

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2009 by Donis Marshall and John Bruno

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2008940526

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 4 3 2 1 0 9

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor mation about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly at
fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, Active Desktop, Active Directory, Internet Explorer, SQL Server, Win32, Windows, Windows
NT, Windows PowerShell, Windows Server, and Windows Vista are either registered trademarks or trademarks of the
Microsoft group of companies. Other product and company names mentioned herein may be the trademarks of their
respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ben Ryan
Developmental Editor: Devon Musgrave
Project Editor: Melissa von Tschudi-Sutton
Editorial Production: nSight, Inc.
Technical Reviewer: Per Blomqvist; Technical Review services provided by Content Master, a member of CM Group, Ltd.
Cover Illustration by: John Hersey

Body Part No. X15-28130

This book is dedicated to my children: Jason, Kristen, and Adam.

Jason is a talented young man, Kristen is now in college,

and Adam (at 11) defeats me in chess regularly.

—Donis Marshall

To Christa, Christopher, and Patrick, this book is for you.

Your love and support inspire me every day.

—John Bruno

Recommendations for Solid Code

Solid Code does a great job of hitting that super hard middle ground between
the management books and the technology books. By covering ideas from how to
model software to security design to defensive programming, Donis and John show
you the best practices you can apply to your development to make it even better.

—John Robbins, Cofounder, Wintellect

Solid Code isn’t just about code; it imparts the knowhow to deliver a solid project.
This book delivers straightforward best practices, supplemented with case studies
and lessons learned, from real products to help guide readers to deliver a perfect
project—from design through development, ending with release and maintenance.

—Jason Blankman, Software Development Engineer, Microsoft Corporation

As a software developer of 20 years, there are a few books that I read again every
couple of years. I believe that Solid Code will be one of the books that you will read
over and over, each time finding new insight for your profession.

—Don Reamey, Software Development Engineer, Microsoft Corporation

Solid Code is an invaluable tool for any serious software developer. The book is
filled with practical advice that can be put to use immediately to solidify your code
base. Solid Code should definitely be on your shelf, close at hand, as you’ll use it
again and again!

—John Alexander, Microsoft Regional Director, Managing Partner, AJI Software

Solid Code is a must read for any IT professional, especially if you plan on using
managed code. The book not only covers engineering best practices but also
illustrates them with real test case studies.

Andres Juarez, Release Manager, Microsoft Corporation

This is a very well-written book that offers best practices in cultivating an efficient
software development process by which typical developer mistakes can be avoided.
The authors provide practical solutions for detecting mistakes and explain how
software development and testing works at Microsoft.

Venkat B. Iyer, Test Manager, Microsoft Corporation

This book is excellent for developers at any level—beginner to experienced. It
provides the foundation of great development practices that should be used by any
size development team, and even by individual programmers.

John Macknight, Independent Software Developer

 vii

Contents at a Glance
 1 Code Quality in an Agile World . 1
 2 Class Design and Prototyping . 19
 3 Metaprogramming . 49
 4 Performance Is a Feature . 71
 5 Designing for Scale . 97
 6 Security Design and Implementation . 121
 7 Managed Memory Model . 143
 8 Defensive Programming . 171
 9 Debugging . 201
 10 Code Analysis . 239
 11 Improving Engineering Processes . 263
 12 Attitude Is Everything . 287
 A Agile Development Resources . 301
 B Web Performance Resources . 303

 ix

Table of Contents
Introduction .xxi

Who Is This Book For? .xxi

Organization of This Book .xxi

System Requirements . xxii

The Companion Web Site . xxii

Find Additional Content Online . .xxiii

Support for This Book .xxiii

 1 Code Quality in an Agile World . 1
Traditional Methods of Software Development . 2

Agile Methods of Software Development . 3

Scrum . 4

eXtreme Programming . 5

Test-Driven Development . 6

Moving Quality Upstream . 8

Inside Microsoft: Windows Live Hotmail Engineering . 10

Engineering Principles . 10

Key Success Factors . 11

Tactics for Writing Solid Code . 13

Focus on Design . 14

Defend and Debug . 15

Analyze and Test . 16

Improve Processes and Attitudes . 16

Summary . 17

Key Points . 18

 2 Class Design and Prototyping . 19
Collaboration in Visual Studio . 20

Think First, Code Later . 21

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you . To participate in a brief online survey, please visit:

microsoft .com/learning/booksurvey

x Table of Contents

Software Modeling . 23

Unified Modeling Language . 24

Prototyping . 37

Summary . 47

Key Points . 47

 3 Metaprogramming . 49
What Is Metadata? . 49

Metadata in Managed Applications . 51

Application Configuration Files . 52

Metadata in Your Applications . 65

Inside Microsoft: Configuration Management in Windows Live Spaces 66

Summary . 69

Key Points . 69

 4 Performance Is a Feature . 71
Common Performance Challenges . 72

Network Latency . 72

Payload Size and Network Round Trips . 74

Limited TCP Connections . 75

Poorly Optimized Code . 76

Analyzing Application Performance . 78

Analyzing the Performance of Live Search . 79

Tactics for Improving Web Application Performance . 81

Reduce Payload Size . 82

Cache Effectively . 83

Optimize Network Traffic . 84

Organize and Write Code for Better Performance 89

Incorporating Performance Best Practices . 90

Establish a Performance Excellence Program . 90

Inside Microsoft: Tackling Live Search Performance . 92

Web Performance Principles . 92

Key Success Factors . 93

Summary . 94

Key Points . 95

 5 Designing for Scale . 97
Understanding Application Scalability . 98

Approaches to Scalability . 99

 Table of Contents xi

Database Scalability . 102

Tactics for Scaling Web Applications . 104

Inside Microsoft: Managing the Windows Live Messenger Service
Infrastructure . 115

Engineering Principles . 115

Summary . 118

Key Points . 118

 6 Security Design and Implementation . 121
Common Application Security Threats . 121

Principles for Designing Secure Applications . 123

Security Design Principles . 124

SD3+C Strategy and Practices for Secure Applications 125

Secure by Design . 126

Secure by Default . 130

Secure in Deployment and Communication . 131

Understanding .NET Framework Security Principles . 133

Additional Security Best Practices . 139

Summary . 141

Key Points . 141

 7 Managed Memory Model . 143
Managed Heap . 144

Garbage Collection . 145

Managed Wrappers for Native Objects . 146

GC Class . 147

Large Object Heap . 148

Finalization . 151

Non-Deterministic Garbage Collection . 151

Disposable Objects . 154

Dispose Pattern . 155

Weak References . 158

Pinning . 160

Tips for the Managed Heap . 162

CLR Profiler . 163

CLR Profiler Walkthrough . 164

Summary . 168

Key Points . 169

xii Table of Contents

 8 Defensive Programming . 171
Defensive Programming and C# . 172

Warnings . 173

Code Review . 174

Software Testing . 175

Test-Driven Development . 177

Code Coverage . 180

Self-Documenting Code . 181

Naming Conventions . 182

Pseudo Code . 183

Comments . 185

Defensive Programming with Classes . 188

Modifiers . 189

Interfaces . 189

Defensive Programming Without Examples . 190

Defensive Programming with Examples . 192

Design Patterns . 196

Summary . 198

Key Points . 199

 9 Debugging . 201
Overflow Bug . 205

Pentium FDIV Bug . 205

Symbols . 205

Symbol Server . 208

Source Servers . 209

Preemptive Debugging . 210

Proactive Debugging . 212

Managed Debugging Assistants . 213

MDA Example . 214

Code Analysis . 215

Performance Monitoring . 215

Debugging . 218

Debugging Tools . 220

Visual Studio . 220

 .NET Framework Tools . 222

Debugging Tools for Windows . 223

CLR Profiler . 224

 Table of Contents xiii

Sysinternals . 224

Tracing . 225

Web Application Tracing . 225

Exception Handling . 227

Production Debugging . 230

ADPlus . 231

Summary . 236

Key Points . 237

 10 Code Analysis . 239
Invest in the Test Process . 240

Define a Test Rhythm . 241

Establish Test Work Item Tracking . 243

Incorporate Automated Code Analysis . 245

Use Static Code Analysis Tools . 245

Write Application Test Code . 248

Testing with Visual Studio . 253

Use Metrics to Understand Quality . 254

Measuring Complexity and Maintainability of Code 255

Using Perspectives to Understand Quality . 256

Inside Microsoft: Managing Quality for the Microsoft .com Web Analytics
Platform . 258

The Importance of Code Quality . 258

The Test Investment . 258

Managing Quality . 260

Summary . 261

Key Points . 261

 11 Improving Engineering Processes . 263
Tactics for Engineering Process Improvement . 264

Establish a Quality-Focused Project Rhythm . 264

Implement Source Control and Check-in Processes 266

Release and Test Code Daily . 274

Automate Daily Builds . 277

Using MSBuild . 278

Create and Enforce Quality Criteria . 282

Summary . 284

Key Points . 285

xiv Table of Contents

 12 Attitude Is Everything . 287
Passion . 287

Linear versus Iterative . 288

Sales Are Good . 289

Features . 290

Flexibility . 292

Solve Real Problems . 293

You Are Responsible . 294

Port Code as New Code . 295

Refactoring . 295

Priorities . 296

Be Realistic . 297

Paradigm Shift . 298

Expand Your Perspective . 299

 A Agile Development Resources . 301

 B Web Performance Resources . 303

Index . 305

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you . To participate in a brief online survey, please visit:

microsoft .com/learning/booksurvey

 xv

Foreword
Software engineering is not engineering . As a software developer, I would love nothing more
than to say I am an engineer . Engineers think through and build things that are supposed
to work the first time due to careful planning . So having the word “engineer” in my job title
would be very cool indeed .

Let’s look at what would happen if the normal software engineering approach were applied
to aerospace engineering . A plane is sitting at a gate boarding passengers, and an aero-
space engineer—on a whim or forced by management—decides to replace the tail section .
Because it’s just a tail section, let’s just rip it off and stick another one on right there at the
gate . No problem, we can make it work! If aerospace engineering were approached like soft-
ware engineering, I think the passengers would stampede to get off that plane as fast as pos-
sible . But those are the kind of changes that are made every day in major software projects
the world over . The old joke is that “military intelligence” is an oxymoron, but I’d have to say
that it fits “software engineering” as well . What makes this even more troubling to me is that
software truly rules the world, but the approach nearly everyone takes to making it can in no
way be called engineering .

Why is it that I know the physical computer I’m using right now will work, but the program
I’m using, Microsoft Word, will screw up the auto numbering of my lists? While my electrical
engineering friends will not be happy to hear this, hardware is easy . The electrical engineer
has a limited number of inputs to work with, unlike the essentially unlimited number given to
software developers .

Management also considers electrical engineering “real engineering,” so management gives
the appropriate time and weight to those efforts . The software business, as a distinct field,
is not a mature industry; it really hasn’t been around that long . In fact, I myself am slightly
younger than the software business, so my youthful look reveals some of the problem . If I
were as old as electrical engineering, I’d be writing this from the grave .

Another difficulty with software development can sometimes be the software developers
themselves . Realistically, the barriers to becoming a software developer can be quite low . I’m
a prime example: I was working as a full-time software developer before I had a bachelor’s
degree in computer science . Because I was able to “talk the talk” in interviews, I was given a
job writing software . None of my employers really cared about my lack of education because
they could hire me cheaper than someone with a degree .

All real engineering fields require you to achieve ambitious certification criteria before you
can add the Professional Engineer (PE) designation to your name . There’s nothing like that
for the software industry . That’s due in part to the fact that no one can agree what all soft-
ware developers should know because of the newness of the industry . In other fields, the PE

xvi Foreword

designation appropriately carries huge weight with management . If a certified engineer says
a design won’t work, she won’t sign off on the plans and the project won’t go forward . That
forces management to take the planning process much more seriously . Of course, by sign-
ing off on a project, the PE acknowledges liability for ethical and legal ramifications should
things go wrong . Are you ready to sign off on the ethical and legal liability of your software’s
design? Until we get our industry to that point, we can’t really call ourselves engineers in the
traditional sense .

The good news is that even in the nearly 20 years I have been in the software develop-
ment business I’ve seen huge changes for the better . Senior management is finally getting
the message that software project failures cost companies serious amounts of money . Take
a look at Robert Charette’s “Why Software Fails” in the September 2005 issue of the IEEE
Spectrum magazine (http://www.spectrum.ieee.org/sep05/1685) for a list of spectacular fail-
ures . With the costs so high, some senior management are finally committing real resources
to get software projects kicked off, planned, and implemented right the first time . We still
have a long way to go, but this buy-in for real planning from management is one of the big-
gest changes I’ve seen in my time in the industry .

On a micro level, the best change in software development is that nearly all developers are
finally serious about testing their code . Now it’s fortunately rare to hear about a developer
who throws the code over the wall to the QA group and hopes for the best . This is a huge
win for the industry and truly makes meeting schedules and quality gates achievable for
many teams . As someone who has spent his career on the debugging and performance-
tuning side of the business, I’m really encouraged about our industry becoming more mature
about testing . Like all good change, the testing focus starts with the individual and the ben-
efits work their way up the organization .

What’s also driving change is that our tools and environments are getting much better . With
 .NET, we have an easy way to test our code, so that means more people will test . Also, the
abstraction layers are moving up, so we no longer have to deal with everything on the com-
puter . For example, if you need to make a Web service call, you don’t have to manually open
the port, build up the TCP/IP packet, call the network driver, wait for the data to return, or
parse the return data . It’s now just a method call . These better abstraction layers allow us to
spend more time on the important parts of any software project: the real requirements and
solving the user’s problem .

We still have a long way to go before our field is a real engineering field, but the signs are
encouraging . I think a big change will occur when we finally start treating testing as a real
profession—one that is equal to or more important than development . While I probably
won’t see the transition to software engineering before I retire, I’m very encouraged by
the progress thus far . Let’s all keep pushing and learning so we can finally really be called
engineers .

 Foreword xvii

This book, Solid Code, is a great step in the direction of treating software as an engineering
discipline . Bookstores’ programming shelves groan under two types of development books .
The first kind is the hand-waving software-management type, and the second is the gritty
internals-of-a-technology type; I’m guilty of writing the latter . While those books have their
uses and are helpful, the types of books we are missing are the ones that talk about real-
world team software development . The actual technology is such a small part of a project;
it’s the team and process aspects that present the biggest challenges in getting a software
project shipped . Solid Code does a great job of hitting that super hard middle ground be-
tween the management books and the technology books . By covering ideas from how to
model software to security design to defensive programming, Donis and John, show you how
the best practices you can apply to your development will make it even better . Reading Solid
Code is like experiencing a great project lead by a top development manager and working
with excellent coworkers .

The whole book is excellent; I especially loved the emphasis on planning and preparation .
Many of the projects that my company, Wintellect, has had to rescue are the direct result of
poor planning . Take those chapters to heart so you’ll avoid the mistakes that will cost you
tons of money and time . Another problem the book addresses is the tendency to leave per-
formance tuning and security analysis for the very end of the project . As the title of Chapter
4 so succinctly points out, “Performance Is a Feature .” The recommendations in those chap-
ters are invaluable . Finally, the book’s emphasis on real-world coding and debugging will pay
dividends even when the code goes into maintenance mode . Even though I’ve been working
in the field nearly 20 years, I picked up a lot of great ideas from Solid Code .

Every developer needs to read this book, but there are others in your company who need to
read it as well . Make your manager, your manager’s manager, and your manager’s manager’s
manager read this book! The one question I always get from senior managers at any com-
pany is, “How does Microsoft develop software?” With the Inside Microsoft sections in most
chapters of Solid Code, your management will see how Microsoft has solved problems in
some of the largest applications in use today . Now start reading! It’s your turn to help move
our industry into a real engineering discipline!

John Robbins
Co-founder, Wintellect

 xix

Acknowledgements
Isaac Newton has been credited with the phrase, “If I have seen further, it is only by stand-
ing on the shoulders of giants .” That statement is certainly applicable to this book, especially
when considering the practices, perspectives, and experiences contained within it . More
specifically, those shoulders belong to the many people who have contributed to this project .
Although our names adorn the cover, we owe much of the credit to the individuals who have
helped bring this book to life . We are grateful for their efforts and support throughout this
project, and would like to acknowledge them individually .

For starters, we could not have done it without the team at Microsoft Press . We would like
to thank Ben Ryan, Devon Musgrave, and Melissa von Tschudi-Sutton for ensuring a high-
quality outcome and keeping the project on schedule . Additionally, we would also like to
thank the technical editor Per Blomqvist and copy editor Cindy Gierhart for their invaluable
contributions and feedback .

As mentioned, this book includes practices, perspectives, and experiences . Many of these
elements would not have been included without the contributions, support, and feedback
of the professionals from Microsoft and the industry . Specifically, we would like to thank
the contributors and reviewers: Jason Blankman, Eric Bush, Jacob Kim, Don Reamey, Dick
Craddock, Andres Juarez Melendez, Eric Schurman, Jim Pierson, Richard Turner, Venkatesh
Gopalakrishnan, Simon Perkins, Chuck Bassett, Venkat Iyer, Ryan Farber, and Ajay Jha .

There is also a special acknowledgement for Wintellect . Wintellect is a consulting, debug-
ging, and training firm dedicated to helping companies build better software faster through
a concentration on .NET and Windows development . Its services include in-depth, multiday
 .NET on-site and open enrollment training as well as development and consulting services
including emergency debugging . The company also produces Devscovery conferences—
three-day multitrack events targeting the intermediate to advanced developer . For more
information about Wintellect, visit www.wintellect.com .

John Robbins and Jeffrey Richter of Wintellect provided invaluable insights and timely feed-
back . Thanks!

Donis Marshall I have written several books . However, this is my first book with a coauthor .
I have been left with one important question after the completing the book . Why did I not
have a coauthor on earlier book projects? John Bruno was an incredible asset to this project .
His broad knowledge and insights have made this book an important read for any technolo-
gist in the Windows arena . John also possesses a rare attribute among authors—timeliness .

John Bruno Writing a book is a commitment that often affects those closest to you . I
would like to first thank my wife, Christa, and my two sons, Christopher and Patrick, for
their patience, understanding, and sacrifice during the development of this book . Their love

xx Acknowledgements

and support inspire me to be the best man I can be, everyday . Additionally, I am grateful to
Donis Marshall for inviting me to join him on this project . I sincerely appreciate his friendship
and the opportunity to work with him on such an important subject . I have been fortunate
throughout my life to have known many creative and insightful people . To those of you who
have always been there to inspire, encourage, challenge, and support me, I thank you .

 xxi

Introduction
Software development has evolved greatly over the past several years . Improvements in
programming languages and rapid development tooling, like .NET and Visual Studio 2008,
have driven the software industry to build higher-quality software, faster, cheaper, and with
more frequent upgrades or refreshes . Despite this continued demand for more software and
the evolution in tools and processes, building and releasing quality software remains a dif-
ficult job for all participants of software projects, especially developers . Fortunately, this title
encapsulates the essence of the best-in-class engineering practices, processes, policies, and
techniques that application developers need for developing robust code .

Solid Code explores best practices for achieving greater code quality from nearly every facet
of software development . This book provides practical advice from experienced engineers
that can be applied across the product development life cycle: design, prototyping, imple-
mentation, debugging, and testing . This valuable material and advice is further supplement-
ed by real world examples from several engineering teams within Microsoft, including, but
not limited to, the Windows Live Hotmail and Live Search teams .

Who Is This Book For?
Solid Code has something for every participant in the software development life cycle . Most
specifically, it is targeted toward application developers who are seeking best practices or
advice for building higher-quality software . Portions of this book illustrate the important role
of the engineering process as it relates to writing high-quality code . Other parts focus on the
criticality of testing . However, most of this book focuses on improving code quality during
design and implementation, covering specific topics like class prototyping, performance, se-
curity, memory, and debugging .

This book targets both professional and casual developers . Readers should have a basic un-
derstanding of programming concepts and object oriented programming in C# . There are no
skill level expectations . Solid Code is about the practical application of best practices for man-
aged code application development . The topics discussed within the book should resonate
with managed code developers of all skill levels .

Organization of This Book
Solid Code is organized similarly to the application development life cycle . The chapters are
not separated into parts, but rather grouped according to four key principles . These prin-
ciples are outlined in Chapter 1, “Code Quality in an Agile World”, and include: Focus on
Design, Defend and Debug, Analyze and Test, and Improve Processes and Attitudes .

xxii Introduction

n Focus on Design One of the great themes of this book is the importance of thought-
ful design as a means to improve overall product quality . To support this theme, prac-
tices such as class design and prototyping, metaprogramming, performance, scalability,
and security are explored .

n Defend and Debug Although great designs are critical to building a high-quality
software application, it is equally important to understand the pitfalls that hinder de-
livery of bug-free code . Topics such as memory management, defensive programming
techniques, and debugging are all discussed in the context of this principle .

n Analyze and Test Even the greatest programmers produce bugs despite following
the recommended best practices . Therefore, it is important to discuss code analysis and
testing as methods for further improving code quality .

n Improve Processes and Attitudes Beyond best practices, engineering processes and
culture can have a great impact on the quality of the work being produced . We explore
several key topics for improving the efficiency of the team as well as their passion for
quality .

System Requirements
You will need the following hardware and software (at a minimum) to build and run the code
samples for this book in a 32-bit Windows environment:

n Windows Vista, Windows Server 2003 with Service Pack 1, Windows Server 2008, or
Windows XP with Service Pack 2

n Visual Studio 2008 Team System

n 2 .0 gigahertz (GHz) CPU; 2 .6 GHz CPU is recommended

n 512 megabytes (MB) of RAM; 1 gigabyte (GB) is recommended

n 8 GB of available space on the installation drive; 20 GB is recommended

n CD-ROM or DVD-ROM drive

n Microsoft mouse or compatible pointing device

The Companion Web Site
This book features a companion Web site that provides code samples used in the book .
This code is organized by chapter, and you can download it from the companion site at this
 address: http://www.microsoft.com/learning/en/us/books/12792.aspx.

 Introduction xxiii

Find Additional Content Online
As new or updated material that complements this book becomes available, it will be pub-
lished online to the Microsoft Press Online Developer Tools Web site . This includes material
such as updates to book content, articles, links to companion content, errata, sample chap-
ters, and more . This Web site is available at http://www.microsoft.com/learning/books/online
/developer and it will be updated periodically .

Support for This Book
Every effort has been made to ensure the accuracy of this book and companion content .
Microsoft Press provides corrections for books through the Web at the following address:

http://www.microsoft.com/mspress/support/search.aspx

To connect directly to Microsoft Help and Support to enter a query regarding a question or
issue you may have, go to the following address:

http://support.microsoft.com

If you have comments, questions, or ideas regarding the book or companion content or if
you have questions that are not answered by querying the Knowledge Base, please send
them to Microsoft Press using either of the following methods:

E-mail:

mspinput@microsoft.com

Postal mail:

Microsoft Press
Attn: Solid Code editor
One Microsoft Way
Redmond, WA 98052-6399

Please note that product support is not offered through the preceding mail addresses . For
support information, please visit the Microsoft Product Support Web site at

http://support.microsoft.com

 71

Chapter 4

Performance Is a Feature
My speed is my greatest asset.

—Peter Bondra, former professional ice hockey player

Software can possess a broad array of useful features . Certain applications, such as Microsoft
Office, include features that can help a user accomplish a near infinite number of tasks, many
of which a normal user might never even discover . Other applications, like Notepad, may
contain only the features necessary to accomplish a few simple tasks, which might leave
certain users desiring more functionality . In either case, the goal of the software is the same:
to provide functionality that helps users to accomplish a particular set of tasks . If we also
consider how quickly users are able to accomplish that set of tasks, then performance, as
suggested by the Peter Bondra quote, should also be considered an important feature of a
software application .

As application developers, we spend considerable effort planning and building the key fea-
tures of our applications . These features are cohesive, enhance the quality of our product,
and implicitly improve overall functionality . One of the most important aspects of all features
of a software product is performance . Performance is often overlooked or considered late in
product design and development . This can lead to inadequate performance results for key
features and overall poorer product quality . Performance is critical to the quality of any ap-
plication but especially to Web applications . By contrast to desktop applications, Web appli-
cations depend on the transmission of data and application assets over a worldwide network .
This presents architectural and quality challenges for Web application developers that must
be mitigated during the design and construction of their applications .

Web application quality extends beyond the visible bugs that end users encounter when
using the application . Network latency, payload size, and application architecture can have
negative impacts on the performance of online applications . Therefore, performance consid-
erations should be part of every Web application design . Deferring these considerations until
late in the development cycle can create significant code churn after performance bugs are
discovered . Application developers must understand the impact of the design choices that
affect adversely performance and mitigate the risks of releasing a poorly performing Web
application by applying many of the best practices discussed in this chapter .

Throughout the remainder of this chapter, we will evaluate some common problems that
can negatively affect the performance of Web-based software, and we will discuss several
practices that can be applied to proactively address performance bottlenecks . Although this
chapter will not focus on techniques that are unique to managed code development, it will
discuss several ways to apply performance best practices to your application development

72 Solid Code

life cycle in order to increase the overall quality of your Web-based application, as well as the
satisfaction for your application’s users .

Common Performance Challenges
Web-based applications that rely on interactions between servers and a user’s Web browser
inherently require certain design considerations to address the performance challenges
present in the application execution environment . These factors are not specific to Web ap-
plications developed using ASP .NET; they also affect application developers who utilize Web
development programming models like PHP or Java . They include the latency or quality of
the connection between the client and server, the payload size of the data being transmitted,
as well as poorly optimized application code, to name a few . Let’s explore each of these in
greater depth .

Network Latency
To understand the impact of network latency and throughput on your Web application,
we must first understand the general performance and throughput of the Internet in key
regions around the world . This may prove to be an eye-opening experience for many Web
application developers . The data in Table 4-1 illustrates how end users are affected by the
network topology of the Internet . The data in this table was gathered during daily ping tests
conducted between January through September 2008 and provide a breakdown of the aver-
age round-trip time (measured in milliseconds [ms]) and average packet loss for users in each
specified region . Let us briefly review the definitions of each of these metrics before further
evaluating the data in the table .

n Average round-trip time This refers to the average amount of time required for a
100-byte packet of data to complete a network round trip . The value in Table 4-1 is
computed by evaluating the round-trip time for daily tests conducted over a period
from January through September 2008 .

n Average packet loss This metric evaluates the reliability of a connection by measuring
the percentage of packets lost during the network round trip of a 100-byte packet of
data . In the same way that average round-trip time is determined, the average packet
loss is also computed by evaluating the results of daily tests conducted over a period of
January through September 2008 .

TABLe 4-1 Internet Network Statistics by Region

Region Average Round-Trip Time (ms) Average Packet Loss (%)

Africa 469 3 .70

Australia 204 0 .23

 Chapter 4 Performance Is a Feature 73

Region Average Round-Trip Time (ms) Average Packet Loss (%)

Balkans 202 0 .74

Central Asia 597 1 .24

East Asia 192 0 .68

Europe 178 0 .48

Latin America 270 1 .15

Middle East 279 0 .87

North America 59 0 .09

Russia 243 2 .48

South Asia 424 1 .89

South East Asia 254 0 .03

Note This data is based upon the results of tests being conducted between Stanford University
in Northern California and network end points in 27 countries worldwide . Data obtained from
each test is subsequently averaged across all end points within a particular region . The complete
data set can be obtained from http://www-iepm.slac.stanford.edu/ . Data is also available from this
site in a summarized, percentile-based format, which shows what users at the 25th, 50th, 75th,
90th, and 95th percentile are likely to experience in terms of average round-trip time and packet
loss . At Microsoft, teams generally assume that most of their users will experience connectivity
quality at the 75th percentile or better .

There are a few key points to take away from the data presented in this table:

Network reliability is poor in certain regions The general throughput of data on the
Internet varies according to region . This means that even if your Web application is available
100 percent of the time and performing perfectly, an end user in Asia might be affected by
suboptimal network conditions such as high latency or packet loss and not be able to access
your application easily . Although this seems to be a situation beyond an application devel-
oper’s control, several mitigation strategies do exist and will be discussed later in this chap-
ter . That said, it is definitely useful to understand the general network behavior across the
Internet when you consider what an end user experiences when using your Web application .

Average round-trip time is high We also notice that the average round-trip time for a
piece of data to travel from a point within North America to a point within another region is
quite high in certain cases . For example, a single Transmission Control Protocol (TCP) packet
of data traveling on the Internet between North America and Central Asia has an average
round-trip time of 597 ms . This means that each individual file required by a Web applica-
tion will incur 597 ms of latency during transfer between the server and the client . Thus, as
the number of required requests increases, the performance of the application gets worse .
Fortunately, the number of round trips between the client and the server is something every
Web application developer can influence .

74 Solid Code

Packet loss is high In conjunction with average round-trip time, packet loss also increases
significantly for users outside North America . Both of these factors are related to general
throughput on the network, so they usually go hand-in-hand . These results demonstrate
that, as packet loss increases, additional round trips are required between the browser and
the server to obtain the packets of data lost in transmission . Hence, higher packet loss means
decreased performance of your Web application . Even though developers cannot control the
amount of packet loss a user is likely to experience, you can apply certain tactics to help miti-
gate the effects, such as decreasing payload size, which will be discussed later in this chapter .

Payload Size and Network Round Trips
The term “payload size” loosely refers to the size of data being transmitted over the network
to render the requested page . This could include the dynamic ASPX page content as well as
static files such as JavaScript files, images, or cascading style sheets (CSS) . The number of TCP
requests required to retrieve the data is referred to as the “network round trips .” Web
application performance is most negatively affected by a combination of the payload size
and the required round trips between the browser and the server . Let‘s take a look at a few
examples of how typical Web application designs might contribute to poorly performing
Web applications .

Compression is not enabled Compressing static and dynamic files are not necessarily part
of your Web server’s default configuration . Compression is strongly recommended for Web
applications that use high amounts of bandwidth or when you want to use bandwidth more
effectively . Many Web application developers might not be aware of this feature and could
be unknowingly sending larger amounts of data to the client browser, thereby increasing
the size of the payload . When enabled, compression can significantly reduce the size of the
file being transmitted to the client browser . Compression requires additional CPU utilization
when compressing dynamic content such as .aspx files . Therefore, if the CPU usage on your
Web servers is already high, enabling Internet Information Services (IIS) dynamic compres-
sion is not recommended . However, enabling IIS static compression on file types such as
JavaScripts, CSS, or HTML files does not increase CPU usage and is, therefore, highly recom-
mended . Hosting static files with a Content Delivery Network service provider generally
includes compression with the service offering .

Using multiple small static image files Most Web application developers naturally use
references to individual images or iconography throughout their code . This is how most of
us were taught to write our HTML . The reality is that each of these files, no matter how small
we make them, results in a separate round trip between the browser and the server . Consider
how bad this might be for image-rich Web pages where rendering a single page could gen-
erate dozens of round trips to the server!

 Chapter 4 Performance Is a Feature 75

These are just two simple examples of how typical Web applications could be delivering un-
necessarily large payloads as well as initiating numerous round trips . The challenge facing
Web application developers is to both reduce the amount of data being transmitted between
the server and the client as well as optimize their Web application’s architecture to minimize
the number of network round trips . Fortunately, a number of tactics can help Web applica-
tion developers accomplish this, all of which we’ll explore later in this chapter . For now, we
will continue reviewing some of the more common performance problems facing Web ap-
plication developers .

Limited TCP Connections
We’ve discussed how an individual HTTP request is made for each resource (such as
JavaScript files, CSS, or images) within a Web page, which can negatively affect the render-
ing performance of the page . However, it may come as a surprise to you to learn that the
HTTP/1 .1 specification suggests that browsers should download only two resources at a time
in parallel for a given hostname . This implies that, if all content necessary to render a page is
originating from the same hostname (e .g ., http://www.live.com), the browser will retrieve only
two resources at a time . Thus, the browser will utilize only two TCP connections between the
client and the server . This phenomenon is illustrated in Figure 4-1, and although configurable
in some browsers and ignored by newer browsers like Internet Explorer 8, it very likely affects
users of your Web application .

Note Even though Internet Explorer allows the number of parallel browser sessions to be con-
figured, normal users are unlikely to do this . For more information on how to change this setting
in Internet Explorer, see the following Microsoft Knowledge Base article: http://support.microsoft.
com/?kbid=282402 .

76 Solid Code

Fi
le

s

Time

= HTML = page resource

FIguRe 4-1 Theoretical example of resources downloading in parallel for a single hostname .

Note Several figures in this chapter intend to illustrate how parallel downloading of resources
theoretically works in a Web browser . In reality, resources are often of varying sizes and therefore
will download in a less structured way than illustrated here . To understand this phenomenon in
greater detail, download and run HTTPWatch (http://www.httpwatch.com) against your Web
application .

As you probably realize, the TCP connection limitation could have profoundly negative ef-
fects on performance for Web applications that require a good deal of content to be down-
loaded . It is critically important for Web application developers to consider this limitation
and properly address this phenomenon in the design of their applications . We will evaluate
mitigation strategies for this later in this chapter .

Poorly Optimized Code
Performance challenges for Web application developers are not solely related to network
topology or data transmission behavior between client browsers and Web servers . It is true
that connectivity and data transmission play a big role in the performance of Web applica-
tions, but application architecture and application coding play a big role as well . Oftentimes
Web application developers will choose a particular implementation within their applica-
tion architecture or code without fully realizing the impact of the decision on a user of the

 Chapter 4 Performance Is a Feature 77

application . Some examples of common implementations that have a negative impact on
Web application performance include the overuse of URL redirects, excessive Domain Name
System (DNS) lookups, excessive use of page resources, and poor organization of scripts
within a Web page . Let us review each of these in greater detail .

Overuse of redirects These are typically used by developers to route a user from one URL
to another . Common examples include use of the <meta equiv-http=”refresh” content=”0;
url=http://contoso.com”> directive in HTML and the Response.Redirect(“http://fabrikam.com”)
method in ASP .NET . While redirects are often necessary, they obviously delay the start of the
page load until the redirect is complete . This could be an acceptable performance degrada-
tion in some instances, but, if overused, it could cause undesirable effects on the perfor-
mance of your Web application’s pages .

Excessive DNS lookups DNS lookups are generally the result of the Web browser being
unable to locate the IP address for a given hostname in either its cache or the operating sys-
tem’s cache . If the IP address of a particular hostname is not found in either cache, a lookup
against an Internet DNS server will be performed . In the context of a Web page, the number
of lookups required will be equal to the number of unique hostnames, such as http://www.
contoso.com or http://images.contoso.com, found in any of the page’s JavaScript, CSS, or inline
code required to render that page . Therefore, multiple DNS lookups could degrade the per-
formance of your Web application’s pages by upwards of n times the number of milliseconds
required to resolve the IP address through DNS, where n is equal to the number of unique
hostnames found in any of the page’s JavaScript, CSS, or inline code requiring a DNS lookup .
While there are exceptions to this rule that we will explore when discussing the use of multi-
ple hostnames to increase parallel downloading, it is generally not advisable to include more
than a few unique hostnames within your Web applications .

Poorly organized JavaScript and CSS Web application developers may not have given a
lot of thought to how code organization affects performance of Web applications . In many
cases, developers choose to separate JavaScript code from CSS for maintainability . While this
practice generally makes sense for code organization, it actually hurts performance because
it increases the number of HTTP requests required to retrieve the page . In other cases, the
location of script and CSS within the structure of the HTML page can have a negative effect
on gradual or progressive page rendering and download parallelization .

It is important for Web application developers to understand how these simple choices can
affect their Web application’s performance, so they can take the appropriate mitigation steps
when designing their applications . Let’s review an example of how to analyze Web page
performance and begin discussing mitigation strategies for the common problems we have
been discussing thus far .

78 Solid Code

Analyzing Application Performance
The key to a fast Web application is to understand the application’s behavior from the user’s
perspective . Naturally, this requires a combination of analysis tools and an investment of time
to evaluate the resultant data from the analysis tools . Analyzing Web applications is far from
a simple task . Developers must evaluate many facets of the application’s behavior, including
but not limited to such items as the network traffic, the sequence of events that occurs dur-
ing a page load, and the different rendering behaviors caused by client-side technologies like
JavaScript and CSS . Unfortunately, Microsoft does not offer an end-to-end toolset that works
in conjunction with Visual Studio to allow for a holistic analysis of Web application perfor-
mance . There is, however, a collection of stand-alone tools available, both from Microsoft as
well as other vendors, for conducting such an analysis, many of which we will discuss in this
chapter .

As we discussed earlier in this chapter, when Web application pages are requested, the
browser governs the flow of content from the server to the user and performs rendering
based on several different factors . Much of the downloading of content is serial, meaning
that, while the browser is retrieving a piece of content, it is delaying the retrieval of other
content . To understand this and other interactions between the browser and the server, ap-
plication developers should familiarize themselves with the diversity of tools that are avail-
able for analyzing these interactions . There are several tools that are freely available and very
effective at analyzing certain parts of the browser and server interaction, including but not
limited to Fiddler, Network Monitor, Visual Round Trip Analyzer, HTTPWatch, Firebug, and
Y!Slow . The following information represents an overview of these products . A more detailed
review of these tools is beyond the scope of this chapter .

Fiddler This is one of the most widely used tools among Web application developers at
Microsoft . Fiddler is a freely available HTTP debugging proxy application that captures all
HTTP information between the client browser and the server and allows application devel-
opers to inspect and manipulate incoming and outgoing data . This tool was not designed
strictly for performance analysis but rather for the broader purpose of enabling detailed
inspection of the Web application’s HTTP traffic . However, it is quite useful for performance
analysis and understanding the detailed HTTP interactions between the browser and the
server . This enables developers to gain insight into HTTP transaction details like the number
of requests for a given page load, header values, and many other page load characteristics .
Most Web application developers would be pleasantly surprised by the power of this tool
and are encouraged to spend some time playing with it .

Network Monitor This application has been available from Microsoft for several years and
is primarily a protocol analyzer, or packet sniffer . It allows application developers to inspect
network traffic at a very low level and analyze application behavior at essentially the packet
level . Network Monitor is a great tool for conducting network-level analysis, but it is rather
complex to understand and requires knowledge of networking, packet sniffing, and related

 Chapter 4 Performance Is a Feature 79

technologies . It is not the tool you would use all that frequently, but it does provide a depth
of information that other tools do not .

Visual Round Trip Analyzer As a complement to Network Monitor, Microsoft recently re-
leased a tool for analyzing page performance and behavior over the network called Visual
Round Trip Analyzer (VRTA) . Although previously available as an internal Microsoft tool, VRTA
is a solid (and free) addition to the commercially available set of performance analysis tools .
VRTA works in conjunction with Network Monitor to capture the HTTP traffic between the
client and the server, and it renders an informative, graphical representation of the transac-
tion . This analysis includes information about the number, type, and download pattern of all
file types in the transaction as well as their respective sizes . It further provides information
about how well the page was leveraging the available bandwidth, as well as recommenda-
tions for where improvements can be made to the page . Generally speaking, this tool builds
on top of the powerful things already being done by Network Monitor but distills the output
in a way that presents actionable results for application developers .

HTTPWatch Similar to Fiddler, HTTPWatch from Simtec Limited captures all HTTP traffic
between the client browser and the server and provides a useful interface for analyzing the
captured information . Unlike Fiddler, HTTPWatch provides a more powerful graphical repre-
sentation of the page rendering behavior . This allows an application developer to easily ac-
quire a deep understanding of the interaction between the browser and the server by simply
exploring each step of the page rendering process . Figure 4-2 (shown later in this chapter)
illustrates an analysis of Microsoft’s Live Search home page .

In addition to those just described, there are other tools that are also helpful for developers
when analyzing Web page performance . Those include the freely available Firebug, which is
an add-on for the Firefox Web browser; the developer toolbar for Internet Explorer, which
helps with page troubleshooting and debugging; and Y!Slow, which is a tool built by the
performance team at Yahoo! . Each of these tools shares functionality similar to the tools
mentioned above and will likely complement any Web application developer’s analysis tool-
set . Application developers are encouraged to investigate each of the tools discussed and to
choose the tool or tools that best help to augment their analysis efforts . A list of these tools
and their respective Web sites has been provided in Appendix B of this book .

Analyzing the Performance of Live Search
To further illustrate how developers can analyze their Web applications using the tools men-
tioned previously, we will review Microsoft’s Live Search application . Using HTTPWatch, which
runs as an Internet Explorer add on, we clear the browsers cache and use the recording func-
tionality to capture the results of a main page load from http://www.live.com . HTTPWatch
generates the analysis shown in Figure 4-2 .

80 Solid Code

FIguRe 4-2 HTTPWatch analysis of http://www.live.com without browser caching .

In the lower window, under the performance tab, HTTPWatch generates some statistics about
the page load . Metrics such as the elapsed time, number of network round trips, size of the
downloaded data, and the HTTP compression efficiency provide some indication about how
this page is performing . Note that some of the features in this window may not be available
in the Basic Edition of HTTPWatch, which is available for free . Specifically, we note the follow-
ing to be true .

n The elapsed page load time is 0 .235 seconds .

n The total number of network round trips was four .

n The amount of data downloaded was 16 .3 kilobytes (KB), which includes all relevant
content, JavaScript, CSS, and image assets .

n The amount of data uploaded was 7 .7 KB, which includes the transmission of cookies
and request header values .

n HTTP compression saved 13 .5 KB from being transferred to the client, which is an ap-
proximate 45 percent reduction .

n DNS was served from a local machine cache, which saved remote DNS lookups .

n TCP connects indicate that Keep-Alives are enabled on the Web servers .

 Chapter 4 Performance Is a Feature 81

This data helps us to understand what is happening between the browser and the server
quite well . However, to better understand what the user is experiencing, we need to observe
the interaction between the server and the browser through the illustration in the upper
window . This Gantt chart–style illustration depicts the behavior of the application from the
initial server request to the end of the page load, where each bar represents an instance of
an HTTP request for a particular application asset or assets, like HTML, images, or JavaScript .
Notice that the first bar shows how much time elapsed before the main content of the page
was retrieved, and the subsequent bars show the point at which certain image assets are be-
ing rendered . In this case, the end point of the first bar indicates when the user actually sees
the content get rendered, which is 0 .235 seconds after the request was issued . As previously
noted, the total page content was delivered to the browser in 0 .235 seconds, which consisted
of four total network round trips .

Based on the brief analysis of this data, we can conclude that this is an example of a page
that is well optimized for performance . This is evident from the low number of HTTP re-
quests, the size of the data being downloaded, and the use of several other best practices,
all of which we will discuss later in this chapter . As an experiment, download a free copy of
HTTPWatch and use it yourself against a few of your favorite pages . You may be surprised by
what you find . Although the capabilities of the free version of HTTPWatch will be limited, you
will quickly obtain a visual representation of your page performance .

Although this was a simple example, it does provide interesting data points that help de-
pict the page load characteristics of the Live Search Web application . Tools like HTTPWatch
and Fiddler provide developers the ability to evaluate the detailed HTTP information being
transferred between the server and the browser, so each page load behavior can be bet-
ter understood, and performance problems can be prevented . When combined with packet
sniffing tools like Network Monitor, developers can quickly gain insight into the end-to-end
page load characteristics from the network layer to the Web browser . In general, this toolset
will allow Web application developers to get a better understanding for what their users are
experiencing, so that performance issues or bottlenecks can be avoided before the applica-
tion is released .

Tactics for Improving Web Application Performance
Earlier in this chapter, we discussed several of the architectural challenges that face develop-
ers when building high-performance Web applications . Many of these challenges stem from
the basic interaction model between Web browsers and Web servers . They include such
issues as network latency and the quality of the connection, payload size and round trips
between client and server, as well as the way code is written and organized . These issues
generally transcend multiple development platforms and affect every Web application de-
veloper, whether they are developing ASP .NET and managed code Web applications or using
an alternative technology like PHP or Java . It is important for developers to understand these

82 Solid Code

issues and incorporate performance considerations in their application designs . Performance
bugs that are discovered late in the release cycle can create significant code churn and add
risk to delivering a stable and high-quality application .

There are several best practices for improving the performance of a Web application, which
have been categorized into four basic principles below . These principles are intended to help
organize very specific, tactical best practices into simple, high-level concepts . They include
the following:

n Reduce payload size Application developers should optimize Web applications to
ensure the smallest possible data transfer footprint on the network .

n Cache effectively Performance can be improved when application developers reduce
the number of HTTP requests required for the application to function by caching con-
tent effectively .

n Optimize network traffic Application developers should ensure that their application
uses the bandwidth as efficiently as possible by optimizing the interactions between
the Web browser and the server .

n Organize and write code for better performance It is important to organize Web
application code in a way that improves gradual or progressive page rendering and en-
sures reductions in HTTP requests .

Let us review each of these principles thematically and discuss more specific, tactical exam-
ples for applying performance best practices to several facets of your Web application .

Reduce Payload Size
As reviewed earlier in this chapter, one of the primary challenges to delivering high-
 performance Web applications is the bandwidth and network latency between the client
and the server . Both will vary between users and most certainly vary by locale . To ensure that
users of your Web application have an optimal browsing experience, application developers
should optimize each page to create the smallest possible footprint on the network between
the Web server and the user’s browser . There are a number of best practices that developers
can leverage to accomplish this . Let us review each of these in greater detail .

Reduce total bytes by using HTTP compression Web servers like IIS, Apache, and others
offer the ability to compress both static and dynamic content using standard compression
methods like gzip and deflate . This practice ensures that static content (JavaScript files, CSS,
and HTML files) and dynamic content (ASP and ASPX files) are compressed by the Web server
prior to being delivered to the client browser . Once delivered to the client, the browser will
decompress the files and leverage their contents from the local cache . This ensures that the
size of the data in transit is as small as possible, which contributes to a faster retrieval experi-
ence and an improved browsing experience for the user overall . In the example illustrated in

 Chapter 4 Performance Is a Feature 83

Figure 4-2, compression reduced the payload size by 13 .5 KB, or by approximately 45 per-
cent, which is a modest reduction .

Minify JavaScript and CSS Minification is the practice of evaluating code like JavaScript and
CSS and reducing its size by removing unnecessary characters, white space, and comments .
This ensures that the size of the code being transferred between the Web server and the
client is as small as possible, thus improving the performance of the page load time . There
are several minifier utility programs available on the Internet today such as YUI Compressor
for CSS or JSMin for JavaScript, and many teams at Microsoft, for instance, share a common
minifier utility program for condensing JavaScript and CSS . This practice is very effective at
reducing JavaScript and CSS file sizes, but it often renders the JavaScript and CSS unreadable
from a debugging perspective . Application developers should not incorporate a minification
process into debug builds but rather into application builds that are to be deployed to per-
formance testing environments or live production servers .

Re-palletize images Another way to reduce the payload size of a Web page is to reduce
the size of the images that are being transmitted for use within the page . When coupled
with the use of CSS Sprites, which will be discussed later in this chapter, this technique can
further optimize the transmission of data between the Web server and the user’s computer .
Adobe published a whitepaper1 that provides insight into how reducing the color palette in
iconography and static images can have a dramatic savings on the size of an image . By sim-
ply reducing the color palette in an image from 32 bit to 16 bit to 8 bit colors, it is possible
to reduce the image size by upwards of 40 percent without degrading the quality of the im-
age . This can produce dramatic results when extrapolated out to hundreds of thousands of
requests for the same image .

Cache Effectively
As we have seen, Web application performance is improved significantly by incorporating
various strategies for reducing the payload size over the network . In addition to shrinking the
footprint of the data over the wire, application developers can also leverage page caching
strategies that will help reduce the number of HTTP requests sent between the server and
the client . Incorporating caching within your application will ensure that the browser does
not unnecessarily retrieve data that is locally cached, thereby reducing the amount of data
being transferred and the number of required HTTP requests .

Set expiration dates A Web server uses several HTTP headers to inform the requesting
client that it can leverage the copy of the resource it has in its local cache . For example,
if certain cache headers are returned for a specific image or script on the page, then the
browser will not request the image or script again until that content is deemed stale . There
are several examples of these HTTP headers, including Expires, Cache-Control, and ETag . By

1 http://www.adobe.com/uk/education/pdf/cib/ps7_cib/ps7_cib14.pdf

84 Solid Code

leveraging these headers effectively, application developers can ensure that HTTP requests
sent between the server and the client will be reduced as the resource remains cached . It is
important for developers to set this value to a date that is far enough in the future that expi-
ration is unlikely . Let’s consider a simple example .

Expires: Fri, 14 May 2010 14:00 GMT

Note The preceding code is an example of setting an Expires header on a specific page re-
source like a JavaScript file . This header tells the browser that it can use the current copy of the
resource until the specified time . Note the specified time is far in the future to ensure that subse-
quent requests for this resource are avoided for the foreseeable future . Although this is a simple
method for reducing the number of HTTP requests through caching, it does require that all page
resources, like JavaScript, CSS, or image files, incorporate some form of a versioning scheme to
allow for future updates to the site . Without versioning, browsers and proxies will not be able to
acquire new versions of the resource until the expiration date passes . To address this, developers
can append a version number to the file name of the resource to ensure that resources can be
revised in future versions of the application . This is just one example of ways to apply caching to
your application’s page resources . As mentioned, leveraging Cache-Control or ETag headers can
also help achieve similar results .

Note Each of these HTTP headers requires in-depth knowledge of correct usage patterns . I
recommend reading High Performance Web Sites (O’Reilly, 2007), by Steve Souders, or Caching
Tutorial for Web Authors and Web Masters, by Mark Nottingham2 before incorporating them in
your application .

Optimize Network Traffic
The network on which application data is being transferred between the server and the Web
browser is one element within the end-to-end Web application pipeline that developers have
the least control over, in terms of architecture or implementation . As developers, we must
trust that network engineers have done their best to implement the fastest and most ef-
ficient networks so that the data we transmit is leveraging the most optimal route between
the client and the server . However, the quality of the connection between our Web applica-
tions and our users is not always known . Therefore, we need to apply various tactics that
both reduce the payload size of the data being transmitted as well as reduce the number of
requests being sent and received . Application developers can accomplish this by incorporat-
ing the following best practices .

Increase parallel TCP ports If your Web application requires a large number of files to
render pages, then increasing the number of parallel TCP ports will allow more page content

2 http://www.mnot.net/cache_docs/

 Chapter 4 Performance Is a Feature 85

to be downloaded in parallel . This is a great way to speed up the time it takes to load the
pages in your Web application . We discussed earlier how the HTTP/1 .1 specification suggests
that browsers download only two resources at a time in parallel for a given hostname . Web
application developers must utilize additional hostnames within their application to allow
the browser to open additional connections for parallel downloading . The simplest way to
accomplish this is to organize your static content (e .g ., images, videos, etc .) by unique host-
name . The following code snippet is a recommendation for how best to accomplish this .

<embed src=”http://video.contoso.com/v1/solidcode.wmv” width=”100%”

height=”60” align=”center”/>

By leveraging multiple hostnames, parallel downloading of content by the browser will be
encouraged . Figure 4-1, shown previously, illustrated how page content is downloaded when
a single hostname is used . Figure 4-3 contrasts that by illustrating how the addition of mul-
tiple hostnames affects the downloading of content .

Fi
le

s

Time

= HTML = page resource

FIguRe 4-3 Theoretical example of resources downloading in parallel for multiple hostnames .

Enable Keep-Alives Keep-Alives is the way in which servers and Web browsers use TCP
sockets more efficiently when communicating with one another . This was brought about
to address an inefficiency with HTTP/1 .0 whereby each HTTP request required a new TCP
socket connection . Keep-Alives let Web browsers make multiple HTTP requests over a single
connection, which increases the efficiency of the network traffic between the browser and

86 Solid Code

the server by reducing the number of connections being opened and closed . This is ac-
complished by leveraging the Connection header that is passed between the server and the
browser . The following example is an HTTP response header, which illustrates how Keep-
Alives are enabled for Microsoft’s Live Search service .

HTTP/1.1 200 OK

Content-Type: text/html; charset=utf-8

X-Powered-By: ASP.NET

P3P: CP=”NON UNI COM NAV STA LOC CURa DEVa PSAa PSDa OUR IND”,

policyref=”http://privacy.msn.com/w3c/p3p.xml”

Vary: Accept-Encoding

Content-Encoding: gzip

Cache-Control: private, max-age=0

Date: Tue, 30 Sep 2008 04:30:19 GMT

Content-Length: 8152

Connection: keep-alive

In this example, we notice a set of HTTP headers and their respective values were returned .
This header indicates that an HTTP 200 response was received by the browser from the re-
quest to the host Uniform Resource Identifier (URI), which is www.live.com . In addition to
other interesting information, such as the content encoding or content length, we also notice
there is an explicit header called Connection, which indicates that Keep-Alives are enabled on
the server .

Reduce DNS lookups Previously, we discussed how DNS lookups are the result of the Web
browser being unable to locate the IP address for a given hostname in either its cache or the
operating system’s cache . These lookups require calls to Internet-based DNS servers and can
take up to 120 ms to complete . This can adversely affect the performance of a Web page if
there are a large number of unique hostnames found in any of the JavaScript, CSS, or inline
code required to render that page . Reducing DNS lookups can improve the response time of
a page, but it must be done judiciously as it can also have a negative effect on parallel down-
loading of content . As a general guideline, it is not recommended to utilize more than four
to six unique hostnames within your Web application . This compromise will maintain a small
number of DNS lookups while still leveraging the benefits of increased parallel download-
ing . Furthermore, if your application does not contain a large number of assets, it is generally
better to leverage a single hostname .

Avoid redirects Web page redirects are used to route a user from one URL to another .
While redirects are often necessary, they delay the start of the page load until the redirect
is complete . In some cases, this could be acceptable performance degradation, but over-
use could cause undesirable effects on the user experience . Generally, redirects should be
avoided if possible, but understandably they are useful in circumstances where application
developers need to support legacy URLs or certain vanity URLs used to make remembering
a page’s location fairly easy . In the sample redirect below, we see how the Live Search team
at Microsoft redirects the URL http://search.live.com to http://www.live.com . On my computer,

 Chapter 4 Performance Is a Feature 87

this redirect added an additional 0 .210 seconds to the total page load time, as measured with
HTTPWatch .

HTTP/1.1 302 Moved Temporarily

Content-Length: 0

Location: http://www.live.com/?searchonly=true&mkt=en-US

In this example, we notice that the HTTP response code is a 302, which indicates that the re-
quested URI has moved temporarily to another location . The new location is specified in the
Location header, which informs the browser where to direct the user’s request . The browser
will then automatically redirect the user to the new location .

Leverage a Content Delivery Network Earlier in this chapter, we discussed how incorpo-
rating caching in Web applications can reduce the number of HTTP requests . In addition to
caching, leveraging the services of a Content Delivery Network (CDN) provides a comple-
mentary solution that also improves the speed at which static content is delivered to your
users . CDNs like those offered by Akamai Technologies or Limelight Networks allow applica-
tion developers to host static content, such as JavaScript, CSS, or Flash objects on globally
distributed servers . Users who request this content required by a particular Web page are
dynamically routed to the content that is closest to the originating request . This not only
increases the speed of content delivery, but it also offers a level of redundancy for the data
being served . Although there can be a high cost associated with implementing a CDN solu-
tion, the results are far and away worthwhile for Web applications that typically use a large
volume of static content and require global reach .

Incorporate CSS Sprites CSS Sprites group several smaller images into one composite im-
age and display them using CSS background positioning . This technique is recommended for
improving Web application performance, as it promotes a more effective use of bandwidth
when compared with downloading several smaller images independently during a page
load . This practice is very effective because it leverages the sliding windows algorithms used
by TCP . Sliding windows algorithms are used by TCP as a way to control the flow of packets
between computers on the Internet . Generally, TCP requires that all transmitted data be ac-
knowledged by the computer that is receiving the data from the initiating computer . Sliding
window algorithms are methods that enable multiple packets of data to be acknowledged
with a single acknowledgement instead of multiple . Therefore, sliding windows will work
better for transmission of fewer, larger files rather than several smaller ones . This means that
application developers who build Web applications that require a number of small files like
iconography, or other small static artwork, should cluster images together and display those
using CSS Sprites . Let us explore an example of how CSS Sprites are utilized .

Consider the following code snippet from Microsoft’s Live Search site in conjunction with
Figure 4-4 . Notice that Figure 4-4 is a collection of four small icon files that have been
combined into a single vertical strip of images . The code below loads the single file of three

88 Solid Code

images known as asset4.gif and uses CSS positioning to display them as what appears to be
singular images . This methodology ensures that only one HTTP request is made for the single
image file, instead of four . Although this is a method of rendering images that is very differ-
ent from what most Web developers have been taught, it promotes a much better perform-
ing experience than traditional image rendering . Therefore, this practice is recommended for
Web applications that require several small, single images .

<style type=”text/css”>

input.sw_qbtn

{

background-color: #549C00;

background-image: url(/s/live/asset4.gif);

background-position: 0 -64px;

background-repeat: no-repeat;

border: none;

cursor: pointer;

height: 24px;

margin: .14em;

margin-right: .2em;

vertical-align: middle;

width: 24px; padding-top:24px;line-height:500%

}

</style>

background-position: 0px -64px;
width: 24px;
height: 24px

FIguRe 4-4 Example of a Live Search CSS Sprite .

 Chapter 4 Performance Is a Feature 89

Organize and Write Code for Better Performance
Thus far, we have discussed some examples of architectural and coding best practices for de-
veloping high performance Web applications . Let us review a few additional practices related
to the organization and writing of application code that will also help improve the perfor-
mance of your Web application pages .

Make JavaScript and CSS files external Application developers have two basic options for
incorporating JavaScript and CSS in their Web applications . They can choose to separate the
scripts into external files or add the script inline within the page markup . Generally, in terms
of pure speed, inserting JavaScript and CSS inline is faster in terms of page load rendering,
but there are other factors that make this the incorrect choice . By making JavaScript and CSS
external, application users will benefit from the inherent caching of these files within the Web
browser, so subsequent requests for the application will be faster . However, the downside to
this approach is that the user incurs the additional HTTP requests for fetching the file or files .
Clearly there are tradeoffs to making scripts external for initial page loads, but in the long
run where users are continuously returning to your application, making scripts external is a
much better solution than inserting script inline within the page .

Ensure CSS are in the top of the page Progressively rendering a Web page is an important
visual progress indicator for users of your Web application, especially on slower connections .
Ideally, we want the browser to display the page content as quickly as it is received from the
server . Unfortunately, some browsers will prohibit progressive rendering of the page if Style
Sheets are placed near the bottom of the document . They do this to avoid redrawing ele-
ments of the page if their respective styles change . Application developers should always
reference the required CSS files within the HEAD section of the HTML document so that the
browser knows how to properly display the content and can do so gradually . If CSS files are
present outside the HEAD section of the HTML document, then the browser will block pro-
gressive rendering until it finds the necessary styles . This produces a more poorly performing
Web browsing experience .

Place JavaScript at the bottom of the page When Web browsers load JavaScript files, they
block additional downloading of other content, including any content being downloaded
on parallel TCP ports . The browser behaves in this manner to ensure that the scripts being
downloaded execute in the proper order and do not need to alter the page through docu-
ment.write operations . While this makes perfect sense from a page processing perspective,
it does little to help the performance of the page load . Therefore, application developers
should defer the loading of any JavaScript until the end of the page, which will ensure that
the application users get the benefit of progressive page loading .

90 Solid Code

Note It is worth mentioning that the release of Internet Explorer 8 .0 addresses this problem .
However, application developers should be cognizant of the browser types that are being uti-
lized to use their application and design accordingly .

Throughout this chapter, we have discussed a variety of common challenges and circum-
stances that lead to poorly performing Web applications . We have also seen how, with each
challenge, there is a corresponding mitigation strategy or technique for ensuring that Web
application pages perform well . While these techniques and strategies provide a tactical
means to improve the performance of your Web applications, performance best practices
must also be incorporated into day-to-day engineering processes and procedures . The key
to implementing engineering best practices, such as those associated with performance, is to
ensure that they are properly complemented by a sound set of engineering processes that
incorporate them into the normal rhythm of software development . Let’s review how best to
accomplish this .

Incorporating Performance Best Practices
Driving performance best practices within day-to-day engineering processes helps to ensure
that overall quality remains a top priority across application development teams within the
organization . To do so effectively, organizations should establish a performance excellence
program that aligns the goal of releasing high-performance applications with the objectives
of the business that is driving the software creation . This practice helps to ensure that appli-
cation performance goals are properly prioritized and aligned with the goals of the software
application from the business perspective .

Establish a Performance Excellence Program
The key goal of any performance excellence program is to drive best practices into engineer-
ing processes so that software developers remain focused on building high performance
Web applications . This can be accomplished by establishing a simple process that should
consider the business drivers of the software application, wrap specific metrics around ap-
plication performance, and drive results through the implementation of best practices . This
process can be broken down into these five steps .

Establish usage scenarios and priorities This practice will help to prioritize the scenarios
that are important to the success of a particular Web application . The goal of this step is
to determine the most important usage scenarios for a particular application so that per-
formance improvement efforts are prioritized appropriately . Application developers are
likely to rely on program managers or business partners to help identify and prioritize the

 Chapter 4 Performance Is a Feature 91

specific usage scenarios . Customer feedback will also provide valuable insight into scenario
prioritization .

Analyze competition To understand how to set adequate performance goals for the
previously established usage scenarios, application developers must also understand the
 performance of competitive applications for similar scenarios . This not only helps to establish
a baseline understanding of what users may expect from your application’s performance, but
it also helps to learn how your competition measures up . The simplest way to accomplish this
is to utilize the tools we discussed earlier in this chapter .

Set performance goals Once the scenarios and competition are well understood, the next
step is to establish goals that will help guide your engineering efforts . These goals can be as
simple or as complex as you choose, but it is recommended that goals be aligned with some
of the key metrics we have discussed in this chapter, including but not limited to total byte
size of the page, time to load, number of files downloaded, and number of HTTP requests .

Implement best practices To achieve the goals that were previously established, applica-
tion developers should minimally ensure that the aforementioned best practices have been
implemented where applicable . The specific practices applied will very likely vary by appli-
cation as not all recommendations will be applicable . The application development project
team should determine which best practices are likely to provide the greatest benefit to their
application and incorporate them . This chapter has provided clear guidance on how to ac-
complish this .

Measure and test After goals are established and best practices are implemented, the
key is to continuously measure and test your Web applications to ensure that they are both
adhering to performance best practices and are meeting the previously established perfor-
mance goals of the software . This is perhaps one of the most important steps in the process
because it focuses on ensuring that the quality of the application performance remains high .
Organizations should focus on continuous performance testing in the same vain that they
focus on testing other aspects of application quality . While performance bugs may not be as
evident as other bugs, they have an equally negative impact on users and should be avoided
prior to releasing the application .

Once established, a performance excellence program will ensure that proper focus is always
given to this engineering tenet during the application development life cycle . This should be
accomplished by establishing a process that considers the business drivers of the software
application, incorporates specific metrics around application performance, and drives results
through the implementation of best practices and continuous testing . In the next section, we
will explore how Microsoft’s Live Search team leverages some of the aforementioned pro-
cesses and practices and ensures continued excellence in the performance of its products .

92 Solid Code

Inside Microsoft: Tackling Live Search Performance
Live Search is a Web-based search engine launched by Microsoft in September of 2006 .
The application offers users the ability to search a variety of different types of information,
including but not limited to Web sites, news, images, videos, music, and maps . The team rec-
ognizes that, to be competitive in the search market, a well-performing product is a necessity
to winning with users who have come to expect near immediate results from the competi-
tion . This passion and commitment is evident in the way the team approaches the perfor-
mance of the application; however, this was not always the case .

Shortly after Live Search launched in 2006, the team realized that its performance was sub-
optimal . Although team members had spent a lot of time testing the application, they did
not adequately test the page rendering performance and subsequently released a product
that did not perform as well as they would have liked . Fortunately, these issues were quickly
recognized, and the team began making changes to improve the performance of the site .

The team realized that several of the application’s performance issues were related to user
interface and architectural design decisions whose implications were not fully understood .
The application’s design was promptly re-evaluated, and the team moved to implement
many of the best practices mentioned in this chapter, including specific practices like combin-
ing scripts and redesigning the page to reduce the size and number of images . The results of
the team’s efforts included an equally attractive but improved page loading experience for
the users, as well as a newly discovered dedication to performance for the team . Eventually,
the Live Search team became one of the most performance-focused Web application teams
within Microsoft, and its focus is evident in the way it incorporates performance best prac-
tices into its end-to-end application development process .

Web Performance Principles
The Live Search engineering team has developed a great deal of experience over the years
in the delivery of high performance Web applications to a global audience . As a team, it
recognizes the depth and complexity of the engineering challenges it faces and has spent
many release cycles perfecting its practices . The team adheres to a set of guiding principles
that govern how it considers performance when delivering its software application to market .
These principles include:

Set performance budgets for key scenarios The team believes strongly in setting budgets
for certain page load characteristics like the number of get requests, the time to load the
page, or the total byte size of the page . These goals help to drive rigorous application design
practices or feature tradeoffs to ensure that pages that enable key usage scenarios continue
to perform well . Oftentimes these budgets require very creative design tradeoffs that could
change the way a specific feature is developed . The team believes, though, that this principle
is the first line of defense against developing poorly performing Web application pages .

 Chapter 4 Performance Is a Feature 93

Continuously analyze and test application performance In conjunction with setting goals
and budgets for page load characteristics, the team also believes strongly in running perfor-
mance test cases before features are checked into the source library and after features are
complete . While this practice does not necessarily prevent features from being checked in
that exhaust the budget, it does introduce a certain rigor into the development process that
provides early insight into poorly performing code changes . Additionally, this practice also
ensures that performance bugs are being logged early and often so that developers have
time to address the issues with the code before the application is released .

Experiment and understand user behavior Experimentation, or A/B testing, is a more
advanced approach to understanding user behavior on Web sites . It generally requires a
mechanism that allows certain features or application changes to be released to a small sub-
set of users so that behavior can be observed through instrumentation and used to drive
feature decisions . The Live Search team has leveraged this methodology to increase its un-
derstanding of how performance affects user behavior . The team subsequently incorporates
the knowledge gained from these experiments back into the features of the application . The
team has used this approach to learn the impact of page size, load times, and even the num-
ber of search results displayed to the user . While this requires an investment in a mechanism
to enable this type of testing, the results are clearly valuable to product development and
improvement .

Understand usage patterns and optimize performance accordingly The team has learned
that, if it can anticipate user behaviors, it can improve the performance of the pages that the
user subsequently visits . The team accomplishes this by preemptively downloading scripts
asynchronously prior to a user actually visiting the page that requires those scripts . For ex-
ample, if usage data indicates that a user who wishes to search for images will generally want
to preview those images before clicking on them, then the application is built to proactively
download the scripts required to render the image preview, before the user even gets to that
page . This approach does not interfere with the use of the initial page, and it speeds up the
loading of the subsequent page, which is beneficial to the user . Although not listed as a best
practice, this approach clearly demonstrates a certain creativity and level of dedication to
ensuring application performance is maximized for the user .

Key Success Factors
Since becoming keenly focused on application performance, the Live Search team has found
the above-mentioned set of principles to have had a very positive impact on the quality of
the code and the overall application performance . These principles collectively have helped
the team to incorporate performance excellence into its engineering processes and continu-
ously innovate on its services while still achieving a high level of quality and performance .
Although the team continues to learn about the usage of its application and how best to op-

94 Solid Code

timize performance for its key usage scenarios, it has found the following lessons and prac-
tices have yielded the best results .

Understand end-user perceived performance The Live Search team has learned that
poor end-user perceived performance has little to do with server latency or server health
but rather the number of get requests, the number of serialized get requests, and the way
in which the user receives the page . Therefore, the team spends a lot of time and energy
 optimizing the way in which it delivers the pages to the users and less time worrying about
how quickly the server is processing the page request .

Incorporating performance test tools As previously mentioned, the team has incorporated
performance analysis and testing into several different places within the engineering process .
To enable that testing, the team built a number of custom test tools that leverage applica-
tions like Network Monitor, Fiddler, HTTPWatch, Firebug, and others to monitor certain page
load characteristics in its development and production environments . These tools continu-
ously evaluate the application and ensure that bugs get logged when issues are discovered
and appropriately assigned to developers to address .

Learn and live the best practices The team strongly believes that application developers
should learn and incorporate the performance best practices whenever possible . More spe-
cifically, the team believes that the most impactful changes that can be made to any Web
application include making fewer requests, consolidating scripts, reducing image sizes, using
CSS Sprites, enabling HTTP compression, and incorporating edge caching using a CDN .

The Live Search team clearly believes strongly in the importance of incorporating perfor-
mance excellence and best practices into its engineering processes . This is evident from both
the way the team governs its engineering processes with respect to performance as well as
the way the application performs in the production environment . The team continues to raise
the bar with respect to Web application performance best practices among all Web-focused
teams within Microsoft .

Summary
As we have discussed in this chapter, performance is a critically important aspect of any ap-
plication and represents yet another facet of the overall quality of software applications .
Developers must understand common Web performance problems, their respective mitiga-
tion strategies, and the importance of establishing and maintaining a performance excel-
lence program within their day-to-day software engineering processes . Incorporating these
processes and best practices into the application development life cycle will definitely yield
higher quality, better performing user experiences for any Web-based software application .

 Chapter 4 Performance Is a Feature 95

Key Points
n Understand common Web performance challenges .

n Analyze and evaluate your application’s performance .

n Apply the key Web performance best practices .

n Establish a performance excellence program within your organization .

o Analyze the performance of your competition .

o Set performance goals .

o Implement performance best practices during application or feature design .

o Continuously analyze, test, and improve performance .

 143

Chapter 7

Managed Memory Model
The first rule of management is delegation. Don’t try and do everything yourself,
because you can’t.

—Anthea Turner

In managed code, garbage collection is delegated to the Common Language Runtime
(CLR) . The Garbage Collector (GC) is a component of the CLR and responsible for managing
managed memory . This chapter is a practical discussion of the Garbage Collector and the
memory mode of the .NET Framework . In managed code, memory is allocated on demand
for dynamic objects with the new operator . However, the Garbage Collector is responsible for
freeing the memory for that object when necessary . There is no delete operator as in the C++
language .

In C++, the developer was responsible for managing dynamic memory . Dynamic memory
is allocated at run time . The new and delete operators exist for this reason . The new opera-
tor allocates memory, while the delete operator frees memory . There are also advanced
techniques for allocating dynamic memory in native code . HeapCreate, HeapAlloc,
HeapFree, HeapDestroy, and related functions are used to create and obtain memory from
a native heap . To access virtual memory directly, there is VirtualAllocEx and VirtualFreeEx .
For memory mapped files, the application programming interfaces (APIs) CreateFile,
CreateFileMapping, and MapViewOfFileEx are available . Pointers are the common thread
through the various options to allocate memory at run time . Historically, mismanagement of
pointers has been the reason for untold problems, such as memory leaks and memory cor-
ruption . The C++ dynamic memory model overly involved the developer . The primary goal
of the developer is to create a solution to a problem, not to manage pointers . Managed code
allows developers to focus on solving problems rather than on the intricacies of memory
management .

Memory management for managed code is the responsibility of the developer and the
Garbage Collector . The developer is responsible for allocating objects, while the Garbage
Collector is responsible for freeing objects . When objects are created at run time, they reside
on the managed heap . You refer to an object with a reference, which is an abstraction of a
pointer . The reference abstracts the developer writing managed code from managing point-
ers, which prevents pointer-related problems . In this way, the developer delegates to the CLR
and the Garbage Collector to manage the managed heap and pointers . This delegation is an
important shift in responsibility in the managed environment from the native environment .

Two basic assumptions dominate the memory management model of .NET . Large objects are
long-lived objects . Similarly sized objects are more likely to communicate with each other .

144 Solid Code

For these reasons, the Garbage Collector uses a concept called generations to group objects
by size and age . As a practice, architect your program to match these assumptions . This will
adversely affect the performance of garbage collection and, consequently, your application .

Memory utilization in .NET revolves around the managed heap . When you allocate a new
object, it is placed on the managed heap . When unreachable, the Garbage Collector will free
that object . That will reclaim the memory for that object on the managed heap .

Managed Heap
The managed heap is partitioned into generations and the Large Object Heap . Generations
0, 1, and 2 are used to group objects by size and age . The ephemeral generations exclude the
oldest generation . At the moment, the ephemeral generations include Generations 0 and 1 .
The reason for the distinction is that the ephemeral generations and the oldest generation
sometimes can behave differently . Generation 0 is the smallest generation, Generation 1 is
medium sized, while Generation 2 is the largest . For this reason, it is more likely that larger
objects will appear in Generations 1 and 2 . Generation 0 is simply not large enough to hold
many larger objects .

The managed heap is partitioned into large objects and everything else . Large objects are
greater than 85,000 bytes (85 KB) and reside on the Large Object Heap . This is not docu-
mented and is subject to change . Everything else resides on Generation 0, 1, or 2 .

The Garbage Collector is responsible for freeing memory during a garbage collection . There
are three events that initiate garbage collection . First is an allocation that, if successful, would
exceed the memory threshold of Generation 0 . Objects are always allocated to Generation 0 .
You cannot directly place an object on Generation 1 or 2 . Because objects always start their
life at Generation 0, it holds the youngest objects . Second is allocating a large object when
there is insufficient memory available on the large object heap . The third event is calling the
GC.Collect method . This will force garbage collection on demand .

The Garbage Collector collects the generations in order: Generation 0, 1, and then 2 .
Whenever a generation is collected, the younger generations of that generation are also col-
lected . If Generation 1 is collected, then Generation 0 is also collected . Collecting Generation
2, which is considered a full collection, will also collect the ephemeral generations . This
approach means that younger generations are collected more frequently than the older gen-
erations . This is designed for efficiency since the older objects tend to reside on the larger
generations . Collecting, reclaiming, and compacting the memory for larger generations
is more costly than for smaller generations . Another advantage to this model is the ability
to collect a portion of the heap . Partitioning the managed heap generation supports this
behavior . You can collect one or more generations and avoid a full collection of the managed
heap, which is, naturally, expensive .

 Chapter 7 Managed Memory Model 145

garbage Collection
Natural garbage collection in the managed environment is non-deterministic . It occurs at
some point in time and is not entirely predictable . Natural garbage collection is not forced
with a call to GC.Collect .

When does natural garbage collection occur? Allocations for new objects are added to
Generation 0 . If that addition exceeds the threshold for Generation 0, garbage collection
occurs . The Garbage Collector will attempt to reclaim enough memory from Generation 0
to support the new allocation . If enough memory is not reclaimed, Generation 1 is collected,
and then, if necessary, Generation 2 . Objects surviving a garbage collection are promoted
to the next generation . For example, surviving objects on Generation 0 are then promoted
to Generation 1 after garbage collection . This means that older objects tend to migrate to
Generation 2 . This furthers the policy of grouping objects by age .

The Garbage Collector manages each generation similar to a stack . This makes allocations
both quick and efficient . Each generation has an allocation pointer, which delineates the end
of the last object and the beginning of the free space . This is where the next object will be
allocated . At that time, the new object is stacked upon the previous object, and the allocation
pointer is adjusted . The allocation pointer will now point to the end of the new object . For
this reason, the oldest objects are at the base of the generation, while the newest objects are
toward the top . See Figure 7-1 .

Threshold

Allocation Pointer

Allocation Pointer (Old)

Base

Free Space

Previous Object

Oldest Object

Generation 0

New Object

FIguRe 7-1 An example layout of Generation 0 after a new allocation .

146 Solid Code

When garbage collection occurs, objects on the affected generations are invalidated . A
memory tree is rebuilt beginning with the root objects and their object graphs . The root
objects are composed of the global, static, and local variables . The object graph includes all
the other objects that are referenced either directly or indirectly by the root object . Creating
the memory tree marks those objects that are reachable . Objects not in the tree are con-
sidered unreachable and available for collection . Unreachable objects have no reference
variable or a field referring to them . The Garbage Collector compacts the reachable objects
on the managed heap . Compacting the heap prevents fragmentation and maintains the stack
model .

Although unadvisable, the GC.Collect method of the .NET Framework Class Library (FCL) can
be used to force garbage collection . The parameterless version of the function performs
a full collection . The single argument version of the function targets a specific generation,
which is identified by the parameter . GC.Collect can interfere with the normal practice of the
Garbage Collector . First, forced garbage collection is expensive . Second, calling GC.Collect
frequently can harm the performance of your application .

Managed Wrappers for Native Objects
Managed classes sometimes wrap native objects . The managed class is an interface between
the managed application and the native resource . In this way, the managed class abstracts
the native resource . There are plenty of examples of this in the .NET Framework Class Library:
the FileStream class abstracts a native file, the Socket class abstracts the Berkeley sockets
interface, the Bitmap class abstracts a bitmap, and so on .

Problems can occur when there is a disparity between the size of the managed class and the
native resource that it represents . For example, a managed wrapper could be a few kilobytes
in size, while the native resource represented by the wrapper is several megabytes in size .
The Garbage Collector will track the memory for the managed wrapper . However, the mem-
ory for the native resource is unseen . You could have plenty of managed memory available,
while unknowingly running out of native memory . This creates a situation where an applica-
tion crashes for lack of memory, while the Garbage Collector believes there is plenty . Native
memory is the invisible elephant in the room . As instances of the manager wrapper are allo-
cated, the elephant is getting bigger, while the room appears nearly empty .

The GC.AddMemoryPressure and GC.RemoveMemoryPressure methods help the Garbage
Collector account for native memory . This is especially useful for classes that wrap heavy
native resources . GC.AddMemoryPressure applies artificial memory pressure to the managed
heap, while GC.RemoveMemoryPressure reduces memory pressure . Each method has a single
parameter, which is the amount (bytes) of pressure to apply or relieve . In the constructor
for the wrapper class, call GC.AddMemoryPressure and apply memory pressure equal to the

 Chapter 7 Managed Memory Model 147

amount of native memory required for the native resource . This will force additional garbage
collections, where instances of the wrapper object and native resource can be released . In
the Finalize or Dispose method, call GC.RemoveMemoryPressure to remove the additional
pressure .

The following class demonstrates the proper way to implement a managed wrapper for a
native resource that uses a disproportional amount of native memory .

 public class Elephant

 {

 public Elephant()

 {

 // Obtain native resource and allocate native memory

 GC.AddMemoryPressure(100000);

 }

 ~Elephant()

 {

 // Release native resource and associated memory

 GC.RemoveMemoryPressure(100000);

 }

 }

GC Class
The GC class, which is in the System namespace, is an interface between the user and the
Garbage Collector . Table 7-1 lists each method with a description .

TABLe 7-1 gC Methods

GC Method Description

GC.Collect Forces a garbage collection cycle . The default GC.Collect forces a
full garbage collection, which is essentially Generation 2 . For a more
granular garbage collection, use the one-parameter GC.Collect
method . The parameter stipulates the generation that should be
collected (i .e ., 0, 1, or 2) .

GC.WaitForPendingFinalizers Suspends the current thread until the finalization thread has called
the finalizers of the objects waiting on the FReachable queue . Call
this method after GC.Collect to provide ample time for the finaliza-
tion thread to finish its work before the current thread resumes .

GC.KeepAlive Keeps an otherwise unreachable object from being collected during
the next garbage collection cycle .

GC.SuppressFinalize Removes a reference to a finalizable object from the Finalization
queue . Remaining overhead related to the finalizer is avoided .
GC.SuppressFinalize is usually called in the Dispose method . Because
the object has been disposed, finalization is no longer required .

148 Solid Code

GC Method Description

GC.AddMemoryPressure Applies additional memory pressure to the managed heap . This is
typically used to compensate for native resources in managed code .

GC.RemoveMemoryPressure Removes memory pressure from the managed heap . Like
GC.AddMemoryPressure, this is typically used to compensate for na-
tive resources in managed code .

GC.CollectionCount Returns the number of times garbage collection has occurred for the
specified generation .

GC.GetGeneration Returns the generation of the provided object .

GC.GetTotalMemory Returns the number of bytes allocated on the managed heap .

GC.ReRegisterForFinalize Reattaches a finalizer to an object . This is usually called on objects
that have been resurrected to assure proper finalization .

GC.
RegisterForFullGCNotification

Registers the application to be notified when a full collection is likely
to happen and after it has occurred .

GC.CancelFullGCNotification Unregisters the application from receiving notifications about im-
pending full garbage collections .

GC.WaitForFullGCApproach Notifies an application if a full garbage collection is impending .

GC.WaitForFullGCComplete Notifies an application that a full garbage collection has completed .

Large Object Heap
The Large Object Heap holds large objects . Most large objects are arrays rather than the
assemblage of non-array members of a class . Larger objects are longer lived and typically
migrate to Generation 2 . Promoting large objects from Generation 0 and eventually to
Generation 2 is expensive . Placing really large objects immediately on the Large Object Heap
is much more efficient . The Large Object Heap is collected during a full garbage collection,
which is Generation 2 . During garbage collection, memory for large objects on the Large
Object Heap is freed . However, the Large Object Heap is never compacted . Sweeping and
consolidating large objects on the Large Object Heap would be expensive . Therefore, that
step is skipped . Garbage collection for the Large Object Heap entails these steps:

n Memory for unreachable objects is released .

n Memory from adjacent and unreachable objects is combined into a free block .

n Memory for unreachable objects at the end of the Large Object Heap is released back
to Windows .

 Chapter 7 Managed Memory Model 149

Because the Large Object Heap cannot be compacted, it can become fragmented . Allocating
and releasing disparate-sized large objects on the Large Object Heap makes fragmenta-
tion more likely . You are unable to place large objects in the free space from unreachable
smaller large objects—unless combined with contiguous space from another free object . The
Garbage Collector is forced to search the individual free spans for holes large enough for the
pending allocation . Collectively, the free spaces of the Large Object Heap may have enough
memory to honor the request but not in a contiguous area .

If you use disparate-sized objects, one possible solution is a buffer of like-sized large objects
that can be reused . This keeps the large objects in contiguous memory and could prove to
be more efficient . You conserve memory, when the number of instances would otherwise
exceed the pool, minimize fragmentation, and reduce the number of full collection opera-
tions . Full collections are especially expensive . The downside is when the simultaneous
instances are consistently less than the size of the pool . That would waste memory resources
and require fine-tuning the pool .

The following code demonstrates how to create and manage a buffer of large objects . In our
example, the buffer contains 10 large objects, as shown below .

 static BigObject[] bigobjects = { new BigObject(),

 new BigObject(),

 new BigObject(),

 new BigObject(),

 new BigObject(),

 new BigObject(),

 new BigObject(),

 new BigObject(),

 new BigObject(),

 new BigObject()};

The BigObject class below contains a byte array of 200,000 elements . For this reason, the
byte array but not the BigObject class is placed on the Large Object Heap . The code for the
class is minimally implemented because the concepts are simple . If an object in the buffer is
available for use, the bAvailable field is set to true . The Initialize method initializes an object
and makes the status available . The Reset method is called to reset an object from the object
pool that is already being used . The reinitialized object is then returned .

 public class BigObject

 {

 // other data

 public void Initialize()

 {

150 Solid Code

 // perform initialization

 bAvailable = true;

 }

 public BigObject Reset()

 {

 Initialize();

 bAvailable = false;

 return this;

 }

 public void Update()

 {

 }

 public bool bAvailabled=true;

 byte[] data = new byte[200000]; }

I run the application and create 15 objects . This exceeds the pool limit . Therefore, 10 objects
are actually created . The additional five objects reuse objects that are already in the pool .
Using Windbg, I have listed instances of the byte array . Windbg is a debugging tool that is
discussed more thoroughly in Chapter 9, “Debugging .” In the following listing, MT refers to
the method table of a class . A method table is an array of methods that belong to a par-
ticular class . Instances of the same type share the same method table . For this reason, you
can list all instances of the same type from the address of the method table . In this way, the
method table is more of a cookie of a particular type of object than an address . They are
shown in bold in the following listing . As expected, there are exactly 10 instances of the large
byte array, not 15 . Five of the instances reuse large objects from the object pool .

!dumpheap -mt 7912dae8

 Address MT Size

014aad34 7912dae8 1036

014ab140 7912dae8 1036

014ab54c 7912dae8 1036

014ab958 7912dae8 1036

02486bc0 7912dae8 200016

024b7920 7912dae8 200016

024e8680 7912dae8 200016

025193e0 7912dae8 200016

0254a140 7912dae8 200016

0257aea0 7912dae8 200016

025abc00 7912dae8 200016

025dc960 7912dae8 200016

0260d6c0 7912dae8 200016

0263e420 7912dae8 200016

 Chapter 7 Managed Memory Model 151

Finalization
Finalization occurs during garbage collection . The finalizer is invoked during finalization to
clean up resources related to the object . Non-deterministic garbage collection is performed
on a generation or Large Object Heap when the related threshold is exceeded . Because of
this, there may be some latency between when an object becomes unreachable and when
the Finalize method is called . This may cause some resource contention . For example, the
action of closing a file in the Finalize method may not occur immediately . This may cause
resource contention because, although the file is not being used, it remains unavailable for a
period of time .

Non-Deterministic Garbage Collection
Place cleanup code for the non-deterministic garbage collection in the Finalize method,
which is implicitly called in the class destructor . The class destructor cannot be called on
demand . As mentioned, there may be some latency in the Finalize method running . The class
destructor is the method of the same name of class with a tilde (~) prefix .

 class XClass {

 // destructor

 ~XClass() {

 // cleanup code

 }

 }

For certain types of resources, non-deterministic garbage collection is inappropriate . You
should not release resources that require immediate cleanup . Also, managed objects should
not be cleaned up in a Finalize method . Order of finalization is not guaranteed . Therefore,
you cannot assume that any other managed object has not been already finalized . If that has
occurred, referring to that object could raise an exception .

Non-deterministic garbage collection is neither simple nor inexpensive . The lifetime of
objects without a Finalize method is simpler . For these reasons, the Finalize method should
be avoided unless necessary . Even an empty destructor (which calls the Finalize method),
harmless in C++, enlists the object for the complete non-deterministic ride—a very expensive
ride . For the purposes of this chapter, objects with destructors are called finalizable objects .

152 Solid Code

The additional cost of having a Finalize method begins at startup . At startup, objects with
a Finalize method have a reference placed on the Finalization queue . This means, when the
object is otherwise unreachable, there is an outstanding reference being held on the queue,
which will prevent immediate garbage collection .

When the finalizable object is no longer reachable and there is a garbage collection event,
the object is not removed from memory . At this time, a normal object that is unreach-
able would be removed from memory . However, the finalizable object is moved from the
Finalization to FReachable queue . This keeps the finalizable object in memory . The current
garbage collection cycle then ends .

The FReachable queue holds finalizable objects that are waiting for their Finalize methods
to be called . Finalizer thread is a dedicated thread that services the FReachable queue . It
calls the Finalize method on the finalizable objects . After the Finalize method is called, the
 reference to the finalizable object is removed from the FReachable queue . At that time, there
are no outstanding references to the finalizable object .

During the next garbage collection, finalizable objects that have been removed from the
FReachable queue can finally be removed from memory at the next garbage collection cycle .
Unreachable normal objects are removed in one garbage collection cycle . However, unreach-
able finalizable objects require at least two garbage collection cycles . This is part of the
expense of using finalizable objects . Finalizable objects should not have a deep object graph .
The finalizable object is kept not only in memory but also in any object it references .

Figure 7-2 shows the garbage collection cycle for two groups of objects . F is a finalizable
object that references objects G and H . I is a non-finalizable object that references J and K . G,
H, J, and K are non-finalizable objects .

The IDisposable.Dispose method is an alternative to the Finalize method in non-deterministic
garbage collection . Contrary to the Finalize method, IDisposable.Dispose is deterministic,
called on demand, and has no latency .

 Chapter 7 Managed Memory Model 153

1
F

G H

I

J K

F
D
C
B
A

E
D

F is the only finalizable object and
references objects G and H.

FReachable
Queue

Finalization
Thread

Finalization
Queue

2
R

G H

K

J K

D
C
B
A F

Finalization Thread calls destruction
on object F.

FReachable
Queue

Finalization
Thread

Finalization
Queue

3
R

G H

D
C
B
A F

Garbage collection is performed.
I, J, and K removed from memory.
F reference moved to FReachable Queue.

FReachable
Queue

Finalization
Queue

5

D
C
B
A

Garbage collection is performed.
K, G, and H removed from memory.

FReachable
Queue

Finalization
Queue

4
R

G H

F
D
C
B
A D

F and I are no longer needed.

FReachable
Queue

Finalization
Thread

Finalization
Queue

FIguRe 7-2 Garbage collection cycle for finalizable object .

154 Solid Code

Disposable Objects
Disposable objects implement the IDisposable interface, which has a single method—Dispose .
The Dispose method is called deterministic or on demand . In the Dispose method, you can
clean up for resources used by the object . Unlike the Finalize method, both the managed
and unmanaged resources can be referenced in the Dispose method . Because the Dispose
method is called on demand, you know the sequence of cleanup . Therefore, you know which
objects have been previously cleaned up or not .

You can implement the Dispose method without inheriting the IDisposable interface . That
is not the same as implementing the IDisposable interface and the resulting object is not a
disposable object . The IDisposable interface is a marker indicating that the object is dispos-
able . The Framework Class Library (FCL) relies on this marker to automatically call the Dispose
method . For example, some .NET collections detect disposable objects to perform proper
cleanup when the collection is disposed .

The method name Dispose is not the most transparent in all circumstances . Long-standing
terminology or domain-specific phraseology may dictate using a different term . Most fre-
quently, the alternate method name is Close . Whatever name is chosen, the method should
delegate to the Dispose method . The user had the option to use the alternate name or the
standard name, which is Dispose . The File.Close method is an example of using a different
method name for deterministic cleanup . Avoid using alternate names for disposal unless
there is a close affinity of the term with that type of object .

You can implement both the Finalize method for non-deterministic garbage collection and
the Dispose method . Because you can clean up both managed and unmanaged resources
there, the implementation of the Dispose method is usually a superset of the Finalize method .
The Finalize method is limited to cleaning up unmanaged resources . In the Dispose method,
call the GC.SuppressFinalize method . This method will remove the reference to the current
object from the Finalization queue to avoid further overhead related to finalization . When
both are implemented, the Finalize method is essentially a safety net if the Dispose method is
not called .

To avoid inadvertently not calling the Dispose method on a disposable object, employ the
using statement . Disposable objects defined in the using statement are automatically dis-
posed of at the end of the using block . The Dispose method is called on those objects as the
using block is exited . See the following code . In this code, obj1 is a disposable object . The
Dispose method is called after the using block is exited .

 using(XClass obj1) {

 }

 // obj1 disposed.

Next is a more complex using statement . You can list more than one disposable object within
a comma-delimited list in the using statement . Within a single using statement, you can

 Chapter 7 Managed Memory Model 155

define multiple instances of the same type . For disposing different types, precede the using
block with more than one using statement—one for each type . In the following code, there
are two using statements . There is one using statement for the XClass type, while the other is
for the YClass . In total, three instances are defined . The Dispose method of the three objects
is automatically called at the end of the using block .

 using(XClass obj1=new XClass(),

 obj2=new XClass())

 using (YClass obj3 = new YClass())

 {

 }

 // Dispose method called on obj1, obj2, and obj3

Dispose Pattern
Implementing proper disposal in a managed class can be non-trivial . When there is a base
and derived types that are both disposable, the implementation can be even more complex .
The dispose pattern is more than a pattern for implementing the Dispose method . It is the
best practice for implementing deterministic and non-deterministic behavior and cleanup
for a base and derived class . This relationship must be considered to implement the proper
cleanup behavior . For easier understanding, the base and derive class implementation of the
dispose pattern are presented separately in this chapter .

The dispose pattern has four primary goals: correctness, efficiency, robustness, and code
reuse . Correctness is the goal for every pattern . The dispose pattern is the perspective from
Microsoft on the correct implementation of the Dispose and Finalize methods . A disposed
object is probably not immediately collected . For that reason, it remains available to the
application . You should be able to call the Dispose method and other methods on a disposed
object with predictable results . The dispose pattern provides robust behavior for disposed
objects . The dispose pattern is refactored for code reuse to prevent redundant code .
Redundant code is hard to maintain, and it is a place where problems can flourish .

The base class (XParent) implementation for the dispose pattern is as follows:

n In the dispose pattern, the base class implements two Dispose methods . The protected
Dispose method performs the actual resource cleanup . At the start of the method, a
flag (disposed) is set to indicate that the object is disposed . The only parameter (dispos-
ing) indicates whether the cleanup is deterministic or non-deterministic . If disposing is
true, it is deterministic and the Dispose has been called programmatically . You can clean
up both managed and unmanaged resources . If false, you are restricted to the cleanup
of unmanaged resources .

n The second Dispose method, which is part of the public interface for the class, is called
to initiate deterministic cleanup . It delegates to the one-parameter Dispose method to

156 Solid Code

perform the actual cleanup . The parameter is set to true to indicate deterministic gar-
bage collection . Because the cleanup has been performed, the Dispose method invokes
GC.SuppressFinalize and removes a reference to a disposed object from the Finalization
queue . This prevents further costs from finalization .

n BaseFunction represents any method of the class . Methods of a disposable object
should be callable even after the object is disposed . In the method, check if the object
is disposed first . If so, throw the object-disposed exception . This is demonstrated in
BaseFunction .

n The base class destructor (~XParent) delegates to the one-parameter Dispose method
also . However, the parameter is false to indicate non-deterministic garbage collection .

 // Base class

 public class XParent: IDisposable {

 // Deterministic garbage collection

 public void Dispose() {

 // if object disposed, throw exception.

 if (disposed) {

 throw new ObjectDisposedException(“XParent”);

 }

 // Call the general Dispose routine

 Dispose(true);

 // Collection already performed. Suppress further finalization.

 GC.SuppressFinalize(this);

 }

 // dispose property true if object has been disposed.

 protected bool disposed = false;

 // Deterministic and non-determenistic garbage collection

 // disposing parameter = true (determinstic)

 // false (non-deterministic)

 protected virtual void Dispose(bool disposing) {

 disposed = true;

 if (disposing) {

 // if deterministic garbage collection, cleanup

 // managed resources.

 }

 Chapter 7 Managed Memory Model 157

 // cleanup unmanaged resources.

 }

 // Representative of any base class method

 public void BaseFunction() {

 // if object disposed, throw exception.

 if (disposed) {

 throw new ObjectDisposedException(“XParent”);

 }

 // implement method behavior

 }

 // Non-deterministic garbage collection

 ~XParent() {

 // Call the general Dispose routine

 Dispose (false);

 }

 }

The child class (XChild) implementation is as follows .

n The child class inherits the public Dispose method (parameterless) and the disposed
property .

n The one-parameter Dispose method is overriden in the child class to clean up for
child resources . The overriden function is almost identical to the version in the parent .
The only other difference is that this version calls the base class Dispose method . This
affords the base class an opportunity to clean up for its resources .

n DerivedFunction represents any method of the child class . In the method, you must
check whether the object is disposed . If so, throw the object-disposed exception .

n The child class destructor (~XChild) delegates to the one-parameter Dispose method for
proper cleanup .

 // Derived class

 public class XDerived: XParent {

 // Deterministic and non-determenistic garbage collection

 // disposing parameter = true (determinstic)

 // false (non-deterministic)

 protected override void Dispose(bool disposing) {

 disposed = true;

158 Solid Code

 if (disposing)

 {

 // if deterministic garbage collection, cleanup

 // managed resources.

 }

 // Call base class Dispose method for base class cleanup.

 base.Dispose(disposing);

 // cleanup unmanaged resources of derived class.

 }

 // Representative of any derived class method

 public void DerivedFunction() {

 // if object disposed, throw exception.

 if (disposed) {

 throw new ObjectDisposedException(“XChild”);

 }

 // implement method behavior

 }

 // Non-deterministic garbage collection

 ~XDerived(){

 // Call the general Dispose routine

 Dispose(false);

 }

 }

Weak References
There are strong and weak references . Until now, this chapter has focused on strong refer-
ences . Both weak and strong references are created with the new operator . The difference
is how a weak reference is collected unlike a strong reference . A strong reference cannot
be collected unless unreachable . This is within the control of the application and not the
Garbage Collector . A weak reference, unlike a strong reference, can be collected at the dis-
cretion of the Garbage Collector .

In managed code, strong references are the default reference . There is a strong commitment
from the Garbage Collector to keep the associated object in memory—no exceptions or flex-
ibility . Conversely, a weak reference has a weak commitment from the Garbage Collector . The
Garbage Collector has the flexibility to remove the weakly referenced object from the man-
aged heap when memory stress is applied to the application and more memory is needed .

 Chapter 7 Managed Memory Model 159

Weak references represent the best of both worlds . Both the application and the Garbage
Collector can access the weakly referenced object . If not collected, the application can con-
tinue to use the object referenced by the weak reference . In addition, the Garbage Collector
can collect the weak reference whenever needed .

Weak references are ideal for objects that require a lot of memory and are persistent in some
manner . For example, you could have an application that maintains large spreadsheets that
is cached to a permanent or temporary file . Large spreadsheets that consist of hundreds of
rows and columns are memory intensive . Naturally, the application performance improves
when the spreadsheet is memory resident . However, that applies considerable memory
stress . The Garbage Collector should have the option to remove the spreadsheet object if
necessary . The spreadsheet object is the perfect candidate for a weak reference . This would
keep the spreadsheet object in memory, and accessible by the application, but also collect-
ible by the Garbage Collector, if needed . If collected, the application could easily rehydrate
the spreadsheet from the backing file .

Weak references are also ideal for maintaining caches . Cache can be memory intensive . The
weak reference can be used to vary the lifetime of the cache based on a time-out, variables,
or other criteria . For example, a cache may have a time-out . Before the time-out, the cache
could be maintained as a strong reference . When the cache expires, it would be converted to
a weak reference and be available for collection, if needed . If the cache is backed by a persis-
tent source, such as a Microsoft SQL database, associating the cache with a weak reference is
done to conserve memory resources as required .

There are two types of weak references: a short and long weak reference . A short weak ref-
erence is the default . With a short weak reference, the strong reference is released before
finalization . For long weak references, the reference is tracked through finalization . More
than extending the lifetime of the object reference, it allows the object to be resurrected .

Following are the steps for using a weak reference:

 1. Create a strong reference .

 2. Create a weak reference that is initialized with the strong reference . The default con-
structor creates a short weak reference .

 3. Set the strong reference to null .

 4. The weak reference is accessible from the WeakReference.Target property .

 5. If the WeakReference.Target property is null and the WeakReference.IsLive property is
false, the weak reference has been collected and is no longer available .

 6. If the weak reference is available, assign the WeakReference.Target property to a strong
reference, and then use the object .

160 Solid Code

 7. If the weak reference is no longer available, rehydrate the data from a persistent source .
When you are finishing using the updated strong reference, reinitialize a weak refer-
ence with the new strong reference .

The following code is a partial listing from an application that uses a weak reference . The
program displays an array of names that is read from a persistent file . The array is assigned to
a weak reference . The hScrollBar1_Scroll function scrolls through the names . First the function
creates a strong reference . This is the WeakReference.Target assignment . If null, the names
array has been collected, and the weak reference is no longer available . If that occurs, the
array is rehydrated with the GetNames function . At the end of the function, the names refer-
ence is assigned null . This negates the strong reference, which leaves the weak reference to
control the lifetime of the array .

 Name[] names = null;

 WeakReference wk;

 List<byte[]> data = new List<byte[]>();

 private void hScrollBar1_Scroll(object sender, ScrollEventArgs e) {

 names= (Name[]) wk.Target;

 if (null == names) {

 MessageBox.Show(“Rehydrate”);

 names=GetNames();

 wk.Target = names;

 }

 if (e.NewValue > names.Length) {

 return;

 }

 txtItem.Text = names[e.NewValue].first+” “+

 names[e.NewValue].last;

 names = null;

 }

Pinning
Unmanaged code expects normal pointers, which are assigned a fixed address . For example,
a pointer parameter in a native function call is a fixed pointer . A reference in managed code
is an abstraction of a moveable pointer . When calling a native function via interoperability,
you must be careful about passing references as parameters where pointers are expected .
Because the reference is movable, the native call may behave incorrectly or even crash the
application . A reference can be fixed in memory, which is called pinning . The referenced
object is then considered a pinned object .

Pinned pointers can interfere with normal garbage collection . The Garbage Collector cannot
move the memory associated with the pinned objects on the managed heap . Therefore, the
generation with the pinned object cannot be fully compacted into contiguous memory . For
this reason, pinning is the exception where a generation can possibly become fragmented .
Objects that would otherwise fit comfortably in the combined free space do not because of

 Chapter 7 Managed Memory Model 161

fragmentation . This translates into potentially more garbage collection, which is expensive
and harms the performance of the application . Keep pinning to a minimum to avoid this
behavior . If possible, pin objects for a short duration—ideally within a garbage collection
cycle . This avoids most of the problems in garbage collection related to pinning .

If possible, pin older objects and not younger objects . Older objects are objects that have
been promoted to Generation 2 . Generation 2 is collected less frequently . Therefore, the
Garbage Collector is less likely to have to work around pinned objects . Objects on Generation
0 and 1 are more volatile and move frequently . Pinning objects in these generations creates
considerable more work for the Garbage Collector . If an application pins objects regularly,
particularly small or young objects, create a pool of pinned objects . Fragmentation is limited
because the pinned objects are in contiguous memory and not scattered about the managed
heap . This will allow the Garbage Collector to compact storage into contiguous free space
more effectively . Performance of the Garbage Collector and application will improve .

There are three ways to pin an object:

n During interoperability, pinning sometimes occurs automatically . For example, passing
strings from managed code into a native API as a method parameter . The managed ref-
erence for the string is automatically pinned .

 [DllImport(“user32.dll”, CharSet = CharSet.Auto)]

 public static extern int MessageBox(IntPtr hWnd,

 [MarshalAs(UnmanagedType.LPTStr)] string text,

 [MarshalAs(UnmanagedType.LPTStr)] string caption, int options);

 static void Main(string[] args) {

 string message = “Hello, world!”;

 string caption = “Solid Code”;

 // pinned

 MessageBox(IntPtr.Zero, message, caption, 0);

 }

n The fixed statement is used to obtain a native pointer to a reference . In the fixed block,
the reference is not moveable and the related pointer can be used .

 public class TwoIntegers {

 public int first = 10;

 public int second = 15;

 }

 unsafe static void Main(string[] args) {

 TwoIntegers obj = new TwoIntegers();

 // pinned

 fixed(int *pointer=&obj.first) {

 Console.WriteLine(“First ={0}”, *pointer);

 Console.WriteLine(“Second={0}”, *(pointer+1));

 }

 }

162 Solid Code

n You can also pin objects using the GCHandle type, which is part of the System.Runtime.
InteropServices namespace . GCHandle holds a reference to a managed type that can be
used in unmanaged code or an unsafe block . As the method name implies, GCHandle.
AddrOfPinnedObject returns the address of the pinned object .

 static int[] integers = new int[] { 10, 15 };

 unsafe static void Main(string[] args)

 {

 GCHandle handle = GCHandle.Alloc(integers, GCHandleType.Pinned);

 IntPtr ptrRef= handle.AddrOfPinnedObject();

 int *pointer=(int*)ptrRef.ToPointer();

 Console.WriteLine(“First = {0}”, *pointer);

 Console.WriteLine(“Second = {0}”, *(pointer+1));

 }

Tips for the Managed Heap
These are tips for interacting with the managed heap . Some of these tips, such as avoiding
the GC.Collect method, have been articulated previously in this chapter . However, they are
included here for completeness .

n Do not program contrary to the garbage collection paradigm in the managed environ-
ment . Small objects should be short lived, while larger objects should be long lived .
Objects are expected to communicate with like-sized objects .

n Avoid boxing . Frequent boxing, as occurs when using non-generic collections with value
types, flood Generation 0 with small objects . This will trigger extra garbage collections .

n Because of the cost of finalization, use a Finalize method only when imperative .
Furthermore, empty destructors are not innocuous as in C++ . You still incur the full cost
of finalization .

n Classes that have a Finalize method should not have deep object graphs . Finalizable
objects are kept in memory longer than normal objects . Objects referenced by the
finalizable objects are also kept in memory longer .

n If possible, do not refer to other managed objects in the Finalize method . First, those
objects may no longer exist . Second, you may inadvertently create a back reference to
yourself and resurrect the current object . Resurrected objects can be problematic .

n Define disposable objects in the using statement, which will automatically call the
Dispose method and guarantee cleanup .

n Do not call GC.Collect . This is especially true for a complete garbage collection, which is
expensive . Allow garbage collection to occur naturally .

n Keep short-lived objects short lived . Do not reference short-lived objects from long-
lived objects . That links the lifetime of the two objects, and both are then essentially
long-lived objects .

 Chapter 7 Managed Memory Model 163

n Set objects as class members and local objects to null as early as possible . This allows
them to be collected as soon as possible .

n Do not allocate objects in either hashing or comparison methods . When sorting or
comparing, these methods can be called repeatedly in a short period of time . If the
methods contain allocations, this could result in considerable memory pressure on the
managed heap and additional garbage collection activity .

n Avoid near-large objects . These are objects that are close to 85 KB in size . As near-large
objects, expect those objects to migrate to Generation 2 . Add a buffer to the type and
increase the near-large object to a large object . This will place the object immediately
on the Large Object Heap and avoid the overhead of promoting the object through to
Generation 2 .

n Keep code in a Finalize method short . All Finalize methods are serviced by a separate
thread—the finalizable thread . An extended Finalize method prevents a thread from
servicing other Finalize methods and releasing the reference to the related object .

Even after adhering to every tip, don’t be surprised to have the occasional memory problem .
The CLR Profiler from Microsoft is helpful in those occasions . This tool allows developers to
diagnose issues with the managed heap .

CLR Profiler
Look up in the sky! It’s a bird! It’s a plane! It’s the CLR Profiler!

—Donis Marshall

The CLR Profiler is an excellent diagnostic tool that monitors an executing managed applica-
tion and collects data points on object allocation, the managed heap, and garbage collection .
The tool is available from Microsoft . If you suspect problems related to the managed heap,
the CLR Profiler is an effective tool for diagnosing and pinpointing particular issues . The
results of the CLR Profiler are available in a variety of text reports and graphs (mostly his-
tograms) . In addition to specific data on the managed heap, the CLR Profiler can provide
information on methods in detailed call graphs . Information can be reported during program
execution and post mortem . For example, you can obtain a memory summary of the man-
aged heap while the application is executing . Conversely, you can also get a list of objects
allocated while the application was running at program completion .

I have great reverence for the CLR Profile as the previous quote would indicate . CLR Profiler is
one of the best written .NET applications . The breadth of information and level of detail per-
taining to the managed heap and garbage collection is invaluable:

n An easy-to-understand summary of the managed heap .

n A comprehensive overview of object allocations .

164 Solid Code

n A list of methods that allocate memory on the managed heap, which includes the per-
centage of allocation attributed to each method .

n A variety of call graphs .

n Ability to track the lifetime of the Garbage Collector: when garbage collection occurs,
the duration between garbage collections, which objects were affected by a particular
garbage collection, and more .

n A list of finalized objects .

n A wide variety of graphs that paint an accurate description of managed memory for
non-developers, which is helpful for meeting with managers .

Download the current version of the CLR Profiler from the Microsoft downloads Web site:
www.microsoft.com/downloads . You can download both the 32- and 64-bit versions of the
application . Once installed, the target application can be launched from within the CLR
Profiler . The CLR Profiler is intrusive and will adversely affect the performance of the applica-
tion . For this reason, do not use the product in a production environment .

The CLR Profiler is a complex tool . The following walkthrough provides an introduction to the
product . This is not a comprehensive review of the CLR Profiler . Refer to the reference mate-
rial on the CLR Profiler from Microsoft for additional details .

CLR Profiler Walkthrough
This walkthrough demonstrates the fundamentals of the CLR Profiler . The NoBigPool and
BigPool applications are used during the walkthrough . BigPool was described earlier in this
chapter . The application maintains a pool of 10 large objects, which are reusable . A large
object is defined as an object that resides on the Large Object Heap . The NoBigPool is identi-
cal to the BigPool application except it does not maintain a pool of large objects . We assert
that BigPool is more efficient because of the pool . In the walkthrough, CLR Profiler will con-
firm this assertion or force me to rewrite this chapter . We will create 20 big objects . Depending
on the application, this will require either releasing or reusing 10 of the big objects . CLR
Profiler will allow us to compare the result of the managed heap for both applications .

Each application randomly places secondary large objects, which are increasingly larger, on
the Large Object Heap . These secondary objects are occasionally freed . As mentioned previ-
ously, during a full garbage collection, the Large Object Heap is swept but not compacted .
For this reason, the disparate-sized objects have the potential to slowly fragment the Large
Object Heap of both the NoBigPool and BigPool applications . This is being done to simulate
a normal pattern of allocation .

Start the CLR Profiler to begin the walkthrough . See Figure 7-3 . The Allocations and Calls
check boxes should be selected by default . If not, select them to profile the managed heap
and function calls, respectively .

 Chapter 7 Managed Memory Model 165

FIguRe 7-3 CLR Profiler window .

 1. We start the walkthrough by profiling the NoBigPool application . Press the Start
Application button . Browse to the folder containing bigpool .exe, and select the assem-
bly . The CLR Profiler will start the application, and the NoBigPool user interface will
appear momentarily .

The NoBigPool application is shown in Figure 7-4 . The Get Large button creates a large
object on the Large Object Heap . The Clear Object button sets the reference to a large
object to null, which makes the object unreachable and a candidate for future garbage
collection . The spin control specifies the big object to clear . Adjust the spin control
before pressing the Clear Object button .

FIguRe 7-4 The user interface for the NoBigPool application .

 2. For the walkthrough, create 10 large objects . Press the Get Large button 10 times .
Using the spin control and the Clear Object button, clear the 10 objects . Create another
10 objects . You have now touched 20 big objects in some manner .

 3. Using the CLR Profiler, we can now examine the details of the managed heap for the
NoBigPool application . Click the Show Heap Now button in the CLR Profiler to collect
current heap information pertaining to the application . The Heap Graph window is dis-
played . Close the window .

 4. We are more interested in displaying a text summary of the managed heap . From
the View menu, select Summary . In the Summary window, find the Garbage Collector
Generation Sizes group . This is where the size of the Large Object Heap is displayed .
For our example, the size of the Large Object Heap is 4 .5 megabytes (MB) . See Figure
7-5 . This number may vary based on several factors, such as the version of the .NET
Framework .

166 Solid Code

FIguRe 7-5 The Summary window of the managed heap for the NoBigPool application .

When the managed heap is larger than expected, the CLR Profiler offers a variety of
helpful reports to diagnose the problem . For example, you can request list objects and
their sizes that have been allocated . You can also view a report that lists the methods
where significant allocations are occurring . The list can be sorted by total allocation per
method, which is particularly helpful .

 5. From the Summary window, you can display the allocated objects that are currently
on the managed heap . In the Heap Statistics group of the Summary window, press
the Histogram button next to the Final Heap Bytes value . The Histogram By Size For
Surviving Objects window will be displayed . See Figure 7-6 .

FIguRe 7-6 The Histogram By Size For Surviving Objects window .

 Chapter 7 Managed Memory Model 167

 6. The Histogram By Size For Surviving Objects window is separated into two panes .
The left pane displays a graph of allocated objects—grouped by size . Scroll the pane
right to displayed larger objects, such as objects that are on the Large Object Heap .
The right pane is both a legend for the left pane and a sequential listing (descend-
ing order) of types that are on the managed heap . In our example, System.Byte arrays
account for almost 97 percent of the allocated memory, which is worth further investi-
gating . It would be helpful to know where System.Byte arrays are being allocated . That
would be an important first step in diagnosing a potential problem . In the right pane,
open a context menu (right-click) for the System.Byte array item in the legend . Select
Show Who Allocated from the menu . An Allocation Graph is displayed, as shown in
Figure 7-7 .

FIguRe 7-7 The Allocation Graph for the CLR Profiler .

Scroll to the right of the Allocation Graph window to view the actual method, or near-
est, of the allocation . The graph shows Form1.GetNext as the method where the large
object byte array is being allocated . This pinpoints the location of the potential prob-
lem, which is helpful . You now know what source code to investigate first .

 7. Let us create 20 objects using the BigPool application and then compare the results
with the NoBigPool application . First, close the CLR Profiler and the NoBigPool applica-
tion . Restart the CLR Profiler . Use the Start Application button to launch the BigPool
application from within the CLR Profiler . In the BigPool user interface, press the Get
Large button repeatedly to use the 10 objects in the pool . This exhausts the object
pool . Clear 10 objects using the spin control and the Clear Object button . Finally, get
another 10 objects using the Get Large button . You have now touched 20 big objects .

 8. Let us view the impact of this activity on the Large Object Heap . Press the Show Heap
Now button to collect current heap information about the application . Close the Heap
Graph window when displayed . Choose View from the menu, and select Summary . The

168 Solid Code

size of the Large Object Heap is reported as 4 .2 MB, which is about 8 percent less than
the NoBigPool example . See Figure 7-8 . This is a significant difference considering the
minimum number of objects that were allocated . If that was hundreds of objects, the
difference would be substantial .

FIguRe 7-8 Summary of the managed heap for the BigPool application .

Summary
The Common Language Runtime provides several services to managed applications, such
as the Garbage Collector (GC) . The developer is responsible for allocating memory for refer-
ence types on the managed heap using the new operator . However, the Garbage Collector is
responsible for freeing managed objects on the managed heap .

The managed heap is organized in generations: Generation 0, 1, and 2 . By partitioning the
heap into generations, partial garbage collections can be performed to avoid the overhead
of collecting the entire heap . There is also the Large Object Heap, which holds large objects .
Because large objects typically live longer, this avoids the expense of promoting large objects
between generations .

Garbage collection is initiated when a new allocation would cause the memory threshold for
Generation 0 to be exceeded . A full garbage collection is a Generation 2 collection, which
also collects Generations 0 and 1 . Conversely, a garbage collection of Generation 1 also col-
lects Generation 0 . Finally, a collection of Generation 0, which is a minimum collection, only
collects that generation . Garbage collection is performed on the Large Object Heap during
a full garbage collection . Memory for objects on the Large Object Heap can be reclaimed .
However, the Large Object Heap is not compacted .

 Chapter 7 Managed Memory Model 169

There is sometimes a disparity between the size of a native resource and a managed wrap-
per class for that resource . Use the GC.AddMemoryPressure and GC.RemoveMemoryPressure
methods to account for the differences .

Non-deterministic garbage collection occurs when additional memory is needed for
Generation 0, which is somewhat unpredictable . This can delay the cleanup of resources
associated with unreachable objects . For the deterministic cleanup of resources, imple-
ment the IDisposable interface . The IDisposable interface has a single method—the Dispose
method . Call the Dispose method on a disposable object to immediately clean up related
resources . If the base and derive classes are both disposable, implement the dispose pattern .

Use the CLR Profiler to diagnose memory issues in managed applications . The CLR Profiler
offers a variety of graphs and reports that detail the current or historic state of the managed
heap of a managed application . This information can be helpful in resolving difficult memory
problems .

Key Points
n The managed heap is segmented into Generations 0, 1, and 2 and the Large Object

Heap .

n The assumption of the memory model for the managed environment is that small
objects are short lived, while large objects live longer . In addition, objects of like size
are likely to communicate with each other .

n Garbage collection in .NET is non-deterministic . You can force garbage collection with
the GC.Collect method . However, this is not recommended .

n GC.AddMemoryPressure and GC.RemoveMemoryPressure apply artificial pressure to the
managed heap . This is useful to account for the difference in size between a managed
wrapper and the native resource .

n The Large Object Heap is collected, but not compacted, with a full garbage collection .

n Finalizable objects implement a Finalize method . Disposable objects implement the
IDisposable.Dispose method . Implement the dispose pattern to properly define a base
and derive a class as disposable .

n Weak references can be reclaimed at the discretion of the Garbage Collector .

n References abstract moveable pointers . Pin the reference to fix the pointer, which can
then be safely passed to native code .

 305

Index

A
<Actions1> element, 233
activity diagrams, 24
Add element, 39
ADPlus (Autodump +), 223,

231–236
ADPlus_report .txt, 232
configuration file, 232
crash mode, 231
hang mode, 231
log file, 232
Process_List .txt, 232
Web applications and,

233–234
ADPlus_report .txt, 232
agile methods of software

development, 3–8
eXtreme Programming, 5–6
practices in Microsoft

engineering culture, 7–8
Scrum, 4–5
Test-Driven Development

(TDD), 6–7
algorithms, comments and, 186
anatomy of unit test, 249–252
application configuration files,

52–65
application configuration in

practice, 65
basics, 55–56
configuration example, 57–58
configuration settings basics,

55–56
configuration storage, 56–57
custom, 60–65
custom configurations, 60–64
database connection string

configurations, 58–60
example, 57–58
storage, 56–57

application failure, defending
against, 109–111

application scalability, 98–104
approaches to scalability,

99–102
database scalability, 102–104

application test code
negative tests, 248
positive tests, 248

applying runtime security,
137–138

applying SD3+C strategy, 125
<appSettings> element, 55–56,

58–59
AssertFailedException class, 250
AssertInconclusiveException

class, 250
asserts, 250

AssertFailedException class,
250

AssertInconclusiveException
class, 250

CollectionAssert class, 250
ExpectedExceptionalAttribute

class, 251
StringAssert class, 250
UnitTestAssertException class,

250
attitude, 287–300

being realistic, 297–298
expanding your perspective,

299–300
flexibility, 292
linear vs . iterative, 288–289
paradigm shifts, 298–299
passion and, 287–288
porting code as new code,

295
priorities, 296–297
refactoring, 295–296
responsibility, 294
sales and, 289–290
solving real problems, 293

Autodump + (ADPlus), 223
ADPlus_report .txt, 232

configuration file, 232
crash mode, 231
hang mode, 231
log file, 232
Process_List .txt, 232
Web applications and,

233–234
automated code analysis,

245–254
anatomy of unit test, 249–252
static code analysis tools,

245–248
testing with visual studio,

253–254
writing application test code,

248–252
automating daily build-and-

release process, 277–278
Build process, 275–276
Deploy process, 276
feature development, 275
MSBuild, 278
NAnt, 277–278
Team Foundation Build, 278
Verification testing, 276

B
being realistic, 297–298
branches, source code, 268–269

main branch, 268
next branch, 268
shipping branch, 269
team branch, 268–269
working branch, 268

Build process, 275–276
Build Verification Testing (BVT),

241
build verification tests (BVTs), 12
BuildGreeting() method,

251–252
BuildGreetingTest() method, 251
building perspective, 256

306

BVT (Build Verification Testing),
241

BVTs (build verification tests), 12

C
C#, 172–173
CDB (Console debugger), 223
check-in procedures and

criteria, establishing,
270–273

feature check-in, 272–273
feature development, 271
shelving, 271–272
unit test verification, 271–272
unit verification, 272

choosing scalable applications
designs, 104–106

class coupling, 255–256
class design and prototyping, 14
Class Designer, 40–43
class diagrams, 25, 41–42
classes, comments and, 186
classes, defensive programming

with, 188–190
interfaces, 189–190
modifiers, 189

CLR Profiler, 224
Code Access Security (CAS),

135–137
code analysis, 215, 239

anatomy of unit test, 249–252
automated, 245–254
defining test rhythms,

241–243
establishing test work item

tracking, 243–244
importance of code quality,

258
incorporating automated

code analysis, 245–254
investing in the test process,

240–244
managing quality, 260
managing quality for

Microsoft .com Web
Analystics Platform,
258–260

measuring complexity and
maintainability of code,
255–256

static, 245–248
static code analysis tools,

245–248
test investment, 258–260
testing with visual studio,

253–254
using metrics to understand

quality, 254–257
using perspectives to

understand quality, 256–257
writing application test code,

248–252
code analysis, automated,

245–254
anatomy of unit test, 249–252
static code analysis tools,

245–248
testing with visual studio,

253–254
writing application test code,

248–252
code churn perspective,

256–257
code coverage, 180–182

functional coverage, 180
path coverage, 180
statement coverage, 180
VSInstr .exe, 181
VSPerfCLREnv .cmd, 181
VSPerfCmd .exe, 181
VSPerfMon .exe, 181
VSPerfReport .exe, 181

code coverage perspective, 257
<Code> element, 233
code quality, importance of, 258
code review, defensive

programming, 174–175
code, porting as new code, 295
code, releasing and testing

daily, 274–276
coding milestones, 265
CollectionAssert class, 250
comments, 185–188

algorithms, 186
classes, 186

documentation comments,
186–188

fields and properties, 186
functions, 186
performance, 186
program, 186
source file, 186
transfer of control, 186

common application security
threats, 121–123

common performance
challenges, 72–77

limited TCP connections,
75–76

network latency, 72–74
payload size and network

round trips, 74–75
poorly optimized code, 76–77

common programming pitfalls,
software development, 15

communications diagrams, 25
complexity and maintainability

of code, measuring,
255–256

COMPLUS_MDA, 214
component diagrams, 25
composite structure diagrams,

25
<configSections> element,

55–56
configuration file, ADPlus, 232

<Actions1> element, 233
<Code> element, 233
<Customactions1> element,

233
<Exceptions> element, 233
<Precommands> element,

233
<Settings> element, 233

configuration management in
Live Spaces, 66–68

configuration settings basics,
55–56

<connectionStrings> element,
55–56, 58–59

Console debugger (CDB), 223
crash mode, ADPlus, 231

 BVT (Build Verification Testing)

 307

creating and enforcing quality
criteria, 282–284

performance, 283
scalability, 284
security, 283

creating class diagrams, 41–42
current work item perspective,

257
custom configurations,

metadata, 60–64
<Customactions1> element, 233
customErrors element, 229
cyclomatic complexity, 255

D
daily build-and-release process,

automating, 277–278
Build process, 275–276
Deploy process, 276
feature development, 275
MSBuild, 278
NAnt, 277–278
Team Foundation Build, 278
Verification testing, 276

daily builds, 12
daily releasing and testing of

code, 274–276
database connection string

configurations, 58–60
database scalability, 102–104
debugging, 201–237

 .NET Framework, 222–223
ADPlus, 231–236
CLR Profiler, 224
code analysis, 215
Debugging Tools for

Windows, 223–224
exception handling, 227–230
managed debugging

assistants (MDAs), 213–214
Overflow Bug, 201–237
Pentium FDIV Bug, 205
Performance Monitoring,

215–218
preemptive, 210–212
proactive, 212–218

production debugging,
230–236

source servers, 209–210
symbol server, 208–209
symbols, 205–210
Sysinternals, 224–225
tools, 220–225
tracing, 225–230
Visual Studio, 220–221
Web application tracing,

225–227
Debugging Tools for Windows,

223–224
Autodump + (ADPlus), 223
Console debugger (CDB), 223
Global Flags (GFlags), 223–224
Srcsrv .dll, 224
Symsrv .dll, 224
Windbg, 223

debugging, software
development, 16

defaultRedirect attribute, 229
defending against application

failure, 109–111
defense-in-depth,

incorporating, 125
defensive programming, 16,

171–199
C# and, 172–173
code coverage, 180–182
code review, 174–175
comments, 185–188
design patterns, 196–197
interfaces, 189–190
modifiers, 189
naming conventions, 182–183
pseudo code, 183–184
software testing, 175–188
test-driven development

(TDD), 177–178
warnings, 173–174
with classes, 188–190
without examples, 190–196

defining test rhythms, 241–243
Build Verification Testing

(BVT), 241
functional testing, 241

integration testing, 242
load testing, 241–242
performance testing, 242
security testing, 242
unit testing, 241

Deploy process, 276
deployment diagrams, 25
depth of inheritance, 255
design patterns, defensive

programming, 196–197
Design Rules, 246
design, focus on, 14–15

class design and prototyping,
14

metaprogramming, 14
performance, 14–15
scalability, 15
security, 15
Unified Modeling Language

(UML), 14
designing for scale, 97–119

approaches to scalability,
99–102

choosing scalable applications
designs, 104–106

database scalability, 102–104
defending against application

failure, 109–111
ensuring manageability and

maintainability, 111–114
infrastructure and, 106–108
Live Messenger service

infrastructure, 115–118
tactics for scaling Web

applications, 104–114
understanding application

scalability, 98–104
diagrams

activity diagrams, 24
class diagrams, 25
communications diagrams, 25
component diagrams, 25
composite structure diagrams,

25
deployment diagrams, 25
interaction overview diagram,

25

 diagrams

308

object diagrams, 25
package diagrams, 25
sequence diagrams, 25
state machine diagrams, 25
timing diagrams, 25
use case diagrams, 25

documentation comments,
186–188

“dogfood” environments, 12

e
engineering culture, practices,

7–8
engineering principles, Hotmail,

10–11
ensure predictable and

repeatable processes, 11
focus on quality, 11
use common tools, processes,

and terminology, 11
engineering processes,

improving, 263–285
automating daily builds,

277–278
creating and enforcing quality

criteria, 282–284
establishing check-in

procedures and criteria,
270–273

establishing quality-focused
project rhythm, 264–266

implementing source control
and check-in processes,
266–273

managing source control,
267–269

releasing and testing code
daily, 274–276

tactics for, 264–284
using MSBuild, 278–282

ensuring manageability and
maintainability, 111–114

Enter and Exit methods, 42–43
establishing check-in

procedures and criteria,
270–273

feature check-in, 272–273

feature development, 271
shelving, 271–272
unit test verification, 271–272
unit verification, 272

establishing performance
excellence program, 90–91

establishing quality-focused
project rhythm, 264–266

establishing security process,
124–125

establishing test work item
tracking, 243–244

exception handling, 227–230
customErrors element, 229
defaultRedirect attribute, 229
Off mode, 229
On mode, 229
RemoteOnly mode, 229

<Exceptions> element, 233
expanding your perspective,

299–300
ExpectedExceptionalAttribute

class, 251
eXtreme Programming, 5–6

F
feature check-in, 272–273
feature development, 271, 275
fields and properties, comments

and, 186
finalization, 151–160

dispose pattern, 155–157
non-deterministic garbage

collection, 151–152
weak references, 158–160

flexibility, 292
focusing on design, 14–15

class design and prototyping,
14

metaprogramming, 14
performance, 14–15
scalability, 15
security, 15
Unified Modeling Language

(UML), 14
functional coverage, 180
functional testing, 241

functions, comments and, 186
FxCop, 245–246

Design Rules, 246
Globalization Rules, 246
Inoperability Rules, 246
Maintainability Rules, 246
Mobility Rules, 246
Naming Rules, 246
Performance Rules, 246
Portability Rules, 246
Reliability Rules, 246
Security Rules, 246
Usage Rules, 246

g
garbage collection, 145–150

GC class, 147
large object heap, 148–150
wrappers for native objects,

146–147
GC.AddMemoryPressure

method, 146–147
GC.Collect method, 146
GC.RemoveMemoryPressure

method, 146–147
GFlags (Global Flags), 223–224
Global Flags (GFlags), 223–224
Globalization Rules, 246

H
Handles utility, 224
hang mode, ADPlus, 231
Hotmail engineering, 10–13

“dogfood” environments, 12
build verification tests (BVTs),

12
daily builds, 12
engineering principles, 10–11
ensure predictable and

repeatable processes, 11
focus on quality, 11
key success factors, 11–13
use common tools, processes,

and terminology, 11

 documentation comments

 309

I
ILDASM, 222
implementing source control

and check-in processes,
266–273 . See also source
code branches

establishing check-in
procedures and criteria,
270–273

managing source control,
267–269

source code branches,
268–269

importance of code quality, 258
improving engineering

processes, 263–285
automating daily builds,

277–278
creating and enforcing quality

criteria, 282–284
establishing check-in

procedures and criteria,
270–273

establishing quality-focused
project rhythm, 264–266

implementing source control
and check-in processes,
266–273

managing source control,
267–269

releasing and testing code
daily, 274–276

tactics for, 264–284
using MSBuild, 278–282

improving Web application
performance, 81–90

caching effectively, 83–84
optimizing network traffic,

84–88
organizing and writing code

to improve, 89–90
reducing payload size, 82–83

incorporating automated code
analysis, 245–254

anatomy of unit test, 249–252
static code analysis tools,

245–248

testing with visual studio,
253–254

writing application test code,
248–252

incorporating defense-in-depth,
125

infrastructure scalability,
106–108

Inoperability Rules, 246
Instrument class, 42
instrumentation, 225–230

exception handling, 227–230
Web application tracing,

225–227
integration milestones, 265
integration testing, 242
interaction overview diagram,

25
investing in test process,

240–244
benefits, 240–241
defining test rhythms,

241–243
establishing test work item

tracking, 243–244
ItemGroup element, 279, 281
items, MSBuild, 279

J
Java Application properties, 51

L
limited TCP connections, 75–76
linear vs . iterative, 288–289
lines of code, 256
Live Hotmail engineering, 10–13

“dogfood” environments, 12
build verification tests (BVTs),

12
daily builds, 12
engineering principles, 10–11
ensure predictable and

repeatable processes, 11
focus on quality, 11
key success factors, 11–13

use common tools, processes,
and terminology, 11

Live Messenger service
infrastructure, 115–118

Live Search, 92–94
Live Spaces, 66–68
load test perspective, 257
load testing, 241–242, 253–254
localOnly attribute, 226–227
log files, ADPlus, 232

M
main branch, 268
maintainability, 111–114
maintainability index, 255
Maintainability Rules, 246
manageability, 111–114
managed applications,

metaprogramming, 51–65
application configuration in

practice, 65
configuration example, 57–58
configuration files, 52–65
configuration settings basics,

55–56
configuration storage, 56–57
custom configurations, 60–64
database connection string

configurations, 58–60
Managed code applications, 51
managed debugging assistants

(MDAs), 213–214
managed heap, 144
managed memory model,

143–169
CLR Profiler, 163–168
disposable objects, 154–155
dispose pattern, 155–157
finalization, 151–160
garbage collection, 145–150
GC class, 147
large object heap, 148–150
managed heap, 144
non-deterministic garbage

collection, 151–152
pinning, 160–162

 managed memory model

310

tips for managed heap,
162–163

weak references, 158–160
wrappers for native objects,

146–147
managing quality, 260
managing quality for Microsoft .

com Web Analystics
Platform, 258–260

managing source control,
267–269

measuring complexity and
maintainability of code,
255–256

class coupling, 255–256
cyclomatic complexity, 255
depth of inheritance, 255
lines of code, 256
maintainability index, 255

metadata
application configuration files,

52–65
application configuration in

practice, 65
configuration example, 57–58
configuration files, 52–65
configuration settings basics,

55–56
configuration storage, 56–57
custom configurations, 60–64
database connection string

configurations, 58–60
explained, 49–51
in managed applications,

51–65
in your applications, 65–66
Java Application properties,

51
Managed code applications,

51
Native code applications, 51

metaprogramming, 14
application configuration files,

52–65
descriptive data and, 51
explained, 49–51
in managed applications,

51–65

metrics, using to understand
quality, 254–257

milestones, project rhythm,
265–266

coding, 265
integration, 265
planning, 265
stabilization, 265

MinidumpWriteDump API, 231
Mobility Rules, 246
moving quality upstream, 8–10
MSBuild, 278–282

ItemGroup element, 279, 281
PropertyGroup element,

279–280
WriteLinesToFile task, 279
items, 279
project files, 279
properties, 279–280
tasks, 279

N
naming conventions, 182–183
Naming Rules, 246
NAnt, 277–278
Native code applications, 51
negative tests, 248
 .NET Framework, 133–138

applying runtime security,
137–138

Code Access Security (CAS),
135–137

debugging tools, 222–223
ILDASM, 222
Reflector, 222
runtime security policy,

134–135
Son of Strike (SOS), 222–223

network latency, 72–74
next branch, 268

O
object diagrams, 25
object-oriented analysis and

design (OOAD), 188
Off mode, 229

On mode, 229
OOAD (object-oriented analysis

and design), 188
ordered tests, 253
Overflow Bug, 201–237

P
package diagrams, 25
pageOutput attribute, 226
paradigm shifts, 298–299
passion, 287–288
path coverage, 180
payload size and network round

trips, 74–75
PDB (Program Database) files,

206–207
PdbStr .exe, 210
Pentium FDIV Bug, 205
performance

analyzing in applications,
78–81

analyzing Live Search, 79–81
caching effectively, 83–84
common challenges to, 72–77
design and, 14–15
establishing performance

excellence program, 90–91
improving in Web

applications, 81–90
incorporating best practices,

90–91
key success factors, 93–94
limited TCP connections,

75–76
network latency, 72–74
optimizing network traffic,

84–88
organizing and writing code

to improve, 89–90
payload size and network

round trips, 74–75
poorly optimized code, 76–77
reducing payload size, 82–83
Web performace principles,

92–93
Performance Monitoring,

215–218

 managing quality

 311

Performance Rules, 246
performance testing, 242
performance, comments and,

186
performance, quality and, 283
perspectives, expanding,

299–300
perspectives, using to

understand quality, 256–257
building perspective, 256
code churn perspective,

256–257
code coverage perspective,

257
current work item perspective,

257
load test perspective, 257
test results perspective, 257

planning milestones, 265
poorly optimized code, 76–77
Portability Rules, 246
porting code as new code, 295
positive tests, 248
practices in Microsoft

engineering culture, 7–8
<Precommands> element, 233
preemptive debugging,

210–212
principles for designing secure

applications, 123–125
applying SD3+C strategy, 125
establishing security process,

124–125
incorporating defense-in-

depth, 125
priorities, 296–297
proactive debugging, 212–218

code analysis, 215
managed debugging

assistants (MDAs), 213–214
Performance Monitoring,

215–218
Process Explorer, 225
Process Monitor, 224
Process_List .txt, 232
production debugging,

230–236

Program Database (PDB) files,
206–207

program, comments and, 186
programming, defensive,

171–199
C# and, 172–173
code coverage, 180–182
code review, 174–175
comments, 185–188
design patterns, 196–197
interfaces, 189–190
modifiers, 189
naming conventions, 182–183
pseudo code, 183–184
software testing, 175–188
Test-Driven Development

(TDD) process, 177–178
warnings, 173–174
with classes, 188–190
without examples, 190–196

project files, MSBuild, 279
project rhythm, establishing,

264–266
milestones, 265–266

properties, MSBuild, 279–280
PropertyGroup element,

279–280
prototyping, 37–47

Class Designer, 40–43
creating class diagrams, 41–42
example, 43–47
tracing, 38–40

pseudo code, 183–184

Q
quality

creating and enforcing quality
criteria, 282–284

importance of code quality,
258

managing, 260
using metrics to understand,

254–257
using perspectives to

understand, 256–257
quality criteria, creating and

enforcing, 282–284

performance, 283
scalability, 284
security, 283

quality, moving upstream, 8–10
quality-focused project rhythm,

264–266

R
real problems, solving, 293
refactoring, 295–296
Reflector, 222
releasing and testing code daily,

274–276
Reliability Rules, 246
RemoteOnly mode, 229
requestLimit attribute, 226
responsibility, 294
runtime security, 134–135,

137–138

S
sales, 289–290
scalability . See also scale,

designing for
design and, 15
quality and, 284

scale, designing for
approaches to scalability,

99–102
choosing scalable applications

designs, 104–106
database scalability, 102–104
defending against application

failure, 109–111
ensuring manageability and

maintainability, 111–114
infrastructure and, 106–108
Live Messenger service

infrastructure, 115–118
tactics for scaling Web

applications, 104–114
understanding application

scalability, 98–104
Scrum, 4–5
SD3+C strategy

applying, 125

 SD3+C strategy

312

applying best practices for
application design, 127–130

implementing threat
modeling and risk
mitigation tactics, 126–127

practices for secure
applications, 125–133

secure by default, 130–131
secure by design, 126–130
secure in deployment and

communication, 131–133
SDLC . See software

development, traditional
methods of

secure applications, principles
for designing, 123–125

applying SD3+C strategy, 125
establishing security process,

124–125
incorporating defense-in-

depth, 125
secure by default, 130–131
secure by design, 126–130

applying best practices for
application design, 127–130

implementing threat
modeling and risk
mitigation tactics, 126–127

secure in deployment and
communication, 131–133

Security Rules, 246
security testing, 242
security, design and, 15
security, design and

implementation, 121–142
 .NET Framework, 133–138
applying runtime security,

137–138
applying SD3+C strategy, 125
best practices, 139–140
best practices for application

design, 127–130
Code Access Security (CAS),

135–137
common application security

threats, 121–123

establishing security process,
124–125

implementing threat
modeling and risk
mitigation tactics, 126–127

incorporating defense-in-
depth, 125

principles for designing secure
applications, 123–125

runtime security policy,
134–135

SD3+C strategy and practices,
125–133

secure by default, 130–131
secure by design, 126–130
secure in deployment and

communication, 131–133
security, quality and, 283
sequence diagrams, 25
<Settings> element, 233
shelving, 271–272
shipping branch, 269
snippets, 42–44
software development, agile

methods of, 3–8
eXtreme Programming, 5–6
practices in Microsoft

engineering culture, 7–8
Scrum, 4–5
Test-Driven Development

(TDD), 6–7
software development,

traditional methods of, 2–3
design, 2
implementation, 2
installation and maintenance,

2
integration and verification, 2
requirements, 2

software modeling, 23–37
activity diagrams, 24
class diagrams, 25
communications diagrams, 25
component diagrams, 25
composite structure diagrams,

25
deployment diagrams, 25

interaction overview diagram,
25

object diagrams, 25
package diagrams, 25
sequence diagrams, 25
state machine diagrams, 25
timing diagrams, 25
Unified Modeling Language

(UML), 24–37
use case diagrams, 25
Visio example, 30–37

software testing, 175–188
code coverage, 180–182
comments, 185–188
naming conventions, 182–183
pseudo code, 183–184
Test-Driven Development

(TDD) process, 177–178
solid code, tactics for writing,

13–17
analyze and test, 16
class design and prototyping,

14
common programming

pitfalls, 15
debugging, 16
defend and debug, 15–16
defensive programming

techniques, 16
focus on design, 14–15
improve processes and

attitudes, 16–17
metaprogramming, 14
performance, 14–15
scalability, 15
security, 15
Unified Modeling Language

(UML), 14
solving real problems, 293
Son of Strike (SOS), 222–223
source code branches, 268–269

main branch, 268
next branch, 268
shipping branch, 269
team branch, 268–269
working branch, 268

 SDLC

 313

source control . See also source
code branches

establishing check-in
procedures and criteria,
270–273

implementing, 266–273
managing, 267–269
source code branches,

268–269
source file, comments and, 186
source servers, 209–210

PdbStr .exe, 210
SrcTool .exe, 210
Srvsrv .ini, 210
SSIndex .cmd, 210

SourceSafe, 266
Srcsrv .dll, 224
SrcTool .exe, 210
Srvsrv .ini, 210
SSIndex .cmd, 210
stabilization milestones, 265
state machine diagrams, 25
statement coverage, 180
static code analysis tools,

245–248
design rules, 246
globalization rules, 246
inoperability rules, 246
maintainability rules, 246
mobility rules, 246
naming rules, 246
performance rules, 246
portability rules, 246
reliability rules, 246
security rules, 246
usage rules, 246

stencils, UML, 29
StringAssert class, 250
Strings tool, 224
Switches element, 39
symbol server, 208–209
symbols, debugging, 205–210

source servers, 209–210
symbol server, 208–209

Symsrv .dll, 224
Sysinternals, 224–225

Handles utility, 224

Process Explorer, 225
Process Monitor, 224
Strings tool, 224
TCPView, 225

system .diagnostics, 39

T
tactics for improving

engineering processes,
264–284

automating daily builds,
277–278

creating and enforcing quality
criteria, 282–284

establishing check-in
procedures and criteria,
270–273

establishing quality-focused
project rhythm, 264–266

implementing source control
and check-in processes,
266–273

managing source control,
267–269

releasing and testing code
daily, 274–276

using MSBuild, 278–282
tactics for improving Web

application performance,
81–90

caching effectively, 83–84
optimizing network traffic,

84–88
organizing and writing code

to improve, 89–90
reducing payload size, 82–83

tactics for scaling Web
applications, 104–114

choosing scalable applications
designs, 104–106

defending against application
failure, 109–111

ensuring manageability and
maintainability, 111–114

infrastructure and, 106–108

tactics for writing solid code,
13–17

analyze and test, 16
class design and prototyping,

14
common programming

pitfalls, 15
debugging, 16
defend and debug, 15–16
defensive programming

techniques, 16
focus on design, 14–15
improve processes and

attitudes, 16–17
metaprogramming, 14
performance, 14–15
scalability, 15
security, 15
Unified Modeling Language

(UML), 14
tasks, MSBuild, 279
TCPView, 225
TDD (Test-Driven Development)

process, 6–7, 177–178
team branch, 268–269
Team Foundation Build, 278
Team Foundation Server (TFS),

266, 272–273 . See also Team
Foundation Version Control
(TFVC)

Team Foundation Version
Control (TFVC), 266, 269,
271–272 . See also Team
Foundation Server (TFS)

test investment, 258–260
test lists, 253
test process, investing in,

240–244
benefits, 240–241
defining test rhythms,

241–243
establishing test work item

tracking, 243–244
test results perspective, 257
test rhythms, defining

Build Verification Testing
(BVT), 241

 test rhythms, defining

314

functional testing, 241
integration testing, 242
load testing, 241–242
performance testing, 242
security testing, 242
unit testing, 241

test work item tracking,
establishing, 243–244

[TestClass()], 249–250
[TestMethod()], 250
Test-Driven Development (TDD)

process, 6–7, 177–178
testing and releasing code daily,

274–276
testing with Visual Studio, 20–

21, 253–254
load testing, 253–254
ordered test, 253
test lists, 253

TFS (Team Foundation Server),
266, 272–273

TFVC (Team Foundation Version
Control), 266, 269, 271–272

“think first, code later”, 21–23
timing diagrams, 25
tools, debugging, 220–225

 .NET Framework, 222–223
CLR Profiler, 224
Debugging Tools for

Windows, 223–224
Sysinternals, 224–225
tracing, 225–230
Visual Studio, 220–221

Trace, 38–39
TraceEvent class, 40, 43
traceMode attribute, 226
TraceSource class, 38–40, 42
tracing, 38–40, 225–230

exception handling, 227–230
Web application tracing,

225–227
traditional methods of software

development, 2–3
design, 2
implementation, 2
installation and maintenance,

2
integration and verification, 2

requirements, 2
transfer of control, comments

and, 186

u
UML (Unified Modeling

Language), 14, 24–37
activity diagrams, 24
class diagrams, 25
communications diagrams, 25
component diagrams, 25
composite structure diagrams,

25
deployment diagrams, 25
interaction overview diagram,

25
object diagrams, 25
package diagrams, 25
sequence diagrams, 25
state machine diagrams, 25
stencils, 29
timing diagrams, 25
use case diagrams, 25

understanding application
scalability, 98–104

approaches to scalability,
99–102

database scalability, 102–104
Unified Modeling Language

(UML), 14, 24–37
activity diagrams, 24
class diagrams, 25
communications diagrams, 25
component diagrams, 25
composite structure diagrams,

25
deployment diagrams, 25
interaction overview diagram,

25
object diagrams, 25
package diagrams, 25
sequence diagrams, 25
state machine diagrams, 25
stencils, 29
timing diagrams, 25
use case diagrams, 25

unit test verification, 271–272

unit testing, 241
unit tests, anatomy of, 249–252

asserts, 250
unit verification, 272
UnitTestAssertException class,

250
Usage Rules, 246
use case diagrams, 25
using metrics to understand

quality, 254–257
using MSBuild, 278–282
using perspectives to

understand quality, 256–257
building perspective, 256
code churn perspective,

256–257
code coverage perspective,

257
current work item perspective,

257
load test perspective, 257
test results perspective, 257

V
Verification testing, 276
Visio 2007, software modeling

and, 30–37
Visual Studio, 20–21

debugging, 220–221
load testing, 253–254
ordered test, 253
test lists, 253
testing with, 253–254

VSInstr .exe, 181
VSPerfCLREnv .cmd, 181
VSPerfCmd .exe, 181
VSPerfMon .exe, 181
VSPerfReport .exe, 181

W
warnings, defensive

programming, 173–174
waterfall model, 2–3

approach to quality, 3
design, 2
implementation, 2

 test work item tracking

 315

installation and maintenance,
2

integration and verification, 2
requirements, 2

Web Analystics Platform,
258–260

Web application tracing, 225–
227 . See also tracing

localOnly attribute, 226–227
pageOutput attribute, 226
requestLimit attribute, 226
traceMode attribute, 226

Web applications, ADPlus and,
233–234

Web applications, tactics for
scaling, 104–114

choosing scalable applications
designs, 104–106

defending against application
failure, 109–111

ensuring manageability and
maintainability, 111–114

infrastructure and, 106–108
Windbg, 223
Windows Presentation

Foundation (WPF)
applications, 52–53

working branch, 268
WPF (Windows Presentation

Foundation) applications,
52–53

WriteLinesToFile task, 279
writing application test code,

248–252
negative tests, 248
positive tests, 248

writing solid code, tactics, 13–17
analyze and test, 16
class design and prototyping,

14
common programming

pitfalls, 15
debugging, 16
defend and debug, 15–16
defensive programming

techniques, 16
focus on design, 14–15
metaprogramming, 14

performance, 14–15
scalability, 15
security, 15
Unified Modeling Language

(UML), 14

Z
ZwWaitForMultipleObjects

method, 203

 ZwWaitForMultipleObjects

About the Authors

Donis Marshall
Donis Marshall is the chief executive officer at Debuglive.com . He manages a team of expert
software developers creating the first entirely Web-based debugger for Windows applica-
tions . With 20 years of development experience and an in-depth background on Microsoft
 .NET technologies, he has authored several books, including Programming Microsoft Visual
C# 2008: The Language and .NET Security Programming . As a trainer and consultant, Donis
teaches classes and conducts seminars on .NET programming, debugging, security, and de-
sign and architecture .

John Bruno
John Bruno is a senior program manager at Microsoft with over 10 years of application
development experience . He specializes in designing and building scalable Web-based ap-
plications and services using Microsoft .NET technologies . Since joining Microsoft, John has
played key roles in launching multiple versions of Windows Live and has been responsible for
the service architecture and developer platform of Windows Live Spaces, which is delivered
to over 100 million users worldwide . His current focus is on bringing the next generation
of Web-based services for Windows Mobile to the world . You can contact John through his
Web site at http://johnbruno.net.

	Cover
	Copyright page

	Foreword
	Dedications
	Recommendations for Solid Code
	Contents at a Glance
	Table of Contents
	Foreword
	Acknowledgements
	Introduction
	Who Is This Book For?
	Organization of This Book
	System Requirements
	The Companion Web Site
	Find Additional Content Online
	Support for This Book

	Chapter 4: Performance Is a Feature
	Common Performance Challenges
	Network Latency
	Payload Size and Network Round Trips
	Limited TCP Connections
	Poorly Optimized Code

	Analyzing Application Performance
	Analyzing the Performance of Live Search

	Tactics for Improving Web Application Performance
	Reduce Payload Size
	Cache Effectively
	Optimize Network Traffic
	Organize and Write Code for Better Performance

	Incorporating Performance Best Practices
	Establish a Performance Excellence Program

	Inside Microsoft: Tackling Live Search Performance
	Web Performance Principles
	Key Success Factors

	Summary
	Key Points

	Chapter 7: Managed Memory Model
	Managed Heap
	Garbage Collection
	Managed Wrappers for Native Objects
	GC Class
	Large Object Heap

	Finalization
	Non-Deterministic Garbage Collection
	Disposable Objects
	Dispose Pattern
	Weak References

	Pinning
	Tips for the Managed Heap
	CLR Profiler
	CLR Profiler Walkthrough

	Summary
	Key Points

	Index
	About the Authors
	Donis Marshall
	John Bruno

