, only one will have a left key that is smaller than the right key.
In our case, out of the 81 possible pairs of employees that a cross join would have returned,
our query returns the 36 unique pairs shown here:

empid firstname lastname empid firstname lastname
----- ---------- ---------------- ------ ---------- -----------------
1 Sara Davis 2 Don Funk
1 Sara Davis 3 Judy Lew
2 Don Funk 3 Judy Lew

 Chapter 3 Joins 111

1 Sara Davis 4 Yael Peled
2 Don Funk 4 Yael Peled
3 Judy Lew 4 Yael Peled
1 Sara Davis 5 Sven Buck
2 Don Funk 5 Sven Buck
3 Judy Lew 5 Sven Buck
4 Yael Peled 5 Sven Buck
1 Sara Davis 6 Paul Suurs
2 Don Funk 6 Paul Suurs
3 Judy Lew 6 Paul Suurs
4 Yael Peled 6 Paul Suurs
5 Sven Buck 6 Paul Suurs
1 Sara Davis 7 Russell King
2 Don Funk 7 Russell King
3 Judy Lew 7 Russell King
4 Yael Peled 7 Russell King
5 Sven Buck 7 Russell King
6 Paul Suurs 7 Russell King
1 Sara Davis 8 Maria Cameron
2 Don Funk 8 Maria Cameron
3 Judy Lew 8 Maria Cameron
4 Yael Peled 8 Maria Cameron
5 Sven Buck 8 Maria Cameron
6 Paul Suurs 8 Maria Cameron
7 Russell King 8 Maria Cameron
1 Sara Davis 9 Zoya Dolgopyatova
2 Don Funk 9 Zoya Dolgopyatova
3 Judy Lew 9 Zoya Dolgopyatova
4 Yael Peled 9 Zoya Dolgopyatova
5 Sven Buck 9 Zoya Dolgopyatova
6 Paul Suurs 9 Zoya Dolgopyatova
7 Russell King 9 Zoya Dolgopyatova
8 Maria Cameron 9 Zoya Dolgopyatova

(36 row(s) affected)

 If it is still not clear to you what this query does, try to process it one step at a time with
a smaller set of employees. For example, suppose the Employees table contained only
 employees 1, 2, and 3. First, produce the Cartesian product of two instances of the table:

E1.empid E2.empid
------------- -------------
1 1
1 2
1 3
2 1
2 2
2 3
3 1
3 2
3 3

112 Microsoft SQL Server 2008 T-SQL Fundamentals

 Next, fi lter the rows based on the predicate E1.empid < E2.empid, and you are left with only
three rows:

E1.empid E2.empid
------------- -------------
1 2
1 3
2 3

Multi-Table Joins

 A join table operator operates only on two tables, but a single query can have multiple joins.
In general, when more than one table operator appears in the FROM clause, the table operators
are logically processed from left to right. That is, the result table of the fi rst table operator is
served as the left input to the second table operator; the result of the second table operator is
served as the left input to the third table operator and so on. So if there are multiple joins in the
FROM clause, logically the fi rst join operates on two base tables, but all other joins get the result
of the preceding join as their left input. With cross joins and inner joins, the database engine can
(and often does) internally rearrange join ordering for optimization purposes because it won’t
have an impact on the correctness of the result of the query.

 As an example, the following query joins the Customers and Orders tables to match customers
with their orders, and joins the result of the fi rst join with the OrderDetails table to match
 orders with their order lines:

SELECT
 C.custid, C.companyname, O.orderid,
 OD.productid, OD.qty
FROM Sales.Customers AS C
 JOIN Sales.Orders AS O
 ON C.custid = O.custid
 JOIN Sales.OrderDetails AS OD
 ON O.orderid = OD.orderid;

 This query returns the following output, shown here in abbreviated form:

custid companyname orderid productid qty
----------- ----------------- ----------- ----------- ------
85 Customer ENQZT 10248 11 12
85 Customer ENQZT 10248 42 10
85 Customer ENQZT 10248 72 5
79 Customer FAPSM 10249 14 9
79 Customer FAPSM 10249 51 40
34 Customer IBVRG 10250 41 10
34 Customer IBVRG 10250 51 35
34 Customer IBVRG 10250 65 15
84 Customer NRCSK 10251 22 6
84 Customer NRCSK 10251 57 15
...

(2155 row(s) affected)

 Chapter 3 Joins 113

Outer Joins

 Outer joins are usually harder for people to grasp compared to the other types of joins. First
I will describe the fundamentals of outer joins. If by the end of the section “Fundamentals of
Outer Joins,” you feel very comfortable with the material and are ready for more advanced
content, you can read an optional section describing aspects of outer joins that are beyond
the fundamentals. Otherwise, feel free to skip that part and return to it when you feel com-
fortable with the material.

Fundamentals of Outer Joins

 Outer joins were introduced in ANSI SQL-92 and unlike inner and cross joins, they only have
one standard syntax—the one where you specify the JOIN keyword between the table
names, and the join condition in the ON clause. Outer joins apply the two logical processing
phases that inner joins apply (Cartesian product and the ON fi lter), plus a third phase called
Adding Outer Rows that is unique to this type of join.

 In an outer join you mark a table as a “preserved” table by using the keywords LEFT OUTER
JOIN, RIGHT OUTER JOIN, or FULL OUTER JOIN between the table names. The OUTER
 keyword is optional. The LEFT keyword means that the rows of the left table are preserved,
the RIGHT keyword means that the rows in the right table are preserved, and the FULL
 keyword means that the rows in both the left and right tables are preserved. The third logical
query processing phase of an outer join identifi es the rows from the preserved table that
did not fi nd matches in the other table based on the ON predicate. This phase adds those
rows to the result table produced by the fi rst two phases of the join, and uses NULLs as place
holders for the attributes from the nonpreserved side of the join in those outer rows.

 A good way to understand outer joins is through an example. The following query joins the
Customers and Orders tables based on a match between the customer’s customer ID and the
order’s customer ID to return customers and their orders. The join type is a left outer join;
therefore, the query also returns customers who did not place any orders in the result:

SELECT C.custid, C.companyname, O.orderid
FROM Sales.Customers AS C
 LEFT OUTER JOIN Sales.Orders AS O
 ON C.custid = O.custid;

 This query returns the following output, shown here in abbreviated form:

custid companyname orderid
----------- --------------- -----------
1 Customer NRZBB 10643
1 Customer NRZBB 10692
1 Customer NRZBB 10702
1 Customer NRZBB 10835
1 Customer NRZBB 10952
...

114 Microsoft SQL Server 2008 T-SQL Fundamentals

21 Customer KIDPX 10414
21 Customer KIDPX 10512
21 Customer KIDPX 10581
21 Customer KIDPX 10650
21 Customer KIDPX 10725
22 Customer DTDMN NULL
23 Customer WVFAF 10408
23 Customer WVFAF 10480
23 Customer WVFAF 10634
23 Customer WVFAF 10763
23 Customer WVFAF 10789
...
56 Customer QNIVZ 10684
56 Customer QNIVZ 10766
56 Customer QNIVZ 10833
56 Customer QNIVZ 10999
56 Customer QNIVZ 11020
57 Customer WVAXS NULL
58 Customer AHXHT 10322
58 Customer AHXHT 10354
58 Customer AHXHT 10474
58 Customer AHXHT 10502
58 Customer AHXHT 10995
...
91 Customer CCFIZ 10792
91 Customer CCFIZ 10870
91 Customer CCFIZ 10906
91 Customer CCFIZ 10998
91 Customer CCFIZ 11044

(832 row(s) affected)

 Two customers in the Customers table did not place any orders. Their IDs are 22 and 57.
Observe that in the output of the query both customers are returned with NULLs in the
 attributes from the Orders table. Logically, the rows for these two customers were fi ltered out
by the second phase of the join (fi lter based on the ON predicate), but the third phase added
those as outer rows. Had the join been an inner join, these two rows would not have been
returned. These two rows are added to preserve all the rows of the left table.

 You can consider two kinds of rows in the result of an outer join in respect to the preserved
side—inner rows and outer rows. Inner rows are rows that have matches in the other side
based on the ON predicate, and outer rows are rows that don’t. An inner join returns only
inner rows, while an outer join returns both inner and outer rows.

 A common question when using outer joins that is the source of a lot of confusion is whether
to specify a predicate in the ON or WHERE clauses of a query. You can see that with respect
to rows from the preserved side of an outer join, the fi lter based on the ON predicate is not
fi nal. In other words, the ON predicate does not determine whether the row will show up in
the output, only whether it will be matched with rows from the other side. So when you need
to express a predicate that is not fi nal—meaning a predicate that determines which rows

 Chapter 3 Joins 115

to match from the nonpreserved side—specify the predicate in the ON clause. When you
need a fi lter to be applied after outer rows are produced, and you want the fi lter to be fi nal,
specify the predicate in the WHERE clause. The WHERE clause is processed after the FROM
clause—namely, after all table operators were processed and (in the case of outer joins), after
all outer rows were produced. Also, the WHERE clause is fi nal with respect to rows that it
 fi lters out, unlike the ON clause.

 Suppose that you need to return only customers who did not place any orders, or more
 technically speaking, you need to return only outer rows. You can use the previous query as
your basis, and add a WHERE clause that fi lters only outer rows. Remember that outer rows are
identifi ed by the NULLs in the attributes from the nonpreserved side of the join. So you can
fi lter only the rows where one of the attributes in the nonpreserved side of the join is NULL,
like so:

SELECT C.custid, C.companyname
FROM Sales.Customers AS C
 LEFT OUTER JOIN Sales.Orders AS O
 ON C.custid = O.custid
WHERE O.orderid IS NULL;

 This query returns only two rows, with the customers 22 and 57:

custid companyname
----------- ---------------
22 Customer DTDMN
57 Customer WVAXS

(2 row(s) affected)

 Notice a couple of important things about this query. Recall the discussions about NULLs
earlier in the book: When looking for a NULL you should use the operator IS NULL and
not an equality operator, because an equality operator comparing something with a NULL
 always returns UNKNOWN—even when comparing two NULLs. Also, the choice of which
attribute from the nonpreserved side of the join to fi lter is important. You should choose
an attribute that can only have a NULL when the row is an outer row and not otherwise
(for example, a NULL originating from the base table). For this purpose, three cases are
safe to consider—a primary key column, a join column, and a column defi ned as NOT
NULL. A primary key column cannot be NULL; therefore, a NULL in such a column can
only mean that the row is an outer row. If a row has a NULL in the join column, that row
is fi ltered out by the second phase of the join, so a NULL in such a column can only mean
that it’s an outer row. And obviously a NULL in a column that is defi ned as NOT NULL can
only mean that the row is an outer row.

 To practice what you’ve learned and get a better grasp of outer joins, make sure that you
perform the exercises for this chapter.

116 Microsoft SQL Server 2008 T-SQL Fundamentals

Beyond the Fundamentals of Outer Joins

 This section covers more advanced aspects of outer joins and is provided as optional reading
for when you feel very comfortable with the fundamentals of outer joins.

Including Missing Values

You can use outer joins to identify and include missing values when querying data. For example,
suppose that you need to query all orders from the Orders table in the TSQLFundamentals2008
database. You need to ensure that you get at least one row in the output for each date in the
range January 1, 2006 through December 31, 2008. You don’t want to do anything special with
dates within the range that have orders. But you do want the output to include the dates with
no orders, with NULLs as placeholders in the attributes of the order.

To solve the problem, you can fi rst write a query that returns a sequence of all dates in
the requested date range. You can then perform a left outer join between that set and the
Orders table. This way the result also includes the missing order dates.

To produce a sequence of dates in a given range, I usually use an auxiliary table of numbers.
I create a table called Nums with a column called n, and populate it with a sequence of
 integers (1, 2, 3, and so on). I fi nd that an auxiliary table of numbers is an extremely powerful
general-purpose tool that I end up using to solve many problems. You need to create it only
once in the database and populate it with as many numbers as you might need. Run the code
in Listing 3-1 to create the Nums table in the dbo schema and populate it with 100,000 rows:

LISTING 3-1 Code to Create and Populate the Auxiliary Table Nums

SET NOCOUNT ON;
USE TSQLFundamentals2008;
IF OBJECT_ID('dbo.Nums', 'U') IS NOT NULL DROP TABLE dbo.Nums;
CREATE TABLE dbo.Nums(n INT NOT NULL PRIMARY KEY);

DECLARE @i AS INT = 1;
/*
Note:
The ability to declare and initialize variables in one statement
is new in Microsoft SQL Server 2008.
In earlier versions use separate DECLARE and SET statements:

DECLARE @i AS INT;
SET @i = 1;
*/
BEGIN TRAN
 WHILE @i <= 100000
 BEGIN
 INSERT INTO dbo.Nums VALUES(@i);
 SET @i = @i + 1;
 END
COMMIT TRAN
SET NOCOUNT OFF;

SET NOCOUNT ON;
USE TSQLFundamentals2008;
IF OBJECT_ID('dbo.Nums', 'U') IS NOT NULL DROP TABLE dbo.Nums;
CREATE TABLE dbo.Nums(n INT NOT NULL PRIMARY KEY);

DECLARE @i AS INT = 1;
/*
Note:
The ability to declare and initialize variables in one statement
is new in Microsoft SQL Server 2008.
In earlier versions use separate DECLARE and SET statements:

DECLARE @i AS INT;
SET @i = 1;
*/
BEGIN TRAN
 WHILE @i <= 100000
 BEGIN
 INSERT INTO dbo.Nums VALUES(@i);
 SET @i = @i + 1;
 END
COMMIT TRAN
SET NOCOUNT OFF;

 Chapter 3 Joins 117

 Note Don’t worry if you don’t yet understand some parts of the code, such as using variables
and loops—those are explained later in the book. For now, it’s enough to understand what this
code is supposed to do; how it does it is not the focus of discussion here. But in case you’re
 curious and cannot resist, you can fi nd details in Chapter 10, “Programmable Objects.” I should
point out, however, that declaring and initializing variables in the same statement is new in SQL
Server 2008 as the block comment that appears in the code explains. If you’re working with an
earlier version, you should use separate DECLARE and SET statements.

 As the fi rst step in the solution, you need to produce a sequence of all dates in the requested
range. You can achieve this by querying the Nums table, and fi ltering as many numbers
as the number of days in the requested date range. You can use the DATEDIFF function to
 calculate that number. By adding n - 1 days to the starting point of the date range (January
1, 2006) you get the actual date in the sequence. Here’s the solution query:

SELECT DATEADD(day, n-1, '20060101') AS orderdate
FROM dbo.Nums
WHERE n <= DATEDIFF(day, '20060101', '20081231') + 1
ORDER BY orderdate;

 This query returns a sequence of all dates in the range January 1, 2006 through December 31,
2008, as shown here in abbreviated form:

orderdate

2006-01-01 00:00:00.000
2006-01-02 00:00:00.000
2006-01-03 00:00:00.000
2006-01-04 00:00:00.000
2006-01-05 00:00:00.000
...
2008-12-27 00:00:00.000
2008-12-28 00:00:00.000
2008-12-29 00:00:00.000
2008-12-30 00:00:00.000
2008-12-31 00:00:00.000

(1096 row(s) affected)

 The next step is to extend the previous query, adding a left outer join between Nums and
the Orders tables. The join condition compares the order date produced from the Nums
table using the expression DATEADD(day, Nums.n - 1, ‘20060101’) and the orderdate from
the Orders table like so:

SELECT DATEADD(day, Nums.n - 1, '20060101') AS orderdate,
 O.orderid, O.custid, O.empid
FROM dbo.Nums
 LEFT OUTER JOIN Sales.Orders AS O
 ON DATEADD(day, Nums.n - 1, '20060101') = O.orderdate
WHERE Nums.n <= DATEDIFF(day, '20060101', '20081231') + 1
ORDER BY orderdate;

118 Microsoft SQL Server 2008 T-SQL Fundamentals

 This query produces the following output, shown here in abbreviated form:

orderdate orderid custid empid
-------------------------- ----------- ----------- -----------
2006-01-01 00:00:00.000 NULL NULL NULL
2006-01-02 00:00:00.000 NULL NULL NULL
2006-01-03 00:00:00.000 NULL NULL NULL
2006-01-04 00:00:00.000 NULL NULL NULL
2006-01-05 00:00:00.000 NULL NULL NULL
...
2006-06-29 00:00:00.000 NULL NULL NULL
2006-06-30 00:00:00.000 NULL NULL NULL
2006-07-01 00:00:00.000 NULL NULL NULL
2006-07-02 00:00:00.000 NULL NULL NULL
2006-07-03 00:00:00.000 NULL NULL NULL
2006-07-04 00:00:00.000 10248 85 5
2006-07-05 00:00:00.000 10249 79 6
2006-07-06 00:00:00.000 NULL NULL NULL
2006-07-07 00:00:00.000 NULL NULL NULL
2006-07-08 00:00:00.000 10250 34 4
2006-07-08 00:00:00.000 10251 84 3
2006-07-09 00:00:00.000 10252 76 4
2006-07-10 00:00:00.000 10253 34 3
2006-07-11 00:00:00.000 10254 14 5
2006-07-12 00:00:00.000 10255 68 9
2006-07-13 00:00:00.000 NULL NULL NULL
2006-07-14 00:00:00.000 NULL NULL NULL
2006-07-15 00:00:00.000 10256 88 3
2006-07-16 00:00:00.000 10257 35 4
...
2008-12-27 00:00:00.000 NULL NULL NULL
2008-12-28 00:00:00.000 NULL NULL NULL
2008-12-29 00:00:00.000 NULL NULL NULL
2008-12-30 00:00:00.000 NULL NULL NULL
2008-12-31 00:00:00.000 NULL NULL NULL

(1446 row(s) affected)

 Order dates that do not appear in the Orders table appear in the output of the query with
NULLs in the order attributes.

Filtering Attributes from the Nonpreserved Side of an Outer Join

 When you need to review code involving outer joins to look for logical bugs, one of the
things you should examine is the WHERE clause. If the predicate in the WHERE clause refers
to an attribute from the nonpreserved side of the join using an expression in the form
 <attribute> <operator> <value>, it’s usually an indication of a bug. This is because attributes
from the nonpreserved side of the join are NULLs in outer rows, and an expression in the
form NULL <operator> <value> yields UNKNOWN (unless it’s the IS NULL operator explicitly
looking for NULLs). Recall that a WHERE clause fi lters UNKNOWN out. Such a predicate in

 Chapter 3 Joins 119

the WHERE clause causes all outer rows to be fi ltered out, effectively nullifying the outer join.
In other words, it’s as if the join type logically becomes an inner join. So the programmer
 either made a mistake in the choice of the join type, or made a mistake in the predicate. If
this is not clear yet, the following example might help. Consider the following query:

SELECT C.custid, C.companyname, O.orderid, O.orderdate
FROM Sales.Customers AS C
 LEFT OUTER JOIN Sales.Orders AS O
 ON C.custid = O.custid
WHERE O.orderdate >= '20070101';

 The query performs a left outer join between the Customers and Orders tables. Prior to
applying the WHERE fi lter, the join operator returns inner rows for customers who placed
orders, and outer rows for customers who didn’t place orders, with NULLs in the order
attributes. The predicate O.orderdate >= ‘20070101’ in the WHERE clause evaluates to
UNKNOWN for all outer rows because those have a NULL in the O.orderdate attribute.
All outer rows are eliminated by the WHERE fi lter, as you can see in the output of the query,
shown here in abbreviated form:

custid companyname orderid orderdate
----------- ----------------- ----------- -----------------------
19 Customer RFNQC 10400 2007-01-01 00:00:00.000
65 Customer NYUHS 10401 2007-01-01 00:00:00.000
20 Customer THHDP 10402 2007-01-02 00:00:00.000
20 Customer THHDP 10403 2007-01-03 00:00:00.000
49 Customer CQRAA 10404 2007-01-03 00:00:00.000
...
58 Customer AHXHT 11073 2008-05-05 00:00:00.000
73 Customer JMIKW 11074 2008-05-06 00:00:00.000
68 Customer CCKOT 11075 2008-05-06 00:00:00.000
9 Customer RTXGC 11076 2008-05-06 00:00:00.000
65 Customer NYUHS 11077 2008-05-06 00:00:00.000

(678 row(s) affected)

 This means that the use of an outer join here was futile. The programmer either made a
 mistake in using an outer join or made a mistake in the WHERE predicate.

Using Outer Joins in a Multi-Table Join

 Recall the discussion about all-at-once operations in Chapter 2, “Single Table Queries.”
The concept means that all expressions that appear in the same logical query processing
phase are logically evaluated at the same point in time. However, this concept is not
 applicable to the processing of table operators in the FROM phase. Table operators are
 logically evaluated from left to right. Rearranging the order in which outer joins are
 processed might result in different output, so you cannot rearrange them at will.

120 Microsoft SQL Server 2008 T-SQL Fundamentals

 Some interesting logical bugs have to do with the logical order in which outer joins are
 processed. For example, a common logical bug involving outer joins could be considered a
variation of the bug in the previous section. Suppose that you write a multi-table join query
with an outer join between two tables, followed by an inner join with a third table. If the
predicate in the inner join’s ON clause compares an attribute from the nonpreserved side of
the outer join and an attribute from the third table, all outer rows are fi ltered out. Remember
that outer rows have NULLs in the attributes from the nonpreserved side of the join, and
comparing a NULL with anything yields UNKNOWN, and UNKNOWN is fi ltered out by the
ON fi lter. In other words, such a predicate would nullify the outer join and logically it would
be as if you specifi ed an inner join. For example, consider the following query:

SELECT C.custid, O.orderid, OD.productid, OD.qty
FROM Sales.Customers AS C
 LEFT OUTER JOIN Sales.Orders AS O
 ON C.custid = O.custid
 JOIN Sales.OrderDetails AS OD
 ON O.orderid = OD.orderid;

 The fi rst join is an outer join returning customers and their orders and also customers who
did not place any orders. The outer rows representing customers with no orders have NULLs
in the order attributes. The second join matches order lines from the OrderDetails table
with rows from the result of the fi rst join based on the predicate O.orderid = OD.orderid;
 however, in the rows representing customers with no orders, the O.orderid attribute is NULL.
Therefore, the predicate evaluates to UNKNOWN and those rows are fi ltered out. The output
shown here in abbreviated form doesn’t contain the customers 22 and 57, the two customers
who did not place orders:

custid orderid productid qty
----------- ----------- ----------- ------
85 10248 11 12
85 10248 42 10
85 10248 72 5
79 10249 14 9
79 10249 51 40
...
65 11077 64 2
65 11077 66 1
65 11077 73 2
65 11077 75 4
65 11077 77 2

(2155 row(s) affected)

 To generalize the problem: outer rows are nullifi ed whenever any kind of outer join
(left, right, or full) is followed by a subsequent inner join or right outer join. That’s assuming,
of course, that the join condition compares the NULLs from the left side with something from
the right side.

 Chapter 3 Joins 121

 You have several ways to get around the problem if you want to return customers with no
orders in the output. One option is to use a left outer join in the second join as well:

SELECT C.custid, O.orderid, OD.productid, OD.qty
FROM Sales.Customers AS C
 LEFT OUTER JOIN Sales.Orders AS O
 ON C.custid = O.custid
 LEFT OUTER JOIN Sales.OrderDetails AS OD
 ON O.orderid = OD.orderid;

 This way, the outer rows produced by the fi rst join aren’t fi ltered out, as you can see in the
output shown here in abbreviated form:

custid orderid productid qty
----------- ----------- ----------- ------
85 10248 11 12
85 10248 42 10
85 10248 72 5
79 10249 14 9
79 10249 51 40
...
65 11077 64 2
65 11077 66 1
65 11077 73 2
65 11077 75 4
65 11077 77 2
22 NULL NULL NULL
57 NULL NULL NULL

(2157 row(s) affected)

 A second option is to fi rst join Orders and OrderDetails using an inner join, and then join to
the Customers table using a right outer join:

SELECT C.custid, O.orderid, OD.productid, OD.qty
FROM Sales.Orders AS O
 JOIN Sales.OrderDetails AS OD
 ON O.orderid = OD.orderid
 RIGHT OUTER JOIN Sales.Customers AS C
 ON O.custid = C.custid;

 This way, the outer rows are produced by the last join, and are not fi ltered out.

 A third option is to use parentheses to make the inner join between Orders and OrderDetails
become an independent logical phase. This way you can apply a left outer join between the
Customers table and the result of the inner join between Orders and OrderDetails. The query
would look like this:

SELECT C.custid, O.orderid, OD.productid, OD.qty
FROM Sales.Customers AS C
 LEFT OUTER JOIN

122 Microsoft SQL Server 2008 T-SQL Fundamentals

 (Sales.Orders AS O
 JOIN Sales.OrderDetails AS OD
 ON O.orderid = OD.orderid)
 ON C.custid = O.custid;

Using the COUNT Aggregate with Outer Joins

 Another common logical bug involves using COUNT with outer joins. When you group
the result of an outer join and use the COUNT(*) aggregate, the aggregate takes into
 consideration both inner rows and outer rows because it counts rows regardless of their
 contents. Usually, you’re not supposed to take outer rows into consideration for the purposes
of counting. For example, the following query is supposed to return the count of orders for
each customer:

SELECT C.custid, COUNT(*) AS numorders
FROM Sales.Customers AS C
 LEFT OUTER JOIN Sales.Orders AS O
 ON C.custid = O.custid
GROUP BY C.custid;

 However, the COUNT(*) aggregate counts rows regardless of their meaning or contents, and
customers who did not place orders—like 22 and 57—each have an outer row in the result of
the join. As you can see in the output of the query shown here in abbreviated form, both 22
and 57 show up with a count of 1, while the number of orders they place is actually 0:

custid numorders
----------- -----------
1 6
2 4
3 7
4 13
5 18
...
22 1
...
57 1
...
87 15
88 9
89 14
90 7
91 7

(91 row(s) affected)

 The COUNT(*) aggregate function cannot detect whether a row really represents an order.
To fi x the problem you should use COUNT(<column>) instead of COUNT(*), and provide a
 column from the nonpreserved side of the join. This way, the COUNT() aggregate ignores

 Chapter 3 Joins 123

outer rows because they have a NULL in that column. Remember to use a column that
can only be NULL in case the row is an outer row—for example, the primary key column
orderid:

SELECT C.custid, COUNT(O.orderid) AS numorders
FROM Sales.Customers AS C
 LEFT OUTER JOIN Sales.Orders AS O
 ON C.custid = O.custid
GROUP BY C.custid;

 Notice in the output shown here in abbreviated form that the customers 22 and 57 now
show up with a count of 0:

custid numorders
----------- -----------
1 6
2 4
3 7
4 13
5 18
...
22 0
...
57 0
...
87 15
88 9
89 14
90 7
91 7

(91 row(s) affected)

Conclusion

 This chapter covered the join table operator. It described the logical query processing phases
involved in the three fundamental types of joins—cross, inner, and outer. The chapter also
covered further join examples including composite joins, non-equi joins, and multi-table
joins. The chapter concluded with an optional reading section covering more advanced
 aspects of outer joins. To practice what you’ve learned, go over the exercises for this chapter.

Exercises

 This section provides exercises to help you familiarize yourself with the subjects discussed in
this chapter. All exercises involve querying objects in the TSQLFundamentals2008 database.

124 Microsoft SQL Server 2008 T-SQL Fundamentals

1-1

 Run the following code to create the dbo.Nums auxiliary table in the TSQLFundamentals2008
database:

SET NOCOUNT ON;
USE TSQLFundamentals2008;
IF OBJECT_ID('dbo.Nums', 'U') IS NOT NULL DROP TABLE dbo.Nums;
CREATE TABLE dbo.Nums(n INT NOT NULL PRIMARY KEY);

DECLARE @i AS INT = 1;
BEGIN TRAN
 WHILE @i <= 100000
 BEGIN
 INSERT INTO dbo.Nums VALUES(@i);
 SET @i = @i + 1;
 END
COMMIT TRAN
SET NOCOUNT OFF;

1-2

 Write a query that generates fi ve copies out of each employee row.

 Tables involved: HR.Employees, and dbo.Nums tables.

 Desired output:

empid firstname lastname n
----------- ---------- -------------------- -----------
1 Sara Davis 1
2 Don Funk 1
3 Judy Lew 1
4 Yael Peled 1
5 Sven Buck 1
6 Paul Suurs 1
7 Russell King 1
8 Maria Cameron 1
9 Zoya Dolgopyatova 1
1 Sara Davis 2
2 Don Funk 2
3 Judy Lew 2
4 Yael Peled 2
5 Sven Buck 2
6 Paul Suurs 2
7 Russell King 2
8 Maria Cameron 2
9 Zoya Dolgopyatova 2
1 Sara Davis 3
2 Don Funk 3
3 Judy Lew 3
4 Yael Peled 3
5 Sven Buck 3
6 Paul Suurs 3

 Chapter 3 Joins 125

7 Russell King 3
8 Maria Cameron 3
9 Zoya Dolgopyatova 3
1 Sara Davis 4
2 Don Funk 4
3 Judy Lew 4
4 Yael Peled 4
5 Sven Buck 4
6 Paul Suurs 4
7 Russell King 4
8 Maria Cameron 4
9 Zoya Dolgopyatova 4
1 Sara Davis 5
2 Don Funk 5
3 Judy Lew 5
4 Yael Peled 5
5 Sven Buck 5
6 Paul Suurs 5
7 Russell King 5
8 Maria Cameron 5
9 Zoya Dolgopyatova 5

(45 row(s) affected)

1-3 (Optional, Advanced)

 Write a query that returns a row for each employee and day in the range June 12, 2009 –
June 16, 2009.
 Tables involved: HR.Employees, and dbo.Nums tables.
 Desired output:

empid dt
----------- -----------------------
1 2009-06-12 00:00:00.000
1 2009-06-13 00:00:00.000
1 2009-06-14 00:00:00.000
1 2009-06-15 00:00:00.000
1 2009-06-16 00:00:00.000
2 2009-06-12 00:00:00.000
2 2009-06-13 00:00:00.000
2 2009-06-14 00:00:00.000
2 2009-06-15 00:00:00.000
2 2009-06-16 00:00:00.000
3 2009-06-12 00:00:00.000
3 2009-06-13 00:00:00.000
3 2009-06-14 00:00:00.000
3 2009-06-15 00:00:00.000
3 2009-06-16 00:00:00.000
4 2009-06-12 00:00:00.000
4 2009-06-13 00:00:00.000
4 2009-06-14 00:00:00.000
4 2009-06-15 00:00:00.000
4 2009-06-16 00:00:00.000
5 2009-06-12 00:00:00.000
5 2009-06-13 00:00:00.000

126 Microsoft SQL Server 2008 T-SQL Fundamentals

5 2009-06-14 00:00:00.000
5 2009-06-15 00:00:00.000
5 2009-06-16 00:00:00.000
6 2009-06-12 00:00:00.000
6 2009-06-13 00:00:00.000
6 2009-06-14 00:00:00.000
6 2009-06-15 00:00:00.000
6 2009-06-16 00:00:00.000
7 2009-06-12 00:00:00.000
7 2009-06-13 00:00:00.000
7 2009-06-14 00:00:00.000
7 2009-06-15 00:00:00.000
7 2009-06-16 00:00:00.000
8 2009-06-12 00:00:00.000
8 2009-06-13 00:00:00.000
8 2009-06-14 00:00:00.000
8 2009-06-15 00:00:00.000
8 2009-06-16 00:00:00.000
9 2009-06-12 00:00:00.000
9 2009-06-13 00:00:00.000
9 2009-06-14 00:00:00.000
9 2009-06-15 00:00:00.000
9 2009-06-16 00:00:00.000

(45 row(s) affected)

2

 Return U.S. customers, and for each customer return the total number of orders and total
quantities.
 Tables involved: Sales.Customers, Sales.Orders, and Sales.OrderDetails tables.
 Desired output:

custid numorders totalqty
----------- ----------- -----------
32 11 345
36 5 122
43 2 20
45 4 181
48 8 134
55 10 603
65 18 1383
71 31 4958
75 9 327
77 4 46
78 3 59
82 3 89
89 14 1063

(13 row(s) affected)

 Chapter 3 Joins 127

3

 Return customers and their orders including customers who placed no orders.
 Tables involved: Sales.Customers, and Sales.Orders tables.
 Desired output (abbreviated):

custid companyname orderid orderdate
----------- --------------- ----------- ------------------------
85 Customer ENQZT 10248 2006-07-04 00:00:00.000
79 Customer FAPSM 10249 2006-07-05 00:00:00.000
34 Customer IBVRG 10250 2006-07-08 00:00:00.000
84 Customer NRCSK 10251 2006-07-08 00:00:00.000
...
73 Customer JMIKW 11074 2008-05-06 00:00:00.000
68 Customer CCKOT 11075 2008-05-06 00:00:00.000
9 Customer RTXGC 11076 2008-05-06 00:00:00.000
65 Customer NYUHS 11077 2008-05-06 00:00:00.000
22 Customer DTDMN NULL NULL
57 Customer WVAXS NULL NULL

(832 row(s) affected)

4

 Return customers who placed no orders.
 Tables involved: Sales.Customers, and Sales.Orders tables.
 Desired output:

custid companyname
----------- ---------------
22 Customer DTDMN
57 Customer WVAXS

(2 row(s) affected)

5

 Return customers with orders placed on Feb 12, 2007 along with their orders.
 Tables involved: Sales.Customers, and Sales.Orders tables.
 Desired output:

custid companyname orderid orderdate
----------- --------------- ----------- -----------------------
66 Customer LHANT 10443 2007-02-12 00:00:00.000
5 Customer HGVLZ 10444 2007-02-12 00:00:00.000

(2 row(s) affected)

128 Microsoft SQL Server 2008 T-SQL Fundamentals

6 (Optional, Advanced)

 Return customers with orders placed on Feb 12, 2007 along with their orders. Also return
customers who didn’t place orders on Feb 12, 2007.
 Tables involved: Sales.Customers, and Sales.Orders tables.
 Desired output (abbreviated):

custid companyname orderid orderdate
----------- ----------------- ----------- -----------------------
72 Customer AHPOP NULL NULL
58 Customer AHXHT NULL NULL
25 Customer AZJED NULL NULL
18 Customer BSVAR NULL NULL
91 Customer CCFIZ NULL NULL
...
33 Customer FVXPQ NULL NULL
53 Customer GCJSG NULL NULL
39 Customer GLLAG NULL NULL
16 Customer GYBBY NULL NULL
4 Customer HFBZG NULL NULL
5 Customer HGVLZ 10444 2007-02-12 00:00:00.000
42 Customer IAIJK NULL NULL
34 Customer IBVRG NULL NULL
63 Customer IRRVL NULL NULL
73 Customer JMIKW NULL NULL
15 Customer JUWXK NULL NULL
...
21 Customer KIDPX NULL NULL
30 Customer KSLQF NULL NULL
55 Customer KZQZT NULL NULL
71 Customer LCOUJ NULL NULL
77 Customer LCYBZ NULL NULL
66 Customer LHANT 10443 2007-02-12 00:00:00.000
38 Customer LJUCA NULL NULL
59 Customer LOLJO NULL NULL
36 Customer LVJSO NULL NULL
64 Customer LWGMD NULL NULL
29 Customer MDLWA NULL NULL
...

(91 row(s) affected)

7 (Optional, Advanced)

 Return all customers, and for each return a Yes/No value depending on whether the customer
placed an order on Feb 12, 2007.
 Tables involved: Sales.Customers, and Sales.Orders tables.
 Desired output (abbreviated):

custid companyname HasOrderOn20070212
----------- ----------------- ------------------
1 Customer NRZBB No
2 Customer MLTDN No
3 Customer KBUDE No

 Chapter 3 Joins 129

4 Customer HFBZG No
5 Customer HGVLZ Yes
6 Customer XHXJV No
7 Customer QXVLA No
8 Customer QUHWH No
9 Customer RTXGC No
10 Customer EEALV No
...

(91 row(s) affected)

Solutions

 This section provides solutions to the exercises for this chapter.

1-2

 Producing multiple copies of rows can be achieved with a fundamental technique that utilizes
a cross join. If you need to produce fi ve copies out of each employee row, you need to perform
a cross join between the Employees table and a table that has fi ve rows; alternatively, you
can perform a cross join between Employees and a table that has more than fi ve rows, but
fi lter only fi ve from that table in the WHERE clause. The Nums table is very convenient for this
 purpose. Simply cross Employees and Nums, and fi lter from Nums as many rows as the number
of requested copies (fi ve in this case). Here’s the solution query:

SELECT E.empid, E.FirstName, E.LastName, Nums.n
FROM HR.Employees AS E
 CROSS JOIN dbo.Nums
WHERE Nums.n <= 5
ORDER BY n, empid;

1-3

 This exercise is an extension of the previous exercise. Instead of being asked to produce
a predetermined constant number of copies out of each employee row, you are asked to
 produce a copy for each day in a certain date range. So here you need to calculate the number
of days in the requested date range using the DATEDIFF function, and refer to the result of
that expression in the query’s WHERE clause instead of referring to a constant. To produce the
dates, simply add n - 1 days to the date that starts the requested range. Here’s the solution
query:

 SELECT E.empid,
 DATEADD(day, D.n - 1, '20090612') AS dt
FROM HR.Employees AS E
 CROSS JOIN dbo.Nums AS D
WHERE D.n <= DATEDIFF(day, '20090612', '20090616') + 1
ORDER BY empid, dt;

130 Microsoft SQL Server 2008 T-SQL Fundamentals

 The DATEDIFF function returns 4 because there is a four-day difference between June 12, 2009
and June 16, 2009. Add 1 to the result, and you get 5 for the fi ve days in the range. So the
WHERE clause fi lters fi ve rows from Nums where n is smaller than or equal to 5. By adding n - 1
days to June 12, 2009, you get all dates in the range June 12, 2009 and June 16, 2009.

2

 This exercise requires you to write a query that joins three tables: Customers, Orders, and
OrderDetails. The query should fi lter in the WHERE clause only rows where the customer’s
country is USA. Because you are asked to return aggregates per customer, the query should
group the rows by customer ID. You need to resolve a tricky issue here to return the right
number of orders for each customer. Because of the join between Orders and OrderDetails,
you don’t get only one row per order—you get one row per order line. So if you use the
COUNT(*) function in the SELECT list, you get back the number of order lines for each
 customer and not the number of orders. To resolve this issue, you need to take each order
into consideration only once. You can do this by using COUNT(DISTINCT O.orderid) instead
of COUNT(*). The total quantities don’t create any special issues because the quantity is
 associated with the order line and not the order. Here’s the solution query:

SELECT C.custid, COUNT(DISTINCT O.orderid) AS numorders, SUM(OD.qty) AS totalqty
FROM Sales.Customers AS C
 JOIN Sales.Orders AS O
 ON O.custid = C.custid
 JOIN Sales.OrderDetails AS OD
 ON OD.orderid = O.orderid
WHERE C.country = N'USA'
GROUP BY C.custid;

3

 To get both customers who placed orders and customers who didn’t place orders in the
 result, you need to use an outer join like so:

SELECT C.custid, C.companyname, O.orderid, O.orderdate
FROM Sales.Customers AS C
 LEFT JOIN Sales.Orders AS O
 ON O.custid = C.custid;

 This query returns 832 rows (including the customers 22 and 57, who didn’t place orders).
An inner join between the tables would return only 830 rows without these customers.

4

 This exercise is an extension of the previous one. To return only customers who didn’t place
orders, you need to add a WHERE clause to the query that fi lters only outer rows; namely, rows

 Chapter 3 Joins 131

that represent customers with no orders. Outer rows have NULLs in the attributes from the
nonpreserved side of the join (Orders). But to make sure that the NULL is a placeholder for an
outer row and not a NULL that originated from the table, it is recommended that you refer to
an attribute that is the primary key, or the join column, or one defi ned as not allowing NULLs.
Here’s the solution query referring to the primary key of the Orders table in the WHERE clause:

SELECT C.custid, C.companyname
FROM Sales.Customers AS C
 LEFT JOIN Sales.Orders AS O
 ON O.custid = C.custid
WHERE O.orderid IS NULL;

 This query returns only two rows for the customers 22 and 57, who didn’t place orders.

5

 This exercise involves writing a query that performs an inner join between Customers and
Orders, and fi lters only rows where the order date is February 12, 2007:

SELECT C.custid, C.companyname, O.orderid, O.orderdate
FROM Sales.Customers AS C
 JOIN Sales.Orders AS O
 ON O.custid = C.custid
WHERE O.orderdate = '20070212';

 The WHERE clause fi ltered out Customers who didn’t place orders on February 12, 2007, but
that was the request.

6

 This exercise builds on the previous one. The trick here is to realize two things. First, you need
an outer join because you are supposed to return customers who do not meet a certain criteria.
Second, the fi lter on the order date must appear in the ON clause and not the WHERE clause.
Remember that the WHERE fi lter is applied after outer rows are added and is fi nal. Your goal
is to match orders to customers only if the order was placed by the customer and on February
12, 2007. You still want to get customers who didn’t place orders on that date in the output; in
other words, the fi lter on the order date should only determine matches and not be considered
fi nal in regards to the customer rows. Hence the ON clause should match customers and orders
based on both an equality between the customer’s customer ID and the order’s customer ID,
and the order date being February 12, 2007. Here’s the solution query:

SELECT C.custid, C.companyname, O.orderid, O.orderdate
FROM Sales.Customers AS C
 LEFT JOIN Sales.Orders AS O
 ON O.custid = C.custid
 AND O.orderdate = '20070212';

132 Microsoft SQL Server 2008 T-SQL Fundamentals

7

 This exercise is an extension of the previous exercise. Here, instead of returning matching
orders, you just need to return a Yes/No value indicating whether there is a matching order.
Remember that in an outer join a nonmatch is identifi ed as an outer row with NULLs in the
attributes of the nonpreserved side. So you can use a simple CASE expression that checks
whether the current row is an outer one, in which case it returns ‘Yes’; otherwise, it returns
‘No’. Because technically you can have more than one match per customer, you should add
a DISTINCT clause to the SELECT list. This way you get only one row back for each customer.
Here’s the solution query:

SELECT DISTINCT C.custid, C.companyname,
 CASE WHEN O.orderid IS NOT NULL THEN 'Yes' ELSE 'No' END AS [HasOrderOn20070212]
FROM Sales.Customers AS C
 LEFT JOIN Sales.Orders AS O
 ON O.custid = C.custid
 AND O.orderdate = '20070212';

 161

Chapter 5

Table Expressions

In this chapter:

 Derived Tables . 161

Common Table Expressions. 167

Views . 172

Inline Table-Valued Functions . 179

The APPLY Operator . 181

Conclusion . 184

Exercises . 184

Solutions . 189

 Table expressions are named query expressions that represent a valid relational table. You can
use them in data manipulation statements similar to other tables. Microsoft SQL Server
 supports four types of table expressions: derived tables, common table expressions (CTEs),
views, and inline table-valued functions (inline TVFs), each of which I will describe in detail in
this chapter. The focus of this chapter is SELECT queries against table expressions; Chapter 8,
“Data Modifi cation,” covers modifi cations against table expressions.

 Table expressions are not physically materialized anywhere—they are virtual. A query against a
table expression is internally translated to a query against the underlying objects. The benefi ts
of using table expressions are typically related to logical aspects of your code and not to
 performance. For example, table expressions help you simplify your solutions by using a modular
approach. Table expressions also help you circumvent certain restrictions in the language, such
as the inability to refer to column aliases assigned in the SELECT clause in query clauses that are
logically processed prior to the SELECT clause.

 This chapter also introduces the APPLY table operator used in conjunction with a table expression.
I will explain how to use this operator to apply a table expression to each row of another table.

Derived Tables

 Derived tables (also known as table subqueries) are defi ned in the FROM clause of an outer
query. Their scope of existence is the outer query. As soon as the outer query is fi nished, the
derived table is gone.

162 Microsoft SQL Server 2008 T-SQL Fundamentals

 You specify the query defi ning the derived table within parentheses, followed by the AS
clause and the derived table name. For example, the following code defi nes a derived table
called USACusts based on a query that returns all customers from the United States, and the
outer query selects all rows from the derived table:

USE TSQLFundamentals2008;

SELECT *
FROM (SELECT custid, companyname
 FROM Sales.Customers
 WHERE country = N'USA') AS USACusts;

 In this particular case, which is a simple example of the basic syntax, a derived table is not
needed because the outer query doesn’t apply any manipulation.

 The code in this basic example returns the following output:

custid companyname
----------- ---------------
32 Customer YSIQX
36 Customer LVJSO
43 Customer UISOJ
45 Customer QXPPT
48 Customer DVFMB
55 Customer KZQZT
65 Customer NYUHS
71 Customer LCOUJ
75 Customer XOJYP
77 Customer LCYBZ
78 Customer NLTYP
82 Customer EYHKM
89 Customer YBQTI

 A query must meet three requirements to be valid to defi ne a table expression of any kind:

 1. Order is not guaranteed. A table expression is supposed to represent a relational
 table, and the rows in a relational table have no guaranteed order. Recall that this
 aspect of a relation stems from set theory. For this reason, ANSI SQL disallows an
ORDER BY clause in queries that are used to defi ne table expressions. T-SQL follows
this restriction for the most part, with one exception—when TOP is also specifi ed.
In the context of a query with the TOP option, the ORDER BY clause serves a logical
 purpose: defi ning for the TOP option which rows to fi lter. If you use a query with TOP
and ORDER BY to defi ne a table expression, ORDER BY is only guaranteed to serve the
 logical fi ltering purpose for the TOP option and not the usual presentation purpose. If
the outer query against the table expression does not have a presentation ORDER BY,
the output is not guaranteed to be returned in any particular order. The section “Views
and the ORDER BY Clause,” later in this chapter, provides more detail on this item.

 2. All columns must have names. All columns in a table must have names; therefore,
you must assign column aliases to all expressions in the SELECT list of the query that is
used to defi ne a table expression.

 Chapter 5 Table Expressions 163

 3. All column names must be unique. All column names in a table must be unique;
therefore, a table expression that has multiple columns with the same name is invalid.
This might happen when the query defi ning the table expression joins two tables, and
both tables have a column with the same name. If you need to incorporate both columns
in your table expression, they must have different column names. You can resolve this by
assigning the two columns with different column aliases.

Assigning Column Aliases

One of the benefi ts of using table expressions is that in any clause of the outer query you can
refer to column aliases that were assigned in the SELECT clause of the inner query. This helps
you get around the fact that you can’t refer to column aliases assigned in the SELECT clause
in query clauses that are logically processed prior to the SELECT clause (for example, WHERE
or GROUP BY).

For example, suppose that you need to write a query against the Sales.Orders table and
 return the number of distinct customers handled in each order year. The following attempt is
invalid because the GROUP BY clause refers to a column alias that was assigned in the SELECT
clause, and the GROUP BY clause is logically processed prior to the SELECT clause:

SELECT
 YEAR(orderdate) AS orderyear,
 COUNT(DISTINCT custid) AS numcusts
FROM Sales.Orders
GROUP BY orderyear;

You could solve the problem by referring to the expression YEAR(orderdate) in both
the GROUP BY and the SELECT clauses, but this is an example with a short expression.
What if the expression were much longer? Maintaining two copies of the same expression
might hurt code readability and maintainability and is more prone to errors. To solve
the problem in a way that requires only one copy of the expression, you can use a table
 expression like so:

LISTING 5-1 Query with a Derived Table Using Inline Aliasing Form

SELECT orderyear, COUNT(DISTINCT custid) AS numcusts
FROM (SELECT YEAR(orderdate) AS orderyear, custid
 FROM Sales.Orders) AS D
GROUP BY orderyear;

 This query returns the following output:

orderyear numcusts
----------- -----------
2006 67
2007 86
2008 81

SELECT orderyear, COUNT(DISTINCT custid) AS numcusts
FROM (SELECT YEAR(orderdate) AS orderyear, custid
 FROM Sales.Orders) AS D
GROUP BY orderyear;

164 Microsoft SQL Server 2008 T-SQL Fundamentals

 This code defi nes a derived table called D based on a query against the Orders table that
 returns the order year and customer ID from all rows. The SELECT list of the inner query
uses inline aliasing format to assign the alias orderyear to the expression YEAR(orderdate).
The outer query can refer to the orderyear column alias in both the GROUP BY and SELECT
clauses, because as far as the outer query is concerned, it queries a table called D with
 columns called orderyear and custid.

 As I mentioned earlier, SQL Server expands the defi nition of the table expression and accesses
the underlying objects directly. After expansion, the query in Listing 5-1 looks like this:

SELECT YEAR(orderdate) AS orderyear, COUNT(DISTINCT custid) AS numcusts
FROM Sales.Orders
GROUP BY YEAR(orderdate);

 This is just to emphasize that you use table expressions for logical (not performance-related)
reasons. Generally speaking, table expressions have neither positive nor negative performance
impact.

 The code in Listing 5-1 uses the inline aliasing format to assign column aliases to expressions.
The syntax for inline aliasing is <expression> [AS] <alias>. Note that the word AS is optional
in the syntax for inline aliasing; however, I fi nd that it helps the readability of the code and
recommend using it.

 In some cases, you might prefer to use a second supported form for assigning column
aliases, which you can think of as an external form. With this form you do not assign column
aliases following the expressions in the SELECT list—you specify all target column names in
parentheses following the table expression’s name like so:

SELECT orderyear, COUNT(DISTINCT custid) AS numcusts
FROM (SELECT YEAR(orderdate), custid
 FROM Sales.Orders) AS D(orderyear, custid)
GROUP BY orderyear;

 It is generally recommended that you use the inline form for a couple of reasons. If you need
to debug the code when using the inline form, when you highlight the query defi ning the
table expression and run it, the columns in the result appear with the aliases you assigned.
With the external form, you cannot include the target column names when you highlight
the table expression query, so the result appears with no column names in the case of the
 unnamed expressions. Also, when the table expression query is lengthy, using the external
form it can be quite diffi cult to fi gure out which column alias belongs to which expression.

 Even though it’s a best practice to use the inline aliasing form, in some cases you may fi nd
the external form more convenient to work with. For example, when the query defi ning the
table expression isn’t going to undergo any further revisions and you want to treat it like a
“black box”—you want to focus your attention on the table expression name followed by the
target column list when you look at the outer query.

 Chapter 5 Table Expressions 165

Using Arguments

In the query defi ning a derived table, you can refer to arguments. The arguments can be local
variables and input parameters to a routine such as a stored procedure or function. For example,
the following code declares and initializes a local variable called @empid, and the query in the
code that is used to defi ne the derived table D refers to the local variable in the WHERE clause:

DECLARE @empid AS INT = 3;

/*
-- Prior to SQL Server 2008 use separate DECLARE and SET statements:
DECLARE @empid AS INT;
SET @empid = 3;
*/

SELECT orderyear, COUNT(DISTINCT custid) AS numcusts
FROM (SELECT YEAR(orderdate) AS orderyear, custid
 FROM Sales.Orders
 WHERE empid = @empid) AS D
GROUP BY orderyear;

This query returns the number of distinct customers per year that handled the orders of the
input employee (the employee whose ID is stored in the variable @empid). Here’s the output
of this query:

orderyear numcusts
----------- -----------
2006 16
2007 46
2008 30

Nesting

If you need to defi ne a derived table using a query that by itself refers to a derived table, you
end up nesting derived tables. Nesting of derived tables is a result of the fact that a derived table
is defi ned in the FROM clause of the outer query and not separately. Nesting is a problematic
aspect of programming in general as it tends to complicate the code and reduce its readability.

For example, the code in Listing 5-2 returns order years and the number of customers handled
in each year only for years in which more than 70 customers were handled:

LISTING 5-2 Query with Nested Derived Tables

SELECT orderyear, numcusts
FROM (SELECT orderyear, COUNT(DISTINCT custid) AS numcusts
 FROM (SELECT YEAR(orderdate) AS orderyear, custid
 FROM Sales.Orders) AS D1
 GROUP BY orderyear) AS D2
WHERE numcusts > 70;

SELECT orderyear, numcusts
FROM (SELECT orderyear, COUNT(DISTINCT custid) AS numcusts
 FROM (SELECT YEAR(orderdate) AS orderyear, custid
 FROM Sales.Orders) AS D1
 GROUP BY orderyear) AS D2
WHERE numcusts > 70;

166 Microsoft SQL Server 2008 T-SQL Fundamentals

 This code returns the following output:

orderyear numcusts
----------- -----------
2007 86
2008 81

 The purpose of the innermost derived table, D1, is to assign the column alias orderyear to the
expression YEAR(orderdate). The query against D1 refers to orderyear in both the GROUP BY
and SELECT clauses, and assigns the column alias numcusts to the expression COUNT(DISTINCT
custid). The query against D1 is used to defi ne the derived table D2. The query against D2
refers to numcusts in the WHERE clause to fi lter order years in which more than 70 customers
were handled.

 The whole purpose of using table expressions in this example was to simplify the solution by
reusing column aliases instead of repeating expressions. However, with the complexity added by
the nesting aspect of derived tables, I’m not sure that the solution is simpler than the alternative,
which does not make any use of derived tables but instead repeats expressions:

SELECT YEAR(orderdate) AS orderyear, COUNT(DISTINCT custid) AS numcusts
FROM Sales.Orders
GROUP BY YEAR(orderdate)
HAVING COUNT(DISTINCT custid) > 70;

 In short, nesting is a problematic aspect of derived tables.

Multiple References

 Another problematic aspect of derived tables stems from the fact that derived tables are defi ned
in the FROM clause of the outer query and not prior to the outer query. As far as the FROM
clause of the outer query is concerned, the derived table doesn’t exist yet; therefore, if you need
to refer to multiple instances of the derived table, you can’t. Instead, you have to defi ne multiple
derived tables based on the same query. The query in Listing 5-3 provides an example:

LISTING 5-3 Multiple Derived Tables Based on the Same Query

SELECT Cur.orderyear,
 Cur.numcusts AS curnumcusts, Prv.numcusts AS prvnumcusts,
 Cur.numcusts - Prv.numcusts AS growth
FROM (SELECT YEAR(orderdate) AS orderyear,
 COUNT(DISTINCT custid) AS numcusts
 FROM Sales.Orders
 GROUP BY YEAR(orderdate)) AS Cur
 LEFT OUTER JOIN
 (SELECT YEAR(orderdate) AS orderyear,
 COUNT(DISTINCT custid) AS numcusts
 FROM Sales.Orders
 GROUP BY YEAR(orderdate)) AS Prv
 ON Cur.orderyear = Prv.orderyear + 1;

SELECT Cur.orderyear,
 Cur.numcusts AS curnumcusts, Prv.numcusts AS prvnumcusts,
 Cur.numcusts - Prv.numcusts AS growth
FROM (SELECT YEAR(orderdate) AS orderyear,
 COUNT(DISTINCT custid) AS numcusts
 FROM Sales.Orders
 GROUP BY YEAR(orderdate)) AS Cur
 LEFT OUTER JOIN
 (SELECT YEAR(orderdate) AS orderyear,
 COUNT(DISTINCT custid) AS numcusts
 FROM Sales.Orders
 GROUP BY YEAR(orderdate)) AS Prv
 ON Cur.orderyear = Prv.orderyear + 1;

 Chapter 5 Table Expressions 167

 This query joins two instances of a table expression to create two derived tables: the fi rst
 derived table, Cur, represents current years, and the second derived table, Prv, represents
 previous years. The join condition Cur.orderyear = Prv.orderyear + 1 ensures that each row
from the fi rst derived table matches with the previous year of the second. By making it a
LEFT outer join, the fi rst year that has no previous year is also returned from the Cur table.
The SELECT clause of the outer query calculates the difference between the number of
 customers handled in the current and previous years.

 The code in Listing 5-3 produces the following output:

orderyear curnumcusts prvnumcusts growth
----------- ----------- ----------- -----------
2006 67 NULL NULL
2007 86 67 19
2008 81 86 –5

 The fact that you cannot refer to multiple instances of the same derived table forces you to
maintain multiple copies of the same query defi nition. This leads to lengthy code that is hard
to maintain and is prone to errors.

Common Table Expressions

 Common table expressions (CTEs) are another form of table expression very similar to derived
tables, yet with a couple of important advantages. CTEs were introduced in SQL Server 2005
and are part of ANSI SQL:1999 and later standards.

 CTEs are defi ned using a WITH statement and have the following general form:

WITH <CTE_Name>[(<target_column_list>)]
AS
(
 <inner_query_defining_CTE>
)
<outer_query_against_CTE>;

 The inner query defi ning the CTE must follow all requirements mentioned earlier to be valid
to defi ne a table expression. As a simple example, the following code defi nes a CTE called
USACusts based on a query that returns all customers from the United States, and the outer
query selects all rows from the CTE:

WITH USACusts AS
(
 SELECT custid, companyname
 FROM Sales.Customers
 WHERE country = N'USA'
)
SELECT * FROM USACusts;

 As with derived tables, as soon as the outer query fi nishes, the CTE gets out of scope.

168 Microsoft SQL Server 2008 T-SQL Fundamentals

 Note The WITH clause is used in T-SQL for several different purposes. To avoid ambiguity, when
the WITH clause is used to defi ne a CTE, the preceding statement in the same batch—if one
 exists—must be terminated with a semicolon. And oddly enough, the semicolon for the entire
CTE is not required, though I still recommend specifying it.

Assigning Column Aliases

 CTEs also support two forms of column aliasing—inline and external. For the inline form,
specify <expression> AS <column_alias>; for the external form, specify the target column list
in parentheses immediately after the CTE name.

 Here’s an example of the inline form:

WITH C AS
(
 SELECT YEAR(orderdate) AS orderyear, custid
 FROM Sales.Orders
)
SELECT orderyear, COUNT(DISTINCT custid) AS numcusts
FROM C
GROUP BY orderyear;

 And here’s an example of the external form:

WITH C(orderyear, custid) AS
(
 SELECT YEAR(orderdate), custid
 FROM Sales.Orders
)
SELECT orderyear, COUNT(DISTINCT custid) AS numcusts
FROM C
GROUP BY orderyear;

 The motivations for using one form or the other are similar to those described in the context
of derived tables.

Using Arguments

 As with derived tables, you can also use arguments in the query used to defi ne a CTE. Here’s
an example:

DECLARE @empid AS INT = 3;

/*
-- Prior to SQL Server 2008 use separate DECLARE and SET statements:
DECLARE @empid AS INT;
SET @empid = 3;
*/

 Chapter 5 Table Expressions 169

WITH C AS
(
 SELECT YEAR(orderdate) AS orderyear, custid
 FROM Sales.Orders
 WHERE empid = @empid
)
SELECT orderyear, COUNT(DISTINCT custid) AS numcusts
FROM C
GROUP BY orderyear;

Defi ning Multiple CTEs

 On the surface, the difference between derived tables and CTEs might seem to be merely
 semantic. However, the fact that you fi rst defi ne a CTE and then use it gives it several important
advantages over derived tables. One of those advantages is that if you need to refer to one
CTE from another, you don’t end up nesting them like derived tables. Instead, you simply
 defi ne multiple CTEs separated by commas under the same WITH statement. Each CTE can
refer to all previously defi ned CTEs, and the outer query can refer to all CTEs. For example, the
following code is the CTE alternative to the nested derived tables approach in Listing 5-2:

WITH C1 AS
(
 SELECT YEAR(orderdate) AS orderyear, custid
 FROM Sales.Orders
),
C2 AS
(
 SELECT orderyear, COUNT(DISTINCT custid) AS numcusts
 FROM C1
 GROUP BY orderyear
)
SELECT orderyear, numcusts
FROM C2
WHERE numcusts > 70;

 Because you defi ne a CTE before you use it, you don’t end up nesting CTEs. Each CTE
 appears separately in the code in a modular manner. This modular approach substantially
improves the readability and maintainability of the code compared to the nested derived
table approach.

 Technically you cannot nest CTEs, nor can you defi ne a CTE within the parentheses of a derived
table. However, nesting is a problematic practice; therefore, think of these restrictions as aids
to code clarity rather than obstacles.

Multiple References

 The fact that a CTE is defined first and then queried has another advantage: As far as
the FROM clause of the outer query is concerned, the CTE already exists; therefore, you

170 Microsoft SQL Server 2008 T-SQL Fundamentals

can refer to multiple instances of the same CTE. For example, the following code is the
logical equivalent of the code shown earlier in Listing 5-3, using CTEs instead of derived
tables:

WITH YearlyCount AS
(
 SELECT YEAR(orderdate) AS orderyear,
 COUNT(DISTINCT custid) AS numcusts
 FROM Sales.Orders
 GROUP BY YEAR(orderdate)
)
SELECT Cur.orderyear,
 Cur.numcusts AS curnumcusts, Prv.numcusts AS prvnumcusts,
 Cur.numcusts - Prv.numcusts AS growth
FROM YearlyCount AS Cur
 LEFT OUTER JOIN YearlyCount AS Prv
 ON Cur.orderyear = Prv.orderyear + 1;

 As you can see, the CTE YearlyCount is defi ned once and accessed twice in the FROM clause
of the outer query—once as Cur and once as Prv. You need to maintain only one copy of the
CTE query and not multiple copies as you would with derived tables.

 If you’re curious about performance, recall that earlier I mentioned that typically table
expressions have no performance impact because they are not physically materialized
anywhere. Both references to the CTE here are going to be expanded. Internally, this query
has a self join between two instances of the Orders table, each of which involves scanning
the table data and aggregating it before the join—the same physical processing that takes
place with the derived table approach.

Recursive CTEs

 This section is optional because it covers subjects that are beyond the fundamentals.

 CTEs are unique among table expressions because they have recursive capabilities. A recursive
CTE is defi ned by at least two queries (more are possible)—at least one query known as the
anchor member and at least one query known as the recursive member. The general form of a
basic recursive CTE looks like this:

WITH <CTE_Name>[(<target_column_list>)]
AS
(
 <anchor_member>
 UNION ALL
 <recursive_member>
)
<outer_query_against_CTE>;

The anchor member is a query that returns a valid relational result table—like a query that
is used to defi ne a nonrecursive table expression. The anchor member query is invoked
only once.

 Chapter 5 Table Expressions 171

 The recursive member is a query that has a reference to the CTE name. The reference to the CTE
name represents what is logically the previous result set in a sequence of executions. The fi rst
time that the recursive member is invoked, the previous result set represents whatever the anchor
member returned. In each subsequent invocation of the recursive member, the reference to the
CTE name represents the result set returned by the previous invocation of the recursive member.
 The recursive member has no explicit recursion termination check—the termination check is
 implicit. The recursive member is invoked repeatedly until it returns an empty set, or exceeds
some limit.

 Both queries must be compatible in terms of the number of columns they return and the
data types of the corresponding columns.

 The reference to the CTE name in the outer query represents the unifi ed result sets of the
invocation of the anchor member and all invocations of the recursive member.

 If this is your fi rst encounter with recursive CTEs, you might fi nd this explanation hard to
understand. They are best explained with an example. The following code demonstrates
how to use a recursive CTE to return information about an employee (Don Funk, employee
ID 2) and all of the employee’s subordinates in all levels (direct or indirect):

WITH EmpsCTE AS
(
 SELECT empid, mgrid, firstname, lastname
 FROM HR.Employees
 WHERE empid = 2

 UNION ALL

 SELECT C.empid, C.mgrid, C.firstname, C.lastname
 FROM EmpsCTE AS P
 JOIN HR.Employees AS C
 ON C.mgrid = P.empid
)
SELECT empid, mgrid, firstname, lastname
FROM EmpsCTE;

 The anchor member queries the HR.Employees table and simply returns the row for employee 2:

 SELECT empid, mgrid, firstname, lastname
 FROM HR.Employees
 WHERE empid = 2

 The recursive member joins the CTE—representing the previous result set—with the Employees
table to return the direct subordinates of the employees returned in the previous result set:

 SELECT C.empid, C.mgrid, C.firstname, C.lastname
 FROM EmpsCTE AS P
 JOIN HR.Employees AS C
 ON C.mgrid = P.empid

172 Microsoft SQL Server 2008 T-SQL Fundamentals

 In other words, the recursive member is invoked repeatedly, and in each invocation it returns
the next level of subordinates. The fi rst time the recursive member is invoked it returns
the direct subordinates of employee 2—employees 3 and 5. The second time the recursive
 member is invoked, it returns the direct subordinates of employees 3 and 5—employees 4, 6,
7, 8, and 9. The third time the recursive member is invoked, there are no more subordinates;
the recursive member returns an empty set and therefore recursion stops.

 The reference to the CTE name in the outer query represents the unifi ed result sets; in other
words, employee 2 and all of the employee’s subordinates.

 Here’s the output of this code:

empid mgrid firstname lastname
----------- ----------- ---------- --------------------
2 1 Don Funk
3 2 Judy Lew
5 2 Sven Buck
6 5 Paul Suurs
7 5 Russell King
9 5 Zoya Dolgopyatova
4 3 Yael Peled
8 3 Maria Cameron

 In the event of a logical error in the join predicate in the recursive member, or problems
with the data resulting in cycles, the recursive member can potentially be invoked an infi nite
 number of times. As a safety measure, by default SQL Server restricts the number of times
that the recursive member can be invoked to 100. The code will fail upon the 101st invocation
of the recursive member. You can change the default maximum recursion limit by specifying
the hint OPTION(MAXRECURSION n) at the end of the outer query, where n is an integer in
the range 0 through 32,767 representing the maximum recursion limit you want to set. If you
want to remove the restriction altogether, specify MAXRECURSION 0. Note that SQL Server
stores the intermediate result sets returned by the anchor and recursive members in a work
table in tempdb; if you remove the restriction and have a runaway query, the work table will
quickly get very large. If tempdb can’t grow anymore—for example, when you run out of disk
space—the query will fail.

Views

 The two types of table expressions discussed so far—derived tables and CTEs—have a very limited
scope, which is the single statement scope. As soon as the outer query against those table expressions
is fi nished, they are gone. This means that derived tables and CTEs are not reusable.

 Views and inline table-valued functions (inline TVFs) are two reusable types of table expressions;
their defi nition is stored as a database object. Once created, those objects are permanent parts
of the database and are only removed from the database if explicitly dropped.

 Chapter 5 Table Expressions 173

 In most other respects, views and inline TVFs are treated like derived tables and CTEs.
For example, when querying a view or an inline TVF, SQL Server expands the defi nition
of the table expression and queries the underlying objects directly, as with derived tables
and CTEs.

 In this section, I’ll describe views; in the next section, I’ll describe inline TVFs. As I mentioned
earlier, a view is a reusable table expression whose defi nition is stored in the database.
For example, the following code creates a view called USACusts in the Sales schema in the
TSQLFundamentals2008 database, representing all customers from the United States:

USE TSQLFundamentals2008;
IF OBJECT_ID('Sales.USACusts') IS NOT NULL
 DROP VIEW Sales.USACusts;
GO
CREATE VIEW Sales.USACusts
AS

SELECT
 custid, companyname, contactname, contacttitle, address,
 city, region, postalcode, country, phone, fax
FROM Sales.Customers
WHERE country = N'USA';
GO

 Note that just as with derived tables and CTEs, instead of using inline column aliasing as
shown in the preceding code, you can use external column aliasing by specifying the target
column names in parentheses immediately after the view name.

 Once you create this view, you can query it much like you query other tables in the database:

SELECT custid, companyname
FROM Sales.USACusts;

 Because a view is an object in the database, you can control access to the view with permissions
just like other objects that can be queried (for example, SELECT, INSERT, UPDATE, and DELETE
permissions). For example, you can deny direct access to the underlying objects while granting
access to the view.

 Note that the general recommendation to avoid using SELECT * has specifi c relevance in the
 context of views. The columns are enumerated in the compiled form of the view and new table
columns will not be automatically added to the view. For example, suppose you defi ne a view
based on the query SELECT * FROM dbo.T1, and at the view creation time the table T1 has the
columns col1 and col2. SQL Server stores information only on those two columns in the view’s
metadata. If you alter the defi nition of the table adding new columns, those new columns will
not be added to the view. You can refresh the view’s metadata using a stored procedure called
sp_refreshview, but to avoid confusion, the best practice is to explicitly list the column names that
you need in the defi nition of the view. If columns are added to the underlying tables and you
need them in the view, use the ALTER VIEW statement to revise the view defi nition accordingly.

174 Microsoft SQL Server 2008 T-SQL Fundamentals

Views and the ORDER BY Clause

 The query that you use to defi ne a view must meet all requirements mentioned earlier with
respect to table expressions in the context of derived tables. The view should not guarantee
any order to the rows, all view columns must have names, and all column names must be
unique. In this section, I’ll elaborate a bit about the ordering issue, which is a fundamental
point that is crucial to understand.

 Remember that a presentation ORDER BY clause is not allowed in the query defi ning a table
expression because there’s no order among the rows of a relational table. An attempt to
 create an ordered view is absurd because it violates fundamental properties of a relation
as defi ned by the relational model. If you need to return rows from a view sorted for
 presentation purposes, you shouldn’t try to make the view something it shouldn’t be. Instead,
you should specify a presentation ORDER BY clause in the outer query against the view, like so:

SELECT custid, companyname, region
FROM Sales.USACusts
ORDER BY region;

 Try running the following code to create a view with a presentation ORDER BY clause:

ALTER VIEW Sales.USACusts
AS

SELECT
 custid, companyname, contactname, contacttitle, address,
 city, region, postalcode, country, phone, fax
FROM Sales.Customers
WHERE country = N'USA'
ORDER BY region;
GO

 This attempt fails and you get the following error:

Msg 1033, Level 15, State 1, Procedure USACusts, Line 9
The ORDER BY clause is invalid in views, inline functions, derived tables, subqueries, and
common table expressions, unless TOP or FOR XML is also specified.

 The error message indicates that SQL Server allows the ORDER BY clause in two exceptional
cases—when the TOP or FOR XML options are used. Neither case follows the SQL standard, and
in both cases the ORDER BY clause serves a purpose beyond the usual presentation purpose.

 Because T-SQL allows an ORDER BY clause in a view when TOP is also specifi ed, some people
think that they can create “ordered views” by using TOP (100) PERCENT like so:

ALTER VIEW Sales.USACusts
AS

SELECT TOP (100)
 custid, companyname, contactname, contacttitle, address,
 city, region, postalcode, country, phone, fax

 Chapter 5 Table Expressions 175

FROM Sales.Customers
WHERE country = N'USA'
ORDER BY region;
GO

 Even though the code is technically valid and the view is created, you should be aware
that because the query is used to defi ne a table expression, the ORDER BY clause here is
only guaranteed to serve the logical fi ltering purpose for the TOP option. If you query the
view and don’t specify an ORDER BY clause in the outer query, presentation order is not
guaranteed.

 For example, run the following query against the view:

SELECT custid, companyname, region
FROM Sales.USACusts;

 Here is the output from one of my executions showing that the rows are not sorted by
region:

custid companyname region
----------- ----------------------- ---------------
32 Customer YSIQX OR
36 Customer LVJSO OR
43 Customer UISOJ WA
45 Customer QXPPT CA
48 Customer DVFMB OR
55 Customer KZQZT AK
65 Customer NYUHS NM
71 Customer LCOUJ ID
75 Customer XOJYP WY
77 Customer LCYBZ OR
78 Customer NLTYP MT
82 Customer EYHKM WA
89 Customer YBQTI WA

 In some cases a query that is used to defi ne a table expression has the TOP option with an
ORDER BY clause, and the query against the table expression doesn’t have an ORDER BY
clause. In those cases, therefore, the output might or might not be returned in the specifi ed
order. If the results happen to be ordered, it may be due to optimization reasons, especially
when you use values other than TOP (100) PERCENT. The point I’m trying to make is that
any order of the rows in the output is considered valid, and no specifi c order is guaranteed;
therefore, when querying a table expression, you should not assume any order unless you
specify an ORDER BY clause in the outer query.

 Do not confuse the behavior of a query that is used to defi ne a table expression with a query
that isn’t. A query with TOP and ORDER BY does not guarantee presentation order only in
the context of a table expression. In the context of a query that is not used to defi ne a table
expression, the ORDER BY clause serves both the logical fi ltering purpose for the TOP option
and the presentation purpose.

176 Microsoft SQL Server 2008 T-SQL Fundamentals

View Options

 When you create or alter a view, you can specify view attributes and options as part of the
view defi nition. In the header of the view under the WITH clause you can specify attributes
such as ENCRYPTION and SCHEMABINDING, and at the end of the query you can specify
WITH CHECK OPTION. The following sections describe the purpose of these options.

The ENCRYPTION Option

 The ENCRYPTION option is available when you create or alter views, stored procedures,
triggers, and user-defi ned functions (UDFs). The ENCRYPTION option indicates that SQL
Server will internally store the text with the defi nition of the object in an obfuscated format.
The obfuscated text is not directly visible to users through any of the catalog objects—only
to privileged users through special means.

 Before you look at the ENCRYPTION option, run the following code to alter the defi nition of
the USACusts view to its original version:

ALTER VIEW Sales.USACusts
AS

SELECT
 custid, companyname, contactname, contacttitle, address,
 city, region, postalcode, country, phone, fax
FROM Sales.Customers
WHERE country = N'USA';
GO

 To get the defi nition of the view, invoke the OBJECT_DEFINITION function like so:

SELECT OBJECT_DEFINITION(OBJECT_ID('Sales.USACusts'));

 The text with the defi nition of the view is available because the view was created without the
ENCRYPTION option. You get the following output:

CREATE VIEW Sales.USACusts
AS

SELECT
 custid, companyname, contactname, contacttitle, address,
 city, region, postalcode, country, phone, fax
FROM Sales.Customers
WHERE country = N'USA';

 Next, alter the view defi nition—only this time, include the ENCRYPTION option:

ALTER VIEW Sales.USACusts WITH ENCRYPTION
AS

SELECT
 custid, companyname, contactname, contacttitle, address,
 city, region, postalcode, country, phone, fax

 Chapter 5 Table Expressions 177

FROM Sales.Customers
WHERE country = N'USA';
GO

 Try again to get the text with the defi nition of the view:

SELECT OBJECT_DEFINITION(OBJECT_ID('Sales.USACusts'));

 This time you get a NULL back.

 As an alternative to the OBJECT_DEFINITION function, you can use the sp_helptext stored
 procedure to get object defi nitions. The OBJECT_DEFINITION function was added in SQL Server
2005 while sp_helptext was also available in earlier versions. For example, the following code
requests the object defi nition of the USACusts view:

EXEC sp_helptext 'Sales.USACusts';

 Because in our case the view was created with the ENCRYPTION option, you will not get the
object defi nition back, but the following message:

The text for object 'Sales.USACusts' is encrypted.

The SCHEMABINDING Option

 The SCHEMABINDING option is available to views and UDFs, and it binds the schema of referenced
objects and columns to the schema of the referencing object. It indicates that referenced objects
cannot be dropped and that referenced columns cannot be dropped or altered.

 For example, alter the USACusts view with the SCHEMABINDING option:

ALTER VIEW Sales.USACusts WITH SCHEMABINDING
AS

SELECT
 custid, companyname, contactname, contacttitle, address,
 city, region, postalcode, country, phone, fax
FROM Sales.Customers
WHERE country = N'USA';
GO

 Now try to drop the Address column from the Customers table:

ALTER TABLE Sales.Customers DROP COLUMN address;

 You get the following error:

Msg 5074, Level 16, State 1, Line 1
The object 'USACusts' is dependent on column 'address'.
Msg 4922, Level 16, State 9, Line 1
ALTER TABLE DROP COLUMN address failed because one or more objects access this column.

 Without the SCHEMABINDING option, such a schema change would have been allowed, as
well as dropping the Customers table altogether. This can lead to errors at run time when

178 Microsoft SQL Server 2008 T-SQL Fundamentals

you try to query the view, and referenced objects or columns that do not exist. If you create
the view with the SCHEMABINDING option, you can avoid these errors.

 The object defi nition must meet a couple of technical requirements to support the
SCHEMABINDING option. The query is not allowed to use * in the SELECT clause; instead, you
have to explicitly list column names. Also, you must use schema-qualifi ed two-part names
when referring to objects. Both requirements are actually good practices in general.

 As you can imagine, creating your objects with the SCHEMABINDING option is a good practice.

The Option CHECK OPTION

 The purpose of CHECK OPTION is to prevent modifi cations through the view that confl ict
with the view’s fi lter—assuming that one exists in the query defi ning the view.

 The query defi ning the view USACusts fi lters customers where the country attribute is equal
to N’USA’. The view is currently defi ned without CHECK OPTION. This means that you can
currently insert rows through the view with customers from countries other than the United
States, and you can update existing customers through the view, changing their country to one
other than the United States. For example, the following code successfully inserts a customer
with company name Customer ABCDE from the United Kingdom through the view:

INSERT INTO Sales.USACusts(
 companyname, contactname, contacttitle, address,
 city, region, postalcode, country, phone, fax)
 VALUES(
 N'Customer ABCDE', N'Contact ABCDE', N'Title ABCDE', N'Address ABCDE',
 N'London', NULL, N'12345', N'UK', N'012-3456789', N'012-3456789');

 The row was inserted through the view into the Customers table. However, because the
view fi lters only customers from the United States, if you query the view looking for the new
 customer you get an empty set back:

SELECT custid, companyname, country
FROM Sales.USACusts
WHERE companyname = N'Customer ABCDE';

 Query the Customers table directly looking for the new customer:

SELECT custid, companyname, country
FROM Sales.Customers
WHERE companyname = N'Customer ABCDE';

 You get the customer information in the output, because the new row made it to the
Customers table:

custid companyname country
----------- ------------------ ---------------
92 Customer ABCDE UK

 Chapter 5 Table Expressions 179

 Similarly, if you update a customer row through the view, changing the country attribute to
a country other than the United States, the update makes it to the table. But that customer
doesn’t show up anymore in the view because it doesn’t qualify to the view’s query fi lter.

 If you want to prevent modifi cations that confl ict with the view’s fi lter, add WITH CHECK
OPTION at the end of the query defi ning the view:

ALTER VIEW Sales.USACusts WITH SCHEMABINDING
AS

SELECT
 custid, companyname, contactname, contacttitle, address,
 city, region, postalcode, country, phone, fax
FROM Sales.Customers
WHERE country = N'USA'
WITH CHECK OPTION;
GO

 Now try to insert a row that confl icts with the view’s fi lter:

INSERT INTO Sales.USACusts(
 companyname, contactname, contacttitle, address,
 city, region, postalcode, country, phone, fax)
 VALUES(
 N'Customer FGHIJ', N'Contact FGHIJ', N'Title FGHIJ', N'Address FGHIJ',
 N'London', NULL, N'12345', N'UK', N'012-3456789', N'012-3456789');

 You get the following error:

Msg 550, Level 16, State 1, Line 1
The attempted insert or update failed because the target view either specifies WITH CHECK
OPTION or spans a view that specifies WITH CHECK OPTION and one or more rows resulting from
the operation did not qualify under the CHECK OPTION constraint.
The statement has been terminated.

 When you’re done, run the following code for cleanup:

DELETE FROM Sales.Customers
WHERE custid > 91;

DBCC CHECKIDENT('Sales.Customers', RESEED, 91);

IF OBJECT_ID('Sales.USACusts') IS NOT NULL DROP VIEW Sales.USACusts;

Inline Table-Valued Functions

 Inline TVFs are reusable table expressions that support input parameters. In all respects
 except for the support for input parameters, inline TVFs are similar to views. For this
 reason, I like to think of inline TVFs as parameterized views, even though they are not
called this formally.

180 Microsoft SQL Server 2008 T-SQL Fundamentals

 For example, the following code creates an inline TVF called fn_GetCustOrders in the
TSQLFundamentals2008 database:

USE TSQLFundamentals2008;
IF OBJECT_ID('dbo.fn_GetCustOrders') IS NOT NULL
 DROP FUNCTION dbo.fn_GetCustOrders;
GO
CREATE FUNCTION dbo.fn_GetCustOrders
 (@cid AS INT) RETURNS TABLE
AS
RETURN
 SELECT orderid, custid, empid, orderdate, requireddate,
 shippeddate, shipperid, freight, shipname, shipaddress, shipcity,
 shipregion, shippostalcode, shipcountry
 FROM Sales.Orders
 WHERE custid = @cid;
GO

 This inline TVF accepts an input parameter called @cid representing a customer ID, and re-
turns all orders that were placed by the input customer. You query inline TVFs like you query
other tables with DML statements. If the function accepts input parameters, you specify
those in parentheses following the function’s name. Also, make sure you provide an alias to
the table expression. Providing a table expression with an alias is not always a requirement
but is a good practice because it makes your code more readable and less prone to errors.
For example, the following code queries the function requesting all orders that were placed
by customer 1:

SELECT orderid, custid
FROM dbo.fn_GetCustOrders(1) AS CO;

 This code returns the following output:

orderid custid
----------- -----------
10643 1
10692 1
10702 1
10835 1
10952 1
11011 1

 As with other tables, you can refer to an inline TVF as part of a join. For example, the follow-
ing query joins the inline TVF returning customer 1’s orders with the Sales.OrderDetails table,
matching customer 1’s orders with the related order lines:

SELECT CO.orderid, CO.custid, OD.productid, OD.qty
FROM dbo.fn_GetCustOrders(1) AS CO
 JOIN Sales.OrderDetails AS OD
 ON CO.orderid = OD.orderid;

 Chapter 5 Table Expressions 181

 This code returns the following output:

orderid custid productid qty
----------- ----------- ----------- ------
10643 1 28 15
10643 1 39 21
10643 1 46 2
10692 1 63 20
10702 1 3 6
10702 1 76 15
10835 1 59 15
10835 1 77 2
10952 1 6 16
10952 1 28 2
11011 1 58 40
11011 1 71 20

 When you’re done, run the following code for cleanup:

IF OBJECT_ID('dbo.fn_GetCustOrders') IS NOT NULL
 DROP FUNCTION dbo.fn_GetCustOrders;

The APPLY Operator

 The APPLY operator is a nonstandard table operator that was introduced in SQL Server 2005.
This operator is used in the FROM clause of a query like all table operators. The two supported
types of the APPLY operator are CROSS APPLY and OUTER APPLY. CROSS APPLY implements
only one logical query processing phase, while OUTER APPLY implements two.

 The APPLY operator operates on two input tables, the second of which may be a table
 expression; I’ll refer to them as the left and right tables. The right table is usually a derived
table or an inline TVF. The CROSS APPLY operator implements one logical query processing
phase—it applies the right table expression to each row from the left table, and produces a
result table with the unifi ed result sets.

 So far it might sound like the CROSS APPLY operator is very similar to a cross join, and in a
sense that’s true. For example, the following two queries return the same result sets:

SELECT S.shipperid, E.empid
FROM Sales.Shippers AS S
 CROSS JOIN HR.Employees AS E;

SELECT S.shipperid, E.empid
FROM Sales.Shippers AS S
 CROSS APPLY HR.Employees AS E;

 However, with the CROSS APPLY operator the right table expression can represent a different
set of rows per each row from the left table, unlike in a join. You can achieve this when you use a
derived table in the right side, and in the derived table query refer to attributes from the left side.
Or when you use an inline TVF, you can pass attributes from the left side as input arguments.

182 Microsoft SQL Server 2008 T-SQL Fundamentals

 For example, the following code uses the CROSS APPLY operator to return the three most
recent orders for each customer:

SELECT C.custid, A.orderid, A.orderdate
FROM Sales.Customers AS C
 CROSS APPLY
 (SELECT TOP(3) orderid, empid, orderdate, requireddate
 FROM Sales.Orders AS O
 WHERE O.custid = C.custid
 ORDER BY orderdate DESC, orderid DESC) AS A;

 You can think of the table expression A as a correlated table subquery. In terms of logical
query processing, the right table expression (derived table in our case) is applied to each row
from the Customers table. Notice the reference to the attribute C.custid from the left table in
the derived table’s query fi lter. The derived table returns the three most recent orders for the
customer from the current left row. Because the derived table is applied to each row from the
left side, the CROSS APPLY operator returns the three most recent orders for each customer.

 Here’s the output of this query, shown here in abbreviated form:

custid orderid orderdate
----------- ----------- -----------------------
1 11011 2008-04-09 00:00:00.000
1 10952 2008-03-16 00:00:00.000
1 10835 2008-01-15 00:00:00.000
2 10926 2008-03-04 00:00:00.000
2 10759 2007-11-28 00:00:00.000
2 10625 2007-08-08 00:00:00.000
3 10856 2008-01-28 00:00:00.000
3 10682 2007-09-25 00:00:00.000
3 10677 2007-09-22 00:00:00.000
...

(263 row(s) affected)

 If the right table expression returns an empty set, the CROSS APPLY operator does not return
the corresponding left row. For example, customers 22 and 57 did not place orders. In both
cases the derived table is an empty set; therefore, those customers are not returned in the
output. If you want to return rows from the left table for which the right table expression
returns an empty set, use the OUTER APPLY operator instead of CROSS APPLY. The OUTER
APPLY operator adds a second logical phase that identifi es rows from the left side for which
the right table expression returns an empty set, and adds those rows to the result table as
outer rows with NULLs in the right side’s attributes as place holders. In a sense, this phase is
similar to the phase that adds outer rows in a left outer join.

 For example, run the following code to return the three most recent orders for each customer,
and include in the output customers with no orders as well:

SELECT C.custid, A.orderid, A.orderdate
FROM Sales.Customers AS C
 OUTER APPLY

 Chapter 5 Table Expressions 183

 (SELECT TOP(3) orderid, empid, orderdate, requireddate
 FROM Sales.Orders AS O
 WHERE O.custid = C.custid
 ORDER BY orderdate DESC, orderid DESC) AS A;

 This time, customers 22 and 57, who did not place orders, are included in the output, which is
shown here in abbreviated form:

custid orderid orderdate
----------- ----------- -----------------------
1 11011 2008-04-09 00:00:00.000
1 10952 2008-03-16 00:00:00.000
1 10835 2008-01-15 00:00:00.000
2 10926 2008-03-04 00:00:00.000
2 10759 2007-11-28 00:00:00.000
2 10625 2007-08-08 00:00:00.000
3 10856 2008-01-28 00:00:00.000
3 10682 2007-09-25 00:00:00.000
3 10677 2007-09-22 00:00:00.000
...
22 NULL NULL
...
57 NULL NULL
...

(265 row(s) affected)

 For encapsulation purposes you may fi nd it more convenient to work with inline TVFs instead
of derived tables. This way your code will be simpler to follow and maintain. For example, the
following code creates an inline TVF called fn_TopOrders that accepts as inputs a customer ID
(@custid) and a number (@n), and returns the @n most recent orders for customer @custid:

IF OBJECT_ID('dbo.fn_TopOrders') IS NOT NULL
 DROP FUNCTION dbo.fn_TopOrders;
GO
CREATE FUNCTION dbo.fn_TopOrders
 (@custid AS INT, @n AS INT)
 RETURNS TABLE
AS
RETURN
 SELECT TOP(@n) orderid, empid, orderdate, requireddate
 FROM Sales.Orders
 WHERE custid = @custid
 ORDER BY orderdate DESC, orderid DESC;
GO

 You can now substitute the use of the derived table from the previous examples with the new
function:

SELECT
 C.custid, C.companyname,
 A.orderid, A.empid, A.orderdate, A.requireddate
FROM Sales.Customers AS C
 CROSS APPLY dbo.fn_TopOrders(C.custid, 3) AS A;

184 Microsoft SQL Server 2008 T-SQL Fundamentals

 The code is much more readable and easier to maintain. In terms of physical processing,
nothing really changed because, as I stated earlier, the defi nition of table expressions is
 expanded, and SQL Server will in any case end up querying the underlying objects directly.

Conclusion

 Table expressions can help you simplify your code, improve its maintainability, and encapsulate
querying logic. When you need to use table expressions and are not planning to reuse their
defi nitions, use derived tables or CTEs. CTEs have a couple of advantages over derived tables;
you do not nest CTEs as you do derived tables, making CTEs more modular and easier to
maintain. Also, you can refer to multiple instances of the same CTE, which you cannot do with
derived tables.

 When you need to defi ne reusable table expressions, use views or inline TVFs. When you do
not need to support input parameters, use views; otherwise, use inline TVFs.

 Use the APPLY operator when you want to apply a table expression to each row from a
source table, and unify all result sets into one result table.

Exercises

 This section provides exercises to help you familiarize yourself with the subjects discussed in
this chapter. All the exercises in this chapter require your session to be connected to the data-
base TSQLFundamentals2008.

1-1

 Write a query that returns the maximum order date for each employee.

 Tables involved: TSQLFundamentals2008 database, Sales.Orders table.

 Desired output:

empid maxorderdate
----------- -----------------------
3 2008-04-30 00:00:00.000
6 2008-04-23 00:00:00.000
9 2008-04-29 00:00:00.000
7 2008-05-06 00:00:00.000
1 2008-05-06 00:00:00.000
4 2008-05-06 00:00:00.000
2 2008-05-05 00:00:00.000
5 2008-04-22 00:00:00.000
8 2008-05-06 00:00:00.000

(9 row(s) affected)

 Chapter 5 Table Expressions 185

1-2

 Encapsulate the query from Exercise 1-1 in a derived table. Write a join query between the
derived table and the Orders table to return the orders with the maximum order date for
each employee.

 Tables involved: Sales.Orders.

 Desired output:

empid orderdate orderid custid
----------- ------------------------- ----------- -----------
9 2008-04-29 00:00:00.000 11058 6
8 2008-05-06 00:00:00.000 11075 68
7 2008-05-06 00:00:00.000 11074 73
6 2008-04-23 00:00:00.000 11045 10
5 2008-04-22 00:00:00.000 11043 74
4 2008-05-06 00:00:00.000 11076 9
3 2008-04-30 00:00:00.000 11063 37
2 2008-05-05 00:00:00.000 11073 58
2 2008-05-05 00:00:00.000 11070 44
1 2008-05-06 00:00:00.000 11077 65

(10 row(s) affected)

2-1

 Write a query that calculates a row number for each order based on orderdate, orderid
ordering.

 Tables involved: Sales.Orders.

 Desired output (abbreviated):

orderid orderdate custid empid rownum
----------- ------------------------- ----------- ----------- -------
10248 2006-07-04 00:00:00.000 85 5 1
10249 2006-07-05 00:00:00.000 79 6 2
10250 2006-07-08 00:00:00.000 34 4 3
10251 2006-07-08 00:00:00.000 84 3 4
10252 2006-07-09 00:00:00.000 76 4 5
10253 2006-07-10 00:00:00.000 34 3 6
10254 2006-07-11 00:00:00.000 14 5 7
10255 2006-07-12 00:00:00.000 68 9 8
10256 2006-07-15 00:00:00.000 88 3 9
10257 2006-07-16 00:00:00.000 35 4 10
...

(830 row(s) affected)

186 Microsoft SQL Server 2008 T-SQL Fundamentals

2-2

 Write a query that returns rows with row numbers 11 through 20 based on the row number
defi nition in Exercise 2-1. Use a CTE to encapsulate the code from Exercise 2-1.

 Tables involved: Sales.Orders.

 Desired output:

orderid orderdate custid empid rownum
----------- ------------------------- ----------- ----------- -------
10258 2006-07-17 00:00:00.000 20 1 11
10259 2006-07-18 00:00:00.000 13 4 12
10260 2006-07-19 00:00:00.000 56 4 13
10261 2006-07-19 00:00:00.000 61 4 14
10262 2006-07-22 00:00:00.000 65 8 15
10263 2006-07-23 00:00:00.000 20 9 16
10264 2006-07-24 00:00:00.000 24 6 17
10265 2006-07-25 00:00:00.000 7 2 18
10266 2006-07-26 00:00:00.000 87 3 19
10267 2006-07-29 00:00:00.000 25 4 20

(10 row(s) affected)

3

 Write a solution using a recursive CTE that returns the management chain leading to Zoya
Dolgopyatova (employee ID 9).

 Tables involved: HR.Employees.

 Desired output:

empid mgrid firstname lastname
----------- ----------- ---------- --------------------
9 5 Zoya Dolgopyatova
5 2 Sven Buck
2 1 Don Funk
1 NULL Sara Davis

(4 row(s) affected)

4-1

 Create a view that returns the total quantity for each employee and year.

 Tables involved: Sales.Orders and Sales.OrderDetails.

 When running the following code:

SELECT * FROM Sales.VEmpOrders ORDER BY empid, orderyear;

 Chapter 5 Table Expressions 187

 The desired output is:

empid orderyear qty
----------- ----------- -----------
1 2006 1620
1 2007 3877
1 2008 2315
2 2006 1085
2 2007 2604
2 2008 2366
3 2006 940
3 2007 4436
3 2008 2476
4 2006 2212
4 2007 5273
4 2008 2313
5 2006 778
5 2007 1471
5 2008 787
6 2006 963
6 2007 1738
6 2008 826
7 2006 485
7 2007 2292
7 2008 1877
8 2006 923
8 2007 2843
8 2008 2147
9 2006 575
9 2007 955
9 2008 1140

(27 row(s) affected)

4-2 (Optional, Advanced)

 Write a query against Sales.VEmpOrders that returns the running total quantity for each
 employee and year.

 Tables involved: Sales.VEmpOrders view.

 Desired output:

empid orderyear qty runqty
----------- ----------- ----------- -----------
1 2006 1620 1620
1 2007 3877 5497
1 2008 2315 7812
2 2006 1085 1085
2 2007 2604 3689
2 2008 2366 6055
3 2006 940 940

188 Microsoft SQL Server 2008 T-SQL Fundamentals

3 2007 4436 5376
3 2008 2476 7852
4 2006 2212 2212
4 2007 5273 7485
4 2008 2313 9798
5 2006 778 778
5 2007 1471 2249
5 2008 787 3036
6 2006 963 963
6 2007 1738 2701
6 2008 826 3527
7 2006 485 485
7 2007 2292 2777
7 2008 1877 4654
8 2006 923 923
8 2007 2843 3766
8 2008 2147 5913
9 2006 575 575
9 2007 955 1530
9 2008 1140 2670

(27 row(s) affected)

5-1

 Create an inline function that accepts as inputs a supplier ID (@supid AS INT) and a requested
number of products (@n AS INT). The function should return @n products with the highest
unit prices that are supplied by the given supplier ID.

 Tables involved: Production.Products.

 When issuing the following query:

SELECT * FROM Production.fn_TopProducts(5, 2);

 Desired output:

productid productname unitprice
----------- ------------------ ---------------
12 Product OSFNS 38.00
11 Product QMVUN 21.00

(2 row(s) affected)

5-2

 Using the CROSS APPLY operator and the function you created in Exercise 4-1, return, for
each supplier, the two most expensive products.

 Chapter 5 Table Expressions 189

 Desired output:

supplierid companyname productid productname unitprice
----------- ----------------- ----------- --------------- ----------
8 Supplier BWGYE 20 Product QHFFP 81.00
8 Supplier BWGYE 68 Product TBTBL 12.50
20 Supplier CIYNM 43 Product ZZZHR 46.00
20 Supplier CIYNM 44 Product VJIEO 19.45
23 Supplier ELCRN 49 Product FPYPN 20.00
23 Supplier ELCRN 76 Product JYGFE 18.00
5 Supplier EQPNC 12 Product OSFNS 38.00
5 Supplier EQPNC 11 Product QMVUN 21.00
...

(55 row(s) affected)

Solutions

 This section provides solutions to the exercises in the preceding section.

1-1

 This exercise is just a preliminary step to the next exercise. This step involves writing a query
that returns the maximum order date for each employee:

USE TSQLFundamentals2008;

SELECT empid, MAX(orderdate) AS maxorderdate
FROM Sales.Orders
GROUP BY empid;

1-2

 This exercise requires you to use the query from the previous step to defi ne a derived table,
and join this derived table with the Orders table to return the orders with the maximum
 order date for each employee, like so:

SELECT O.empid, O.orderdate, O.orderid, O.custid
FROM Sales.Orders AS O
 JOIN (SELECT empid, MAX(orderdate) AS maxorderdate
 FROM Sales.Orders
 GROUP BY empid) AS D
 ON O.empid = D.empid
 AND O.orderdate = D.maxorderdate;

190 Microsoft SQL Server 2008 T-SQL Fundamentals

2-1

 This exercise is a preliminary step to the next exercise. It requires you to query the Orders
table and calculate row numbers based on orderdate, orderid ordering, like so:

SELECT orderid, orderdate, custid, empid,
 ROW_NUMBER() OVER(ORDER BY orderdate, orderid) AS rownum
FROM Sales.Orders;

2-2

 This exercise requires you to defi ne a CTE based on the query from the previous step, and
fi lter only rows with row numbers in the range 11 through 20 from the CTE, like so:

WITH OrdersRN AS
(
 SELECT orderid, orderdate, custid, empid,
 ROW_NUMBER() OVER(ORDER BY orderdate, orderid) AS rownum
 FROM Sales.Orders
)
SELECT * FROM OrdersRN WHERE rownum BETWEEN 11 AND 20;

 You might wonder why you need a table expression here. Remember that calculations based
on the OVER clause (such as the ROW_NUMBER function) are only allowed in the SELECT
and ORDER BY clauses of a query, and not directly in the WHERE clause. By using a table
 expression you can invoke the ROW_NUMBER function in the SELECT clause, assign an alias
to the result column, and refer to the result column in the WHERE clause of the outer query.

3

 You can think of this exercise as the inverse of the request to return an employee and all
subordinates in all levels. Here, the anchor member is a query that returns the row for
 employee 9. The recursive member joins the CTE (call it C)—representing the subordinate/
child from the previous level—with the Employees table (call it P)—representing the
 manager/parent in the next level. This way, each invocation of the recursive member
 returns the manager from the next level, until no next level manager is found (in the case
of the CEO).

 Here’s the complete solution query:

WITH EmpsCTE AS
(
 SELECT empid, mgrid, firstname, lastname
 FROM HR.Employees
 WHERE empid = 9

 UNION ALL

 Chapter 5 Table Expressions 191

 SELECT P.empid, P.mgrid, P.firstname, P.lastname
 FROM EmpsCTE AS C
 JOIN HR.Employees AS P
 ON C.mgrid = P.empid
)
SELECT empid, mgrid, firstname, lastname
FROM EmpsCTE;

4-1

 This exercise is a preliminary step to the next exercise. Here you are required to defi ne a view based
on a query that joins the Orders and OrderDetails tables, group the rows by employee ID and
 order year, and return the total quantity for each group. The view defi nition should look like this:

USE TSQLFundamentals2008;
IF OBJECT_ID('Sales.VEmpOrders') IS NOT NULL
 DROP VIEW Sales.VEmpOrders;
GO
CREATE VIEW Sales.VEmpOrders
AS

SELECT
 empid,
 YEAR(orderdate) AS orderyear,
 SUM(qty) AS qty
FROM Sales.Orders AS O
 JOIN Sales.OrderDetails AS OD
 ON O.orderid = OD.orderid
GROUP BY
 empid,
 YEAR(orderdate);
GO

4-2

 In this exercise, you query the VEmpOrders view and return the running total quan-
tity for each employee and order year. To achieve this, you can write a query against the
VEmpOrders view (call it V1) that returns from each row the employee ID, order year, and
quantity. In the SELECT list you can incorporate a subquery against a second instance of
VEmpOrders (call it V2), that returns the sum of all quantities from the rows where the
 employee ID is equal to the one in V1, and the order year is smaller than or equal to the one
in V1. The complete solution query looks like this:

SELECT empid, orderyear, qty,
 (SELECT SUM(qty)
 FROM Sales.VEmpOrders AS V2
 WHERE V2.empid = V1.empid
 AND V2.orderyear <= V1.orderyear) AS runqty
FROM Sales.VEmpOrders AS V1
ORDER BY empid, orderyear;

192 Microsoft SQL Server 2008 T-SQL Fundamentals

5-1

 This exercise requires you to defi ne a function called fn_TopProducts that accepts a supplier
ID (@supid) and a number (@n), and is supposed to return the @n most expensive products
supplied by the input supplier ID. Here’s how the function defi nition should look:

USE TSQLFundamentals2008;
IF OBJECT_ID('Production.fn_TopProducts') IS NOT NULL
 DROP FUNCTION Production.fn_TopProducts;
GO
CREATE FUNCTION Production.fn_TopProducts
 (@supid AS INT, @n AS INT)
 RETURNS TABLE
AS
RETURN
 SELECT TOP(@n) productid, productname, unitprice
 FROM Production.Products
 WHERE supplierid = @supid
 ORDER BY unitprice DESC;
GO

5-2

 In this exercise, you write a query against the Production.Suppliers table, and use the CROSS
APPLY operator to apply the function you defi ned by the previous step to each supplier. Your
query is supposed to return the two most expensive products for each supplier. Here’s the
solution query:

SELECT S.supplierid, S.companyname, P.productid, P.productname, P.unitprice
FROM Production.Suppliers AS S
 CROSS APPLY Production.fn_TopProducts(S.supplierid, 2) AS P;

 381

Index

Symbols and Numbers
- operator, 53
!< operator, 52
!= operator, 52
!> operator, 52
$action function, 268
$identity form, 244
% operator, 53
% wildcard, 73
%= operator, 251
* (asterisk), 39–40
* operator, 53
.ldf extension, 17
.mdf extension, 17
.ndf extension, 17
.NET Framework, 347
.sql fi les, 370
.value method, 354
/ operator, 53
/= operator, 251
@@identity function,

244–45
@@SPID function, 286
@@TRANCOUNT function, 280
@birthdate, 347
@custid, 349
@eventdata, 354
@eventdate, 347
@fromdate, 349–50
@numrows, 349–50
@todate, 349–50
_ (underscore) wildcard, 74
+ operator, 53, 67–69
+= operator, 251
< operator, 52
<= operator, 52
<> operator, 52
= operator, 52
-= operator, 251
> operator, 52
>= operator, 52
1NF, 7–8
2NF, 8–9

A
actions, 23
Add Outer Rows phase, 101
Adding Outer Rows phase, 113
AFTER INSERT trigger, 352
after triggers, 351–53

aggregate functions
GROUP BY clause, 32–33
HAVING clause, 34–35
OVER clause, 45
window, 45

aggregates
running, 145–46
set-based vs. cursor, 332–33

aggregation
grouping sets, 224–25. See also grouping sets
outer joins, 122
PIVOT operator, 217–18
pivoting, 215–16
precalculated, 11–12
SQL, 216–17
unpivoting, 223

alias
external, 168
inline, 168

aliases
column name, 35–38, 62,

163–64, 168
cross joins, 103
inline, 164
ITVs, 180
source table, 103, 151–52
subquery substitution errors, 151
table, 239
unpivoting, 223

ALL clause, 194
ALL keyword, 198
all-at-once operations,

62–63, 119
UPDATE statement, 251

allocation units, lockable, 283
ALTER DATABASE, 66
ALTER TABLE statement, 21

IDENTITY property, 246
lock escalation, 284

ALTER VIEW statement, 173
alternate keys, 7
anchor member, 170–72
AND operator, 52

MERGE statement, 259
ANSI

CTE standard, 167
row constructors, 253–54
set operations, 194, 198
standards, 2

ANSI SQL-89 syntax
cross joins, 103
inner joins, 107–8

382 ANSI SQL-92 syntax

ANSI SQL-92 syntax
cross joins, 102–3
inner joins, 106–7

APPLY operator, 101, 181–84
blocking, 288–89

archive tables, 266
arguments, table, 165, 168
arithmetic operators, 53
ASC (ascending), 41
assignment UPDATE, 254–55
asterisk

attributes list, 39–40
EXISTS predicate, 143–44
SCHEMABINDING option, 178
views, 173

atomicity, 280
attributes, 6

2NF, 8–9
constraints, 7
fi ltering, outer joins, 118–19
grouping sets, 213
list, asterisk vs. specifying, 39–40
MERGE with OUTPUT, 268
outer joins, 115
OUTPUT clause, 264
SELECT clause, 35–40
UPDATE with OUTPUT, 266
views, 176–79

audit tables, 268–69
audits

column updates, 109–10
DDL triggers, 353–55
DML triggers, 352–53

automating tasks, 341
auto-numbering, 254–55

B
BACKUP DATABASE statement, 329, 341
batches, 321, 324–27
before triggers, 353
BEGIN CATCH keyword, 355
BEGIN keyword, 328–29
BEGIN TRAN statement, 279–80
BEGIN TRY keyword, 355
BETWEEN predicate, 52
block comments, 105
blocking, 282–91
blocking_session_id attribute, 290
Books Online, 377–79
boundaries, statement blocks, 328
brackets

curly, set elements, 4
square, identifi ers, 28–29, 66

BREAK command, 330
B-tree, lockable, 283
bugs. See errors
BULK INSERT statement, 242–43

C
candidate keys, 7

2NF, 8–9
3NF, 9

Cantor, Georg, 3
Cartesian Product phase,

101–2, 106–7
CASCADE action, 23
CASE expressions, 54–57

all-at-once operations, 63
pivoting aggregation, 216–17
unpivoting, 221–22

case sensitivity, collation, 66
CAST function, 83–84, 142
catalog views, 89–90
CATCH block, 355–58
CHAR data type, 64
character data, 63–75
character strings, 52

concatenation, 67–69
dynamic SQL, 340–41
EXEC command, 341–42
fi xed length, 64
input, 69
N prefi x, 52, 64
operators and functions, 67–73
restricted, 243
single quotes, 28–29,

64, 66, 341
sp_executesql, 343
Unicode, 343
variable length, 64

CHARINDEX function, 70
check constraint, 21–23

two-valued logic, 58
CHECK option, 178–79
clauses, query, 27. See also specifi c clauses

processing order, 26–27, 50–51
client commands, 324, 327
CLR (Common Language Runtime), 347
COALESCE function, 69
Codd, Edgar F., 4–6
code

highlighting, 375
source, downloading, 370–71

coding
fl ow elements, 327–31
help, Books Online, 379
loops, 329–30
source code, downloading, 370–71
stored procedures, 348–51. See also stored

procedures
style, 20
user input, 341

collation, 15, 65–66
column names

aliases, 35–38, 62, 163–64, 168
INSERT SELECT statement, 239–40

 Data Control Language (DCL) 383

INSERT VALUES statement, 238
prefi xes, 103
specifying vs. asterisk, 39–40
substitution error, 149–51

COLUMNPROPERTY function, 92
columns

collation, 65
identity. See identity columns
metadata listing, 89–91
missing, 224–25
naming, 194
ordering, 41–42
placeholders, 224–25
set operations, 194
terminators, 242
unpivoting, 213. See also unpivoting

data
updates, auditing, 109–10
updating, 259

commands. See also specifi c commands
client, 324, 327

commas
CUBE subclause, 226
GROUPING SETS subcluase, 225
INSERT VALUES state,emt, 238–39

commit instruction, 280–81
COMMIT TRAN statement, 279–80
committed reads, 299–301, 304–5
Common Language Runtime (CLR), 347
common table expressions (CTEs), 167–72, 184

multiple references, 169–70
multiple, defi ning, 169
recursive, 170–72

comparison operators, 52
compatibility, lock modes, 282–83
composable DML, 268–70
composite joins, 109–10
compound assignment operators, 251
CONCAT_NULL_YIELDS_NULL setting, 68
concatenation, 67–69

user input, 341
concurrency, 279, 309

blocking, 282–91
deadlocks, 306–8
isolation levels, 292–306
lockable resources, 284
locks, 282–91

conditional logic, 267
confl ict detection, 301–3, 305–6
consistency, 280
consistent analysis, 295
constraints, 7

check, 23
default, 23–24
foreign key, 22–23
metadata listing, 91
primary key, 21
unique, 21–22

constructors, row, 253–54

CONTINUE command, 330
CONVERT function, 83–84
correlated subqueries, 133, 140–44
COUNT (*) function, 33
COUNT aggregate

outer joins, 122–23
CREATE DATABASE statement, 18
CREATE DEFAULT statement, 326
CREATE FUNCTION statement, 326
CREATE PROCEDURE statement, 326
CREATE RULE statement, 326
CREATE SCHEMA statement, 326
CREATE TABLE statement, 19, 21

IDENTITY property, 246
CREATE TRIGGER statement, 326
CREATE VIEW statement, 326
CROSS APPLY operator, 181–84
cross joins, 101–6

unpivoting, 220–21
CTEs (common table expressions). See common table

expressions (CTEs)
CUBE subclause, 226–27
cubes, 12
curly brackets, set elements, 4
current date and time functions, 82–83
CURRENT_TIMESTAMP

CAST and CONVERT functions, 83–84
CURRENT_TIMESTAMP function, 24, 82–83
CURRENT_TIMESTAMP statement

triggers, 352
cursor, 41, 43, 331–34

D
Darwen, Hugh, 5
data

aggregations. See aggregations
character, 63–75
collation, 15, 65–66
consistency, 280
date and time, 75–88
deleting, 247–50
fi les, 16–17
inserting, 237–47
isolation, 280. See also isolation levels
merging, 255–59
modifi cation. See data modifi cation
output, 263–70
pivoting, 213–19, 231
recovery, 280–81
table expression modifi cation, 259–62
TOP modifi cation, 262–63
types, 64
unpivoting, 219–23, 231
updating, 250–55
variables. See variables
warehouse, 11

Data Control Language (DCL), 3

384 Data Defi nition Language (DDL)

Data Defi nition Language (DDL), 3
statement, batches, 327
triggers, 353–55

data integrity defi nition, 18, 20–24
data integrity, constraints. See constraints
data life cycle, 10–12
Data Manipulation Language (DML), 3, 237

composable, 268–70
statement, batches, 327
triggers, 351–53

data mart, 11
data mining, 12
Data Mining Extensions (DMX), 12
data modifi cation, 237, 270. See also resources;

transactions
stored procedures, 348–51
table expressions, 259–62
TOP, 262–63

database, 14–17
collation, 65
lockable, 283–84
master, 15
model, 15
triggers, 353–55
TSQLFundamentals 2008, installation, 331–32
use, 16

DATABASEPROPERTYEX function, 91
DATALENGTH function, 69–70
datatype precedence, 77
date and time

data, 75–88
functions, 82–88

DATE data type, 19, 75–76, 80–81
CAST and CONVERT functions, 83–84
pivoting, 214

date range fi ltering, 81–82
Date, Chris, 5
DATEADD expression, 117–18
DATEADD function, 85–86
DATEDIFF function, 86–87, 117
DATEFORMAT setting, 77–78
DATENAME function, 88
DATEPART function, 87
DATETIME

pivoting, 214
DATETIME data type, 19, 75–76, 80–81

CAST and CONVERT functions, 83–84
DATETIME2 data type, 75–76
DATETIMEOFFSET data type, 75–76

SWITCHOFFSET function, 84–85
Dauben, Joseph W., 3
DAY function, 87–88
DB_NAME function, 287–88
DBCC CHECKIDENT command, 247
dbo schema, 18, 91
DCL (Data Control Language), 3
DDL (Data Defi nition Language). See Data Defi nition

Language (DDL)

DDL_DATABASE_LEVEL_EVENTS, 354
DEADLOCK_PRIORITY function, 306
deadlocks, 306–8
debugging. See also error-handling code

column updates, 263–64
exclusive locks, 285–91
table expressions, 260–62

decimal values, 47
declarative data integrity, 20
DECLARE statement, 321–24

variables, 338
default constraint, 23–24
default instances, 13
defi nitions, table, 339–40
DELETE statement, 247–50

OUTPUT clause, 266
SNAPSHOT isolation levels, 299
TOP option, 262
triggers, 351

deleted tables, triggers, 351–53
deleting, data, 247–50
delimited identifi er names, 28–29, 66
DENSE_RANK function, 47–50
derived tables, 161–63, 184

data modifi cation, 260
ITVs and, 183–84
multiple references, 166–67
nesting, 165–66
TOP-type modifi cation, 263

DESC (descending), 41
dirty reads, 293–94

READ COMMITTED isolation level, 294–95
DISTINCT clause, 194

multi-value subqueries, 138
DISTINCT keyword, 33, 39, 50–51
divide-by-zero error, 62–63, 356
DML (Data Manipulation Language). See Data

Manipulation Language (DML)
DMV (dynamic management view), 286, 289–90
DMX (Data Mining Extensions), 12
domains, 6
double quotes, identifi ers, 28–29, 66
dummy tables, 248–49
durability, 280–81
dynamic management view (DMV), 286, 289–90
dynamic pivoting, 216
dynamic SQL, 340–46

PIVOT operator, 345–46

E
empty grouping set, 224
empty sets. See NULL values
empty strings, 68–69
ENCRYPTION option, 176–77
END CATCH keyword, 355
END keyword, 328–29
END TRY keyword, 355

 functions 385

Entity Relationship Modeling (ERM), 7
equality operators, 110–12
equi-joins, 110
ERM (Entity Relationship Modeling), 7
ERROR_LINE function, 356
ERROR_MESSAGE function, 356
ERROR_NUMBER function, 356
ERROR_PROCEDURE function, 356
ERROR_SEVERITY function, 356
ERROR_STATE function, 356
error-handling code, 280, 303, 349, 355–58. See also

debugging
errors. See also error-handling code

aliases, 37
batch syntax, 324–25
CHECK option, 179
column name, subquery, 149–51
deadlock, 307–8
divide-by-zero, 62–63, 356
GROUP BY, 33
IDENTITY property, 245–46
local temporary tables, 337
multi-value subqueries, 141–42
NULL values, 146–49
open transactions, 285
ORDER BY clause, 174
outer joins, 118–20, 122–23
primary key, 357
recursive member, 172
resolution, 326–27
SCHEMABINDING option, 177–78
SELECT list, 62
SNAPSHOT isolation level, 303
subqueries, 146–51
substitution, column name, 149–51
transaction, 280
transactions, 282
TRY/CATCH construct, 282
variable defi nition, 325

escalation, lock, 284
escape character, 75
ETL (Extract Transform and Load), 11
EVENTDATA function, 353
EXCEPT ALL set operation, 202
EXCEPT DISTINCT set operation,

201–2
EXCEPT set operation, 200
exclusive lock mode, 282–83
exclusive locks

deadlocks, 307–8
READ COMMITTED isolation level,

294–95
REPEATABLE READ isolation level, 295–97
SERIALIZABLE isolation level, 298
troubleshooting, 285–91
writers, 292

EXEC command, 340–42
execution plans, 343

stored procedures, 349

exercises
data modifi cation, 270–73
joins, 123–28
pivot, unpivot, and grouping sets, 231–33
set operations, 206–9
single-table queries, 92–96
subqueries, 152–55
table expressions, 184–89
transactions and concurrency, 309–19

EXISTS predicate, 142–44, 149
explicit transactions, 338–39
extents, lockable, 283
external aliasing, 168
Extract Transform and Load (ETL), 11

F
fi le extensions, 17
fi legroups, 17
Filter phase, 101
fi ltering, 4

attributes, outer joins, 118–19
CHECK option, 178–79
date ranges, 81–82
deadlocks, 308
EXISTS predicate, 142–44
HAVING clause, 34–35
multi-table joins, 119–21
ORDER BY. See ORDER BY clause
predicate, 106–7, 114–15
subqueries. See subqueries
UPDATE statement with joins, 252–54
WHERE clause, 29–30

fl ow elements, 327–31
fn_age function, 348
fn_helpcollations, 65
FOR XML option, 174
foreign keys, 7, 22–23

actions, 23
constraints, NULL values, 22
TRUNCATE statement, 248–49

four-valued predicate logic, 6
FROM clause, 27–29

DELETE statement, 247–50
derived tables, 166–67
multiple-reference CTEs, 169–70
pivoting, 217
table-valed UDFs, 327
unpivoting, 221–22
UPDATE statement, 252–54

FULL OUTER JOIN keyword, 113
functions. See also specifi c functions

aggregate. See aggregate functions
date and time, 82–88
error handling, 356
ranking, 45, 47–50
system stored, listing, 90–92
user-defi ned, 347–48
window, 45

386 GETDATE function

G
GETDATE function, 82–83
GETUTCDATE function, 82–83
global temporary tables, 337–38
globally unique identifi er (GUID), 347
GO command, 324, 326–27
granularities, lockable, 283–84
GROUP BY

grouping sets, 225
GROUP BY clause, 30–33, 205

aggregate functions, 45
column aliases, 163–64
window functions, 51

grouping, 30–33, 215–16
aggregate functions, 45
PIVOT operator, 217–18
SQL, 216–17

GROUPING function, 228–31
grouping sets, 224–31

columns, 231
GROUPING SETS subcluase, 225–26
GROUPING_ID function, 228–31
groups, fi ltering, 34–35
GUID (globally unique identifi er), 347

H
hacking, 341
HAVING clause, 34–35
heaps, lockable, 283
HIGH deadlock priority, 306
highlighting, codes, 375
HOLDLOCK, 292

I
IBM, 2
IDENT_CURRENT function, 245–47
identifi er names, delimiting, 28–29, 66
identifi ers, 338, 342

pivoting, 219
identity columns, 243–48

INSERT with OUTPUT, 264–65
IDENTITY property, 243–47
IDENTITYCOL form, 244
IF ELSE fl ow element, 327–29
IF fl ow element, 331
IF statement, 19

batches, 326
IMPLICIT_TRANSACTIONS option, 280
IN clause, 326–27
IN predicate, 52, 136–37

subquery errors, 147–49
inconsistent analysis, 295, 305
increment, 243
indexes, 21

deadlocks, 308
information schema views, 90

INFORMATION_SCHEMA, 90
INFORMATION_SCHEMA.COLUMNS view, 90
INFORMATION_SCHEMA.TABLES view, 90, 341, 344
injection, SQL, 341, 343, 349
inline aliasing, 164, 168
inline table-valued functions (ITVs), 179–81
inner joins, 101, 106–8

safety, 108
inner queries

aliases, 163–64
CTEs, 167

input parameters, 343–45
input string, 69
INSERT DEFAULT VALUES statement, 327
INSERT EXEC statement, 240–41
INSERT SELECT statement, 239–40

composable DML, 269–70
INSERT statement, 105

IDENTITY property, 245–47
MERGE statement, 257
OUTPUT clause, 264–65
pivoting, 214
TOP option, 263
transaction boundaries, 279–80
triggers, 351
TRY CATCH, 357

INSERT VALUES statement, 238–39
inserted tables, triggers, 351
inserting, data, 237–47
Inside Microsoft SQL Server 2008: T-SQL Programming

(Microsoft Press), 321, 333, 359
instances

collation, 65
server, 13–14

instead of triggers, 351–53
INT data type, 19, 321
INT operand, 53
integers

tables of, 104–6
values, 47

intent locks, 284
INTERSECT ALL set operation, 198–200
INTERSECT DISTINCT set operation, 197–98
INTERSECT set operation, 196–97
INTO clause, 264
IS NULL predicate, 60, 328
ISDATE function, 88
ISO standards, 2
isolation, 280

locks, 282–84
isolation levels, 292–306

default, 298
ITVs (inline table-valued functions), 179–81

J
join condition, 106

errors, 108

 NO CHECK 387

JOIN keyword, 113
JOIN table operator. See joins
joins, 123

composite, 109–10
cross, 102–6
DELETE statement, 249–50
inner, 106–8
multi-table, 112
non-equi, 110–12
outer, 113–23
processing order, 119–21
table expression data modifi cation, 259
types of, 101
UPDATE statement, 252–54
vs. subqueries, 137

K
key-range lock, 298
keys. See also foreign keys; primary keys

lockable, 283
surrogate, 243

KILL <spid> command, 290

L
language

dependency, 77–80
independence, 2

language-neutral formats, 78–79
LEFT function, 69
LEFT OUTER JOIN keyword, 113
LEN function, 69–70
LIKE predicate, 52, 73–75
literals, 64

date and time, 76–80
local temporary tables, 336–37
lock escalation, 284
LOCK_ESCALATION option, 284
locks, 282–91

lock modes and compatibility, 282–83
time-out, 291

log fi les. See transaction log fi les
logged operations, 240, 242–43, 248
logical expressions, 51
logical operators, 52
logical phases, unsupported, set operations, 204–5
logical query processing, 25–26, 101

set operations, 194
table expressions, 269–70
unsupported phases, 204–5

login, 15–16
login name, 354
loops, 329

temporary tables, 336
lost update, 296–97
lost updates, 305–6

LOW deadlock priority, 306
LOWER function, 72–73
LTRIM function, 73

M
master database, 15
MDX (Multidimensional Expressions), 12
MERGE statement, 255–59

OUTPUT clause, 267–68
merging, data, 255–59
metadata querying, 89–92
Microsoft SQL Server Analysis Services (SSAS), 12
Microsoft SQL Server Books Online, 377–79
Microsoft SQL Server Integration Services (SIIS), 11
missing values, 6, 58. See also NULL values

outer joins, 116–18
model database, 15
modifi cation, data, 237, 270

stored procedures, 348–51
table expressions, 259–62
TOP, 262–63

MONEY data type, 19
MONTH function, 81–82, 87–88
msdb database, 15
Multidimensional Expressions (MDX), 12
multisets, 193–94. See also set operations

vs. sets, 195–96
multi-table joins, 112

outer joins, 119–21
multi-valued subqueries, 133

self-contained, 136–40

N
N string prefi x, 52, 64
named instances, 13
namespace

schema as, 18
naming

aliases, 168
attributes, 35
column aliases, 163–64. See also aliases
columns, 39–40, 194
identifi ers, 28–29
local temporary tables, 336
objects, schema-qualifying, 18, 28
spaces, 292
two-part names, 178

NCHAR data type, 64
nesting, 165–66

CTEs, 169
network traffi c, 349
NEWID function, 347
next values, returning, 144–45
no actions, 23
NO CHECK, 23

388 NOCOUNT option

NOCOUNT option, 248
NOLOCK, 292
non-equi joins, 110–12
nonkey attributes

2NF, 8–9
3NF, 9

nonpartitioned expressions, 46
non-repeatable reads, 295, 305–6
normal forms, 7–9
normalization, 7–9
NOT EXISTS predicate, 201–2
NOT IN predicate, 148
NOT NULL, 148–49

grouping sets, 229
NOT operator, 143
NTILES function, 47–50
NULL values, 6, 20

concatenation, 67–69
COUNT aggregate, 122–23
foreign key constraints, 22
grouping sets, 229–30
IFELSE fl ow element, 328–29
INSERT SELECT statement, 239–40
INSERT VALUES statement, 238
MERGE with OUTPUT, 268
multi-value subqueries, 138
NULLability, 7
outer joins, 115, 118–21
primary key constraints, 21
scalar subqueries, 136
set operations, 194, 197–98
single-table queries, 58–62
subquery errors, 146–49
unique constraints, 21–22
unpivoting, 222
variables, 324

NULLability, 20
NUMERIC operand, 53
NVARCHAR data type, 64

O
Object Explorer, 372–77
OBJECT_DEFINITION function,

176–77
OBJECT_NAME function, 287–88
OBJECTPROPERTY function, 91
objects, 17–18

defi nition, views, 176–77
lockable, 283–84
metadata listing, 91
schema-qualifying names, 18, 28
views. See views

objects, programmable, 321, 359
batches, 324–27
cursors, 331–34
dynamic SQL, 340–46
error handling, 355–58

fl ow elements, 327–31
routines, 346–55
temporary tables, 335–40
variables, 321–24

OLAP (OnLine Analytical Processing),
11–12

OLTP (Online Transactional Processing), 10
ON clause, 106–7, 114–15

DELETE statement, 249
MERGE statement, 257

on cols element, 215
ON DELETE action, 23
ON DELETE CASCADE action, 23
ON predicate, 114–15
ON ROWS element, 215
ON UPDATE action, 23
OnLine Analytical Processing (OLAP),

11–12
Online Transactional Processing (OLTP), 10
open transactions, 280, 285

READ UNCOMMITTED isolation level, 293
operations

all-at-once, 62–63, 119, 251
logged, 240, 242–43, 248
relations, 38–39

operators. See also specifi c operators
arithmetic, 53
comparison, 52
compound assignment, 251
equality, 110–12
logical, 52
precedence, 53–54
single-table queries, 51–54
table, 101. See also joins

optimization, 332–33, 339, 349
EXISTS predicate, 143–44
source table, 225–26

OR operator, 52
ORDER BY clause, 40–42, 50, 162

cursors, 331
set operations, 193–94, 198–200, 205
TOP option, 262–63
views, 174–75

orders.txt, 370
OSQL, 324
OUTER APPLY operator, 181–84
outer joins, 101, 113–23

count aggregate, 122–23
EXCEPT DISTINCT set operation, 201–2

outer queries, 133–34, 140–42, 161–63
column aliases, 163–64
CTEs, 167
derived tables, 166–67
set operations, 205

OUTPUT clause, 263–70
OUTPUT keyword, 344, 350
output parameters, 343–45
OVER clause, 45–51, 198–200

 READ COMMITTED SNAPSHOT level 389

P
pages, lockable, 283–84
parameterization

sp_executesql procedure, 343–45
parameterized queries, 341
parameterized views, 179–80
parentheses, 54

grouping sets subclause, 225
INSERT VALUES statement, 239
set operations precedence, 204

parsing, 324–25
PARTITION BY clause, 46, 49–50

set operations, 198–200
partitioned expressions, 46
partitions, 284
PATINDEX function, 70
patterns, 70
PERCENT keyword, 43–44
percent wildcard, 73
permissions

global temporary tables, 337
schema-level control, 18
stored procedures, 349

phantom reads, 299, 305–6
phantom rows, 297–98
phase, query, 27
physical query processing, 101
PIVOT IN clause, 219
PIVOT operator, 101, 217–22, 341

dynamic SQL, 345–46
pivoting, 213–19, 231
post time, 354
practice exercises

data modifi cation, 270–73
joins, 123–28
pivot, unpivot, and grouping sets, 231–33
set operations, 206–9
single-table queries, 92–96
subqueries, 152–55
table expressions, 184–89
transactions and concurrency, 309–19

precedence
datatype, 77
EXCEPT DISTINCT set operation, 201–2
joins, 119–21
operators, 53–54
query clauses, 26–27, 50–51
set operations, 203–4
table operators, 112

predicate fi ltering, 106–7
outer joins, 114–15

predicate logic, 4–5
three-valued, 6, 30, 58–62, 107
two-valued, 6, 58–62

predicates, 5–6. See also specifi c predicates
IF ELSE fl ow element, 327–29
single-table queries, 51–54

prefi xes
column name, 103
N, 52, 64

previous values, returning, 144–45
primary key

errors, 357
primary keys, 7, 21
PRINT statement, 325, 328, 341, 356

error handling, 357
procedural data integrity, 20
procedures, stored. See stored procedures
process deadblocks, 306–8
processing order. See precedence
programmable objects. See objects, programmable
propositions, 5–6

Q
qualifying rows, 323
queries

clause processing, 26–27
deterministic, 44–45
execution plans, 343
inner. See inner queries
logical, 25–27
metadata, 89–92
nested, 133
nondeterministic, 44
outer, 133–34, 140–42
parameterize, 341
phases, 27
SELECT statement, 25–51
set-based, 331–34
single-table. See single-table queries
static, 345–46
subqueries. See subqueries
user-defi ned functions, 348

query fi ltering. See fi ltering
query window, 373–77
QUOTED_IDENTIFIER setting, 66
QUOTENAME function, 342
quotes

character strings, 341
double, 28–29, 66
single, 28–29, 64, 66, 341

R
RAND function, 347
RANK function, 47–50
ranking functions, 45, 47–50
RDMS (relational database management system),

1–2, 5
READ COMMITTED isolation level, 292, 294–95, 304–5
READ COMMITTED SNAPSHOT isolation level, 299,

303–6
READ COMMITTED SNAPSHOT level, 303–5

390 READ UNCOMMITTED isolation level

READ UNCOMMITTED isolation level, 293–94, 305
READ UNCOMMITTED isolation levels, 292
readers, 292

READ COMMITTED isolation level, 294–95
READ COMMITTED SNAPSHOT level, 303–5
READ UNCOMMITTED isolation level, 293
REPEATABLE READ isolation level, 295–97
SERIALIZABLE isolation level, 297–98
SNAPSHOT isolation levels, 299

recovery, 280–81
Recovery Model property, 242
recursive CTEs, 170–72
recursive member, 170–72
redo phase, recovery, 280–81
referenced tables, 22
references, multiple, 166–67

CTEs, 169–70
derived tables, 169–70

referencing tables, 22
regular data types, 64
relational database management system (RDMS), 1–2, 5
relational model, 5–9, 331–32
relations, 5–6

constraints, 7
REPEATABLE READ isolation level, 292,

295–97, 306
REPLACE function, 70–71
REPLICATE function, 71–72
resolution, 324, 326–27
Resource database, 15
resources

deadlocks, 308
lock modes, 282–83
lockable types, 283–84
locks between transactions, 295

RETURN clause, 348
RIDs, lockable, 283–84
RIGHT function, 69
RIGHT OUTER JOIN keyword, 113
ROLLBACK option, 282
ROLLBACK TRAN command, 351
ROLLBACK TRAN statement, 279–80
rollbacks, 294
ROLLUP subclause, 227–28
routines, 346–55
row versioning, 299, 305–6

READ COMMITTED SNAPSHOT level, 303–5
SNAPSHOT isolation level, 299–301

ROW_NUMBER function, 47–50, 198–200, 261–62
rows

constructors, 253–54
COUNT aggregate, 122–23
expansion, 64
inner vs. outer, 114
insertion, table expressions, 260
limiting, 42–45
lockable types, 283–84
OVER clause, 45–51

phantom, 297–98
pivoting, 213. See also pivoting data
predicate fi ltering, 106–7
qualifying, 323
set operations. See set operations
sorting, 40–42
terminators, 242
versioning. See row versioning
window functions, 45

RTRIM function, 73
running aggregates, 145–46

S
Sales.usp_GetCustomerOrders, 349–51
scalar expressions, 31, 52–55
scalar subqueries, 133, 322

self-contained, 134–36
scalar user-defi ned functions, 347
schema changes

stored procedures, 348–51
SCHEMA_NAME function, 89
SCHEMABINDING option, 177–78
schemas, 17–18

object naming, 18, 28
SCOPE_IDENTITY function, 264–65
SCOPE_IDENTITY() function, 244–45
script fi les, downloading, 330–32
searched CASE expressions, 55, 57
security

stored procedures, 349
seed, 243
SELECT clause, 35–40, 50–51, 143–44

column aliases, 163–64
SELECT INTO statement, 139, 241–42
SELECT list, 35, 39, 41–42, 62, 143–44

correlated subqueries, 142
COUNT function, 130
DISTINCT clause, 132
EXIST predicate, 143–44
table expressions, 162, 164
UDFs, 348

SELECT statement, 25–51
DELETE statement, 249–50
shared locks, 295
table expression data modifi cation, 260–62
TOP option, 263
transactions, 281–82
unpivoting, 221–22
UPDATE statement, 251

self cross joins, 103–4
self-contained subqueries, 133–40

multi-valued, 136–40
scalar, 134–36

semicolons, 20, 27, 168
MERGE statement, 257

SEQUEL (Structured English Query Language), 2
SERIALIZABLE isolation level, 297–98, 306

 SQL Server 2005 391

server process ID (SPID), 286
server triggers, 353–55
SERVERPROPERTY function, 91
set. See also set operations

defi ned, 3–4
difference, 200
elements, difference, 200
elements, naming, 4
elements, order of, 4
grouping, 224–31
result, 38
set-based queries, 331–34
vs. multiset, 195–96

SET clause, 250
SET DEFUALT action, 23
SET NOCOUNT ON command, 350
SET NULL action, 23
set operations, 193–94, 206

EXCEPT, 200
EXCEPT ALL, 202
EXCEPT DISTINCT, 201–2
INTERSECT, 196–97
INTERSECT ALL, 198–200
INTERSECT DISTINCT, 197–98
precedence, 203–4
UNION, 195
UNION ALL, 195
UNION DISTINCT, 195–96
unsupported logical phases, 204–5

SET statement, 321–24
set theory, 3–4
setup.exe program, 363–69
shared lock mode, 282–83
shared locks

deadlocks, 307–8
READ COMMITTED level, 294–95
READ COMMITTED SNAPSHOT level, 303–5
READ UNCOMMITTED isolation level, 293–94
readers, 292
REPEATABLE READ isolation level, 295–97
SERIALIZABLE isolation level, 297–98
SNAPSHOT isolation level, 299
troubleshooting, 285–91

side effects
stored procedures, 348–49
user-defi ned functions, 347–48

simple CASE expression, 55, 57
single quotes

character literals, 64, 66
character strings, 341

single quotes, character strings, 28–29, 64
single-table queries, 25, 92

all-at-once operations, 62–63. See also all-at-once
operations

CASE expressions, 54–57
character data, 63–75
date and time data, 75–88
metadata querying, 89–92

NULL values, 58–62
predicates and operators, 51–54
SELECT statement, 25–51

SMALLDATETIME data type, 19, 80–81
CAST and CONVERT functions, 83–84

SNAPSHOT isolation level, 306
SNAPSHOT isolation levels, 299–305
snowfl ake dimension, 11
snowfl ake schema, 11
sorting

ascending vs. descending, 41
ORDER BY clause, 40–42

source code
downloading, 370–71

source table, 42
aliases, 103, 151–52
data merging, 257
MERGE statement, 257
optimization, 225–26
PIVOT operator, 217–19
SELECT INTO statement, 242
table expressions, 184
UNPIVOT operator, 223

sp_columns procedure, 91
sp_executesql procedure, 340, 343–45
sp_help procedure, 91
sp_helpconstraint procedure, 91
sp_helptext, 177
sp_spaced used procedure, 341
sp_tables stored procedure, 90–91
spaces, naming, 292
SPID (server process ID), 286
spreading, 215–16

PIVOT operator, 217–18
SQL, 216–17

SQL (Structured Query Language). See Structured Query
Language (SQL)

SQL Server 2005
$identity, 244
APPLY operator, 181
CTEs, 167, 260, 262
DDL triggers, 353
DEADLOCK_PRIORITY option, 306
deadlocks, 306
GO command, 327
isolation levels, 292, 299
OBJECT_DEFINITION function, 177
optimization, 332–33
OUTPUT clause, 264
PIVOT operator, 217
Resource database, 15
routines, 347
row versioning, 299
ROW_NUMBER function, 262
set operations, 193
staging and audit tables, 268–69
sys schema, 91
table expressions, 101

392 SQL Server 2008

TOP option, 262
TRY CATCH, 355–58
UNPIVOT operator, 223
variable declaration and initialization,

134, 322
SQL Server 2008

ANSI SQL-92 and SQL-89, 103
Compact Edition, 361–62
composable DML, 268–69
CTEs, 262
CUBE subclause, 226
database engine confi guration, 367–68
DATE and TIME data type, 80, 82–83, 86–87
DATE and TIME data types, 19
Developer Edition, 361–62
DISTINCT clause, 194
feature selection, 364–66
grouping sets, 231
GROUPING_ID, 230
installation, 361–69
instance confi guration
lock escalation, 284
MERGE statement, 255, 262, 264
minimal logging, 240
optimization, 332–33
perquisites, 363
product key, 364
ROW_NUMBER function, 262
table expressions, 101
table types, 339
VALUES clause, 238
variable declaration and initialization, 134, 322

SQL Server Analysis Services (SSAS), 12
SQL Server Books Online, 377–79
SQL Server Integration Services (SSIS), 11
SQL Server instances, 13–14

databases and, 14
SQL Server Management Studio (SSMS), 248,

324, 371–77
SPID, 286–87

SQL Server, pre-2005 versions
DATE and TIME data type, 82–83
dbo schema, 91
derived tables, 260
IDENTITY column, 244
isolation levels, 292
lock escalation, 284
MERGE statement, 255
optimization, 332–33
priority options, 306
sp_helptext, 177
TOP-type modifi cations, 263
variable declaration and initialization, 134, 322

SQLCMD, 324
square brackets, 342
square brackets, identifi ers, 28–29, 66
SSAS (SQL Server Analysis Services), 12
SSIS (SQL Server Integration Services), 11

staging tables, 268–69
standards, 226–28

ANSI, 2, 167
common table expressions (CTEs), 167
ISO, 2

star schema, 11
startup procedures, 338
statements. See also specifi c statements

batches, 321, 324–27
blocks, 328–29
non-batch, 326
terminating, 20, 27

static queries, 345–46
stored procedures, 348–51

dynamic SQL, 340
error handling, 358
execution plans, 343
INSERT EXEC statement, 240–41
listing, 90–92
schema changes, 348–51
sp_executesql, 343–45
startup procedures, 338
temporary tables, 336
triggers, 351–55

strings. See character strings
Structured English Query Language (SEQUEL), 2
Structured Query Language (SQL), 2–3. See also SQL

Server 2005; SQL Server 2008
dynamic, 340–46
injection, 341, 343, 349
pivoting, 216–17
server architecture, 12–18
standards, 2, 167, 226–28
unpivoting, 220–22

STUFF function, 72
subqueries, 133, 151–52. See also

derived tables
advanced, 144–51
correlated, 140–44
DELETE statement, 249–50
multi-value, 133
scalar, 133, 322–23
self-contained. See self-contained subqueries
table, 133
UPDATE statement, 252–54
vs. joins, 137

substitution error, subquery column name,
149–51

SUBSTRING function, 69
SUM function, 216–17
surrogate keys, 243
SUSER_NAME(), 352
SWITCHOFFSET function, 84–85
sys schema, 91
sys.columns view, 89–90
sys.dm_exec_requests function, 290
sys.dm_exec_sessions function, 289
sys.dm_exec_sq1_text function, 288–89

 two-valued predicate logic 393

sys.dm_tran_locks, 286–88
sys.tables view, 89
SYSDATETIME function, 82–83
SYSDATETIMEOFFSET function, 82–83
system stored procedures. See stored procedures
SYSUTCDATETIME function, 82–83

T
table

arguments, 165, 168
table expressions, 161, 184

APPLY operator, 181–84
arguments, 165, 168
column aliases, 163–64, 168
common (CTEs). See common table expressions (CTEs)
data modifi cation, 259–62
derived tables, 161–63
inline TVFs, 179–81
multiple CTEs, 169
multiple references, 166–67, 169–70
nesting, 165–66
PIVOT operator, 217–19
recursive CTEs, 170–72
unpivoting, 223
unsupported logical phases, 204–5
views, 172–79
vs. temporary tables, 336

tables. See also data
aliases, 223, 239. See also aliases
archive, 266
audit, 268–69
auxiliary, 116–17
creation, 18–20
defi nition, 339–40
derived. See derived tables
dummy, 248–49
expressions. See table expressions
global temporary, 337–38
inserted, 351
local temporary, 336–37
metadata listing, 89–90
of numbers, producing, 104–6
operators, 101. See also joins; specifi c

operators
operators, processing order, 112
order, 41
partitions, 284
queries. See single-table queries; subqueries
referenced vs. referencing, 22
sorting, 40–42
source. See source table
staging, 268–69
subqueries, 133. See also subqueries
temporary, 335–40
triggers, 351–53
types, 339–40

value constructors, 221, 239–40
variables, 265, 338–39
virtual, 221–22, 240

table-valued user-defi ned functions, 347
tempdb database, 15

row versioning, 300
versioning, 299

temporary tables, 335–40
vs. table variables, 339

terminating, statements, 20, 27
terminators, 242. See also semicolons
testdb database, 18
three-valued logic, 144

IFELSE fl ow element, 328–29
NULL subquery errors, 146–49

three-valued predicate logic, 6, 30, 58–62, 107
TIME data type, 75–76, 80–81

CAST and CONVERT functions, 83–84
time-out, lock, 291
TODATETIMEOFFSET function, 85
TOP option, 42–45, 162, 174–75

data modifi cation, 262–63
TOP query, 205
transaction log fi les, 16–17, 240. See also logged

operations
automaticity, 280
durability, 280–81

transactions, 279–82, 309
blocking, 282–91
deadlocks, 306–8
failures, confl ict detection, 301–3
isolation levels, 292–306
locks, 282–91
lost updates, 296–97
open, 280, 285, 293
triggers, 351
vs. batches, 324

Transact-SQL. See T-SQL
triggers, 351–55
troubleshooting, 285–91. See also debugging;

error-handling code
TRUE/FALSE logic. See two-valued predicate logic
TRUNCATE statement, 248–49
TRY CATCH, 355–58
TRY block, 355–58
TRY/CATCH construct, 282
T-SQL, 1, 24

pivoting, 217–22
SQL server architecture, 13–18
table creation and data integrity defi nition, 18–24
theoretical background, 1–13
unpivoting, 223

TSQLFundamentals2008 sample database installation,
331–32

two-part names, 178
two-valued logic, 144

IF ELSE fl ow element, 327–29
two-valued predicate logic, 6, 58–62

394 UDFs (user-defi ned functions)

U
UDFs (user-defi ned functions), 347–48
uncommitted reads, 305–6
underscore wildcard, 74
undo phase, recovery, 280–81
Unicode, 343

data types, 64
UNION ALL set operation, 195, 224–25

unpivoting, 221–22
UNION clause, 194
UNION DISTINCT set operation, 195–96
unique constraints, 21–22
unique indexes, 21
uniqueness, 247
unit of resolution, batch as, 326–27
unit organization, batches, 324
unknown values, 6, 58–62. See also NULL values

IFELSE fl ow element, 328–29
outer joins, 115, 119–21
set operations, 198
subquery errors, 147–49

UNPIVOT operator, 223
UNPIVOT table operator, 101
unpivoting data, 219–23, 231
unsupported logical phases, set operations,

204–5
update confl ict detection, 301–3, 305–6
UPDATE statement, 250–51

assignment, 254–55
composable DML, 269–70
joins, 252–54
OUTPUT clause, 266–67
SNAPSHOT isolation levels, 299
table expression data modifi cation, 260–62
TOP option, 263

triggers, 351
updating, data, 250–55
UPPER function, 72–73
USE statement, 19, 26
user account creation, 362
user database. See database
user input, 341
user-defi ned functions (UDFs), 347–48
USING clause, 257

V
value constructors, 221, 239–40
VALUES clause, 214, 221–22, 239
VARCHAR data type, 19, 64

variables, 321–24
arguments, 165
batches, 325
table, 265, 338–39

vector expressions, 253–54
versioning. See row versioning
views

options, 176–79
ORDER BY clause, 174–75

views, table, 172–79
virtual tables, 221–22, 240

W
WHEN clause, 63
WHEN MATCHED clause, 257–59
WHEN NOT MATCHED clause, 257–59
WHERE clause, 29–30

DELETE statement, 247–50
expression processing, 63
outer joins, 118–19
predicate fi ltering, 114–15
two-valued logic, 58
UPDATE statement, 250
UYPDATE statement, 252–54

WHILE fl ow element, 329–31
white space, coding and, 20
wildcards, 73–75
window functions, 45–51
Windows authenticated login, 15–16
WITH clause

CTEs, 168
CUBE option, 226, 230–31
multiple CTEs, 169
ROLLUP option, 228, 230–31

WITH CUBE option, 226, 230–31
WITH ROLLUP option, 228, 230–31
WITH TIES option, 45
writers, 292

READ COMMITTED isolation level, 294–95
READ UNCOMMITTED isolation level, 293
REPEATABLE READ isolation level, 295–97

X
XML values, 353–54
XQuery expressions, 353–54

Y
YEAR function, 81–82, 87–88

Itzik Ben-Gan

Itzik is a mentor and cofounder of Solid Quality Mentors. A SQL Server
Microsoft MVP (Most Valuable Professional) since 1999, Itzik has delivered
numerous training events around the world focused on T-SQL querying,
query tuning, and programming. Itzik is the author of several books about
T-SQL. He has written many articles for SQL Server Magazine as well as
 articles and white papers for MSDN. Itzik’s speaking engagements include
Tech Ed, DevWeek, PASS, SQL Server Magazine Connections, presentations
to various user groups around the world, and Solid Quality Mentors events.

	Cover
	Table of Contents
	Chapter 3
	Chapter 5

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ARA <FFFE270633062A062E062F0645062000470630064706200027064406250639062F0627062F0627062A0620004406250646063406270621062000450633062A0646062F0627062A062000410064006F0062006500200050004400460020004A064506430646062000270644062A06390627064506440620004506390647062706200048062A062A063606450646062000390644062706450627062A0620002A0645064A064A063206200048063106480627062806370620002A063406390628064A06290620004806250634062706310627062A062000450631062C0639064A062906200048063906460627063506310620002A0641062706390644064A0629062000480637062806420627062A062E0020004A06450643064606200041062A062D062000450633062A0646062F0627062A0620005000440046002000270644064506460634062306290620002806270633062A062E062F062706450620004100630072006F0062006100740020004806410064006F00620065002000520065006100640065007200200037002E003000200023064806200023062D062F062B062E0029000D000A00>
 /CHS <FEFF4F7F75288FD94E9B8BBE7F6E6765521B5EFA7684002000410064006F006200650020005000440046002065876863517759078F8552A95DE55177FF0C53735305542B68077B7E30018D8594FE63A530014E667B7E30014EA44E9251437D20548C56FE5C423002521B5EFA76840020005000440046002065874EF653EF4EE54F7F75280020004100630072006F0062006100740020548C002000410064006F00620065002000520065006100640065007200200037002E00300020621666F49AD87248672C676562535F003002>
 /CHT <FEFF4F7F752890194E9B8A2D5B9A5EFA7ACB7684002000410064006F006200650020005000440046002065874EF651775099535452A95DE55177FF0C53735305542B6A197C6430018D8590237D50300166F87C6430014E9252D551437D20548C57165C6430025EFA7ACB76840020005000440046002065874EF653EF4EE54F7F75280020004100630072006F0062006100740020548C002000410064006F00620065002000520065006100640065007200200037002E00300020621666F49AD87248672C958B555F3002>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200073006E00610064006E006F00200070015900ED0073007400750070006E00FD0063006800200064006F006B0075006D0065006E0074016F002000410064006F006200650020005000440046002C0020006B00740065007200E90020006F00620073006100680075006A00ED00200074006100670079002C00200068007900700065007200760061007A00620079002C0020007A00E1006C006F017E006B0079002C00200069006E0074006500720061006B007400690076006E00ED0020007000720076006B0079002000610020007600720073007400760079002E00200056007900740076006F01590065006E00E900200064006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000410064006F00620065002000520065006100640065007200200037002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /DAN <FEFF004200720075006700200064006900730073006500200069006E0064007300740069006C006C0069006E006700650072002000740069006C0020006100740020006F0070007200650074007400650020006C0065007400740069006C006700E6006E00670065006C006900670065002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E007400650072002C002000640065007200200069006E006400650068006F006C0064006500720020006B006F006400650072002C002000680079007000650072006C0069006E006B0073002C00200062006F0067006D00E60072006B00650072002C00200069006E0074006500720061006B007400690076006500200065006C0065006D0065006E0074006500720020006F00670020006C00610067002E0020004400650020006F007000720065007400740065006400650020005000440046002D0064006F006B0075006D0065006E0074006500720020006B0061006E002000E50062006E00650073002000690020004100630072006F00620061007400200065006C006C006500720020004100630072006F006200610074002000520065006100640065007200200037002E00300020006F00670020006E0079006500720065002E>
 /DEU <FEFFFEFF00560065007200770065006E00640065006E0020005300690065002000640069006500730065002000450069006E007300740065006C006C0075006E00670065006E0020007A0075006D002000450072007300740065006C006C0065006E00200076006F006E0020007A0075006700E4006E0067006C0069006300680065006E002000410064006F006200650020005000440046002D0044006F006B0075006D0065006E00740065006E0020006D0069007400200054006100670073002C002000480079007000650072006C0069006E006B0073002C0020004C006500730065007A00650069006300680065006E002C00200069006E0074006500720061006B0074006900760065006E00200045006C0065006D0065006E00740065006E00200075006E00640020004500620065006E0065006E002E002000450072007300740065006C006C007400650020005000440046002D0044006F006B0075006D0065006E007400650020006B00F6006E006E0065006E0020006D006900740020004100630072006F00620061007400200075006E0064002000410064006F00620065002000520065006100640065007200200037002E00300020006F0064006500720020006800F600680065007200200067006500F600660066006E00650074002000770065007200640065006E002E>
 /ENU (Use these settings to create accessible Adobe PDF documents that include tags, hyperlinks, bookmarks, interactive elements, and layers. Created PDF documents can be opened with Acrobat and Adobe Reader 7.0 and later.)
 /ESP <FEFF005500740069006C0069006300650020006500730074006100200063006F006E0066006900670075007200610063006900F3006E0020007000610072006100200063007200650061007200200064006F00630075006D0065006E0074006F0073002000500044004600200061006300630065007300690062006C00650073002000640065002000410064006F00620065002000710075006500200069006E0063006C007500790061006E0020006500740069007100750065007400610073002C002000680069007000650072007600ED006E00630075006C006F0073002C0020006D00610072006300610064006F0072006500730020006400650020007000E100670069006E0061002C00200065006C0065006D0065006E0074006F007300200069006E00740065007200610063007400690076006F007300200079002000630061007000610073002E002000530065002000700075006500640065006E00200061006200720069007200200064006F00630075006D0065006E0074006F00730020005000440046002000630072006500610064006F007300200063006F006E0020004100630072006F006200610074002C002000410064006F00620065002000520065006100640065007200200037002E003000200079002000760065007200730069006F006E0065007300200070006F00730074006500720069006F007200650073002E>
 /FRA <FEFF005500740069006C006900730065007A00200063006500730020006F007000740069006F006E007300200070006F0075007200200063007200E900650072002000640065007300200064006F00630075006D0065006E00740073002000410064006F006200650020005000440046002000610063006300650073007300690062006C0065007300200064006F007400E90073002000640065002000620061006C0069007300650073002C00200064002700680079007000650072006C00690065006E0073002C0020006400650020007300690067006E006500740073002C00200064002700E9006C00E9006D0065006E0074007300200069006E007400650072006100630074006900660073002000650074002000640065002000630061006C0071007500650073002E0020004C0065007300200064006F00630075006D0065006E0074007300200050004400460020006F006200740065006E00750073002000730027006F0075007600720065006E0074002000640061006E00730020004100630072006F006200610074002000650074002000410064006F00620065002000520065006100640065007200200037002E00300020002800650074002000760065007200730069006F006E007300200075006C007400E900720069006500750072006500730029002E>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003C003C103BF03C303C003B503BB03AC03C303B903BC03B1002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003C403B1002003BF03C003BF03AF03B1002003C003B503C103B903BB03B103BC03B203AC03BD03BF03C503BD002003B503C403B903BA03AD03C403B503C2002C002003C503C003B503C103C303C503BD03B403AD03C303B503B903C2002C002003C303B503BB03B903B403BF03B403B503AF03BA03C403B503C2002C002003B103BB03BB03B703BB03B503C003B903B403C103B103C303C403B903BA03AC002003C303C403BF03B903C703B503AF03B1002003BA03B103B9002003B503C003AF03C003B503B403B1002E002003A403B1002003AD03B303B303C103C603B10020005000440046002003C003BF03C5002003B403B703BC03B903BF03C503C103B303BF03CD03BD03C403B103B9002003BC03C003BF03C103BF03CD03BD002003BD03B1002003B103BD03BF03B903C703B803BF03CD03BD002003BC03B5002003C403BF0020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200037002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B7002E>
 /HEB <FEFF05d405e905ea05de05e905d5002005d105e705d105d905e205d505ea002005d005dc05d4002005dc05d905e605d905e805ea002005de05e105de05db05d9002000410064006f006200650020005000440046002005e005d205d905e905d905dd002005d405db05d505dc05dc05d905dd002005ea05d205d905dd002c002005e705d905e905d505e805d9002d05e205dc002c002005e105d905de05e005d905d505ea002c002005e805db05d905d105d905dd002005d005d905e005d805e805d005e705d805d905d105d905d905dd002005d505e905db05d105d505ea002e002005de05e105de05db05d90020005000440046002005e905e005d505e605e805d5002005e005d905ea05df002005dc05e405ea05d505d7002005d1002d0020004100630072006f006200610074002005d505d1002d002000410064006f00620065002000520065006100640065007200200037002e0030002005d505d205e805e105d005d505ea002005de05ea05e705d305de05d505ea002005d905d505ea05e8002e>
 /HUN <FEFF004100200062006500E1006C006C00ED007400E10073006F006B0020006800610073007A006E00E1006C0061007400E100760061006C0020006300ED006D006B00E9006B00650074002C002000680069007600610074006B006F007A00E10073006F006B00610074002C0020006B00F6006E00790076006A0065006C007A0151006B00650074002C00200069006E0074006500720061006B007400ED007600200065006C0065006D0065006B00650074002000E900730020007200E90074006500670065006B00650074002000740061007200740061006C006D0061007A00F300200068006F007A007A00E1006600E900720068006500740151002000410064006F00620065002000500044004600200064006F006B0075006D0065006E00740075006D006F006B0061007400200068006F007A0068006100740020006C00E9007400720065002E002000410020006C00E90074007200650068006F007A006F00740074002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061007A002000410064006F00620065002000520065006100640065007200200037002E003000200061006C006B0061006C006D0061007A00E10073006F006B006B0061006C002C0020007600610067007900200061007A002000610074007400F3006C0020006B00E9007301510062006200690020007600650072007A006900F3006B006B0061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /ITA <FEFF005500740069006C0069007A007A006100720065002000710075006500730074006500200069006D0070006F007300740061007A0069006F006E00690020007000650072002000630072006500610072006500200064006F00630075006D0065006E00740069002000410064006F0062006500200050004400460020006100630063006500730073006900620069006C0069002000630068006500200069006E0063006C00750064006F006E006F0020007400610067002C0020006C0069006E006B00200069007000650072007400650073007400750061006C0069002C0020007300650067006E0061006C0069006200720069002C00200065006C0065006D0065006E0074006900200069006E007400650072006100740074006900760069002000650020006C006900760065006C006C0069002E002000C800200070006F00730073006900620069006C006500200061007000720069007200650020006900200064006F00630075006D0065006E007400690020005000440046002000630072006500610074006900200063006F006E0020004100630072006F00620061007400200065002000410064006F00620065002000520065006100640065007200200037002E003000200065002000760065007200730069006F006E006900200073007500630063006500730073006900760065002E>
 /JPN <FEFF30BF30B0300130CF30A430D130FC30EA30F330AF30013057304A308A300130A430F330BF30E930AF30C630A330D6306A89817D20300130EC30A430E430FC3092542B308030A230AF30BB30B730D630EB306A002000410064006F0062006500200050004400460020658766F830924F5C62103059308B306B306F30013053308C3089306E8A2D5B9A30924F7F75283057307E305930024F5C62103055308C305F00200050004400460020306F0020004100630072006F0062006100740020304A30883073002000410064006F00620065002000520065006100640065007200200037002E003000204EE5964D3067958B304F30533068304C3067304D307E30593002>
 /KOR <FEFFD0DCADF8002C0020D558C774D37CB9C1D06C002C0020CC45AC08D53C002C0020B300D654D6150020C694C18C0020BC0F0020B808C774C5B4AC000020D3ECD568B418C5B40020C788C5B40020C0ACC6A9C790AC000020C27DAC8C0020C561C138C2A4D5600020C2180020C788B294002000410064006F0062006500200050004400460020BB38C11CB97C0020C791C131D558B824BA740020C774B7ECD55C0020C124C815C7440020C0ACC6A9D569B2C8B2E4002E0020C774C6400020AC19C7400020C635C158C7440020C0ACC6A9D558C5EC0020C791C131B41C00200050004400460020BB38C11CB2940020004100630072006F0062006100740020BC0F002000410064006F00620065002000520065006100640065007200200037002E00300020C774C0C1C5D0C11C0020C5F40020C2180020C788C2B5B2C8B2E4002E>
 /NLD (Gebruik deze instellingen om toegankelijke Adobe PDF-documenten met labels, hyperlinks, bladwijzers, interactieve elementen en lagen te maken. U kunt gemaakte PDF-documenten openen met Acrobat en Adobe Reader 7.0 en hoger.)
 /NOR <FEFF004200720075006B00200064006900730073006500200069006E006E007300740069006C006C0069006E00670065006E0065002000740069006C002000E50020006F0070007000720065007400740065002000740069006C0067006A0065006E00670065006C006900670065002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E00740065007200200073006F006D00200069006E006E00650068006F006C0064006500720020006B006F006400650072002C002000680079007000650072006B006F0062006C0069006E006700650072002C00200062006F006B006D00650072006B00650072002C00200069006E0074006500720061006B007400690076006500200065006C0065006D0065006E0074006500720020006F00670020006C00610067002E0020004F0070007000720065007400740065006400650020005000440046002D0064006F006B0075006D0065006E0074006500720020006B0061006E002000E50070006E00650073002000690020004100630072006F0062006100740020006F0067002000410064006F00620065002000520065006100640065007200200037002E00300020006F0067002000730065006E006500720065002E>
 /POL <FEFF005A006100200070006F006D006F00630105002000740079006300680020007500730074006100770069006501440020006D006F017C006E0061002000740077006F0072007A0079010700200142006100740077006F00200064006F0073007401190070006E006500200064006F006B0075006D0065006E00740079002000410064006F006200650020005000440046002C0020007A006100770069006500720061006A0105006300650020007A006E00610063007A006E0069006B0069002C002000680069007000650072014201050063007A0061002C0020007A0061006B014200610064006B0069002C00200065006C0065006D0065006E0074007900200069006E0074006500720061006B007400790077006E00650020006900200077006100720073007400770079002E0020005500740077006F0072007A006F006E006500200077002000740065006E002000730070006F007300F3006200200064006F006B0075006D0065006E0074007900200050004400460020006D006F017C006E00610020006F007400770069006500720061010700200077002000700072006F006700720061006D0061006300680020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200037002E00300020006900200069006300680020006E006F00770073007A00790063006800200077006500720073006A006100630068002E>
 /PTB <FEFF00550073006500200065007300740061007300200063006F006E00660069006700750072006100E700F5006500730020007000610072006100200063007200690061007200200064006F00630075006D0065006E0074006F007300200061006300650073007300ED00760065006900730020005000440046002000410064006F00620065002000710075006500200069006E0063006C00750065006D00200074006100670073002C002000680079007000650072006C0069006E006B0073002C0020006D00610072006300610064006F007200650073002C00200065006C0065006D0065006E0074006F007300200069006E0074006500720061007400690076006F007300200065002000630061006D0061006400610073002E0020004F007300200064006F00630075006D0065006E0074006F00730020005000440046002000630072006900610064006F007300200070006F00640065006D0020007300650072002000610062006500720074006F007300200063006F006D0020004100630072006F00620061007400200065002000410064006F00620065002000520065006100640065007200200037002E00300020006F007500200070006F00730074006500720069006F007200650073002E>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610063006300650073006900620069006c00650020006300610072006500200069006e0063006c007500640020007400610067007500720069002c002000680069007000650072006c0069006e006b007500720069002c002000730065006d006e0065002000640065002000630061007200740065002c00200065006c0065006d0065006e0074006500200069006e0074006500720061006300740069007600650020015f0069002000730074007200610074007500720069002e00200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f0062006100740020015f0069002000410064006f00620065002000520065006100640065007200200037002e0030002c002000700072006500630075006d0020015f00690020006300750020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043D0430044104420440043E0439043A043800200434043B044F00200441043E043704340430043D0438044F00200434043E044104420443043F043D044B0445002000410064006F006200650020005000440046002D0434043E043A0443043C0435043D0442043E0432002C00200441043E0434043504400436043004490438044500200442043504330438002C002004330438043F0435044004410441044B043B043A0438002C002004370430043A043B04300434043A0438002C00200438043D0442043504400430043A044204380432043D044B04350020044D043B0435043C0435043D0442044B0020043800200441043B043E0438002E00200421043E043704340430043D043D044B04350020005000440046002D0434043E043A0443043C0435043D0442044B0020043C043E0436043D043E0020043E0442043A0440044B043204300442044C002004410020043F043E043C043E0449044C044E0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200037002E00300020043800200431043E043B043504350020043F043E04370434043D043804450020043204350440044104380439002E>
 /SUO <FEFF004B00E40079007400E40020006E00E40069007400E4002000610073006500740075006B0073006900610020006C0075006F0064006500730073006100730069002000680065006C00700070006F006B00E400790074007400F600690073006900E4002000410064006F0062006500200050004400460020002D0064006F006B0075006D0065006E007400740065006A0061002C0020006A006F0074006B0061002000730069007300E4006C007400E4007600E400740020006B006F006F00640069006D00650072006B0069006E007400F6006A00E4002C002000680079007000650072006C0069006E006B006B0065006A00E4002C0020006B00690072006A0061006E006D00650072006B006B0065006A00E4002C002000760075006F0072006F007600610069006B0075007400740065006900730069006100200065006C0065006D0065006E007400740065006A00E40020006A00610020007400610073006F006A0061002E002000410073006500740075007300740065006E0020006100760075006C006C00610020006C0075006F0064007500740020005000440046002D0064006F006B0075006D0065006E00740069007400200076006F00690020006100760061007400610020004100630072006F0062006100740020006A0061002000410064006F00620065002000520065006100640065007200200037002E0030003A006C006C0061002000740061006900200075007500640065006D006D0061006C006C0061002000760065007200730069006F006C006C0061002E>
 /SVE <FEFF0041006E007600E4006E00640020006400650020006800E4007200200069006E0073007400E4006C006C006E0069006E006700610072006E00610020006600F60072002000610074007400200073006B0061007000610020006C00E4007400740069006C006C006700E4006E0067006C006900670061002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E007400200073006F006D00200069006E006E0065006800E5006C006C006500720020007400610067006700610072002C002000680079007000650072006C00E4006E006B00610072002C00200062006F006B006D00E40072006B0065006E002C00200069006E0074006500720061006B007400690076006100200065006C0065006D0065006E00740020006F006300680020006C0061006700650072002E00200044006500200064006F006B0075006D0065006E007400200064007500200073006B00610070006100720020006B0061006E002000F600700070006E00610073002000690020004100630072006F0062006100740020006F00630068002000410064006F00620065002000520065006100640065007200200037002E003000200065006C006C00650072002000730065006E006100720065002E>
 /TUR <FEFF0130006D006C00650072002C002000680069007000650072002000620061011F006C00610072002C002000790065007200200069006D006C006500720069002C002000650074006B0069006C0065015F0069006D006C0069002000F6011F0065006C006500720020007600650020006B00610074006D0061006E006C006100720020006900E7006500720065006E0020006500720069015F0069006C006500620069006C00690072002000410064006F006200650020005000440046002000620065006C00670065006C0065007200690020006F006C0075015F007400750072006D0061006B0020006900E70069006E00200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E0020004F006C0075015F0074007500720075006C0061006E0020005000440046002000620065006C00670065006C0065007200690020004100630072006F006200610074002000760065002000410064006F00620065002000520065006100640065007200200037002E003000200076006500200073006F006E00720061006B00690020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f002000410064006f006200650020005000440046002d0434043e043a0443043c0435043d044204560432002c0020044f043a04560020043c045604410442044f0442044c00200442043504330438002c002004330456043f04350440043f043e04410438043b0430043d043d044f002c002004370430043a043b04300434043a0438002c00200456043d0442043504400430043a044204380432043d045600200435043b0435043c0435043d044204380020043900200448043004400438002e0020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004320020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200037002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive true
 /IncludeLayers true
 /IncludeProfiles true
 /MultimediaHandling /EmbedAll
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

