
http://www.facebook.com/share.php?u=http://www.microsoftpressstore.com/title/9780735625655
http://twitter.com/?status=RT: download a free sample chapter http://www.microsoftpressstore.com/title/9780735625655
https://plusone.google.com/share?url=http://www.microsoftpressstore.com/title/9780735625655
http://www.linkedin.com/shareArticle?mini=true&url=http://www.microsoftpressstore.com/title/9780735625655
http://www.stumbleupon.com/submit?url=http://www.microsoftpressstore.com/title/9780735625655/Free-Sample-Chapter

● ● ● ● ● ● ● ● ● ● ●

How to access
your CD files

Microsoft Press

The print edition of this book includes a CD. To access the
CD files, go to http://aka.ms/625655/files, and look for the
Downloads tab.

Note: Use a desktop web browser, as files may not be
accessible from all ereader devices.

Questions? Please contact: mspinput@microsoft.com

Microsoft Press CONFIDENTIAL 11/28/2007 1:16:00 PM Page 1 of 30

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2009 by GrandMasters and Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2008929790

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 3 2 1 0 9 8

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International
directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to
tkinput@microsoft.com.

Microsoft, Microsoft Press, Active Directory, ActiveX, BizTalk, Excel, Internet Explorer, MapPoint, MSDN,
SharePoint, SQL Server, Virtual Earth, Visio, Visual Basic, Visual Studio, Windows, Windows Live, Windows
NT, Windows Server, and Windows Vista are either registered trademarks or trademarks of the Microsoft group of
companies. Other product and company names mentioned herein may be the trademarks of their respective
owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by this
book.

Acquisitions Editor: Ken Jones
Developmental Editor: Laura Sackerman
Project Editor: Valerie Woolley
Editorial Production: nSight, Inc.
Technical Reviewer: Kurt Meyer; Technical Review services provided by Content Master, a member of CM
Group, Ltd.
Cover: Tom Draper Design

Body Part No. X14-15149

About the Authors

Bruce Johnson
Bruce Johnson is a partner at ObjectSharp Consulting in Toronto,
Canada. For over 25 years, he has been involved in various parts of
the computer industry, starting with UNIX and PL/1, through C++
and Microsoft Visual Basic (pre .NET), and, finally, all manner of
Microsoft Windows applications and .NET technologies. His posi-
tion as a consultant has allowed him to implement consumer-facing
Web applications, Windows applications, and the whole gamut of
service-based applications (Web Services, .NET remoting, and Win-
dows Communication Foundation [WCF]). As well as having fun
working just behind the bleeding edge of technology (you know, the
place where stuff actually has to be delivered), he has given more
than 200 presentations at conferences and user groups across North
America. His writings include magazine columns and articles, a blog (found at http://
www.objectsharp.com/blogs/bruce), and a number of Microsoft Press training kit books.

Peter Madziak
Peter Madziak is a senior consultant and instructor with Object-
Sharp Consulting—a Microsoft Gold Partner based in Toronto, Can-
ada. He is a technical leader with more than 10 years' experience
helping development teams plan, design, and develop large software
projects. Peter's primary focus over the past few years has been on
helping customers understand service-oriented architecture (SOA),
Workflow and Business Process Management (BPM), Web Services
(both RESTful and WS-*), event-driven architecture (EDA), and,
more important, how all these technologies and architectural styles
can be reconciled into an architecture that aligns well with business
needs.

As an SOA and BPM expert, Peter helps customers implement solutions, using technologies
such as WCF, Windows Workflow, Microsoft BizTalk Server 2006, SQL Service Broker, and
ASP.NET Web applications. You can visit his blog at http://www.objectsharp.com/cs/blogs
/pmadziak/default.aspx.
iii

iv About the Authors
Sara Morgan
Sara Morgan is a robotics software engineer with CoroWare, Inc.,
(http://www.coroware.com) and author of the newly released Pro-
gramming Microsoft Robotics Studio (Microsoft Press, 2008). In
addition to robotics, she has extensive experience with Microsoft
SQL Server and Microsoft Visual Studio .NET and has been develop-
ing database-driven Web applications since the earliest days of Inter-
net development.

Prior to joining CoroWare, she was an independent author and
developer, and her main client was Microsoft. During that time, she
co-wrote four training kits for Microsoft Press. Developers use these
training kits to study for certification exam; the kits cover topics such as distributed develop-
ment, Web application development, SQL Server query optimization, and SQL Server busi-
ness intelligence. Sara has also written several articles for the online development journal,
DevX.com, concerning Speech Server and the newly released Microsoft Robotics Studio. In
early 2007, she was named a Microsoft Most Valuable Professional (MVP) for the Office Com-
munications Server (OCS) group.

Contents at a Glance

1 Contracts . 1

2 Exposing the Services . 77

3 Deploying Services . 103

4 Consuming Services. 129

5 Configuring WCF . 197

6 Instrumentation . 247

7 Infrastructure Security. 323

8 User-Level Security. 357

9 When Simple Isn’t Sufficient . 411

10 Sessions and Instancing . 441

11 Transactional Services . 483

12 Concurrency . 521
v

Table of Contents

Introduction

Hardware Requirements . xix

Software Requirements . xix

Using the CD and DVD . xx

How to Install the Practice Tests. xxi

How to Use the Practice Tests . xxi

How to Uninstall the Practice Tests . xxiii

Microsoft Certified Professional Program . xxiii

Technical Support. xxiii

Evaluation Edition Software . xxiv

1 Contracts . 1

Before You Begin .2

Lesson 1: Defining Behavioral Contracts .4

Service Contracts and Service Types .4

Message Exchange Patterns .13

Duplex Channels and Client-Side Proxies .17

Lab: Defining a Service .18

Lesson Summary. .28

Lesson Review .28

Lesson 2: Defining Structural Contracts .31

Data Contracts .31

Message Contracts .40

Versioning of Data Contracts .47

Controlling Serialization .49

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!
vii

viii Table of Contents
Lab: Defining Data Contracts and Controlling Serialization. 54

Lesson Summary . 66

Lesson Review . 67

Chapter Review . 72

Chapter Summary. 72

Key Terms . 72

Case Scenarios. 73

Case Scenario 1: First Identifying a Service . 73

Case Scenario 2: Working with Legacy Systems . 73

Suggested Practices . 74

Build on an Existing Service . 74

Define a New Service Contract . 74

Take a Practice Test . 75

2 Exposing the Services. 77

Before You Begin . 77

Lesson 1: Service Endpoint Basics . 78

ABCs of Endpoints . 78

Creating an Endpoint by Using a Configuration File . 81

Creating an Endpoint by Using Code . 84

Publishing Metadata Through Endpoints . 85

Lab: Configuring Services by Using Endpoints. 87

Lesson Summary . 89

Lesson Review . 89

Lesson 2: Customizing and Extending Bindings . 91

Customizing a Standard Binding . 91

Custom Bindings . 94

Lab: Customizing Standard Bindings . 96

Lesson Summary . 98

Lesson Review . 98

Chapter Review . 99

Chapter Summary. 99

Key Terms . 99

Case Scenarios. 100

Table of Contents ix
Case Scenario 1: Configuring an Endpoint . 100

Case Scenario 2: Choosing a Binding . 100

Suggested Practices . 100

Configure Using Code and Experiment with Binding Configurations 100

Take a Practice Test . 101

3 Deploying Services . 103

Before You Begin . 103

Lesson 1: Hosting a Service on a Web Server . 104

Hosting a Service on an IIS Web Server . 104

Hosting a Service by Using WAS . 107

Support for Non-HTTP Protocols . 107

Creating a Service Host Factory . 110

Lab: Deploying a Service by Using a Service Host . 111

Lesson Summary. 115

Lesson Review . 115

Lesson 2: Hosting a Service in a Managed Application . 117

Hosting a Service by Using a Console Application . 117

Hosting a WCF Service by Using a Windows Service . 118

Hosting a Service by Using the WCF-Provided Host . 122

Lab: Deploying a Service by Using a Managed Application 123

Lesson Summary. 125

Lesson Review . 125

Chapter Review. 127

Chapter Summary . 127

Key Terms . 127

Case Scenario . 127

Case Scenario: Upgrading a Series of Earlier Web Services 127

Suggested Practices . 128

Hosting Services . 128

Take a Practice Test . 128

4 Consuming Services. 129

Before You Begin . 129

x Table of Contents
Lesson 1: Consuming WCF Services . 131

Creating Proxies and Proxy Classes . 131

Using Proxies to Call Services . 138

Lab: Creating and Using WCF Service Proxies . 147

Lesson Summary . 161

Lesson Review . 161

Lesson 2: Consuming Non-WCF Services . 168

Creating Proxies for Non-WCF Services . 168

Interoperability Through WS-I Basic Profile Support . 168

Interoperability by Extended WS-* Support . 171

Lab: Consuming a Non-WCF Mapping Service . 173

Lesson Summary . 191

Lesson Review . 192

Chapter Review . 193

Chapter Summary. 193

Key Terms . 193

Case Scenarios. 194

Case Scenario 1: Building an e-Commerce Solution . 194

Case Scenario 2: Medical Imaging Application . 194

Suggested Practices . 194

Expand Your Knowledge of Service Agents . 195

Consume a Non-WCF Service. 195

Take a Practice Test . 196

5 Configuring WCF . 197

Before You Begin . 198

Lesson 1: Configuring the Client Endpoint . 199

Declarative Configuration . 199

Imperative Configuration . 210

Lab: Configuring the Client Endpoints . 214

Lesson Summary . 220

Lesson Review . 220

Lesson 2: Dynamic Service Configuration . 224

Imperative Configuration . 224

Table of Contents xi
Building an Address . 225

Building a Binding . 228

Lab: Dynamically Building a Service Endpoint. 236

Lesson Summary. 242

Lesson Review . 242

Chapter Review. 244

Chapter Summary . 244

Key Terms . 244

Case Scenario . 244

Case Scenario: Defining Multiple Endpoints . 244

Suggested Practices . 245

Connecting with Services . 245

Watch a Webcast . 245

Take a Practice Test . 245

6 Instrumentation . 247

Before You Begin . 248

Lesson 1: Basic WCF Tracing . 249

Tracing Basics . 249

Turning Tracing On. 250

Lab: Capturing a Basic Trace . 257

Lesson Summary. 260

Lesson Review . 260

Lesson 2: End-to-End Tracing . 262

Activities. 262

Lab: Creating an End-to-End Trace . 272

Lesson Summary. 279

Lesson Review . 280

Lesson 3: WCF Extensibility . 281

WCF Extensibility . 281

Parameter Inspectors . 284

Message Inspectors . 288

Lab: Using Extensibility Points . 295

Lesson Summary. 306

xii Table of Contents
Lesson Review . 307

Lesson 4: Monitoring WCF . 308

Performance Counters . 308

Event Logging . 312

Lab: Monitoring a WCF Application. 315

Lesson Summary . 317

Lesson Review . 318

Chapter Review . 319

Chapter Summary. 319

Key Terms . 319

Case Scenario . 320

Case Scenario: Using Activity Tracing . 320

Suggested Practices . 320

End-to-End Tracing. 320

Watch a Webcast . 320

Take a Practice Test . 321

7 Infrastructure Security . 323

Before You Begin . 323

Lesson 1: Transport-Level Security . 325

Transport Security Basics . 325

Bindings and Security. 326

Lab: Observing Transport Security . 334

Lesson Summary . 341

Lesson Review . 341

Lesson 2: Message-Level Security . 343

Message Security Basics . 343

Client Credential Types . 344

Lab: Defining the Message Security. 348

Lesson Summary . 352

Lesson Review . 353

Chapter Review . 354

Chapter Summary. 354

Key Terms . 354

Table of Contents xiii
Case Scenario . 354

Case Scenario: Choosing the Security Mechanism. 354

Suggested Practices . 355

Connecting with Services . 355

Take a Practice Test . 355

8 User-Level Security. 357

Before You Begin . 357

Lesson 1: Authentication . 359

Authentication Basics. 359

Client Credentials . 360

Certificate Credentials . 362

Issued Token Credentials . 362

Windows Credentials . 366

Service Credentials. 368

Custom Authentication . 370

Lab: Working with Authentication. 372

Lesson Summary. 381

Lesson Review . 381

Lesson 2: Authorization and Impersonation . 383

Authorization . 383

Claims-Based Authorization . 385

Security Token Authentication . 392

Impersonation. 394

Lab: Authorization in WCF . 399

Lesson Summary. 405

Lesson Review . 405

Chapter Review. 407

Chapter Summary . 407

Key Terms . 407

Case Scenario . 408

Case Scenario: Choosing the Appropriate Authentication Type 408

Suggested Practices . 408

Authentication . 408

xiv Table of Contents
Authorization and Impersonation . 408

Watch a Webcast . 409

Take a Practice Test . 409

9 When Simple Isn’t Sufficient . 411

Before You Begin . 411

Lesson 1: Dealing with POX . 413

Untyped Messages . 413

Lab: Working with Messages. 421

Lesson Summary . 425

Lesson Review . 426

Lesson 2: Handling Exceptions in the Client . 427

Receiving Faults . 427

Lab: Exceptions in WCF Services. 431

Lesson Summary . 437

Lesson Review . 437

Chapter Review . 439

Chapter Summary. 439

Key Terms . 439

Case Scenario . 439

Case Scenario: Working with Raw Messages . 439

Suggested Practices . 440

Working with POX . 440

Watch a Webcast . 440

Take a Practice Test . 440

10 Sessions and Instancing . 441

Before You Begin . 441

Lesson 1: Instancing Modes . 443

Instancing. 443

Lab: Instance Modes. 454

Lesson Summary . 463

Lesson Review . 463

Lesson 2: Working with Instances . 465

Table of Contents xv
Protecting the Service . 465

Demarcating Operations. 470

Instance Deactivation . 473

Lab: Throttling and Demarcation. 475

Lesson Summary. 478

Lesson Review . 478

Chapter Review. 480

Chapter Summary . 480

Key Terms . 480

Case Scenarios . 480

Case Scenario 1: Choosing the Appropriate Instancing Mode. 480

Case Scenario 2: Protecting Your WCF Application . 481

Suggested Practices . 481

Working with Service Instances . 481

WCF Protection. 481

Watch a Webcast . 481

Take a Practice Test . 482

11 Transactional Services . 483

Before You Begin . 483

Lesson 1: Transaction Basics. 485

Transaction Properties . 485

Implementing ACID . 486

Transaction Protocols. 488

Propagating Transactions . 491

Transactions and One-Way Calls . 494

Lab: Using Transactions in Services . 495

Lesson Summary. 500

Lesson Review . 500

Lesson 2: Programming Transactions. 502

Ambient Transactions . 502

TransactionScope Class . 503

Nesting Transactions . 505

Transaction Timeouts . 508

xvi Table of Contents
Lab: Programming Transactions . 510

Lesson Summary . 514

Lesson Review . 515

Chapter Review . 517

Chapter Summary. 517

Key Terms . 517

Case Scenario . 517

Case Scenario: Transactional Services . 518

Suggested Practices . 518

Build WCF Services . 518

Watch a Webcast . 518

Take a Practice Test . 519

12 Concurrency. 521

Before You Begin . 521

Lesson 1: Concurrency in WCF Applications . 523

Concurrency and WCF . 523

Lab: Defining Concurrency Modes. 528

Lesson Summary . 534

Lesson Review . 534

Lesson 2: Synchronization . 536

Synchronization Context . 536

WCF and Synchronization . 537

Custom Synchronization Contexts . 539

Synchronization and Callbacks . 545

Lab: Using Synchronization Contexts. 549

Lesson Summary . 555

Lesson Review . 555

Chapter Review . 557

Chapter Summary. 557

Key Terms . 557

Case Scenario . 557

Case Scenario: Using WCF as a Gateway . 557

Suggested Practices . 558

Table of Contents xvii
Address Concurrency Problems . 558

Watch a Webcast . 558

Take a Practice Test . 558

Answers. 559

Glossary. 587

Index . 593

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

Introduction
This training kit is designed for developers who plan to take the Microsoft Certified Technol-
ogy Specialist (MCTS) exam, Exam 70-503, as well as for developers who need to know how to
develop Windows Communication Foundation (WCF)–based applications, using Microsoft
.NET Framework 3.5. It's assumed that, before using this training kit, you already have a work-
ing knowledge of Microsoft Windows and Microsoft Visual Basic or C# (or both).

By using this training kit, you will learn how to do the following:

Create and configure a WCF service.

Implement a client for a WCF service, using different transport protocols.

Provide security to a WCF application, using transport-level and message-level protection.

Extend WCF by using custom behaviors, including message inspectors, parameter
inspectors, and operation invokers.

Perform end-to-end (E2E) tracing on a WCF application.

Hardware Requirements
The following hardware is required to complete the practice exercises:

A computer with a 1.6-gigahertz (GHz) or faster processor.

A minimum of 384 megabytes (MB) of random access memory (RAM).

A minimum of 2.2 gigabytes (GB) of available hard disk space is required to install
Microsoft Visual Studio 2008. Additionally, 75 MB of available hard disk space is required
to install the labs.

A DVD-ROM drive.

A 1024 × 768 or higher resolution display with 256 colors or more.

A keyboard and Microsoft mouse or compatible pointing device.

Software Requirements
The following software is required to complete the practice exercises:

One of the following operating systems:

Windows Vista (any edition except Windows Vista Starter)

Windows XP with Service Pack 2 or later (any edition except Windows XP Starter)

Microsoft Windows Server 2003 with Service Pack 1 or later (any edition)
xix

xx Introduction
Windows Server 2003 R2 or later (any edition)

Windows Server 2008

Microsoft Visual Studio 2008

NOTE Evaluation edition of Visual Studio included

A 90-day evaluation edition of Visual Studio 2008 Professional edition is included on a DVD that
comes with this training kit.

Using the CD and DVD
A companion CD and an evaluation software DVD are included with this training kit. The com-
panion CD contains the following:

Practice Tests You can reinforce your understanding of how to create WCF applications
in Visual Studio 2008 with .NET Framework 3.5 by using electronic practice tests that
you can customize to meet your needs from the pool of Lesson Review questions in this
book. Alternatively, you can practice for the 70-503 certification exam by using tests cre-
ated from a pool of 200 realistic exam questions, which will give you enough different
practice tests to ensure that you’re prepared.
Practice Files Most chapters in this training kit include code and practice files that are
associated with the lab exercises at the end of every lesson. For some exercises, you are
instructed to open a project prior to starting the exercise. For other exercises, you create
a project on your own and then reference a completed project on the CD if you have a
problem following the exercise procedures. Practice files can be installed to your hard
drive by simply copying them to the desired directory. After copying the practice files
from the CD to your hard drive, you must clear the Read Only attribute to work with the
files on your hard drive.

The instructions in an exercise will look like the following:

1. Navigate to the <InstallHome>/Chapter8/Lesson1/Exercise1/<language>/Before
directory and double-click the Exercise1.sln file to open the solution in Visual
Studio.

In the path described here, the <InstallHome> directory is the one into which you
copy the sample files from the CD.

Many samples require that you either run Visual Studio or the solution’s executable files
with Administrator privileges. Also be aware that antivirus software can interfere with
some samples. As you work through an exercise, you are expected to add appropriate
Imports/using statements as necessary.

Introduction xxi
eBook An electronic version (eBook) of this training kit is included for use at times
when you don’t want to carry the printed book with you. The eBook is in Portable Doc-
ument Format (PDF), and you can view it by using Adobe Acrobat or Adobe Reader. You
can use the eBook to cut and paste code as you work through the exercises. Command-
line commands should be typed directly into a command prompt, because pasting these
commands sometimes causes the hyphen (-) to be misinterpreted in the command
prompt.
Webcasts Several webcasts are mentioned throughout this book. The companion CD
has links that will take you directly to the webcasts.
Sample Chapters Sample chapters from other Microsoft Press titles on Windows Com-
munication Foundation. These chapters are in PDF format.
Evaluation software The evaluation software DVD contains a 90-day evaluation edition
of Visual Studio 2008 Professional edition in case you want to use it instead of a full ver-
sion of Visual Studio 2008 to complete the exercises in this book.

How to Install the Practice Tests
To install the practice test software from the companion CD to your hard disk, perform the fol-
lowing steps:

1. Insert the companion CD into your CD drive and accept the license agreement that
appears onscreen. A CD menu appears.

NOTE Alternative installation instructions if AutoRun is disabled

If the CD menu or the license agreement doesn’t appear, AutoRun might be disabled on your
computer. Refer to the Readme.txt file on the CD-ROM for alternative installation instructions.

2. Click Practice Tests and follow the instructions on the screen.

How to Use the Practice Tests
To start the practice test software, follow these steps:

1. Click Start and select All Programs and Microsoft Press Training Kit Exam Prep.

A window appears that shows all the Microsoft Press training kit exam prep suites that
are installed on your computer.

2. Double-click the lesson review or practice test you want to use.

Digital Content for Digital Book Readers: If you bought a digital-only edition of this book, you can
enjoy select content from the print edition’s companion CD.
Visit http://www.microsoftpressstore.com/title/9780735625655 to get your downloadable content. This content
is always up-to-date and available to all readers.

http://www.microsoftpressstore.com/title/9780735625655

xxii Introduction
Lesson Review Options
When you start a lesson review, the Custom Mode dialog box appears, enabling you to config-
ure your test. You can click OK to accept the defaults, or you can customize the number of
questions you want, the way the practice test software works, which exam objectives you want
the questions to relate to, and whether you want your lesson review to be timed. If you are
retaking a test, you can select whether you want to see all the questions again or only those
questions you previously skipped or answered incorrectly.

After you click OK, your lesson review starts. You can take the test as follows:

To take the test, answer the questions and use the Next, Previous, and Go To buttons to
move from question to question.

After you answer an individual question, if you want to see which answers are correct,
along with an explanation of each correct answer, click Explanation.

If you would rather wait until the end of the test to see how you did, answer all the ques-
tions, and then click Score Test. You see a summary of the exam objectives that you
chose and the percentage of questions you got right overall and per objective. You can
print a copy of your test, review your answers, or retake the test.

Practice Test Options
When you start a practice test, you can choose whether to take the test in Certification Mode,
Study Mode, or Custom Mode.

Certification Mode Closely resembles the experience of taking a certification exam. The
test has a set number of questions, it is timed, and you cannot pause and restart the
timer.
Study Mode Creates an untimed test in which you can review the correct answers and
the explanations after you answer each question.
Custom Mode Gives you full control over the test options so that you can customize
them as you like.

In all modes, the user interface you see when taking the test is basically the same, but different
options are enabled or disabled, depending on the mode. The main options are discussed in
the previous section, “Lesson Review Options.”

When you review your answer to an individual practice test question, a “References” section is
provided. This section lists where in the training kit you can find the information that relates
to that question, and it provides links to other sources of information. After you click Test
Results to score your entire practice test, you can click the Learning Plan tab to see a list of ref-
erences for every objective.

Introduction xxiii
How to Uninstall the Practice Tests
To uninstall the practice test software for a training kit, use the Add Or Remove Programs
option in Control Panel in Windows.

Microsoft Certified Professional Program
Microsoft certifications provide the best method to prove your command of current Microsoft
products and technologies. The exams and corresponding certifications are developed to val-
idate your mastery of critical competencies as you design and develop or implement and sup-
port solutions with Microsoft products and technologies. Computer professionals who
become Microsoft-certified are recognized as experts and are sought after industrywide. Cer-
tification brings a variety of benefits to the individual and to employers and organizations.

MORE INFO List of Microsoft certifications

For a full list of Microsoft certifications, go to http://www.microsoft.com/learning/mcp/default.mspx.

Technical Support
Every effort has been made to ensure the accuracy of this book and the contents of the com-
panion CD. If you have comments, questions, or ideas regarding this book or the companion
CD, please send them to Microsoft Press by using either of the following methods:

E-mail: tkinput@microsoft.com

Postal Mail:

Microsoft Press
Attn: MCTS Self-Paced Training Kit (Exam 70-503): Microsoft® .NET Framework 3.5—Windows®
Communication Foundation Editor
One Microsoft Way
Redmond, WA, 98052-6399

For additional support information regarding this book and the CD-ROM (including answers
to commonly asked questions about installation and use), visit the Microsoft Press Technical
Support Web site at http://www.microsoft.com/learning/support/books. To connect directly to
the Microsoft Knowledge Base and enter a query, visit http://support.microsoft.com/search. For
support information regarding Microsoft software, please connect to http://support.microsoft.com.

xxiv Introduction
Evaluation Edition Software
The 90-day evaluation edition provided with this training kit is not the full retail product and
is provided only for the purposes of training and evaluation. Microsoft and Microsoft Techni-
cal Support do not support this evaluation edition.

Information about any issues relating to the use of this evaluation edition with this training kit
is posted in the Support section of the Microsoft Press Web site (http://www.microsoft.com
/learning/support/books/). For information about ordering the full version of any Microsoft
software, please call Microsoft Sales at (800) 426-9400 or visit http://www.microsoft.com.

Chapter 4

Consuming Services

Until this chapter, the primary focus of this book has been on building and configuring Windows
Communication Foundation (WCF) services. However, the value of service orientation is to
make certain capabilities (services) available for use (or consumption) in other programs, so
in this chapter, the emphasis shifts to consuming services. The chapter begins with coverage
of the mechanics of creating proxies to services and then discusses what you’ll need to know
to consume services effectively, using those proxies. Because one of the most powerful aspects
of Extensible Markup Language (XML)-based Web services is that their consumption does not
impose any platform, technology, or operating system constraints, the chapter will close with
a look at how WCF can be used to consume services built on other platforms.

Exam objectives in this chapter:
Create a service proxy.

Call a service by using a service proxy.

Consume non-WCF services.

Lessons in this chapter:
Lesson 1: Consuming WCF Services . 131

Lesson 2: Consuming Non-WCF Services . 168

Before You Begin
To complete the lessons in this chapter, you must have:

A computer that meets or exceeds the minimum hardware requirements listed in the
“About This Book” section at the beginning of the book.

Any edition of Microsoft Visual Studio 2008 (including Microsoft Visual C# 2008 Express
Edition or Microsoft Visual Basic 2008 Express Edition) installed on the computer.

Access to the Visual Studio solutions for this chapter included on the companion CD.

An active Internet connection for the lab following Lesson 2, “Consuming Non-WCF
Services.”
129

130 Chapter 4 Consuming Services
Real World
Peter Madziak

SOAP-based Web services have really come into their prime over the past few years when
it comes to usage inside an enterprise or institution. Many companies are using Web ser-
vices inside their organization for consumption by rich-client applications inside their
enterprise, their own Web applications, and, in many cases, by partners in a business-to-
business (B2B) setting. However, what are less common are Internet-facing SOAP services
that are available for massive consumption by any number of consumers. They certainly
exist; however, to use Gartner’s term (see http://en.wikipedia.org/wiki/Hype_cycle), they
are further behind on the hype cycle than inside-the-enterprise usage of SOAP-based
Web services.

Even so, there are many who would argue that all this is about to change. Borrowing
from Gartner again, Internet-facing Web services are rapidly approaching the “plateau
of productivity”. Whenever it happens, all will agree that it will be a fascinating era for
software development, an era in which application development teams will be able to
assemble applications more rapidly than ever before by consuming best-of-breed ser-
vices on the Internet in much the same fashion as we consume utilities such as electricity
and cable television services today. Central to working in this kind of an environment is
being able to consume other services effectively (whether they are WCF services or
not), which is the focus of this chapter. In the lab that follows the second lesson of this
chapter, the exercise works through the steps of consuming Microsoft MapPoint, an
Internet-facing mapping and geolocation Web service. This is an excellent example of
a very powerful capability, namely, access to worldwide map images and data, which is
available for use in applications more easily than it ever has been before. The true mark
of its utility is that most application developers would never dream of trying to build
this capability themselves and would be happy simply to consume it as a service offered
by someone else.

Lesson 1: Consuming WCF Services 131
Lesson 1: Consuming WCF Services
This lesson provides you with the tools you need to start consuming WCF services. Most Web
services platforms, WCF included, provide developers with a mechanism for creating an
object that can be used to communicate with the service. Such objects are called proxies, or
proxy objects, because they are effectively acting as a proxy to the service. In this lesson, the
focus is first on the four ways you can create a proxy to a WCF service and then on the details
you need to consider to call services in the most effective manner using those proxies.

After this lesson, you will be able to:
Generate proxy classes to WCF services, using the svcutil command-line utility and
Visual Studio.
Use ChannelFactory objects to create proxies dynamically to WCF services.
Manually define classes whose instances can act as proxies to WCF services.
Use proxies to call service operations, both synchronously and asynchronously.
Create and use proxies to communicate with a service over a duplex channel.
Create and use proxies to communicate with a non-WCF service.

Estimated lesson time: 40 minutes

Creating Proxies and Proxy Classes
WCF provides developers with several mechanisms for creating proxy objects that can be used
to communicate with a Web service. This section covers these different approaches.

Generating Proxy Classes from Service Metadata
The most common approach to creating proxies is first to create a class based on the metadata
of the service and then instantiate that class to create an actual proxy object. The metadata is
typically accessed by engaging in a metadata exchange with the remote service. As Lesson 2
explores further, when the remote service is not a WCF service, the only option for repre-
senting that service metadata is through the standard Web Services Description Language
(WSDL) approach. If the service is a WCF service, a richer WCF metadata exchange is pos-
sible. Either way, there are two ways of exchanging metadata, both of which are covered in this
section. In the lab following this lesson, you use these mechanisms.

Using svcutil to Generate a Proxy Class WCF provides a command-line utility called
svcutil that you can use to generate a proxy class to a service. To use it, you must open a Visual
Studio command prompt or simply refer to its full path in a regular command prompt. Table
1-1 covers the most commonly used options you will need when using svcutil to generate
proxy classes.

132 Chapter 4 Consuming Services
The following is an example of how you might use the svcutil command to generate a proxy
class to an OrderEntryService hosted at http://localhost:8080/orders/. (The commands are for-
matted on multiple lines to fit on the printed page.)

' VB

svcutil /l:VB /async /config:app.config /mergeConfig

 /namespace:*,SvcUtilProxy /out:ServiceUtilProxy.vb

 http://localhost:8080/orders/

// C#

svcutil /async /config:app.config /mergeConfig

 /namespace:*,SvcUtilProxy /out:ServiceUtilProxy.cs

 http://localhost:8080/orders/

Note a couple of things about this example:

The default language is C#, so for the Visual Basic version, the language must be specified.

Table 4-1 Commonly Used Options for the svcutil Tool

Option Description

/out:<file> Specifies the filename for the generated code. Default: derived
from the WSDL definition name, WSDL service name, or target
namespace of one of the schemas (short form: /o).

/config:<configFile> Specifies the filename for the generated config file. Default: out-
put.config.

/mergeConfig Merges the generated configuration file into an existing file
instead of overwriting the existing file.

/language:<language> Indicates the programming language in which to generate
code. Possible language names are c#, cs, csharp, vb, visualbasic,
c++, and cpp. Default: csharp (short form: /l).

/namespace:<targetNamespace,
.NETNamespace>

Maps a WSDL or XML schema target namespace to a .NET
namespace. Using an asterisk (*) for the target namespace
maps all target namespaces without an explicit mapping to the
matching .NET namespace. Default: derived from the target
namespace of the schema document for Data contracts. The
default namespace is used for all other generated types (short
form: /n).

/messageContract Generates Message contract types (short form: /mc).

/async Generates both synchronous and asynchronous method signa-
tures. Default: generates only synchronous method signatures
(short form: /a).

/serializer:XmlSerializer Generates data types that use the XmlSerializer for serialization
and deserialization.

Lesson 1: Consuming WCF Services 133
Asynchronous operations are generated on the proxy because of the /async option.

It is common to use a wildcard such as * simply to map all XML namespaces encoun-
tered in the service metadata and Data contracts to a single .NET namespace. This is
done in the preceding example using the *,SvcUtilProxy pair.

MORE INFO More on svcutil

For more information on the svcutil command-line tool, consult the documentation from your local
Visual Studio installation or online at http://msdn.microsoft.com/en-us/library/aa347733.aspx.

Using Visual Studio to Generate a Proxy Class In Visual Studio, you can add a service ref-
erence by right-clicking a project node in Solution Explorer and choosing Add Service Refer-
ence, as shown in Figure 4-1.

Figure 4-1 Adding a service reference using a context menu

In the resulting dialog box, enter the address of a service endpoint and click Go or click Dis-
cover to browse for available services. Click OK to have a proxy class generated for you. Figure
4-2 shows what the Add Service Reference dialog box might look like in the context of using
Visual Studio to add a service reference to a task service.

To add asynchronous methods to your generated proxy class and control some of the collec-
tion types, first click the Advanced button in the Add Service Reference dialog box. Figure 4-3
shows the resulting Service Reference Settings dialog box.

134 Chapter 4 Consuming Services
Figure 4-2 The Add Service Reference dialog box

Figure 4-3 The Service Reference Settings dialog box for adding a service reference

Visual Studio uses the same svcutil tool, but it provides you with a friendly interface and takes
care of some of the manual steps you need to perform when using svcutil yourself, such as
adding the reference to System.ServiceModel, adding the resulting proxy code to your project,
and so on.

Lesson 1: Consuming WCF Services 135
Visual Studio Service Reference vs. svcutil
Which one is the better approach: using Visual Studio or svcutil to create your proxy
classes? In many cases, it’s a matter of developer preference, but here are a few points to
consider:

Using the svcutil utility gives you the most control.

Using the svcutil utility requires additional manual steps such as adding the refer-
ence to System.ServiceModel, adding the resulting proxy code to your project, and
so on, that Visual Studio does automatically.

The svcutil utility can be useful in an automated build scenario in which you want
to generate proxy classes as part of the automated build process.

Manually Defining a Proxy Class
As opposed to having a tool generate a proxy class for you, you can manually define a proxy
class on your own using the same base classes that the tools use. Suppose you have the follow-
ing Service contract:

' VB

<ServiceContract()> _

Public Interface IOrderEntryService

 <OperationContract()> _

 Function SubmitOrder(ByVal order As Order) _

 As OrderAcknowledgement

 ' Etc...

End Interface

// C#

[ServiceContract()]

public interface IOrderEntryService

{

 [OperationContract()]

 OrderAcknowledgement SumbitOrder(Order order);

 // Etc...

}

You could manually define a proxy class based on that contract as follows:

' VB

Public Class OrderEntryServiceProxy

 Inherits ClientBase(Of IOrderEntryService)

 Implements IOrderEntryService

 Public Sub New(ByVal binding As Binding, _

 ByVal epAddr As EndpointAddress)

136 Chapter 4 Consuming Services
 MyBase.New(binding, epAddr)

 End Sub

 Public Sub New(ByVal endpointConfigurationName As String)

 MyBase.New(endpointConfigurationName)

 End Sub

 Public Function SubmitOrder(ByVal order As Order) _

 As OrderAcknowledgement _

 Implements IOrderEntryService.SubmitOrder

 Return Me.Channel.SubmitOrder(order)

 End Function

End Class

// C#

public class OrderEntryServiceProxy :

 ClientBase<IOrderEntryService>,IOrderEntryService

{

 public OrderEntryServiceProxy(

 Binding binding, EndpointAddress epAddr)

 : base(binding,epAddr)

 {

 }

 public OrderEntryServiceProxy(

 string endpointConfigurationName)

 : base(endpointConfigurationName)

 {

 }

 public OrderAcknowledgement SumbitOrder(Order order)

 {

 return this.Channel.SumbitOrder(order);

 }

}

If a callback channel is involved (perhaps the Service contract specifies a Callback contract
because at least one of the service operations uses the Duplex message exchange pattern
[MEP]), the base class should be DuplexClientBase instead of ClientBase. There are more steps
to setting up a callback channel, as is explained later in this lesson and in the lab that follows.

Dynamically Creating a Proxy
In some cases, you don’t need to have a proxy class explicitly defined anywhere because WCF
provides the ChannelFactory class as a means of dynamically creating a proxy object based on
the Service contract alone. Without ever explicitly generating a proxy class or manually defin-
ing one, you can create a proxy object, using only the Service contract and the ChannelFactory
class. The following code shows how this would be done.

Lesson 1: Consuming WCF Services 137
' VB

Dim binding As Binding

binding = New NetTcpBinding

Dim factory As ChannelFactory(Of IOrderEntryService)

factory = New ChannelFactory(Of IOrderEntryService)(_

 binding, "net.tcp://localhost:6789/orders/")

Dim proxy As IOrderEntryService

proxy = factory.CreateChannel()

Try

 Dim order As New Order

 order.Product = "Widget-ABC"

 order.Quantity = 10

 ' Etc...

 Dim ack As OrderAcknowledgement

 ack = proxy.SubmitOrder(order)

 Console.WriteLine(_

 "Order submitted; tracking number: {0}", _

 ack.TrackingNumber)

Catch ex As Exception

 Console.WriteLine("Error: {0}", ex.Message)

End Try

// C#

Binding binding = new NetTcpBinding();

ChannelFactory<IOrderEntryService> factory;

factory = new ChannelFactory<IOrderEntryService>(

 binding, "net.tcp://localhost:6789/orders/");

try

{

 IOrderEntryService proxy = factory.CreateChannel();

 Order order = new Order();

 order.Product = "Widget-ABC";

 order.Quantity = 10;

 // Etc...

 OrderAcknowledgement ack = proxy.SumbitOrder(order);

 Console.WriteLine(

 "Order submitted; tracking number: {0}",

 ack.TrackingNumber);

}

catch (Exception ex)

{

 Console.WriteLine("Error: {0}",ex.Message);

}

138 Chapter 4 Consuming Services
BEST PRACTICES Generate proxy classes from service metadata

One of the tenets of service orientation is that consumers should depend only on a service’s
schema and not on any of the service’s classes. The only way consumers of a service should be
coupled to the service is through the schema of the messages they must exchange with the service.
That is certainly better than some of the middleware technologies of the past such as DCOM,
CORBA, and .NET Remoting, which required consumers to have a code or binary-level dependency
on the service and the request and response objects.

If you manually create proxy classes or use the ChannelFactory class to create proxy objects dynam-
ically, you need to have access to the WCF Service contract. If you are not getting access to the
service contract by generating code from service metadata, that means you must have a code or
binary-level reference to the WCF Service contract. Avoid that form of coupling when building ser-
vices. Always strive to minimize the coupling between a service and its consumers. In short, always
generate proxy classes from service metadata, either by using svcutil or by adding a service refer-
ence in Visual Studio.

Using Proxies to Call Services
In one sense, using a proxy to call a service is as simple as calling a method on the proxy object,
which the WCF plumbing will then translate into a message and send the message to the wire-
level transport layer. Suppose you have the following service:

' VB

<DataContract()> _

Public Class Order

 <DataMember()> _

 Public Product As String

 <DataMember()> _

 Public Quantity As Integer

 ' Etc...

End Class

<DataContract()> _

Public Class OrderAcknowledgement

 <DataMember()> _

 Public TrackingNumber As String

 ' Etc...

End Class

<ServiceContract()> _

Public Interface IOrderEntryService

 <OperationContract()> _

 Function SubmitOrder(ByVal order As Order) _

 As OrderAcknowledgement

Lesson 1: Consuming WCF Services 139
 ' Etc...

End Interface

Public Class OrderEntryService

 Implements IOrderEntryService

 Public Function SubmitOrder(ByVal order As Order) _

 As OrderAcknowledgement _

 Implements IOrderEntryService.SubmitOrder

 Dim ack As New OrderAcknowledgement

 ack.TrackingNumber = "alpha-bravo-123"

 Return ack

 End Function

 ' Etc...

End Class

// C#

[DataContract()]

public class Order

{

 [DataMemberAttribute()]

 public string Product;

 [DataMemberAttribute()]

 public int Quantity;

 // Etc...

}

[DataContract()]

public class OrderAcknowledgement

{

 [DataMemberAttribute()]

 public string TrackingNumber;

 // Etc...

}

[ServiceContract()]

public interface IOrderEntryService

{

 [OperationContract()]

 OrderAcknowledgement SumbitOrder(Order order);

 // Etc...

}

public class OrderEntryService : IOrderEntryService

{

 public OrderAcknowledgement SumbitOrder(Order order)

 {

 OrderAcknowledgement ack = new OrderAcknowledgement();

140 Chapter 4 Consuming Services
 ack.TrackingNumber = "alpha-bravo-123";

 return ack;

 }

 // Etc...

}

You could use the proxy to call such a service in a number of ways. First, you could use the
ChannelFactory class to create a proxy dynamically, as shown here. (In this section, the code
that differs among the three methods of using a proxy is shown in bold.)

' VB

Dim binding As Binding

binding = New NetTcpBinding

Dim factory As ChannelFactory(Of IOrderEntryService)

factory = New ChannelFactory(Of IOrderEntryService)(_

 binding, "net.tcp://localhost:6789/orders/")

Dim proxy As IOrderEntryService

proxy = factory.CreateChannel()

Dim order As New Order

order.Product = "Widget-ABC"

order.Quantity = 10

' Etc...

Dim ack As OrderAcknowledgement

ack = proxy.SubmitOrder(order)

Console.WriteLine(_

 "Order submitted; tracking number: {0}", _

 ack.TrackingNumber)

// C#

Binding binding = new NetTcpBinding();

ChannelFactory<IOrderEntryService> factory;

factory = new ChannelFactory<IOrderEntryService>(

 binding, "net.tcp://localhost:6789/orders/");

IOrderEntryService proxy = factory.CreateChannel();

Order order = new Order();

order.Product = "Widget-ABC";

order.Quantity = 10;

// Etc...

OrderAcknowledgement ack = proxy.SumbitOrder(order);

Console.WriteLine(

 "Order submitted; tracking number: {0}",

 ack.TrackingNumber);

Second, you could manually define a proxy class as follows:

' VB

Public Class OrderEntryServiceProxy

 Inherits ClientBase(Of IOrderEntryService)

Lesson 1: Consuming WCF Services 141
 Implements IOrderEntryService

 Public Sub New(ByVal binding As Binding, _

 ByVal epAddr As EndpointAddress)

 MyBase.New(binding, epAddr)

 End Sub

 Public Sub New(ByVal endpointConfigurationName As String)

 MyBase.New(endpointConfigurationName)

 End Sub

 Public Function SubmitOrder(ByVal order As Order) _

 As OrderAcknowledgement _

 Implements IOrderEntryService.SubmitOrder

 Return Me.Channel.SubmitOrder(order)

 End Function

End Class

// C#

public class OrderEntryServiceProxy :

 ClientBase<IOrderEntryService>,IOrderEntryService

{

 public OrderEntryServiceProxy(

 Binding binding, EndpointAddress epAddr)

 :base(binding,epAddr)

 {

 }

 public OrderEntryServiceProxy(

 string endpointConfigurationName)

 : base(endpointConfigurationName)

 {

 }

 public OrderAcknowledgement SumbitOrder(Order order)

 {

 return this.Channel.SumbitOrder(order);

 }

}

You would use the manually defined proxy class like this:

' VB

Dim binding As Binding

binding = New NetTcpBinding

Dim epAddr As EndpointAddress

epAddr = New EndpointAddress(_

 "net.tcp://localhost:6789/orders/")

Dim proxy As IOrderEntryService

proxy = New OrderEntryServiceProxy(binding, epAddr)

Dim order As New Order

order.Product = "Widget-ABC"

order.Quantity = 10

142 Chapter 4 Consuming Services
' Etc...

Dim ack As OrderAcknowledgement

ack = proxy.SubmitOrder(order)

Console.WriteLine(_

 "Order submitted; tracking number: {0}", _

 ack.TrackingNumber)

// C#

Binding binding = new NetTcpBinding();

EndpointAddress epAddr = new EndpointAddress(

 "net.tcp://localhost:6789/orders/");

IOrderEntryService proxy =

 new OrderEntryServiceProxy(binding,epAddr); Order order = new Order();

order.Product = "Widget-ABC";

order.Quantity = 10;

// Etc...

OrderAcknowledgement ack = proxy.SumbitOrder(order);

Console.WriteLine("Order submitted; tracking number: {0}",

 ack.TrackingNumber);

Finally, if you used either svcutil or Visual Studio to generate a proxy class, you would use the
generated proxy class like this:

' VB

Dim proxy As OrderEntryServiceClient

proxy = New OrderEntryServiceClient()

Dim order As New Order

order.Product = "Widget-ABC"

order.Quantity = 10

' Etc...

Dim ack As OrderAcknowledgement

ack = proxy.SubmitOrder(order)

Console.WriteLine(_

 "Order submitted; tracking number: {0}", _

 ack.TrackingNumber)

// C#

OrderEntryServiceClient proxy = new OrderEntryServiceClient();

Order order = new Order();

order.Product = "Widget-ABC";

order.Quantity = 10;

// Etc...

OrderAcknowledgement ack = proxy.SumbitOrder(order);

Console.WriteLine("Order submitted; tracking number: {0}",

 ack.TrackingNumber);

Lesson 1: Consuming WCF Services 143
Recall that in Chapter 1, “Contracts,” it was suggested that to design services well you must let
go of many of the concepts of object-oriented programming. This is not only true for the
design of the document-centric messages going in and out of your service; you must also
always keep in mind what is being done for you by the plumbing. When you make a method
call on a proxy, the WCF plumbing translates your method call into a message that it sends
over the wire-level transport layer, so you always need to be aware of issues such as:

How slow that might be in comparison to a normal method call on an in-process object.

How network communication troubles could result in an inability to communicate with
the remote service.

The following sections cover some of the other considerations you need to keep in mind to use
proxies effectively to communicate with a service.

Invoking Service Operations Asynchronously
In many cases, a method call on a proxy, which is translated into a message that is sent to a
remote service, might take longer than the consuming application can reasonably wait. The
reason for the slowness can be poor network bandwidth, large message size, or a combination
thereof. In GUI applications, you don’t want to keep the UI unresponsive for any length of
time while the application waits for a response from the service. In non-GUI applications as
well, the call to a service typically must be done as quickly as possible.

A good solution is to invoke the service operation asynchronously. You can use the /async
option on svcutil or in Visual Studio. For the latter, click Advanced in the Add Service Refer-
ence dialog box, and then select the Generate Asynchronous Methods check box in the Ser-
vice Reference Settings dialog box to generate a Begin- and End- pair of methods for each
service operation. The method pairs together support the asynchronous invocation of a ser-
vice operation.

To show how these method pairs are used, suppose you have generated a proxy to Order-
EntryService with asynchronous methods. In addition to the SubmitOrder operation on the
proxy class, there would be a corresponding BeginSubmitOrder and EndSubmitOrder method
pair. This Begin- and End- method pair could be used as follows to invoke the SubmitOrder
operation asynchronously:

' VB

Dim proxy As OrderEntryServiceClient

proxy = New OrderEntryServiceClient()

Dim order As New Order

order.Product = "Widget-ABC"

order.Quantity = 10

' Etc...

Dim cb As AsyncCallback

144 Chapter 4 Consuming Services
cb = New AsyncCallback(AddressOf HandleCallback)

proxy.BeginSubmitOrder(order, cb, proxy)

Console.WriteLine(_

 "Order submitted asynchronously; waiting for callback")

// C#

OrderEntryServiceClient proxy = new OrderEntryServiceClient();

Order order = new Order();

order.Product = "Widget-ABC";

order.Quantity = 10;

// Etc...

AsyncCallback cb = new AsyncCallback(HandleCallback);

proxy.BeginSumbitOrder(order, cb, proxy);

Console.WriteLine(

 "Order submitted asynchronously; waiting for callback");

The HandleCallback method, which might be defined as shown here, is called back when the
asynchronously invoked operation completes:

' VB

Public Shared Sub HandleCallback(_

 ByVal result As IAsyncResult)

 Dim proxy As OrderEntryServiceClient

 proxy = result.AsyncState

 Dim ack As OrderAcknowledgement

 ack = proxy.EndSubmitOrder(result)

 Console.WriteLine(_

 "Order submitted; tracking number: {0}", _

 ack.TrackingNumber)

End Sub

// C#

static void HandleCallback(IAsyncResult result)

{

 OrderEntryServiceClient proxy =

 result.AsyncState as OrderEntryServiceClient;

 OrderAcknowledgement ack = proxy.EndSumbitOrder(result);

 Console.WriteLine(

 "Order submitted; tracking number: {0}",

 ack.TrackingNumber);

}

In the lab that follows this lesson, you use this technique.

Lesson 1: Consuming WCF Services 145
Closing Proxies
It is a good practice to close service proxies whenever the client is finished using them. One of
the main reasons for doing so is that when a session has been established between the client
and the service, closing the proxy not only closes the connection to the service but also termi-
nates the session with the service. The importance of this will become clearer when sessions
are covered in Chapter 10, “Sessions and Instancing.”

Instead of calling the Close method explicitly, you can also use the Dispose method, which will
close the proxy as well. As usual, the advantage of the Dispose method is that you can use it in
the context of a using statement so that it is called implicitly even if an exception occurs:

' VB

Using proxy As MyServiceClient = New MyServiceClient()

 proxy.SomeOp1()

End Using

// C#

using(MyServiceClient proxy = new MyServiceClient())

{

 proxy.SomeOp1();

}

Alternatively, if the object reference’s type is the Service contract interface, as opposed to a con-
crete proxy class, you can use the following variation:

' VB

Dim proxy As IMyService

proxy = New MyServiceClient()

Using proxy As IDisposable

 proxy.SomeOp1()

End Using

// C#

IMyService proxy = new MyServiceClient();

using (proxy as IDisposable)

{

 proxy.SomeOp1();

}

Duplex Channels with Proxies
To enable a proxy to communicate using a Duplex, or callback, channel, you must perform the
following steps:

Define a class that implements the Callback contract.

Construct an instance of the class implementing the Callback contract and pass the
instance to an InstanceContext constructor.

146 Chapter 4 Consuming Services
Pass the InstanceContext object to the constructor of the proxy class.

The proxy class must inherit from DuplexClientBase instead of from ClientBase.

Typically, the easiest way to handle this is to wrap the autogenerated proxy with another class
that deals with the InstanceContext details and acts as the callback object (implementing the
Callback contract). In Exercise 4, “Consume a Service Using a Callback Channel,” of this les-
son, you step through this process in greater detail.

Exam Tip Pay close attention to the base type of your proxy classes. If you are defining a proxy
that uses OneWay or Request/Response MEPs, the right base class is ClientBase<IMyContract>,
where IMyContract is your Service contract. If your proxy uses the Duplex MEP, the proxy class must
inherit from DuplexClientBase<IMyContract>.

Service Agents
It is very common to want to wrap usage of a proxy in another class that has some additional
capabilities in terms of interacting with the remote service. The generic term for these more
capable objects that facilitate access to a remote service is service agent. The following are some
reasons you might want to wrap access to a proxy in a service agent:

The client might have limited or unpredictable connectivity, or the consumer might sim-
ply need to operate in an offline mode.

Performance problems associated with service calls might necessitate actions such as
client-side caching, request batching, aggregate result disassembly, and so on.

A proxy class might be very awkward or inefficient to work with, for example, taking sev-
eral calls that could be wrapped up into one by an agent.

In Exercise 4 in this lesson, you will see a very simple example of when you might use an agent.
In the lab that follows Lesson 2, you will see an even better example of a service agent being
used.

Quick Check
1. If you want to generate a proxy class that uses the XmlSerializer, which of the four

methods for generating a proxy would be best to use?

2. Does it ever make sense to invoke a OneWay operation asynchronously?

Lesson 1: Consuming WCF Services 147
Quick Check Answers
1. The only way to generate a proxy if you want to use the XmlSerializer is to use the

svcutil command-line tool with the /serializer:XmlSerializer option. Adding a ser-
vice reference in Visual Studio does not support this option. As long as the contract
specifies usage of the XmlSerializer, dynamically creating a proxy object by using
the ChannelFactory class would also ensure that the right serializer is used, but in
that case, you are generating an object dynamically rather than a class. Similarly,
if you hand-code a proxy class, you are not technically generating a class and,
again, the right serializer depends on whether the contract is declared to use the
XmlSerializer.

2. Yes. If there is a situation in which a message being sent to a service in a OneWay
operation was very large and therefore time-consuming, it can still make sense to
invoke the operation asynchronously. Keep in mind that, as was discussed in
Chapter 1, OneWay calls on the proxy complete only when the dispatcher on the
service end has successfully dispatched the incoming message to a call on a service
type instance. If the message is large, this can take longer to happen than you
would like to wait in a synchronous invocation setting, thereby making asynchro-
nous invocation an attractive alternative.

Lab: Creating and Using WCF Service Proxies
In this lab, you will use the techniques that have been covered to create WCF proxies to WCF
services. The lab focuses on the different ways in which the proxy classes or objects can be cre-
ated and on some of the key points for each way that you should consider in using the proxies
effectively. In the first three exercises, you create proxies to communicate with the Task Man-
ager service that was first built in Chapter 1. In the fourth exercise, you create and use a proxy
that interacts with the service by using a Duplex, or callback, channel. This lab requires that
you start a WCF service, so you must have the appropriate permissions to do so. You might
want to run Visual Studio as an Administrator.

� Exercise 1 Create a Proxy Dynamically

In this exercise, you will use the ChannelFactory class to create a proxy object dynamically to
communicate with the Task Manager service.

1. Navigate to the <InstallHome>/Chapter4/Lesson1/Exercise1/<language>/Before directory
and double-click the Exercise1.sln file to open the solution in Visual Studio.

The solution consists of four projects:

148 Chapter 4 Consuming Services
2. Because the solution still contains the Windows Forms client that you used in Chapter
1 to consume the Task Manger service, first explore the code there to see how that proxy
code is used. After you have explored the code in this sample application, you can start
creating your own proxies.

3. Add a new Console project called DynGenProxy to the solution.

4. To this new Console project, add references to both System.ServiceModel and System
.Runtime.Serialization.

5. Add project references to both Tasks.Services and Tasks.Entities.

6. In the main code file (Program.cs or Module1.vb as appropriate), add the following
imports:
' VB

Imports System.ServiceModel

Imports System.ServiceModel.Channels

Imports Tasks.Entities

Imports Tasks.Services

// C#

using System.ServiceModel;

using System.ServiceModel.Channels;

using Tasks.Entities;

using Tasks.Services;

7. Define the Main method (Program.Main or Module1.Main as appropriate) so that it
matches the following code, which uses the ChannelFactory class to create a proxy
dynamically to the task service:
' VB

Sub Main()

 Dim binding As Binding

 binding = New BasicHttpBinding

 Dim factory As ChannelFactory(Of ITaskManagerService)

 factory = New ChannelFactory(Of ITaskManagerService)(_

 binding, "http://localhost:8080/Tasks/TaskManager")

 Dim proxy As ITaskManagerService

 proxy = factory.CreateChannel()

 Try

 Dim task As New Task()

 task.CreatedBy = "Vicki"

 task.AssignedTo = "Ian"

 task.DateCreated = DateTime.Now

 task.DateLastModified = task.DateCreated

 task.Description = "Clean your room"

 task.DueDate = DateTime.Now.AddDays(3)

 Dim ack As TaskAcknowledgement

Lesson 1: Consuming WCF Services 149
 ack = proxy.AddTask(task)

 Console.WriteLine(_

 "Task number {0} added to service", _

 ack.TaskNumber)

 Catch ex As Exception

 Console.WriteLine("Error: {0}", ex.Message)

 End Try

End Sub

// C#

static void Main(string[] args)

{

 Binding binding = new BasicHttpBinding();

 ChannelFactory<ITaskManagerService> factory;

 factory = new ChannelFactory<ITaskManagerService>(

 binding, "http://localhost:8080/Tasks/TaskManager");

 try

 {

 ITaskManagerService proxy = factory.CreateChannel();

 Task task = new Task();

 task.CreatedBy = "Vicki";

 task.AssignedTo = "Ian";

 task.DateCreated = DateTime.Now;

 task.DateLastModified = task.DateCreated;

 task.Description = "Clean your room";

 task.DueDate = DateTime.Now.AddDays(3);

 TaskAcknowledgement ack = proxy.AddTask(task);

 Console.WriteLine(

 "Task number {0} added to service",

 ack.TaskNumber);

 }

 catch (Exception ex)

 {

 Console.WriteLine("Error: {0}",ex.Message);

 }

}

8. Build the solution.

9. Making sure the ServiceConsoleHost project is the startup project, start the service.

10. Make DynGenProxy the startup project and run this Console project.

You should see that the Console application successfully submits a task to the service.

11. Leave the task service running; you will need it to be running for the next two exercises.

150 Chapter 4 Consuming Services
� Exercise 2 Generate a Proxy Class, Using svcutil

In this exercise, you will use the svcutil command-line utility to generate a proxy class that you
then use to communicate with the Task Manager service. You also asynchronously invoke one
of the operations on this service, using an instance of the autogenerated proxy class.

1. Navigate to the <InstallHome>/Chapter4/Lesson1/Exercise2/<language>/Before directory
and double-click the Exercise2.sln file to open the solution in Visual Studio.

The solution consists of the four projects you started with in Exercise 1, “Create a Proxy
Dynamically.”

2. Add a new Console project called SvcUtilProxy to the solution.

3. To this new Console project, add a new application configuration file item called
app.config.

4. Open a Visual Studio command prompt to the directory in which this project resides, in
this case, <InstallHome>/Chapter4/Lesson1/Exercise2/<language>/Before/SvcUtilProxy.

5. With the service still running from step 9 in Exercise 1, execute the following command
to generate a proxy class. (Enter it as a single command; it is formatted here on multiple
lines to fit on the printed page.)

During this step, you might be informed that the configuration file must be reloaded; if
so, just click Yes.
' VB

svcutil /l:VB /async /config:app.config

 /namespace:*,SvcUtilProxy /out:TaskServiceProxy.vb

 http://localhost:8080/Tasks

// C#

svcutil /async /config:app.config

 /namespace:*,SvcUtilProxy /out:TaskServiceProxy.cs

 http://localhost:8080/Tasks

6. Add the TaskServiceProxy (.cs or .vb as appropriate) file, which was just generated by the
svcutil command, to the SvcUtilProxy project.

7. To the SvcUtilProxy project, add references to both System.ServiceModel and System.Run-
time.Serialization. If you are working in C#, also add a project reference to Tasks.Entities.

8. In the main code file (Program.cs or Module1.vb as appropriate), add the following
imports, noting that there is an intentional difference between the Visual Basic and C#
versions, stemming from the different ways project references are handled in Visual
Basic.NET compared to C#:
' VB

Imports System.ServiceModel

Imports System.ServiceModel.Channels

Imports SvcUtilProxy.SvcUtilProxy

Lesson 1: Consuming WCF Services 151
// C#

using System.ServiceModel;

using System.ServiceModel.Channels;

using Tasks.Entities;

To experiment with the mechanics of asynchronously invoking a service operation by
using a proxy, you first need to define a function that will be called back when the asyn-
chronously invoked operation completes.

9. Define the following function directly below the Main method in the main code file (Pro-
gram.cs or Module1.vb as appropriate):
' VB

Sub HandleTaskAdded(ByVal ar As IAsyncResult)

 Dim proxy As TaskManagerServiceClient

 proxy = CType(ar.AsyncState, TaskManagerServiceClient)

 Dim ack As TaskAcknowledgement

 ack = proxy.EndAddTask(ar)

 Console.WriteLine(_

 "Task number {0} was added to service", _

 ack.TaskNumber)

End Sub

// C#

static void HandleTaskAdded(IAsyncResult ar)

{

 TaskManagerServiceClient proxy = ar.AsyncState

 as TaskManagerServiceClient;

 TaskAcknowledgement ack = proxy.EndAddTask(ar);

 Console.WriteLine(

 "Task number {0} was added to service",

 ack.TaskNumber);

}

10. Define the Main method (Program.Main or Module1.Main as appropriate) so that it
matches the following code, which instantiates the proxy class generated by the svcutil
command and invokes the AddTask operation asynchronously:
' VB

Sub Main()

 Dim proxy As TaskManagerServiceClient

 proxy = New TaskManagerServiceClient()

 Try

 Dim task As New Task()

 task.CreatedBy = "Eric"

152 Chapter 4 Consuming Services
 task.AssignedTo = "Ian"

 task.DateCreated = DateTime.Now

 task.DateLastModified = task.DateCreated

 task.Description = "Practice your saxophone"

 task.DueDate = DateTime.Now.AddDays(3)

 Dim cb As AsyncCallback

 cb = New AsyncCallback(AddressOf HandleTaskAdded)

 proxy.BeginAddTask(task, cb, proxy)

 Console.WriteLine(_

 "Asynchronously adding a task to the service; " + _

 "Press Enter to exit")

 Console.ReadLine()

 Catch ex As Exception

 Console.WriteLine("Error: {0}", ex.Message)

 End Try

End Sub

// C#

static void Main(string[] args)

{

 try

 {

 TaskManagerServiceClient proxy =

 new TaskManagerServiceClient();

 Task task = new Task();

 task.CreatedBy = "Eric";

 task.AssignedTo = "Ian";

 task.DateCreated = DateTime.Now;

 task.DateLastModified = task.DateCreated;

 task.Description = "Practice your saxophone";

 task.DueDate = DateTime.Now.AddDays(3);

 AsyncCallback cb = new AsyncCallback(HandleTaskAdded);

 proxy.BeginAddTask(task,cb,proxy);

 Console.WriteLine(

 "Asynchronously adding a task to the service; " +

 "Press Enter to exit");

 Console.ReadLine();

 }

 catch (Exception ex)

 {

 Console.WriteLine("Error: {0}", ex.Message);

 }

}

Lesson 1: Consuming WCF Services 153
NOTE Usage of /async

This exercise uses the /async option on the svcutil command to generate operations on the
proxy that support asynchronous invocation. Specifically, the BeginAddTask and EndAddTask
operations are generated. They are used in tandem by this exercise’s version of the consumer
to handle the asynchronous invocation of the AddTask operation.

11. Build the solution.

12. Making sure the service is still running and that SvcUtilProxy is the startup project, run
this Console project.

You should see that the Console application successfully submits a task to the service
asynchronously and that the HandleTaskAdded callback method is called when the oper-
ation completes.

13. Again, leave the Task Manager service running for the next exercise.

� Exercise 3 Generating a Proxy Class by Adding a Service Reference in Visual Studio

In this exercise, you will use Visual Studio to generate a proxy class by adding a service refer-
ence. You instantiate the resulting proxy class and use the instance to communicate with the
Task Manager service, this time adding a FaultException handler that shows how you access
the FaultInfo class, which the service contract has declared it might issue. (Chapter 9, “When
Simple Is Not Sufficient,” discusses in detail handling faults and exceptions on clients.)

1. Navigate to the <InstallHome>/Chapter4/Lesson1/Exercise3/<language>/Before directory
and double-click the Exercise3.sln file to open the solution in Visual Studio.

The solution consists of the four projects you started with in Exercise 1.

2. Add a new Console project called VSProxy to the solution.

3. To this new Console project, add a service reference, making sure the Task Manager ser-
vice is running, by right-clicking the project node in Solution Explorer and choosing
Add Service Reference.

4. In the Add Service Reference dialog box, enter the http://localhost:8080/Tasks URL at
which the service is hosted and click the Go button to list the services at that URL. After
you enter Tasks for the namespace, click OK.

Note that this step takes care of adding the app.config file and any needed references to
the project.

5. In the main code file (Program.cs or Module1.vb as appropriate), add the following
import statements:
' VB

Imports VSProxy.Tasks

Imports System.ServiceModel

154 Chapter 4 Consuming Services
// C#

using VSProxy.Tasks;

using System.ServiceModel;

6. Define the Main method (Program.Main or Module1.Main as appropriate) so that it
matches the following code, which instantiates the proxy class generated by Visual Studio
when you added the service reference:
' VB

Sub Main()

 Dim proxy As TaskManagerServiceClient

 proxy = New TaskManagerServiceClient()

 Try

 Dim task As New Task()

 task.CreatedBy = "Eric"

 task.AssignedTo = "Vicki"

 task.DateCreated = DateTime.Now

 task.DateLastModified = task.DateCreated

 task.Description = "Do the laundry"

 task.DueDate = DateTime.Now.AddDays(3)

 Dim ack As TaskAcknowledgement

 ack = proxy.AddTask(task)

 Dim taskNum As Integer

 taskNum = ack.TaskNumber

 Console.WriteLine(_

 "Task number {0} added to service", _

 taskNum)

 ' Now try to mark that same task

 ' as completed:

 proxy.MarkTaskCompleted(taskNum)

 Catch fault As FaultException(Of FaultInfo)

 Console.WriteLine("Error: {0}", fault.Detail.Reason)

 End Try

End Sub

// C#

static void Main(string[] args)

{

 try

 {

 TaskManagerServiceClient proxy = new TaskManagerServiceClient();

 Task task = new Task();

 task.CreatedBy = "Eric";

 task.AssignedTo = "Vicki";

 task.DateCreated = DateTime.Now;

Lesson 1: Consuming WCF Services 155
 task.DateLastModified = task.DateCreated;

 task.Description = "Do the laundry";

 task.DueDate = DateTime.Now.AddDays(3);

 TaskAcknowledgement ack = proxy.AddTask(task);

 int taskNum = ack.TaskNumber;

 Console.WriteLine(

 "Task number {0} added to service",

 taskNum);

 // Now try to mark that same task

 // as completed:

 proxy.MarkTaskCompleted(taskNum);

 }

 catch (FaultException<FaultInfo> fault)

 {

 Console.WriteLine("Fault: {0}",fault.Detail.Reason);

 }

}

NOTE Usage of faults as part of the Service contract

This exercise’s version of a consumer uses a FaultException<FaultInfo> exception, based on
the Service contract’s specification that the MarkTaskCompleted operation could issue a fault
of type FaultInfo. This code shows how to access the FaultInfo object and its Reason property.

7. Build the solution.

8. Making sure the service is still running and that VSProxy is the startup project, run this
Console project.

You should see that it successfully submits a task to the service. You might also try mod-
ifying the code in step 6 to force an exception. This can be done easily by changing the
call to MarkTaskCompleted to take a number for which you know there isn’t a valid task,
for instance, 111. Finally, you can shut down the Task Manager service.

� Exercise 4 Consume a Service Using a Duplex, or Callback, Channel

1. Chapter 1, in the section titled “Duplex,” discussed a simple Hello World Service con-
tract and service type that used a Duplex MEP by setting up a callback contract. In this
exercise, you will take that as a starting point and build on it to practice going through
the steps required to create a proxy that can consume the Greeting service by communi-
cating with it using a two-way duplex (or callback) channel. Following is the code that
defines the Service contract, the Callback contract, and the service type in which the
Callback contract is accessed and called. You can find this code in the Services (.cs or .vb
as appropriate) file when you open the solution for this lab.

156 Chapter 4 Consuming Services
' VB

Imports System.ServiceModel

Imports System.ServiceModel.Channels

<ServiceContract()> _

Public Interface IGreetingHandler

 <OperationContract(IsOneWay:=True)> _

 Sub GreetingProduced(ByVal greeting As String)

End Interface

<ServiceContract(CallbackContract:= _

 GetType(IGreetingHandler))> _

Public Interface IGreetingService

 <OperationContract(IsOneWay:=True)> _

 Sub RequestGreeting(ByVal name As String)

End Interface

<ServiceBehavior(InstanceContextMode := _

 InstanceContextMode.PerSession)> _

Public Class GreetingService

 Implements IGreetingService

 Public Sub RequestGreeting(ByVal name As String) _

 Implements IGreetingService.RequestGreeting

 Console.WriteLine("In GreetingService.RequestGreeting")

 Dim callbackHandler As IGreetingHandler

 callbackHandler = _

 OperationContext.Current.GetCallbackChannel(_

 Of IGreetingHandler)()

 callbackHandler.GreetingProduced("Hello " + name)

 End Sub

End Class

// C#

using System.ServiceModel;

using System.ServiceModel.Channels;

[ServiceContract]

interface IGreetingHandler

{

 [OperationContract(IsOneWay = true)]

 void GreetingProduced(string greeting);

}

[ServiceContract(CallbackContract =

 typeof(IGreetingHandler))]

interface IGreetingService

{

 [OperationContract(IsOneWay = true)]

 void RequestGreeting(string name);

}

Lesson 1: Consuming WCF Services 157
[ServiceBehavior(InstanceContextMode =

 InstanceContextMode.PerSession)]

class GreetingService : IGreetingService

{

 public void RequestGreeting(string name)

 {

 Console.WriteLine("In GreetingService.RequestGreeting");

 IGreetingHandler callbackHandler =

 OperationContext.Current.GetCallbackChannel<IGreetingHandler>();

 callbackHandler.GreetingProduced("Hello " + name);

 }

}

In this exercise, you not only create a proxy, but you also use the concept of an agent dis-
cussed in this lesson to create a simple agent that wraps the proxy and takes care of the
details required both to set up the callback channel and implement the Callback contract.
Finally, this lab also uses the technique of manually defining a proxy class to a service.

2. Navigate to the <InstallHome>/Chapter4/Lesson1/Exercise4/<language>/Before direc-
tory and double-click the Exercise4.sln file to open the solution in Visual Studio.

The solution consists of only one project, a Console project in which you define both the
client and the service, and you configure the endpoints in code rather than in a config-
uration file. You wouldn’t do this in a production setting, but it is good to see how it’s
done to simplify code you might use to experiment with WCF. In this case, the focus is
on the mechanics of creating a callback proxy, and everything else is simplified.

3. In the Program (.cs or .vb as appropriate) file, manually define a GreetingServiceProxy
class (above the Program class) that you’ll use to act as the proxy to the service. The class
should be as follows:
' VB

Public Class GreetingServiceProxy

 Inherits DuplexClientBase(Of IGreetingService)

 Implements IGreetingService

 Public Sub New(ByVal inputInstance As InstanceContext)

 MyBase.New(inputInstance, New NetTcpBinding(), _

 New EndpointAddress("net.tcp://localhost:6789/service"))

 End Sub

 Public Sub RequestGreeting(ByVal name As String) _

 Implements IGreetingService.RequestGreeting

 Me.Channel.RequestGreeting(name)

 End Sub

End Class

// C#

class GreetingServiceProxy : DuplexClientBase<IGreetingService>,

 IGreetingService

{

158 Chapter 4 Consuming Services
 public GreetingServiceProxy(InstanceContext inputInstance)

 : base(inputInstance, new NetTcpBinding(),

 new EndpointAddress("net.tcp://localhost:6789/service"))

 {

 }

 public void RequestGreeting(string name)

 {

 this.Channel.RequestGreeting(name);

 }

}

4. In the same file, below the proxy class, define a GreetingServiceAgent class that wraps an
instance of the proxy class you just defined. This agent class also sets up the instancing
context for the proxy in its constructor, and it implements the Callback contract.

The class should be as follows:
' VB

Public Class GreetingServiceAgent

 Implements IGreetingService, IGreetingHandler, IDisposable

 Public Sub New()

 Try

 ' Set up instance context and pass it to proxy:

 Dim context As New InstanceContext(Me)

 _proxy = New GreetingServiceProxy(context)

 _proxy.Open()

 Catch ex As Exception

 _proxy = Nothing

 End Try

 End Sub

 Public Sub RequestGreeting(ByVal name As String) _

 Implements IGreetingService.RequestGreeting

 If Not _proxy Is Nothing Then

 _proxy.RequestGreeting(name)

 End If

 End Sub

 Public Sub GreetingProduced(ByVal greeting As String) _

 Implements IGreetingHandler.GreetingProduced

 Console.WriteLine(_

 "Called back with greeting: {0}", greeting)

 End Sub

 Public Sub Dispose() Implements IDisposable.Dispose

 If Not _proxy Is Nothing Then

 _proxy.Close()

 End If

 End Sub

 Private _proxy As GreetingServiceProxy

Lesson 1: Consuming WCF Services 159
End Class

// C#

class GreetingServiceAgent : IGreetingService,

 IGreetingHandler, IDisposable

{

 public GreetingServiceAgent()

 {

 try

 {

 // Set up instance context and pass it to proxy:

 InstanceContext context = new InstanceContext(this);

 _proxy = new GreetingServiceProxy(context);

 _proxy.Open();

 }

 catch

 {

 _proxy = null;

 }

 }

 public void Dispose()

 {

 if (_proxy != null)

 _proxy.Close();

 }

 public void RequestGreeting(string name)

 {

 if (_proxy != null)

 _proxy.RequestGreeting(name);

 }

 public void GreetingProduced(string greeting)

 {

 Console.WriteLine(

 "Called back with greeting: {0}", greeting);

 }

 private GreetingServiceProxy _proxy;

}

5. In the same file, in the try block of the Main method of the Program class, write the fol-
lowing code to call the agent:
' VB

Dim agent As New GreetingServiceAgent

agent.RequestGreeting("Sally")

// C#

GreetingServiceAgent agent = new GreetingServiceAgent();

agent.RequestGreeting("Sally");

160 Chapter 4 Consuming Services
For the sake of completeness, here is the Program class listing in its entirety:
' VB

Public Class Program

 Public Shared Sub Main()

 Dim t As Thread

 t = New Thread(New ThreadStart(_

 AddressOf Program.RunService))

 t.Start()

 autoEvent.WaitOne()

 Try

 Dim agent As New GreetingServiceAgent

 agent.RequestGreeting("Sally")

 Catch ex As Exception

 Console.WriteLine("Error: {0}", ex.Message)

 End Try

 End Sub

 Public Shared Sub RunService()

 Dim host As ServiceHost

 host = New ServiceHost(GetType(GreetingService))

 host.AddServiceEndpoint(GetType(IGreetingService), _

 New NetTcpBinding(), "net.tcp://localhost:6789/service")

 host.Open()

 autoEvent.Set()

 Console.WriteLine("Press Enter to exit”)

 Console.ReadLine()

 End Sub

 Public Shared autoEvent As AutoResetEvent = New AutoResetEvent(False)

End Class

// C#

class Program

{

 static void Main(string[] args)

 {

 new Thread(new ThreadStart(RunService)).Start();

 autoEvent.WaitOne();

 try

 {

 GreetingServiceAgent agent = new GreetingServiceAgent();

 agent.RequestGreeting("Sally");

 }

 catch (Exception ex)

Lesson 1: Consuming WCF Services 161
 {

 Console.WriteLine("Error: {0}", ex.Message);

 }

 }

 static void RunService()

 {

 ServiceHost host = new ServiceHost(typeof(GreetingService));

 host.AddServiceEndpoint(typeof(IGreetingService),

 new NetTcpBinding(), "net.tcp://localhost:6789/service");

 host.Open();

 autoEvent.Set();

 Console.WriteLine("Press Enter to exit");

 Console.ReadLine();

 }

 static AutoResetEvent autoEvent = new AutoResetEvent(false);

}

6. Build and run the application.

You should see that both the service and the callback object, which in this case is your
agent instance, are successfully called.

Lesson Summary
Both the command-line utility svcutil and Visual Studio can be used to generate proxy
classes from a service’s metadata, whose instances can be used as proxies to a service.

Proxy classes can be manually defined by inheriting from the ClientBase class or from the
DuplexClientBase class for proxies that need a callback channel.

Proxy objects can be generated dynamically using the ChannelFactory class based only
on the Service contract.

Method calls on proxy objects are translated into messages sent to a remote service by
the WCF client-side plumbing either synchronously or asynchronously. Asynchronous
method calls use the Begin- and End- method pairs in tandem.

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 1,
“Consuming WCF Services.” The questions are also available on the companion CD if you pre-
fer to review them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is correct or incorrect are
located in the “Answers” section at the end of the book.

162 Chapter 4 Consuming Services
1. Suppose you have the following Service contract and associated Callback contract:
' VB

<ServiceContract()> _

Public Interface IRetrieveHandler

 <OperationContract(IsOneWay:=True)> _

 Sub HandleFileRetrieved(_

 ByVal fileName As String, ByVal data As Stream)

End Interface

<ServiceContract(_

 CallbackContract:=GetType(IRetrieveHandler))> _

Public Interface IStorageArchive

 <OperationContract(IsOneWay:=True)> _

 Sub RequestFileRetrieve(ByVal fileName As String)

End Interface

// C#

[ServiceContract()]

public interface IRetrieveHandler

{

 [OperationContract(IsOneWay=true)]

 void HandleFileRetrieved(

 string fileName, Stream data);

}

[ServiceContract(

 CallbackContract=typeof(IRetrieveHandler))]

public interface IStorageArchive

{

 [OperationContract(IsOneWay = true)]

 void RequestFileRetrieve(string fileName);

}

Suppose further that you want to define a proxy class manually that can be instantiated
and used to communicate with this service. Which of the following is the correct defini-
tion for the proxy class?

A. ' VB

Public Class StorageArchiveProxy

 Inherits ClientBase(Of IStorageArchive)

 Implements IStorageArchive

 Public Sub New(ByVal instanceContext As InstanceContext, _

 ByVal binding As Binding, _

 ByVal epAddr As EndpointAddress)

 MyBase.New(instanceContext, binding, epAddr)

 End Sub

 Public Sub New(ByVal instanceContext As InstanceContext, _

 ByVal endpointConfigurationName As String)

 MyBase.New(instanceContext, endpointConfigurationName)

 End Sub

Lesson 1: Consuming WCF Services 163
 Public Sub RequestFileRetrieve(_

 ByVal fileName As String) _

 Implements IStorageArchive.RequestFileRetrieve

 Me.Channel.RequestFileRetrieve(fileName)

 End Sub

End Class

// C#

public class StorageArchiveProxy :

 ClientBase<IStorageArchive>, IStorageArchive

{

 public StorageArchiveProxy(

 InstanceContext instanceContext,

 Binding binding, EndpointAddress epAddr)

 : base(instanceContext, binding, epAddr)

 {

 }

 public StorageArchiveProxy(

 InstanceContext instanceContext,

 string endpointConfigurationName)

 : base(instanceContext, endpointConfigurationName)

 {

 }

 public void RequestFileRetrieve(string fileName)

 {

 this.Channel.RequestFileRetrieve(fileName);

 }

}

B. ' VB

Public Class StorageArchiveProxy

 Inherits DuplexClientBase(Of IStorageArchive)

 Implements IStorageArchive

 Public Sub New(ByVal instanceContext As InstanceContext, _

 ByVal binding As Binding, _

 ByVal epAddr As EndpointAddress)

 MyBase.New(instanceContext, binding, epAddr)

 End Sub

 Public Sub New(ByVal instanceContext As InstanceContext, _

 ByVal endpointConfigurationName As String)

 MyBase.New(instanceContext, endpointConfigurationName)

 End Sub

 Public Sub RequestFileRetrieve(_

 ByVal fileName As String) _

 Implements IStorageArchive.RequestFileRetrieve

 Me.Channel.RequestFileRetrieve(fileName)

 End Sub

End Class

164 Chapter 4 Consuming Services
// C#

public class StorageArchiveProxy :

 DuplexClientBase<IStorageArchive>, IStorageArchive

{

 public StorageArchiveProxy(

 InstanceContext instanceContext,

 Binding binding, EndpointAddress epAddr)

 : base(instanceContext,binding, epAddr)

 {

 }

 public StorageArchiveProxy(

 InstanceContext instanceContext,

 string endpointConfigurationName)

 : base(instanceContext,endpointConfigurationName)

 {

 }

 public void RequestFileRetrieve(string fileName)

 {

 this.Channel.RequestFileRetrieve(fileName);

 }

}

C. ' VB

Public Class StorageArchiveProxy

 Inherits DuplexClientBase(Of IStorageArchive)

 Implements IStorageArchive

 Public Sub New(ByVal binding As Binding, _

 ByVal epAddr As EndpointAddress)

 MyBase.New(binding, epAddr)

 End Sub

 Public Sub New(ByVal endpointConfigurationName As String)

 MyBase.New(endpointConfigurationName)

 End Sub

 Public Sub RequestFileRetrieve(_

 ByVal fileName As String) _

 Implements IStorageArchive.RequestFileRetrieve

 Me.Channel.RequestFileRetrieve(fileName)

 End Sub

End Class

// C#

public class StorageArchiveProxy :

 DuplexClientBase<IStorageArchive>, IStorageArchive

{

 public StorageArchiveProxy(

 Binding binding, EndpointAddress epAddr)

 : base(binding, epAddr)

 {

Lesson 1: Consuming WCF Services 165
 }

 public StorageArchiveProxy(

 string endpointConfigurationName)

 : base(endpointConfigurationName)

 {

 }

 public void RequestFileRetrieve(string fileName)

 {

 this.Channel.RequestFileRetrieve(fileName);

 }

}

D. ' VB

Public Class StorageArchiveProxy

 Inherits ClientBase(Of IStorageArchive)

 Implements IStorageArchive

 Public Sub New(ByVal binding As Binding, _

 ByVal epAddr As EndpointAddress)

 MyBase.New(binding, epAddr)

 End Sub

 Public Sub New(ByVal endpointConfigurationName As String)

 MyBase.New(endpointConfigurationName)

 End Sub

 Public Sub RequestFileRetrieve(_

 ByVal fileName As String) _

 Implements IStorageArchive.RequestFileRetrieve

 Me.Channel.RequestFileRetrieve(fileName)

 End Sub

End Class

// C#

public class StorageArchiveProxy :

 ClientBase<IStorageArchive>, IStorageArchive

{

 public StorageArchiveProxy(

 Binding binding, EndpointAddress epAddr)

 : base(binding, epAddr)

 {

 }

 public StorageArchiveProxy(

 string endpointConfigurationName)

 : base(endpointConfigurationName)

 {

 }

 public void RequestFileRetrieve(string fileName)

 {

166 Chapter 4 Consuming Services
 this.Channel.RequestFileRetrieve(fileName);

 }

}

2. Suppose you have the following Service contract:
' VB

<ServiceContract()> _

Public Interface IOrderEntryService

 <OperationContract()> _

 Function SubmitOrder(ByVal order As Order) _

 As OrderAcknowledgement

 ' Etc...

End Interface

// C#

[ServiceContract()]

public interface IOrderEntryService

{

 [OperationContract()]

 OrderAcknowledgement SumbitOrder(Order order);

 // Etc...

}

Suppose further that you have generated a proxy class for this service that is equipped
with the asynchronous Begin- and End- method pair needed to invoke the SubmitOrder
operation asynchronously. Several steps need to be taken to successfully invoke this
operation asynchronously and be called back when the operation completes. Which of
the following steps to achieve this goal is incorrectly implemented?

A. Define a handler method that will be called back when the asynchronously
invoked operation completes, such as:
' VB

Public Shared Sub HandleOrderSubmitted(_

 ByVal cb As AsyncCallback)

 ' Etc...

End Sub

// C#

static void HandleOrderSubmitted(AsyncCallback cb)

{

 // Etc...

}

B. Asynchronously invoke the operation by calling the Begin- method as shown here:
' VB

Dim proxy As OrderEntryServiceClient

proxy = New OrderEntryServiceClient()

Dim cb As AsyncCallback

cb = New AsyncCallback(AddressOf HandleOrderSubmitted)

Lesson 1: Consuming WCF Services 167
proxy.BeginSubmitOrder(order, cb, proxy)

// C#

OrderEntryServiceClient proxy = new OrderEntryServiceClient();

AsyncCallback cb = new AsyncCallback(HandleOrderSubmitted);

proxy.BeginSumbitOrder(order, cb, proxy);

C. Access the proxy object from the AsyncState property when the callback handler
has been called:
' VB

Dim proxy As OrderEntryServiceClient

proxy = CType(result.AsyncState, OrderEntryServiceClient)

// C#

OrderEntryServiceClient proxy =

 result.AsyncState as OrderEntryServiceClient;

D. Having already accessed the proxy object in the callback handler, use it to end the
call:
' VB

Dim ack As OrderAcknowledgement

ack = proxy.EndSubmitOrder(result)

// C#

OrderAcknowledgement ack = proxy.EndSumbitOrder(result);

168 Chapter 4 Consuming Services
Lesson 2: Consuming Non-WCF Services
In this lesson, the focus is still on the consumption of services but shifts away from the con-
sumption of WCF services to look at what you need to know to use WCF effectively to con-
sume non-WCF services, those built on other technology platforms. You’ll begin by looking at
what the Web services industry has defined as the minimal base of interoperability that all
platforms should support and how WCF supports that. From there, you’ll look into the three
most common WS-* specifications that come into play when you are trying to achieve interop-
erability in a scenario in which the services involved go beyond that minimal base of interop-
erability.

After this lesson, you will be able to:
Use the svcutil command-line tool or Visual Studio to generate proxies from the
WSDL of a non-WCF service.
Use the proxy to a non-WCF service to call operations on a non-WCF service.
Use BasicHttpBinding to ensure that your WCF service is WS-I Basic Profile–compliant
when exchanging messages with a non-WCF service.

Estimated lesson time: 40 minutes

Creating Proxies for Non-WCF Services
The only means available for accessing the metadata for a non-WCF service is through the
standard WSDL. The two mechanisms to create WCF proxies you explored in Lesson 1 of this
chapter that depend on access to an existing WCF Service contract (dynamically creating
proxies using the ChannelFactory class and manually coding proxy classes) do not apply here.
Instead, you must either use the svcutil command-line tool or add a service reference in Visual
Studio to point at the WSDL of the non-WCF service you want to consume using WCF. In the
lab following this lesson, you use the svcutil approach once again, this time to consume a non-
WCF service.

Interoperability Through WS-I Basic Profile Support
What the software industry calls Web services is organic in the sense that the standards that
comprise all the parts of XML-based Web services (XML, Hypertext Transfer Protocol [HTTP],
SOAP, WSDL, XML schema definitions [XSD], WS-Addressing, to name a few) are constantly
evolving. Not only are they evolving, but there is enough room for interpretation among the
various standards that two Web services platform vendors could technically support all the
standards but have trouble interoperating because the two vendors interpret the standards dif-
ferently in important ways.

Lesson 2: Consuming Non-WCF Services 169
The classic example of this sort of differing interpretations comes from SOAP and the choices
around Rpc/Encoded vs. Document/Literal mechanisms for structuring SOAP envelopes. (See
Chapter 1 for more on these differences.) In the early days of SOAP usage, some vendors chose
to use the Rpc/Encoded rules for formulating their SOAP messages whereas others used the
SOAP Document/Literal rules to formulate their SOAP messages. Both were SOAP-compliant,
but they could not interoperate because they were expecting their SOAP messages to be con-
structed differently. Enter the Web Services Interoperability Organization (WS-I).

WS-I
On its Web site at http://www.ws-i.org/Default.aspx, WS-I is defined as “an open industry orga-
nization chartered to establish Best Practices for Web services interoperability, for selected
groups of Web services standards, across platforms, operating systems and programming lan-
guages.” The approach WS-I takes is to help the Web services community by providing guid-
ance, recommended practices, and supportive resources around the usage of existing Web
services standards to promote interoperability. WS-I does not itself define any new standards;
rather, its mandate is to guide the Web services community in using the existing standards to
achieve interoperability.

WS-I Basic Profile
WS-I defines its Basic Profile as “…a set of non-proprietary Web services specifications, along with
clarifications, refinements, interpretations and amplifications of those specifications which pro-
mote interoperability.” (See http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile.)
The Basic Profile acts as a guide to the consistent usage of the foundational specifications that,
taken together, form the core of Web services, namely:

SOAP 1.1

WSDL 1.1

Universal Description, Discovery, and Integration (UDDI) 2.0

XML 1.0 (Second Edition)

XML Schema Part 1: Structures

XML Schema Part 2: Data Types

RFC 2246: The TLS (Transport Layer Security) Protocol Version 1.0

RFC 2459: Internet X.509 Public Key Infrastructure Certificate and CRL Profile

RFC 2616: Hypertext Transfer Protocol—HTTP/1.1

RFC 2818: HTTP over TLS

RFC 2965: HTTP State Management Mechanism

The Secure Sockets Layer (SSL) Protocol Version 3.0

170 Chapter 4 Consuming Services
MORE INFO The WS-I Basic Profile

You can find the latest version of the full profile at http://www.ws-i.org/Profiles/BasicProfile-
1_2(WGAD).html. Another version that is targeted at version 1.2 of SOAP is in the works; you can
find that at http://www.ws-i.org/Profiles/BasicProfile-2_0(WGD).html.

WCF Basic Profile Support
WCF provides support for WS-I Basic Profile 1.1 through the BasicHttpBinding class. Writing
interoperable WCF services that are WS-I Basic Profile–compliant is as easy as using this bind-
ing, either programmatically or through a configuration file setting. Use the BasicHttpBinding
class programmatically as shown here:

' VB

Dim host As ServiceHost

host = New ServiceHost(GetType(OrderEntryService))

host.AddServiceEndpoint(GetType(IOrderEntryService), _

 New BasicHttpBinding(), "http://localhost:8080/orders/")

host.Open()

// C#

ServiceHost host = new ServiceHost(typeof(OrderEntryService));

host.AddServiceEndpoint(typeof(IOrderEntryService),

 new BasicHttpBinding(), "http://localhost:8080/orders/");

host.Open();

Use the BasicHttpBinding class through a configuration file setting as shown here:

<service name="Orders.OrderEntryService">

 <host>

 <baseAddresses>

 <add baseAddress="http://localhost:8080/orders/"/>

 </baseAddresses>

 </host>

 <endpoint address="OrderEntryService"

 binding="basicHttpBinding"

 contract="Orders.IOrderEntryService"

 name="OrderEntryServiceHttpEndpoint" />

</service>

One scenario in particular that comes up frequently is when WCF services need to consume
existing Web services built on ASP.NET, the Microsoft Web services platform prior to WCF. In
the lab following this lesson, you step through an example that uses WCF to consume the Map-
Point Web service, an ASP.NET Web service Microsoft hosts that provides mapping services.

Lesson 2: Consuming Non-WCF Services 171
The Importance of Documentation
In theory, the WSDL that a service emits should contain enough service metadata for a Web
services platform to generate proxies that are fully equipped to communicate with the service.
In practice, however, there are gaps that, typically, some level of documentation is required to
fill. Someday, these gaps might close, but today, they usually exist because there is a gap in the
standards supported by one of the technology platforms, either on the service-provider side or
on the consumer side.

As an example, look at authentication in the context of the MapPoint service you consume in
the lab following this lesson. This service uses HTTP digest authentication, but the WSDL
itself does not contain any policy stating this. Therefore, when you generate a WCF proxy class
and configuration file to consume the service, it will fail unless you modify the configuration
file to use this form of authentication.

The lab for this lesson details how to update your application to match the documentation
but, for now, it’s sufficient just to understand that this situation arises simply because the Map-
Point service is built on the ASP.NET ASMX Web services technology (referred to as ASMX
because of the .asmx extension to distinguish it from ASP.NET Web applications) and does
not have any support for WS-Policy, something that is fully supported in WCF. Thus, although
a WCF service would be able to emit policy information in its metadata exchange to specify its
usage of this authentication mechanism, the ASMX-based MapPoint service could not. WCF
consumers can still interoperate with this service, using WCF BasicHttpBinding (to specify
Basic Profile support), and the MapPoint service documentation tells consumers how the ser-
vice handles authentication.

Interoperability by Extended WS-* Support
The WS-I Basic Profile covers only the bare minimum of interoperability support, but what
happens when you go beyond that and enter the realm of WS-* (WS-Security, WS-Reliable-
Messaging, and so on)? WCF has strong support for many of these specifications, but what are
your chances for interoperability after you start using these extended Web services standards?

Unfortunately, the answer is that, at this point in time, each case has to be looked at individu-
ally. WS-I has defined additional profiles that will help, such as the Basic Security Profile
(http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html) and the Reliable Secure Profile
(http://www.ws-i.org/profiles/rsp-scenarios-1.0.pdf), but in reality, the support for many of the
WS-* specifications is mixed across the various Web services platforms.

Later chapters discuss WCF support for the broader WS-* specifications (the specifications
that extend beyond what the Basic Profile offers and move into the realm of the qualities of
service under which a service is capable of executing). For now, understand that WCF has
very strong standards-based support for interoperability in the face of the following quality-
of-service challenges:

172 Chapter 4 Consuming Services
The efficient transfer of large binary data WCF supports the Message Transmission
Optimization Mechanism (MTOM). MTOM allows messages that might contain large
binary data to be sent across the wire as multi-part MIME (Multipurpose Internet Mail
Extensions) messages in which the first part is the XML SOAP envelope that contains
references to the binary parts that follow it and the binary data that is conceptually part
of the message. This approach avoids the space and processing overhead inherent in
having to encode the binary data in Base64, which is necessary if the binary chunk is
simply placed inside the XML InfoSet.
Secure transmission of messages WCF has very strong support for WS-Security and the
various other specifications related to WS-Security (for instance, WS-SecureConversa-
tion, WS-Trust, and so on). Chapter 7, “Infrastructure Security,” and Chapter 8, “User-
Level Security,” cover WCF security.
The reliable exchange of messages WS-ReliableMessaging (WS-RM) is a standard that
defines the means through which Web services platforms can provide interoperable
delivery assurances at the message level. Beyond the packet-level assurances of delivery
that the given transport might make available, WS-RM provides assurances that mes-
sages sent will be delivered. WCF currently supports the Exactly Once assurance—that a
message sent will be delivered exactly once—with the optional feature that a given
sequence of messages can be guaranteed to be delivered in order.

MORE INFO Key WS-* specifications

For more about MTOM, visit http://www.w3.org/TR/soap12-mtom/.

For more about WS-Reliable Messaging, visit http://specs.xmlsoap.org/ws/2005/02/rm
/ws-reliablemessaging.pdf.

Finally, for more about WS-Security, visit http://www.oasis-open.org/committees
/tc_home.php?wg_abbrev=wss.

So if the service uses quality-of-service mechanisms outside the scope of the WS-I Basic Profile,
WCF can consume the service as long as the service provider platform implements the mech-
anism in compliance with the relevant standard.

Quick Check
You need to consume an ASP.NET Web service that uses HTTP NTLM authentica-
tion. However, its WSDL has no indication that HTTP NTLM authentication is its
authentication policy. Does this mean that the WCF proxy that is generated will be
unable to consume this service?

Lesson 2: Consuming Non-WCF Services 173
Quick Check Answer
No. As long as this policy is well documented and, therefore, known to the devel-
opers, the WCF proxy will still be able to consume the service if the developer
appropriately changes the clientCredentialType attribute on the transport element
in the security section of the configuration file. You would need to change the
attribute, which would have defaulted to clientCredentialType="None”, to client-
CredentialType="Ntlm” and ensure that the right credentials are created and
assigned to the proxy.

Lab: Consuming a Non-WCF Mapping Service
In this lab, you will work through the details of consuming a very powerful Internet-facing
mapping service, namely, the MapPoint service. It is built on the previous Microsoft Web ser-
vices technology framework, ASP.NET ASMX, so it qualifies as a non-WCF service. It is also a
good example of when the lack of support for WS-Policy requires the consumer to delve a little
deeper into the service documentation to know how it handles authentication. This is in con-
trast to a WCF service which, with its full support for WS-Policy, would be able to notify con-
sumers of its authentication policy through the service metadata it emits. In the first exercise,
you focus on using the MapPoint service and then, in the second exercise, you improve the
way you use it by retrieving the map images asynchronously because that retrieval can be time-
consuming and, therefore, might take longer than you want to wait in a synchronous invoca-
tion setting.

� Exercise 1 Consume the MapPoint Service

In this exercise, you will go through the steps to consume the MapPoint service, owned and
operated by Microsoft, a service that provides rich mapping capabilities to its consumers. It is
the service behind the Microsoft Virtual Earth platform.

Virtual Earth resources

See http://www.microsoft.com/virtualearth/ for more about the Virtual Earth platform in gen-
eral. Note that if you are consuming this service in .NET, the most likely scenario would be that
you would use the full Virtual Earth software development kit (SDK) or even the reusable
MapControl. For more information about Virtual Earth resources for developers, see http://
dev.live.com/virtualearth/.

For the purposes of this lab, because the focus is on consuming non-WCF services, you con-
sume the MapPoint service (which is an ASP.NET ASMX service) directly by creating a WCF
proxy to communicate with it. In addition to creating the proxy, you also use the technique,
described in Lesson 1, of defining an agent that wraps the proxy to make using the service eas-
ier for application developers.

174 Chapter 4 Consuming Services
Before you can begin going through the required steps, you must have a developer account to
access this service. The first steps of Exercise 1 walk you through getting an account if you
don’t already have one.

1. To access the MapPoint Web service, you must have a Windows Live ID. If you don’t
already have one, you can get one at http://get.live.com/getlive/overview?wa=wsignin1.0.

When you have a Live ID and are signed in with it, you must ensure that you have a
developer’s ID and password that is specific to MapPoint. If you don’t already have that,
you can request it at https://mappoint-css.live.com/mwssignup/.

After you go through this process, which includes receiving some confirmation e-mail
messages, you should have an ID and password that provides you with developer access
to the MapPoint Web service.

MORE INFO MapPoint Web service documentation

The detailed developer documentation for the MapPoint Web service can be found at http://
msdn.microsoft.com/en-us/library/bb507684.aspx.

2. Navigate to the <InstallHome>/Chapter4/Lesson2/Exercise1/<language>/Before directory
and double-click the Exercise1.sln file to open the solution in Visual Studio.

The solution consists of two projects:

3. Open a Visual Studio command prompt to the directory containing the MapPoint-
ServiceAgent project, which in this case is the <InstallHome>/Chapter4/Lesson2/
Exercise1/<language>/Before/Microsoft.MapPoint.ServiceAgent directory.

4. Execute the following command at the command prompt to generate a proxy to the
MapPoint service whose WSDL is available at http://staging.mappoint.net/standard-30/
mappoint.wsdl. (Enter the following as a single command; it is formatted here on mul-
tiple lines to fit on the printed page.)
' VB

svcutil /l:VB /async /config:app.config

/namespace:*,Proxy /out:MapPointProxy.vb

http://staging.mappoint.net/standard-30/mappoint.wsdl

// C#

svcutil /async /config:app.config

/namespace:*,Microsoft.MapPoint.Proxy /out:MapPointProxy.cs

http://staging.mappoint.net/standard-30/mappoint.wsdl

5. Add the MapPointProxy (.cs or .vb as appropriate) file that was just created in the previ-
ous step by the svcutil tool to the Microsoft.MapPoint.ServiceAgent project.

6. From the app.config file (in the Microsoft.MapPoint.ServiceAgent project) that was just
populated by the svcutil tool, copy the system.serviceModel element and its children

Lesson 2: Consuming Non-WCF Services 175
(everything within the configuration element) to the app.config file in the MapPointTest-
Client project, placing it directly below the appSettings element that already exists there.

7. Next, modify the values in the appSettings section of this same configuration file so that
the MapPointWebServiceID and MapPointWebServicePassword key-value pairs appropri-
ately reflect your Virtual Earth Platform developer account ID and password (which you
acquired to access the MapPoint service in step 2).

8. As discussed in the lesson, from the documentation (as opposed to a WS-Policy element
in the service’s metadata) you learn that this service authenticates using HTTP digest
authentication, so you must alter the app.config file to reflect this. To do so, in each of the
four binding elements in the configuration file, change the security from:
<security mode="None">

 <transport clientCredentialType="None"

 proxyCredentialType="None"

 realm="" />

 <message clientCredentialType="UserName"

 algorithmSuite="Default" />

</security>

to the following:
<security mode="TransportCredentialOnly">

 <transport clientCredentialType="Digest"

 proxyCredentialType="None"

 realm="" />

 <message clientCredentialType="UserName"

 algorithmSuite="Default" />

</security>

9. To the Microsoft.MapPoint.ServiceAgent project, add a new class file named MapPoint-
ServiceAgent (.cs or .vb as appropriate), which you’ll now use to define an agent that
wraps some logic around the autogenerated proxy and, therefore, makes it a little easier
to work with the service.

Normally, there would be more methods than this, but for the purposes here, you’ll keep
it simple and add only a few methods that facilitate retrieving map images by addresses.
The resulting file should be as follows:
' VB

Imports System.Configuration

Imports System.Security.Principal

Imports System.Net

Imports Microsoft.MapPoint.ServiceAgent.Proxy

Public Delegate Sub MapRetrievedHandler(_

 ByVal mapImage As MapImage, ByVal address As Address)

Public Delegate Function GetMapDelegate(_

176 Chapter 4 Consuming Services
 ByVal address As Address, ByVal mapHeight As Double, _

 ByVal mapWidth As Double, ByVal dataSourceName As String) _

 As MapImage

Public Class MapPointServiceAgent

 Public Function GetLocationByAddress(_

 ByVal address As Address, ByVal dataSourceName As String) _

 As Location

 Dim findSvcProxy As FindServiceSoapClient

 findSvcProxy = InitFindServiceProxy()

 Dim addrSpec As FindAddressSpecification

 addrSpec = New FindAddressSpecification()

 addrSpec.InputAddress = address

 addrSpec.DataSourceName = dataSourceName

 ' Note: CustomerInfoFindHeader & UserInfoFindHeader

 ' can be null here since we are happy with defaults

 Dim results As FindResults = Nothing

 Try

 results = findSvcProxy.FindAddress(Nothing, Nothing, addrSpec)

 Catch

 results = Nothing

 End Try

 Dim res As Location = Nothing

 If Not results Is Nothing Then

 If results.NumberFound > 0 Then

 If Not results.Results(0).FoundLocation Is Nothing Then

 res = results.Results(0).FoundLocation

 End If

 End If

 End If

 Return res

 End Function

 Public Function GetMapByLocation(_

 ByVal location As Location) As MapImage

 If location Is Nothing Then

 Return Nothing

 End If

 Dim renderSvcProxy As RenderServiceSoapClient

 renderSvcProxy = InitRenderServiceProxy()

 Dim mapSpec As New MapSpecification()

 mapSpec.DataSourceName = location.DataSourceName

 Dim views(0) As MapView

 views(0) = location.BestMapView.ByBoundingRectangle

 mapSpec.Views = views

Lesson 2: Consuming Non-WCF Services 177
 Dim mapImages() As MapImage

 Try

 mapImages = renderSvcProxy.GetMap(Nothing, Nothing, mapSpec)

 Catch

 mapImages = Nothing

 End Try

 Dim res As MapImage = Nothing

 If Not mapImages Is Nothing Then

 If mapImages.Length > 0 Then

 res = mapImages(0)

 End If

 End If

 Return res

 End Function

 Public Function GetMapByLocation(_

 ByVal location As Location, ByVal mapHeight As Double, _

 ByVal mapWidth As Double) As MapImage

 If location Is Nothing Then

 Return Nothing

 End If

 Dim renderSvcProxy As RenderServiceSoapClient

 renderSvcProxy = InitRenderServiceProxy()

 Dim mapSpec As New MapSpecification

 mapSpec.DataSourceName = location.DataSourceName

 ' Init view:

 Dim vbh As New ViewByHeightWidth()

 vbh.Height = mapHeight

 vbh.Width = mapWidth

 vbh.CenterPoint = location.LatLong

 Dim views(0) As MapView

 views(0) = vbh

 mapSpec.Views = views

 ' Init options:

 mapSpec.Options = New MapOptions()

 mapSpec.Options.Format = New ImageFormat()

 mapSpec.Options.Format.Height = Convert.ToInt32(mapHeight)

 mapSpec.Options.Format.Width = Convert.ToInt32(mapWidth)

 mapSpec.Options.Zoom = 0.001

 ' Init pushpin:

 Dim pin As New Pushpin()

178 Chapter 4 Consuming Services
 pin.IconDataSource = "MapPoint.Icons"

 pin.IconName = "1"

 pin.Label = location.Address.AddressLine

 pin.LatLong = location.LatLong

 Dim pins(0) As Pushpin

 pins(0) = pin

 mapSpec.Pushpins = pins

 Dim mapImages() As MapImage

 Try

 mapImages = renderSvcProxy.GetMap(Nothing, Nothing, mapSpec)

 Catch ex As Exception

 mapImages = Nothing

 End Try

 Dim res As MapImage = Nothing

 If Not mapImages Is Nothing Then

 If mapImages.Length > 0 Then

 res = mapImages(0)

 End If

 End If

 Return res

 End Function

 Public Function GetSizedMapByAddress(_

 ByVal address As Address, ByVal mapHeight As Double, _

 ByVal mapWidth As Double, ByVal dataSourceName As String) _

 As MapImage

 Dim location As Location

 location = GetLocationByAddress(address, dataSourceName)

 Return GetMapByLocation(location, mapHeight, mapWidth)

 End Function

 Public Function GetMapByAddress(_

 ByVal address As Address, ByVal dataSourceName As String) _

 As MapImage

 Dim location As Location

 location = GetLocationByAddress(address, dataSourceName)

 Return GetMapByLocation(location)

 End Function

 Public Shared Function AddressToString(_

 ByVal address As Address) As String

 Return String.Format("{0}, {1}, {2}, {3}, {4}", _

 address.AddressLine, _

 address.PrimaryCity, _

 address.Subdivision, _

 address.PostalCode, _

 address.CountryRegion)

Lesson 2: Consuming Non-WCF Services 179
 End Function

 Private Function InitFindServiceProxy() As FindServiceSoapClient

 Dim findSvcProxy As FindServiceSoapClient

 findSvcProxy = New FindServiceSoapClient()

 findSvcProxy.ClientCredentials.HttpDigest.ClientCredential= _

 New NetworkCredential(_

 ConfigurationManager.AppSettings(MapPointWebServiceIDKey), _

 ConfigurationManager.AppSettings(MapPointWebServicePasswordKey))

 findSvcProxy.ClientCredentials.HttpDigest.AllowedImpersonationLevel= _

 TokenImpersonationLevel.Impersonation

 Return findSvcProxy

 End Function

 Private Function InitRenderServiceProxy() As RenderServiceSoapClient

 Dim renderSvcProxy As RenderServiceSoapClient

 renderSvcProxy = New RenderServiceSoapClient()

 renderSvcProxy.ClientCredentials.HttpDigest.ClientCredential = _

 New NetworkCredential(_

 ConfigurationManager.AppSettings(MapPointWebServiceIDKey), _

 ConfigurationManager.AppSettings(MapPointWebServicePasswordKey))

 renderSvcProxy.ClientCredentials.HttpDigest.AllowedImpersonationLevel _

 = TokenImpersonationLevel.Impersonation

 Return renderSvcProxy

 End Function

 Private Const MapPointWebServiceIDKey As String = _

 "MapPointWebServiceID"

 Private Const MapPointWebServicePasswordKey As String = _

 "MapPointWebServicePassword"

End Class

Class MapRequestInfo

 Public invokedDelegate As GetMapDelegate

 Public mapRetrievedHandler As MapRetrievedHandler

 Public address As Address

End Class

// C#

using System.Configuration;

using System.Security.Principal;

using System.Net;

using Microsoft.MapPoint.Proxy;

namespace Microsoft.MapPoint.ServiceAgent

{

180 Chapter 4 Consuming Services
 public delegate void MapRetrievedHandler(

 MapImage mapImage, Address address);

 public delegate MapImage GetMapDelegate(Address address,

 double mapHeight, double mapWidth, string dataSourceName);

 public class MapPointServiceAgent

 {

 public Location GetLocationByAddress(

 Address address, string dataSourceName)

 {

 FindServiceSoapClient findSvcProxy = InitFindServiceProxy();

 FindAddressSpecification addrSpec =

 new FindAddressSpecification();

 addrSpec.InputAddress = address;

 addrSpec.DataSourceName = dataSourceName;

 // Note: CustomerInfoFindHeader & UserInfoFindHeader can be null

 // here since we are happy with defaults

 FindResults results;

 try

 {

 results = findSvcProxy.FindAddress(null, null, addrSpec);

 }

 catch

 {

 results = null;

 }

 Location res = null;

 if (results != null && results.NumberFound > 0 &&

 results.Results[0].FoundLocation != null)

 {

 res = results.Results[0].FoundLocation;

 }

 return res;

 }

 public MapImage GetMapByLocation(Location location)

 {

 if (location == null)

 return null;

 RenderServiceSoapClient renderSvcProxy = InitRenderServiceProxy();

 MapSpecification mapSpec = new MapSpecification();

 mapSpec.DataSourceName = location.DataSourceName;

 mapSpec.Views = new MapView[]

 { location.BestMapView.ByBoundingRectangle };

 MapImage[] mapImages;

Lesson 2: Consuming Non-WCF Services 181
 try

 {

 mapImages = renderSvcProxy.GetMap(null, null, mapSpec);

 }

 catch

 {

 mapImages = null;

 }

 MapImage res = null;

 if (mapImages != null && mapImages.Length > 0)

 res = mapImages[0];

 return res;

 }

 public MapImage GetMapByLocation(

 Location location, double mapHeight, double mapWidth)

 {

 if (location == null)

 return null;

 RenderServiceSoapClient renderSvcProxy = InitRenderServiceProxy();

 MapSpecification mapSpec = new MapSpecification();

 mapSpec.DataSourceName = location.DataSourceName;

 // Init view:

 ViewByHeightWidth vbh = new ViewByHeightWidth();

 vbh.Height = mapHeight;

 vbh.Width = mapWidth;

 vbh.CenterPoint = location.LatLong;

 mapSpec.Views = new MapView[] { vbh };

 // Init options:

 mapSpec.Options = new MapOptions();

 mapSpec.Options.Format = new ImageFormat();

 mapSpec.Options.Format.Height = (int) mapHeight;

 mapSpec.Options.Format.Width = (int) mapWidth;

 mapSpec.Options.Zoom = 0.001;

 // Init pushpin:

 Pushpin pin = new Pushpin();

 pin.IconDataSource = "MapPoint.Icons";

 pin.IconName = "1";

 pin.Label = location.Address.AddressLine;

 pin.LatLong = location.LatLong;

 mapSpec.Pushpins = new Pushpin[] { pin };

 MapImage[] mapImages;

182 Chapter 4 Consuming Services
 try

 {

 mapImages = renderSvcProxy.GetMap(null, null, mapSpec);

 }

 catch

 {

 mapImages = null;

 }

 MapImage res = null;

 if (mapImages != null && mapImages.Length > 0)

 res = mapImages[0];

 return res;

 }

 public MapImage GetSizedMapByAddress(Address address,

 double mapHeight, double mapWidth, string dataSourceName)

 {

 Location location = GetLocationByAddress(

 address, dataSourceName);

 return GetMapByLocation(location,mapHeight,mapWidth);

 }

 public MapImage GetMapByAddress(

 Address address, string dataSourceName)

 {

 Location location = GetLocationByAddress(

 address, dataSourceName);

 return GetMapByLocation(location);

 }

 public static string AddressToString(Address address)

 {

 return string.Format(

 "{0}, {1}, {2}, {3}, {4}",

 address.AddressLine,

 address.PrimaryCity,

 address.Subdivision,

 address.PostalCode,

 address.CountryRegion);

 }

 private FindServiceSoapClient InitFindServiceProxy()

 {

 FindServiceSoapClient findSvcProxy = new FindServiceSoapClient();

 findSvcProxy.ClientCredentials.HttpDigest.ClientCredential =

 new NetworkCredential(

 ConfigurationManager.AppSettings[MapPointWebServiceIDKey],

 ConfigurationManager.AppSettings[

 MapPointWebServicePasswordKey]);

Lesson 2: Consuming Non-WCF Services 183
 findSvcProxy.ClientCredentials.HttpDigest.AllowedImpersonationLevel =

 TokenImpersonationLevel.Impersonation;

 return findSvcProxy;

 }

 private RenderServiceSoapClient InitRenderServiceProxy()

 {

 RenderServiceSoapClient renderSvcProxy =

 new RenderServiceSoapClient();

 renderSvcProxy.ClientCredentials.HttpDigest.ClientCredential =

 new NetworkCredential(

 ConfigurationManager.AppSettings[MapPointWebServiceIDKey],

 ConfigurationManager.AppSettings[

 MapPointWebServicePasswordKey]);

 renderSvcProxy.ClientCredentials.HttpDigest.AllowedImpersonationLevel =

 TokenImpersonationLevel.Impersonation;

 return renderSvcProxy;

 }

 private const string MapPointWebServiceIDKey =

 "MapPointWebServiceID";

 private const string MapPointWebServicePasswordKey =

 "MapPointWebServicePassword";

 }

}

NOTE More on the usage of HTTP digest authentication

To use the required HTTP digest authentication, in addition to the modifications you have
already made to the configuration file, note that in both the InitRenderServiceProxy and the
InitFinderServiceProxy methods, the NetworkCredential objects (created with the required Map-
Point service credentials) must be assigned to the proxy’s ClientCredentials.HttpDigest.Client-
Credential property.

This completes the agent library, and it should now build. Next, you finish off the Windows
Forms client that consumes the service.

10. Switching to the MapPointTestClient project, open the MainForm (.cs or .vb as appropri-
ate) code file and add the following imports, noting that they are slightly different
between the Visual Basic and C# versions because of the way the two languages handle
default naming of proxy namespaces:
' VB

Imports Microsoft.MapPoint.ServiceAgent

Imports Microsoft.MapPoint.ServiceAgent.Proxy

184 Chapter 4 Consuming Services
// C#

using Microsoft.MapPoint.Proxy;

using Microsoft.MapPoint.ServiceAgent;

11. In the same MainForm file, add a private field to the MainForm class that is a reference
to one of the MapPointServiceAgent objects whose class you just finished defining.
' VB

Private _svcAgent As MapPointServiceAgent = New MapPointServiceAgent()

// C#

private MapPointServiceAgent _svcAgent = new MapPointServiceAgent();

12. Implement the event handler _btnViewMap_Click that is invoked when the user clicks
the View Map button. It should be as follows:
' VB

Private Sub _btnViewMap_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles _btnViewMap.Click

 Dim address As Address = New Address()

 address.AddressLine = _tboxAddressLine.Text

 address.PrimaryCity = _tboxCity.Text

 address.Subdivision = _tboxProvinceOrState.Text

 address.PostalCode = _tboxZipOrPostalCode.Text

 address.CountryRegion = CType(_

 _countriesComboBox.SelectedItem, String)

 Dim img As MapImage

 img = _svcAgent.GetSizedMapByAddress(address, _

 _mainPicBox.Height, _mainPicBox.Width, _

 DefaultDataSourceName)

 If Not img Is Nothing Then

 ' Display the map:

 Dim bmapImg As Bitmap

 bmapImg = New Bitmap(_

 New MemoryStream(img.MimeData.Bits))

 _mainPicBox.Image = bmapImg

 ' Cache the image:

 _cachedMaps.Add(address, bmapImg)

 ' And update combo box:

 _recentlyViewedComboBox.Items.Add(address)

 _recentlyViewedComboBox.SelectedIndex = _

 _recentlyViewedComboBox.Items.Count - 1

 Else

 MessageBox.Show("No map found for address:" + vbCrLf + _

 MapPointServiceAgent.AddressToString(address), _

 "Error")

 End If

Lesson 2: Consuming Non-WCF Services 185
 InitAddressInputFields()

End Sub

// C#

private void _btnViewMap_Click(object sender, EventArgs e)

{

 Address address = new Address();

 address.AddressLine = _tboxAddressLine.Text;

 address.PrimaryCity = _tboxCity.Text;

 address.Subdivision = _tboxProvinceOrState.Text;

 address.PostalCode = _tboxZipOrPostalCode.Text;

 address.CountryRegion = _countriesComboBox.SelectedItem as string;

 MapImage img = _svcAgent.GetSizedMapByAddress(

 address, _mainPicBox.Height,

 _mainPicBox.Width, DefaultDataSourceName);

 if (img != null)

 {

 // Display the map:

 Bitmap bmapImg = new Bitmap(

 new MemoryStream(img.MimeData.Bits));

 _mainPicBox.Image = bmapImg;

 // Cache the image:

 _cachedMaps.Add(address, bmapImg);

 // And update combo box:

 _recentlyViewedComboBox.Items.Add(address);

 _recentlyViewedComboBox.SelectedIndex =

 _recentlyViewedComboBox.Items.Count - 1;

 }

 else

 {

 MessageBox.Show(

 "No map found for address:\n" +

 MapPointServiceAgent.AddressToString(address),

 "Error");

 }

 InitAddressInputFields();

}

You can now build and run the application, making sure that the MapPointTestClient is
the startup project and that you have an Internet connection so that the service is acces-
sible. After it is running, you should be able to enter any valid address in the United
States and Canada and display a map for that address. For example, try 1 Microsoft
Way, Redmond, WA 98052, US. You might even see the building in which WCF was
built!

186 Chapter 4 Consuming Services
� Exercise 2 Consume the MapPoint Service Asynchronously

In this exercise, you will build on the result of Exercise 1 by improving the design so that the
MapPoint service can be invoked asynchronously. This enhances the usability experience
because the UI will now be responsive while the application retrieves map images asynchro-
nously in the background.

To implement this, you must make two changes to the solution. In the UI code, you must add
a status bar that provides a visual cue that some work is being done in the background. In the
agent code, you’ll add a method for invoking map retrieval asynchronously, with the method
accepting a .NET delegate that can be used to call back the consumer when the retrieval is
done. Note that to provide asynchronous invocation on your agent, you cannot simply map
asynchronous calls on the agent to underlying asynchronous calls on the proxy. Why not?
Because in defining your agent’s interface, the choice made here was to wrap calls on the agent
to two successive calls on the underlying proxy, so instead of trying to handle the coordination
around two successive asynchronous calls on the proxy, you need to add the asynchronous
invocation capability manually at the agent level and, in the separate thread that results, the
two methods on the proxy can be called in a synchronous fashion.

1. Navigate to the <InstallHome>/Chapter4/Lesson2/Exercise2/<language>/Before direc-
tory and double-click the Exercise2.sln file to open the solution in Visual Studio.

The solution consists of the two projects as they were completed in Exercise 1.

Add two delegate declarations that will be used in this implementation. Add the follow-
ing to the MapPointServiceAgent (.cs or .vb as appropriate) file, above the definition of
the MapPointServiceAgent class:
' VB

Public Delegate Sub MapRetrievedHandler(_

 ByVal mapImage As MapImage, ByVal address As Address)

Public Delegate Function GetMapDelegate(_

 ByVal address As Address, ByVal mapHeight As Double, _

 ByVal mapWidth As Double, ByVal dataSourceName As String) _

 As MapImage

// C#

public delegate void MapRetrievedHandler(

 MapImage mapImage, Address address);

public delegate MapImage GetMapDelegate(Address address,

 double mapHeight, double mapWidth, string dataSourceName);

Add a basic info class to store the state object you will pass when invoking a delegate
asynchronously. To do so, define the following class below the MapPointServiceAgent
class:
' VB

Class MapRequestInfo

 Public invokedDelegate As GetMapDelegate

Lesson 2: Consuming Non-WCF Services 187
 Public mapRetrievedHandler As MapRetrievedHandler

 Public address As Address

End Class

// C#

class MapRequestInfo

{

 public GetMapDelegate invokedDelegate;

 public MapRetrievedHandler mapRetrievedHandler;

 public Address address;

}

Add the following method to the MapPointServiceAgent class, which will be the internal
callback method that is called when the asynchronously invoked operation completes.
' VB

Private Sub ProcessGetMapResult(ByVal ar As IAsyncResult)

 ' Access the state...

 Dim reqInfo As MapRequestInfo

 reqInfo = CType(ar.AsyncState, MapRequestInfo)

 Dim gmd As GetMapDelegate = reqInfo.invokedDelegate

 Dim mapRetrievedHandler As MapRetrievedHandler = _

 reqInfo.mapRetrievedHandler

 Dim addr As Address = reqInfo.address

 ' End the async call to get the returned image:

 Dim img As MapImage

 img = gmd.EndInvoke(ar)

 ' And use the address & the returned image to call back

 ' the handler interested in processing the retrieved map:

 If Not mapRetrievedHandler Is Nothing Then

 mapRetrievedHandler(img, addr)

 End If

End Sub

// C#

private void ProcessGetMapResult(IAsyncResult ar)

{

 // Access the state...

 MapRequestInfo reqInfo = ar.AsyncState as MapRequestInfo;

 GetMapDelegate gmd = reqInfo.invokedDelegate;

 MapRetrievedHandler mapRetrievedHandler =

 reqInfo.mapRetrievedHandler;

 Address addr = reqInfo.address;

 // End the async call to get the returned image:

 MapImage img = gmd.EndInvoke(ar);

 // And use the address & the returned image to call back

 // the handler interested in processing the retrieved map:

 if (mapRetrievedHandler != null)

 mapRetrievedHandler(img,addr);

}

188 Chapter 4 Consuming Services
2. Provide clients of this MapPointServiceAgent class with a method to invoke a map
retrieval request asynchronously, one that provides them with a means to provide a del-
egate that the implementation can use to call back the client when the map retrieval is
complete. To do so, add the following publicly available method to the MapPointService-
Agent class:
' VB

Public Sub BeginGetSizedMapByAddress(_

 ByVal address As Address, ByVal mapHeight As Double, _

 ByVal mapWidth As Double, ByVal dataSourceName As String, _

 ByVal mapRetrievedHandler As MapRetrievedHandler)

 ' Define the delegate to be invoked asynchronously:

 Dim gmd As GetMapDelegate

 gmd = New GetMapDelegate(AddressOf Me.GetSizedMapByAddress)

 ' Define the AsyncCallback delegate to be called when

 ' the asynchronous operation is completed:

 Dim cb As AsyncCallback

 cb = New AsyncCallback(AddressOf Me.ProcessGetMapResult)

 ' Create a "state" object:

 Dim reqInfo As MapRequestInfo = New MapRequestInfo()

 reqInfo.invokedDelegate = gmd

 reqInfo.mapRetrievedHandler = mapRetrievedHandler

 reqInfo.address = address

 ' Do asnyc invoke, passing our callback & state:

 gmd.BeginInvoke(address, mapHeight, mapWidth, _

 dataSourceName, cb, reqInfo)

End Sub

// C#

public void BeginGetSizedMapByAddress(Address address,

 double mapHeight, double mapWidth,

 string dataSourceName,

 MapRetrievedHandler mapRetrievedHandler)

{

 // define the delegate to be invoked asynchronously:

 GetMapDelegate gmd = new GetMapDelegate(this.GetSizedMapByAddress);

 // Define the AsyncCallback delegate to be called when

 // the asynchronous operation is completed:

 AsyncCallback cb = new AsyncCallback(this.ProcessGetMapResult);

 // Create a "state" object:

 MapRequestInfo reqInfo = new MapRequestInfo();

 reqInfo.invokedDelegate = gmd;

 reqInfo.mapRetrievedHandler = mapRetrievedHandler;

 reqInfo.address = address;

 // Do asnyc invoke, passing our callback & state:

Lesson 2: Consuming Non-WCF Services 189
 gmd.BeginInvoke(address,mapHeight,mapWidth,

 dataSourceName,cb,reqInfo);

}

This completes the improvements needed for the MapPointServiceAgent, and that project
should now build. Next, you return to the UI and take advantage of these changes to
make the UI more responsive as maps are asynchronously retrieved.

3. Open the design view of the MainForm and add a Status Strip control. Do this by simply
dragging a Status Strip control from the toolbox onto the form. Rename it to
_statusStrip and clear the Text property.

4. To this status strip, add a label control, renaming it to _mainStatusLabel and, again,
clear the Text property.

5. Next, switch to code view for this form, which opens the MainForm (.cs or .vb as appro-
priate) file. To the MainForm class, add the following method that will be the callback
handler, the method called when an asynchronously invoked map retrieval request has
completed.
' VB

Private Sub HandleMapImageAvailableForDisplay(_

 ByVal img As MapImage, ByVal address As Address)

 If Not img Is Nothing Then

 _mainStatusLabel.Text = String.Format(_

 "Map for address {0} was retrieved", _

 MapPointServiceAgent.AddressToString(address))

 ' Display the map:

 Dim bmapImg As Bitmap

 bmapImg = New Bitmap(_

 New MemoryStream(img.MimeData.Bits))

 _mainPicBox.Image = bmapImg

 ' Cache the image:

 _cachedMaps.Add(address, bmapImg)

 ' And update combo box:

 _recentlyViewedComboBox.Items.Add(address)

 _recentlyViewedComboBox.SelectedIndex = _

 _recentlyViewedComboBox.Items.Count - 1

 Else

 _mainStatusLabel.Text = String.Format(_

 "There was an error retrieving map for address {0}", _

 MapPointServiceAgent.AddressToString(address))

 MessageBox.Show("No map found for address:" + vbCrLf + _

 MapPointServiceAgent.AddressToString(address), _

 "Error")

 End If

End Sub

190 Chapter 4 Consuming Services
// C#

private void HandleMapImageAvailableForDisplay(

 MapImage img, Address address)

{

 if (img != null)

 {

 _mainStatusLabel.Text = string.Format(

 "Map for address {0} was retrieved",

 MapPointServiceAgent.AddressToString(address));

 // Display the map:

 Bitmap bmapImg = new Bitmap(

 new MemoryStream(img.MimeData.Bits));

 _mainPicBox.Image = bmapImg;

 // Cache the image:

 _cachedMaps.Add(address, bmapImg);

 // And update combo box:

 _recentlyViewedComboBox.Items.Add(address);

 _recentlyViewedComboBox.SelectedIndex =

 _recentlyViewedComboBox.Items.Count - 1;

 }

 else

 {

 _mainStatusLabel.Text = string.Format(

 "There was an error retrieving map for address {0}",

 MapPointServiceAgent.AddressToString(address));

 MessageBox.Show(

 "No map found for address:\n" +

 MapPointServiceAgent.AddressToString(address),

 "Error");

 }

}

6. Finally, update the event handler that is called when the user clicks the View Map button
so that now the map retrieval is invoked asynchronously, and a delegate reference to the
handler you just defined is passed when the asynchronous operation is called. The but-
ton click handler now becomes:
' VB

Private Sub _btnViewMap_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles _btnViewMap.Click

 Dim address As Address = New Address()

 address.AddressLine = _tboxAddressLine.Text

 address.PrimaryCity = _tboxCity.Text

 address.Subdivision = _tboxProvinceOrState.Text

 address.PostalCode = _tboxZipOrPostalCode.Text

 address.CountryRegion = CType(_

 _countriesComboBox.SelectedItem, String)

Lesson 2: Consuming Non-WCF Services 191
 _svcAgent.BeginGetSizedMapByAddress(address, _

 _mainPicBox.Height, _mainPicBox.Width, _

 DefaultDataSourceName, _

 AddressOf Me.HandleMapImageAvailableForDisplay)

 InitAddressInputFields()

 _mainStatusLabel.Text = String.Format(_

 "Retrieving map for address {0}", _

 MapPointServiceAgent.AddressToString(address))

End Sub

// C#

private void _btnViewMap_Click(object sender, EventArgs e)

{

 Address address = new Address();

 address.AddressLine = _tboxAddressLine.Text;

 address.PrimaryCity = _tboxCity.Text;

 address.Subdivision = _tboxProvinceOrState.Text;

 address.PostalCode = _tboxZipOrPostalCode.Text;

 address.CountryRegion = _countriesComboBox.SelectedItem as string;

 _svcAgent.BeginGetSizedMapByAddress(address,

 _mainPicBox.Height, _mainPicBox.Width,

 DefaultDataSourceName,

 this.HandleMapImageAvailableForDisplay);

 InitAddressInputFields();

 _mainStatusLabel.Text = string.Format(

 "Retrieving map for address {0}",

 MapPointServiceAgent.AddressToString(address));

}

Now the solution should build and run. At this point, you must also make sure that your
ID and password are correct in this application’s configuration file. When you run the
application this time, you will notice that the application UI remains usable even when
the map retrieval requests are being processed.

Lesson Summary
You can use the svcutil command-line tool or Visual Studio to generate proxies from the
WSDL of a non-WCF service.

In some situations, when there is a lack of WS-Policy support, some of the service’s pol-
icies can be found only in the documentation for the service, policies that might other-
wise be found in the WSDL.

Just as with WCF services, you can use proxy objects to call service operations either syn-
chronously or asynchronously.

192 Chapter 4 Consuming Services
You can use BasicHttpBinding, either in code or in a configuration file, to ensure that your
WCF service is WS-I Basic Profile–compliant when exchanging messages with a non-
WCF service.

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 2,
“Consuming Non-WCF Services.” The questions are also available on the companion CD if
you prefer to review them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is correct or incorrect are
located in the “Answers” section at the end of the book.

1. You need to consume a service built in Java. Which of the following are valid methods
you can use to create a WCF proxy class to consume this service? Choose all that apply.

A. Use the ChannelFactory class to create a proxy object dynamically.

B. Use the svcutil command-line tool to generate a proxy class by referencing the
WSDL for the service.

C. Manually define a proxy class that inherits from ClientBase.

D. Add a service reference in Visual Studio by referencing the WSDL for the service.

Chapter 4 Review 193
Chapter Review
To further practice and reinforce the skills you learned in this chapter, you can:

Review the chapter summary.

Review the list of key terms introduced in this chapter.

Complete the case scenarios. These scenarios set up real-world situations involving the
topics of this chapter and ask you to create solutions.

Complete the suggested practices.

Take a practice test.

Chapter Summary
You can generate a proxy class from a service’s metadata, using svcutil or Visual Studio,
or define a proxy class manually. For non-WCF services, the service metadata must be
expressed in the standard WSDL format.

You can create proxies to WCF services, either dynamically by using the ChannelFactory
class or by instantiating a proxy class.

You can use proxies to either WCF or non-WCF services to invoke operations on remote
services.

Key Terms
Do you know what these key terms mean? You can check your answers by looking up the
terms in the glossary at the end of the book.

ChannelFactory

proxy

proxy class

service agent

service reference

svcutil

WS-I

WS-I Basic Profile

194 Chapter 4 Review
Case Scenarios
In the following case scenarios, you will apply what you’ve learned in this chapter. You can
find answers to these questions in the “Answers” section at the end of this book.

Case Scenario 1: Building an e-Commerce Solution
You work for a consulting company that has just acquired a new customer that wants to enable
its Web site for e-commerce. The Web site is composed mostly of static text and images to dis-
play the product line. The site will need, at the very least, shopping-cart capability as well as
the ability to handle credit-card payment transactions and delivery of the product to the buyer.
The company wants to do this on an extremely low budget. Your manager seeks your advice
on how to handle this customer.

1. Your manager wants to know whether you can deliver a reasonably priced solution to the
customer, one with the lowest possible upfront costs.

2. If so, what might the solution look like?

Case Scenario 2: Medical Imaging Application
You work on a team that is developing a medical imaging solution. For years now, you have
provided a very powerful, rich-client application (a Windows Forms application) that radiol-
ogists inside the hospital use to view medical images and make diagnoses. However, you are
being asked to provide medical image viewing to a Web application that referring physicians
and partner insitutions can use outside of the hospital. Your team has decided that the Web
application will be based on ASP.NET and that you will provide a set of common WCF services
that both the Web application and the rich-client application can use. Your manager asks you
the following questions:

1. Both the Web application and the rich-client application must deal with slow or lost con-
nectivity, service operation retries, asynchronous submission, and retrieval of possibly
large amounts of image data. What can you can do to avoid duplicating solutions to
those challenges in both applications?

2. Can you maximize performance when retrieving large sets of image data for the rich-client
application inside the enterprise?

Suggested Practices
To help you successfully master the exam objectives presented in this chapter, complete the
following tasks.

Chapter 4 Review 195
Expand Your Knowledge of Service Agents
Improve your knowledge about service agents, and then build a more robust service agent by
performing the following practices.

Practice 1 Read the following articles about agents and how they can be used to solve
some of the problems a consumer can have when interacting with a service.

The ServiceConsoleHost project, a simple console application that hosts the service

The TaskClient project, a Windows Forms application used to consume the service

The Tasks.Entities project, a class library project that defines the Data contracts
used by the service

The Tasks.Services project, a class library project that defines the Service contract
and service type

The MapPointTestClient project, which is a Windows Forms application you use to
consume the MapPoint service.

The Microsoft.MapPoint.ServiceAgent project, which is a class library project that
initially contains only an almost empty app.config file and a text file that contains
the svcutil command you’ll need in a moment to generate a proxy. The project
does, however, already have the appropriate references set up.

Dealing with Concurrency: Designing Interaction Between Services and Their Agents, by
Maarten Mullender, which is available at http://msdn2.microsoft.com/en-us/library
/ms978508.aspx

Transparent Connectivity: A Solution Proposal for Service Agents, by Maarten Mullender
and Jon Tobey, which is available at http://msdn2.microsoft.com/en-us/library
/aa479367.aspx

Practice 2 For the Task Manager service you worked with in Lesson 1, build a more
capable TaskServiceAgent that can work in a completely offline mode. You can likely do
this in several ways, but one feasible approach is to store any tasks that need to be sub-
mitted to the service in a local SQL server database until the agent is able to re-establish
connectivity with the service.

Consume a Non-WCF Service
Consume another third-party service by performing the following practice.

Practice Any of the various live.com services from Microsoft would afford good practice
for consuming non-WCF services.

Failing something that interests you among the live.com services, pick any third-party
service that supports developer trial access and try to write a WCF proxy to consume it.

196 Chapter 4 Review
Take a Practice Test
The practice tests on this book’s companion CD offer many options. For example, you can test
yourself on just one exam objective, or you can test yourself on all the 70-503 certification
exam content. You can set up the test so that it closely simulates the experience of taking a cer-
tification exam, or you can set it up in study mode so that you can look at the correct answers
and explanations after you answer each question.

MORE INFO Practice tests

For details about all the practice test options available, see the “How to Use the Practice Tests” sec-
tion in this book’s introduction.

Chapter 10

Sessions and Instancing

When a discussion of Windows Communication Foundation (WCF) turns to the concepts
and details of sessions and instancing, it seems as though you’re starting to tread on common
ground with Web developers. ASP.NET developers are likely to be familiar with the concepts
associated with sessions. Although less directly, ASP.NET developers also deal with some of
the aspects associated with instancing in relation to having a Web site hosted on a Web farm.
However, the instancing issues will be more familiar to developers who have used .NET remot-
ing in the past.

This chapter finds common ground for all developers, regardless of their background, and
answers the question of how sessions function within the WCF world. It also describes the
various instancing options and the implications each choice has on the available functionality.
This content is definitely part of the certification exam; however, pay close attention because
it is also frequently at the heart of real-world design choices.

Exam objectives in this chapter:
Manage instances.

Manage sessions.

Lessons in this chapter:
Lesson 1: Instancing Modes . 443

Lesson 2: Working with Instances . 465

Before You Begin
To complete the lessons in this chapter, you must have:

A computer that meets or exceeds the minimum hardware requirements listed in the
introduction at the beginning of the book.

Any edition of Microsoft Visual Studio 2008 (including Microsoft Visual C# 2008 Express
edition or Microsoft Visual Basic 2008 Express edition) installed on the computer.
441

442 Chapter 10 Sessions and Instancing
Real World
Bruce Johnson

The session side of this chapter is, again, probably familiar to those of you who have
worked with ASP.NET. The idea is a simple one: By allowing the service to identify the cli-
ent that made a request, it becomes possible to save state information with that client.
This information can facilitate sophisticated interactions between the client and the ser-
vice. What is nice about the session model that WCF provides is that the binding is, for
the most part, irrelevant. Like so much else in WCF, the details are hidden from view,
and it just works.

The instancing side of this chapter is a little different. It’s more in the category of “what
you need to know to be an expert.” In most cases, you will not need to know the details
of instancing beyond the need to set the mode to per call, per session, or singleton, but
within that world, some strange things have been known to happen. You are moving into
an area in which subtle bugs can arise, and if you have the detailed knowledge provided
in this chapter, you will be able to identify the source of the problem more quickly and
give off the heroic aura that experts are expected to have.

Lesson 1: Instancing Modes 443
Lesson 1: Instancing Modes
Instancing should, for the most part, be a service-side implementation detail that has no effect
on the client, and this is generally the case. However, the demands of the client frequently do
influence the instancing that should be used. Instancing can affect scalability, throughput,
transactions, and queued calls, so although the client might be oblivious to the instancing
mode, the service can’t reciprocate. This lesson considers the different types of possible
instancing, along with how they are set up and the ramifications of the choices.

After this lesson, you will be able to:
Identify the different instancing modes supported by WCF.
Configure the service to preserve state information for calls from a single client.
Share an instance of a proxy class between two or more clients.

Estimated lesson time: 50 minutes

Instancing
WCF is responsible for binding an incoming message to a particular service instance. When a
request comes in, WCF determines whether an existing instance of the service class (the ser-
vice instance) can process the request. The decision matrix for this choice is basically the
instancing management that WCF provides.

When it comes to the question of which instancing mode to use, there is no correct answer. A
variety of factors must be balanced to determine the most appropriate mode for the given sit-
uation. For this reason, this lesson covers all the modes in great detail and provides scenarios
in which they might be the most appropriate choice. However, even with the given scenarios,
the choice is seldom clear, and a small change in the importance of one factor can tip the scale
to another choice. Your benefit from this discussion should be a general sense of when a par-
ticular mode is more or less likely to be chosen.

The determination of the instancing mode is done on the service side. This is to be expected
because it is an implementation detail that should be hidden from the caller. The mode is
defined within the service behavior. This means that the instancing mode is used across all the
endpoints of a service. It can also be applied directly in the service’s implementation class.

Three choices are available for the InstanceContextMode. They are per call mode, per session
mode, and singleton mode. The meanings of these modes are described in the next few sec-
tions, but those are not the only available choices. In the original version of WCF, there was
also an option in the InstanceContextMode enumeration called Shareable. Although the func-
tionality still exists, the enumerated value does not. Instead, to share the same service instance
across multiple requests, the service must intercept the request, determine which instance the

444 Chapter 10 Sessions and Instancing
requestor wants, and then provide that instance to the run time. The upcoming sections
describe how this is done.

Per Call Mode
In per call mode, every single request gets its own copy of a service implementation object. Fig-
ure 10-1 illustrates the basic flow for the request

Figure 10-1 Per call instantiation

The client makes a request to the service through a proxy. When the request arrives at the ser-
vice host, the host creates an instance of the service’s implementation class. This class is then
called to process the request. After the request is complete and the response returned to the
client, the implementation object is disposed of.

NOTE IDisposable and Dispose

Each implementation object implements the IDisposable interface. When the object is finished
(defined by the instancing mode), the Dispose method is called. Although the object has not nec-
essarily been garbage collected immediately, it is in a state in which no further calls can be made
to any method.

Per call instancing is the default mode for WCF. There are a number of reasons for making this
particular choice. For the developer, per call mode requires the least amount of consideration
given to concurrency. If each request has its own copy of the object, there is no need to worry
about a shared value being updated in a non-atomic manner.

Historically, the instancing mode many client/server applications used was one implementa-
tion object per client. This is a simple approach, but a number of problems affect performance.

Instance Instance

Instance

Service

Client

Lesson 1: Instancing Modes 445
For example, consider the issue associated with a scarce resource. If the service object opens
a connection to a database and keeps that connection open for its lifetime, the resource is
unavailable for use by other instances, yet the period of time the resource might actually be
required is quite small.

It is well understood by designers of distributed applications that this model has scalability
weaknesses. One of the solutions is to reduce the time the implementation object exists. This
is the genesis for the per call mode. In per call, the implementation object is instantiated as
soon as it is needed, and it is disposed of as soon as the request is completed. If the object
holds on to a scarce resource, the lifetime of the object has been reduced to minimize the
impact holding that resource has on overall performance.

However, “simple to use” is not the same as “best.” And that per call instancing hides many of
the challenges associated with distributed applications doesn’t mean that it should be the
mode you always use. Consider some of the drawbacks associated with this approach.

A scarce resource is one that is expensive to allocate or is limited in the number available for
use. A canonical example is a file that resides on the service system’s hard drive. If the file is
opened for update, only one service implementation instance can have it open at a time, so in
a per call instancing mode, only the first request in can be processed through to completion.
The second (and subsequent) requests will block, waiting for the physical file to become avail-
able. Although a physical file is an extreme scenario, there are many other scenarios. Database
connections, network connections (used to make Web service calls), or communications ports
all qualify as scarce resources.

One of the keys to making this model work is the existence of a proxy object for the service.
The typical programming model that has already been discussed has the client instantiating
an object and maintaining a reference to it for the life of the application. However, in per call
mode, the object that is referred to should be disposed of. This would typically invalidate the
reference, a generally undesirable outcome. However, in the world of WCF, the client is actu-
ally holding a reference to the proxy. The proxy is not disposed of with every call. Instead, it
becomes part of the proxy’s job to re-create the service implementation object as necessary.

An ancillary benefit to this model is how it works with transactional applications. The need to
re-create the object and reconnect to scarce resources works well in an environment in which
the instance state must be deterministic.

As has already been mentioned, the instancing mode is set at the service level. The following
code demonstrates (in bold) how to set the mode to per call.

' VB

<ServiceBehavior(InstanceContextMode:=InstanceContextMode.PerCall)> _

Public Class UpdateService

 Implements IUpdateService

446 Chapter 10 Sessions and Instancing
 ...

End Class

// C#

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]

class UpdateService : IUpdateService {...}

Although, theoretically, the client doesn’t need to be aware of whether the service is running
in per call mode, the reality is that per call means that no state can exist between calls. It
becomes a design issue, but the client cannot expect that the results from one call will be pre-
served or used in the second call to the service. If this is a requirement, regardless of the rea-
son, it becomes part of the service’s task to ensure that state is saved across calls. This would
typically be done by persisting the state into a service-local store (such as a database). Then,
when subsequent requests come in, the previously saved state can be restored and used.

If the service’s design calls for this pattern, there is an impact on the design of the Service con-
tract. Specifically, each operation must include a parameter that identifies the client making
the request. This allows the service method to retrieve the state associated with the client. The
actual parameter that is used could be a business-level value (customer number, order num-
ber, account number) or a meaningless value (such as guid).

From a general design perspective, per call mode is best used when individual operations are
short and the operation does not spawn any background threads that continue processing
after the request is complete. The reason for this second stipulation has to do with the disposal
of the implementation object. If an operation were to spin up something that isn’t completed
prior to the response being returned to the client, the object will not be around to receive the
result. It will have been destroyed as soon as the request is finished.

Per Session Mode
Given the idea that a parameter would be passed into a service’s method to retrieve state, it
seems a short jump to this next mode. WCF can maintain a private session between a client
and a particular instance of the service’s implementation object.

The key to understanding the intricacies of per session mode is understanding what is hap-
pening internally. Each client, upon the first request to the service, gets an instance of the ser-
vice’s implementation object. This instance is dedicated to processing the requests that come
from that client. Any subsequent calls are considered to be part of the same session (with some
exceptions that will be described shortly), and the calls are processed by the same instance of
the implementation object. Figure 10-2 illustrates this relationship.

Lesson 1: Instancing Modes 447
Figure 10-2 Per session mode interactions

There are two components to per session mode. The contractual piece involves letting the
client know that a session is required. This is necessary because to maintain the session, the cli-
ent must include an identifier to locate the appropriate implementation object in the service.
To indicate to the contract that a session is to be maintained, the ServiceContract attribute
includes a SessionMode property. For per session mode to be used, this Boolean value must be
set to SessionMode.Required, as demonstrated in bold in the following code.

' VB

<ServiceContract(SessionMode:=SessionMode.Required)> _

Public Interface IUpdateService

 ' Interface definition code goes here

End Interface

// C#

[ServiceContract(SessionMode = SessionMode.Required)]

public interface IUpdateService

{

 // Interface definition code goes here

}

The second component of the configuration is behavioral in nature. WCF needs to be told that
you would like to use per session mode and that the service instance should be kept alive
throughout the session. You do this by setting the InstanceContextMode in the service behavior
as illustrated in bold in the following code.

' VB

<ServiceBehavior(InstanceContextMode:=InstanceContextMode.PerSession)> _

Public Class UpdateService

 Implements IUpdateService

 ' Implementation code goes here

End Class

Service

Instance

Client

Instance

Client

448 Chapter 10 Sessions and Instancing
// C#

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerSession)]

public class UpdateService : IUpdateService

{

 // Implementation code goes here

}

Now it’s time to talk about some of the details. The relationship isn’t quite between the client
and the service. It is actually between a specific instance of the proxy class used by the client and
the service. When you create a proxy for a WCF service, an identifier for that proxy is gener-
ated. This identifier is used by the service host to direct any requests to the appropriate
instance. However, the identifier is associated with the instance of the proxy class, so if a single
client creates more than one instance of the proxy class, those instances will not combine ses-
sions. Each proxy will get its own instance of the service implementation class.

After an instance is created for a proxy, the instance remains in memory for the length of the
session. For this reason, it is possible to maintain state in memory. This makes the program-
ming model quite similar to the traditional client–server approach, but this also means that
per session mode suffers from the same issues that the client server model has. It has issues
with scalability, needs to be aware of state, and can have problems with transactions. The prac-
tical limit for a service is no more than a few hundred clients.

As mentioned earlier, the service instance lasts until the client no longer requires it. Again,
there are caveats to that generalization. The most efficient path for session termination
involves the client closing the proxy. This causes a notification to be sent to the service that the
session has ended, but what happens if the client doesn’t close the proxy? What happens if the
client doesn’t terminate gracefully or a communications issue between the client and service
prevents the notification from being received? In these cases, the session will automatically ter-
minate after ten minutes of inactivity. After the session has been terminated in such a manner,
the client will receive a CommunicationObjectFaultedException if it attempts to use the proxy.

This ten-minute timeout is just the default value. Whether the default can be changed depends
on the binding. If the binding supports a reliable session, you can set the InactivityTimeout
property associated with the reliable session. The following code demonstrates how to do this
with a netTcpBinding binding.

' VB

Dim binding As New NetTcpBinding()

binding.ReliableSession.Enabled = True

binding.ReliableSession.InactivityTimeout = TimeSpan.FromMinutes(60)

// C#

NetTcpBinding binding = new NetTcpBinding();

binding.ReliableSession.Enabled = true;

binding.ReliableSession.InactivityTimeout = TimeSpan.FromMinutes(60);

Lesson 1: Instancing Modes 449
You can make the same setting through configuration files, as illustrated in the following
segment:

<netTcpBinding>

 <binding name="timeoutSession">

 <reliableSession enabled="true" inactivityTimeout="01:00:00"/>

 </binding>

</netTcpBinding>

Exam Tip As you might surmise, it is possible for the inactivity timeout to be configured at both
the client and the service. If the times are different, the shortest configured timeout prevails.

Speaking of reliable sessions, support for reliable sessions is required for a binding to support
sessions. All the endpoints that expose the Service contract must use bindings that support
reliable transport sessions, and the session must be enabled as shown in the earlier code
example. This constraint is validated when the service is loaded; an InvalidOperationException
is thrown if there is a mismatch.

One binding that is unable to support sessions is basicHttpBinding. Within the protocol that
underlies this binding, there is no way to pass the information necessary to maintain the ses-
sion. You can overcome the problem with the transport protocol within the format of the mes-
sages. The wsHttpBinding binding is capable of providing the necessary data to support
sessions, for example.

There is one exception to the reliable session rule. The named pipe binding supports reliabil-
ity by definition, so there is no need for the reliable messaging protocol to be implemented—
and the netNamedPipeBinding binding does support sessions.

Singleton Mode
In this mode, only one instance of the service’s implementation class is created. This instance
is enlisted to handle every request that arrives at the service. The instance lives forever (or
close to forever) and is disposed of only when the host process shuts down.

Singleton mode does not require any session information to be transmitted with the message.
As a result, there is no restriction on the ability of the binding to support transport-level ses-
sions. Nor is there a need for the protocol or binding to provide a mechanism that appears to
emulate session behavior. If the contract exposed by the service has a session, the client must
provide the session, but there is no requirement for sessions for singleton mode to work. Fur-
ther, if a session is associated with the request, that session will never expire. The session iden-
tifier is maintained within the client proxy until the proxy is destroyed.

Alternatively, if no session information is exposed by the contract, the communications don’t
fall back to per call mode (unlike other modes). Instead, the request continues to be handled
by the single instance of the singleton service.

450 Chapter 10 Sessions and Instancing
Configure a singleton service in a manner similar to the other modes. The InstanceContextMode
property of the ServiceBehavior attribute is set to Single. The following code demonstrates this,
as shown in bold:

' VB

<ServiceBehavior(InstanceContextMode:=InstanceContextMode.Single)> _

Public Class UpdateService

 Implements IUpdateService

' Implementation code goes here

End Class

// C#

[ServiceBehavior(InstanceContextMode = InstanceContextMode.Single)]

public class UpdateService : IUpdateService

{

 // Implementation code goes here

}

One of the features the singleton behavior offers is the ability to initialize the implementation
instance through the constructor. For the other behaviors, the instance object is created
behind the scenes at a time determined by the host process, but for singletons, you have the
option to create the singleton instance and pass it into the host process.

Naturally, this begs the question of why you would want to do this. Typically, the rationale
involves performing initialization processing outside the scope of the first request. If the ser-
vice instance needs to allocate some resources (such as connecting to a database), the default
behavior is to have the first request pay that performance price. It might be that logic should
be injected into the service instance that is not available to the client (and, therefore, couldn’t
be included in the request). In both of these cases (and there are other reasons as well), having
the service host create the singleton instance is not the best alternative.

However, in singleton mode, you can create the service instance before the host is even started.
This instance can then be passed into the host as the host is getting started. One of the con-
structors for the ServiceHost class takes a singleton instance as a parameter. When constructed
in this manner, the host will direct all incoming requests to the provided instance. The follow-
ing code demonstrates how this is accomplished.

' VB

Dim singletonInstance As New SingletonUpdateService()

Dim host As New ServiceHost(singletonInstance)

host.Open()

// C#

SingletonUpdateService singletonInstance = new SingletonUpdateService();

ServiceHost host = new ServiceHost(singletonInstance);

host.Open();

Lesson 1: Instancing Modes 451
For the preceding code to work, the service (SingletonUpdateService in this example) must be
defined with the InstanceContextMode property in the ServiceBehavior attribute set to Single.

When the service host is using a singleton instance, it is also possible for other objects to reach
into the instance to call methods or set parameters. The ServiceHost class exposes a Singleton-
Instance property that references the instance processing the incoming requests. The following
code demonstrates how to update a member of the instance:

' VB

Dim instance As SingletonUpdateService = _

 TryCast(host.SingletonInstance, SingletonUpdateService)

instance.Counter += 50

// C#

SingletonUpdateService instance = host.SingletonInstance as

 SingletonUpdateService;

instance.Counter += 50;

Even if the local host object variable is not available, you can still gain access to the instance.
The OperationContext class exposes a read-only Host property, so from within an operation, the
singleton instance can be accessed.

' VB

Dim host As ServiceHost = TryCast(OperationContext.Current.Host, _

 ServiceHost)

If host IsNot Nothing Then

 Dim instance as SingletonUpdateService = _

 TryCast(host.SingletonInstance, SingletonUpdateService)

 If instance IsNot Nothing Then

 Instance.Counter += 1

 End If

End If

// C#

ServiceHost host = OperationContext.Current.Host as ServiceHost;

if (host != null)

{

 SingletonUpdateService instance = host.SingletonInstance

 as SingletonUpdateService;

 if (instance != null)

 instance.Counter += 1;

}

That every request is handled by a single instance of the implementation class has potential
implications for contention issues. If multiple requests arrive at the service, they will be pro-
cessed, in many cases, by the same instance but in a different worker thread. This means that
any variable scoped outside of the current method (that is a class-level variable) can be cor-
rupted if the value is updated by two worker threads at once. You must ensure that updates are
performed using concurrency techniques such as locking.

452 Chapter 10 Sessions and Instancing
The side effect of dealing with concurrency is that, at least in areas that are synchronized, only
one request can be processed at a time. If the singleton service has a number of areas that
require synchronization, or even if there is only one but it is in a frequently used method, per-
formance can be negatively affected.

From a design perspective, singleton services are best used when they are modeling a single-
ton resource—a log file, perhaps, that allows a single writer only or, as has recently happened
in the real-world job mentioned earlier, communicating with a single robot. If there is a possi-
bility that, in the future, the service might no longer be a singleton, think hard before using this
model. Subtle dependencies can be introduced while using the singleton model. The client
might come to expect that state will be shared across multiple requests. Although the change
to reconfigure the service to be something other than a singleton is simple, the challenge of
tracking down dependency bugs can be much worse.

Sharing Instances
As has been mentioned, the mechanism for sharing a service instance between multiple clients
has changed from the original approach. By creating a class that implements the IInstance-
ContextProvider interface and then injecting the class into the dispatch pipeline, you can have
a great deal of control over which instance of the service class will be used to service each
request.

The starting point must come from the client. For the service to distinguish between the dif-
ferent clients, it examines each incoming request. Based on information that exists within the
request, an existing instance is provided (or a new one is created). This generally means that
the client needs to place something in the request, such as a message header. The easiest way
to accomplish this is to use the MessageHeader class factory to create an instance of a Message-
Header object. That object can then be added to the message headers that are sent with the
request. The following code demonstrates how to do this.

NOTE Import the System.ServiceModel.Channels namespace

The MessageHeader class used in this code exists in the System.ServiceModel.Channels namespace.
Unless this namespace is imported into the code file, you might receive an error message indicat-
ing that MessageHeader is a generic type that expects a parameter.

' VB

Dim header As MessageHeader = _

 MessageHeader.CreateHeader("headerName", "headerNamespace", _

 "instanceId")

Using SessionClient proxy As NewSessionClient()

 Using (New OperationContextScope(proxy.InnerChannel))

 OperationContext.Current.OutgoingMessageHeaders.Add(header)

 ' use the proxy object

Lesson 1: Instancing Modes 453
 End Using

End Using

// C#

MessageHeader header = MessageHeader.CreateHeader("headerName",

 "headerNamespace", "instanceId");

using (SessionClient proxy = new SessionClient())

{

 using (new OperationContextScope(proxy.InnerChannel))

 {

 OperationContext.Current.OutgoingMessageHeaders.Add(header);

 // Use the proxy object

 }

}

The idea is that any client making a request to the service will use this pattern of code. If two
clients must share an instance, the instance ID from one client will be sent to the second client,
which would then include that in the message header it sends to the service.

Sending the header information is just the starting point. On the service side, the presence of
the instance ID must be recognized and extracted from the request. This ID is then used as the
key to a collection of previously created instances. If the corresponding instance already exists
in the collection, it must be used to process the request. If the instance ID does not exist, a new
instance must be created and then added to the collection to handle future requests.

The mechanism to implement the preceding scenario might not be obvious. Fortunately,
Microsoft uses a provider model for the creation of instances to process requests. The interface
for this is named IInstanceContextProvider. This interface exposes four methods: GetExisting-
InstanceContext, InitializeInstanceContext, IsIdle, and NotifyIdle. These four methods actually
work in two groups.

GetExistingInstanceContext and InitializeInstanceContext work in concert to determine which
instance of the service’s implementation object will be used to create the response. The Get-
ExistingInstanceContext method is invoked as part of the process of handling an incoming
request. The result from this method is either an existing instance context or a value of null/
Nothing. In the latter case, WCF recognizes that no instance has been previously created, so it
creates a new instance and then invokes the InitializeInstanceContext method. The idea is that
any setup that must be performed on the new instance will be done in the InitializeInstance-
Context method. In the case of the instance-sharing mode, this would normally include saving
the new instance so that it can be retrieved in a future call to GetExistingInstanceContext.

WCF uses the IsIdle and NotifyIdle methods when it believes that all the activities associated
with an instance have been completed. At this point, the IsIdle method is invoked. It is up to
this method to determine whether the client (or clients) no longer needs the instance. The
method returns a Boolean value, and if it returns true, then WCF will close the context.

454 Chapter 10 Sessions and Instancing
Alternatively, if IsIdle returns False, that is a signal to WCF that the client might still need the
particular instance. At this point, WCF invokes the NotifyIdle method. This method includes
as one of the parameters a callback method. The idea is that, after the instance is no longer
required (as determined by the provider), the method reference by the callback parameter will
be invoked. This notifies WCF that the instance is no longer required. It will then start the
instance deactivation process (including a call to the IsIdle method) once again.

Lab: Instance Modes
In this lab, you will focus on experimenting with the different instancing modes available in
WCF. The first exercise looks at the InstanceContextMode enumeration, illustrating the differ-
ent possible behaviors. The second exercise walks you through the creation of an instance
context provider and illustrates how it can be used to share instances between clients.

� Exercise 1 Per Session, Per Call, and Singleton Modes

In this first exercise, you will use the InstanceContextMode value to determine the instancing
WCF uses as well as to demonstrate the behavior of each mode by using a variable that is pri-
vate to the implementation class.

1. Navigate to the <InstallHome>/Chapter10/Lesson1/Exercise1/<language>/Before direc-
tory and double-click the Exercise1.sln file to open the solution in Visual Studio.

The solution consists of two projects. They are as follows:

The DemoService project, a simple WCF service library that implements the ISession
interface. This interface consists of a single method (GetSessionStatus) that returns
a string indicating the number of times the method has been called within the cur-
rent service instance.

The TestClient project, a Console application that generates a request for the ser-
vice and displays the result in the Console window.

2. In Solution Explorer, double-click the Program.cs or Mobile1.vb file in the TestClient
project.

In this file, you can see the lines of code that send requests to the service. Initially, there
are two calls, back to back. First, set up the service to use the PerCall instance method.
This is actually redundant because that is the default mode, but it does set up for the
other modes.

3. To start, in Solution Explorer, double-click the SessionService file.

The declaration for the SessionService class includes the ServiceBehavior attribute. One of
the properties for that class is named InstanceContextMode. You can assign this value
through the attribute by using a named parameter format.

Change the class declaration to be the following:
' VB

<ServiceBehavior(InstanceContextMode:=InstanceContextMode.PerCall)> _

Lesson 1: Instancing Modes 455
Public Class SessionService

 Implements ISession

// C#

[ServiceBehavior(InstanceContextMode=InstanceContextMode.PerCall)]

public class SessionService : ISession

4. Ensure that TestClient is set as the startup project and launch the application by press-
ing F5.

After a few moments, you will see that two messages appear. Each message indicates that
the instance has been called only one time, even though the same proxy object is being
used. This is to be expected when the instance is created once per call.

5. Press Enter to stop running the application.

6. In the SessionService file, change the instance context mode from PerCall to PerSession.
When you are finished, the class declaration will look like the following (changes shown
in bold):
' VB

<ServiceBehavior(InstanceContextMode:=InstanceContextMode.PerSession)> _

Public Class SessionService

 Implements ISession

// C#

[ServiceBehavior(InstanceContextMode=InstanceContextMode.PerSession)]

public class SessionService : ISession

For session mode to work, the service interface must be marked as requiring an inter-
face.

7. In Solution Explorer, double-click the ISession file.

The declaration for the ISession interface includes a ServiceContract attribute. The
attribute includes a SessionMode property, which you must set to Required.

8. Modify the interface’s declaration as shown in bold to look like the following:
' VB

<ServiceContract(SessionMode:=SessionMode.Required)> _

Public Interface ISession

// C#

[ServiceContract(SessionMode=SessionMode.Required)]

public interface ISession

9. Launch the application by pressing F5.

After a few moments, you will see that two messages appear. The messages indicate that
a single instance of the service class has been called twice. Again, this is the expectation
when the instance is created once per session.

10. Press Enter to terminate the application.

To simulate two clients, the client application can create two separate using blocks.

456 Chapter 10 Sessions and Instancing
11. In the Program.cs or Module1.vb file, add a second using block that creates a new proxy
object and invokes the service. Change the Main method so that the body looks like the
following:
' VB

Using proxy As New DemoService.GetSessionStatusClient()

 Console.WriteLine("First call: " + proxy.GetSessionStatus())

End Using

Using proxy As New DemoService.GetSessionStatusClient()

 Console.WriteLine("Second call: " + proxy.GetSessionStatus())

End Using

Console.ReadLine()

// C#

using (DemoService.GetSessionStatusClient proxy = new

 DemoService.GetSessionStatusClient())

{

 Console.WriteLine("First call: " + proxy.GetSessionStatus());

}

using (DemoService.GetSessionStatusClient proxy = new

 DemoService.GetSessionStatusClient())

{

 Console.WriteLine("Second call: " + proxy.GetSessionStatus());

}

Console.ReadLine();

12. Launch the application by pressing F5.

In a few moments, the messages will appear on the console. The messages indicate that
even though the instance context mode is set to PerSession, the different using blocks
result in two different sessions.

13. Press Enter to terminate the application.

14. In the SessionService file, change the instance mode to Single.

The declaration for the SessionService class should read as follows (changes shown in
bold):
' VB

<ServiceBehavior(InstanceContextMode:=InstanceContextMode.Single)> _

Public Class SessionService

 Implements ISession

// C#

[ServiceBehavior(InstanceContextMode=InstanceContextMode.Single)]

public class SessionService : ISession

15. Launch the application one last time by pressing F5.

Lesson 1: Instancing Modes 457
In a few moments, the console messages appear. In this case, they indicate that even
though two different sessions have been created (there are still two using blocks), they
both use the same session instance.

16. Press Enter to terminate the application

� Exercise 2 Share Service Instances

The fourth instancing mode for WCF services used to be known as Shareable. WCF uses a pro-
vider model to determine which instance of a service implementation class should be used. In
this exercise, you will create a custom provider for instances and inject it into the WCF pipe-
line. The instance ID will be a number typed into the client to emulate the sharing process.

1. Navigate to the <InstallHome>/Chapter10/Lesson1/Exercise2/<language>/Before direc-
tory and double-click the Exercise2.sln file to open the solution in Visual Studio.

The solution consists of two projects. They are as follows:

The DemoService project, a simple WCF service library that implements the ISession
interface. This interface consists of a single method (GetSessionStatus) that returns
a string indicating the number of times the method has been called within the cur-
rent service instance.

The TestClient project, a Console application that generates a request for the ser-
vice and displays the result in the Console window.

2. In Solution Explorer, double-click the DemoContextInfo file.

This file will store information about an individual instance context. The provider will
maintain a dictionary of DemoContextInfo files. This class implements the IExtension
interface. The interface facilitates the aggregation of classes into the WCF pipeline,
although in this particular case, the methods associated with this interface (Attach and
Detach) are not needed for the implementation.

3. In Solution Explorer, double-click the DemoContextProvider file.

This file will provide the implementation for the provider. This class must implement the
IInstanceContextProvider interface.

4. Change the class declaration to be as follows:
' VB

Public Class DemoContextProvider

 Implements IInstanceContextProvider

// C#

public class DemoContextProvider : IInstanceContextProvider

The interface requires four methods to be added.

5. Add the following method blocks to fulfill this requirement:
' VB

Public Function GetExistingInstanceContext(message As Message, _

 channel As IContextChannel) As InstanceContext _

458 Chapter 10 Sessions and Instancing
 Implements IInstanceContextProvider.GetExistingInstanceContext

End Function

Public Sub InitializeInstanceContext(instanceContext As InstanceContext, _

 message As Message, channel As IContextChannel) _

 Implements IInstanceContextProvider.InitializeInstanceContext

End Sub

Public Function IsIdle(instanceContext As InstanceContext) As Boolean _

 Implements IInstanceContextProvider.IsIdle

End Function

Public Sub NotifyIdle(callback As InstanceContextIdleCallback, _

 instanceContext As InstanceContext) _

 Implements IInstanceContextProvider.NotifyIdle

End Sub

// C#

public InstanceContext GetExistingInstanceContext(Message message,

 IContextChannel channel) { }

public void InitializeInstanceContext(InstanceContext instanceContext,

 Message message, IContextChannel channel) { }

public bool IsIdle(InstanceContext instanceContext)

{

 return false;

}

public void NotifyIdle(InstanceContextIdleCallback callback,

 InstanceContext instanceContext) { }

In the GetExistingInstanceContext method, the first step is to retrieve the instance ID from
the request.

6. Add the following code to the GetExistingInstanceContext method.
' VB

Dim headerIndex As Integer = message.Headers.FindHeader(headerName, _

 headerNamespace)

Dim _instanceId As String = String.Empty

If headerIndex <> -1 Then

 _instanceId = message.Headers.GetHeader(Of String)(headerIndex)

End If

// C#

int headerIndex = message.Headers.FindHeader(headerName, headerNamespace);

string instanceId = String.Empty;

if (headerIndex != -1)

 instanceId = message.Headers.GetHeader<string>(headerIndex);

Lesson 1: Instancing Modes 459
7. If the request is associated with a session, the information about the instance will have
been added as one of the extensions in the channel. If so, retrieve it. Add the following
code below the newly added lines.
' VB

Dim info As DemoContextInfo = Nothing

Dim hasSession As Boolean = (channel.SessionId IsNot Nothing)

If hasSession Then

 info = channel.Extensions.Find(Of DemoContextInfo)()

End If

// C#

DemoContextInfo info = null;

bool hasSession = (channel.SessionId != null);

if (hasSession)

 info = channel.Extensions.Find<DemoContextInfo>();

8. If the request has an instance ID associated with it, there might already be a context to
use. If so, retrieve it from the dictionary. Otherwise, instantiate a new DemoContextInfo
object and add it to the dictionary. Add the following code to the GetExistingInstance-
Context method below the lines added in the previous step.
' VB

Dim isNew As Boolean = False

If String.IsNullOrEmpty(_instanceId) OrElse Not _

 contextMap.TryGetValue(_instanceId, info) Then

 info = New DemoContextInfo(_instanceId)

 isNew = True

 contextMap.Add(_instanceId, info)

 If hasSession Then

 channel.Extensions.Add(info)

 End If

End If

// C#

bool isNew = false;

if (String.IsNullOrEmpty(instanceId) ||

 ! contextMap.TryGetValue(instanceId, out info))

{

 info = new DemoContextInfo(instanceId);

 isNew = true;

 contextMap.Add(instanceId, info);

 if (hasSession)

 channel.Extensions.Add(info);

}

At the end of the GetExistingInstanceContext method, the choice is to return a null/Nothing
value (if there was no existing instance context) or return the instance context the pro-
vider found. In the latter case, information about the channel is added to the channels
associated with the instance. This enables the instance to track the different channels
with which it is operating.

460 Chapter 10 Sessions and Instancing
9. Add the following code at the bottom of the GetExistingInstanceContext method:
' VB

If isNew Then

 Return Nothing

Else

 Dim _instance As InstanceContext = info.Instance

 If hasSession Then

 _instance.IncomingChannels.Add(channel)

 End If

 Return _instance

End If

// C#

if (isNew)

{

 return null;

}

else

{

 InstanceContext instanceContext = info.Instance;

 if (hasSession)

 instanceContext.IncomingChannels.Add(channel);

 return instanceContext;

}

In this interface, the other method of importance is InitializeInstanceContext. This
method is called when the GetExistingInstanceContext returns null/Nothing and a new
instance context has to be created. For this exercise, the code in this method will add the
new instance to the dictionary of instances.

10. To start, check whether there is an existing session because, if so, the instance is already
associated with the channel through the Extensions collection. Add the following code to
the beginning of the InitializeInstanceContext method:
' VB

Dim info As DemoContextInfo = Nothing

Dim hasSession As Boolean = (channel.SessionId IsNot Nothing)

If hasSession Then

 instanceContext.IncomingChannels.Add(channel)

 info = channel.Extensions.Find(Of DemoContextInfo)()

End If

// C#

DemoContextInfo info = null;

bool hasSession = (channel.SessionId != null);

if (hasSession)

{

 instanceContext.IncomingChannels.Add(channel);

Lesson 1: Instancing Modes 461
 info = channel.Extensions.Find<DemoContextInfo>();

}

11. If there is no existing session, get the instance ID from the headers in the request and see
whether the ID can be found in the dictionary of previously used instances. Add the fol-
lowing else clause to the just-added if statement.
' VB

Else

 Dim headerIndex As Integer = message.Headers.FindHeader(headerName, _

 headerNamespace)

 If headerIndex <> -1 Then

 Dim instanceId As String = _

 message.Headers.GetHeader(Of string)(headerIndex)

 If instanceId IsNot Nothing Then

 contextMap.TryGetValue(instanceId, info)

 End If

 End If

// C#

else

{

 int headerIndex = message.Headers.FindHeader(headerName,

 headerNamespace);

 if (headerIndex != -1)

 {

 string instanceId = message.Headers.GetHeader<string>(headerIndex);

 if (instanceId != null)

 this.contextMap.TryGetValue(instanceId, out info);

 }

}

If, for any reason, the instance context was found, it must be added to the DemoContext-
Info object that will be used to process the request.

12. Add the following lines to the bottom of the InitializeInstanceContext method:
' VB

If info IsNot Nothing Then

 Info.Instance = instanceContext

End If

// C#

if (info != null)

 info.Instance = instanceContext;

There are a number of ways to inject this functionality into the WCF pipeline. They are
described in Chapter 9, “When Simple Is Not Sufficient,” in the discussion of the details
surrounding the DispatchRuntime object. For this exercise, you create an attribute to dec-
orate the implementation class. The file for the attribute already exists.

13. In Solution Explorer, double-click the ShareableAttribute file.

462 Chapter 10 Sessions and Instancing
The class is already decorated with the IServiceBehavior interface. This requires the three
methods in the class to be defined. To add the InstanceContextProvider, the only method
that must have code is ApplyDispatchBehavior. In this method, every endpoint dispatcher
on every channel will set the InstanceContextProvider property to a new instance of the
DemoContextProvider class.

14. Add the following code to the ApplyDispatchBehavior method:
' VB

Dim extension As New DemoContextProvider()

Dim dispatcherBase As ChannelDispatcherBase

For Each dispatcherBase In serviceHostBase.ChannelDispatchers

 Dim dispatcher As ChannelDispatcher = TryCast(dispatcherBase, _

 ChannelDispatcher)

 Dim _endpointDispatcher As EndpointDispatcher

 For Each _endpointDispatcher in dispatcher.Endpoints

 _endpointDispatcher.DispatchRuntime.InstanceContextProvider = _

 extension

 Next

Next

// C#

DemoContextProvider extension = new DemoContextProvider();

foreach (ChannelDispatcherBase dispatcherBase in

 serviceHostBase.ChannelDispatchers)

{

 ChannelDispatcher dispatcher = dispatcherBase as ChannelDispatcher;

 foreach (EndpointDispatcher endpointDispatcher in dispatcher.Endpoints)

 {

 endpointDispatcher.DispatchRuntime.InstanceContextProvider =

 extension;

 }

}

Now that the attribute has been created, the service’s implementation class must be dec-
orated with it.

15. First, in Solution Explorer, double-click SessionService.

16. In the class declaration, add the Shareable attribute. When you’re finished, the class dec-
laration should look like the following:
' VB

<ServiceBehavior(InstanceContextMode:=InstanceContextMode.Single)> _

<Shareable> _

Public Class SessionService

 Implements ISession

// C#

[ServiceBehavior(InstanceContextMode=InstanceContextMode.Single)]

[Shareable]

public class SessionService : ISession

Lesson 1: Instancing Modes 463
17. Before starting the demo, in Solution Explorer, double-click the Program.cs or Module1.vb
file in TestClient.

Notice that there is a loop that prompts for an instance ID. Within that loop, there is a
using block for the proxy to the service. This means that the same session will not be
used for each call and that the only way for the instances to be maintained is through the
provider that you have just written.

18. Ensure that TestClient is set to be the startup project, and then launch the application by
pressing F5.

You will prompted for an instance ID.

19. Enter the instance ID of your choice (say, 123, to keep it simple).

The returned message indicates that this method has been called once.

20. Enter the same instance ID, and the instance has been called twice. Enter a different
instance ID, and the counter restarts; if you later duplicate an earlier instance ID, you will
see the previous counter incremented in the output on the console. When you have fin-
ished exercising the application, press Enter to terminate.

Lesson Summary
The instance mode determines the relationship between the client and the instance of
the service’s implementation class.

Along with the standard modes, WCF also provides a provider model to determine the
instance context that should be used to process a request.

PerCall is the default mode, and it maintains a one-to-one association between method
calls and instances.

PerSession creates an instance for each client proxy whereas an instance mode of Single
results in one instance handling every request.

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 1,
“Instancing Modes.” The questions are also available on the companion CD if you prefer to
review them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is correct or incorrect are
located in the “Answers” section at the end of the book.

464 Chapter 10 Sessions and Instancing
1. You have created a WCF application by which the client communicates with the service,
using the netTcpBinding. You would like to minimize any possible threading and synchro-
nization issues in the service. Which instance mode should you use?

A. Per call

B. Per session

C. Singleton

D. Instance context provider

2. You have created a WCF application by which the client communicates with the service,
using the wsTcpBinding. A number of methods in the service retrieve a large quantity of
relatively static data. You would like to minimize the processing time spent retrieving the
data (and keep the data in a cache within the service object). Which instance mode
should you use?

A. Per call

B. Per session

C. Singleton

D. Instance context provider

Lesson 2: Working with Instances 465
Lesson 2: Working with Instances
The instance mode WCF uses is just the start of working with instances. You can manipulate
a number of details to improve the performance and scalability of a WCF service. WCF pro-
vides throttling and quota capabilities that can help prevent denial of service (DoS) attacks as
well as ensure that the servers aren’t overloaded by handling requests. Along the same lines,
you can control the activation and deactivation of the instances used to process requests to a
degree that is finer than the default functionality.

Not only does WCF allow for performance to be protected, some attributes can be set to
demarcate operations. The demarcation ensures that, where necessary, some operations can-
not be completed before or after other operations. This is not a complete workflow manage-
ment function, but it does allow a service to ensure that a particular operation is called first
and that no operations can be called after a finalize operation has been performed.

After this lesson, you will be able to:
Protect a WCF service by setting the throttling and quota parameters.
Demarcate service operations.
Manage instance activation and deactivation at a very granular level.

Estimated lesson time: 50 minutes

Protecting the Service
When WCF is deployed in the real world (where real is defined as a distributed environment
in which requests arrive at a pace that is outside of your control), a number of potential prob-
lems can arise. Some of the performance differences associated with the different instancing
modes have already been covered. However, beyond pure performance problems, WCF ser-
vices have to contend with some of the same problems that a Web site has to contend with.
This includes the potential for being flooded with client requests, similar to a denial of service
attack.

Denial of service attacks are attempts to deplete the resources required by the service to pro-
cess incoming requests to the point that no additional resources are available. The type of
depleted resources can include any scarce resource the service uses. WCF provides a number
of ways to mitigate the problem through either throttling requests or applying quotas to the
resource.

Throttling
The goal of throttling is twofold. First, it prevents the service host from being overrun by a
flood of requests. Second, it enables the load on the WCF service (and the server on which the

466 Chapter 10 Sessions and Instancing
service is running) to be smoothed out. In both cases, the intent is to place a limit on the num-
ber of incoming requests so that the service will be able to handle them in a timely manner.

The default WCF setting for throttling is to have none at all. When throttling is engaged, WCF
will check the current counters for each request that arrives. If the configured settings are
exceeded, WCF automatically places the request in a queue. As the counters come down
below the threshold, the requests are then retrieved from the queue in the same order and pre-
sented to the service for processing. The result of this is that, in many cases, the observed
behavior for a service that has reached its maximum is to have the client request time out.

Three settings in the service behavior control the number of requests the service host will be
allowed to process simultaneously. Each of these is defined in the ServiceThrottlingBehavior
section of the configuration file. The following paragraphs describe the three settings and are
followed by an example of how you can configure them.

MaxConcurrentCalls The MaxConcurrentCalls value specifies the number of simultaneous
calls the service will accept. The default value is 16 calls. Of the three settings, this is the only
one that covers all the types of requests that arrive.

MaxConcurrentSessions The MaxConcurrentSessions value determines the maximum num-
ber of channels requiring sessions that the service will support. The default value for this set-
ting is 10 session-aware channels. Any attempt to create a channel beyond this maximum will
throw a TimeoutException. Because this setting is concerned with session-aware channels only,
if the binding is not session-aware (such as the basicHttpBinding), this setting has no impact on
the number of requests that can be processed.

MaxConcurrentInstances The MaxConcurrentInstances setting sets the maximum number
of instances of the service implementation object that will be created. The default value for this
setting is Int32.MaxValue, and the impact this value has on the service depends on the mode.
If the mode is per call, this is the same as MaxConcurrentCalls because each call gets its own
instance. If the mode is per session, the setting works the same as MaxConcurrentSessions. For
singleton mode, the value of the number of instances is always 1, so the setting is really only
useful when the IInstanceContextProvider is being used.

The following segment from a configuration file demonstrates how you can configure these
settings:

<behaviors>

 <serviceBehaviors>

 <behavior name="throttlingBehaviort">

 <serviceThrottling maxConcurrentCalls="10"

 maxConcurrentInstances="10"

 maxConcurrentSessions="5"/>

 </behavior>

 </serviceBehaviors>

</behaviors>

Lesson 2: Working with Instances 467
You can set the same configuration through code. The following segments demonstrate the
technique:

' VB

Dim host As New ServiceHost(GetType(UpdateService), _

 New Uri("http://localhost:8080/UpdateService"))

host.AddServiceEndpoint("IUpdateService", _

 New WSHttpBinding(), String.Empty)

Dim throttlingBehavior As New ServiceThrottlingBehavior()

throttlingBehavior.MaxConcurrentCalls = 10

throttlingBehavior.MaxConcurrentInstances = 10

throttlingBehavior.MaxConcurrentSessions = 5

host.Description.Behaviors.Add(throttlingBehavior)

host.Open()

// C#

ServiceHost host = new ServiceHost(typeof(UpdateService),

 new Uri("http://localhost:8080/UpdateService"));

host.AddServiceEndpoint("IUpdateService",

 new WSHttpBinding(), String.Empty);

ServiceThrottlingBehavior throttlingBehavior = new ServiceThrottlingBehavior();

throttlingBehavior.MaxConcurrentCalls = 10;

throttlingBehavior.MaxConcurrentInstances = 10;

throttlingBehavior.MaxConcurrentSessions = 5;

host.Description.Behaviors.Add(throttlingBehavior);

host.Open();

As has been mentioned, when the throttling limits are reached, the client will throw an
exception. Specifically, the exception the client receives is the previously mentioned Time-
outException. Because this one exception fits all scenarios (that is, the same exception is raised
regardless of which of the throttling settings caused the problem), it is left up to you to dis-
cover the cause. A couple of hints can help. If the problem is caused by the concurrent sessions
limit, you will most likely see the exception raised within the SendPreamble method. If it turns
out that the Send method is the source of the time out, it is more likely to be caused by the max-
imum concurrent calls limit.

NOTE No need to use code

There is little reason to configure the throttling behavior in code. By keeping it in the configuration
file, you enable administrators to adjust the service’s performance on an as-needed basis.

Reading Throttling Settings
It is possible to read (but not update) the current throttling settings after the service host
has been opened. Applications do this, typically to provide diagnostic information about the
service. You do this by accessing the dispatcher for the service, which is responsible for

468 Chapter 10 Sessions and Instancing
implementing the throttling, so it makes sense that the dispatcher would have all the infor-
mation close at hand.

The ServiceHost class exposes a collection of dispatchers in the ChannelDispatchers property.
This is a strongly typed collection of ChannelDispatched objects. The ChannelDispatcher object
has a property called ServiceThrottle. Through the ServiceThrottle object, you have access to all
the throttling properties, including MaxConcurrentCalls, MaxConcurrentInstances, and Max-
ConcurrentSessions. The following code demonstrates this technique:

' VB

Dim dispatcher As ChannelDispatcher = _

 TryCast(OperationContext.Current.Host.ChannelDispatchers(0), _

 ChannelDispatcher)

Dim throttle as ServiceThrottle = dispatcher.ServiceThrottle

Trace.WriteLine(String.Format("MaxConcurrentCalls = {0}", _

 throttle.MaxConcurrentCalls))

Trace.WriteLine(String.Format("MaxConcurrentSessions = {0}", _

 throttle.MaxConcurrentSessions))

Trace.WriteLine(String.Format("MaxConcurrentInstances = {0}", _

 throttle.MaxConcurrentInstances))

// C#

ChannelDispatcher dispatcher =

 OperationContext.Current.Host.ChannelDispatchers[0] as ChannelDispatcher;

ServiceThrottle throttle = dispatcher.ServiceThrottle;

Trace.WriteLine(String.Format("MaxConcurrentCalls = {0}",

 throttle.MaxConcurrentCalls));

Trace.WriteLine(String.Format("MaxConcurrentSessions = {0}",

 throttle.MaxConcurrentSessions));

Trace.WriteLine(String.Format("MaxConcurrentInstances = {0}",

 throttle.MaxConcurrentInstances));

Quotas
The quota mechanism available through WCF involves controlling the amount of memory
used by the service host and the various service implementation objects. The premise behind
a DoS attack that is aimed at memory is to find a way to make the processing of the request(s)
allocate an inordinately large amount of memory. As additional requests arrive (whether good
ones or malicious ones), an OutOfMemoryException or a StackOverflowException might be
raised.

When you apply a quota to a WCF service, the QuotaExceededException is raised. However,
instead of this exception causing the service to terminate (as the out of memory or stack

Lesson 2: Working with Instances 469
overflow condition might), the message being processed is simply discarded. The service
then processes the next request and carries on.

A number of settings affect the level of quota.

MaxReceivedMessageSize The MaxReceivedMessageSize value (along with the other set-
tings associated with quotas) is set on the binding directly. It controls how large a message size
can be. The default value is 65,536 bytes, which should be sufficient for most messages. You
can set this value through either code or configuration. The following demonstrates a config-
uration element that will set the value of the maximum message size to 128,000 bytes:

<bindings>

 <netTcpBinding>

 <binding name="netTcp"

 maxReceivedMessageSize="128000" />

 </netTcpBinding>

</bindings>

CAUTION Setting the MaxReceivedMessageSize value

Setting this value (or leaving it to the default) can have a number of unintended consequences.
Specifically, if you legitimately have an occasional large message, ensure that you configure the
maxReceivedMessageSize to accommodate such large messages. Otherwise, the message will be
rejected.

You can set this value imperatively also, as demonstrated in the following code sample:

' VB

Dim binding As New NetTcpBinding()

binding.MaxReceivedMessageSize = 128000

Dim host As New ServiceHost(GetType(UpdateService), _

 New Uri("net.tcp://localhost:1234/UpdateService"))

host.AddServiceEndpoint("IUpdateService", _

 binding, String.Empty)

host.Open()

// C#

NetTcpBinding binding = new NetTcpBinding();

binding.MaxReceivedMessageSize = 128000;

ServiceHost host = new ServiceHost(typeof(UpdateService),

 new Uri("net.tcp://localhost:1234/UpdateService"));

host.AddServiceEndpoint("IUpdateService",

 binding, String.Empty);

host.Open();

ReaderQuotas The ReaderQuotas property of the binding sets limits on the complexity of
the messages received by the service. They protect that service from memory-based denial of

470 Chapter 10 Sessions and Instancing
service by specifying a set of criteria within which all messages must fall. Table 10-1 contains
a list of the properties that can be set on the ReaderQuotas object and their meanings.

NOTE DoS protection

It might seem a little odd to restrict the number of bytes returned by a Read method. However, for
an XML file to be processed, the entire starting tag must be loaded into memory. It is a common
attack to provide an XML document with an extraordinarily long starting tag. Because this tag
would need to be loaded, limiting it is an obvious way to prevent DoS attacks.

Demarcating Operations
Conceptually, a session simply means that the service can determine which client a request is
coming from. This enables the service to maintain state between the individual requests. How-
ever, there are times when the order in which the operations are executed actually matters, and
this requirement calls for an extension to the sessioning mechanism.

The idea of needing to maintain the order in which methods are called might seem a little
bizarre. After all, in the vast majority of business applications, the client is quite capable of
ensuring this, but in many cases, the ability of the client to dictate the order of operations is
not as solid as you might think.

Consider, for example, any HTTP-based binding. Although it would seem that if MethodA is
invoked before MethodB, then in every case, MethodA will be executed on the service before
MethodB. However, suppose MethodA and MethodB are executed on different threads. Still,

Table 10-1 ReaderQuotas Properties

Property Default Description

MaxDepth 32 The maximum depth to which the nodes in the message
can go. This is like saying that the XML that represents
the message can have no more than 32 generations
(where a parent node and a child node make up a gen-
eration) at the deepest point in the schema.

MaxStringContentLength 8192 The longest that any string value in the message can be.
A string value would be the value of an attribute or the
value of the inner text for any node.

MaxArrayLength 16384 The maximum number of elements that can appear in a
single array.

MaxBytesPerRead 4096 The maximum number of bytes returned by each call to
Read while the message is processed.

MaxNameTableCharCount 16384 The maximum number of characters that can appear in
a table name.

Lesson 2: Working with Instances 471
isn’t it possible to ensure that the two threads are synchronized to the point that the client can
guarantee execution order?

The answer is no. When using an HTTP-based binding, there is no guarantee of the order of
arrival. Even though the client executes MethodA before MethodB (on different threads; this
doesn’t apply to synchronous calls), HTTP will not guarantee that the request associated with
MethodA will arrive at the service prior to MethodB. Unless the service is enlisted in the mech-
anism to guarantee operation order, no such guarantee can be made.

Consider the following Service contract:

' VB

<ServiceContract(SessionMode:=SessionMode.Required)> _

Public Interface IProcessOrders

 <OperationContract> _

 Sub InitializeOrder(customerId As Integer)

 <OperationContract> _

 Sub AddOrderLine(productId As String, _

 Quantity As Integer)

 <OperationContract> _

 Function GetOrderTotal() As Double

 <OperationContract> _

 Function SubmitOrder() As Boolean

End Interface

//C#

[ServiceContract(SessionMode = SessionMode.Required)]

public interface IProcessOrders

{

 [OperationContract]

 void InitializeOrder(int customerId);

 [OperationContract]

 void AddOrderLine(string productId, int quantity);

 [OperationContract]

 double GetOrderTotal();

 [OperationContract]

 bool SubmitOrder();

}

The business rules associated with this interface are that the first method to be called has to
be InitializeOrder. This instantiates an Order object and populates the fields with default val-
ues. Then the AddOrderLine method must be called at least once (although it can be called
multiple times). Next, GetOrderTotal is called to calculate the order totals. Finally, the Submit-
Order method is called. This last method also closes the session.

WCF provides a mechanism that enables contract designers to indicate operations, which can-
not be the first or last method, by setting the IsInitiating and IsTerminating properties on the
OperationContract attribute. If IsInitiating is set to true for a method and no session has been

472 Chapter 10 Sessions and Instancing
established when that method is called, a session is created. If a session already exists, the
method is called within that session.

If IsTerminating is set to true for a method, when the method completes, the session is closed.
This is not the same as disposing of the service instance, however. The client still needs to exe-
cute the Close method on the proxy to close the connection. However, any subsequent meth-
ods on this proxy will be rejected with an InvalidOperationException.

By using these properties, it is possible to mark the start and end of an operation. The default
value for IsInitiating is true, and the default value for IsTerminating is false. Because of this, the
settings that are required in the sample interface should be set as follows (changes shown in
bold):

' VB

<ServiceContract(SessionMode:=SessionMode.Required)> _

Public Interface IProcessOrders

 <OperationContract> _

 Sub InitializeOrder(customerId As Integer)

 <OperationContract(IsInitiating:=False)> _

 Sub AddOrderLine(productId As String, _

 Quantity As Integer)

 <OperationContract(IsInitiating:=False)> _

 Function GetOrderTotal() As Double

 <OperationContract(IsInitiating:=False, IsTerminating:=True)> _

 Function SubmitOrder() As Boolean

End Interface

//C#

[ServiceContract(SessionMode = SessionMode.Required)]

public interface IProcessOrders

{

 [OperationContract]

 void InitializeOrder(int customerId);

 [OperationContract(IsInitiating=false)]

 void AddOrderLine(string productId, int quantity);

 [OperationContract(IsInitiating=false)]

 double GetOrderTotal();

 [OperationContract(IsInitiating=false, IsTerminating=true)]

 bool SubmitOrder();

}

Consider how these settings will work. Of the four methods, only InitializeOrder can start a
session. So, if one of the other methods is called prior to InitializeOrder, it throws an Invalid-
OperationException. The remaining methods can then be called in any order required, with one
exception. If SubmitOrder is called because of the IsTerminating property, the session is closed.

Lesson 2: Working with Instances 473
NOTE Demarcated services must be session aware

To use this demarcating technique, either the service must be session aware (such as having a Per-
Session instancing mode) or the service must be a singleton.

Instance Deactivation
The details of the issues associated with sessions and service instances are, not surprisingly,
more complicated. Consider Figure 10-3, which represents a view closer to reality of a service.

Figure 10-3 How instances and hosts are related

As you can see in Figure 10-3, the service instance is actually loaded into a Context object, and
the session information routes client messages not to the specific instance but to the context.

When a session is created, the service host creates a new context. This context is terminated
when the session ends. This means that the lifetime of the context matches the instance hosted
within it by default. WCF enables the developer of the service to separate the two lifetimes.

WCF goes a step further in that you can create a context that has no instance at all. The way
to control context deactivation is through the ReleaseInstanceMode property of the Operation-
Behavior attribute.

You can set various values in that ReleaseInstanceMode to identify when the service instance
should be released in relation to a particular method control. The choices are BeforeCall, After-
Call, BeforeAndAfterCall, or None.

The default release mode is None. This means that the service instance continues to exist as
method requests arrive and processes are returned. This is the mode that you have come to
expect from a service instance.

Service Host

Service
Instance

Service
Instance

Context Context

Endpoint

Endpoint

Endpoint

474 Chapter 10 Sessions and Instancing
If the release mode is set to BeforeCall, a new instance is created with the beginning of the call.
If a service instance already exists, it is deactivated and the Dispose method called on it. The cli-
ent is blocked while this is going on because it is assumed to be important to have the new ser-
vice instance available to process the request. This style is normally used when the method
allocates a scarce resource, and it must to be certain that any previous use has been cleaned up.

If the release mode is set to AfterCall, the current service instance is deactivated and disposed
of when the method is completed. This would normally be set when the method is deallocat-
ing a scarce resource. The idea is that, after the method is finished, the service instance is dis-
posed of immediately, ensuring that the resource will be available for the next caller.

The last release mode is BeforeAndAfterCall. This mode disposes of any existing service
instance prior to executing the method and then disposes of the just created service instance
after the method is finished. You might recognize this as the same as the per call instance
mode. The difference, however, is that this mode can be set on an individual method, so you
can configure one method to be (basically) per call instancing, whereas the other methods in
the service can use a different instancing model.

You can define the release mode declaratively, using code that looks like the following:

' VB

Public Class UpdateService

 Implements IUpdateService

 <OperationBehavior(_

 ReleaseInstanceMode:=ReleaseInstanceMode.BeforeAndAfterCall)> _

 Public Sub Update()

 ' Implementation code goes here

 End Sub

End Class

// C#

public class UpdateService : IUpdateService

{

 [OperationBehavior(ReleaseInstanceMode=ReleaseInstanceMode.BeforeAndAfterCall)]

 public void Update()

 {

 // Implementation code goes here

 }

}

You also have the option of making a run-time decision to deactivate the current service
instance (when the method is complete). The instance context exposes a ReleaseServiceInstance
method. When called, the current instance is marked to be deactivated and disposed of after
the method is finished. The instance context is part of the operation context, so the way to call
this method looks like the following:

Lesson 2: Working with Instances 475
' VB

OperationContext.Current.InstanceContext.ReleaseServiceInstance()

// C#

OperationContext.Current.InstanceContext.ReleaseServiceInstance();

This technique is intended to provide a high level of granularity to optimize the service. How-
ever, as is true with many such techniques, the normal course of events doesn’t require this
level of effort. It is better to design and develop your application using more standard tech-
niques, falling back on these only if performance and scalability goals are not being met.

Lab: Throttling and Demarcation
In this lab, you will work with two separate functions. The first exercise will illustrate some of
the throttle configuration you can perform. The effect that some of the settings (such as large
request limits, maximum levels in deserialization, and so on) have on incoming requests can
be a little challenging to illustrate. As a result, the exercise shows the ones that can be easily
demonstrated.

The second exercise will create a service with demarcated operations and demonstrate the
exceptions raised when the specified order is violated.

� Exercise 1 Throttle WCF Requests

In this first exercise, you will restrict the number of simultaneous instances a service can cre-
ate. You will use a service similar to the one constructed in the lab for Lesson 1 in this chapter.

1. Navigate to the <InstallHome>/Chapter10/Lesson2/Exercise1/<language>/Before direc-
tory and double-click the Exercise1.sln file to open the solution in Visual Studio.

The solution consists of two projects. They are as follows:

The DemoService project, a simple WCF service library that implements the ISession
interface. This interface consists of a single method (GetSessionStatus) that returns
a string indicating the number of times the method has been called within the cur-
rent service instance.

The TestClient project, a Console application that generates a request for the ser-
vice and displays the result in the Console window.

You can find the settings for throttling a service in the configuration file for the service.

2. In Solution Explorer, double-click the App.config file in the DemoService project.

3. Locate the behavior named ThrottleBehavior in the serviceBehaviors element.

The throttle is set in the serviceThrottling element.

4. Set the maximum number of concurrent instances to 2 by adding the following XML to
the behavior element within the serviceBehaviors element:
<serviceThrottling maxConcurrentInstances="2" />

476 Chapter 10 Sessions and Instancing
5. Ensure that TestClient is set as the startup project, and then launch the application by
pressing F5.

6. When prompted for an instance ID, enter a value of 123 and press Enter.

This creates the first instance.

7. When prompted for the instance ID again, enter a value of 456 and press Enter.

This creates the second instance.

8. Finally, when prompted for the instance ID again, enter a value of 789.

This is the third instance and, rather than displaying a string on the console, it will wait.
In fact, it will wait until the timeout value has been exceeded and an exception is thrown.

9. Choose Stop Debugging from the Debug menu to end the application.

� Exercise 2 Demarcate Operations

As mentioned, WCF provides some functionality aimed at regulating the order in which oper-
ations can be executed. In this exercise, you will configure the service to use this capability.
Then you will modify the client to test not only the successful path but also an execution order
that would violate the configured order.

1. Navigate to the <InstallHome>/Chapter10/Lesson2/Exercise2/<language>/Before direc-
tory and double-click the Exercise2.sln file to open the solution in Visual Studio.

The solution consists of two projects. They are as follows:

The DemoService project, a simple WCF service library that implements the ISession
interface. This interface consists of three methods (FirstMethod, GetSessionStatus, and
LastMethod), each of which returns a string indicating which method has been
called.

The TestClient project, a Console application. The application generates a request
for the service and displays the result in the Console window.

2. In Solution Explorer, double-click the ISession file.

You will notice that three methods are defined within the contract.

3. To start, configure FirstMethod to be the first operation called, by setting the IsInitiating
property on the OperationContract attribute to true.

The IsInitiating property for the other methods in the interface also must be set to false,
but you do that shortly.

4. Change the declaration of FirstMethod (as shown in bold) to look like the following:
' VB

<OperationContract(IsInitiating:=True)> _

Function FirstMethod() As String

// C#

[OperationContract(IsInitiating = true)]

string FirstMethod();

Lesson 2: Working with Instances 477
Now the IsInitiating property for the GetSessionStatus method must be set to false.

5. Change the method declaration (as shown in bold) to the following:
' VB

<OperationContract(IsInitiating:=False)> _

Function GetSessionStatus() As String

// C#

[OperationContract(IsInitiating = false)]

string GetSessionStatus();

The third method also must have IsInitiating set to false. However, the intent is for this
method to be the last method called. For this reason, the IsTerminating property must be
set to true.

Change the method declaration (as shown in bold) to the following:
' VB

<OperationContract(IsInitiating:=False, IsTerminating:=True)> _

Function LastMethod() As String

// C#

[OperationContract(IsInitiating = false, IsTerminating = true)]

string LastMethod();

6. In Solution Explorer, double-click Program.cs or Module1.vb.

Notice the order in which the methods are called. This is what is expected by the config-
uration in the service.

7. Ensure that TestClient is set as the startup project, and then launch the application by
pressing F5.

Note that the messages appear as expected.

8. End the application.

9. To modify the order of the method calls, move the call to GetSessionStatus so that it
occurs before the call to FirstMethod.

The body of the using block in the Main method should look like the following:
' VB

Console.WriteLine(proxy.GetSessionStatus())

Console.WriteLine(proxy.FirstMethod())

Console.WriteLine(proxy.LastMethod())

// C#

Console.WriteLine(proxy.GetSessionStatus());

Console.WriteLine(proxy.FirstMethod());

Console.WriteLine(proxy.LastMethod());

10. Launch the application by pressing F5.

478 Chapter 10 Sessions and Instancing
You will find that an InvalidOperationException or an ActionNotSupportedException is
raised with the GetSessionStatus call. The message in the exception indicates that Get-
SessionStatus was invoked before a method in which IsInitiating has been set to true.

11. Choose Stop Debugging from the Debug menu to end the application.

12. Finally, move the call to GetSessionStatus so that it occurs after the call to LastMethod.

The body of the using block in the Main method should look like the following:
' VB

Console.WriteLine(proxy.FirstMethod())

Console.WriteLine(proxy.LastMethod())

Console.WriteLine(proxy.GetSessionStatus())

// C#

Console.WriteLine(proxy.FirstMethod());

Console.WriteLine(proxy.LastMethod());

Console.WriteLine(proxy.GetSessionStatus());

13. Launch the application by pressing F5.

Again, you will find that an InvalidOperationException is raised with the GetSessionStatus
call. This time, the message in the exception indicates that GetSessionStatus was invoked
after a method in which IsTerminating has been set to true was called.

14. Choose Stop Debugging from the Debug menu to end the application.

Lesson Summary
Client endpoint configuration starts from the same address, binding, and contract bases
as services do.

If one of the standard bindings is specified, the default values for that binding are used.

You define additional binding behaviors through a behaviorConfiguration section.

If the client supports callbacks, you can define a number of client behaviors through the
endpointBehavior section.

All of the configuration that can be performed declaratively can also be performed
imperatively.

You can instantiate all the bindings by using the name of a configuration section. Alter-
natively, you can instantiate the binding separately, assign the desired properties, and
then associate it with the proxy.

Lesson Review
You can use the following questions to test your knowledge of the information in Lesson 2,
“Working with Instances.” The questions are also available on the companion CD if you prefer
to review them in electronic form.

Lesson 2: Working with Instances 479
NOTE Answers

Answers to these questions and explanations of why each answer choice is correct or incorrect are
located in the “Answers” section at the end of the book.

1. Consider the following segment from a configuration file.
<behaviors>

 <serviceBehaviors>

 <behavior name="throttlingBehaviort">

 <serviceThrottling maxConcurrentCalls="15"

 maxConcurrentInstances="10"

 maxConcurrentSessions="5"/>

 </behavior>

 </serviceBehaviors>

</behaviors>

Which of the following statements is true?

A. The service can accept no more than fifteen simultaneous requests.

B. The service can accept no more than ten simultaneous requests.

C. The service can accept no more than five simultaneous requests.

D. There is no limit to the number of simultaneous requests the service can accept.

2. Consider the properties of the OperationContract that demarcate an operation. Which
of the following statements is false?

A. You can specify which method must be the first one called within the service.

B. You can ensure that no methods in the service can be called after a specific method
is called.

C. You cannot ensure the order of all the methods in a service unless two or fewer
methods are exposed.

D. You can ensure that a particular method will always be called when the service is
finished.

480 Chapter 10 Review
Chapter Review
To further practice and reinforce the skills you learned in this chapter, you can:

Review the chapter summary.

Review the list of key terms introduced in this chapter.

Complete the case scenarios. These scenarios set up real-world situations involving the
topics of this chapter and ask you to create a solution.

Complete the suggested practices.

Take a practice test.

Chapter Summary
The available instance modes offer a wide range of options. The decision regarding
which mode to use should consider both performance and threading issues.

By using throttling settings and quotas, WCF can help prevent denial of service attacks
or simply ensure that servers do not become overloaded with requests.

The developer can control when service instances are created and destroyed even within
the instance modes.

Key Terms
Do you know what these key terms mean? You can check your answers by looking up the
terms in the glossary at the end of the book.

scarce resource

service instance

Case Scenarios
In the following case scenarios, you will apply what you’ve learned about instancing modes
and working with instances. You can find answers to these questions in the “Answers” section
at the end of this book.

Case Scenario 1: Choosing the Appropriate Instancing Mode
Your company has developed a WCF application that will be distributed to your clients. You
would like to arrange for a single instance of the service implementation class to be active for
each client. The service, therefore, should act as a singleton for each client.

Chapter 10 Review 481
Answer the following question for your manager:

Which type of instancing should be used in the application?

Case Scenario 2: Protecting Your WCF Application
Your company has developed a WCF application that will be distributed to a large number of
clients. Because the service portion of the application is being exposed on a publicly accessible
server, you are concerned about the possibility of denial of service attacks. You want to ensure
also that, in the case of heavy usage, the client experience is acceptable.

Answer the following questions for your manager.

1. Which type of instancing should be used in the application?

2. Which changes should be made to the throttling settings?

3. Which changes should be made to the quota settings?

Suggested Practices
To help you successfully master the exam objectives presented in this chapter, complete the
following tasks.

Working with Service Instances
Create an application to practice instance sharing.

Practice Create a WCF application that uses the IP address from which the request orig-
inated to determine which instance context should be used.

WCF Protection
Create an application to practice setting quotas.

Practice Create a WCF application that is configured to reject messages that are over 4
KB in size. Test the application by sending both large and small requests to the service.

Watch a Webcast
Watch a webcast about configuring WCF.

Practice Watch the MSDN webcast, “Instancing Modes,” by Michele Leroux Busta-
mante, available on the companion CD in the Webcasts folder.

482 Chapter 10 Review
Take a Practice Test
The practice tests on this book’s companion CD offer many options. For example, you can test
yourself on just one exam objective, or you can test yourself on all the 70-503 certification
exam content. You can set up the test so that it closely simulates the experience of taking a cer-
tification exam, or you can set it up in study mode so that you can look at the correct answers
and explanations after you answer each question.

MORE INFO Practice tests

For details about all the practice test options available, see the “How to Use the Practice Tests” sec-
tion in this book’s introduction.

Index

A
absolute URI, 200
ACID acronym

implementing, 486–487
overview, 485–486

actions
defined, 413
wildcarded, 413–416

Active Directory Domain Services (AD DS), 326
activities

activity scoping, 263–264
defined, 262
end-to-end tracing, 262–263
transferring, 266–267
viewing, 268–269

activity identifiers, 263–264
activity lifetime

debugging guidelines, 271
Resume trace, 271
Start trace, 271
Stop trace, 271
Suspend trace, 271
Transfer trace, 271

activity propagation, 264–266
activity scoping, 263–264
activity transfer, 266–267
AD DS (Active Directory Domain Services), 326
Add Service Reference dialog box, 133, 143
AddBindingParameters method

IContractBehavior interface, 544
IEndpointBehavior interface, 291
IOperationBehavior interface, 286

address attribute, 200
address headers, 211
addresses

client endpoints, 200, 210
service endpoints, 78–79, 83–84, 225–227

AddressHeader class, 211
AddServiceEndpoint method, 84, 224, 226–228
administration, 197
AfterCall method, 284–285, 288
AfterImport method, 203
AfterReceiveReply method, 290
AfterReceiveRequest method, 291
algorithmSuite attribute, 345–347

allowedImpersonationLevel attribute, 367
AllowNtlm attribute, 367–368
ambient transactions, 502–503
app.config file, 81
App_Code directory, 104, 106–107
Appcmd command-line utility, 108
Application Event Log, 312–313
ApplyClientBehavior method

IContractBehavior interface, 544
IEndpointBehavior interface, 291
IOperationBehavior interface, 286

ApplyDispatchBehavior method
IContractBehavior interface, 544–545
IEndpointBehavior interface, 291
IOperationBehavior interface, 285

ASMX (ASP.NET Web services)
bindings and security, 327
hosting services, 104
MapPoint support, 171

ASP.NET
hosting services, 104, 383
Web service considerations, 170

asynchronous communications, 143–144
atomic attribute (ACID), 485
authentication

client credentials, 360–368
custom, 370–372
HTTP and SOAP comparison, 396
Kerberos-based, 326, 348
overview, 359–360
security policy, 360
security token, 392–394
service credentials, 368–370
transport-level security, 326, 328

authentication element, 393
authorization

claims-based, 385–392
process identity, 383
security principal, 383–384
ServiceSecurityContext class, 385

authorization policies, 385
AuthorizationContext class

ClaimSets property, 387
functionality, 386

authorizationPolicies element, 392
593

594 backward compatibility
B
backward compatibility, 47
base addresses

endpoints, 83–84
relative addressing and, 225

basicHttpBinding
algorithmSuite attribute, 346
authentication support, 361
cached-token impersonation, 396
description, 79, 200, 235
functionality, 170
HTTP support, 84
HttpTransportBindingElement class, 228–230
MTOM support, 230
security considerations, 228, 326–328
session limitations, 449
TextMessageEncodingBindingElement class, 228–229

basicHttpContextBinding, 80, 200, 346
basicHttpSecurityBinding, 396
BeforeCall method, 284–285, 287–288
BeforeImport method, 203
BeforeSendReply method, 291
BeforeSendRequest method, 290
behaviorConfiguration attribute, 205, 371
BehaviorExtensionElement class, 293
binary data, transferring, 172
BinaryMessageEncodingBindingElement class, 230–233
binding attribute, 200
Binding class, 212–213
binding elements

defined, 94
encoding element, 94
reliability element, 94
security element, 94
transaction flow element, 94
transport element, 94
types supported, 94

BindingElementCollection, 95
bindings. See also specific bindings

algorithmSuite attribute, 345
building for client endpoints, 200–201, 212–213
building for service endpoints, 79, 228–236
client credentials, 361
common constructors, 213–214
configuring, 108, 203–205
custom, 94–95
customizing standard, 91–93
defined, 79
demarcating operations, 470–472
multiple, 82–83, 226–227
pushing metadata through, 85–86

security considerations, 326–334
sessions and, 449, 525

BodyWriter class, 421

C
cached token impersonation, 396
cacheLogonTokenLifetime attribute, 393
cacheLogonTokens attribute, 393
Call performance counter, 309–311
callback channels

functionality, 17–18
proxies and, 145–146
proxy classes and, 136

callback contracts
duplex channels with proxies, 145
functionality, 6, 15
proxy classes and, 136

CallbackBehavior attribute
ConcurrencyMode property, 546–547
UseSynchronizationContext property, 548

callbackDebug element
includeExceptionDetailsInFaults attribute, 207
overview, 207

callbackTimeouts element, 208
CardSpace software, 251, 362
CardSpace trace source, 251, 366
certificate credentials, 362
certificate element, 393
certificateReference element, 364, 366
channel stack, 282, 420
ChannelDispatcher class, 468
ChannelFactory class, 136–138, 140, 168, 372
claim sets, 385
claims, 385–388
claims-based authorization

accessing claims, 386–388
associating, 391–392
ClaimsType class, 388–389
implementing, 389–391
overview, 385–386
Rights class, 389

ClaimSet class, 388
ClaimTypes class

Anonymous property, 388
Authentication property, 388
AuthorizationDecision property, 388
Country property, 388
DateOfBirth property, 388
DenyOnlySid property, 388
Dns property, 388
Email property, 388

595configuration files
functionality, 388
Gender property, 388
GivenName property, 388
Hash property, 388
HomePhone property, 388
Locality property, 388
MobilePhone property, 388
Name property, 388
NameIdentifier property, 388
OtherPhone property, 388
PostalCode property, 388
PPID property, 388
properties, 388–389
Rsa property, 389
Sid property, 389
Spn property, 389
StateOrProvince property, 389
StreetAddress property, 389
Surname property, 389
System property, 389
Thumbprint property, 389
Upn property, 389
Uri property, 389
Webpage property, 389
X509DistinguishedName property, 389

CLFS (Common Log File System), 251
client callbacks, synchronization and, 545–549
client credentials

bindings, 361
certificate credentials, 362
issued token credentials, 362–366
message security, 360–362
Windows credentials, 366–368

client endpoints
address headers, 211
building addresses, 210
building behaviors, 214
building bindings, 212–213
common binding constructors, 213–214
configuring behaviors, 205–209
configuring bindings, 203–205
declarative configuration, 199–209
defining headers, 202
defining metadata, 203
specifying addresses, 200
specifying bindings, 200–201
specifying contracts, 201

ClientBase class, 136, 146
ClientCertificate class

ClientCredentials property, 361
SetCertificate method, 361

clientCertificate element, 206
clientCredentials element

clientCertificate element, 206
functionality, 206
httpDigest element, 206
issuedToken element, 206
peer element, 207
serviceCertificate element, 207
windows element, 207

clientCredentialType attribute
authentication, 360–362
declarative techniques, 344–345
default value, 345
transport element, 328, 330
values supported, 344

ClientOperation object, 283
ClientRuntime object, 283, 292
client-side proxies, 17–18
clientVia element, 208
CollectionDataContractAttribute, 38
command-line utilities. See also svcutil utility

Appcmd, 108
functionality, 103
installutil, 121
WcfSvcHost.exe, 122, 216

Common Log File System (CLFS), 251
CommunicationException, 427, 430
CommunicationObjectFaultedException, 448
CompositeDuplexBindingElement class, 234
Computer Management snap-in, 109
concurrency

defined, 521
overview, 523
real world example, 521–522

concurrency modes
Multiple, 524–526, 547
Reentrant, 524, 526–528, 547
Single, 524, 546–547

ConcurrencyMode enumeration
CallbackBehavior attribute, 546
ServiceBehavior attribute, 546
values supported, 523–527

configuration files
add element, 83
basicHttpBinding element, 327
bindingConfiguration property, 93
changing bindings, 94
creating endpoints, 81–84
host element, 83
initializeData attribute, 254
instancing modes, 449

596 ConfigurationErrorsException
messageLogging element, 255–257
name attribute, 213
serviceCredentials element, 362
ServiceThrottlingBehavior section, 466–467
system.servicemodel element, 81–82
transport element, 327–328

ConfigurationErrorsException, 294
configuring WCF

configuring client endpoints, 199–214
dynamic service configuration, 224–236
real world example, 198

consistent attribute (ACID), 485
Console applications, 117–118
consuming services. See also proxies; proxy classes

extended WS-* support, 171–172
invoking operations asynchronously, 143–144
real world example, 130
WS-I Basic Profile, 169–171
XML considerations, 129

contract attribute, 201
contracts. See specific contracts
CorrelationManager class, 264
CreateAddressHeader method, 211
CreateBehavior method, 293
CreateBufferedCopy method, 290, 418
CreateMessage method

BodyWriter class, 421
Message class, 420
MessageBuffer class, 290, 418
MessageFault class, 421
XmlReader class, 421

CreateNavigator method, 419
CreateServiceHost method, 110
CustomBinding class, 94
customBinding element, 94
customCertificateValidatorType attribute, 394
CustomPolicy class, 389
customUserNamePasswordValidatorType attribute, 393
CustomUserNameSecurityTokenAuthenticator class,

392

D
data contracts

adding new members, 47
CollectionDataContractAttribute, 38
DataContractAttribute, 34
DataContractSerializer class, 32, 36, 47, 51–52
DataMemberAttribute, 32, 34–35, 48
declaring, 32
defined, 1, 31–32
EnumMemberAttribute, 35

KnownTypeAttribute, 39–40
missing members, 47–48
roundtripping, 47–49
serialization, 31–32
versioning, 47–49
XSD support, 5

DataContractAttribute
client endpoints, 208
functionality, 34
Name property, 34
Namespace property, 34

DataContractFormatAttribute, 51–52
DataContractSerializer class

functionality, 32, 47, 51–52
GetBody method, 418
Message objects, 51
missing data contract members, 47
XmlSerializer vs., 36, 52
XSD support, 53

dataContractSerializer element
IgnoreExtensionDataObject attribute, 208
MaxItemsInObjectGraph parameter, 208, 418

DataMemberAttribute
duplicate members, 35
EmitDefaultValue property, 35
functionality, 32, 34
IsRequired property, 34–35, 48
Name property, 34
Order property, 34–35
parameter options, 34–35

deadlocks, 526, 549
debugging, trace guidelines, 271
declared SOAP faults, 427–429
demarcating operations, 470–472
denial of service (DoS) attacks, 465, 468, 470
Detail class, 11
DispatchOperation object, 284
DispatchRuntime object, 284, 292
Dispose method

closing proxies, 145
IDisposable interface, 444
TransactionScope class, 503

DNS (Domain Name System), 372
document type definitions (DTDs), 32
documentation, WS-I Basic Profile, 171
Domain Name System (DNS), 372
Domain Specific Language. See DSL (Domain Specific

Language)
DoS (denial of service) attacks, 465, 468, 470
DSL (Domain Specific Language), 5
DTDs (document type definitions), 32

597GUID (globally unique identifier)
Duplex MEP
client-side proxies, 17–18
functionality, 15
proxy class considerations, 146
setting up callback channels, 136
WCF support, 13

DuplexClientBase class, 136, 146
durable attribute (ACID), 486

E
Enable Account permission, 313
enableLoggingKnownPII attribute, 313
encoding element, 94
encoding, serialization vs., 50–51
encryption

algorithmSuite attribute, 346
security considerations, 213, 325

EndpointAddress class, 210, 212
EndpointDispatcher class, 292
endpoints, 310–311. See also client endpoints; service

endpoints
end-to-end tracing

activities, 262–263
activity lifetime, 270–271
activity propagation, 264–266
activity scoping, 263–264
transferring activities, 266–267
viewing activities, 268–269

EnlistDurable method, 489
EnlistVolatile method, 489
EnumMemberAttribute, 35
establishSecurityContext attribute, 347
Evaluate method, 389, 391
EvaluationContext class, 391
event logging, 312–313
Exactly Once assurance, 172
Exception class, 429
exceptions. See also specific exceptions

faults vs., 10
protecting details, 207

Execute Method permission, 313
extensibility

message inspectors, 288–294
message pipeline, 281–284
parameter inspectors, 284–288

Extensible Markup Language. See XML (Extensible
Markup Language)

F
fault contracts

FaultContractAttribute, 11
FaultException class, 10–11
faults vs. exceptions, 10

fault exceptions
example, 10–11
handling, 427–428

FaultContractAttribute
declared SOAP faults, 427
Detail class, 11
functionality, 11
OneWay MEP, 14
Type class, 11

FaultException class, 10–11, 287, 429
faults

declared SOAP, 427–429
exceptions vs., 10
receiving, 427–431
undeclared SOAP, 429–431

federation, 80
FileMappingSize registry value, 312
filters element, 257
FindClaims method, 388
findValue attribute, 364–366
Flush method, 255
forward compatibility, 47

G
gAId (globally unique activity identifier)

activity propagation, 265
ActivityId property and, 264
defined, 263

Gartner Group, 130
GetBindingAssertions method, 203
GetBody method, 418
GetExistingInstanceContext method, 453
GetMessageBindingAssertions method, 203
GetOperationsBindingAssertions method, 203
GetReaderAtBodyContents method, 417
globally unique activity identifier. See gAId (globally

unique activity identifier)
GUID (globally unique identifier), 264

598 HandleAllMessages method
H
HandleAllMessages method

Message class, 416
OperationContractAttribute, 415

HandleThisMessage method, 414
headers element, 202
hosting services

authorization and, 383
configuring bindings, 108
Console applications, 117–118
IIS support, 104–106
non-HTTP support, 107–109
specifying endpoints, 118
support options, 103
WAS support, 107
WCF-provided host, 122
Windows services, 118–122

HTTP (Hypertext Transfer Protocol)
basicHttpBinding, 84, 228
multiple bindings, 82
POX support, 413
security considerations, 325
SOAP impersonation and, 396
standards interpretation, 168
WS-AT support, 491

HTTP GET request, 85, 413
httpDigest element, 206
HTTPS, 327
HttpTransportBindingElement class

AllowCookies property, 229
AuthenticationScheme property, 229
basicHttpBinding, 228
BypassProxyOnLocal property, 229
HostNameComparisonMode property, 229
KeepAliveEnabled property, 229
properties supported, 229–230
ProxyAddress property, 229
ProxyAuthenticationScheme property, 229
Realm property, 229
RequireClientCertificate property, 230
Scheme property, 230
TransferMode property, 230
UnsafeConnectionNtlmAuthentication property, 230
UseDefaultWebProxy property, 230
wsDualHttpBinding attribute, 234

Hypertext Transfer Protocol. See HTTP (Hypertext
Transfer Protocol)

I
IAuthorizationPolicy interface

Evaluate method, 389, 391
Id property, 389
Issuer property, 389, 391

IClientChannel interface, 290
IClientInspector interface, 292
IClientMessageInspector interface

AfterReceiveReply method, 290
AfterReceiveRequest method, 291
BeforeSendReply method, 291
BeforeSendRequest method, 290
functionality, 288, 290

IContractBehavior interface
AddBindingParameters method, 544
ApplyClientBehavior method, 544
ApplyDispatchBehavior method, 544–545
functionality, 544
Validate method, 544

IDefaultCommunicationTimeout interface, 212
IDispatchInspector interface, 292
IDispatchMessageInspector interface, 288
IDisposable interface, 444
IEndpointBehavior interface

AddBindingParameters method, 291
ApplyClientBehavior method, 291
ApplyDispatchBehavior method, 291
functionality, 291
Validate method, 291

IEnumerable interface, 37–38, 419
IExtensibleDataObject interface, 48–49, 208
IgnoreExtensionDataObject attribute, 208
IInstanceContextProvider interface

functionality, 452
GetExistingInstanceContext method, 453
InitializeInstanceContext method, 453
IsIdle method, 453
NotifyIdle method, 453
throttling considerations, 466

IIS (Internet Information Services)
Appcmd utility support, 108
binding and security, 327
endpoint addresses, 79, 84
ensuring correct installation, 105
hosting services, 103–106, 383
non-HTTP support, 107
web.config file, 81, 84, 106

IMetadataExchange interface, 86
impersonation

cached-token, 396
defined, 394

599last top-level entry
implementing, 397–399
levels supported, 395
purpose, 394
S4U, 397
transport-level, 395–397

ImportContract method, 203
includeExceptionDetailsInFaults attribute, 207
includeWindowsGroups attribute, 393–394
initializeData attribute, 254
InitializeInstanceContext method, 453
InitializeOrder method, 472
Installer class, 121
installutil command-line utility, 121
instance ID, 453
Instance performance counter, 310
InstanceContext object, 145
InstanceContextMode enumeration, 443, 447, 450–451,

524
instances

deactivating, 473–475
real world example, 442
sharing, 452–454

instancing modes
effects of, 443
overview, 443
per call mode, 444–446, 524
per session mode, 446–449, 524
singleton mode, 449–452, 524

instrumentation
basic tracing, 249–257
beneficiaries, 247
end-to-end tracing, 262–271
extensibility, 281–294
monitoring considerations, 308–315
real world example, 248

Internet Information Services. See IIS (Internet
Information Services)

Internet Protocol (IP), 325
interprocess communication (IPC), 491
InvalidOperationException

concurrency and, 527
extensibility and, 289
instancing and, 449, 472
monitoring and, 312
untyped message and, 418

IOperationBehavior interface
AddBindingParameters method, 286
ApplyClientBehavior method, 286
ApplyDispatchBehavior method, 285
Validate method, 287

IP (Internet Protocol), 325

IParameterInspector interface
AfterCall method, 284–285, 288
BeforeCall method, 284–285, 287–288

IPC (interprocess communication), 491
IPolicyImportExtension interface, 203
IsIdle method, 453
ISinglePhaseNotification interface, 489
IsInRole method, 384
isolated attribute (ACID), 486
IsolationLevel enumeration, 507–508
issued tokens

authentication and, 359
client credentials and, 361–366

issuedToken element, 206
IWsdlImportExtension interface, 203

J
Johnson, Bruce

concurrency, 521–522
configuring WCF, 198
infrastructure security, 324
instrumentation, 248
sessions and instances, 442
transactions, 484
user-level security, 358
WCF usefulness, 412

just-in-time-locking/as-soon-as-possible-releasing, 546

K
Kerberos

impersonation and, 396
NTLM vs., 368
security considerations, 326, 348
Windows authentication, 359, 367

KerberosSecurityTokenAuthenticator class, 392
KnownTypeAttribute, 39–40

L
lAId (local activity identifier), 263
lightweight protocol, 488–491
Lightweight Transaction Manager (LTM), 488–489, 491
listeners

configuring, 253–255
threading and, 254

Listeners collection
Trace class, 254
Write method, 255
WriteIndent method, 255
WriteLine method, 255

600 local activity identifier.
local activity identifier. See lAId (local activity identifier)
logEntireMessage attribute, 256
logKnownPii attribute, 313
logMalformedMessages attribute, 256
logMessagesAtServiceLevel attribute, 256
logMessagesAtTransportLevel attribute, 256
LTM (Lightweight Transaction Manager), 488–489, 491

M
machine names, 78
Madziak, Peter

consuming services, 130
controlling serialization, 50
service contracts, 3

malformed messages, 256
maxBatchSize attribute, 209
maxCacheLogonTokens attribute, 393
MaxConcurrentCalls setting, 466, 468
MaxConcurrentInstances setting, 466, 468
MaxConcurrentSessions setting, 466, 468
MaxItemsInObjectGraph parameter, 208, 418
maxMessageToLog attribute, 256
maxSizeOfMessageToLog attribute, 256
MEP (Message Exchange Pattern)

defined, 13
Duplex, 13, 15, 17–18, 136, 146
OneWay, 13–14, 146–147, 267, 494–495
Request/Response, 13–14, 17, 146

message body
accessing, 417–419
wrapping, 43

Message class/object
accessing directly, 416–417
channel stack, 282
DataContractSerializer class, 51
functionality, 5–6
GetBody method, 418
HandleAllMessages method, 416
IsEmpty property, 418
lifetime considerations, 289–290
message inspectors, 288–289
MessageState property, 289
proxies and, 282
serializing, 50–51
State property, 417

message contracts
controlling body wrapping, 43
custom headers, 43
functionality, 1, 31, 40–41
MessageBodyMemberAttribute, 42
MessageContractAttribute, 41–43, 46

MessageHeaderAttribute, 41–42
SOAP support, 5, 31

Message Exchange Pattern. See MEP (Message Exchange
Pattern)

message inspection/inspectors
adding to pipeline, 291–294
client-side processing, 290
defined, 283
extensibility points, 283
Message object lifetime, 289–290
overview, 288–289
server-side processing, 291

message logging
enabling, 255–257
service level, 256
transport level, 256

Message security mode, 214, 343
Message Transmission Optimization Mechanism. See

MTOM (Message Transmission Optimization
Mechanism)

message-based activation, 104, 106
MessageBodyMemberAttribute

functionality, 42
Name property, 42
Namespace property, 42
Order property, 42
parameter options, 42
ProtectionLevel property, 42

MessageBuffer class
Close method, 419
CreateBufferedCopy method, 290, 418
CreateMessage method, 290, 418
CreateNavigator method, 419

MessageContractAttribute
functionality, 41
IsWrapped property, 41–43, 46
parameter options, 41
ProtectionLevel property, 41
WrapperName property, 41
WrapperNamespace property, 41

MessageFault class, 421
MessageHeader class, 452
MessageHeaderAttribute

Actor property, 42
functionality, 41
MustUnderstand property, 42
Name property, 41
Namespace property, 41
parameter options, 41–42
ProtectionLevel property, 42
Relay property, 42

601negotiateServiceCredential attribute
MessageHeaderInfo class
Actor property, 420
IsReferenceParameter property, 420
MustUnderstand property, 420
Name property, 420
Namespace property, 420
Relay property, 420

MessageInspectors collection, 292
message-level security

algorithmSuite attribute, 345–347
benefits, 343
client credentials, 360–362
clientCredentialType values, 344–345
establishSecurityContext attribute, 347
negotiateServiceCredential attribute, 347–348
transport-level vs., 325, 335

messageLogging element
add element, 257
filters element, 257
logEntireMessage attribute, 256
logMalformedMessages attribute, 256
logMessagesAtServiceLevel attribute, 256
logMessagesAtTransportLevel attribute, 256
maxMessageToLog attribute, 256
maxSizeOfMessageToLog attribute, 256
nodeQuota attribute, 257
overview, 255–256

MessageLogInspector class, 292
MessageParameterAttribute, 4, 9–10
messages

malformed, 256
parameter inspectors, 284
pipeline example, 281–284
security considerations, 326
transmitting securely, 172
untyped, 413–421
wildcarded actions, 413–416

metadata
collection considerations, 37
defining for endpoints, 203
generating proxy classes, 131–135, 138
pushing through bindings, 85–86

metadata element
client endpoints, 203
policyImporters attribute, 203
wsdlImporters attribute, 203

metadata exchange endpoint, 86
mexHttpBinding, 86
mexNamedPipeBinding, 86
mexTcpBinding, 86
MFC (Microsoft Foundation Classes), 537

Microsoft MapPoint, 130
Microsoft Message Queue services. See MSMQ (Microsoft

Message Queue) services
MIME (Multipurpose Internet Mail Extension), 172
monitoring considerations

event logging, 312–315
performance counters, 308–312

Morgan, Sara, 82
MSDTC, 491
MSMQ (Microsoft Message Queue) services

binding considerations, 79, 332
configuring activation, 109
configuring bindings, 108
endpoint addresses, 225
installing server core, 108
security considerations, 325

WAS support, 103, 107
MSMQ Listener Adapter, 108
msmqAuthenticationMode attribute, 332
msmqEncryptionAlgorithm attribute, 332
msmqIntegrationBinding

description, 80, 200, 235
security considerations, 332–333

msmqProtectionLevel attribute, 332
msmqSecureHashAlgorithm attribute, 332
MsmqTransportBindingElement class, 232
MTOM (Message Transmission Optimization

Mechanism)
additional information, 172
basicHttpBinding, 230
binding support, 80
message support, 5
WCF support, 172

Multiple concurrency mode, 524–526, 547
Multipurpose Internet Mail Extension (MIME), 172
multithreading, 254, 536

N
named pipes

binding support, 80
configuring bindings, 108
impersonation support, 396
security considerations, 331
session support, 449
WAS support, 103, 107

NamedPipeTransportBindingElement class
ChannelInitializationTimeout property, 231
ConnectionBufferSize property, 231
ConnectionPoolSettings property, 231
TransferMode property, 232

negotiateServiceCredential attribute, 347–348, 369

602 nesting transactions
nesting transactions, 505–508
netMsmqBinding

algorithmSuite attribute, 346
description, 80, 200
properties, 232–233
security considerations, 334

netMsmqTransportBindingElement class
CustomDeadLetterQueue property, 232
DeadLetterQueue property, 232
Durable property, 232
ExactlyOnce property, 232
MaxRetryCycles property, 232
MsmqTransportSecurity property, 232
QueueTransferProtocol property, 232
ReceiveErrorHandling property, 232
ReceiveRetryCount property, 233
RetryCycleDelay property, 233
TimeToLive property, 233
TransactedReceiveEnabled property, 233
UseActiveDirectory property, 233
UseMsmqTracing property, 233
UseSourceJournal property, 233

netNamedPipeBinding
description, 79–80, 200
distributed transactions, 491
properties, 231–232
security considerations, 331
session support, 449
TransactionFlow property, 492

netPeerTcpBinding
description, 79–80, 200
properties, 233

netTcpBinding
algorithmSuite attribute, 346
building bindings, 230–231
cached-token impersonation, 396
clientCredentialType attribute, 330
description, 80, 200
distributed transactions, 491
endpoint requirements, 85
instancing modes, 448
MaxReceivedMessageSize property, 469
protectionLevel attribute, 330
S4U impersonation, 397
security considerations, 329–330
TransactionFlow property, 492

netTcpContextBinding
algorithmSuite attribute, 346
description, 80, 200, 235

NETWORK SERVICE Window account, 109
nodeQuota attribute, 257

NotifyIdle method, 453
NTLM (NT LAN Manager)

Kerberos vs., 368
Windows authentication, 359, 367

O
OLE Transaction protocol, 488, 491
OnClosing method, 110
OneWay MEP

activity transfers, 267
functionality, 14
proxy class considerations, 146–147
transactions and, 494–495
WCF support, 13

OnOpening method, 110
OnStart method, 119–120
OnStop method, 119–120
OnWriteBodyContents method, 421
Open Travel Alliance (OTA), 50
OperationBehavior attribute

Impersonation property, 397, 399
ReleaseInstanceMode property, 473–475

OperationContext class
MEP support, 15

claims-based authorization, 387
Host property, 451
Windows credentials, 368

OperationContractAttribute
Action property, 8, 414–415
functionality, 4, 7
HandleAllMessages method, 415
HandleThisMessage method, 414
IsInitiating property, 8, 471–472
IsOneWay property, 8, 13–14, 415
IsTerminating property, 8, 471–472
Name property, 8
parameter options, 8
ProtectionLevel property, 8
ReplyAction property, 8, 415

OperationDescription object, 285
operations, demarcating, 470–472
OTA (Open Travel Alliance), 50
OutOfMemoryException, 468

P
parameter inspectors

client-side processing, 284–285
implementing, 287–288
overview, 284
server-side processing, 285–287

603Rights class
paths, endpoint addresses, 78
peer element, 207
Peer Name Resolution Protocol (PNRP), 233
peer-to-peer communication, 80
PeerTransportBindingElement class, 233
per call mode, 444–446, 524
per session mode, 446–449, 524
performance counters

enabling, 308–309
modifying, 308
ServiceModelEndpoint, 310–312
ServiceModelOperation, 311–312
ServiceModelService, 309–310, 312

performance, multithreading and, 254
performanceCounter attribute, 309
PerformanceCounter class, 308
permissions, WMI support, 313–315
Personally Identifiable Information (PII), 313
PII (Personally Identifiable Information), 313
Plain old XML. See POX (Plain old XML)
PNRP (Peer Name Resolution Protocol), 233
PnrpPeerResolverBindingElement class, 233
policy alternatives, 360
policy assertions, 360
PolicyConversionContext class, 203
policyImporters attribute, 203
polymorphism, 40
port numbers, 78, 104
POX (Plain old XML)

longevity, 413
untyped messages, 413
wildcarded actions, 413–416

PrincipalPermissionAttribute, 384
privileges, 314, 395
process identity, 383
ProcessUnrecognizedMessage operation, 8
propagateActivity attribute, 264–266
Properties collection, 420
protecting services

quotas, 468–470
throttling, 465–468

protectionLevel attribute, 330
Provider Write permission, 313
proxies

callback channels and, 145–146
calling services, 138–146
closing, 145
creating dynamically, 136–138, 372
creating for non-WCF services, 168
defined, 131
Message objects, 282

service agents, 146
proxy classes

base type considerations, 146
defining manually, 135–136
generating from metadata, 131–135, 138
generating using svcutil, 131–133, 135, 142
generating using Visual Studio, 133–135, 142

proxyCredentialType attribute, 328

Q
Queued Messages performance counter, 310
quotas, 468–470
QuotaExceededException, 468

R
realm attribute, 328
record locking, 487, 525
Reentrant concurrency mode, 524, 526–528, 547
ReferenceParameters element, 420
relative addressing, 225
Relax NG, 32
reliability element, 94
Reliable Messaging performance counter, 310
ReliableSessionBindingElement class

AcknowledgementInterval property, 234
EnableFlowControl property, 234
InactivityTimeout property, 234
MaxPendingChannels property, 234
MaxRetryCount property, 234
MaxTransferWindowSize property, 234
Ordered property, 234

Representational State Transfer (REST), 413
Request/Response MEP

functionality, 13–14
proxy class considerations, 146
recommended usage, 17
WCF support, 13

requireCancellation attribute, 396–397
resource manager, 488
REST (Representational State Transfer), 413
Resume trace, 271
revocationMode attribute, 394
RFC 2246, 169
RFC 2459, 169
RFC 2616, 169
RFC 2818, 169
RFC 2965, 169
Rights class

functionality, 388
Identity property, 389

604 root scope
PossessProperty property, 389
properties, 389

root scope, 505
roundtripping

data contract versioning, 48–49
defined, 47

RunInstaller attribute, 121

S
S4U impersonation, 397
SamlSecurityTokenAuthenticator class, 392
scarce resources, 445
SCT (security context token), 347
Secure Sockets Layer. See SSL (Secure Sockets Layer)
secure token service (STS), 359
security. See authentication; authorization;

impersonation; message-level security; transport-
level security

security context token (SCT), 347
security element, 94
Security Event Log, 313
security identifier (SID), 332, 395
Security performance counter, 310–311
security principal, 383–384
Security Support Provider Interface (SSPI), 396
security token authentication, 392–394
SecurityTokenValidationException, 370
SendPreamble method, 467
serialization

concurrency modes and, 525
data contracts, 31–32
DataContractSerializer class, 32, 36, 47, 51–52
encoding vs., 50–51
real world example, 50

service agents, 146
service authorization manager, 386
service contracts

defined, 1, 4
demarcating operations, 471–472
generating proxy classes, 138
MessageParameterAttribute, 4, 9–10
OperationContractAttribute, 4, 7–8
PrincipalPermissionAttribute, 384
real world example, 3
ServiceContractAttribute, 4, 6
WSDL support, 5

service credentials, 368–370
service endpoints

addresses, 78–79, 83–84, 225–227
binding, 79–80, 228–236
contract considerations, 80

creating with code, 84–85
creating with configuration files, 81–84
for client applications, 109
headers element, 202
imperative configuration, 224
metadata exchange, 86
multiple bindings, 82–83, 226–227
pushing metadata, 85–86
real world example, 82
service hosts and, 118
system.servicemodel element, 81–82

service hosting. See hosting services
service instance, 443
service objects, 523–527
service orientation (SO), 1
service proxies. See proxies
service reference, 133, 138, 147
Service Reference Settings dialog box, 133, 143
Service Trace Viewer utility, 268–269
service types, 4–12
Service.svc file, 105
serviceAuthorization element, 392
ServiceAuthorizationBehavior class, 398–399
ServiceBase class, 119
ServiceBehavior attribute

concurrency, 524
ConcurrencyMode property, 546
instancing modes, 17, 450–451
synchronization, 537
UseSynchronizationContext property, 537

serviceCertificate element, 207, 371
ServiceContractAttribute

CallbackContract property, 6, 15
ConfigurationName property, 7
functionality, 4, 6
instancing modes, 447
Name property, 6–7
Namespace property, 6–7
parameter options, 6–7
ProtectionLevel property, 6
SessionMode property, 7

serviceCredentials element, 362, 366, 368
ServiceHost class

AddServiceEndpoint method, 84, 224, 226–228
ChannelDispatchers property, 468
creating endpoints, 84–85, 224–236
instancing modes, 450
managed applications, 117, 120
multiple service endpoints, 226–227
SingletonInstance property, 451

ServiceHost directive, 105, 107

605System.ServiceModel.Diagnostics namespace
ServiceHostFactory class, 110
ServiceModel element, 199, 294
ServiceModelEndpoint performance counters, 310–312
ServiceModelOperation performance counters, 311–312
ServiceModelService performance counters, 309–310,

312
service-oriented architecture (SOA), 1
services. See consuming services; hosting services;

protecting services
ServiceSecurityContext class

functionality, 385–386
IsAnonymous property, 386
retrieving, 387
WindowsIdentity property, 398

sessions
bindings and, 449, 525
demarcating operations, 473
named pipes, 449
per session mode, 446–449
real world example, 442
reliables, 449
singleton mode, 449–452

SetCertificate method, 361
SetImpersonatePrivilege privilege, 395
SetSynchronizationContext method, 543
SID (security identifier), 332, 395
Simple Object Access Protocol. See SOAP (Simple Object

Access Protocol)
Single concurrency mode, 524, 546–547
singleton mode, 449–452, 524
SMSvcHost.exe, 107
SO. See service orientation (SO)
SOA (service-oriented architecture), 1
SOAP (Simple Object Access Protocol)

additional information, 2
binding support, 79
declared faults, 427–429
fault definition, 10
HTTP authentication and, 396
message body wrapping, 43
message contracts, 5, 31, 40–41
Message objects, 5
message parameters, 419–420
standards interpretation, 168–169
TextMessageEncodingBindingElement class, 228
undeclared faults, 429–431
WS-I Basic Profile, 169

SPNEGO protocol, 347, 369
SSL (Secure Sockets Layer)

binding support, 79
security considerations, 213, 326

WS-I Basic Profile, 169
SSPI (Security Support Provider Interface), 396
StackOverflowException, 468
Start trace, 271
Stop trace, 271
storeName attribute, 364
STS (secure token service), 359
Suspend trace, 271
SVC file extension, 105
SVCLOG file extension, 269
svcutil utility

additional information, 133
generating proxy classes, 131–133, 142, 201
invoking asynchronously, 143
Visual Studio vs., 135
XmlSerializer support, 147

switchValue attribute
end-to-end tracing, 262–263
functionality, 252–253

SymmetricSecurityBindingElement class, 95
synchronization

client callbacks and, 545–549
custom contexts, 539–545
multithreading and, 536
overview, 537–539
Windows Forms, 537

SynchronizationContext class, 536–537, 540–543
synchronousReceive element, 208–209
System.ComponentModel namespace, 121
System.Configuration namespace, 309
System.Diagnostics namespace, 249
System.IdentityModel.Selectors namespace, 370
System.IO.Log trace source, 251
System.Runtime.Serialization namespace

data contracts, 31
DataContractAttribute, 34
DataMemberAttribute, 34

System.Runtime.Serialization trace source, 251
System.ServiceModel namespace

behavioral contracts, 4–5
configuring listeners, 253
FaultContractAttribute, 11
message contracts, 31

System.ServiceModel trace source, 250, 252
System.ServiceModel.Activation trace source, 251, 265
System.ServiceModel.Channels namespace

Binding class, 212
importing, 452
Message class, 5, 50

System.ServiceModel.Configuration namespace, 309
System.ServiceModel.Diagnostics namespace, 309

606 System.ServiceModel.IdentityModel trace source
System.ServiceModel.IdentityModel trace source, 251
System.ServiceModel.MessageLogging trace source, 250
System.Threading namespace, 536
System.Transaction namespace, 488

T
Task Manager service, 4
TCP (Transmission Control Protocol)

configuring bindings, 108
distributed transactions, 491
multiple bindings, 82
security considerations, 325
WAS support, 103, 107

TcpTransportBindingElement class
ChannelInitializationTimeout property, 231
ConnectionBufferSize property, 231
ConnectionPoolSettings property, 231
ListenBacklog property, 231
PortSharingEnabled property, 231
properties, 231
TeredoEnabled property, 231
TransferMode property, 231

TextMessageEncodingBindingElement class
elements supported, 228
MaxReadPoolSize property, 229
MaxWritePoolSize property, 229
MessageVersion property, 229
properties supported, 229
ReaderQuotas property, 229
WriteEncoding property, 229
wsDualHttpBinding attribute, 234

TextWriterTraceListener, 254
thread affinity, 548–549
thread local storage (TLS)

ActivityId property and, 264
defined, 264
synchronization and, 536

threading
listeners and, 254
multithreading, 254, 536

ThreadPoolSynchronizationAttribute class, 544
ThreadPoolSynchronizer class, 543, 545
thread-safe objects, 525
thread-unsafe objects, 525
throttling, 465–468
TimeoutException, 427, 466–467, 526
TLS. See thread local storage (TLS)
TLSNEGO protocol, 369
token authenticators

commonly used, 392
defined, 359

overview, 393–394
ToString method, 429
Trace class

CorrelationManager class, 264
Flush method, 255
Listeners collection, 254
Write method, 249, 255
WriteIf method, 249, 255
WriteLine method, 249, 255
WriteLineIf method, 249, 255

trace levels, setting, 251–252
TraceEvent method, 250
TraceListener class, 250
TraceSource class, 250
tracing. See also end-to-end tracing

configuring listeners, 253–255
emitting information, 250–251
enabling message logging, 255–257
overview, 249–250
setting trace levels, 251–252
turning on, 250–257

Transacted Operations performance counter, 310–311
transactedBatching element, 209
Transaction class

DistributedIdentifier property, 503
EnlistDurable method, 489
EnlistVolatile method, 489
LocalIdentifier property, 503
TransactionInformation property, 503

transaction coordinator, 487
transaction flow element, 94
transaction manager, 487
transaction protocols

defined, 488
lightweight protocol, 488–491
OLE Transaction protocol, 488, 491
WS-AtomicTransaction, 488, 491

transaction timeouts, 508–509
TransactionAbortedException, 504
TransactionFlowBindingElement class, 231, 234
TransactionFlowOption setting, 492–494
transactions

ACID attributes, 485–486
ambient, 502–503
commit phase, 487
defined, 485
implementing ACID, 486–487
nesting, 505–508
one-way calls and, 494–495
prepare phase, 487
propagating, 491–494

607Web services
real world example, 484
voting on, 503–504

TransactionScope class
Complete method, 490, 504
consistency bit, 504
functionality, 503
implementing, 489
IsolationLevel enumeration, 507–508
nesting transactions, 505–507
root scope, 505
transaction timeouts, 508–509

TransactionScopeOption enumeration, 505–506
transactionTimeout attribute, 208
Transfer trace, 271
Transmission Control Protocol. See TCP (Transmission

Control Protocol)
transport element

clientCredentialType attribute, 328, 330
description, 94
msmqAuthenticationMode attribute, 332–333
msmqEncryptionAlgorithm attribute, 332–333
msmqProtectionLevel attribute, 332–333
msmqSecureHashAlgorithm attribute, 332–333
proxyCredentialType attribute, 328
realm attribute, 328

Transport security mode, 213, 343
TransportBindingElement class, 230
TransportCredentialOnly security mode, 214
transport-level impersonation, 395–397
transport-level security

benefits, 326
bindings, 326–334
main concerns, 325
message-level vs., 325, 335
overview, 325

TransportWithMessageCredential security mode, 214,
343

two-phase commit, 487
Type class, 11

U
UDDI (Universal Description, Discovery, and

Integration), 169
Uniform Resource Identifier. See URI (Uniform Resource

Identifier)
Uniform Resource Locator (URL), 78, 413
Universal Description, Discovery, and Integration

(UDDI), 169
untyped messages

creating, 420–421
message parameters, 416–420

POX support, 413
wildcarded actions, 413–416

URI (Uniform Resource Identifier)
absolute, 200
ClaimTypes class, 388–389
client endpoints, 200
sharing listener URI, 227
wildcarded actions, 413

URL (Uniform Resource Locator), 78, 413
user-level security. See authentication; authorization;

impersonation
username/password

authentication via, 359
client credentials, 361
custom credentials, 370

userNameAuthentication element, 371, 393–394
userNamePasswordValidationMode attribute, 393
UserNamePasswordValidator class, 370

V
Validate method

IContractBehavior interface, 544
IEndpointBehavior interface, 291
IOperationBehavior interface, 287
UserNamePasswordValidator class, 370

versioning data contracts, 47–49
viaUri attribute

clientVia element, 208
sharing listener URI, 227

viewing activities, 268–269
virtual directory, 104
Visual Studio 2008

generating proxy classes, 133–134, 142
hosting services, 104, 117
invoking asynchronously, 143
svcutil vs., 135
WCF-provided host, 122

W
WAS (Windows Application Service)

configuring bindings, 108
hosting services, 103, 107
non-HTTP support, 107
web.config file, 81

WCF (Windows Communication Foundation), 1, 105
WCF-provided host, 122
WcfSvcHost.exe, 122, 216
Web Service Enhancement (WSE), 327
Web services

core standards, 2, 5–6, 169

608 Web Services Description Language
defined, 168
Web Services Description Language. See WSDL (Web

Services Description Language)
web.config file

IIS support, 81, 84, 106
WAS support, 107

webHttpBinding, 79, 200, 235
wildcards

generating proxy classes, 133
untyped messages, 413–416

Windows Application Service. See WAS (Windows
Application Service)

Windows authentication, 359, 367
Windows Communication Foundation (WCF), 1, 105
windows element, 207
Windows Event Log, 312
Windows Forms, 537
Windows identity, 395, 398
Windows Management Instrumentation (WMI), 312–

315
Windows Presentation Foundation (WPF), 537
Windows Server 2008, 108
Windows services, 118–122
Windows Vista, 107
WindowsImpersonationContext class, 397
WindowsSecurityTokenAuthenticator class, 392
WindowsUserNameSecurityTokenAuthenticator class,

392
WMI (Windows Management Instrumentation), 312–

315
WorkerThread class, 540
WorkItem class, 540, 543
WPF (Windows Presentation Foundation), 537
Write method

Listeners collection, 255
Trace class, 249, 255

WriteIf method, 249, 255
WriteIndent method, 255
WriteLine method

Listeners collection, 255
Trace class, 249, 255

WriteLineIf method, 249, 255
ws2007FederationHttpBinding

description, 201, 236
message-level security, 347–348

ws2007HttpBinding
description, 201, 236
message-level security, 347–348

WS-Addressing standard
address headers, 211
bindings and security, 328

endpoint addresses, 78
Message objects, 5
message parameters, 419–420
ReferenceParameters element, 420
standards interpretation, 168

WS-AtomicTransaction (WS-AT)
functionality, 488, 491
Message objects, 5

WSDL (Web Services Description Language)
additional information, 2
collection considerations, 37
creating proxies, 168
service contracts, 5
service metadata, 131
standards interpretation, 168
user-level security, 360
WS-I Basic Profile, 169

wsdlImporters attribute, 203
wsDualHttpBinding

algorithmSuite attribute, 346
cached-token impersonation, 396
description, 79, 200
distributed transactions, 491
negotiateSecurityContext attribute, 348
properties, 234
S4U impersonation, 397
security considerations, 329
TransactionFlow property, 492

WSE (Web Service Enhancement), 327
wsFederationHttpBinding

algorithmSuite attribute, 346
description, 80, 201, 236
distributed transactions, 491
negotiateSecurityContext attribute, 348
TransactionFlow property, 492

wsHttpBinding
algorithmSuite attribute, 346
AllowCookies property, 91
BypassProxyOnLocal property, 91
cached-token impersonation, 396
client endpoint description, 201
CloseTimeout property, 91–93
distributed transactions, 491
establishSecurityContext attribute, 347
HostNameComparisonMode property, 91
MaxBufferPoolSize property, 91
MaxReceivedMessageSize property, 91
MessageEncoding property, 91
modifiable properties, 91–93
Name property, 91
Namespace property, 92

609XSD (XML schema definition)
negotiateSecurityContext attribute, 348
OpenTimeout property, 92
ProxyAddress property, 92
ReaderQuotas property, 92
ReceiveTimeout property, 92
S4U impersonation, 397
security considerations, 328–329
SendTimeout property, 92
service endpoint description, 79, 84
session support, 449
TextEncoding property, 92
TransactionFlow property, 92, 492
UseDefaultWebProxy property, 92

wsHttpContextBinding
description, 80, 201, 236
establishSecurityContext attribute, 347
negotiateSecurityContext attribute, 348

WS-I (Web Services Interoperability Organization)
binding and security, 327
overview, 169
profiles supported, 171

WS-I Basic Profile
additional information, 170
basicHttpBinding, 170
binding and security, 327
documentation considerations, 171
overview, 169

WS-PolicyAssertions standard, 360
WS-ReliableMessaging standard

additional information, 172
defined, 172
Message objects, 5

WS-SecureConversation standard, 347
WS-Security standard

additional information, 172
Message objects, 5
message security and, 344, 347

WCF support, 172
WS-SecurityPolicy standard, 345, 360

X
X.509 certificates, 359, 385
X509FindType attribute, 364
X509SecurityTokenAuthenticator class, 392
XML (Extensible Markup Language). See also POX (Plain

old XML)
building services, 53
consuming services, 129
standards interpretation, 168
WS-I Basic Profile, 169

XML schema definition. See XSD (XML schema
definition)

XmlDictionaryReader class, 417
XmlDictionaryWriter class, 421
XmlReader class, 417, 421
XmlSerializer class

DataContractSerializer vs., 36, 52
functionality, 51–52
proxy class support, 146

XmlSerializerFormatAttribute, 51–52
XmlWriterTraceListener class, 254, 268
XPathNavigator class, 419
XSD (XML schema definition)

additional information, 2
alternatives, 32
building services, 53
data contracts, 5
DataContractSerializer class, 53
functionality, 32
standards interpretation, 168
WS-I Basic Profile, 169

	Cover
	Copyright page

	About the Authors
	Bruce Johnson
	Peter Madziak
	Sara Morgan

	Contents at a Glance
	Table of Contents
	Introduction
	Hardware Requirements
	Software Requirements
	Using the CD and DVD
	How to Install the Practice Tests
	How to Use the Practice Tests
	How to Uninstall the Practice Tests

	Microsoft Certified Professional Program
	Technical Support
	Evaluation Edition Software

	Chapter 1: Contracts
	Before You Begin
	Lesson 1: Defining Behavioral Contracts
	Service Contracts and Service Types
	Message Exchange Patterns
	Duplex Channels and Client-Side Proxies
	Lab: Defining a Service
	Lesson Summary
	Lesson Review

	Lesson 2: Defining Structural Contracts
	Data Contracts
	Message Contracts
	Versioning of Data Contracts
	Controlling Serialization
	Lab: Defining Data Contracts and Controlling Serialization
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenarios
	Case Scenario 1: First Identifying a Service
	Case Scenario 2: Working with Legacy Systems

	Suggested Practices
	Build on an Existing Service
	Define a New Service Contract

	Take a Practice Test

	Chapter 2: Exposing the Services
	Before You Begin
	Lesson 1: Service Endpoint Basics
	ABCs of Endpoints
	Creating an Endpoint by Using a Configuration File
	Creating an Endpoint by Using Code
	Publishing Metadata Through Endpoints
	Lab: Configuring Services by Using Endpoints
	Lesson Summary
	Lesson Review

	Lesson 2: Customizing and Extending Bindings
	Customizing a Standard Binding
	Custom Bindings
	Lab: Customizing Standard Bindings
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenarios
	Case Scenario 1: Configuring an Endpoint
	Case Scenario 2: Choosing a Binding

	Suggested Practices
	Configure Using Code and Experiment with Binding Configurations

	Take a Practice Test

	Chapter 3: Deploying Services
	Before You Begin
	Lesson 1: Hosting a Service on a Web Server
	Hosting a Service on an IIS Web Server
	Hosting a Service by Using WAS
	Support for Non-HTTP Protocols
	Creating a Service Host Factory
	Lab: Deploying a Service by Using a Service Host
	Lesson Summary
	Lesson Review

	Lesson 2: Hosting a Service in a Managed Application
	Hosting a Service by Using a Console Application
	Hosting a WCF Service by Using a Windows Service
	Hosting a Service by Using the WCF-Provided Host
	Lab: Deploying a Service by Using a Managed Application
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenario
	Case Scenario: Upgrading a Series of Earlier Web Services

	Suggested Practices
	Hosting Services

	Take a Practice Test

	Chapter 4: Consuming Services
	Before You Begin
	Lesson 1: Consuming WCF Services
	Creating Proxies and Proxy Classes
	Using Proxies to Call Services
	Lab: Creating and Using WCF Service Proxies
	Lesson Summary
	Lesson Review

	Lesson 2: Consuming Non-WCF Services
	Creating Proxies for Non-WCF Services
	Interoperability Through WS-I Basic Profile Support
	Interoperability by Extended WS-* Support
	Lab: Consuming a Non-WCF Mapping Service
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenarios
	Case Scenario 1: Building an e-Commerce Solution
	Case Scenario 2: Medical Imaging Application

	Suggested Practices
	Expand Your Knowledge of Service Agents
	Consume a Non-WCF Service

	Take a Practice Test

	Chapter 10: Sessions and Instancing
	Before You Begin
	Lesson 1: Instancing Modes
	Instancing
	Lab: Instance Modes
	Lesson Summary
	Lesson Review

	Lesson 2: Working with Instances
	Protecting the Service
	Demarcating Operations
	Instance Deactivation
	Lab: Throttling and Demarcation
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenarios
	Case Scenario 1: Choosing the Appropriate Instancing Mode
	Case Scenario 2: Protecting Your WCF Application

	Suggested Practices
	Working with Service Instances
	WCF Protection
	Watch a Webcast

	Take a Practice Test

	Index

