

Windows® Internals,
Fifth Edition

Mark E. Russinovich
David A. Solomon
with Alex Ionescu

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2009 by David Solomon (all); Mark Russinovich (all)

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2009927697

Printed and bound in the United States of America.

5 6 7 8 9 10 11 12 13 14 QGT 6 5 4 3 2 1

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly
at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, Access, Active Directory, ActiveSync, ActiveX, Aero, Authenticode, BitLocker, DirectX,
Excel, Hyper-V, Internet Explorer, MS, MSDN, MS-DOS, Outlook, PowerPoint, ReadyBoost, ReadyDrive, SideShow, SQL
Server, SuperFetch, Visual Basic, Visual C++, Visual Studio, Win32, Windows, Windows Media, Windows NT, Windows
Server, Windows Vista, and Xbox are either registered trademarks or trademarks of the Microsoft group of companies.
Other product and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted
herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, logo,
person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ben Ryan
Developmental Editor: Devon Musgrave
Project Editor: John Pierce
Editorial Production: Curtis Philips, Publishing.com
Cover: Tom Draper Design

Body Part No. X14-95072

[2011-08-26]

To Jim Allchin, our OS and rock star

	 	 v

Table of Contents
Foreword . xix

Acknowledgments . xxi

Introduction . xxiii

	 1	 Concepts and Tools . 1
Windows Operating System Versions . 1
Foundation Concepts and Terms . 2

Windows API . 2
Services, Functions, and Routines . 4
Processes, Threads, and Jobs . 5
Virtual Memory . . 14
Kernel Mode vs. User Mode . 16
Terminal Services and Multiple Sessions . . 19
Objects and Handles . 21
Security . 22
Registry . . 23
Unicode . 23

Digging into Windows Internals . 24
Reliability and Performance Monitor . 25
Kernel Debugging . 26
Windows Software Development Kit . 31
Windows Driver Kit . . 31
Sysinternals Tools . 32

Conclusion . 32

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

vi	 Table of Contents

	 2	 System Architecture . 33
Requirements and Design Goals . 33
Operating System Model . . 34
Architecture Overview . 35

Portability . . 38
Symmetric Multiprocessing . . 39
Scalability . 43
Differences Between Client and Server Versions 43
Checked Build . 47

Key System Components . 49
Environment Subsystems and Subsystem DLLs . 50
Ntdll.dll . 57
Executive . 58
Kernel . 61
Hardware Abstraction Layer . 65
Device Drivers . 68
System Processes . 74

Conclusion . 83

	 3	 System Mechanisms . 85
Trap Dispatching . 85

Interrupt Dispatching . 87
Exception Dispatching . 114
System Service Dispatching . 125

Object Manager . 133
Executive Objects . 136
Object Structure . 138

Synchronization . . 170
High-IRQL Synchronization . . 172
Low-IRQL Synchronization . 177

System Worker Threads . 198
Windows Global Flags . 200
Advanced Local Procedure Calls (ALPCs) . 202
Kernel Event Tracing . 207
Wow64 . 211

Wow64 Process Address Space Layout . 211
System Calls . 212
Exception Dispatching . 212

	 Table of Contents	 vii

User Callbacks . 212
File System Redirection . 212
Registry Redirection and Reflection . 213
I/O Control Requests . 214
16-Bit Installer Applications . 215
Printing . 215
Restrictions . . 215

User-Mode Debugging . 216
Kernel Support . 216
Native Support . 217
Windows Subsystem Support . 219

Image Loader . . 220
Early Process Initialization . 222
Loaded Module Database . 223
Import Parsing . . 226
Post Import Process Initialization . . 227

Hypervisor (Hyper-V) . 228
Partitions . 230
Root Partition . 230
Child Partitions . 232
Hardware Emulation and Support . 234

Kernel Transaction Manager . 240
Hotpatch Support . 242
Kernel Patch Protection . 244
Code Integrity . 246
Conclusion . 248

	 4	 Management Mechanisms . 249
The Registry . 249

Viewing and Changing the Registry . 249
Registry Usage . . 250
Registry Data Types . 251
Registry Logical Structure . 252
Transactional Registry (TxR) . 260
Monitoring Registry Activity . . 262
Registry Internals . 266

Services . 281
Service Applications . 282
The Service Control Manager . 300

viii	 Table of Contents

Service Startup . 303
Startup Errors . 307
Accepting the Boot and Last Known Good . 308
Service Failures . 310
Service Shutdown . 311
Shared Service Processes . . 313
Service Tags . 316
Service Control Programs . 317

Windows Management Instrumentation . 318
Providers . 319
The Common Information Model and the Managed Object
Format Language . 320
Class Association . 325
WMI Implementation . . 327
WMI Security . 329

Windows Diagnostic Infrastructure . 329
WDI Instrumentation . 330
Diagnostic Policy Service . . 330
Diagnostic Functionality . 332

Conclusion . 333

	 5	 Processes, Threads, and Jobs . 335
Process Internals . 335

Data Structures . 335
Kernel Variables . . 342
Performance Counters . 343
Relevant Functions . 344

Protected Processes . 346
Flow of CreateProcess . 348

Stage 1: Converting and Validating Parameters and Flags 350
Stage 2: Opening the Image to Be Executed . 351
Stage 3: Creating the Windows Executive Process Object
(PspAllocateProcess) . 354
Stage 4: Creating the Initial Thread and Its Stack and Context 359
Stage 5: Performing Windows Subsystem–Specific
Post-Initialization . 360
Stage 6: Starting Execution of the Initial Thread 362
Stage 7: Performing Process Initialization in the Context of the
New Process . . 363

	 Table of Contents	 ix

Thread Internals . 370
Data Structures . 370
Kernel Variables . . 379
Performance Counters . 379
Relevant Functions . 380
Birth of a Thread . 380

Examining Thread Activity . . 381
Limitations on Protected Process Threads . 384

Worker Factories (Thread Pools) . 386
Thread Scheduling . 391

Overview of Windows Scheduling . 391
Priority Levels . 393
Windows Scheduling APIs . 395
Relevant Tools . 396
Real-Time Priorities . . 399
Thread States . 400
Dispatcher Database . 404
Quantum . 406
Scheduling Scenarios . 413
Context Switching . . 418
Idle Thread . 418
Priority Boosts . 419
Multiprocessor Systems . 434
Multiprocessor Thread-Scheduling Algorithms 442
CPU Rate Limits . 444

Job Objects . 445
Conclusion . 450

	 6	 Security . 451
Security Ratings . 451

Trusted Computer System Evaluation Criteria . 451
The Common Criteria . . 453

Security System Components . 454
Protecting Objects . 458

Access Checks . 459
Security Descriptors and Access Control . 484

Account Rights and Privileges . . 501
Account Rights . 502

x	 Table of Contents

Privileges . 503
Super Privileges . . 509

Security Auditing . . 511
Logon . 513

Winlogon Initialization . . 515
User Logon Steps . 516

User Account Control . 520
Virtualization . 521
Elevation . 528

Software Restriction Policies . 533
Conclusion . 535

	 7	 I/O System . . 537
I/O System Components . 537

The I/O Manager . . 539
Typical I/O Processing . 540

Device Drivers . 541
Types of Device Drivers . 541
Structure of a Driver . 547
Driver Objects and Device Objects . 550
Opening Devices . . 555

I/O Processing . 562
Types of I/O . 563
I/O Request to a Single-Layered Driver . 572
I/O Requests to Layered Drivers . . 578
I/O Cancellation . 587
I/O Completion Ports . 592
I/O Prioritization . 598
Driver Verifier . 604

Kernel-Mode Driver Framework (KMDF) . 606
Structure and Operation of a KMDF Driver . 607
KMDF Data Model . 608
KMDF I/O Model . . 612

User-Mode Driver Framework (UMDF) . 616
The Plug and Play (PnP) Manager . 619

Level of Plug and Play Support . 620
Driver Support for Plug and Play . 621

	 Table of Contents	 xi

Driver Loading, Initialization, and Installation . 623
Driver Installation . 632

The Power Manager . 636
Power Manager Operation . 638
Driver Power Operation . . 639
Driver and Application Control of Device Power 643

Conclusion . 644

	 8	 Storage Management . 645
Storage Terminology . 645
Disk Drivers . 646

Winload . 646
Disk Class, Port, and Miniport Drivers . . 647
Disk Device Objects . 650
Partition Manager . . 651

Volume Management . . 652
Basic Disks . 653
Dynamic Disks . 656
Multipartition Volume Management . 661
The Volume Namespace . 667
Volume I/O Operations . 674
Virtual Disk Service . . 675

BitLocker Drive Encryption . 677
BitLocker Architecture . 677
Encryption Keys . . 679
Trusted Platform Module (TPM) . . 681
BitLocker Boot Process . . 683
BitLocker Key Recovery . 684
Full Volume Encryption Driver . 686
BitLocker Management . 687

Volume Shadow Copy Service . 688
Shadow Copies . 688
VSS Architecture . 688
VSS Operation . 689
Uses in Windows . 692

Conclusion . 698

xii	 Table of Contents

	 9	 Memory Management . 699
Introduction to the Memory Manager . 699

Memory Manager Components . . 700
Internal Synchronization . 701
Examining Memory Usage . 701

Services the Memory Manager Provides . 704
Large and Small Pages . 705
Reserving and Committing Pages . 706
Locking Memory . . 707
Allocation Granularity . 708
Shared Memory and Mapped Files . 709
Protecting Memory . 711
No Execute Page Protection . 713
Copy-on-Write . 718
Address Windowing Extensions . 719

Kernel-Mode Heaps (System Memory Pools) . 721
Pool Sizes . 722
Monitoring Pool Usage . 724
Look-Aside Lists . 728

Heap Manager . . 729
Types of Heaps . 730
Heap Manager Structure . 731
Heap Synchronization . 732
The Low Fragmentation Heap . 732
Heap Security Features . 733
Heap Debugging Features . 734
Pageheap . 735

Virtual Address Space Layouts . 736
x86 Address Space Layouts . 737
x86 System Address Space Layout . 740
x86 Session Space . 740
System Page Table Entries . 744
64-Bit Address Space Layouts . 745
64-Bit Virtual Addressing Limitations . 749
Dynamic System Virtual Address Space Management 751
System Virtual Address Space Quotas . . 756
User Address Space Layout . 757

	 Table of Contents	 xiii

Address Translation . . 761
x86 Virtual Address Translation . 762
Translation Look-Aside Buffer . 768
Physical Address Extension (PAE) . . 769
IA64 Virtual Address Translation . 772
x64 Virtual Address Translation . 773

Page Fault Handling . 774
Invalid PTEs . 775
Prototype PTEs . 776
In-Paging I/O . . 778
Collided Page Faults . 779
Clustered Page Faults . . 779
Page Files . 780

Stacks . 784
User Stacks . 785
Kernel Stacks . 786
DPC Stack . 787

Virtual Address Descriptors . 787
Process VADs . 788
Rotate VADs . . 790

NUMA . 791
Section Objects . 792
Driver Verifier . . 799
Page Frame Number Database . . 803

Page List Dynamics . . 807
Page Priority . 809
Modified Page Writer . . 812
PFN Data Structures . 814

Physical Memory Limits . 818
Windows Client Memory Limits . 819

Working Sets . 822
Demand Paging . 823
Logical Prefetcher . 823
Placement Policy . . 827
Working Set Management . 828
Balance Set Manager and Swapper . 831
System Working Set . 832
Memory Notification Events . 833

xiv	 Table of Contents

Proactive Memory Management (SuperFetch) . 836
Components . 836
Tracing and Logging . 838
Scenarios . 840
Page Priority and Rebalancing . 840
Robust Performance . . 843
ReadyBoost . 844
ReadyDrive . . 845

Conclusion . 847

	 10	 Cache Manager . 849
Key Features of the Cache Manager . 849

Single, Centralized System Cache . 850
The Memory Manager . 850
Cache Coherency . 850
Virtual Block Caching . 852
Stream-Based Caching . . 852
Recoverable File System Support . 853

Cache Virtual Memory Management . 854
Cache Size . 855

Cache Virtual Size . 855
Cache Working Set Size . 856
Cache Physical Size . 858

Cache Data Structures . 859
Systemwide Cache Data Structures . 860
Per-File Cache Data Structures . 862

File System Interfaces . 868
Copying to and from the Cache . . 869
Caching with the Mapping and Pinning Interfaces 870
Caching with the Direct Memory Access Interfaces 872

Fast I/O . 873
Read Ahead and Write Behind . 875

Intelligent Read-Ahead . 875
Write-Back Caching and Lazy Writing . 877
Write Throttling . . 885
System Threads . 886

Conclusion . 887

	 Table of Contents	 xv

	 11	 File Systems . . 889
Windows File System Formats . 890

CDFS . 890
UDF . 891
FAT12, FAT16, and FAT32 . 891
exFAT . . 894
NTFS . 895

File System Driver Architecture . . 895
Local FSDs . 896
Remote FSDs . 897
File System Operation . 901
File System Filter Drivers . 907

Troubleshooting File System Problems . 908
Process Monitor Basic vs. Advanced Modes . 908
Process Monitor Troubleshooting Techniques . . 909

Common Log File System . 910
NTFS Design Goals and Features . 918

High-End File System Requirements . 918
Advanced Features of NTFS . 920

NTFS File System Driver . 934
NTFS On-Disk Structure . 937

Volumes . 937
Clusters . 937
Master File Table . 938
File Reference Numbers . . 942
File Records . 942
File Names . 945
Resident and Nonresident Attributes . 948
Data Compression and Sparse Files . . 951
The Change Journal File . 956
Indexing . 960
Object IDs . 961
Quota Tracking . 962
Consolidated Security . 963
Reparse Points . 965
Transaction Support . 965

xvi	 Table of Contents

NTFS Recovery Support . 974
Design . . 975
Metadata Logging . 976
Recovery . . 981
NTFS Bad-Cluster Recovery . 985
Self-Healing . 989

Encrypting File System Security . 990
Encrypting a File for the First Time . 993
The Decryption Process . 998
Backing Up Encrypted Files . . 999

Conclusion . 1000

	 12	 Networking . . 1001
Windows Networking Architecture . 1001

The OSI Reference Model . 1001
Windows Networking Components . 1003

Networking APIs . 1006
Windows Sockets . 1006
Winsock Kernel (WSK) . 1012
Remote Procedure Call . 1014
Web Access APIs . 1018
Named Pipes and Mailslots . . 1021
NetBIOS . 1027
Other Networking APIs . 1030

Multiple Redirector Support . 1033
Multiple Provider Router . 1034
Multiple UNC Provider . . 1037

Name Resolution . . 1039
Domain Name System . 1039
Windows Internet Name Service . 1039
Peer Name Resolution Protocol . 1039

Location and Topology . 1042
Network Location Awareness (NLA) . 1042
Link-Layer Topology Discovery (LLTD) . 1043

Protocol Drivers . . 1044
Windows Filtering Platform (WFP) . . 1047

NDIS Drivers . . 1053
Variations on the NDIS Miniport . 1057
Connection-Oriented NDIS . . 1057

	 Table of Contents	 xvii

Remote NDIS . 1060
QoS . 1062

Binding . 1064
Layered Network Services . 1066

Remote Access .1066
Active Directory . 1066
Network Load Balancing . 1068
Distributed File System and DFS Replication . 1069

Conclusion . 1071

	 13	 Startup and Shutdown . 1073
Boot Process . 1073

BIOS Preboot . 1073
The BIOS Boot Sector and Bootmgr . 1077
The EFI Boot Process . 1086
Initializing the Kernel and Executive Subsystems 1088
Smss, Csrss, and Wininit . . 1094
ReadyBoot . 1099
Images That Start Automatically . 1100

Troubleshooting Boot and Startup Problems . 1101
Last Known Good . 1101
Safe Mode . 1101
Windows Recovery Environment (WinRE) . 1106
Solving Common Boot Problems . . 1109

Shutdown . 1115
Conclusion . 1118

	 13	 Crash Dump Analysis . . 1119
Why Does Windows Crash? . 1119
The Blue Screen . 1120
Troubleshooting Crashes . 1124
Crash Dump Files . . 1125

Crash Dump Generation . 1130
Windows Error Reporting . 1131
Online Crash Analysis . 1133
Basic Crash Dump Analysis . 1134

Notmyfault . . 1134
Basic Crash Dump Analysis . 1135
Verbose Analysis . 1137

xviii	 Table of Contents

Using Crash Troubleshooting Tools . 1139
Buffer Overrun, Memory Corruptions, and Special Pool 1140
Code Overwrite and System Code Write Protection 1143

Advanced Crash Dump Analysis . 1144
Stack Trashes . 1145
Hung or Unresponsive Systems . 1147
When There Is No Crash Dump . 1150

Conclusion . 1152

Glossary . 1153

Index . 1183

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

	 	 xix

Foreword
It’s both a pleasure and an honor for me to write the foreword for this latest edition of
Windows Internals. Many significant changes have occurred in Windows since the last edition
of the book, and David, Mark, and Alex have done an excellent job of updating the book to
address them. Whether you are new to Windows internals or an old hand at kernel develop-
ment, you will find lots of detailed analysis and examples to help improve your understand-
ing of the core mechanisms of Windows as well as the general principles of operating system
design.

Today, Windows enjoys unprecedented breadth and depth in the computing world. Variants
of the original Windows NT design run on everything from Xbox game consoles to desktop
and laptop computers to clusters of servers with dozens of processors and petabytes of stor-
age. Advances such as hypervisors, 64-bit computing, multicore and many-core processor
designs, flash-based storage, and wireless and peer-to-peer networking continue to provide
plenty of interesting and innovative areas for operating system design.

One such area of innovation is security. Over the past decade, the entire computing indus-
try—and Microsoft in particular—has been confronted with huge new threats, and security
has become the top issue facing many of our customers. Attacks such as Blaster and Sasser
threatened to bring the entire Internet to its knees, and Windows was at the eye of the hur-
ricane. It was obvious to us that we could no longer afford to do business as usual, as many
of the usability and simplicity features designed into Windows were being used to attack it
for nefarious reasons. At first the hackers were teenagers trying to gain notoriety by breaking
into systems or adding graffiti to a corporate Web site, but pretty soon the attacks intensified
and went underground. The hackers became more sophisticated and evaded inspection. You
rarely see headlines about viruses and worms these days, but make no mistake—botnets and
identity theft are big business today, as are industrial and government espionage through
targeted attacks.

In January 2002, Bill Gates sent his now-famous “Trustworthy Computing” memorandum to
all Microsoft employees. It was a call to action that resonated well and charted the course
for how we would build software and conduct business over the coming years. Nearly the
entire Windows engineering team was diverted to work on Windows XP SP2, a service pack
dedicated almost entirely to improving the security of the operating system. The Security
Development Lifecycle (SDL) was developed and applied to all Microsoft products, with
particular emphasis on Windows Vista as the first version of the operating system designed
from the ground up to be secure. SDL specifies strict guidelines and processes for secure
software development. Sophisticated tools have been developed to scan everything from
source code to system binaries to network protocols for common security vulnerabilities.
Every time a new security vulnerability is discovered, it is analyzed, and mitigations are devel-
oped to address that potential attack vector. Windows Vista has now been in the market for

xx	 Foreword

two years, and it is by far the most secure version of Windows. Some industry analysts have
pointed out that it is, in fact, the most secure general purpose operating system shipping
today.

The Windows team has continued to innovate over the past few years. Windows XP, Windows
Server 2003, Windows Server 2003 R2, Windows XP SP2, Windows Vista, Windows Server
2008, and Hyper-V are all major accomplishments and great successes—as well as great
additions to the Windows family of products.

Frankly, I can’t think of a more exciting and challenging topic. Nor can I think of a more
authoritative and well-written book. David, Mark, and Alex have done a thorough job of dis-
secting the Windows architecture and providing diagnostic tools for hands-on learning. I
hope you enjoy reading and learning about Windows as much as we all enjoy working on it.

Ben Fathi
Corporate Vice President, Windows Core Development

Microsoft Corporation

	 	 xxi

Acknowledgments
We dedicate this edition to Jim Allchin, our executive sponsor and champion before he
retired from Microsoft. Jim supported our book work on this and earlier editions and was
instrumental in bringing Mark Russinovich to Microsoft. In addition to shepherding Windows
Vista out the door, Jim also oversaw the delivery of Windows 2000, Windows XP, and
Windows Server 2003.

Each edition of this book has to acknowledge Dave Cutler, Senior Technical Fellow and the
original architect of Windows NT. Dave originally approved David Solomon’s source code
access and has been supportive of his work to explain the internals of Windows through his
training business as well as during the writing of the editions of this book.

We also thank three developers at Microsoft for contributing content that was incorporated
into this edition:

■■ Christian Allred, who wrote detailed descriptions on transactional NTFS (TxF) internals,
data structures, and behaviors

■■ Stone Cong, who wrote content and created diagrams about the Common Log File
System (CLFS)

■■ Adrian Marinescu, who updated his heap manager section in the memory manage-
ment chapter

This book wouldn’t contain the depth of technical detail or the level of accuracy it has with-
out the input, and support of key members of the Windows development team. We want to
thank the following people, who provided technical review and input to the book:

Dmitry Anipko	 Kwan Hyun	 Ravi Mumulla	 Jon Schwartz
Eugene Bak	 Mehmet Iyigun	 Adi Oltean	 Valerie See
Karlito Bonnevie	 Philippe Joubert	 Vince Orgovan	 Matt Setzer
Jon Cargille	 Kwan Hyun Kim	 Bernard Ourghanlian	 Andrey Shedel
Dean DeWhitt	 Kinshuman Kinshumann	 Alexey Pakhunov	 Neeraj Singh
Apurva Doshi	 Alex Kirshenbaum	 Milos Petrbok	 Vikram Singh
Joseph East	 Norbert Kusters	 Daniel Pravat	 Paul Sliwowicz
Tahsin Erdogan	 Jeff Lambert	 Ravi Pudipeddi	 John Stephens
Cenk Ergan	 Paul Leach	 Melur Raghuraman	 Deepu Thomas
Osman Ertugay	 Scott Lee	 Ramu Ramanathan	 J. R. Tipton
Tom Fout	 Mark Lloyd	 Vlad Sadovsky	 Davis Walker
Nar Ganapathy	 Karan Mehra	 Dragos Sambotin	 Brad Waters
Robin Giese	 Derek Moore	 Jamie Schwartz	 Bruce Worthington

xxii	 Acknowledgments

Thanks also to Daniel Pearson (who teaches Windows internals for Dave Solomon) for his
review and input.

Others might have contributed by answering questions in the hallway or cafeteria or by pro-
viding technical material—if we missed you, please forgive us!

The authors would like to thank Ilfak Guilfanov of Hex-Rays (www.hex-rays.com) for the IDA
Pro Advanced and Hex-Rays licenses for Alex Ionescu for his use in speeding his reverse
engineering of the Windows kernel. Alex chose not to have Windows source code access (as
did Mark Russinovich before he joined Microsoft) to research the information for his work on
this book, and these tools greatly facilitated his work. IDA’s features turn reverse engineer-
ing into a powerful tool for understanding Windows internals. Combined with the Hex-Rays
Decompiler, this analysis becomes even faster and more refined, as C code is directly pre-
sented instead of assembler, including all the right types.

Thanks also to Matt Ginzton of VMware, who arranged for Alex and David to receive VMware
Workstation to use in their research for the book. VMware Workstation was used instead of
Microsoft Virtual PC because of its support for 64-bit guests and multiple snapshots with
nonpersisent disks. (These features are now supported by Hyper-V, Microsoft’s new server
virtualization offering, but at the time of writing, this support was not available).

Thanks to Mike Vance of AMD for providing Dave Solomon’s AMD64 laptop for use in his
book research and live classes.

Finally, we want to thank the team at Microsoft Press who helped turn this book from idea
into reality:

■■ Ben Ryan (acquisitions editor at Microsoft Press) for shepherding another edition of this
great book

■■ Kathleen Atkins (project editor) and Devon Musgrave (developmental editor) for
launching and overseeing the project

■■ Andrea Fox (proofreader), Curtis Philips (project and production manager), and John
Pierce (project editor and copyeditor) for laboriously going through all our chapters to
tighten up text, find inconsistencies, and keep the manuscript to the high standards of
Microsoft Press

Alex Ionescu, Mark Russinovich, and David Solomon
May 2009

	 	 xxiii

Introduction
Windows Internals, Fifth Edition is intended for advanced computer professionals (both
developers and system administrators) who want to understand how the core components
of the Windows Vista and Windows Server 2008 operating systems work internally. With this
knowledge, developers can better comprehend the rationale behind design choices when
building applications specific to the Windows platform. Such knowledge can also help devel-
opers debug complex problems. System administrators can benefit from this information as
well, because understanding how the operating system works “under the covers” facilitates
understanding the performance behavior of the system and makes troubleshooting system
problems much easier when things go wrong. After reading this book, you should have a
better understanding of how Windows works and why it behaves as it does.

Structure of the Book
The first two chapters (“Concepts and Tools” and “System Architecture”) lay the foundation
with definitions and explanations of terms and concepts used throughout the rest of the
book. The next two chapters—“System Mechanisms” and “Management Mechanisms”—
describe key underlying mechanisms in the system. The next eight chapters explain the core
components of the operating system: processes, threads, and jobs; security; the I/O system;
storage management; memory management; the cache manager; file systems; and network-
ing. The last two chapters cover startup and shutdown process and crash dump analysis.

History of the Book
This is the fifth edition of a book that was originally called Inside Windows NT (Microsoft
Press, 1992), written by Helen Custer (prior to the initial release of Microsoft Windows
NT 3.1). Inside Windows NT was the first book ever published about Windows NT and pro-
vided key insights into the architecture and design of the system. Inside Windows NT, Second
Edition (Microsoft Press, 1998) was written by David Solomon. It updated the original book to
cover Windows NT 4.0 and had a greatly increased level of technical depth. Inside Windows
2000, Third Edition (Microsoft Press, 2000) was authored by David Solomon and Mark
Russinovich. It added many new topics, such as startup and shutdown, service internals, reg-
istry internals, file system drivers, and networking. It also covered kernel changes in Windows
2000, such as the Windows Driver Model (WDM), Plug and Play, power management,
Windows Management Instrumentation (WMI), encryption, the job object, and Terminal
Services. Windows Internals, Fourth Edition was the Windows XP and Windows Server 2003

xxiv	 Introduction

update and added more content focused on helping IT professionals make use of their
knowledge of Windows internals, such as using key tools from Windows Sysinternals (www.
microsoft.com/technet/sysinternals) and analyzing crash dumps.

Fifth Edition Changes
This latest edition has been updated to cover the kernel changes made in Windows Vista
and Windows Server 2008. Hands-on experiments have been updated to reflect changes
in tools, and newly added experiments use tools not available when the fourth edition was
written. Additionally, content has been added to cover mechanisms that were not previously
described, such as the image loader and user-mode debugging facility, and information
about previously covered subjects has been expanded as well.

Hands-On Experiments
Even without access to the Windows source code, you can glean much about Windows
internals from tools such as the kernel debugger and tools from Sysinternals and Winsider
Seminars & Solutions (www.winsiderss.com). When a tool can be used to expose or demon-
strate some aspect of the internal behavior of Windows, the steps for trying the tool yourself
are listed in “Experiment” boxes. These appear throughout the book, and we encourage you
to try these as you’re reading—seeing visible proof of how Windows works internally will
make much more of an impression on you than just reading about it will.

Topics Not Covered
Windows is a large and complex operating system. This book doesn’t cover everything rele-
vant to Windows internals but instead focuses on the base system components. For example,
this book doesn’t describe COM+, the Windows distributed object-oriented programming
infrastructure, or the .NET Framework, the foundation of managed code applications.

Because this is an internals book and not a user, programming, or system administration
book, it doesn’t describe how to use, program, or configure Windows.

A Warning and a Caveat
Because this book describes undocumented behavior of the internal architecture and opera-
tion of the Windows operating system (such as internal kernel structures and functions), this

	 Introduction	 xxv

content is subject to change between releases. (External interfaces, such as the Windows API,
are not subject to incompatible changes.)

By “subject to change,” we don’t necessarily mean that details described in this book will
change between releases, but you can’t count on them not changing. Any software that uses
these undocumented interfaces might not work on future releases of Windows. Even worse,
software that runs in kernel mode (such as device drivers) and uses these undocumented
interfaces might experience a system crash when running on a newer release of Windows.

Find Additional Content Online
As new or updated material becomes available that complements this book, it will be posted
online on the Microsoft Press Online Developer Tools Web site. The type of material you
might find includes updates to book content, articles, links to companion content, errata,
sample chapters, and more. This Web content is available at http://technet.microsoft.com/
en-us/sysinternals/bb963901 and is updated periodically.

Support
Every effort has been made to ensure the accuracy of this book. Should you run into any
problems or issues, please refer to the sources listed below.

From the Authors
This book isn’t perfect. No doubt it contains some inaccuracies, or possibly we’ve omitted
some topics we should have covered. If you find anything you think is incorrect, or if you
believe we should have included material that isn’t here, please feel free to send e-mail to
winint@solsem.com. Updates and corrections will be posted on the Web site http://technet.
microsoft.com/en-us/sysinternals/bb963901.aspx.

From Microsoft Press
Microsoft Press provides corrections for books through the World Wide Web at the following
address:

www.microsoft.com/mspress/support

xxvi	 Introduction

Questions and Comments
In addition to sending feedback directly to the authors, if you have comments, questions, or
ideas regarding the presentation or use of this book, you can send them to Microsoft using
either of the following methods:

Postal mail:

Microsoft Press
Attn: Windows Internals Editor
One Microsoft Way
Redmond, WA 98052-6399

E-mail:

mspinput@microsoft.com

Please note that product support isn’t offered through these mail addresses. For support
information, visit Microsoft’s Web site at http://support.microsoft.com/.

	 	 335

Chapter 5

Processes, Threads, and Jobs
In this chapter, we’ll explain the data structures and algorithms that deal with processes,
threads, and jobs in the Windows operating system. The first section focuses on the internal
structures that make up a process. The second section outlines the steps involved in creat-
ing a process (and its initial thread). The internals of threads and thread scheduling are then
described. The chapter concludes with a description of the job object.

Where relevant performance counters or kernel variables exist, they are mentioned. Although
this book isn’t a Windows programming book, the pertinent process, thread, and job
Windows functions are listed so that you can pursue additional information on their use.

Because processes and threads touch so many components in Windows, a number of terms
and data structures (such as working sets, objects and handles, system memory heaps, and
so on) are referred to in this chapter but are explained in detail elsewhere in the book. To
fully understand this chapter, you need to be familiar with the terms and concepts explained
in Chapters 1 and 2, such as the difference between a process and a thread, the Windows
virtual address space layout, and the difference between user mode and kernel mode.

Process Internals
This section describes the key Windows process data structures. Also listed are key kernel
variables, performance counters, and functions and tools that relate to processes.

Data Structures
Each Windows process is represented by an executive process (EPROCESS) block. Besides
containing many attributes relating to a process, an EPROCESS block contains and points to a
number of other related data structures. For example, each process has one or more threads
represented by executive thread (ETHREAD) blocks. (Thread data structures are explained in
the section “Thread Internals” later in this chapter.) The EPROCESS block and its related data
structures exist in system address space, with the exception of the process environment block
(PEB), which exists in the process address space (because it contains information that needs
to be accessed by user-mode code).

In addition to the EPROCESS block and the PEB, the Windows subsystem process (Csrss)
maintains a parallel structure for each process that is executing a Windows program. Finally,

336	 Windows Internals, Fifth Edition

the kernel-mode part of the Windows subsystem (Win32k.sys) will also maintain a per-pro-
cess data structure that is created the first time a thread calls a Windows USER or GDI func-
tion that is implemented in kernel mode.

Figure 5-1 is a simplified diagram of the process and thread data structures. Each data struc-
ture shown in the figure is described in detail in this chapter.

Thread
environment

block

Process
environment

block

Process
block

Windows process block

Handle table

Thread
block

System address space

Process address space

…

Figure 5-1 Data structures associated with processes and threads

First let’s focus on the process block. (We’ll get to the thread block in the section “Thread
Internals” later in the chapter.) Figure 5-2 shows the key fields in an EPROCESS block.

	 Chapter 5  Processes, Threads, and Jobs	 337

Kernel process block (or PCB)

Process ID

Parent process ID

Exit status

Create and exit times

Active process link

Primary access token

EPROCESS

Handle table

Quota block

Memory management information

Exception port

Debugger port

Device map

Process environment block

Image filename

Image base address

Process priority class

Job object

Windows process block

PsActiveProcessHead

Figure 5-2  Structure of an executive process block

EXPERIMENT: Displaying the Format of an EPROCESS Block
For a list of the fields that make up an EPROCESS block and their offsets in hexadecimal,
type dt _eprocess in the kernel debugger. (See Chapter 1 for more information on the
kernel debugger and how to perform kernel debugging on the local system.) The out-
put (truncated for the sake of space) on a 32-bit system looks like this:

lkd> dt _eprocess

nt!_EPROCESS

 +0x000 Pcb : _KPROCESS

 +0x080 ProcessLock : _EX_PUSH_LOCK

 +0x088 CreateTime : _LARGE_INTEGER

 +0x090 ExitTime : _LARGE_INTEGER

 +0x098 RundownProtect : _EX_RUNDOWN_REF

 +0x09c UniqueProcessId : Ptr32 Void

 +0x0a0 ActiveProcessLinks : _LIST_ENTRY

 +0x0a8 QuotaUsage : [3] Uint4B

 +0x0b4 QuotaPeak : [3] Uint4B

 +0x0c0 CommitCharge : Uint4B

 +0x0c4 PeakVirtualSize : Uint4B

 +0x0c8 VirtualSize : Uint4B

 +0x0cc SessionProcessLinks : _LIST_ENTRY

 +0x0d4 DebugPort : Ptr32 Void

 +0x0d8 ExceptionPortData : Ptr32 Void

338	 Windows Internals, Fifth Edition

 +0x0d8 ExceptionPortValue : Uint4B

 +0x0d8 ExceptionPortState : Pos 0, 3 Bits

 +0x0dc ObjectTable : Ptr32 _HANDLE_TABLE

 +0x0e0 Token : _EX_FAST_REF

 +0x0e4 WorkingSetPage : Uint4B

 +0x0e8 AddressCreationLock : _EX_PUSH_LOCK

 +0x0ec RotateInProgress : Ptr32 _ETHREAD

 +0x0f0 ForkInProgress : Ptr32 _ETHREAD

 +0x0f4 HardwareTrigger : Uint4B

 +0x0f8 PhysicalVadRoot : Ptr32 _MM_AVL_TABLE

 +0x0fc CloneRoot : Ptr32 Void

 +0x100 NumberOfPrivatePages : Uint4B

 +0x104 NumberOfLockedPages : Uint4B

 +0x108 Win32Process : Ptr32 Void

 +0x10c Job : Ptr32 _EJOB

 +0x110 SectionObject : Ptr32 Void

 +0x114 SectionBaseAddress : Ptr32 Void

 +0x118 QuotaBlock : Ptr32 _EPROCESS_QUOTA_BLOCK

Note that the first field (Pcb) is actually a substructure, the kernel process block
(KPROCESS), which is where scheduling-related information is stored. To display the
format of the kernel process block, type dt _kprocess:

lkd> dt _kprocess

nt!_KPROCESS

 +0x000 Header : _DISPATCHER_HEADER

 +0x010 ProfileListHead : _LIST_ENTRY

 +0x018 DirectoryTableBase : Uint4B

 +0x01c Unused0 : Uint4B

 +0x020 LdtDescriptor : _KGDTENTRY

 +0x028 Int21Descriptor : _KIDTENTRY

 +0x030 IopmOffset : Uint2B

 +0x032 Iopl : UChar

 +0x033 Unused : UChar

 +0x034 ActiveProcessors : Uint4B

 +0x038 KernelTime : Uint4B

 +0x03c UserTime : Uint4B

 +0x040 ReadyListHead : _LIST_ENTRY

 +0x048 SwapListEntry : _SINGLE_LIST_ENTRY

 +0x04c VdmTrapcHandler : Ptr32 Void

 +0x050 ThreadListHead : _LIST_ENTRY

 +0x058 ProcessLock : Uint4B

 +0x05c Affinity : Uint4B

 +0x060 AutoAlignment : Pos 0, 1 Bit

 +0x060 DisableBoost : Pos 1, 1 Bit

 +0x060 DisableQuantum : Pos 2, 1 Bit

 +0x060 ReservedFlags : Pos 3, 29 Bits

 +0x060 ProcessFlags : Int4B

 +0x064 BasePriority : Char

 +0x065 QuantumReset : Char

 +0x066 State : UChar

 +0x067 ThreadSeed : UChar

 +0x068 PowerState : UChar

 +0x069 IdealNode : UChar

	 Chapter 5  Processes, Threads, and Jobs	 339

 +0x06a Visited : UChar

 +0x06b Flags : _KEXECUTE_OPTIONS

 +0x06b ExecuteOptions : UChar

 +0x06c StackCount : Uint4B

 +0x070 ProcessListEntry : _LIST_ENTRY

 +0x078 CycleTime : Uint8B

An alternative way to see the KPROCESS (and other substructures in the EPROCESS) is
to use the recursion (–r) switch of the dt command. For example, typing dt _eprocess
–r1 will recurse and display all substructures one level deep.

The dt command shows the format of a process block, not its contents. To show an
instance of an actual process, you can specify the address of an EPROCESS structure as
an argument to the dt command. You can get the address of all the EPROCESS blocks
in the system by using the !process 0 0 command. An annotated example of the output
from this command is included later in this chapter.

Table 5-1 explains some of the fields in the preceding experiment in more detail and includes
references to other places in the book where you can find more information about them. As
we’ve said before and will no doubt say again, processes and threads are such integral parts
of Windows that it’s impossible to talk about them without referring to many other parts of
the system. To keep the length of this chapter manageable, however, we’ve covered those
related subjects (such as memory management, security, objects, and handles) elsewhere.

Table 5-1  Contents of the EPROCESS Block
Element Purpose Additional Reference
Kernel process (KPROCESS)
block

Common dispatcher object header,
pointer to the process page directory,
list of kernel thread (KTHREAD) blocks
belonging to the process, default base
priority, affinity mask, and total kernel
and user time and CPU clock cycles for
the threads in the process.

Thread scheduling
(Chapter 5)

Process identification Unique process ID, creating process ID,
name of image being run, window sta-
tion process is running on.

Quota block Limits on processor usage, nonpaged
pool, paged pool, and page file usage
plus current and peak process non-
paged and paged pool usage. (Note:
Several processes can share this struc-
ture: all the system processes in session
0 point to a single systemwide quota
block; all other processes in interactive
sessions share a single quota block.)

340	 Windows Internals, Fifth Edition

Element Purpose Additional Reference
Virtual address descriptors
(VADs)

Series of data structures that describes
the status of the portions of the address
space that exist in the process.

Virtual address descrip-
tors (Chapter 9)

Working set information Pointer to working set list (MMWSL
structure); current, peak, minimum, and
maximum working set size; last trim
time; page fault count; memory priority;
outswap flags; page fault history.

Working sets
(Chapter 9)

Virtual memory information Current and peak virtual size, page file
usage, hardware page table entry for
process page directory.

Chapter 9

Exception legacy local proce-
dure call (LPC) port

Interprocess communication channel
to which the process manager sends
a message when one of the process’s
threads causes an exception.

Exception dispatching
(Chapter 3)

Debugging object Executive object through which the
user-mode debugging infrastructure
sends notifications when one of the
process’s threads causes a debug event.

User-mode debugging
(Chapter 3)

Access token (TOKEN) Executive object describing the security
profile of this process.

Chapter 6

Handle table Address of per-process handle table. Object handles and the
process handle table
(Chapter 3)

Device map Address of object directory to resolve
device name references in (supports
multiple users).

Object names
(Chapter 3)

Process environment block
(PEB)

Image information (base address, ver-
sion numbers, module list), process
heap information, and thread-local stor-
age utilization. (Note: The pointers to
the process heaps start at the first byte
after the PEB.)

Chapter 5

Windows subsystem process
block (W32PROCESS)

Process details needed by the kernel-
mode component of the Windows sub-
system.

The kernel process (KPROCESS) block, which is part of the EPROCESS block, and the process
environment block (PEB), which is pointed to by the EPROCESS block, contain additional
details about the process object. The KPROCESS block (which is sometimes called the PCB or
process control block) is illustrated in Figure 5-3. It contains the basic information that the
Windows kernel needs to schedule the threads inside a process. (Page directories are covered
in Chapter 9, and kernel thread blocks are described in more detail later in this chapter.)

	 Chapter 5  Processes, Threads, and Jobs	 341

The PEB, which lives in the user process address space, contains information needed by the
image loader, the heap manager, and other Windows system DLLs that need to access it from
user mode. (The EPROCESS and KPROCESS blocks are accessible only from kernel mode.) The
basic structure of the PEB is illustrated in Figure 5-4 and is explained in more detail later in
this chapter.

Dispatcher header

Kernel time

Process spinlock

Processor affinity

Resident kernel stack count

Process base priority

Default thread quantum

Process state

Thread seed

Disable boost flag

User time

Inswap/Outswap list entry

Process page directory

KTHREAD …

Figure 5-3  Structure of the executive process block

Image base address

Module list

Thread-local storage data

Code page data

Critical section timeout

Number of heaps

Heap size information

GDI shared handle table

Image version information

Image process affinity mask

Process heap

Operating system version number information

Figure 5-4  Fields of the process environment block

342	 Windows Internals, Fifth Edition

EXPERIMENT: Examining the PEB
You can dump the PEB structure with the !peb command in the kernel debugger. To get
the address of the PEB, use the !process command as follows:

lkd> !process

PROCESS 8575f030 SessionId: 1 Cid: 08d0 Peb: 7ffd9000 ParentCid: 0360

 DirBase: 1a81b000 ObjectTable: e12bd418 HandleCount: 66.

 Image: windbg.exe

Then specify that address to the !peb command as follows:

lkd> !peb 7ffd9000

PEB at 7ffd9000

 InheritedAddressSpace: No

 ReadImageFileExecOptions: No

 BeingDebugged: No

 ImageBaseAddress: 002a0000

 Ldr 77895d00

 Ldr.Initialized: Yes

 Ldr.InInitializationOrderModuleList: 00151c38 . 00191558

 Ldr.InLoadOrderModuleList: 00151bb8 . 00191548

 Ldr.InMemoryOrderModuleList: 00151bc0 . 00191550

 Base TimeStamp Module

 2a0000 4678a41e Jun 19 23:50:54 2007 C:\Program Files\Debugging Tools for

 Windows\windbg.exe

 777d0000 4549bdc9 Nov 02 05:43:37 2006 C:\Windows\system32\Ntdll.dll

 764c0000 4549bd80 Nov 02 05:42:24 2006 C:\Windows\system32\kernel32.dll

 SubSystemData: 00000000

 ProcessHeap: 00150000

 ProcessParameters: 001512e0

 WindowTitle: 'C:\Users\Alex Ionescu\Desktop\WinDbg.lnk'

 ImageFile: 'C:\Program Files\Debugging Tools for Windows\windbg.exe'

 CommandLine: '"C:\Program Files\Debugging Tools for Windows\windbg.exe" '

 DllPath: 'C:\Program Files\Debugging Tools for Windows;C:\Windows\

 system32;C:\Windows\system;C:\Windows;.;C:\Windows\system32;C:\Windows;

 C:\Windows\System32\Wbem;C:\Program Files\Common Files\Roxio Shared\

 DLLShared\;C:\Program Files\Common Files\Roxio Shared\DLLShared\;C:\Program

 Files\Common Files\Roxio Shared\9.0\DLLShared\;c:\sysint;C:\Program Files\

 QuickTime\QTSystem\'

 Environment: 001850a8

 ALLUSERSPROFILE=C:\ProgramData

 APPDATA=C:\Users\Alex Ionescu\AppData\Roaming

 .

 .

 .

Kernel Variables
A few key kernel global variables that relate to processes are listed in Table 5-2. These vari-
ables are referred to later in the chapter, when the steps in creating a process are described.

	 Chapter 5  Processes, Threads, and Jobs	 343

Table 5-2  Process-Related Kernel Variables
Element Purpose Additional Reference
PsActiveProcessHead Doubly linked list List head of process blocks

PsIdleProcess Pointer to EPROCESS Idle process block

PsInitialSystemProcess Pointer to EPROCESS Pointer to the process block
of the initial system process
that contains the system
threads

PspCreateProcessNotifyRoutine Array of executive call-
back objects

Array of callback objects
describing the routines to be
called on process creation
and deletion (maximum of
eight)

PspCreateProcessNotifyRoutineCount 32-bit integer Count of registered process
notification routines

PspCreateProcessNotifyRoutineCountEx 32-bit integer Count of registered ex-
tended process notification
routines

PspLoadImageNotifyRoutine Array of executive call-
back objects

Array of callback objects
describing the routines to be
called on image load (maxi-
mum of eight)

PspLoadImageNotifyRoutineCount 32-bit integer Count of registered image-
load notification routines

PspNotifyEnableMask 32-bit integer Mask for quickly checking
whether any extended or
standard notification rou-
tines are enabled

PspCidTable Pointer to HANDLE_
TABLE

Handle table for process and
thread client IDs

Performance Counters
Windows maintains a number of counters with which you can track the processes running
on your system; you can retrieve these counters programmatically or view them with the
Performance tool. Table 5-3 lists the performance counters relevant to processes.

Table 5-3  Process-Related Performance Counters
Object: Counter Function
Process: % Privileged Time Describes the percentage of time that the threads in the process

have run in kernel mode during a specified interval.

Process: % Processor Time Describes the percentage of CPU time that the threads in the
process have used during a specified interval. This count is the
sum of % Privileged Time and % User Time.

344	 Windows Internals, Fifth Edition

Object: Counter Function
Process: % User Time Describes the percentage of time that the threads in the process

have run in user mode during a specified interval.

Process: Elapsed Time Describes the total elapsed time in seconds since this process
was created.

Process: ID Process Returns the process ID. This ID applies only while the process ex-
ists because process IDs are reused.

Process: Creating Process ID Returns the process ID of the creating process. This value isn’t
updated if the creating process exits.

Process: Thread Count Returns the number of threads in the process.

Process: Handle Count Returns the number of handles open in the process.

Relevant Functions
For reference purposes, some of the Windows functions that apply to processes are
described in Table 5-4. For further information, consult the Windows API documentation in
the MSDN Library.

Table 5-4  Process-Related Functions
Function Description
CreateProcess Creates a new process and thread using the caller’s security

identification

CreateProcessAsUser Creates a new process and thread with the specified alternate
security token

CreateProcessWithLogonW Creates a new process and thread to run under the credentials
of the specified username and password

CreateProcessWithTokenW Creates a new process and thread with the specified alternate
security token, with additional options such as allowing the user
profile to be loaded

OpenProcess Returns a handle to the specified process object

ExitProcess Ends a process, and notifies all attached DLLs

TerminateProcess Ends a process without notifying the DLLs

FlushInstructionCache Empties the specified process’s instruction cache

FlushProcessWriteBuffers Empties the specified process’s write queue

GetProcessTimes Obtains a process’s timing information, describing how much
time the threads inside the process spent in user and kernel
mode

QueryProcessCycleTimeCounter Obtains a process’s CPU timing information, describing how
many clock cycles the threads inside the process have spent in
total

Query/
SetProcessAffinityUpdateMode

Defines whether the process’s affinity is automatically updated if
new processors are added to the running system

	 Chapter 5  Processes, Threads, and Jobs	 345

Function Description
Get/SetProcessDEPPolicy Returns or sets the DEP (Data Execution Protection) policy for

the process

GetExitCodeProcess Returns the exit code for a process, indicating how and why the
process shut down

GetCommandLine Returns a pointer to the command-line string passed to the cur-
rent process

QueryFullProcessImageName Returns the full name of the executable image associated with
the process

GetCurrentProcess Returns a pseudo handle for the current process

GetCurrentProcessId Returns the ID of the current process

GetProcessVersion Returns the major and minor versions of the Windows version
on which the specified process expects to run

GetStartupInfo Returns the contents of the STARTUPINFO structure specified
during CreateProcess

GetEnvironmentStrings Returns the address of the environment block

Get/SetEnvironmentVariable Returns or sets a specific environment variable

Get/
SetProcessShutdownParameters

Defines the shutdown priority and number of retries for the cur-
rent process

SetProcessDPIAware Specifies whether the process is aware of dots per inch (DPI)
settings

GetGuiResources Returns a count of User and GDI handles

EXPERIMENT: Using the Kernel Debugger !process Command
The kernel debugger !process command displays a subset of the information in an
EPROCESS block. This output is arranged in two parts for each process. First you see
the information about the process, as shown here (when you don’t specify a process
address or ID, !process lists information for the active process on the current CPU):

lkd> !process

PROCESS 85857160 SessionId: 1 Cid: 0bcc Peb: 7ffd9000 ParentCid: 090c

 DirBase: b45b0820 ObjectTable: b94ffda0 HandleCount: 99.

 Image: windbg.exe

 VadRoot 85a1c8e8 Vads 97 Clone 0 Private 5919. Modified 153. Locked 1.

 DeviceMap 9d32ee50

 Token ebaa1938

 ElapsedTime 00:48:44.125

 UserTime 00:00:00.000

 KernelTime 00:00:00.000

 QuotaPoolUsage[PagedPool] 166784

 QuotaPoolUsage[NonPagedPool] 4776

 Working Set Sizes (now,min,max) (8938, 50, 345) (35752KB, 200KB, 1380KB)

 PeakWorkingSetSize 8938

 VirtualSize 106 Mb

 PeakVirtualSize 108 Mb

346	 Windows Internals, Fifth Edition

 PageFaultCount 37066

 MemoryPriority BACKGROUND

 BasePriority 8

 CommitCharge 6242

After the basic process output comes a list of the threads in the process. That output is
explained in the “Experiment: Using the Kernel Debugger !thread Command” section
later in the chapter. Other commands that display process information include !handle,
which dumps the process handle table (which is described in more detail in the section
“Object Handles and the Process Handle Table” in Chapter 3). Process and thread secu-
rity structures are described in Chapter 6.

Protected Processes
In the Windows security model, any process running with a token containing the debug
privilege (such as an administrator’s account) can request any access right that it desires to
any other process running on the machine—for example, it can read and write arbitrary
process memory, inject code, suspend and resume threads, and query information on other
processes. Tools like Process Explorer and Task Manager need and request these access rights
to provide their functionality to users.

This logical behavior (which helps ensure that administrators will always have full control of
the running code on the system) clashes with the system behavior for digital rights manage-
ment requirements imposed by the media industry on computer operating systems that
need to support playback of advanced, high-quality digital content such as BluRay and
HD-DVD media. To support reliable and protected playback of such content, Windows uses
protected processes. These processes exist alongside normal Windows processes, but they
add significant constraints to the access rights that other processes on the system (even when
running with administrative privileges) can request.

Protected processes can be created by any application; however, the operating system will
only allow a process to be protected if the image file has been digitally signed with a spe-
cial Windows Media Certificate. The Protected Media Path (PMP) in Windows Vista makes
use of protected processes to provide protection for high-value media, and developers of
applications such as DVD players can make use of protected processes by using the Media
Foundation API.

The Audio Device Graph process (Audiodg.exe) is a protected process, since protected
music content may be decoded through it. Similarly, the Windows Error Reporting (WER;

	 Chapter 5  Processes, Threads, and Jobs	 347

see Chapter 3 for more information) client process (Werfault.exe) can also run protected
because it needs to have access to protected processes in case one of them crashes. Finally,
the System process itself is protected because some of the decryption information is gener-
ated by the Ksecdd.sys driver and stored in its user-mode memory. The System process is
also protected to protect the integrity of all kernel handles (since the System process’s handle
table contains all the kernel handles on the system).

At the kernel level, support for protected processes is twofold: first, the bulk of process cre-
ation occurs in kernel mode to avoid injection attacks. (The flow for both protected and stan-
dard process creation is described in detail in the next section.) Second, protected processes
have a special bit set in their EPROCESS structure that modifies the behavior of security-
related routines in the process manager to deny certain access rights that would normally be
granted to administrators. Table 5-5 indicates access rights that are limited or denied.

Table 5-5  Process Access Rights Denied for Protected Processes
Object: Access Mask Function
Standard: READ_CONTROL Prevents the protected process’s access control list

(ACL) from being read.

Standard: WRITE_DAC, WRITE_OWNER Prevents access to the protected process’s access
control list or modifying its owner (which would grant
the former).

Process: PROCESS_ALL_ACCESS Prevents full access to the protected process.

Process: PROCESS_CREATE_PROCESS Prevents creation of a child process of a protected
process.

Process: PROCESS_CREATE_THREAD Prevents creation of a thread inside a protected
process.

Process: PROCESS_DUP_HANDLE Prevents duplication of a handle owned by the
protected process.

Process: PROCESS_QUERY_INFORMATION Prevents querying all information on a protected
process. However, a new access right was added,
PROCESS_QUERY_LIMITED_INFORMATION, that grants
limited access to information on the process.

Process: PROCESS_SET_QUOTA Prevents setting memory or processor-usage limits on a
protected process.

Process: PROCESS_SET_INFORMATION Prevents modification of process settings for a
protected process.

Process: PROCESS_VM_OPERATION,
PROCESS_VM_READ, PROCESS_VM_WRITE

Prevents accessing the memory of a protected process.

Certain access rights are also disabled for threads running inside protected processes; we will
look at those access rights later in this chapter in the section “Thread Internals.”

Because Process Explorer uses standard user-mode Windows APIs to query information on
process internals, it is unable to perform certain operations on such processes. On the other

348	 Windows Internals, Fifth Edition

hand, a tool like WinDbg in kernel debugging mode, which uses kernel-mode infrastructure
to obtain this information, will be able to display complete information. See the experiment
in the thread internals section on how Process Explorer behaves when confronted with a pro-
tected process such as Audiodg.exe.

Note  As mentioned in Chapter 1, to perform local kernel debugging you must boot in
debugging mode (enabled by using “bcdedit /debug on” or by using the Msconfig advanced
boot options). This protects against debugger-based attacks on protected processes and the
Protected Media Path (PMP). When booted in debugging mode, high-definition content play-
back will not work; for example, attempting to play MPEG2 media such as a DVD will result in an
access violation inside the media player (this is by design).

Limiting these access rights reliably allows the kernel to sandbox a protected process from
user-mode access. On the other hand, because a protected process is indicated by a flag in
the EPROCESS block, an administrator can still load a kernel-mode driver that disables this
bit. However, this would be a violation of the PMP model and considered malicious, and
such a driver would likely eventually be blocked from loading on a 64-bit system because
the kernel-mode code-signing policy prohibits the digital signing of malicious code. Even
on 32-bit systems, the driver has to be recognized by PMP policy or else the playback will
be halted. This policy is implemented by Microsoft and not by any kernel detection. This
block would require manual action from Microsoft to identify the signature as malicious and
update the kernel.

Flow of CreateProcess
So far in this chapter, you’ve seen the structures that are part of a process and the API func-
tions with which you (and the operating system) can manipulate processes. You’ve also found
out how you can use tools to view how processes interact with your system. But how did
those processes come into being, and how do they exit once they’ve fulfilled their purpose?
In the following sections, you’ll discover how a Windows process comes to life.

A Windows subsystem process is created when an application calls one of the process cre-
ation functions, such as CreateProcess, CreateProcessAsUser, CreateProcessWithTokenW, or
CreateProcessWithLogonW. Creating a Windows process consists of several stages carried out
in three parts of the operating system: the Windows client-side library Kernel32.dll (in the
case of the CreateProcessAsUser, CreateProcessWithTokenW, and CreateProcessWithLogonW
routines, part of the work is first done in Advapi32.dll), the Windows executive, and the
Windows subsystem process (Csrss).

	 Chapter 5  Processes, Threads, and Jobs	 349

Because of the multiple environment subsystem architecture of Windows, creating an execu-
tive process object (which other subsystems can use) is separated from the work involved in
creating a Windows subsystem process. So, although the following description of the flow
of the Windows CreateProcess function is complicated, keep in mind that part of the work
is specific to the semantics added by the Windows subsystem as opposed to the core work
needed to create an executive process object.

The following list summarizes the main stages of creating a process with the Windows
CreateProcess function. The operations performed in each stage are described in detail in the
subsequent sections. Some of these operations may be performed by CreateProcess itself (or
other helper routines in user mode), while others will be performed by NtCreateUserProcess
or one of its helper routines in kernel mode. In our detailed analysis to follow, we will differ-
entiate between the two at each step required.

Note  Many steps of CreateProcess are related to the setup of the process virtual address space
and therefore refer to many memory management terms and structures that are defined in
Chapter 9.

	 1.	 Validate parameters; convert Windows subsystem flags and options to their native
counterparts; parse, validate, and convert the attribute list to its native counterpart.

	 2.	 Open the image file (.exe) to be executed inside the process.

	 3.	 Create the Windows executive process object.

	 4.	 Create the initial thread (stack, context, and Windows executive thread object).

	 5.	 Perform post-creation, Windows-subsystem-specific process initialization.

	 6.	 Start execution of the initial thread (unless the CREATE_ SUSPENDED flag was specified).

	 7.	 In the context of the new process and thread, complete the initialization of the address
space (such as load required DLLs) and begin execution of the program.

Figure 5-5 shows an overview of the stages Windows follows to create a process.

350	 Windows Internals, Fifth Edition

Open EXE and
create section

object

Set up for new
process and

thread

Final
process/image
initialization

Create
Windows

process object

Create
Windows

thread object

Perform Windows-
subsystem−specific
process initialization

Start execution
of the initial

thread

Return
to caller!

Start execution
at entry point

to image

Creating process

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Windows subsystem

New process

Stage 7

Convert and validate
parameters and

flags

Stage 6

Figure 5-5  The main stages of process creation

Stage 1: Converting and Validating Parameters and Flags
Before opening the executable image to run, CreateProcess performs the following steps:

■■ In CreateProcess, the priority class for the new process is specified as independent bits
in the CreationFlags parameter. Thus, you can specify more than one priority class for
a single CreateProcess call. Windows resolves the question of which priority class to
assign to the process by choosing the lowest-priority class set.

■■ If no priority class is specified for the new process, the priority class defaults to Normal
unless the priority class of the process that created it is Idle or Below Normal, in which
case the priority class of the new process will have the same priority as the creating
class.

	 Chapter 5  Processes, Threads, and Jobs	 351

■■ If a Real-time priority class is specified for the new process and the process’s caller
doesn’t have the Increase Scheduling Priority privilege, the High priority class is used
instead. In other words, CreateProcess doesn’t fail just because the caller has insufficient
privileges to create the process in the Real-time priority class; the new process just
won’t have as high a priority as Real-time.

■■ All windows are associated with desktops, the graphical representation of a workspace.
If no desktop is specified in CreateProcess, the process is associated with the caller’s
current desktop.

■■ If the process is part of a job object, but the creation flags requested a separate virtual
DOS machine (VDM), the flag is ignored.

■■ If the caller is sending a handle to a monitor as an output handle instead of a console
handle, standard handle flags are ignored.

■■ If the creation flags specify that the process will be debugged, Kernel32 initiates a con-
nection to the native debugging code in Ntdll.dll by calling DbgUiConnectToDbg and
gets a handle to the debug object from the thread environment block (TEB) once the
function returns.

■■ Kernel32.dll sets the default hard error mode if the creation flags specified one.

■■ The user-specified attribute list is converted from Windows subsystem format to native
format, and internal attributes are added to it.

Note  The attribute list passed on a CreateProcess call permits passing back to the caller infor-
mation beyond a simple status code, such as the TEB address of the initial thread or information
on the image section. This is necessary for protected processes since the parent cannot query
this information after the child is created.

Once these steps are completed, CreateProcess will perform the initial call to NtCreateUser
Process to attempt creation of the process. Because Kernel32.dll has no idea at this point
whether the application image name is a real Windows application, or if it might be a POSIX,
16-bit, or DOS application, the call may fail, at which point CreateProcess will look at the
error reason and attempt to correct the situation.

Stage 2: Opening the Image to Be Executed
As illustrated in Figure 5-6, the first stage in NtCreateUserProcess is to find the appropriate
Windows image that will run the executable file specified by the caller and to create a sec-
tion object to later map it into the address space of the new process. If the call failed for
any reason, it will return to CreateProcess with a failure state (see Table 5-6) that will cause
CreateProcess to attempt execution again.

If the executable file specified is a Windows .exe, NtCreateUserProcess will try to open the file
and create a section object for it. The object isn’t mapped into memory yet, but it is opened.

352	 Windows Internals, Fifth Edition

Just because a section object has been successfully created doesn’t mean that the file is a
valid Windows image, however; it could be a DLL or a POSIX executable. If the file is a POSIX
executable, the image to be run changes to Posix.exe, and CreateProcess restarts from the
beginning of Stage 1. If the file is a DLL, CreateProcess fails.

Now that NtCreateUserProcess has found a valid Windows executable image, as part of the
process creation code described in Stage 3 it looks in the registry under HKLM\SOFTWARE\
Microsoft\Windows NT\CurrentVersion\Image File Execution Options to see whether a sub-
key with the file name and extension of the executable image (but without the directory
and path information—for example, Image.exe) exists there. If it does, PspAllocateProcess
looks for a value named Debugger for that key. If this value is present, the image to be run
becomes the string in that value and CreateProcess restarts at Stage 1.

Tip  You can take advantage of this process creation behavior and debug the startup code of
Windows services processes before they start rather than attach the debugger after starting a
service, which doesn’t allow you to debug the startup code.

On the other hand, if the image is not a Windows .exe (for example, if it’s an MS-DOS, Win16,
or a POSIX application), CreateProcess goes through a series of steps to find a Windows sup-
port image to run it. This process is necessary because non-Windows applications aren’t run
directly—Windows instead uses one of a few special support images that in turn are respon-
sible for actually running the non-Windows program. For example, if you attempt to run a
POSIX application, CreateProcess identifies it as such and changes the image to be run to the
Windows executable file Posix.exe. If you attempt to run an MS-DOS or a Win16 executable,
the image to be run becomes the Windows executable Ntvdm.exe. In short, you can’t directly
create a process that is not a Windows process. If Windows can’t find a way to resolve the
activated image as a Windows process (as shown in Table 5-6), CreateProcess fails.

Run Cmd.exe Run Ntvdm.exe Use .exe directly

What kind of
application is it?

Win16 Windows
MS-DOS .bat

or .cmd

OS/2 1.x POSIX
MS-DOS .exe,
.com, or .pif

Run Os2.exe Run Posix.exe Run Ntvdm.exe

Figure 5-6  Choosing a Windows image to activate

	 Chapter 5  Processes, Threads, and Jobs	 353

Table 5-6  Decision Tree for Stage 1 of CreateProcess

If the Image . . . Create State Code
This Image
Will Run . . .

. . . and This
Will Happen

Is a POSIX executable file PsCreateSuccess Posix.exe CreateProcess
restarts Stage 1.

Is an MS-DOS application
with an .exe, a .com, or a
.pif extension

PsCreateFailOnSectionCreate Ntvdm.exe CreateProcess
restarts Stage 1.

Is a Win16 application PsCreateFailOnSectionCreate Ntvdm.exe CreateProcess
restarts Stage 1.

Is a Win64 application on
a 32-bit system (or a PPC,
MIPS, or Alpha Binary)

PsCreateFailMachineMismatch N/A CreateProcess will
fail.

Has a Debugger key with
another image name

PsCreateFailExeName Name specified
in the Debugger
key

CreateProcess
restarts Stage 1.

Is an invalid or damaged
Windows EXE

PsCreateFailExeFormat N/A CreateProcess will
fail.

Cannot be opened PsCreateFailOnFileOpen N/A CreateProcess will
fail.

Is a command procedure
(application with a .bat or
a .cmd extension)

PsCreateFailOnSectionCreate Cmd.exe CreateProcess
restarts Stage 1.

Specifically, the decision tree that CreateProcess goes through to run an image is as follows:

■■ If the image is an MS-DOS application with an .exe, a .com, or a .pif extension, a mes-
sage is sent to the Windows subsystem to check whether an MS-DOS support process
(Ntvdm.exe, specified in the registry value HKLM\SYSTEM\CurrentControlSet\Control\
WOW\cmdline) has already been created for this session. If a support process has been
created, it is used to run the MS-DOS application. (The Windows subsystem sends
the message to the VDM [Virtual DOS Machine] process to run the new image.) Then
CreateProcess returns. If a support process hasn’t been created, the image to be run
changes to Ntvdm.exe and CreateProcess restarts at Stage 1.

■■ If the file to run has a .bat or a .cmd extension, the image to be run becomes Cmd.exe,
the Windows command prompt, and CreateProcess restarts at Stage 1. (The name of
the batch file is passed as the first parameter to Cmd.exe.)

■■ If the image is a Win16 (Windows 3.1) executable, CreateProcess must decide whether
a new VDM process must be created to run it or whether it should use the default
sessionwide shared VDM process (which might not yet have been created). The
CreateProcess flags CREATE_SEPARATE_WOW_VDM and CREATE_SHARED_WOW_VDM
control this decision. If these flags aren’t specified, the registry value HKLM\SYSTEM\
CurrentControlSet\Control\WOW\DefaultSeparateVDM dictates the default behavior.

354	 Windows Internals, Fifth Edition

If the application is to be run in a separate VDM, the image to be run changes to
the value of HKLM\SYSTEM\CurrentControlSet\Control\WOW\wowcmdline and
CreateProcess restarts at Stage 1. Otherwise, the Windows subsystem sends a mes-
sage to see whether the shared VDM process exists and can be used. (If the VDM
process is running on a different desktop or isn’t running under the same security as
the caller, it can’t be used and a new VDM process must be created.) If a shared VDM
process can be used, the Windows subsystem sends a message to it to run the new
image and CreateProcess returns. If the VDM process hasn’t yet been created (or if it
exists but can’t be used), the image to be run changes to the VDM support image and
CreateProcess restarts at Stage 1.

Stage 3: Creating the Windows Executive Process Object
(PspAllocateProcess)
At this point, NtCreateUserProcess has opened a valid Windows executable file and cre-
ated a section object to map it into the new process address space. Next it creates a
Windows executive process object to run the image by calling the internal system function
PspAllocateProcess. Creating the executive process object (which is done by the creating
thread) involves the following substages:

■■ Setting up the EPROCESS block

■■ Creating the initial process address space

■■ Initializing the kernel process block (KPROCESS)

■■ Setting up the PEB

■■ Concluding the setup of the process address space (which includes initializing the work-
ing set list and virtual address space descriptors and mapping the image into address
space)

Note  The only time there won’t be a parent process is during system initialization. After that
point, a parent process is always required to provide a security context for the new process.

Stage 3A: Setting Up the EPROCESS Block
This substage involves the following steps:

	 1.	 Allocate and initialize the Windows EPROCESS block.

	 2.	 Inherit the Windows device namespace (including the definition of drive letters, COM
ports, and so on).

	 Chapter 5  Processes, Threads, and Jobs	 355

	 3.	 Inherit the process affinity mask and page priority from the parent process. If there is
no parent process, the default page priority (5) is used, and an affinity mask of all pro-
cessors (KeActiveProcessors) is used.

	 4.	 Set the new process’s quota block to the address of its parent process’s quota block,
and increment the reference count for the parent’s quota block. If the process was cre-
ated through CreateProcessAsUser, this step won’t occur.

	 5.	 The process minimum and maximum working set size are set to the values of Psp
MinimumWorkingSet and PspMaximumWorkingSet, respectively. These values can be
overridden if performance options were specified in the PerfOptions key part of Image
File Execution Options, in which case the maximum working set is taken from there.

	 6.	 Store the parent process’s process ID in the InheritedFromUniqueProcessId field in the
new process object.

	 7.	 Attach the process to the session of the parent process.

	 8.	 Initialize the KPROCESS part of the process object. (See Stage 3C.)

	 9.	 Create the process’s primary access token (a duplicate of its parent’s primary token).
New processes inherit the security profile of their parents. If the CreateProcessAsUser
function is being used to specify a different access token for the new process, the token
is then changed appropriately.

	 10.	 The process handle table is initialized. If the inherit handles flag is set for the parent
process, any inheritable handles are copied from the parent’s object handle table into
the new process. (For more information about object handle tables, see Chapter 3.) A
process attribute can also be used to specify only a subset of handles, which is useful
when you are using CreateProcessAsUser to restrict which objects should be inherited
by the child process.

	 11.	 If performance options were specified through the PerfOptions key, these are now
applied. The PerfOptions key includes overrides for the working set limit, I/O priority,
page priority, and CPU priority class of the process.

	 12.	 The process priority class and quantum are computed and set.

	 13.	 Set the new process’s exit status to STATUS_PENDING.

Stage 3B: Creating the Initial Process Address Space
The initial process address space consists of the following pages:

■■ Page directory (and it’s possible there’ll be more than one for systems with page tables
more than two levels, such as x86 systems in PAE mode or 64-bit systems)

■■ Hyperspace page

■■ Working set list

356	 Windows Internals, Fifth Edition

To create these three pages, the following steps are taken:

	 1.	 Page table entries are created in the appropriate page tables to map the initial pages.

	 2.	 The number of pages is deducted from the kernel variable MmTotalCommittedPages
and added to MmProcessCommit.

	 3.	 The systemwide default process minimum working set size (PsMinimumWorkingSet) is
deducted from MmResidentAvailablePages.

	 4.	 The page table pages for the nonpaged portion of system space and the system cache
are mapped into the process.

Stage 3C: Creating the Kernel Process Block
The next stage of PspAllocateProcess is the initialization of the KPROCESS block. This work is
performed by KeInitializeProcess, which contains:

■■ A pointer to a list of kernel threads. (The kernel has no knowledge of handles, so it
bypasses the object table.)

■■ A pointer to the process’s page table directory (which is used to keep track of the pro-
cess’s virtual address space).

■■ The total time the process’s threads have executed.

■■ The number of clock cycles the process’s threads have consumed.

■■ The process’s default base-scheduling priority (which starts as Normal, or 8, unless the
parent process was set to Idle or Below Normal, in which case the setting is inherited).

■■ The default processor affinity for the threads in the process.

■■ The process swapping state (resident, out-swapped, or in transition).

■■ The NUMA ideal node (initially set to 0).

■■ The thread seed, based on the ideal processor that the kernel has chosen for this pro-
cess (which is based on the previously created process’s ideal processor, effectively ran-
domizing this in a round-robin manner). Creating a new process will update the seed
in KeNodeBlock (the initial NUMA node block) so that the next new process will get a
different ideal processor seed.

■■ The initial value (or reset value) of the process default quantum (which is described
in more detail in the “Thread Scheduling” section later in the chapter), which is hard-
coded to 6 until it is initialized later (by PspComputeQuantumAndPriority).

Note  The default initial quantum differs between Windows client and server systems. For more
information on thread quantums, turn to their discussion in the section “Thread Scheduling.”

	 Chapter 5  Processes, Threads, and Jobs	 357

Stage 3D: Concluding the Setup of the Process Address Space
Setting up the address space for a new process is somewhat complicated, so let’s look at
what’s involved one step at a time. To get the most out of this section, you should have
some familiarity with the internals of the Windows memory manager, which are described in
Chapter 9.

■■ The virtual memory manager sets the value of the process’s last trim time to the current
time. The working set manager (which runs in the context of the balance set manager
system thread) uses this value to determine when to initiate working set trimming.

■■ The memory manager initializes the process’s working set list—page faults can now be
taken.

■■ The section (created when the image file was opened) is now mapped into the new
process’s address space, and the process section base address is set to the base address
of the image.

■■ Ntdll.dll is mapped into the process.

Note  POSIX processes clone the address space of their parents, so they don’t have to go
through these steps to create a new address space. In the case of POSIX applications, the new
process’s section base address is set to that of its parent process and the parent’s PEB is cloned
for the new process.

Stage 3E: Setting Up the PEB
NtCreateUserProcess calls MmCreatePeb, which first maps the systemwide national language
support (NLS) tables into the process’s address space. It next calls MiCreatePebOrTeb to
allocate a page for the PEB and then initializes a number of fields, which are described in
Table 5-7.

Table 5-7  Initial Values of the Fields of the PEB
Field Initial Value
ImageBaseAddress Base address of section

NumberOfProcessors KeNumberProcessors kernel variable

NtGlobalFlag NtGlobalFlag kernel variable

CriticalSectionTimeout MmCriticalSectionTimeout kernel variable

HeapSegmentReserve MmHeapSegmentReserve kernel variable

HeapSegmentCommit MmHeapSegmentCommit kernel variable

HeapDeCommitTotalFreeThreshold MmHeapDeCommitTotalFreeThreshold kernel variable

HeapDeCommitFreeBlockThreshold MmHeapDeCommitFreeBlockThreshold kernel variable

NumberOfHeaps 0

358	 Windows Internals, Fifth Edition

Field Initial Value
MaximumNumberOfHeaps (Size of a page – size of a PEB) / 4

ProcessHeaps First byte after PEB

MinimumStackCommit MmMinimumStackCommitInBytes kernel variable

ImageProcessAffinityMask KeActiveProcessors or 1 <<
MmRotatingUniprocessorNumber kernel variable (for
uniprocessor-only images)

SessionId Result of MmGetSessionId

ImageSubSystem OptionalHeader.Subsystem

ImageSubSystemMajorVersion OptionalHeader.MajorSubsystemVersion

ImageSubSystemMinorVersion OptionalHeader.MinorSubsystemVersion

OSMajorVersion NtMajorVersion kernel variable

OSMinorVersion NtMinorVersion kernel variable

OSBuildNumber NtBuildNumber kernel variable & 0x3FFF, combined with
CmNtCSDVersion for service packs

OSPlatformId 2

However, if the image file specifies explicit Windows version or affinity values, this informa-
tion replaces the initial values shown in Table 5-7. The mapping from image information
fields to PEB fields is described in Table 5-8.

Table 5-8 Windows Replacements for Initial PEB Values
Field Name Value Taken from Image Header
OSMajorVersion OptionalHeader.Win32VersionValue & 0xFF

OSMinorVersion (OptionalHeader.Win32VersionValue >> 8) & 0xFF

OSBuildNumber (OptionalHeader.Win32VersionValue >> 16) & 0x3FFF, combined with
ImageLoadConfigDirectory.CSDVersion

OSPlatformId (OptionalHeader.Win32VersionValue >> 30) ^ 0x2

ImageProcessAffinityMask ImageLoadConfigDirectory.ProcessAffinityMask

If the image header characteristics IMAGE_FILE_UP_SYSTEM_ONLY flag is set (indicating that
the image can run only on a uniprocessor system), a single CPU is chosen for all the threads
in this new process to run on. The selection process is performed by simply cycling through
the available processors—each time this type of image is run, the next processor is used. In
this way, these types of images are spread evenly across the processors.

If the image specifies an explicit processor affinity mask (for example, a field in the configura-
tion header), this value is copied to the PEB and later set as the default process affinity mask.

	 Chapter 5  Processes, Threads, and Jobs	 359

Stage 3F: Completing the Setup of the Executive Process Object
(PspInsertProcess)
Before the handle to the new process can be returned, a few final setup steps must be com-
pleted, which are performed by PspInsertProcess and its helper functions:

	 1.	 If systemwide auditing of processes is enabled (either as a result of local policy settings
or group policy settings from a domain controller), the process’s creation is written to
the Security event log.

	 2.	 If the parent process was contained in a job, the job is recovered from the job level set
of the parent and then bound to the session of the newly created process. Finally, the
new process is added to the job.

	 3.	 PspInsertProcess inserts the new process block at the end of the Windows list of active
processes (PsActiveProcessHead).

	 4.	 The process debug port of the parent process is copied to the new child process, unless
the NoDebugInherit flag is set (which can be requested when creating the process). If a
debug port was specified, it is attached to the new process at this time.

	 5.	 Finally, PspInsertProcess notifies any registered callback routines, creates a handle for
the new process by calling ObOpenObjectByPointer, and then returns this handle to the
caller.

Stage 4: Creating the Initial Thread and Its Stack and Context
At this point, the Windows executive process object is completely set up. It still has no
thread, however, so it can’t do anything yet. It’s now time to start that work. Normally, the
PspCreateThread routine is responsible for all aspects of thread creation and is called by
NtCreateThread when a new thread is being created. However, because the initial thread
is created internally by the kernel without user-mode input, the two helper routines that
PspCreateThread relies on are used instead: PspAllocateThread and PspInsertThread.

PspAllocateThread handles the actual creation and initialization of the executive thread object
itself, while PspInsertThread handles the creation of the thread handle and security attributes
and the call to KeStartThread to turn the executive object into a schedulable thread on the
system. However, the thread won’t do anything yet—it is created in a suspended state and
isn’t resumed until the process is completely initialized (as described in Stage 5).

Note  The thread parameter (which can’t be specified in CreateProcess but can be specified in
CreateThread) is the address of the PEB. This parameter will be used by the initialization code
that runs in the context of this new thread (as described in Stage 6).

360	 Windows Internals, Fifth Edition

PspAllocateThread performs the following steps:

	 1.	 An executive thread block (ETHREAD) is created and initialized.

	 2.	 Before the thread can execute, it needs a stack and a context in which to run, so these
are set up. The stack size for the initial thread is taken from the image—there’s no way
to specify another size.

	 3.	 The thread environment block (TEB) is allocated for the new thread.

	 4.	 The user-mode thread start address is stored in the ETHREAD. This is the system-
supplied thread startup function in Ntdll.dll (RtlUserThreadStart). The user’s specified
Windows start address is stored in the ETHREAD block in a different location so that
debugging tools such as Process Explorer can query the information.

	 5.	 KeInitThread is called to set up the KTHREAD block. The thread’s initial and current
base priorities are set to the process’s base priority, and its affinity and quantum are
set to that of the process. This function also sets the initial thread ideal processor.
(See the section “Ideal and Last Processor” for a description of how this is chosen.)
KeInitThread next allocates a kernel stack for the thread and initializes the machine-
dependent hardware context for the thread, including the context, trap, and exception
frames. The thread’s context is set up so that the thread will start in kernel mode in
KiThreadStartup. Finally, KeInitThread sets the thread’s state to Initialized and returns to
PspAllocateThread.

Once that work is finished, NtCreateUserProcess will call PspInsertThread to perform the fol-
lowing steps:

	 1.	 A thread ID is generated for the new thread.

	 2.	 The thread count in the process object is incremented, and the thread is added into the
process thread list.

	 3.	 The thread is put into a suspended state.

	 4.	 The object is inserted and any registered thread callbacks are called.

	 5.	 The handle is created with ObOpenObjectByName.

	 6.	 The thread is readied for execution by calling KeStartThread.

Stage 5: Performing Windows Subsystem–Specific
Post-Initialization
Once NtCreateUserProcess returns with a success code, all the necessary executive process
and thread objects have been created. Kernel32.dll will now perform various operations
related to Windows subsystem–specific operations to finish initializing the process.

	 Chapter 5  Processes, Threads, and Jobs	 361

First of all, various checks are made for whether Windows should allow the executable to
run. These checks includes validating the image version in the header and checking whether
Windows application certification has blocked the process (through a group policy). On
specialized editions of Windows Server 2008, such as Windows Web Server 2008 and
Windows HPC Server 2008, additional checks are made to see if the application imports any
disallowed APIs.

If software restriction policies dictate, a restricted token is created for the new process.
Afterward, the application compatibility database is queried to see if an entry exists in either
the registry or system application database for the process. Compatibility shims will not be
applied at this point—the information will be stored in the PEB once the initial thread starts
executing (Stage 6).

At this point, Kernel32.dll sends a message to the Windows subsystem so that it can set up
SxS information (see the end of this section for more information on side-by-side assemblies)
such as manifest files, DLL redirection paths, and out-of-process execution for the new pro-
cess. It also initializes the Windows subsystem structures for the process and initial thread.
The message includes the following information:

■■ Process and thread handles

■■ Entries in the creation flags

■■ ID of the process’s creator

■■ Flag indicating whether the process belongs to a Windows application (so that Csrss
can determine whether or not to show the startup cursor)

■■ UI language Information

■■ DLL redirection and .local flags

■■ Manifest file information

The Windows subsystem performs the following steps when it receives this message:

	 1.	 CsrCreateProcess duplicates a handle for the process and thread. In this step, the usage
count of the process and the thread is incremented from 1 (which was set at creation
time) to 2.

	 2.	 If a process priority class isn’t specified, CsrCreateProcess sets it according to the algo-
rithm described earlier in this section.

	 3.	 The Csrss process block is allocated.

	 4.	 The new process’s exception port is set to be the general function port for the
Windows subsystem so that the Windows subsystem will receive a message when a
second chance exception occurs in the process. (For further information on exception
handling, see Chapter 3.)

362	 Windows Internals, Fifth Edition

	 5.	 The Csrss thread block is allocated and initialized.

	 6.	 CsrCreateThread inserts the thread in the list of threads for the process.

	 7.	 The count of processes in this session is incremented.

	 8.	 The process shutdown level is set to 0x280 (the default process shutdown level—
see SetProcessShutdownParameters in the MSDN Library documentation for more
information).

	 9.	 The new process block is inserted into the list of Windows subsystem-wide processes.

	 10.	 The per-process data structure used by the kernel-mode part of the Windows subsys-
tem (W32PROCESS structure) is allocated and initialized.

	 11.	 The application start cursor is displayed. This cursor is the familiar rolling doughnut
shape—the way that Windows says to the user, “I’m starting something, but you can
use the cursor in the meantime.” If the process doesn’t make a GUI call after 2 seconds,
the cursor reverts to the standard pointer. If the process does make a GUI call in the
allotted time, CsrCreateProcess waits 5 seconds for the application to show a window.
After that time, CsrCreateProcess will reset the cursor again.

After Csrss has performed these steps, CreateProcess checks whether the process was run
elevated (which means it was executed through ShellExecute and elevated by the AppInfo
service after the consent dialog box was shown to the user). This includes checking whether
the process was a setup program. If it was, the process’s token is opened, and the virtualiza-
tion flag is turned on so that the application is virtualized. (See the information on UAC and
virtualization in Chapter 6.) If the application contained elevation shims or had a requested
elevation level in its manifest, the process is destroyed and an elevation request is sent to the
AppInfo service. (See Chapter 6 for more information on elevation.)

Note that most of these checks are not performed for protected processes; because these
processes must have been designed for Windows Vista or later, there’s no reason why they
should require elevation, virtualization, or application compatibility checks and process-
ing. Additionally, allowing mechanisms such as the shim engine to use its usual hooking and
memory patching techniques on a protected process would result in a security hole if some-
one could figure how to insert arbitrary shims that modify the behavior of the protected
process.

Stage 6: Starting Execution of the Initial Thread
At this point, the process environment has been determined, resources for its threads to use
have been allocated, the process has a thread, and the Windows subsystem knows about the
new process. Unless the caller specified the CREATE_ SUSPENDED flag, the initial thread is
now resumed so that it can start running and perform the remainder of the process initializa-
tion work that occurs in the context of the new process (Stage 7).

	 Chapter 5  Processes, Threads, and Jobs	 363

Stage 7: Performing Process Initialization in the Context of
the New Process
The new thread begins life running the kernel-mode thread startup routine KiThreadStartup.
KiThreadStartup lowers the thread’s IRQL level from DPC/dispatch level to APC level and then
calls the system initial thread routine, PspUserThreadStartup. The user-specified thread start
address is passed as a parameter to this routine.

First, this function sets the Locale ID and the ideal processor in the TEB, based on the infor-
mation present in kernel-mode data structures, and then it checks if thread creation actually
failed. Next it calls DbgkCreateThread, which checks if image notifications were sent for the
new process. If they weren’t, and notifications are enabled, an image notification is sent first
for the process and then for the image load of Ntdll.dll. Note that this is done in this stage
rather than when the images were first mapped, because the process ID (which is required
for the callouts) is not yet allocated at that time.

Once those checks are completed, another check is performed to see whether the process
is a debuggee. If it is, then PspUserThreadStartup checks if the debugger notifications have
already been sent for this process. If not, then a create process message is sent through the
debug object (if one is present) so that the process startup debug event (CREATE_PROCESS_
DEBUG_INFO) can be sent to the appropriate debugger process. This is followed by a similar
thread startup debug event and by another debug event for the image load of Ntdll.dll.
DbgkCreateThread then waits for the Windows subsystem to get the reply from the debug-
ger (via the ContinueDebugEvent function).

Now that the debugger has been notified, PspUserThreadStartup looks at the result of the
initial check on the thread’s life. If it was killed on startup, the thread is terminated. This check
is done after the debugger and image notifications to be sure that the kernel-mode and
user-mode debuggers don’t miss information on the thread, even if the thread never got a
chance to run.

Otherwise, the routine checks whether application prefetching is enabled on the system and,
if so, calls the prefetcher (and Superfetch) to process the prefetch instruction file (if it exists)
and prefetch pages referenced during the first 10 seconds the last time the process ran. (For
details on the prefetcher and Superfetch, see Chapter 9.)

PspUserThreadStartup then checks if the systemwide cookie in the SharedUserData structure
has been set up yet. If it hasn’t, it generates it based on a hash of system information such as
the number of interrupts processed, DPC deliveries, and page faults. This systemwide cookie
is used in the internal decoding and encoding of pointers, such as in the heap manager
(for more information on heap manager security, see Chapter 9), to protect against certain
classes of exploitation.

364	 Windows Internals, Fifth Edition

Finally, PspUserThreadStartup sets up the initial thunk context to run the image loader initial-
ization routine (LdrInitializeThunk in Ntdll.dll), as well as the systemwide thread startup stub
(RtlUserThreadStart in Ntdll.dll). These steps are done by editing the context of the thread
in place and then issuing an exit from system service operation, which will load the specially
crafted user context. The LdrInitializeThunk routine initializes the loader, heap manager, NLS
tables, thread-local storage (TLS) and fiber-local storage (FLS) array, and critical section struc-
tures. It then loads any required DLLs and calls the DLL entry points with the DLL_PROCESS_
ATTACH function code. (See the sidebar “Side-by-Side Assemblies” for a description of a
mechanism Windows uses to address DLL versioning problems.)

Once the function returns, NtContinue will restore the new user context and return back to
user mode—thread execution now truly starts.

RtlUserThreadStart will use the address of the actual image entry point and the start param-
eter and call the application. These two parameters have also already been pushed onto the
stack by the kernel. This complicated series of events has two purposes. First of all, it allows
the image loader inside Ntdll.dll to set up the process internally and behind the scenes so
that other user-mode code can run properly (otherwise, it would have no heap, no thread
local storage, and so on).

Second, having all threads begin in a common routine allows them to be wrapped in excep-
tion handling, so that when they crash, Ntdll.dll is aware of that and can call the unhandled
exception filter inside Kernel32.dll. It is also able to coordinate thread exit on return from the
thread’s start routine and to perform various cleanup work. Application developers can also
call SetUnhandledExceptionFilter to add their own unhandled exception handling code.

Side-by-Side Assemblies
In order to isolate DLLs distributed with applications from DLLs that ship with the oper-
ating system, Windows allows applications to use private copies of these core DLLs. To
use a private copy of a DLL instead of the one in the system directory, an application’s
installation must include a file named Application.exe.local (where Application is the
name of the application’s executable), which directs the loader to first look for DLLs in
that directory. Note that any DLLs that are loaded from the list of KnownDLLs (DLLs
that are permanently mapped into memory) or that are loaded by those DLLs cannot
be redirected using this mechanism.

To further address application and DLL compatibility while allowing sharing, Windows
implements the concept of shared assemblies. An assembly consists of a group of
resources, including DLLs, and an XML manifest file that describes the assembly and its
contents. An application references an assembly through the existence of its own XML
manifest. The manifest can be a file in the application’s installation directory that has

	 Chapter 5  Processes, Threads, and Jobs	 365

the same name as the application with “.manifest” appended (for example, applica-
tion.exe.manifest), or it can be linked into the application as a resource. The manifest
describes the application and its dependence on assemblies.

There are two types of assemblies: private and shared. The difference between the
two is that shared assemblies are digitally signed so that corruption or modification
of their contents can be detected. In addition, shared assemblies are stored under the
\Windows\Winsxs directory, whereas private assemblies are stored in an application’s
installation directory. Thus, shared assemblies also have an associated catalog file (.cat)
that contains its digital signature information. Shared assemblies can be “side-by-side”
assemblies because multiple versions of a DLL can reside on a system simultaneously,
with applications dependent on a particular version of a DLL always using that particu-
lar version.

An assembly’s manifest file typically has a name that includes the name of the assem-
bly, version information, some text that represents a unique signature, and the exten-
sion “.manifest”. The manifests are stored in \Windows\Winsxs\Manifests, and the rest
of the assembly’s resources are stored in subdirectories of \Windows\Winsxs that have
the same name as the corresponding manifest files, with the exception of the trailing
.manifest extension.

An example of a shared assembly is version 6 of the Windows common controls DLL,
comctl32.dll. Its manifest file is named \Windows\Winsxs\Manifests\x86_Microsoft.Win
dows.Common-Controls_6595b64144ccf1df_6.0.0.0_x-ww_1382d70a.manifest. It has an
associated catalog file (which is the same name with the .cat extension) and a subdirec-
tory of Winsxs that includes comctl32.dll.

Version 6 of Comctl32.dll added integration with Windows themes, and because
applications not written with theme support in mind might not appear correctly with
the new DLL, it’s available only to applications that explicitly reference the shared
assembly containing it—the version of Comctl32.dll installed in \Windows\System32 is
an instance of version 5.x, which is not theme aware. When an application loads, the
loader looks for the application’s manifest, and if one exists, loads the DLLs from the
assemblies specified. DLLs not included in assemblies referenced in the manifest are
loaded in the traditional way. Legacy applications, therefore, link against the version in
\Windows\System32, whereas theme-aware applications can specify the new version in
their manifest.

A final advantage that shared assemblies have is that a publisher can issue a publisher
configuration, which can redirect all applications that use a particular assembly to use
an updated version. Publishers would do this if they were preserving backward com-
patibility while addressing bugs. Ultimately, however, because of the flexibility inherent
in the assembly model, an application could decide to override the new setting and
continue to use an older version.

366	 Windows Internals, Fifth Edition

EXPERIMENT: Tracing Process Startup
Now that we’ve looked in detail at how a process starts up and the different operations
required to begin executing an application, we’re going to use Process Monitor to take
a look at some of the file I/O and registry keys that are accessed during this process.

Although this experiment will not provide a complete picture of all the internal steps
we’ve described, you’ll be able to see several parts of the system in action, notably
Prefetch and Superfetch, image file execution options and other compatibility checks,
and the image loader’s DLL mapping.

We’re going to be looking at a very simple executable—Notepad.exe—and we will be
launching it from a Command Prompt window (Cmd.exe). It’s important that we look
both at the operations inside Cmd.exe and those inside Notepad.exe. Recall that a lot of
the user-mode work is performed by CreateProcess, which is called by the parent pro-
cess before the kernel has created a new process object.

To set things up correctly, add two filters to Process Monitor: one for Cmd.exe, and one
for Notepad.exe—these are the only two processes we want to include. It will be helpful
to be sure that you don’t have any currently running instances of these two processes so
that you know you’re looking at the right events. The filter window should look like this:

Next, make sure that event logging is currently disabled (clear File, Capture Events), and
then start up the command prompt. Enable event logging (using the File menu again,
or simply press CTRL+E or click the magnifying glass icon on the toolbar) and then
enter Notepad.exe and press Enter. On a typical Windows Vista system, you should
see anywhere between 500 and 1500 events appear. Go ahead and hide the Sequence
and Time Of Day columns so that we can focus our attention on the columns of inter-
est. Your window should look similar to the one shown next.

	 Chapter 5  Processes, Threads, and Jobs	 367

Just as described in Stage 1 of the CreateProcess flow, one of the first things to notice
is that just before the process is started and the first thread is created, Cmd.exe does a
registry read at HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File
Execution Options. Because there were no image execution options associated with
Notepad.exe, the process was created as is.

As with this and any other event in Process Monitor’s log, you have the ability to see
whether each part of the process creation flow was performed in user mode or kernel
mode, and by which routines, by looking at the stack of the event. To do this, double-
click on the RegOpenKey event mentioned and switch to the Stack tab. The following
screen shows the standard stack on a 32-bit Windows Vista machine.

368	 Windows Internals, Fifth Edition

This stack shows that we have already reached the part of process creation per-
formed in kernel mode (through NtCreateUserProcess) and that the helper routine
PspAllocateProcess is responsible for this check.

Going down the list of events after the thread and process have been created, you will
notice three groups of events. The first is a simple check for application compatibility
flags, which will let the user-mode process creation code know if checks inside the
application compatibility database are required through the shim engine.

This check is followed by multiple reads to Side-By-Side, Manifest, and MUI/Language
keys, which are part of the assembly framework mentioned earlier. Finally, you may see
file I/O to one or more .sdb files, which are the application compatibility databases on
the system. This I/O is where additional checks are done to see if the shim engine needs
to be invoked for this application. Since Notepad is a well behaved Microsoft program,
it doesn’t require any shims.

The following screen shows the next series of events, which happen inside the Notepad
process itself. These are actions initiated by the user-mode thread startup wrapper
in kernel mode, which performs the actions described earlier. The first two are the
Notepad.exe and Ntdll.dll image load debug notification messages, which can only be
generated now that code is running inside Notepad’s process context and not the con-
text for the command prompt.

	 Chapter 5  Processes, Threads, and Jobs	 369

Next, the prefetcher kicks in, looking for a prefetch database file that has already been
generated for Notepad. (For more information on the prefetcher, see Chapter 9). On a
system where Notepad has already been run at least once, this database will exist, and
the prefetcher will begin executing the commands specified inside it. If this is the case,
scrolling down you will see multiple DLLs being read and queried. Unlike typical DLL
loading, which is done by the user-mode image loader by looking at the import tables
or when an application manually loads a DLL, these events are being generated by the
prefetcher, which is already aware of the libraries that Notepad will require. Typical
image loading of the DLLs required happens next, and you will see events similar to the
ones shown here.

These events are now being generated from code running inside user mode, which
was called once the kernel-mode wrapper function finished its work. Therefore, these
are the first events coming from LdrpInitializeProcess, which we mentioned is the inter-
nal system wrapper function for any new process, before the start address wrapper is
called. You can confirm this on your own by looking at the stack of these events; for
example, the kernel32.dll image load event, which is shown in the next screen.

370	 Windows Internals, Fifth Edition

Further events are generated by this routine and its associated helper functions until
you finally reach events generated by the WinMain function inside Notepad, which is
where code under the developer’s control is now being executed. Describing in detail
all the events and user-mode components that come into play during process execu-
tion would fill up this entire chapter, so exploration of any further events is left as an
exercise for the reader.

Thread Internals
Now that we’ve dissected processes, let’s turn our attention to the structure of a thread.
Unless explicitly stated otherwise, you can assume that anything in this section applies to
both user-mode threads and kernel-mode system threads (which are described in Chapter 2).

Data Structures
At the operating-system level, a Windows thread is represented by an executive thread
(ETHREAD) block, which is illustrated in Figure 5-7. The ETHREAD block and the structures
it points to exist in the system address space, with the exception of the thread environment
block (TEB), which exists in the process address space (again, because user-mode compo-
nents need to have access to it).

	 Chapter 5  Processes, Threads, and Jobs	 371

In addition, the Windows subsystem process (Csrss) also maintains a parallel structure for
each thread created in a Windows subsystem application. Also, for threads that have called
a Windows subsystem USER or GDI function, the kernel-mode portion of the Windows sub-
system (Win32k.sys) maintains a per-thread data structure (called the W32THREAD structure)
that the ETHREAD block points to.

KTHREAD

Create and exit times

Process ID

Thread start address

Impersonation information

Timer information

Access token

EPROCESS

TEB

Pending I/O requests

ALPC message information

Figure 5-7  Structure of the executive thread block

Most of the fields illustrated in Figure 5-7 are self-explanatory. The first field is the kernel
thread (KTHREAD) block. Following that are the thread identification information, the process
identification information (including a pointer to the owning process so that its environment
information can be accessed), security information in the form of a pointer to the access
token and impersonation information, and finally, fields relating to ALPC messages and
pending I/O requests. As you can see in Table 5-9, some of these key fields are covered in
more detail elsewhere in this book. For more details on the internal structure of an ETHREAD
block, you can use the kernel debugger dt command to display the format of the structure.

Table 5-9  Key Contents of the Executive Thread Block
Field Name Value Taken from Image Header Additional Information
KTHREAD See Table 5-10.

Thread time Thread create and exit time information.

Process identification Process ID and pointer to EPROCESS block
of the process that the thread belongs to.

Start address Address of thread start routine.

Impersonation
information

Access token and impersonation level (if
the thread is impersonating a client).

Chapter 6

ALPC information Message ID that the thread is waiting for
and address of message.

Advanced local procedure
calls (ALPC) (Chapter 3)

I/O information List of pending I/O request packets (IRPs). I/O system (Chapter 7)

372	 Windows Internals, Fifth Edition

Let’s take a closer look at two of the key thread data structures referred to in the preceding
text: the KTHREAD block and the TEB. The KTHREAD block (also called the TCB, or thread
control block) contains the information that the Windows kernel needs to access to perform
thread scheduling and synchronization on behalf of running threads. Its layout is illustrated
in Figure 5-8.

Dispatcher header

Total user time

Total kernel time

Thread-scheduling information

Trap frame

Synchronization information

Timer block and wait block

List of objects thread is waiting on

Thread-local storage array

Kernel stack information

System service table

List of pending APCs

TEB

Figure 5-8  Structure of the kernel thread block

The key fields of the KTHREAD block are described briefly in Table 5-10.

Table 5-10  Key Contents of the KTHREAD Block
Element Description Additional Reference
Dispatcher header Because the thread is an object that can

be waited on, it starts with a standard
kernel dispatcher object header.

Kernel dispatcher objects
(Chapter 3)

Execution time Total user and kernel CPU time.

Cycle time Total CPU cycle time. Thread scheduling

Pointer to kernel stack
information

Base and upper address of the kernel
stack.

Memory management
(Chapter 9)

Pointer to system service
table

Each thread starts out with this field ser-
vice table pointing to the main system
service table (KeServiceDescriptorTable).
When a thread first calls a Windows
GUI service, its system service table is
changed to one that includes the GDI
and USER services in Win32k.sys.

System service
dispatching (Chapter 3)

	 Chapter 5  Processes, Threads, and Jobs	 373

Element Description Additional Reference
Scheduling information Base and current priority, quantum tar-

get, quantum reset, affinity mask, ideal
processor, deferred processor, next pro-
cessor, scheduling state, freeze count,
suspend count, adjust increment and
adjust reason.

Thread scheduling

Wait blocks The thread block contains four built-in
wait blocks so that wait blocks don’t
have to be allocated and initialized each
time the thread waits for something.
(One wait block is dedicated to timers.)

Synchronization
(Chapter 3)

Wait information List of objects the thread is waiting for,
wait reason, IRQL at the time of wait,
result of the wait, and time at which the
thread entered the wait state.

Synchronization
(Chapter 3)

Mutant list List of mutant objects the thread owns. Synchronization
(Chapter 3)

APC queues List of pending user-mode and kernel-
mode APCs, alerted flag, and flags to
disable APCs.

Asynchronous procedure
call (APC) interrupts
(Chapter 3)

Timer block Built-in timer block (also a correspond-
ing wait block).

Suspend APC and
semaphore

Built-in APC and semaphore used when
suspending and resuming a thread.

Synchronization
(Chapter 3)

Queue Pointer to queue object that the thread
is associated with.

Synchronization
(Chapter 3)

Gate Pointer to gate object that the thread is
waiting on.

Synchronization
(Chapter 3)

Pointer to TEB Thread ID, TLS and FLS information,
PEB pointer, and Winsock, RPC,
GDI, OpenGL, and other user-mode
information.

374	 Windows Internals, Fifth Edition

EXPERIMENT: Displaying ETHREAD and KTHREAD Structures
The ETHREAD and KTHREAD structures can be displayed with the dt command in the
kernel debugger. The following output shows the format of an ETHREAD on a 32-bit
system:

lkd> dt nt!_ethread

nt!_ETHREAD

 +0x000 Tcb : _KTHREAD

 +0x1e0 CreateTime : _LARGE_INTEGER

 +0x1e8 ExitTime : _LARGE_INTEGER

 +0x1e8 KeyedWaitChain : _LIST_ENTRY

 +0x1f0 ExitStatus : Int4B

 +0x1f0 OfsChain : Ptr32 Void

 +0x1f4 PostBlockList : _LIST_ENTRY

 +0x1f4 ForwardLinkShadow : Ptr32 Void

 +0x1f8 StartAddress : Ptr32 Void

 +0x1fc TerminationPort : Ptr32 _TERMINATION_PORT

 +0x1fc ReaperLink : Ptr32 _ETHREAD

 +0x1fc KeyedWaitValue : Ptr32 Void

 +0x1fc Win32StartParameter : Ptr32 Void

 +0x200 ActiveTimerListLock : Uint4B

 +0x204 ActiveTimerListHead : _LIST_ENTRY

 +0x20c Cid : _CLIENT_ID

 +0x214 KeyedWaitSemaphore : _KSEMAPHORE

 +0x214 AlpcWaitSemaphore : _KSEMAPHORE

 +0x228 ClientSecurity : _PS_CLIENT_SECURITY_CONTEXT

 +0x22c IrpList : _LIST_ENTRY

 +0x234 TopLevelIrp : Uint4B

 +0x238 DeviceToVerify : Ptr32 _DEVICE_OBJECT

 +0x23c RateControlApc : Ptr32 _PSP_RATE_APC

 +0x240 Win32StartAddress : Ptr32 Void

 +0x244 SparePtr0 : Ptr32 Void

 +0x248 ThreadListEntry : _LIST_ENTRY

 +0x250 RundownProtect : _EX_RUNDOWN_REF

 +0x254 ThreadLock : _EX_PUSH_LOCK

 +0x258 ReadClusterSize : Uint4B

 +0x25c MmLockOrdering : Int4B

 +0x260 CrossThreadFlags : Uint4B

 +0x260 Terminated : Pos 0, 1 Bit

 +0x260 ThreadInserted : Pos 1, 1 Bit

 +0x260 HideFromDebugger : Pos 2, 1 Bit

 +0x260 ActiveImpersonationInfo : Pos 3, 1 Bit

 +0x260 SystemThread : Pos 4, 1 Bit

 +0x260 HardErrorsAreDisabled : Pos 5, 1 Bit

 +0x260 BreakOnTermination : Pos 6, 1 Bit

 +0x260 SkipCreationMsg : Pos 7, 1 Bit

 +0x260 SkipTerminationMsg : Pos 8, 1 Bit

 +0x260 CopyTokenOnOpen : Pos 9, 1 Bit

 +0x260 ThreadIoPriority : Pos 10, 3 Bits

 +0x260 ThreadPagePriority : Pos 13, 3 Bits

 +0x260 RundownFail : Pos 16, 1 Bit

 +0x264 SameThreadPassiveFlags : Uint4B

 +0x264 ActiveExWorker : Pos 0, 1 Bit

 +0x264 ExWorkerCanWaitUser : Pos 1, 1 Bit

	 Chapter 5  Processes, Threads, and Jobs	 375

 +0x264 MemoryMaker : Pos 2, 1 Bit

 +0x264 ClonedThread : Pos 3, 1 Bit

 +0x264 KeyedEventInUse : Pos 4, 1 Bit

 +0x264 RateApcState : Pos 5, 2 Bits

 +0x264 SelfTerminate : Pos 7, 1 Bit

 +0x268 SameThreadApcFlags : Uint4B

 +0x268 Spare : Pos 0, 1 Bit

 +0x268 StartAddressInvalid : Pos 1, 1 Bit

 +0x268 EtwPageFaultCalloutActive : Pos 2, 1 Bit

 +0x268 OwnsProcessWorkingSetExclusive : Pos 3, 1 Bit

 +0x268 OwnsProcessWorkingSetShared : Pos 4, 1 Bit

 +0x268 OwnsSystemWorkingSetExclusive : Pos 5, 1 Bit

 +0x268 OwnsSystemWorkingSetShared : Pos 6, 1 Bit

 +0x268 OwnsSessionWorkingSetExclusive : Pos 7, 1 Bit

 +0x269 OwnsSessionWorkingSetShared : Pos 0, 1 Bit

 +0x269 OwnsProcessAddressSpaceExclusive : Pos 1, 1 Bit

 +0x269 OwnsProcessAddressSpaceShared : Pos 2, 1 Bit

 +0x269 SuppressSymbolLoad : Pos 3, 1 Bit

 +0x269 Prefetching : Pos 4, 1 Bit

 +0x269 OwnsDynamicMemoryShared : Pos 5, 1 Bit

 +0x269 OwnsChangeControlAreaExclusive : Pos 6, 1 Bit

 +0x269 OwnsChangeControlAreaShared : Pos 7, 1 Bit

 +0x26a PriorityRegionActive : Pos 0, 4 Bits

 +0x26c CacheManagerActive : UChar

 +0x26d DisablePageFaultClustering : UChar

 +0x26e ActiveFaultCount : UChar

 +0x270 AlpcMessageId : Uint4B

 +0x274 AlpcMessage : Ptr32 Void

 +0x274 AlpcReceiveAttributeSet : Uint4B

 +0x278 AlpcWaitListEntry : _LIST_ENTRY

 +0x280 CacheManagerCount : Uint4B

The KTHREAD can be displayed with a similar command:

lkd> dt nt!_kthread

nt!_KTHREAD

 +0x000 Header : _DISPATCHER_HEADER

 +0x010 CycleTime : Uint8B

 +0x018 HighCycleTime : Uint4B

 +0x020 QuantumTarget : Uint8B

 +0x028 InitialStack : Ptr32 Void

 +0x02c StackLimit : Ptr32 Void

 +0x030 KernelStack : Ptr32 Void

 +0x034 ThreadLock : Uint4B

 +0x038 ApcState : _KAPC_STATE

 +0x038 ApcStateFill : [23] UChar

 +0x04f Priority : Char

 +0x050 NextProcessor : Uint2B

 +0x052 DeferredProcessor : Uint2B

 +0x054 ApcQueueLock : Uint4B

 +0x058 ContextSwitches : Uint4B

 +0x05c State : UChar

 +0x05d NpxState : UChar

 +0x05e WaitIrql : UChar

 +0x05f WaitMode : Char

 +0x060 WaitStatus : Int4B

376	 Windows Internals, Fifth Edition

EXPERIMENT: Using the Kernel Debugger !thread Command
The kernel debugger !thread command dumps a subset of the information in the
thread data structures. Some key elements of the information the kernel debugger
displays can’t be displayed by any utility: internal structure addresses; priority details;
stack information; the pending I/O request list; and, for threads in a wait state, the list
of objects the thread is waiting for.

To display thread information, use either the !process command (which displays all the
thread blocks after displaying the process block) or the !thread command to dump a
specific thread. The output of the thread information, along with some annotations of
key fields, is shown here:

THREAD 83160f0 Cid: 9f.3d Teb: 7ffdc000 Win32Thread: e153d2c8
WAIT: (WrUserRequest) UserMode Non-Alertable

808e9d60 SynchronizationEvent

Not imersonating
Owning Process 81b44880
Wait Time (seconds)
Context Switch Count
UserTime
KernelTime
Start Address kernal32!BaseProcessStart (0x77e8f268)
Win32 Start Address 0x020d9d98
Stack Init f7818000 Current f7817bb0 Base f7818000 Limit f7812000 Call 0
Priority 14 BasePriority 9 PriorityDecrement 6 DecrementCount 13

953945
2697 LargeStack

0:00:00.0289
0:00:04.0644

ChildEBP RetAddr Args to Child
F7817bb0 8008f430 00000001 00000000 00000000 ntoskrnl!KiSwapThreadExit
F7817c50 de0119ec 00000001 00000000 00000000 ntoskrnl!KeWaitForSingleObject+0x2a0
F7817cc0 de0123f4 00000001 00000000 00000000 win32k!xxxSleepThread+0x23c
F7817d10 de01f2f0 00000001 00000000 00000000 win32k!xxxInternalGetMessage+0x504
F7817d80 800bab58 00000001 00000000 00000000 win32k!NtUserGetMessage+0x58
F7817df0 77d887d0 00000001 00000000 00000000 ntoskrnl!KiSystemServiceEndAddress+0x4
0012fef0 00000000 00000001 00000000 00000000 user32!GetMessageW+0x30

Address of
ETHREAD Thread ID

Address of thread
environment block

Priority
information

Address of user thread function

Actual thread
start address

Thread state

Objects being waited on

Address of EPROCESS for owning process

Stack dump

Kernal stack not resident.

	 Chapter 5  Processes, Threads, and Jobs	 377

EXPERIMENT: Viewing Thread Information
The following output is the detailed display of a process produced by using the Tlist
utility in the Debugging Tools for Windows. Notice that the thread list shows the
“Win32StartAddr.” This is the address passed to the CreateThread function by the appli-
cation. All the other utilities, except Process Explorer, that show the thread start address
show the actual start address (a function in Ntdll.dll), not the application-specified start
address.

C:\> tlist winword

2400 WINWORD.EXE WinInt5E_Chapter06.doc [Compatibility Mode] - Microsoft Word

 CWD: C:\Users\Alex Ionescu\Documents\

 CmdLine: "C:\Program Files\Microsoft Office\Office12\WINWORD.EXE" /n /dde

 VirtualSize: 310656 KB PeakVirtualSize: 343552 KB

 WorkingSetSize: 91548 KB PeakWorkingSetSize:100788 KB

 NumberOfThreads: 6

 2456 Win32StartAddr:0x2f7f10cc LastErr:0x00000000 State:Waiting

 1452 Win32StartAddr:0x6882f519 LastErr:0x00000000 State:Waiting

 2464 Win32StartAddr:0x6b603850 LastErr:0x00000000 State:Waiting

 3036 Win32StartAddr:0x690dc17f LastErr:0x00000002 State:Waiting

 3932 Win32StartAddr:0x775cac65 LastErr:0x00000102 State:Waiting

 3140 Win32StartAddr:0x687d6ffd LastErr:0x000003f0 State:Waiting

 12.0.4518.1014 shp 0x2F7F0000 C:\Program Files\Microsoft Office\Office12\

 WINWORD.EXE

 6.0.6000.16386 shp 0x777D0000 C:\Windows\system32\Ntdll.dll

 6.0.6000.16386 shp 0x764C0000 C:\Windows\system32\kernel32.dll

 § list of DLLs loaded in process

The TEB, illustrated in Figure 5-9, is the only data structure explained in this section that
exists in the process address space (as opposed to the system space).

The TEB stores context information for the image loader and various Windows DLLs. Because
these components run in user mode, they need a data structure writable from user mode.
That’s why this structure exists in the process address space instead of in the system space,
where it would be writable only from kernel mode. You can find the address of the TEB with
the kernel debugger !thread command.

378	 Windows Internals, Fifth Edition

Exception list

Stack base

Stack limit

Thread ID

Active RPC handle

LastError value

Current locale

User32 client information

Subsystem thread information block (TIB)

Fiber information

Winsock data

Count of owned critical sections

OpenGL information

TLS array

GDI32 information

PEB

Figure 5-9  Fields of the thread environment block

EXPERIMENT: Examining the TEB
You can dump the TEB structure with the !teb command in the kernel debugger. The
output looks like this:

kd> !teb

TEB at 7ffde000

 ExceptionList: 019e8e44

 StackBase: 019f0000

 StackLimit: 019db000

 SubSystemTib: 00000000

 FiberData: 00001e00

 ArbitraryUserPointer: 00000000

 Self: 7ffde000

 EnvironmentPointer: 00000000

 ClientId: 00000bcc . 00000864

 RpcHandle: 00000000

 Tls Storage: 7ffde02c

 PEB Address: 7ffd9000

 LastErrorValue: 0

 LastStatusValue: c0000139

 Count Owned Locks: 0

 HardErrorMode: 0

	 Chapter 5  Processes, Threads, and Jobs	 379

Kernel Variables
As with processes, a number of Windows kernel variables control how threads run. Table 5-11
shows the kernel-mode kernel variables that relate to threads.

Table 5-11  Thread-Related Kernel Variables
Variable Type Description
PspCreateThreadNotifyRoutine Array of executive

callback objects
Array of callback objects describing
the routines to be called on thread
creation and deletion (maximum of 64)

PspCreateThreadNotifyRoutineCount 32-bit integer Count of registered thread-
notification routines

Performance Counters
Most of the key information in the thread data structures is exported as performance coun-
ters, which are listed in Table 5-12. You can extract much information about the internals of a
thread just by using the Reliability and Performance Monitor in Windows.

Table 5-12  Thread-Related Performance Counters
Object: Counter Function
Process: Priority Base Returns the current base priority of the process. This is the start-

ing priority for threads created within this process.

Thread: % Privileged Time Describes the percentage of time that the thread has run in kernel
mode during a specified interval.

Thread: % Processor Time Describes the percentage of CPU time that the thread has used
during a specified interval. This count is the sum of % Privileged
Time and % User Time.

Thread: % User Time Describes the percentage of time that the thread has run in user
mode during a specified interval.

Thread: Context Switches/Sec Returns the number of context switches per second that the sys-
tem is executing.

Thread: Elapsed Time Returns the amount of CPU time (in seconds) that the thread has
consumed.

Thread: ID Process Returns the process ID of the thread’s process.

Thread: ID Thread Returns the thread’s thread ID. This ID is valid only during the
thread’s lifetime because thread IDs are reused.

Thread: Priority Base Returns the thread’s current base priority. This number might be
different from the thread’s starting base priority.

Thread: Priority Current Returns the thread’s current dynamic priority.

Thread: Start Address Returns the thread’s starting virtual address (Note: This address
will be the same for most threads.)

380	 Windows Internals, Fifth Edition

Object: Counter Function
Thread: Thread State Returns a value from 0 through 7 relating to the current state of

the thread.

Thread: Thread Wait Reason Returns a value from 0 through 19 relating to the reason why the
thread is in a wait state.

Relevant Functions
Table 5-13 shows the Windows functions for creating and manipulating threads. This table
doesn’t include functions that have to do with thread scheduling and priorities—those are
included in the section “Thread Scheduling” later in this chapter.

Table 5-13 Windows Thread Functions
Function Description
CreateThread Creates a new thread

CreateRemoteThread Creates a thread in another process

OpenThread Opens an existing thread

ExitThread Ends execution of a thread normally

TerminateThread Terminates a thread

IsThreadAFiber Returns whether the current thread is a fiber

GetExitCodeThread Gets another thread’s exit code

GetThreadTimes Returns timing information for a thread

QueryThreadCycleTime Returns CPU clock cycle information for a thread

GetCurrentThread Returns a pseudo handle for the current thread

GetCurrentProcessId Returns the thread ID of the current thread

GetThreadId Returns the thread ID of the specified thread

Get/SetThreadContext Returns or changes a thread’s CPU registers

GetThreadSelectorEntry Returns another thread’s descriptor table entry
(applies only to x86 systems)

Birth of a Thread
A thread’s life cycle starts when a program creates a new thread. The request filters down to
the Windows executive, where the process manager allocates space for a thread object and
calls the kernel to initialize the kernel thread block. The steps in the following list are taken
inside the Windows CreateThread function in Kernel32.dll to create a Windows thread.

	 1.	 CreateThread converts the Windows API parameters to native flags and builds a native
structure describing object parameters (OBJECT_ATTRIBUTES). See Chapter 3 for more
information.

	 Chapter 5  Processes, Threads, and Jobs	 381

	 2.	 CreateThread builds an attribute list with two entries: client ID and TEB address. This
allows CreateThread to receive those values once the thread has been created. (For
more information on attribute lists, see the section “Flow of CreateProcess” earlier in
this chapter.)

	 3.	 NtCreateThreadEx is called to create the user-mode context and probe and capture
the attribute list. It then calls PspCreateThread to create a suspended executive thread
object. For a description of the steps performed by this function, see the descriptions of
Stage 3 and Stage 5 in the section “Flow of CreateProcess.”

	 4.	 CreateThread allocates an activation stack for the thread used by side-by-side assembly
support. It then queries the activation stack to see if it requires activation, and does so
if needed. The activation stack pointer is saved in the new thread’s TEB.

	 5.	 CreateThread notifies the Windows subsystem about the new thread, and the subsys-
tem does some setup work for the new thread.

	 6.	 The thread handle and the thread ID (generated during step 3) are returned to the
caller.

	 7.	 Unless the caller created the thread with the CREATE_SUSPENDED flag set, the thread
is now resumed so that it can be scheduled for execution. When the thread starts run-
ning, it executes the steps described in the earlier section “Stage 7: Performing Process
Initialization in the Context of the New Process” before calling the actual user’s speci-
fied start address.

Examining Thread Activity
Examining thread activity is especially important if you are trying to determine why a process
that is hosting multiple services is running (such as Svchost.exe, Dllhost.exe, or Lsass.exe) or
why a process is hung.

There are several tools that expose various elements of the state of Windows threads:
WinDbg (in user-process attach and kernel debugging mode), the Reliability and Perfor
mance Monitor, and Process Explorer. (The tools that show thread-scheduling information
are listed in the section “Thread Scheduling.”)

To view the threads in a process with Process Explorer, select a process and open the process
properties (double-click on the process or click on the Process, Properties menu item). Then
click on the Threads tab. This tab shows a list of the threads in the process and three columns
of information. For each thread it shows the percentage of CPU consumed (based on the
refresh interval configured), the number of context switches to the thread, and the thread
start address. You can sort by any of these three columns.

382	 Windows Internals, Fifth Edition

New threads that are created are highlighted in green, and threads that exit are highlighted
in red. (The highlight duration can be configured with the Options, Configure Highlighting
menu item.) This might be helpful to discover unnecessary thread creation occurring in a
process. (In general, threads should be created at process startup, not every time a request is
processed inside a process.)

As you select each thread in the list, Process Explorer displays the thread ID, start time, state,
CPU time counters, number of context switches, and the base and current priority. There is a
Kill button, which will terminate an individual thread, but this should be used with extreme
care.

The best way to measure actual CPU activity with Process Explorer is to add the clock cycle
delta column, which uses the clock cycle counter designed for thread run-time account-
ing (as described later in this chapter). Because many threads run for such a short amount
of time that they are seldom (if ever) the currently running thread when the clock interval
timer interrupt occurs, they are not charged for much of their CPU time. The total number of
clock cycles represents the actual number of processor cycles that each thread in the process
accrued. It is independent of the clock interval timer’s resolution because the count is main-
tained internally by the processor at each cycle and updated by Windows at each interrupt
entry (a final accumulation is done before a context switch).

The thread start address is displayed in the form “module!function”, where module is the
name of the .exe or .dll. The function name relies on access to symbol files for the module.
(See “Experiment: Viewing Process Details with Process Explorer” in Chapter 1.) If you are
unsure what the module is, click the Module button. This opens an Explorer file properties
window for the module containing the thread’s start address (for example, the .exe or .dll).

Note  For threads created by the Windows CreateThread function, Process Explorer displays
the function passed to CreateThread, not the actual thread start function. That is because all
Windows threads start at a common thread startup wrapper function (RtlUserThreadStart in
Ntdll.dll). If Process Explorer showed the actual start address, most threads in processes would
appear to have started at the same address, which would not be helpful in trying to understand
what code the thread was executing. However, if Process Explorer can’t query the user-defined
startup address (such as in the case of a protected process), it will show the wrapper function, so
you will see all threads starting at RtlUserThreadStart.

However, the thread start address displayed might not be enough information to pinpoint
what the thread is doing and which component within the process is responsible for the CPU
consumed by the thread. This is especially true if the thread start address is a generic startup
function (for example, if the function name does not indicate what the thread is actually
doing). In this case, examining the thread stack might answer the question. To view the stack
for a thread, double-click on the thread of interest (or select it and click the Stack button).

	 Chapter 5  Processes, Threads, and Jobs	 383

Process Explorer displays the thread’s stack (both user and kernel, if the thread was in kernel
mode).

Note  While the user-mode debuggers (WinDbg, Ntsd, and Cdb) permit you to attach to a
process and display the user stack for a thread, Process Explorer shows both the user and kernel
stack in one easy click of a button. You can also examine user and kernel thread stacks using
WinDbg in local kernel debugging mode.

Viewing the thread stack can also help you determine why a process is hung. As an example,
on one system, Microsoft Office PowerPoint was hanging for one minute on startup. To
determine why it was hung, after starting PowerPoint, Process Explorer was used to examine
the thread stack of the one thread in the process. The result is shown in Figure 5-10.

Figure 5-10 Hung thread stack in PowerPoint

This thread stack shows that PowerPoint (line 10) called a function in Mso.dll (the central
Microsoft Office DLL), which called the OpenPrinterW function in Winspool.drv (a DLL used
to connect to printers). Winspool.drv then dispatched to a function OpenPrinterRPC, which
then called a function in the RPC runtime DLL, indicating it was sending the request to a
remote printer. So, without having to understand the internals of PowerPoint, the module
and function names displayed on the thread stack indicate that the thread was waiting to
connect to a network printer. On this particular system, there was a network printer that was
not responding, which explained the delay starting PowerPoint. (Microsoft Office applica-
tions connect to all configured printers at process startup.) The connection to that printer
was deleted from the user’s system, and the problem went away.

Finally, when looking at 32-bit applications running on 64-bit systems as a Wow64 process
(see Chapter 3 for more information on Wow64), Process Explorer shows both the 32-bit and
64-bit stack for threads. Because at the time of the system call proper, the thread has been
switched to a 64-bit stack and context, simply looking at the thread’s 64-bit stack would
reveal only half the story—the 64-bit part of the thread, with Wow64’s thunking code. So,
when examining Wow64 processes, be sure to take into account both the 32-bit and 64-bit
stacks. An example of a Wow64 thread inside Microsoft Office Word 2007 is shown in Figure
5-11. The stack frames highlighted in the box are the 32-bit stack frames from the 32-bit
stack.

384	 Windows Internals, Fifth Edition

Figure 5-11  Example Wow64 stack

Limitations on Protected Process Threads
As we discussed in the process internals section, protected processes have several limitations
in terms of which access rights will be granted, even to the users with the highest privileges
on the system. These limitations also apply to threads inside such a process. This ensures
that the actual code running inside the protected process cannot be hijacked or otherwise
affected through standard Windows functions, which require the access rights in Table 5-14.

Table 5-14  Thread Access Rights Denied for Threads Inside a Protected Process
Object: Access Mask Function
Thread: THREAD_ALL_ACCESS Disables full access to a thread inside a protected

process.

Thread: THREAD_DIRECT_IMPERSONATION Disables impersonating a thread inside a protected
process.

Thread: THREAD_GET_CONTEXT, THREAD_
SET_CONTEXT

Disables accessing and/or modifying the CPU context
(registers and stack) of a thread inside a protected
process.

Thread: THREAD_QUERY_INFORMATION Disables querying all information on a thread inside
a protected process. However, a new access right was
added, THREAD_QUERY_LIMITED_INFORMATION,
that grants limited access to information on the
thread.

	 Chapter 5  Processes, Threads, and Jobs	 385

Object: Access Mask Function
Thread: THREAD_SET_INFORMATION Disables setting all information on a thread inside a

protected process. However, a new access right was
added, THREAD_SET_LIMITED_INFORMATION, that
grants limited access to modifying information on
the thread.

Thread: THREAD_SET_THREAD_TOKEN Disables setting an impersonation token for a thread
inside a protected process.

Thread: THREAD_TERMINATE Disables terminating a thread inside a protected
process. Note that terminating all threads atomically
through process termination is allowed.

EXPERIMENT: Viewing Protected Process Thread Information
In the previous section, we took a look at how Process Explorer can be helpful in exam-
ining thread activity to determine the cause of potential system or application issues.
This time, we’ll use Process Explorer to look at a protected process and see how the dif-
ferent access rights being denied affect its ability and usefulness on such a process.

Find the Audiodg.exe service inside the process list. This is a process responsible for
much of the core work behind the user-mode audio stack in Windows Vista, and it
requires protection to ensure that high-definition decrypted audio content does not
leak out to untrusted sources. Bring up the process properties view and take a look
at the Image tab. Notice how the numbers for WS Private, WS Shareable, and WS
Shared are 0, although the total Working Set is still displayed. This is an example of
the THREAD_QUERY_INFORMATION versus THREAD_QUERY_LIMITED_INFORMATION
rights.

More importantly, take a look at the Threads tab. As you can see here, Process Explorer
is unable to show the Win32 thread start address and instead displays the standard
thread start wrapper inside Ntdll.dll. If you try clicking on the Stack button, you’ll get an
error, because Process Explorer needs to read the virtual memory inside the protected
process, which it can’t do.

386	 Windows Internals, Fifth Edition

Finally, note that although the Base and Dynamic priorities are shown, the I/O and
Memory priorities are not, another example of the limited versus full query information
access right. As you try to kill a thread inside Audiodg.exe, notice yet another access
denied error: recall the lack of THREAD_TERMINATE access shown earlier in Table 5-14.

Worker Factories (Thread Pools)
Worker factories refer to the internal mechanism used to implement user-mode thread
pools. Prior to Windows Vista, the thread pool routines were completely implemented in user
mode inside the Ntdll.dll library, and the Windows API provided various routines to call into
the relevant routines, which provided waitable timers, wait callbacks, and automatic thread
creation and deletion depending on the amount of work being done.

Note  Information on the new thread pool API is available on MSDN at http://msdn2.micro-
soft.com/en-us/library/ms686760.aspx. It includes information on the APIs introduced and
the APIs retired, as well as important differences in certain details of the way the two APIs are
implemented.

	 Chapter 5  Processes, Threads, and Jobs	 387

In Windows Vista, the thread pool implementation in user mode was completely re-archi-
tected, and part of the management functionality has been moved to kernel mode in order
to improve efficiency and performance and minimize complexity. The original thread pool
implementation required the user-mode code inside Ntdll.dll to remain aware of how many
threads were currently active as worker threads, and to enlarge this number in periods of
high demand.

Because querying the information necessary to make this decision, as well as the work to
create the threads, took place in user mode, several system calls were required that could
have been avoided if these operations were performed in kernel mode. Moving this code
into kernel mode means fewer transitions between user and kernel mode, and it allows Ntdll.
dll to manage the thread pool itself and not the system mechanisms behind it. It also pro-
vides other benefits, such as the ability to remotely create a thread pool in a process other
than the calling process (although possible in user mode, it would be very complex given the
necessity of using APIs to access the remote process’s address space).

The functionality in Windows Vista is introduced by a new object manager type called
TpWorkerFactory, as well as four new native system calls for managing the factory and
its workers—NtCreateWorkerFactory, NtWorkerFactoryWorkerReady, NtReleaseWorker
FactoryWorker, NtShutdownWorkerFactory—two new query/set native calls (NtQuery
InformationWorkerFactory and NtSetInformationWorkerFactory), and a new wait call,
NtWaitForWorkViaWorkerFactory.

Just like other native system calls, these calls provide user mode with a handle to the
TpWorkerFactory object, which contains information such as the name and object attributes,
the desired access mask, and a security descriptor. Unlike other system calls wrapped by
the Windows API, however, thread pool management is handled by Ntdll.dll’s native code,
which means that developers work with an opaque descriptor (a TP_WORK pointer) owned by
Ntdll.dll, in which the actual handle is stored.

As its name suggests, the worker factory implementation is responsible for allocating worker
threads (and calling the given user-mode worker thread entry point), maintaining a minimum
and maximum thread count (allowing for either permanent worker pools or totally dynamic
pools), as well as other accounting information. This enables operations such as shutting
down the thread pool to be performed with a single call to the kernel, because the kernel has
been the only component responsible for thread creation and termination.

Because the kernel dynamically creates new threads as requested, this also increases the scal-
ability of applications using the new thread pool implementation. Developers have always
been able to take advantage of as many threads as possible (based on the number of proces-
sors on the system) through the old implementation, but through support for dynamic pro-
cessors in Windows Vista (see the section on this topic later in this chapter), it’s now possible
for applications using thread pools to automatically take advantage of new processors added
at run time.

388	 Windows Internals, Fifth Edition

It’s important to note that the new worker factory support is merely a wrapper to manage
mundane tasks that would otherwise have to be performed in user mode (at a loss of per-
formance). Many of the improvements in the new thread pool code are the result of changes
in the Ntdll.dll side of this architecture. Also, it is not the worker factory code that provides
the scalability, wait internals, and efficiency of work processing. Instead, it is a much older
component of Windows that we have already discussed—I/O completion ports, or more cor-
rectly, kernel queues (KQUEUE; see Chapter 7 for more information).

In fact, when creating a worker factory, an I/O completion port must have already been cre-
ated by user mode, and the handle needs to be passed on. It is through this I/O completion
port that the user-mode implementation will queue work and also wait for work—but by
calling the worker factory system calls instead of the I/O completion port APIs. Internally,
however, the “release” worker factory call (which queues work) is a wrapper around
IoSetIoCompletion, which increases pending work, while the “wait” call is a wrapper around
IoRemoveIoCompletion. Both these routines call into the kernel queue implementation.

Therefore, the job of the worker factory code is to manage either a persistent, static, or
dynamic thread pool; wrap the I/O completion port model into interfaces that try to prevent
stalled worker queues by automatically creating dynamic threads; and to simplify global
cleanup and termination operations during a factory shutdown request (as well as to easily
block new requests against the factory in such a scenario).

Unfortunately, the data structures used by the worker factory implementation are not in the
public symbols, but it is still possible to look at some worker pools, as we’ll show in the next
experiment.

EXPERIMENT: Looking at Thread Pools
Because of the more efficient and simpler thread pool implementation in Windows
Vista, many core system components and applications were updated to make use of it.
One of the ways to identify which processes are using a worker factory is to look at the
handle list in Process Explorer. Follow these steps to look at some details behind them:

	 1.	 Run Process Explorer and select Show Unnamed Handles And Mappings from
the View menu. Unfortunately, worker factories aren’t named by Ntdll.dll, so you
need to take this step in order to see the handles.

	 2.	 Select Lsm.exe from the list of processes, and look at the handle table. Make sure
that the lower pane is shown (View, Show Lower Pane) and is displaying handle
table mode (View, Lower Pane View, Handles).

	 3.	 Right-click on the lower pane columns, and then click on Select Columns. Make
sure that the Type column is selected to be shown.

	 Chapter 5  Processes, Threads, and Jobs	 389

	 4.	 Now scroll down the handles, looking at the Type column, until you find a handle
of type TpWorkerFactory. You should see something like this:

Notice how the TpWorkerFactory handle is immediately preceded by an
IoCompletion handle. As was described previously, this occurs because before cre-
ating a worker factory, a handle to an I/O completion port on which work will be
sent must be created.

	 5.	 Now double-click Lsm.exe in the list of processes, and go to the Threads tab. You
should see something similar to the image here:

390	 Windows Internals, Fifth Edition

On this system (with two processors), the worker factory has created six worker
threads at the request of Lsm.exe (processes can define a minimum and maxi-
mum number of threads) and based on its usage and the count of processors on
the machine. These threads are identified as TppWorkerThread, which is Ntdll.dll’s
worker entry point when calling the worker factory system calls.

	 6.	 Ntdll.dll is responsible for its own internal accounting inside the worker thread
wrapper (TppWorkerThread) before calling the worker callback that the applica-
tion has registered. By looking at the Wait reason in the State information for
each thread, you can get a rough idea of what each worker thread may be doing.
Double-click on one of the threads inside an LPC wait to look at its stack. Here’s
an example:

This specific worker thread is being used by Lsm.exe for LPC communication.
Because the local session manager needs to communicate with other compo-
nents such as Smss and Csrss through LPC, it makes sense that it would want a
number of its threads to be busy replying and waiting for LPC messages (the
more threads doing this, the less stalling on the LPC pipeline).

If you look at other worker threads, you’ll see some are waiting for objects such as
events. A process can have multiple thread pools, and each thread pool can have a
variety of threads doing completely unrelated tasks. It’s up to the developer to assign
work and to call the thread pool APIs to register this work through Ntdll.dll.

	 Chapter 5  Processes, Threads, and Jobs	 391

Thread Scheduling
This section describes the Windows scheduling policies and algorithms. The first subsection
provides a condensed description of how scheduling works on Windows and a definition
of key terms. Then Windows priority levels are described from both the Windows API and
the Windows kernel points of view. After a review of the relevant Windows functions and
Windows utilities and tools that relate to scheduling, the detailed data structures and algo-
rithms that make up the Windows scheduling system are presented, with uniprocessor sys-
tems examined first and then multiprocessor systems.

Overview of Windows Scheduling
Windows implements a priority-driven, preemptive scheduling system—the highest-priority
runnable (ready) thread always runs, with the caveat that the thread chosen to run might be
limited by the processors on which the thread is allowed to run, a phenomenon called pro-
cessor affinity. By default, threads can run on any available processor, but you can alter pro-
cessor affinity by using one of the Windows scheduling functions listed in Table 5-15 (shown
later in the chapter) or by setting an affinity mask in the image header.

EXPERIMENT: Viewing Ready Threads
You can view the list of ready threads with the kernel debugger !ready command. This
command displays the thread or list of threads that are ready to run at each priority
level. In the following example, generated on a 32-bit machine with a dual-core proces-
sor, five threads are ready to run at priority 8 on the first processor, and three threads
at priority 10, two threads at priority 9, and six threads at priority 8 are ready to run on
the second processor. Determining which of these threads get to run on their respec-
tive processor is a complex result at the end of several algorithms that the scheduler
uses. We will cover this topic later in this section.

kd> !ready

Processor 0: Ready Threads at priority 8

 THREAD 857d9030 Cid 0ec8.0e30 Teb: 7ffdd000 Win32Thread: 00000000 READY

 THREAD 855c8300 Cid 0ec8.0eb0 Teb: 7ff9c000 Win32Thread: 00000000 READY

 THREAD 8576c030 Cid 0ec8.0c9c Teb: 7ffa8000 Win32Thread: 00000000 READY

 THREAD 85a8a7f0 Cid 0ec8.0d3c Teb: 7ff97000 Win32Thread: 00000000 READY

 THREAD 87d34488 Cid 0c48.04a0 Teb: 7ffde000 Win32Thread: 00000000 READY

Processor 1: Ready Threads at priority 10

 THREAD 857c0030 Cid 04c8.0378 Teb: 7ffdf000 Win32Thread: fef7f8c0 READY

 THREAD 856cc8e8 Cid 0e84.0a70 Teb: 7ffdb000 Win32Thread: f98fb4c0 READY

 THREAD 85c41c68 Cid 0e84.00ac Teb: 7ffde000 Win32Thread: ff460668 READY

Processor 1: Ready Threads at priority 9

 THREAD 87fc86f0 Cid 0ec8.04c0 Teb: 7ffd3000 Win32Thread: 00000000 READY

 THREAD 88696700 Cid 0ec8.0ce8 Teb: 7ffa0000 Win32Thread: 00000000 READY

392	 Windows Internals, Fifth Edition

Processor 1: Ready Threads at priority 8

 THREAD 856e5520 Cid 0ec8.0228 Teb: 7ff98000 Win32Thread: 00000000 READY

 THREAD 85609d78 Cid 0ec8.09b0 Teb: 7ffd9000 Win32Thread: 00000000 READY

 THREAD 85fdeb78 Cid 0ec8.0218 Teb: 7ff72000 Win32Thread: 00000000 READY

 THREAD 86086278 Cid 0ec8.0cc8 Teb: 7ff8d000 Win32Thread: 00000000 READY

 THREAD 8816f7f0 Cid 0ec8.0b60 Teb: 7ffd5000 Win32Thread: 00000000 READY

 THREAD 87710d78 Cid 0004.01b4 Teb: 00000000 Win32Thread: 00000000 READY

When a thread is selected to run, it runs for an amount of time called a quantum. A quantum
is the length of time a thread is allowed to run before another thread at the same priority
level (or higher, which can occur on a multiprocessor system) is given a turn to run. Quantum
values can vary from system to system and process to process for any of three reasons: sys-
tem configuration settings (long or short quantums), foreground/background status of the
process, or use of the job object to alter the quantum. (Quantums are described in more
detail in the “Quantum” section later in the chapter.) A thread might not get to complete
its quantum, however. Because Windows implements a preemptive scheduler, if another
thread with a higher priority becomes ready to run, the currently running thread might be
preempted before finishing its time slice. In fact, a thread can be selected to run next and be
preempted before even beginning its quantum!

The Windows scheduling code is implemented in the kernel. There’s no single “scheduler”
module or routine, however—the code is spread throughout the kernel in which scheduling-
related events occur. The routines that perform these duties are collectively called the ker-
nel’s dispatcher. The following events might require thread dispatching:

■■ A thread becomes ready to execute—for example, a thread has been newly created or
has just been released from the wait state.

■■ A thread leaves the running state because its time quantum ends, it terminates, it yields
execution, or it enters a wait state.

■■ A thread’s priority changes, either because of a system service call or because Windows
itself changes the priority value.

■■ A thread’s processor affinity changes so that it will no longer run on the processor on
which it was running.

At each of these junctions, Windows must determine which thread should run next. When
Windows selects a new thread to run, it performs a context switch to it. A context switch is
the procedure of saving the volatile machine state associated with a running thread, loading
another thread’s volatile state, and starting the new thread’s execution.

As already noted, Windows schedules at the thread granularity. This approach makes sense
when you consider that processes don’t run but only provide resources and a context in

	 Chapter 5  Processes, Threads, and Jobs	 393

which their threads run. Because scheduling decisions are made strictly on a thread basis, no
consideration is given to what process the thread belongs to. For example, if process A has 10
runnable threads, process B has 2 runnable threads, and all 12 threads are at the same prior-
ity, each thread would theoretically receive one-twelfth of the CPU time—Windows wouldn’t
give 50 percent of the CPU to process A and 50 percent to process B.

Priority Levels
To understand the thread-scheduling algorithms, you must first understand the priority lev-
els that Windows uses. As illustrated in Figure 5-12, internally Windows uses 32 priority levels,
ranging from 0 through 31. These values divide up as follows:

■■ Sixteen real-time levels (16 through 31)

■■ Fifteen variable levels (1 through 15)

■■ One system level (0), reserved for the zero page thread

16 real-time levels

15 variable levels

1 system level
(Zero page thread, one per system)

31

16
15

1
0

Figure 5-12  Thread priority levels

Thread priority levels are assigned from two different perspectives: those of the Windows API
and those of the Windows kernel. The Windows API first organizes processes by the priority
class to which they are assigned at creation (Real-time, High, Above Normal, Normal, Below
Normal, and Idle) and then by the relative priority of the individual threads within those pro-
cesses (Time-critical, Highest, Above-normal, Normal, Below-normal, Lowest, and Idle).

In the Windows API, each thread has a base priority that is a function of its process priority
class and its relative thread priority. The mapping from Windows priority to internal Windows
numeric priority is shown in Figure 5-13.

394	 Windows Internals, Fifth Edition

Real-time
time critical

Real-time
Levels 16–31

Real-time idle
Dynamic time

critical

Dynamic
Levels 1–15

Dynamic idle

Used for zero page thread—not available to Win32 applications

Idle

Below
Normal

Normal

Above
Normal

High

Real-time

31

24

16

15

13

10

8

6

4

0

1

Figure 5-13 Mapping of Windows kernel priorities to the Windows API

Whereas a process has only a single base priority value, each thread has two priority values:
current and base. Scheduling decisions are made based on the current priority. As explained
in the following section on priority boosting, the system under certain circumstances
increases the priority of threads in the dynamic range (1 through 15) for brief periods.
Windows never adjusts the priority of threads in the real-time range (16 through 31), so they
always have the same base and current priority.

A thread’s initial base priority is inherited from the process base priority. A process, by
default, inherits its base priority from the process that created it. This behavior can be over-
ridden on the CreateProcess function or by using the command-line start command. A pro-
cess priority can also be changed after being created by using the SetPriorityClass function

	 Chapter 5  Processes, Threads, and Jobs	 395

or various tools that expose that function, such as Task Manager and Process Explorer (by
right-clicking on the process and choosing a new priority class). For example, you can lower
the priority of a CPU-intensive process so that it does not interfere with normal system activi-
ties. Changing the priority of a process changes the thread priorities up or down, but their
relative settings remain the same. It usually doesn’t make sense, however, to change indi-
vidual thread priorities within a process, because unless you wrote the program or have the
source code, you don’t really know what the individual threads are doing, and changing their
relative importance might cause the program not to behave in the intended fashion.

Normally, the process base priority (and therefore the starting thread base priority) will
default to the value at the middle of each process priority range (24, 13, 10, 8, 6, or 4).
However, some Windows system processes (such as the Session Manager, service controller,
and local security authentication server) have a base process priority slightly higher than the
default for the Normal class (8). This higher default value ensures that the threads in these
processes will all start at a higher priority than the default value of 8. These system processes
use an internal system call (NtSetInformationProcess) to set their process base priority to a
numeric value other than the normal default starting base priority.

Windows Scheduling APIs
The Windows API functions that relate to thread scheduling are listed in Table 5-15. (For
more information, see the Windows API reference documentation.)

Table 5-15  Scheduling-Related APIs and Their Functions
API Function
Suspend/ResumeThread Suspends or resumes a paused thread from execution.

Get/SetPriorityClass Returns or sets a process’s priority class (base priority).

Get/SetThreadPriority Returns or sets a thread’s priority (relative to its process base
priority).

Get/SetProcessAffinityMask Returns or sets a process’s affinity mask.

SetThreadAffinityMask Sets a thread’s affinity mask (must be a subset of the process’s
affinity mask) for a particular set of processors, restricting it to
running on those processors.

SetInformationJobObject Sets attributes for a job; some of the attributes affect schedul-
ing, such as affinity and priority. (See the “Job Objects” section
later in the chapter for a description of the job object.)

GetLogicalProcessorInformation Returns details about processor hardware configuration (for
hyperthreaded and NUMA systems).

Get/SetThreadPriorityBoost Returns or sets the ability for Windows to boost the priority of
a thread temporarily. (This ability applies only to threads in the
dynamic range.)

SetThreadIdealProcessor Establishes a preferred processor for a particular thread, but
doesn’t restrict the thread to that processor.

396	 Windows Internals, Fifth Edition

API Function
Get/SetProcessPriorityBoost Returns or sets the default priority boost control state of the

current process. (This function is used to set the thread priority
boost control state when a thread is created.)

WaitForSingle/MultipleObject(s) Puts the current thread into a wait state until the specified
object(s) is/are satisfied, or until the specified time interval (fig-
ured in milliseconds [msec]) expires, if given.

SwitchToThread Yields execution to another thread (at priority 1 or higher) that
is ready to run on the current processor.

Sleep Puts the current thread into a wait state for a specified time in-
terval (figured in milliseconds [msec]). A zero value relinquishes
the rest of the thread’s quantum.

SleepEx Causes the current thread to go into a wait state until either an
I/O completion callback is completed, an APC is queued to the
thread, or the specified time interval ends.

Relevant Tools
You can change (and view) the base process priority with Task Manager and Process Explorer.
You can kill individual threads in a process with Process Explorer (which should be done, of
course, with extreme care).

You can view individual thread priorities with the Reliability and Performance Monitor,
Process Explorer, or WinDbg. While it might be useful to increase or lower the priority of a
process, it typically does not make sense to adjust individual thread priorities within a pro-
cess because only a person who thoroughly understands the program (in other words, typi-
cally only the developer himself) would understand the relative importance of the threads
within the process.

The only way to specify a starting priority class for a process is with the start command in the
Windows command prompt. If you want to have a program start every time with a specific
priority, you can define a shortcut to use the start command by beginning the command
with cmd /c. This runs the command prompt, executes the command on the command line,
and terminates the command prompt. For example, to run Notepad in the low-process prior-
ity, the shortcut would be cmd /c start /low Notepad.exe.

	 Chapter 5  Processes, Threads, and Jobs	 397

EXPERIMENT: Examining and Specifying Process and
Thread Priorities
Try the following experiment:

	 1.	 From an elevated command prompt, type start /realtime notepad. Notepad
should open.

	 2.	 Run Process Explorer and select Notepad.exe from the list of processes. Double-
click on Notepad.exe to show the process properties window, and then click on
the Threads tab, as shown here. Notice that the dynamic priority of the thread in
Notepad is 24. This matches the real-time value shown in this image:

	 3.	 Task Manager can show you similar information. Press Ctrl+Shift+Esc to start Task
Manager, and go to the Processes tab. Right-click on the Notepad.exe process,
and select the Set Priority option. You can see that Notepad’s process priority
class is Realtime, as shown in the following dialog box.

398	 Windows Internals, Fifth Edition

Windows System Resource Manager
Windows Server 2008 Enterprise Edition and Windows Server 2008 Datacenter Edition
include an optionally installable component called Windows System Resource Manager
(WSRM). It permits the administrator to configure policies that specify CPU utilization,
affinity settings, and memory limits (both physical and virtual) for processes. In addi-
tion, WSRM can generate resource utilization reports that can be used for accounting
and verification of service-level agreements with users.

Policies can be applied for specific applications (by matching the name of the image
with or without specific command-line arguments), users, or groups. The policies can
be scheduled to take effect at certain periods or can be enabled all the time.

After you have set a resource-allocation policy to manage specific processes, the WSRM
service monitors CPU consumption of managed processes and adjusts process base
priorities when those processes do not meet their target CPU allocations.

	 Chapter 5  Processes, Threads, and Jobs	 399

The physical memory limitation uses the function SetProcessWorkingSetSizeEx to set a
hard-working set maximum. The virtual memory limit is implemented by the service
checking the private virtual memory consumed by the processes. (See Chapter 9 for an
explanation of these memory limits.) If this limit is exceeded, WSRM can be configured
to either kill the processes or write an entry to the Event Log. This behavior could be
used to detect a process with a memory leak before it consumes all the available com-
mitted virtual memory on the system. Note that WSRM memory limits do not apply to
Address Windowing Extensions (AWE) memory, large page memory, or kernel memory
(nonpaged or paged pool).

Real-Time Priorities
You can raise or lower thread priorities within the dynamic range in any application; how-
ever, you must have the increase scheduling priority privilege to enter the real-time range. Be
aware that many important Windows kernel-mode system threads run in the real-time prior-
ity range, so if threads spend excessive time running in this range, they might block critical
system functions (such as in the memory manager, cache manager, or other device drivers).

Note  As illustrated in the following figure showing the x86 interrupt request levels (IRQLs),
although Windows has a set of priorities called real-time, they are not real-time in the common
definition of the term. This is because Windows doesn’t provide true real-time operating system
facilities, such as guaranteed interrupt latency or a way for threads to obtain a guaranteed execu-
tion time. For more information, see the sidebar “Windows and Real-Time Processing” in Chapter
3 as well as the MSDN Library article “Real-Time Systems and Microsoft Windows NT.”

Interrupt Levels vs. Priority Levels
As illustrated in the following figure of the interrupt request levels (IRQLs) for a 32-bit
system, threads normally run at IRQL 0 or 1. (For a description of how Windows uses
interrupt levels, see Chapter 3.) User-mode code always runs at IRQL 0. Because of this,
no user-mode thread, regardless of its priority, blocks hardware interrupts (although
high-priority real-time threads can block the execution of important system threads).
Only kernel-mode APCs execute at IRQL 1 because they interrupt the execution of a
thread. (For more information on APCs, see Chapter 3.) Threads running in kernel mode
can raise IRQL to higher levels, though—for example, while executing a system call that
involves thread dispatching.

400	 Windows Internals, Fifth Edition

31

30

29

28

27

26

3

1

2

0
Thread priorities 0–31

Hardware interrupts

Software interrupts

IRQLs

Device 1

DPC/dispatch

APC

Passive

High

Power fail

Inter-processor interrupt

Clock

Profile

Device n

Thread States
Before you can comprehend the thread-scheduling algorithms, you need to understand the
various execution states that a thread can be in. Figure 5-14 illustrates the state transitions
for threads. (The numeric values shown represent the value of the thread state performance
counter.) More details on what happens at each transition are included later in this section.

The thread states are as follows:

■■ Ready  A thread in the ready state is waiting to execute. When looking for a thread to
execute, the dispatcher considers only the pool of threads in the ready state.

■■ Deferred ready  This state is used for threads that have been selected to run on a spe-
cific processor but have not yet been scheduled. This state exists so that the kernel can
minimize the amount of time the systemwide lock on the scheduling database is held.

■■ Standby  A thread in the standby state has been selected to run next on a particular
processor. When the correct conditions exist, the dispatcher performs a context switch
to this thread. Only one thread can be in the standby state for each processor on the
system. Note that a thread can be preempted out of the standby state before it ever
executes (if, for example, a higher priority thread becomes runnable before the standby
thread begins execution).

■■ Running  Once the dispatcher performs a context switch to a thread, the thread enters
the running state and executes. The thread’s execution continues until its quantum ends
(and another thread at the same priority is ready to run), it is preempted by a higher
priority thread, it terminates, it yields execution, or it voluntarily enters the wait state.

	 Chapter 5  Processes, Threads, and Jobs	 401

■■ Waiting  A thread can enter the wait state in several ways: a thread can voluntarily
wait for an object to synchronize its execution, the operating system can wait on the
thread’s behalf (such as to resolve a paging I/O), or an environment subsystem can
direct the thread to suspend itself. When the thread’s wait ends, depending on the pri-
ority, the thread either begins running immediately or is moved back to the ready state.

■■ Gate Waiting  When a thread does a wait on a gate dispatcher object (see Chapter
3 for more information on gates), it enters the gate waiting state instead of the wait-
ing state. This difference is important when breaking a thread’s wait as the result of
an APC. Because gates don’t use the dispatcher lock, but a per-object lock, the kernel
needs to perform some unique locking operations when breaking the wait of a thread
waiting on a gate and a way to differentiate this from a normal wait.

■■ Transition  A thread enters the transition state if it is ready for execution but its kernel
stack is paged out of memory. Once its kernel stack is brought back into memory, the
thread enters the ready state.

■■ Terminated  When a thread finishes executing, it enters the terminated state. Once
the thread is terminated, the executive thread block (the data structure in nonpaged
pool that describes the thread) might or might not be deallocated. (The object man-
ager sets policy regarding when to delete the object.)

■■ Initialized  This state is used internally while a thread is being created.

Ready (1)

Deferred
ready (7) Running (2)

voluntary
switch

preemption,
quantum end

Init (0)

Terminate (4)Transition (6)

Standby (3)preempt

Waiting (5) or
Gate waiting (8)

Figure 5-14  Thread states and transitions

402	 Windows Internals, Fifth Edition

EXPERIMENT: Thread-Scheduling State Changes
You can watch thread-scheduling state changes with the Performance tool in Windows.
This utility can be useful when you’re debugging a multithreaded application and
you’re unsure about the state of the threads running in the process. To watch thread-
scheduling state changes by using the Performance tool, follow these steps:

	 1.	 Run Notepad (Notepad.exe).

	 2.	 Start the Performance tool by selecting Programs from the Start menu and then
selecting Reliability and Performance Monitor from the Administrative Tools
menu. Click on the Performance Monitor entry under Monitoring Tools.

	 3.	 Select chart view if you’re in some other view.

	 4.	 Right-click on the graph, and choose Properties.

	 5.	 Click the Graph tab, and change the chart vertical scale maximum to 7. (As you’ll
see from the explanation text for the performance counter, thread states are
numbered from 0 through 7.) Click OK.

	 6.	 Click the Add button on the toolbar to bring up the Add Counters dialog box.

	 7.	 Select the Thread performance object, and then select the Thread State counter.
Select the Show Description check box to see the definition of the values:

	 8.	 In the Instances box, select <All instances> and click Search. Scroll down until you
see the Notepad process (notepad/0); select it, and click the Add button.

	 9.	 Scroll back up in the Instances box to the Mmc process (the Microsoft
Management Console process running the System Monitor), select all the threads
(mmc/0, mmc/1, and so on), and add them to the chart by clicking the Add but-
ton. Before you click Add, you should see something like the following dialog box.

	 Chapter 5  Processes, Threads, and Jobs	 403

	 10.	 Now close the Add Counters dialog box by clicking OK

	 11.	 You should see the state of the Notepad thread (the very top line in the following
figure) as a 5, which, as shown in the explanation text you saw under step 7, rep-
resents the waiting state (because the thread is waiting for GUI input):

404	 Windows Internals, Fifth Edition

	 12.	 Notice that one thread in the Mmc process (running the Performance tool snap-
in) is in the running state (number 2). This is the thread that’s querying the thread
states, so it’s always displayed in the running state.

	 13.	 You’ll never see Notepad in the running state (unless you’re on a multiprocessor
system) because Mmc is always in the running state when it gathers the state of
the threads you’re monitoring.

Dispatcher Database
To make thread-scheduling decisions, the kernel maintains a set of data structures known
collectively as the dispatcher database, illustrated in Figure 5-15. The dispatcher database
keeps track of which threads are waiting to execute and which processors are executing
which threads.

To improve scalability, including thread-dispatching concurrency, Windows multiprocessor
systems have per-processor dispatcher ready queues, as illustrated in Figure 5-15. In this way
each CPU can check its own ready queues for the next thread to run without having to lock
the systemwide ready queues. (Versions of Windows before Windows Server 2003 used a
global database).

The per-processor ready queues, as well as the per-processor ready summary, are part of the
processor control block (PRCB) structure. (To see the fields in the PRCB, type dt nt!_prcb in
the kernel debugger.) The names of each component that we will talk about (in italics) are
field members of the PRCB structure.

The dispatcher ready queues (DispatcherReadyListHead) contain the threads that are in the
ready state, waiting to be scheduled for execution. There is one queue for each of the 32
priority levels. To speed up the selection of which thread to run or preempt, Windows main-
tains a 32-bit bit mask called the ready summary (ReadySummary). Each bit set indicates one
or more threads in the ready queue for that priority level. (Bit 0 represents priority 0, and so
on.)

Instead of scanning each ready list to see whether it is empty or not (which would make
scheduling decisions dependent on the number of different priority threads), a single bit scan
is performed as a native processor command to find the highest bit set. Regardless of the
number of threads in the ready queue, this operation takes a constant amount of time, which
is why you may sometimes see the Windows scheduling algorithm referred to as an O(1), or
constant time, algorithm.

	 Chapter 5  Processes, Threads, and Jobs	 405

Process

Thread 1 Thread 2

Ready summary

Deferred
ready queue

CPU 0
ready queues

31

0

31 0

Process

Thread 3 Thread 4

Ready summary

31 0
Deferred

ready queue

CPU 1
ready queues

31

0

Figure 5-15 Windows multiprocessor dispatcher database

Table 5-16 lists the KPRCB fields involved in thread scheduling.

Table 5-16  Thread-Scheduling KPRCB Fields
KPRCB Field Type Description
ReadySummary Bitmask (32 bits) Bitmask of priority levels that have

one or more ready threads

DeferredReadyListHead Singly linked list Single list head for the deferred
ready queue

DispatcherReadyListHead Array of 32 list entries List heads for the 32 ready queues

The dispatcher database is synchronized by raising IRQL to SYNCH_LEVEL (which is defined
as level 2). (For an explanation of interrupt priority levels, see the “Trap Dispatching” sec-
tion in Chapter 3.) Raising IRQL in this way prevents other threads from interrupting thread
dispatching on the processor because threads normally run at IRQL 0 or 1. However, on
a multiprocessor system, more is required than just raising IRQL because other proces-
sors can simultaneously raise to the same IRQL and attempt to operate on the dispatcher
database. How Windows synchronizes access to the dispatcher database is explained in the
“Multiprocessor Systems” section later in the chapter.

406	 Windows Internals, Fifth Edition

Quantum
As mentioned earlier in the chapter, a quantum is the amount of time a thread gets to run
before Windows checks to see whether another thread at the same priority is waiting to run.
If a thread completes its quantum and there are no other threads at its priority, Windows
permits the thread to run for another quantum.

On Windows Vista, threads run by default for 2 clock intervals; on Windows Server systems,
by default, a thread runs for 12 clock intervals. (We’ll explain how you can change these val-
ues later.) The rationale for the longer default value on server systems is to minimize context
switching. By having a longer quantum, server applications that wake up as the result of a cli-
ent request have a better chance of completing the request and going back into a wait state
before their quantum ends.

The length of the clock interval varies according to the hardware platform. The frequency
of the clock interrupts is up to the HAL, not the kernel. For example, the clock interval
for most x86 uniprocessors is about 10 milliseconds, and for most x86 and x64 multi-
processors it is about 15 milliseconds. This clock interval is stored in the kernel variable
KeMaximumIncrement as hundreds of nanoseconds.

Because of changes in thread run-time accounting in Windows Vista (briefly mentioned ear-
lier in the thread activity experiment), although threads still run in units of clock intervals, the
system does not use the count of clock ticks as the deciding factor for how long a thread has
run and whether its quantum has expired. Instead, when the system starts up, a calculation
is made whose result is the number of clock cycles that each quantum is equivalent to (this
value is stored in the kernel variable KiCyclesPerClockQuantum). This calculation is made by
multiplying the processor speed in Hz (CPU clock cycles per second) with the number of sec-
onds it takes for one clock tick to fire (based on the KeMaximumIncrement value described
above).

The end result of this new accounting method is that, as of Windows Vista, threads do not
actually run for a quantum number based on clock ticks; they instead run for a quantum
target, which represents an estimate of what the number of CPU clock cycles the thread has
consumed should be when its turn would be given up. This target should be equal to an
equivalent number of clock interval timer ticks because, as we’ve just seen, the calculation of
clock cycles per quantum is based on the clock interval timer frequency, which you can check
using the following experiment. On the other hand, because interrupt cycles are not charged
to the thread, the actual clock time may be longer.

	 Chapter 5  Processes, Threads, and Jobs	 407

EXPERIMENT: Determining the Clock Interval Frequency
The Windows GetSystemTimeAdjustment function returns the clock interval. To deter-
mine the clock interval, download and run the Clockres program from Windows
Sysinternals (www.microsoft.com/technet/sysinternals). Here’s the output from a dual-
core 32-bit Windows Vista system:

C:\>clockres

ClockRes - View the system clock resolution

By Mark Russinovich

SysInternals - www.sysinternals.com

The system clock interval is 15.600100 ms

Quantum Accounting
Each process has a quantum reset value in the kernel process block. This value is used when
creating new threads inside the process and is duplicated in the kernel thread block, which
is then used when giving a thread a new quantum target. The quantum reset value is stored
in terms of actual quantum units (we’ll discuss what these mean soon), which are then multi-
plied by the number of clock cycles per quantum, resulting in the quantum target.

As a thread runs, CPU clock cycles are charged at different events (context switches, inter-
rupts, and certain scheduling decisions). If at a clock interval timer interrupt, the number of
CPU clock cycles charged has reached (or passed) the quantum target, then quantum end
processing is triggered. If there is another thread at the same priority waiting to run, a con-
text switch occurs to the next thread in the ready queue.

Internally, a quantum unit is represented as one third of a clock tick (so one clock tick equals
three quantums). This means that on Windows Vista systems, threads, by default, have a
quantum reset value of 6 (2 * 3), and that Windows Server 2008 systems have a quantum
reset value of 36 (12 * 3). For this reason, the KiCyclesPerClockQuantum value is divided
by three at the end of the calculation previously described, since the original value would
describe only CPU clock cycles per clock interval timer tick.

The reason a quantum was stored internally as a fraction of a clock tick rather than as
an entire tick was to allow for partial quantum decay on wait completion on versions of
Windows prior to Windows Vista. Prior versions used the clock interval timer for quantum
expiration. If this adjustment were not made, it would have been possible for threads never
to have their quantums reduced. For example, if a thread ran, entered a wait state, ran again,
and entered another wait state but was never the currently running thread when the clock
interval timer fired, it would never have its quantum charged for the time it was running.
Because threads now have CPU clock cycles charged instead of quantums, and because this
no longer depends on the clock interval timer, these adjustments are not required.

408	 Windows Internals, Fifth Edition

EXPERIMENT: Determining the Clock Cycles per Quantum
Windows doesn’t expose the number of clock cycles per quantum through any func-
tion, but with the calculation and description we’ve given, you should be able to
determine this on your own using the following steps and a kernel debugger such as
WinDbg in local debugging mode.

	 1.	 Obtain your processor frequency as Windows has detected it. You can use the
value stored in the PRCB’s MHz field, which can be displayed with the !cpuinfo
command. Here is a sample output of a dual-core Intel system running at 2829
MHz.

lkd> !cpuinfo

CP F/M/S Manufacturer MHz PRCB Signature MSR 8B Signature Features

 0 6,15,6 GenuineIntel 2829 000000c700000000 >000000c700000000<a00f3fff

 1 6,15,6 GenuineIntel 2829 000000c700000000 a00f3fff

 Cached Update Signature 000000c700000000

 Initial Update Signature 000000c700000000

	 2.	 Convert the number to Hertz (Hz). This is the number of CPU clock cycles that
occur each second on your system. In this case, 2,829,000,000 cycles per second.

	 3.	 Obtain the clock interval on your system by using clockres. This measures how
long it takes before the clock fires. On the sample system used here, this interval
was 15.600100 ms.

	 4.	 Convert this number to the number of times the clock interval timer fires each
second. One second is 1000 ms, so divide the number derived in step 3 by 1000.
In this case, the timer fires every 0.0156001 second.

	 5. 	Multiply this count by the number of cycles each second that you obtained in
step 2. In our case, 44,132,682.9 cycles have elapsed after each clock interval.

	 6. 	Remember that each quantum unit is one-third of a clock interval, so divide the
number of cycles by three. In our example, this gives us 14,710,894, or 0xE0786E
in hexidecimal. This is the number of clock cycles each quantum unit should take
on a system running at 2829 MHz with a clock interval of around 15 ms.

	 7. 	To verify your calculation, dump the value of KiCyclesPerClockQuantum on your
system—it should match.

lkd> dd nt!KiCyclesPerClockQuantum l1

81d31ae8 00e0786e

Controlling the Quantum
You can change the thread quantum for all processes, but you can choose only one of two
settings: short (2 clock ticks, the default for client machines) or long (12 clock ticks, the
default for server systems).

	 Chapter 5  Processes, Threads, and Jobs	 409

Note  By using the job object on a system running with long quantums, you can select other
quantum values for the processes in the job. For more information on the job object, see the “Job
Objects” section later in the chapter.

To change this setting, right-click on your computer name’s icon on the desktop, choose
Properties, click the Advanced System Settings label, select the Advanced tab, click the
Settings button in the Performance section, and finally click the Advanced tab. The dialog
box displayed is shown in Figure 5-16.

Figure 5-16 Quantum configuration in the Performance Options dialog box

The Programs setting designates the use of short, variable quantums—the default for
Windows Vista. If you install Terminal Services on Windows Server 2008 systems and con-
figure the server as an application server, this setting is selected so that the users on the
terminal server will have the same quantum settings that would normally be set on a desktop
or client system. You might also select this manually if you were running Windows Server as
your desktop operating system.

The Background Services option designates the use of long, fixed quantums—the default for
Windows Server 2008 systems. The only reason you might select this option on a workstation
system is if you were using the workstation as a server system.

410	 Windows Internals, Fifth Edition

One additional difference between the Programs and Background Services settings is the
effect they have on the quantum of the threads in the foreground process. This is explained
in the next section.

Quantum Boosting
When a window is brought into the foreground on a client system, all the threads in the pro-
cess containing the thread that owns the foreground window have their quantums tripled.
Thus, threads in the foreground process run with a quantum of 6 clock ticks, whereas threads
in other processes have the default client quantum of 2 clock ticks. In this way, when you
switch away from a CPU-intensive process, the new foreground process will get proportion-
ally more of the CPU, because when its threads run they will have a longer turn than back-
ground threads (again, assuming the thread priorities are the same in both the foreground
and background processes).

Note that this adjustment of quantums applies only to processes with a priority higher than
Idle on systems configured to Programs in the Performance Options settings described in the
previous section. Thread quantums are not changed for the foreground process on systems
configured to Background Services (the default on Windows Server 2008 systems).

Quantum Settings Registry Value
The user interface to control quantum settings described earlier modifies the registry value
HKLM\SYSTEM\CurrentControlSet\Control\PriorityControl\Win32PrioritySeparation. In addi-
tion to specifying the relative length of thread quantums (short or long), this registry value
also defines whether or not threads in the foreground process should have their quantums
boosted (and if so, the amount of the boost). This value consists of 6 bits divided into the
three 2-bit fields shown in Figure 5-17.

Foreground
Quantum Boost

Variable vs.
Fixed

Short vs.
Long

024

Figure 5-17  Fields of the Win32PrioritySeparation registry value

The fields shown in Figure 5-17 can be defined as follows:

■■ Short vs. Long  A setting of 1 specifies long, and 2 specifies short. A setting of 0 or
3 indicates that the default will be used (short for Windows Vista, long for Windows
Server 2008 systems).

■■ Variable vs. Fixed  A setting of 1 means to vary the quantum for the foreground pro-
cess, and 2 means that quantum values don’t change for foreground processes. A set-
ting of 0 or 3 means that the default (which is variable for Windows Vista and fixed for
Windows Server 2008 systems) will be used.

	 Chapter 5  Processes, Threads, and Jobs	 411

■■ Foreground Quantum Boost  This field (stored in the kernel variable
PsPrioritySeperation) must have a value of 0, 1, or 2. (A setting of 3 is invalid
and treated as 2.) It is used as an index into a three-element byte array named
PspForegroundQuantum to obtain the quantum for the threads in the foreground pro-
cess. The quantum for threads in background processes is taken from the first entry in
this quantum table. Table 5-17 shows the possible settings for PspForegroundQuantum.

Table 5-17 Quantum Values
Short Long

Variable 6 12 18 12 24 36

Fixed 18 18 18 36 36 36

Note that when you’re using the Performance Options dialog box described earlier, you can
choose from only two combinations: short quantums with foreground quantums tripled, or
long quantums with no quantum changes for foreground threads. However, you can select
other combinations by modifying the Win32PrioritySeparation registry value directly.

EXPERIMENT: Effects of Changing the Quantum Configuration
Using a local debugger (Kd or WinDbg), you can see how the two quantum configura-
tion settings, Programs and Background Services, affect the PsPrioritySeperation and
PspForegroundQuantum tables, as well as modify the QuantumReset value of threads
on the system. Take the following steps:

	 1.	 Open the System utility in Control Panel (or right-click on your computer name’s
icon on the desktop, and choose Properties). Click the Advanced System Settings
label, select the Advanced tab, click the Settings button in the Performance sec-
tion, and finally click the Advanced tab. Select the Programs option and click
Apply. Keep this window open for the duration of the experiment.

	 2.	 Dump the values of PsPrioritySeperation (this is a deliberate misspelling inside the
Windows kernel, not an error in this book) and PspForegroundQuantum, as shown
here. The values shown are what you should see on a Windows Vista system after
making the change in step 1. Notice how the variable, short quantum table is
being used, and that a priority boost of 2 will apply to foreground applications.

lkd> dd PsPrioritySeperation l1

81d3101c 00000002

lkd> db PspForegroundQuantum l3

81d0946c 06 0c 12 ...

412	 Windows Internals, Fifth Edition

	 3.	 Now take a look at the QuantumReset value of any process on the system. As
described earlier, this is the default, full quantum of each thread on the system
when it is replenished. This value is cached into each thread of the process,
but the KPROCESS structure is easier to look at. Notice in this case it is 6, since
WinDbg, like most other applications, gets the quantum set in the first entry of
the PspForegroundQuantum table.

lkd> .process

Implicit process is now 85b32d90

lkd> dt _KPROCESS 85b32d90

nt!_KPROCESS

 +0x000 Header : _DISPATCHER_HEADER

 +0x010 ProfileListHead : _LIST_ENTRY [0x85b32da0 - 0x85b32da0]

 +0x018 DirectoryTableBase : 0xb45b0880

 +0x01c Unused0 : 0

 +0x020 LdtDescriptor : _KGDTENTRY

 +0x028 Int21Descriptor : _KIDTENTRY

 +0x030 IopmOffset : 0x20ac

 +0x032 Iopl : 0 ''

 +0x033 Unused : 0 ''

 +0x034 ActiveProcessors : 1

 +0x038 KernelTime : 0

 +0x03c UserTime : 0

 +0x040 ReadyListHead : _LIST_ENTRY [0x85b32dd0 - 0x85b32dd0]

 +0x048 SwapListEntry : _SINGLE_LIST_ENTRY

 +0x04c VdmTrapcHandler : (null)

 +0x050 ThreadListHead : _LIST_ENTRY [0x861e7e0c - 0x8620637c]

 +0x058 ProcessLock : 0

 +0x05c Affinity : 3

 +0x060 AutoAlignment : 0y0

 +0x060 DisableBoost : 0y0

 +0x060 DisableQuantum : 0y0

 +0x060 ReservedFlags : 0y00000000000000000000000000000 (0)

 +0x060 ProcessFlags : 0

 +0x064 BasePriority : 8 ''

 +0x065 QuantumReset : 6 ''

	 4.	 Now change the Performance option to Background Services in the dialog box
you opened in step 1.

	 5.	 Repeat the commands shown in steps 2 and 3. You should see the values change
in a manner consistent with our discussion in this section:

lkd> dd PsPrioritySeperation L1

81d3101c 00000000

lkd> db PspForegroundQuantum l 3

81d0946c 24 24 24 $$$

lkd> dt _KPROCESS 85b32d90

nt!_KPROCESS

 +0x000 Header : _DISPATCHER_HEADER

 +0x010 ProfileListHead : _LIST_ENTRY [0x85b32da0 - 0x85b32da0]

 +0x018 DirectoryTableBase : 0xb45b0880

 +0x01c Unused0 : 0

	 Chapter 5  Processes, Threads, and Jobs	 413

 +0x020 LdtDescriptor : _KGDTENTRY

 +0x028 Int21Descriptor : _KIDTENTRY

 +0x030 IopmOffset : 0x20ac

 +0x032 Iopl : 0 ''

 +0x033 Unused : 0 ''

 +0x034 ActiveProcessors : 1

 +0x038 KernelTime : 0

 +0x03c UserTime : 0

 +0x040 ReadyListHead : _LIST_ENTRY [0x85b32dd0 - 0x85b32dd0]

 +0x048 SwapListEntry : _SINGLE_LIST_ENTRY

 +0x04c VdmTrapcHandler : (null)

 +0x050 ThreadListHead : _LIST_ENTRY [0x861e7e0c - 0x860c14f4]

 +0x058 ProcessLock : 0

 +0x05c Affinity : 3

 +0x060 AutoAlignment : 0y0

 +0x060 DisableBoost : 0y0

 +0x060 DisableQuantum : 0y0

 +0x060 ReservedFlags : 0y00000000000000000000000000000 (0)

 +0x060 ProcessFlags : 0

 +0x064 BasePriority : 8 ''

 +0x065 QuantumReset : 36 '$'

Scheduling Scenarios
Windows bases the question of “Who gets the CPU?” on thread priority; but how does this
approach work in practice? The following sections illustrate just how priority-driven preemp-
tive multitasking works on the thread level.

Voluntary Switch
First a thread might voluntarily relinquish use of the processor by entering a wait state on
some object (such as an event, a mutex, a semaphore, an I/O completion port, a process, a
thread, a window message, and so on) by calling one of the Windows wait functions (such
as WaitForSingleObject or WaitForMultipleObjects). Waiting for objects is described in more
detail in Chapter 3.

Figure 5-18 illustrates a thread entering a wait state and Windows selecting a new thread
to run.

In Figure 5-18, the top block (thread) is voluntarily relinquishing the processor so that the
next thread in the ready queue can run (as represented by the halo it has when in the
Running column). Although it might appear from this figure that the relinquishing thread’s
priority is being reduced, it’s not—it’s just being moved to the wait queue of the objects the
thread is waiting for.

414	 Windows Internals, Fifth Edition

Priority

20

19

18

17

16

15

14

Running Ready

To wait state

Figure 5-18  Voluntary switching

Preemption
In this scheduling scenario, a lower-priority thread is preempted when a higher-priority
thread becomes ready to run. This situation might occur for a couple of reasons:

■■ A higher-priority thread’s wait completes. (The event that the other thread was waiting
for has occurred.)

■■ A thread priority is increased or decreased.

In either of these cases, Windows must determine whether the currently running thread
should still continue to run or whether it should be preempted to allow a higher-priority
thread to run.

Note  Threads running in user mode can preempt threads running in kernel mode—the mode in
which the thread is running doesn’t matter. The thread priority is the determining factor.

When a thread is preempted, it is put at the head of the ready queue for the priority it was
running at. Figure 5-19 illustrates this situation.

In Figure 5-19, a thread with priority 18 emerges from a wait state and repossesses the CPU,
causing the thread that had been running (at priority 16) to be bumped to the head of the
ready queue. Notice that the bumped thread isn’t going to the end of the queue but to the
beginning; when the preempting thread has finished running, the bumped thread can com-
plete its quantum.

	 Chapter 5  Processes, Threads, and Jobs	 415

Priority

18

17

16

15

14

13

Running Ready

From wait state

Figure 5-19  Preemptive thread scheduling

Quantum End
When the running thread exhausts its CPU quantum, Windows must determine whether the
thread’s priority should be decremented and then whether another thread should be sched-
uled on the processor.

If the thread priority is reduced, Windows looks for a more appropriate thread to schedule.
(For example, a more appropriate thread would be a thread in a ready queue with a higher
priority than the new priority for the currently running thread.) If the thread priority isn’t
reduced and there are other threads in the ready queue at the same priority level, Windows
selects the next thread in the ready queue at that same priority level and moves the previ-
ously running thread to the tail of that queue (giving it a new quantum value and changing
its state from running to ready). This case is illustrated in Figure 5-20. If no other thread of
the same priority is ready to run, the thread gets to run for another quantum.

Priority

14

13

15

12

11

Running Ready

Figure 5-20 Quantum end thread scheduling

416	 Windows Internals, Fifth Edition

As we’ve seen, instead of simply relying on a clock interval timer–based quantum to schedule
threads, Windows uses an accurate CPU clock cycle count to maintain quantum targets. One
factor we haven’t yet mentioned is that Windows also uses this count to determine whether
quantum end is currently appropriate for the thread—something that may have happened
previously and is important to discuss.

Under the scheduling model prior to Windows Vista, which relied only on the clock interval
timer, the following situation could occur:

■■ Threads A and B become ready to run during the middle of an interval (scheduling
code runs not just at each clock interval, so this is often the case).

■■ Thread A starts running but is interrupted for a while. The time spent handling the
interrupt is charged to the thread.

■■ Interrupt processing finishes, thread A starts running again, but it quickly hits the next
clock interval. The scheduler can only assume that thread A had been running all this
time and now switches to thread B.

■■ Thread B starts running and has a chance to run for a full clock interval (barring pre-
emption or interrupt handling).

In this scenario, thread A was unfairly penalized in two different ways. First of all, the time
that it had to spend handling a device interrupt was accounted to its own CPU time, even
though the thread had probably nothing to do with the interrupt. (Recall that interrupts
are handled in the context of whichever thread had been running at the time.) It was also
unfairly penalized for the time the system was idling inside that clock interval before it was
scheduled.

Figure 5-21 represents this scenario.

Threads A and B
become ready to run

Interval 2Interval 1

Thread A

Idle Thread B

Interrupt

Figure 5-21  Unfair time slicing in previous versions of Windows

Because Windows keeps an accurate count of the exact number of CPU clock cycles spent
doing work that the thread was scheduled to do (which means excluding interrupts), and
because it keeps a quantum target of clock cycles that should have been spent by the thread
at the end of its quantum, both of the unfair decisions that would have been made against
thread A will not happen in Windows.

	 Chapter 5  Processes, Threads, and Jobs	 417

Instead, the following situation will occur:

■■ Threads A and B become ready to run during the middle of an interval.

■■ Thread A starts running but is interrupted for a while. The CPU clock cycles spent han-
dling the interrupt are not charged to the thread.

■■ Interrupt processing finishes, thread A starts running again, but it quickly hits the
next clock interval. The scheduler looks at the number of CPU clock cycles that have
been charged to the thread and compares them to the expected CPU clock cycles that
should have been charged at quantum end.

■■ Because the former number is much smaller than it should be, the scheduler assumes
that thread A started running in the middle of a clock interval and may have addition-
ally been interrupted.

■■ Thread A gets its quantum increased by another clock interval, and the quantum target
is recalculated. Thread A now has its chance to run for a full clock interval.

■■ At the next clock interval, thread A has finished its quantum, and thread B now gets a
chance to run.

Figure 5-22 represents this scenario.

Threads A and B
become ready to run

Interval 2Interval 1 Interval 3

Interrupt

Idle Thread A Thread B

Figure 5-22  Fair time slicing in current versions of Windows

Termination
When a thread finishes running (either because it returned from its main routine, called
ExitThread, or was killed with TerminateThread), it moves from the running state to the termi-
nated state. If there are no handles open on the thread object, the thread is removed from
the process thread list and the associated data structures are deallocated and released.

418	 Windows Internals, Fifth Edition

Context Switching
A thread’s context and the procedure for context switching vary depending on the proces-
sor’s architecture. A typical context switch requires saving and reloading the following data:

■■ Instruction pointer

■■ Kernel stack pointer

■■ A pointer to the address space in which the thread runs (the process’s page table
directory)

The kernel saves this information from the old thread by pushing it onto the current (old
thread’s) kernel-mode stack, updating the stack pointer, and saving the stack pointer in the
old thread’s KTHREAD block. The kernel stack pointer is then set to the new thread’s kernel
stack, and the new thread’s context is loaded. If the new thread is in a different process,
it loads the address of its page table directory into a special processor register so that its
address space is available. (See the description of address translation in Chapter 9.) If a kernel
APC that needs to be delivered is pending, an interrupt at IRQL 1 is requested. Otherwise,
control passes to the new thread’s restored instruction pointer and the new thread resumes
execution.

Idle Thread
When no runnable thread exists on a CPU, Windows dispatches the per-CPU idle thread. Each
CPU is allotted one idle thread because on a multiprocessor system one CPU can be execut-
ing a thread while other CPUs might have no threads to execute.

Various Windows process viewer utilities report the idle process using different names.
Task Manager and Process Explorer call it “System Idle Process,” while Tlist calls it “System
Process.” If you look at the EPROCESS structure’s ImageFileName member, you’ll see the
internal name for the process is “Idle.” Windows reports the priority of the idle thread as 0
(15 on x64 systems). In reality, however, the idle threads don’t have a priority level because
they run only when there are no real threads to run—they are not scheduled and never part
of any ready queues. (Remember, only one thread per Windows system is actually running at
priority 0—the zero page thread, explained in Chapter 9.)

Apart from priority, there are many other fields in the idle process or its threads that may be
reported as 0. This occurs because the idle process is not an actual full-blown object man-
ager process object, and neither are its idle threads. Instead, the initial idle thread and idle
process objects are statically allocated and used to bootstrap the system before the process
manager initializes. Subsequent idle thread structures are allocated dynamically as additional
processors are brought online. Once process management initializes, it uses the special vari-
able PsIdleProcess to refer to the idle process.

	 Chapter 5  Processes, Threads, and Jobs	 419

Apart from some critical fields provided so that these threads and their process can have a
PID and name, everything else is ignored, which means that query APIs may simply return
zeroed data.

The idle loop runs at DPC/dispatch level, polling for work to do, such as delivering deferred
procedure calls (DPCs) or looking for threads to dispatch to. Although some details of the
flow vary between architectures, the basic flow of control of the idle thread is as follows:

	 1.	 Enables and disables interrupts (allowing any pending interrupts to be delivered).

	 2.	 Checks whether any DPCs (described in Chapter 3) are pending on the processor.
If DPCs are pending, clears the pending software interrupt and delivers them. (This
will also perform timer expiration, as well as deferred ready processing. The latter is
explained in the upcoming multiprocessor scheduling section.)

	 3.	 Checks whether a thread has been selected to run next on the processor, and if so, dis-
patches that thread.

	 4.	 Calls the registered power management processor idle routine (in case any power
management functions need to be performed), which is either in the processor power
driver (such as intelppm.sys) or in the HAL if such a driver is unavailable.

	 5.	 On debug systems, checks if there is a kernel debugger trying to break into the system
and gives it access.

	 6.	 If requested, checks for threads waiting to run on other processors and schedules them
locally. (This operation is also explained in the upcoming multiprocessor scheduling
section.)

Priority Boosts
In six cases, the Windows scheduler can boost (increase) the current priority value of threads:

■■ On completion of I/O operations

■■ After waiting for executive events or semaphores

■■ When a thread has been waiting on an executive resource for too long

■■ After threads in the foreground process complete a wait operation

■■ When GUI threads wake up because of windowing activity

■■ When a thread that’s ready to run hasn’t been running for some time (CPU starvation)

The intent of these adjustments is to improve overall system throughput and responsiveness
as well as resolve potentially unfair scheduling scenarios. Like any scheduling algorithms,
however, these adjustments aren’t perfect, and they might not benefit all applications.

420	 Windows Internals, Fifth Edition

Note  Windows never boosts the priority of threads in the real-time range (16 through 31).
Therefore, scheduling is always predictable with respect to other threads in the real-time range.
Windows assumes that if you’re using the real-time thread priorities, you know what you’re
doing.

Windows Vista adds one more scenario in which a priority boost can occur, multimedia play-
back. Unlike the other priority boosts, which are applied directly by kernel code, multimedia
playback boosts are managed by a user-mode service called the MultiMedia Class Scheduler
Service (MMCSS). (Although the boosts are still done in kernel mode, the request to boost
the threads is managed by this user-mode service.) We’ll first cover the typical kernel-
managed priority boosts and then talk about MMCSS and the kind of boosting it performs.

Priority Boosting after I/O Completion
Windows gives temporary priority boosts upon completion of certain I/O operations so
that threads that were waiting for an I/O will have more of a chance to run right away and
process whatever was being waited for. Recall that 1 quantum unit is deducted from the
thread’s remaining quantum when it wakes up so that I/O bound threads aren’t unfairly
favored. Although you’ll find recommended boost values in the Windows Driver Kit (WDK)
header files (by searching for “#define IO” in Wdm.h or Ntddk.h), the actual value for the
boost is up to the device driver. (These values are listed in Table 5-18.) It is the device driver
that specifies the boost when it completes an I/O request on its call to the kernel function
IoCompleteRequest. In Table 5-18, notice that I/O requests to devices that warrant better
responsiveness have higher boost values.

Table 5-18  Recommended Boost Values
Device Boost
Disk, CD-ROM, parallel, video 1

Network, mailslot, named pipe, serial 2

Keyboard, mouse 6

Sound 8

The boost is always applied to a thread’s current priority, not its base priority. As illustrated
in Figure 5-23, after the boost is applied, the thread gets to run for one quantum at the
elevated priority level. After the thread has completed its quantum, it decays one priority
level and then runs another quantum. This cycle continues until the thread’s priority level
has decayed back to its base priority. A thread with a higher priority can still preempt the
boosted thread, but the interrupted thread gets to finish its time slice at the boosted priority
level before it decays to the next lower priority.

	 Chapter 5  Processes, Threads, and Jobs	 421

Round-robin at
base priority

Boost upon
wait complete

Quantum

Priority decay at
quantum end

Preempt
(before quantum end)

RunRunWaitRun

Base
priority

Priority

Time

Figure 5-23  Priority boosting and decay

As noted earlier, these boosts apply only to threads in the dynamic priority range (0 through
15). No matter how large the boost is, the thread will never be boosted beyond level 15 into
the real-time priority range. In other words, a priority 14 thread that receives a boost of 5 will
go up to priority 15. A priority 15 thread that receives a boost will remain at priority 15.

Boosts After Waiting for Events and Semaphores
When a thread that was waiting for an executive event or a semaphore object has its wait
satisfied (because of a call to the function SetEvent, PulseEvent, or ReleaseSemaphore), it
receives a boost of 1. (See the value for EVENT_ INCREMENT and SEMAPHORE_INCREMENT
in the WDK header files.) Threads that wait for events and semaphores warrant a boost for
the same reason that threads that wait for I/O operations do—threads that block on events
are requesting CPU cycles less frequently than CPU-bound threads. This adjustment helps
balance the scales.

This boost operates the same as the boost that occurs after I/O completion, as described in
the previous section:

■■ The boost is always applied to the base priority (not the current priority).

■■ The priority will never be boosted above 15.

■■ The thread gets to run at the elevated priority for its remaining quantum (as described
earlier, quantums are reduced by 1 when threads exit a wait) before decaying one pri-
ority level at a time until it reaches its original base priority.

A special boost is applied to threads that are awoken as a result of setting an event with
the special functions NtSetEventBoostPriority (used in Ntdll.dll for critical sections) and
KeSetEventBoostPriority (used for executive resources) or if a signaling gate is used (such as
with pushlocks). If a thread waiting for an event is woken up as a result of the special event

422	 Windows Internals, Fifth Edition

boost function and its priority is 13 or below, it will have its priority boosted to be the setting
thread’s priority plus one. If its quantum is less than 4 quantum units, it is set to 4 quantum
units. This boost is removed at quantum end.

Boosts During Waiting on Executive Resources
When a thread attempts to acquire an executive resource (ERESOURCE; see Chapter 3 for
more information on kernel synchronization objects) that is already owned exclusively by
another thread, it must enter a wait state until the other thread has released the resource. To
avoid deadlocks, the executive performs this wait in intervals of five seconds instead of doing
an infinite wait on the resource.

At the end of these five seconds, if the resource is still owned, the executive will attempt
to prevent CPU starvation by acquiring the dispatcher lock, boosting the owning thread or
threads, and performing another wait. Because the dispatcher lock is held and the thread’s
WaitNext flag is set to TRUE, this ensures a consistent state during the boosting process until
the next wait is done.

This boost operates in the following manner:

■■ The boost is always applied to the base priority (not the current priority) of the owner
thread.

■■ The boost raises priority to 14.

■■ The boost is only applied if the owner thread has a lower priority than the waiting
thread, and only if the owner thread’s priority isn’t already 14.

■■ The quantum of the thread is reset so that the thread gets to run at the elevated prior-
ity for a full quantum, instead of only the quantum it had left. Just like other boosts, at
each quantum end, the priority boost will slowly decrease by one level.

Because executive resources can be either shared or exclusive, the kernel will first boost the
exclusive owner and then check for shared owners and boost all of them. When the waiting
thread enters the wait state again, the hope is that the scheduler will schedule one of the
owner threads, which will have enough time to complete its work and release the resource.
It’s important to note that this boosting mechanism is used only if the resource doesn’t have
the Disable Boost flag set, which developers can choose to set if the priority inversion mech-
anism described here works well with their usage of the resource.

Additionally, this mechanism isn’t perfect. For example, if the resource has multiple shared
owners, the executive will boost all those threads to priority 14, resulting in a sudden surge
of high-priority threads on the system, all with full quantums. Although the exclusive thread
will run first (since it was the first to be boosted and therefore first on the ready list), the
other shared owners will run next, since the waiting thread’s priority was not boosted. Only
until after all the shared owners have gotten a chance to run and their priority decreased

	 Chapter 5  Processes, Threads, and Jobs	 423

below the waiting thread will the waiting thread finally get its chance to acquire the resource.
Because shared owners can promote or convert their ownership from shared to exclusive
as soon as the exclusive owner releases the resource, it’s possible for this mechanism not to
work as intended.

Priority Boosts for Foreground Threads After Waits
Whenever a thread in the foreground process completes a wait operation on a kernel object,
the kernel function KiUnwaitThread boosts its current (not base) priority by the current
value of PsPrioritySeperation. (The windowing system is responsible for determining which
process is considered to be in the foreground.) As described in the section on quantum con-
trols, PsPrioritySeperation reflects the quantum-table index used to select quantums for the
threads of foreground applications. However, in this case, it is being used as a priority boost
value.

The reason for this boost is to improve the responsiveness of interactive applications—by
giving the foreground application a small boost when it completes a wait, it has a better
chance of running right away, especially when other processes at the same base priority
might be running in the background.

Unlike other types of boosting, this boost applies to all Windows systems, and you
can’t disable this boost, even if you’ve disabled priority boosting using the Windows
SetThreadPriorityBoost function.

EXPERIMENT: Watching Foreground Priority Boosts and Decays
Using the CPU Stress tool, you can watch priority boosts in action. Take the following
steps:

	 1.	 Open the System utility in Control Panel (or right-click on your computer name’s
icon on the desktop, and choose Properties). Click the Advanced System Settings
label, select the Advanced tab, click the Settings button in the Performance sec-
tion, and finally click the Advanced tab. Select the Programs option. This causes
PsPrioritySeperation to get a value of 2.

	 2.	 Run Cpustres.exe, and change the activity of thread 1 from Low to Busy.

	 3.	 Start the Performance tool by selecting Programs from the Start menu and then
selecting Reliability And Performance Monitor from the Administrative Tools
menu. Click on the Performance Monitor entry under Monitoring Tools.

	 4.	 Click the Add Counter toolbar button (or press Ctrl+I) to bring up the Add
Counters dialog box.

	 5.	 Select the Thread object, and then select the % Processor Time counter.

424	 Windows Internals, Fifth Edition

	 6.	 In the Instances box, select <All instances> and click Search. Scroll down until you
see the CPUSTRES process. Select the second thread (thread 1). (The first thread is
the GUI thread.) You should see something like this:

	 7.	 Click the Add button, and then click OK.

	 8.	 Select Properties from the Action menu. Change the Vertical Scale Maximum to
16 and set the interval to Sample Every N Seconds in the Graph Elements area.

	 Chapter 5  Processes, Threads, and Jobs	 425

	 9.	 Now bring the CPUSTRES process to the foreground. You should see the priority
of the CPUSTRES thread being boosted by 2 and then decaying back to the base
priority as follows:

	 10.	 The reason CPUSTRES receives a boost of 2 periodically is because the thread
you’re monitoring is sleeping about 25 percent of the time and then waking
up (this is the Busy Activity level). The boost is applied when the thread wakes
up. If you set the Activity level to Maximum, you won’t see any boosts because
Maximum in CPUSTRES puts the thread into an infinite loop. Therefore, the thread
doesn’t invoke any wait functions and as a result doesn’t receive any boosts.

	 11.	 When you’ve finished, exit Reliability and Performance Monitor and CPU Stress.

Priority Boosts After GUI Threads Wake Up
Threads that own windows receive an additional boost of 2 when they wake up because
of windowing activity such as the arrival of window messages. The windowing system
(Win32k.sys) applies this boost when it calls KeSetEvent to set an event used to wake up a
GUI thread. The reason for this boost is similar to the previous one—to favor interactive
applications.

426	 Windows Internals, Fifth Edition

EXPERIMENT: Watching Priority Boosts on GUI Threads
You can also see the windowing system apply its boost of 2 for GUI threads that wake
up to process window messages by monitoring the current priority of a GUI application
and moving the mouse across the window. Just follow these steps:

	 1.	 Open the System utility in Control Panel (or right-click on your computer name’s
icon on the desktop, and choose Properties). Click the Advanced System Settings
label, select the Advanced tab, click the Settings button in the Performance
section, and finally click the Advanced tab. Be sure that the Programs option is
selected. This causes PsPrioritySeperation to get a value of 2.

	 2.	 Run Notepad from the Start menu by selecting Programs/Accessories/Notepad.

	 3.	 Start the Performance tool by selecting Programs from the Start menu and then
selecting Reliability And Performance Monitor from the Administrative Tools
menu. Click on the Performance Monitor entry under Monitoring Tools.

	 4.	 Click the Add Counter toolbar button (or press Ctrl+I) to bring up the Add
Counters dialog box.

	 5.	 Select the Thread object, and then select the % Processor Time counter.

	 6.	 In the Instances box, select <All instances>, and then click Search. Scroll down
until you see Notepad thread 0. Click it, click the Add button, and then click OK.

	 7.	 As in the previous experiment, select Properties from the Action menu. Change
the Vertical Scale Maximum to 16, set the interval to Sample Every N Seconds in
the Graph Elements area, and click OK.

	 8.	 You should see the priority of thread 0 in Notepad at 8, 9, or 10. Because
Notepad entered a wait state shortly after it received the boost of 2 that threads
in the foreground process receive, it might not yet have decayed from 10 to 9
and then to 8.

	 9.	 With Reliability and Performance Monitor in the foreground, move the mouse
across the Notepad window. (Make both windows visible on the desktop.) You’ll
see that the priority sometimes remains at 10 and sometimes at 9, for the reasons
just explained. (The reason you won’t likely catch Notepad at 8 is that it runs so
little after receiving the GUI thread boost of 2 that it never experiences more than
one priority level of decay before waking up again because of additional window-
ing activity and receiving the boost of 2 again.)

	 10.	 Now bring Notepad to the foreground. You should see the priority rise to 12
and remain there (or drop to 11, because it might experience the normal priority
decay that occurs for boosted threads on the quantum end) because the thread is
receiving two boosts: the boost of 2 applied to GUI threads when they wake up

	 Chapter 5  Processes, Threads, and Jobs	 427

to process windowing input and an additional boost of 2 because Notepad is in
the foreground.

	 11.	 If you then move the mouse over Notepad (while it’s still in the foreground),
you might see the priority drop to 11 (or maybe even 10) as it experiences the
priority decay that normally occurs on boosted threads as they complete their
turn. However, the boost of 2 that is applied because it’s the foreground process
remains as long as Notepad remains in the foreground.

	 12.	 When you’ve finished, exit Reliability and Performance Monitor and Notepad.

Priority Boosts for CPU Starvation
Imagine the following situation: you have a priority 7 thread that’s running, preventing a pri-
ority 4 thread from ever receiving CPU time; however, a priority 11 thread is waiting for some
resource that the priority 4 thread has locked. But because the priority 7 thread in the middle
is eating up all the CPU time, the priority 4 thread will never run long enough to finish what-
ever it’s doing and release the resource blocking the priority 11 thread. What does Windows
do to address this situation?

We have previously seen how the executive code responsible for executive resources man-
ages this scenario by boosting the owner threads so that they can have a chance to run and
release the resource. However, executive resources are only one of the many synchronization
constructs available to developers, and the boosting technique will not apply to any other
primitive. Therefore, Windows also includes a generic CPU starvation relief mechanism as
part of a thread called the balance set manager (a system thread that exists primarily to per-
form memory management functions and is described in more detail in Chapter 9).

Once per second, this thread scans the ready queues for any threads that have been in the
ready state (that is, haven’t run) for approximately 4 seconds. If it finds such a thread, the bal-
ance set manager boosts the thread’s priority to 15 and sets the quantum target to an equiv-
alent CPU clock cycle count of 4 quantum units. Once the quantum is expired, the thread’s
priority decays immediately to its original base priority. If the thread wasn’t finished and a
higher priority thread is ready to run, the decayed thread will return to the ready queue,
where it again becomes eligible for another boost if it remains there for another 4 seconds.

The balance set manager doesn’t actually scan all ready threads every time it runs. To mini-
mize the CPU time it uses, it scans only 16 ready threads; if there are more threads at that
priority level, it remembers where it left off and picks up again on the next pass. Also, it will
boost only 10 threads per pass—if it finds 10 threads meriting this particular boost (which
would indicate an unusually busy system), it stops the scan at that point and picks up again
on the next pass.

428	 Windows Internals, Fifth Edition

Note  We mentioned earlier that scheduling decisions in Windows are not affected by the num-
ber of threads, and that they are made in constant time, or O(1). Because the balance set man-
ager does need to scan ready queues manually, this operation does depend on the number of
threads on the system, and more threads will require more scanning time. However, the balance
set manager is not considered part of the scheduler or its algorithms and is simply an extended
mechanism to increase reliability. Additionally, because of the cap on threads and queues to
scan, the performance impact is minimized and predictable in a worst-case scenario.

Will this algorithm always solve the priority inversion issue? No—it’s not perfect by any
means. But over time, CPU-starved threads should get enough CPU time to finish whatever
processing they were doing and reenter a wait state.

EXPERIMENT: Watching Priority Boosts for CPU Starvation
Using the CPU Stress tool, you can watch priority boosts in action. In this experiment,
we’ll see CPU usage change when a thread’s priority is boosted. Take the following steps:

	 1.	 Run Cpustres.exe. Change the activity level of the active thread (by default,
Thread 1) from Low to Maximum. Change the thread priority from Normal to
Below Normal. The screen should look like this:

	 2.	 Start the Performance tool by selecting Programs from the Start menu and then
selecting Reliability And Performance Monitor from the Administrative Tools
menu. Click on the Performance Monitor entry under Monitoring Tools.

	 3.	 Click the Add Counter toolbar button (or press Ctrl+I) to bring up the Add
Counters dialog box.

	 Chapter 5  Processes, Threads, and Jobs	 429

	 4.	 Select the Thread object, and then select the % Processor Time counter.

	 5.	 In the Instances box, select <All instances>, and then click Search. Scroll down
until you see the CPUSTRES process. Select the second thread (thread 1). (The first
thread is the GUI thread.) You should see something like this:

	

	 6.	 Click the Add button, and then click OK.

	 7.	 Raise the priority of Performance Monitor to real time by running Task Manager,
clicking the Processes tab, and selecting the Mmc.exe process. Right-click the pro-
cess, select Set Priority, and then select Realtime. (If you receive a Task Manager
Warning message box warning you of system instability, click the Yes button.) If you
have a multiprocessor system, you will also need to change the affinity of the pro-
cess: right-click and select Set Affinity. Then clear all other CPUs except for CPU 0.

	 8.	 Run another copy of CPU Stress. In this copy, change the activity level of Thread 1
from Low to Maximum.

	 9.	 Now switch back to Performance Monitor. You should see CPU activity every 6 or
so seconds because the thread is boosted to priority 15. You can force updates to
occur more frequently than every second by pausing the display with Ctrl+F, and
then pressing Ctrl+U, which forces a manual update of the counters. Keep Ctrl+U
pressed for continual refreshes.

When you’ve finished, exit Performance Monitor and the two copies of CPU Stress.

430	 Windows Internals, Fifth Edition

EXPERIMENT: “Listening” to Priority Boosting
To “hear” the effect of priority boosting for CPU starvation, perform the following steps
on a system with a sound card:

	 1.	 Because of MMCSS’s priority boosts (which we will describe in the next subsec-
tion), you will need to stop the MultiMedia Class Scheduler Service by open-
ing the Services management interface (Start, Programs, Administrative Tools,
Services).

	 2.	 Run Windows Media Player (or some other audio playback program), and begin
playing some audio content.

	 3.	 Run Cpustres, and set the activity level of Thread 1 to Maximum.

	 4.	 Raise the priority of Thread 1 from Normal to Time Critical.

	 5.	 You should hear the music playback stop as the compute-bound thread begins
consuming all available CPU time.

	 6.	 Every so often, you should hear bits of sound as the starved thread in the audio
playback process gets boosted to 15 and runs enough to send more data to the
sound card.

	 7.	 Stop Cpustres and Windows Media Player, and start the MMCSS service again.

Priority Boosts for MultiMedia Applications and Games (MMCSS)
As we’ve just seen in the last experiment, although Windows’s CPU starvation priority boosts
may be enough to get a thread out of an abnormally long wait state or potential deadlock,
they simply cannot deal with the resource requirements imposed by a CPU-intensive applica-
tion such as Windows Media Player or a 3D computer game.

Skipping and other audio glitches have been a common source of irritation among Windows
users in the past, and the user-mode audio stack in Windows Vista would have only made
the situation worse since it offers even more chances for preemption. To address this,
Windows Vista incorporates a new service (called MMCSS, described earlier in this chapter)
whose purpose is to ensure “glitch-free” multimedia playback for applications that register
with it.

MMCSS works by defining several tasks, including:

■■ Audio

■■ Capture

■■ Distribution

■■ Games

	 Chapter 5  Processes, Threads, and Jobs	 431

■■ Playback

■■ Pro Audio

■■ Window Manager

Note  You can find the settings for MMCSS, including a lists of tasks (which can be modi-
fied by OEMs to include other specific tasks as appropriate) in the registry keys under HKLM\
SOFTWARE\Microsoft\Windows NT\CurrentVersion\Multimedia\SystemProfile. Additionally, the
SystemResponsiveness value allows you to fine-tune how much CPU usage MMCSS guarantees to
low-priority threads.

In turn, each of these tasks includes information about the various properties that differenti-
ate them. The most important one for scheduling is called the Scheduling Category, which
is the primary factor determining the priority of threads registered with MMCSS. Table 5-19
shows the various scheduling categories.

Table 5-19  Scheduling Categories
Category Priority Description
High 23-26 Pro Audio threads running at a higher priority than any other thread on

the system except for critical system threads.

Medium 16-22 Threads part of a foreground application such as Windows Media Player.

Low 8-15 All other threads not part of the previous categories.

Exhausted 1-7 Threads that have exhausted their share of the CPU and will only continue
running if no other higher priority threads are ready to run.

The main mechanism behind MMCSS boosts the priority of threads inside a registered pro-
cess to the priority level matching their scheduling category and relative priority within this
category for a guaranteed period of time. It then lowers those threads to the Exhausted cat-
egory so that other, nonmultimedia threads on the system can also get a chance to execute.

By default, multimedia threads will get 80 percent of the CPU time available, while other
threads will receive 20 percent (based on a sample of 10 ms; in other words, 8 ms and 2 ms).
MMCSS itself runs at priority 27, since it needs to preempt any Pro Audio threads in order to
lower their priority to the Exhausted category.

It is important to emphasize that the kernel still does the actual boosting of the values inside
the KTHREAD (MMCSS simply makes the same kind of system call any other application
would do), and the scheduler is still in control of these threads. It is simply their high prior-
ity that makes them run almost uninterrupted on a machine, since they are in the real-time
range and well above threads that most user applications would be running in.

As was discussed earlier, changing the relative thread priorities within a process does not
usually make sense, and no tool allows this because only developers understand the impor-
tance of the various threads in their programs.

432	 Windows Internals, Fifth Edition

On the other hand, because applications must manually register with MMCSS and provide
it with information about what kind of thread this is, MMCSS does have the necessary data
to change these relative thread priorities (and developers are well aware that this will be
happening).

EXPERIMENT: “Listening” to MMCSS Priority Boosting
We are now going to perform the same experiment as the prior one but without dis-
abling the MMCSS service. In addition, we’ll take a look at the Performance tool to
check the priority of the Windows Media Player threads.

	 1.	 Run Windows Media Player (other playback programs may not yet take advan-
tage of the API calls required to register with MMCSS) and begin playing some
audio content.

	 2.	 If you have a multiprocessor machine, be sure to set the affinity of the
Wmplayer.exe process so that it only runs on one CPU (since we’ll be using only
one CPUSTRES worker thread).

	 3.	 Start the Performance tool by selecting Programs from the Start menu and then
selecting Reliability And Performance Monitor from the Administrative Tools
menu. Click on the Performance Monitor entry under Monitoring Tools.

	 4.	 Click the Add Counter toolbar button (or press Ctrl+I) to bring up the Add
Counters dialog box.

	 5.	 Select the Thread object, and then select the % Processor Time counter.

	 6.	 In the Instances box, select <All instances>, and then click Search. Scroll down
until you see Wmplayer, and then select all its threads. Click the Add button, and
then click OK.

	 7.	 As in the previous experiment, select Properties from the Action menu. Change
the Vertical Scale Maximum to 31, set the interval to Sample Every N Seconds in
the Graph Elements area, and click OK.

You should see one or more priority 21 threads inside Wmplayer, which will be
constantly running unless there is a higher-priority thread requiring the CPU after
they are dropped to the Exhausted category.

	 8.	 Run Cpustres, and set the activity level of Thread 1 to Maximum.

	 9.	 Raise the priority of Thread 1 from Normal to Time Critical.

	 10.	 You should notice the system slowing down considerably, but the music playback
will continue. Every so often, you’ll be able to get back some responsiveness from
the rest of the system. Use this time to stop Cpustres.

	 Chapter 5  Processes, Threads, and Jobs	 433

	 11.	 If the Performance tool was unable to capture data during the time Cpustres ran,
run it again, but use Highest instead of Time Critical. This change will slow down
the system less, but it still requires boosting from MMCSS, and, because once the
multimedia thread is put in the Exhausted category, there will always be a higher
priority thread requesting the CPU (CPUSTRES), you should notice Wmplayer’s
priority 21 thread drop every so often, as shown here.

MMCSS’s functionality does not stop at simple priority boosting, however. Because of the
nature of network drivers on Windows and the NDIS stack, DPCs are quite common mecha-
nisms for delaying work after an interrupt has been received from the network card. Because
DPCs run at an IRQL level higher than user-mode code (see Chapter 3 for more information
on DPCs and IRQLs), long-running network card driver code could still interrupt media play-
back during network transfers, or when playing a game for example.

Therefore, MMCSS also sends a special command to the network stack, telling it to throttle
network packets during the duration of the media playback. This throttling is designed to
maximize playback performance, at the cost of some small loss in network throughput (which
would not be noticeable for network operations usually performed during playback, such as
playing an online game). The exact mechanisms behind it do not belong to any area of the
scheduler, so we will leave them out of this description.

434	 Windows Internals, Fifth Edition

Note  The original implementation of the network throttling code had some design issues caus-
ing significant network throughput loss on machines with 1000 Mbit network adapters, especially
if multiple adapters were present on the system (a common feature of midrange motherboards).
This issue was analyzed by the MMCSS and networking teams at Microsoft and later fixed.

Multiprocessor Systems
On a uniprocessor system, scheduling is relatively simple: the highest-priority thread that
wants to run is always running. On a multiprocessor system, it is more complex, as Windows
attempts to schedule threads on the most optimal processor for the thread, taking into
account the thread’s preferred and previous processors, as well as the configuration of the
multiprocessor system. Therefore, while Windows attempts to schedule the highest-priority
runnable threads on all available CPUs, it only guarantees to be running the (single) highest-
priority thread somewhere.

Before we describe the specific algorithms used to choose which threads run where and
when, let’s examine the additional information Windows maintains to track thread and pro-
cessor state on multiprocessor systems and the two different types of multiprocessor systems
supported by Windows (hyperthreaded, multicore, and NUMA).

Multiprocessor Considerations in the Dispatcher Database
In addition to the ready queues and the ready summary, Windows maintains two bit-
masks that track the state of the processors on the system. (How these bitmasks are used
is explained in the upcoming section “Multiprocessor Thread-Scheduling Algorithms”.)
Following are the two bitmasks that Windows maintains:

■■ The active processor mask (KeActiveProcessors), which has a bit set for each usable pro-
cessor on the system (This might be less than the number of actual processors if the
licensing limits of the version of Windows running supports less than the number of
available physical processors.)

■■ The idle summary (KiIdleSummary), in which each set bit represents an idle processor

Whereas on uniprocessor systems, the dispatcher database is locked by raising IRQL to both
DPC/dispatch level and Synch level, on multiprocessor systems more is required, because
each processor could, at the same time, raise IRQL and attempt to operate on the dispatcher
database. (This is true for any systemwide structure accessed from high IRQL.) (See Chapter 3
for a general description of kernel synchronization and spinlocks.)

Because on a multiprocessor system one processor might need to modify another proces-
sor’s per-CPU scheduling data structures (such as inserting a thread that would like to run
on a certain processor), these structures are synchronized by using a new per-PRCB queued

	 Chapter 5  Processes, Threads, and Jobs	 435

spinlock, which is held at IRQL SYNCH_LEVEL. (See Table 5-20 for the various values of
SYNCH_LEVEL.) Thus, thread selection can occur while locking only an individual processor’s
PRCB, in contrast to doing this on Windows XP, where the systemwide dispatcher spinlock
had to be held.

Table 5-20 I RQL SYNCH_LEVEL on Multiprocessor Systems
CPU Type IRQL
Systems running on x86 27

Systems running on x64 12

Systems running on IA64 12

There is also a per-CPU list of threads in the deferred ready state. These represent threads
that are ready to run but have not yet been readied for execution; the actual ready opera-
tion has been deferred to a more appropriate time. Because each processor manipulates only
its own per-processor deferred ready list, this list is not synchronized by the PRCB spinlock.
The deferred ready thread list is processed before exiting the thread dispatcher, before per-
forming a context switch, and after processing a DPC. Threads on the deferred ready list are
either dispatched immediately or are moved to the per-processor ready queue for their pri-
ority level.

Note that the systemwide dispatcher spinlock still exists and is used, but it is held only for
the time needed to modify systemwide state that might affect which thread runs next. For
example, changes to synchronization objects (mutexes, events, and semaphores) and their
wait queues require holding the dispatcher lock to prevent more than one processor from
changing the state of such objects (and the consequential action of possibly readying threads
for execution). Other examples include changing the priority of a thread, timer expiration,
and swapping of thread kernel stacks.

Thread context switching is also synchronized by using a finer-grained per-thread spinlock,
whereas in Windows XP context switching was synchronized by holding a systemwide con-
text swap spinlock.

Hyperthreaded and Multicore Systems
As described in the “Symmetric Multiprocessing” section in Chapter 2, Windows supports
hyperthreaded and multicore multiprocessor systems in two primary ways:

	 1.	 Logical processors as well as per-package cores do not count against physical processor
licensing limits. For example, Windows Vista Home Basic, which has a licensed proces-
sor limit of 1, will use all four cores on a single processor system.

	 2.	 When choosing a processor for a thread, if there is a physical processor with all logi-
cal processors idle, a logical processor from that physical processor will be selected, as
opposed to choosing an idle logical processor on a physical processor that has another
logical processor running a thread.

436	 Windows Internals, Fifth Edition

EXPERIMENT: Viewing Hyperthreading Information
You can examine the information Windows maintains for hyperthreaded processors
using the !smt command in the kernel debugger. The following output is from a dual-
processor hyperthreaded Xeon system (four logical processors):

lkd> !smt

SMT Summary:

 KeActiveProcessors: ****---------------------------- (0000000f)

 KiIdleSummary: -***---------------------------- (0000000e)

No PRCB Set Master SMT Set #LP IAID

 0 ffdff120 Master *-*----------------------------- (00000005) 2 00

 1 f771f120 Master -*-*---------------------------- (0000000a) 2 06

 2 f7727120 ffdff120 *-*----------------------------- (00000005) 2 01

 3 f772f120 f771f120 -*-*---------------------------- (0000000a) 2 07

 Number of licensed physical processors: 2

Logical processors 0 and 1 are on separate physical processors (as indicated by the
term “Master”).

NUMA Systems
Another type of multiprocessor system supported by Windows is one with a nonuniform
memory access (NUMA) architecture. In a NUMA system, processors are grouped together in
smaller units called nodes. Each node has its own processors and memory and is connected
to the larger system through a cache-coherent interconnect bus. These systems are called
“nonuniform” because each node has its own local high-speed memory. While any processor
in any node can access all of memory, node-local memory is much faster to access.

The kernel maintains information about each node in a NUMA system in a data structure
called KNODE. The kernel variable KeNodeBlock is an array of pointers to the KNODE struc-
tures for each node. The format of the KNODE structure can be shown using the dt com-
mand in the kernel debugger, as shown here:

lkd> dt nt!_knode

nt!_KNODE

 +0x000 PagedPoolSListHead : _SLIST_HEADER

 +0x008 NonPagedPoolSListHead : [3] _SLIST_HEADER

 +0x020 PfnDereferenceSListHead : _SLIST_HEADER

 +0x028 ProcessorMask : Uint4B

 +0x02c Color : UChar

 +0x02d Seed : UChar

 +0x02e NodeNumber : UChar

 +0x02f Flags : _flags

 +0x030 MmShiftedColor : Uint4B

 +0x034 FreeCount : [2] Uint4B

 +0x03c PfnDeferredList : Ptr32 _SINGLE_LIST_ENTRY

 +0x040 CachedKernelStacks : _CACHED_KSTACK_LIST

	 Chapter 5  Processes, Threads, and Jobs	 437

EXPERIMENT: Viewing NUMA Information
You can examine the information Windows maintains for each node in a NUMA system
using the !numa command in the kernel debugger. The following partial output is from
a 32-processor NUMA system by NEC with 4 processors per node:

21: kd> !numa

NUMA Summary:

Number of NUMA nodes : 8

Number of Processors : 32

MmAvailablePages : 0x00F70D2C

KeActiveProcessors : ********************************--------------------------------

 (00000000ffffffff)

NODE 0 (E00000008428AE00):

 ProcessorMask : ****--

 Color : 0x00000000

 MmShiftedColor : 0x00000000

 Seed : 0x00000000

 Zeroed Page Count: 0x00000000001CF330

 Free Page Count : 0x0000000000000000

NODE 1 (E00001597A9A2200):

 ProcessorMask : ----****--

 Color : 0x00000001

 MmShiftedColor : 0x00000040

 Seed : 0x00000006

 Zeroed Page Count: 0x00000000001F77A0

 Free Page Count : 0x0000000000000004

The following partial output is from a 64-processor NUMA system from Hewlett-
Packard with 4 processors per node:

26: kd> !numa

NUMA Summary:

Number of NUMA nodes : 16

Number of Processors : 64

MmAvailablePages : 0x03F55E67

KeActiveProcessors : **

 (ffffffffffffffff)

NODE 0 (E000000084261900):

 ProcessorMask : ****--

 Color : 0x00000000

 MmShiftedColor : 0x00000000

 Seed : 0x00000001

 Zeroed Page Count: 0x00000000003F4430

 Free Page Count : 0x0000000000000000

438	 Windows Internals, Fifth Edition

NODE 1 (E0000145FF992200):

 ProcessorMask : ----****--

 Color : 0x00000001

 MmShiftedColor : 0x00000040

 Seed : 0x00000007

 Zeroed Page Count: 0x00000000003ED59A

 Free Page Count : 0x0000000000000000

Applications that want to gain the most performance out of NUMA systems can set the affin-
ity mask to restrict a process to the processors in a specific node. This information can be
obtained using the functions listed in Table 5-21. Functions that can alter thread affinity are
listed in Table 5-13.

Table 5-21  NUMA-Related Functions
Function Description
GetNumaHighestNodeNumber Retrieves the node that currently has the highest number.

GetNumaNodeProcessorMask Retrieves the processor mask for the specified node.

GetNumaProximityNode Returns the NUMA node number for the given proximity ID.

GetNumaProcessorNode Retrieves the node number for the specified processor.

How the scheduling algorithms take into account NUMA systems will be covered in the
upcoming section “Multiprocessor Thread-Scheduling Algorithms” (and the optimizations in
the memory manager to take advantage of node-local memory are covered in Chapter 9).

Affinity
Each thread has an affinity mask that specifies the processors on which the thread is allowed
to run. The thread affinity mask is inherited from the process affinity mask. By default, all
processes (and therefore all threads) begin with an affinity mask that is equal to the set of
active processors on the system—in other words, the system is free to schedule all threads
on any available processor.

However, to optimize throughput and/or partition workloads to a specific set of processors,
applications can choose to change the affinity mask for a thread. This can be done at several
levels:

■■ Calling the SetThreadAffinityMask function to set the affinity for an individual thread

■■ Calling the SetProcessAffinityMask function to set the affinity for all the threads in a
process. Task Manager and Process Explorer provide a GUI to this function if you right-
click a process and choose Set Affinity. The Psexec tool (from Sysinternals) provides a
command-line interface to this function. (See the –a switch.)

	 Chapter 5  Processes, Threads, and Jobs	 439

■■ By making a process a member of a job that has a jobwide affinity mask set using the
SetInformationJobObject function (Jobs are described in the upcoming “Job Objects”
section.)

■■ By specifying an affinity mask in the image header when compiling the application
(For more information on the detailed format of Windows images, search for “Portable
Executable and Common Object File Format Specification” on www.microsoft.com.)

You can also set the “uniprocessor” flag for an image (at compile time). If this flag is set,
the system chooses a single processor at process creation time and assigns that as the pro-
cess affinity mask, starting with the first processor and then going round-robin across all
the processors. For example, on a dual-processor system, the first time you run an image
marked as uniprocessor, it is assigned to CPU 0; the second time, CPU 1; the third time, CPU
0; the fourth time, CPU 1; and so on. This flag can be useful as a temporary workaround for
programs that have multithreaded synchronization bugs that, as a result of race conditions,
surface on multiprocessor systems but that don’t occur on uniprocessor systems. (This has
actually saved the authors of this book on two different occasions.)

EXPERIMENT: Viewing and Changing Process Affinity
In this experiment, you will modify the affinity settings for a process and see that pro-
cess affinity is inherited by new processes:

	 1.	 Run the command prompt (Cmd.exe).

	 2.	 Run Task Manager or Process Explorer, and find the Cmd.exe process in the pro-
cess list.

	 3.	 Right-click the process, and select Affinity. A list of processors should be dis-
played. For example, on a dual-processor system you will see this:

	 4.	 Select a subset of the available processors on the system, and click OK. The pro-
cess’s threads are now restricted to run on the processors you just selected.

	 5.	 Now run Notepad.exe from the command prompt (by typing Notepad.exe).

	 6.	 Go back to Task Manager or Process Explorer and find the new Notepad process.
Right-click it, and choose Affinity. You should see the same list of processors you
chose for the command prompt process. This is because processes inherit their
affinity settings from their parent.

440	 Windows Internals, Fifth Edition

Windows won’t move a running thread that could run on a different processor from one CPU
to a second processor to permit a thread with an affinity for the first processor to run on
the first processor. For example, consider this scenario: CPU 0 is running a priority 8 thread
that can run on any processor, and CPU 1 is running a priority 4 thread that can run on any
processor. A priority 6 thread that can run on only CPU 0 becomes ready. What happens?
Windows won’t move the priority 8 thread from CPU 0 to CPU 1 (preempting the priority 4
thread) so that the priority 6 thread can run; the priority 6 thread has to wait.

Therefore, changing the affinity mask for a process or a thread can result in threads getting
less CPU time than they normally would, as Windows is restricted from running the thread
on certain processors. Therefore, setting affinity should be done with extreme care—in most
cases, it is optimal to let Windows decide which threads run where.

Ideal and Last Processor
Each thread has two CPU numbers stored in the kernel thread block:

■■ Ideal processor, or the preferred processor that this thread should run on

■■ Last processor, or the processor on which the thread last ran

The ideal processor for a thread is chosen when a thread is created using a seed in the pro-
cess block. The seed is incremented each time a thread is created so that the ideal processor
for each new thread in the process will rotate through the available processors on the system.
For example, the first thread in the first process on the system is assigned an ideal processor
of 0. The second thread in that process is assigned an ideal processor of 1. However, the next
process in the system has its first thread’s ideal processor set to 1, the second to 2, and so on.
In that way, the threads within each process are spread evenly across the processors.

Note that this assumes the threads within a process are doing an equal amount of work. This
is typically not the case in a multithreaded process, which normally has one or more house-
keeping threads and then a number of worker threads. Therefore, a multithreaded applica-
tion that wants to take full advantage of the platform might find it advantageous to specify
the ideal processor numbers for its threads by using the SetThreadIdealProcessor function.

On hyperthreaded systems, the next ideal processor is the first logical processor on the next
physical processor. For example, on a dual-processor hyperthreaded system with four logi-
cal processors, if the ideal processor for the first thread is assigned to logical processor 0, the
second thread would be assigned to logical processor 2, the third thread to logical proces-
sor 1, the fourth thread to logical process 3, and so forth. In this way, the threads are spread
evenly across the physical processors.

On NUMA systems, when a process is created, an ideal node for the process is selected. The
first process is assigned to node 0, the second process to node 1, and so on. Then, the ideal
processors for the threads in the process are chosen from the process’s ideal node. The ideal

	 Chapter 5  Processes, Threads, and Jobs	 441

processor for the first thread in a process is assigned to the first processor in the node. As
additional threads are created in processes with the same ideal node, the next processor is
used for the next thread’s ideal processor, and so on.

Dynamic Processor Addition and Replacement
As we’ve seen, developers can fine-tune which threads are allowed to (and in the case of
the ideal processor, should) run on which processor. This works fine on systems that have a
constant number of processors during their run time (for example, desktop machines require
shutting down the computer to make any sort of hardware changes to the processor or their
count).

Today’s server systems, however, cannot afford the downtime that CPU replacement or addi-
tion normally requires. In fact, one of the times when adding a CPU is required for a server
is at times of high load that is above what the machine can support at its current level of
performance. Having to shut down the server during a period of peak usage would defeat
the purpose. To meet this requirement, the latest generation of server motherboards and
systems support the addition of processors (as well as their replacement) while the machine
is still running. The ACPI BIOS and related hardware on the machine have been specifically
built to allow and be aware of this need, but operating system participation is required for
full support.

Dynamic processor support is provided through the HAL, which will notify the kernel of a
new processor on the system through the function KeStartDynamicProcessor. This routine
does similar work to that performed when the system detects more than one processor at
startup and needs to initialize the structures related to them. When a dynamic processor
is added, a variety of system components perform some additional work. For example, the
memory manager allocates new pages and memory structures optimized for the CPU. It
also initializes a new DPC kernel stack while the kernel initializes the Global Descriptor Table
(GDT), the Interrupt Descriptor Table (IDT), the processor control region (PCR), the processor
control block (PRCB), and other related structures for the processor.

Other executive parts of the kernel are also called, mostly to initialize the per-processor loo-
kaside lists for the processor that was added. For example, the I/O manager, the executive
lookaside list code, the cache manager, and the object manager all use per-processor look
aside lists for their frequently allocated structures.

Finally, the kernel initializes threaded DPC support for the processor and adjusts exported
kernel variables to report the new processor. Different memory manager masks and pro-
cess seeds based on processor counts are also updated, and processor features need to be
updated for the new processor to match the rest of the system (for example, enabling virtu-
alization support on the newly added processor). The initialization sequence completes with
the notification to the Windows Hardware Error Architecture (WHEA) component that a new
processor is online.

442	 Windows Internals, Fifth Edition

The HAL is also involved in this process. It is called once to start the dynamic processor after
the kernel is aware of it, and it is called again after the kernel has finished initialization of
the processor. However, these notifications and callbacks only make the kernel aware and
respond to processor changes. Although an additional processor increases the throughput of
the kernel, it does nothing to help drivers.

To handle drivers, the system has a new default executive callback, the processor add call-
back, that drivers can register with for notifications. Similar to the callbacks that notify drivers
of power state or system time changes, this callback allows driver code to, for example, cre-
ate a new worker thread if desirable so that it can handle more work at the same time.

Once drivers are notified, the final kernel component called is the Plug and Play manager,
which adds the processor to the system’s device node and rebalances interrupts so that
the new processor can handle interrupts that were already registered for other processors.
Unfortunately, until now, CPU-hungry applications have still been left out of this process, but
Windows Server 2008 and Windows Vista Service Pack 1 have improved the process to allow
applications to be able to take advantage of newer processors as well.

However, a sudden change of affinity can have potentially breaking changes for a running
application (especially when going from a single-processor to a multiprocessor environment)
through the appearance of potential race conditions or simply misdistribution of work (since
the process might have calculated the perfect ratios at startup, based on the number of CPUs
it was aware of). As a result, applications do not take advantage of a dynamically added pro-
cessor by default—they must request it.

The Windows APIs SetProcessAffinityUpdateMode and QueryProcessAffinityMode (which use
the undocumented NtSet/QueryInformationProcess system call) tell the process manager that
these applications should have their affinity updated (by setting the AffinityUpdateEnable
flag in EPROCESS), or that they do not want to deal with affinity updates (by setting the
AffinityPermanent flag in EPROCESS). Once an application has told the system that its affinity
is permanent, it cannot later change its mind and request affinity updates, so this is a one-
time change.

As part of KeStartDynamicProcessor, a new step has been added after interrupts are
rebalanced, which is to call the process manager to perform affinity updates through
PsUpdateActiveProcessAffinity. Some Windows core processes and services already have
affinity updates enabled, while third-party software will need to be recompiled to take
advantage of the new API call. The System process, Svchost processes, and Smss are all com-
patible with dynamic processor addition.

Multiprocessor Thread-Scheduling Algorithms
Now that we’ve described the types of multiprocessor systems supported by Windows as
well as the thread affinity and ideal processor settings, we’re ready to examine how this

	 Chapter 5  Processes, Threads, and Jobs	 443

information is used to determine which threads run where. There are two basic decisions to
describe:

■■ Choosing a processor for a thread that wants to run

■■ Choosing a thread on a processor that needs something to do

Choosing a Processor for a Thread When There Are Idle Processors
When a thread becomes ready to run, Windows first tries to schedule the thread to run on an
idle processor. If there is a choice of idle processors, preference is given first to the thread’s
ideal processor, then to the thread’s previous processor, and then to the currently executing
processor (that is, the CPU on which the scheduling code is running).

To select the best idle processor, Windows starts with the set of idle processors that the
thread’s affinity mask permits it to run on. If the system is NUMA and there are idle CPUs in
the node containing the thread’s ideal processor, the list of idle processors is reduced to that
set. If this eliminates all idle processors, the reduction is not done. Next, if the system is run-
ning hyperthreaded processors and there is a physical processor with all logical processors
idle, the list of idle processors is reduced to that set. If that results in an empty set of proces-
sors, the reduction is not done.

If the current processor (the processor trying to determine what to do with the thread that
wants to run) is in the remaining idle processor set, the thread is scheduled on it. If the cur-
rent processor is not in the remaining set of idle processors, it is a hyperthreaded system,
and there is an idle logical processor on the physical processor containing the ideal processor
for the thread, the idle processors are reduced to that set. If not, the system checks whether
there are any idle logical processors on the physical processor containing the thread’s previ-
ous processor. If that set is nonzero, the idle processors are reduced to that list. Finally, the
lowest numbered CPU in the remaining set is selected as the processor to run the thread on.

Once a processor has been selected for the thread to run on, that thread is put in the
standby state and the idle processor’s PRCB is updated to point to this thread. When the idle
loop on that processor runs, it will see that a thread has been selected to run and will dis-
patch that thread.

Choosing a Processor for a Thread When There Are No Idle Processors
If there are no idle processors when a thread wants to run, Windows compares the priority of
the thread running (or the one in the standby state) on the thread’s ideal processor to deter-
mine whether it should preempt that thread.

If the thread’s ideal processor already has a thread selected to run next (waiting in the
standby state to be scheduled) and that thread’s priority is less than the priority of the thread
being readied for execution, the new thread preempts that first thread out of the standby

444	 Windows Internals, Fifth Edition

state and becomes the next thread for that CPU. If there is already a thread running on that
CPU, Windows checks whether the priority of the currently running thread is less than the
thread being readied for execution. If so, the currently running thread is marked to be pre-
empted and Windows queues an interprocessor interrupt to the target processor to preempt
the currently running thread in favor of this new thread.

Note  Windows doesn’t look at the priority of the current and next threads on all the CPUs—just
on the one CPU selected as just described. If no thread can be preempted on that one CPU, the
new thread is put in the ready queue for its priority level, where it awaits its turn to get sched-
uled. Therefore, Windows does not guarantee to be running all the highest-priority threads, but
it will always run the highest-priority thread.

If the ready thread cannot be run right away, it is moved into the ready state where it awaits
its turn to run. Note that threads are always put on their ideal processor’s per-processor
ready queues.

Selecting a Thread to Run on a Specific CPU
Because each processor has its own list of threads waiting to run on that processor, when a
thread finishes running, the processor can simply check its per-processor ready queue for the
next thread to run. If the per-processor ready queues are empty, the idle thread for that pro-
cessor is scheduled. The idle thread then begins scanning other processor’s ready queues for
threads it can run. Note that on NUMA systems, the idle thread first looks at processors on
its node before looking at other nodes’ processors.

CPU Rate Limits
As part of the new hard quota management system added in Windows Vista (which builds on
previous quota support present since the first version of Windows NT, but adds hard limits
instead of soft hints), support for limiting CPU usage was added to the system in three differ-
ent ways: per-session, per-user, or per-system. Unfortunately, information on enabling these
new limits has not yet been documented, and no tool that is part of the operating system
allows you to set these limits: you must modify the registry settings manually. Because all the
quotas—save one—are memory quotas, we will cover those in Chapter 9, which deals with
the memory manager, and focus our attention on the CPU rate limit.

The new quota system can be accessed through the registry key HKLM\SYSTEM\Current
ControlSet\Control\Session Manager\QuotaSystem, as well as through the standard NtSet
InformationProcess system call. CPU rate limits can therefore be set in one of three ways:

■■ By creating a new value called CpuRateLimit and entering the rate information.

	 Chapter 5  Processes, Threads, and Jobs	 445

■■ By creating a new key with the security ID (SID) of the account you want to limit, and
creating a CpuRateLimit value inside that key.

■■ By calling NtSetInformationProcess and giving it the process handle of the process to
limit and the CPU rate limiting information.

In all three cases, the CPU rate limit data is not a straightforward value; it is based on a com-
pressed bitfield, documented in the WDK as part of the RATE_QUOTA_LIMIT structure. The
bottom four bits define the rate phase, which can be expressed either as one, two, or three
seconds—this value defines how often the rate limiting should be applied and is called the
PS_RATE_PHASE. The rest of the bits are used for the actual rate, as a value representing a
percentage of maximum CPU usage. Because any number from 0 to 100 can be represented
with only 7 bits, the rest of the bits are unused. Therefore, a rate limit of 40 percent every 2
seconds would be defined by the value 0x282, or 101000 0010 in binary.

The process manager, which is responsible for enforcing the CPU rate limit, uses a variety of
system mechanisms to do its job. First of all, rate limiting is able to reliably work because of
the CPU cycle count improvements discussed earlier, which allow the process manager to
accurately determine how much CPU time a process has taken and know whether the limit
should be enforced. It then uses a combination of DPC and APC routines to throttle down
DPC and APC CPU usage, which are outside the direct control of user-mode developers but
still result in CPU usage in the system (in the case of a systemwide CPU rate limit).

Finally, the main mechanism through which rate limiting works is by creating an artificial wait
on a kernel gate object (making the thread uniquely bound to this object and putting it in a
wait state, which does not consume CPU cycles). This mechanism operates through the nor-
mal routine of an APC object queued to the thread or threads inside the process currently
responsible for the work. The gate is signaled by an internal worker thread inside the process
manager responsible for replenishment of the CPU usage, which is queued by a DPC respon-
sible for replenishing systemwide CPU usage requests.

Job Objects
A job object is a nameable, securable, shareable kernel object that allows control of one or
more processes as a group. A job object’s basic function is to allow groups of processes to be
managed and manipulated as a unit. A process can be a member of only one job object. By
default, its association with the job object can’t be broken and all processes created by the
process and its descendents are associated with the same job object as well. The job object
also records basic accounting information for all processes associated with the job and for
all processes that were associated with the job but have since terminated. Table 5-22 lists the
Windows functions to create and manipulate job objects.

446	 Windows Internals, Fifth Edition

Table 5-22  Windows API Functions for Jobs
Function Description
CreateJobObject Creates a job object (with an optional name)

OpenJobObject Opens an existing job object by name

AssignProcessToJobObject Adds a process to a job

TerminateJobObject Terminates all processes in a job

SetInformationJobObject Sets limits

QueryInformationJobObject Retrieves information about the job, such as CPU time, page fault
count, number of processes, list of process IDs, quotas or limits, and
security limits

The following are some of the CPU-related and memory-related limits you can specify for
a job:

■■ Maximum number of active processes  Limits the number of concurrently existing
processes in the job.

■■ Jobwide user-mode CPU time limit  Limits the maximum amount of user-mode CPU
time that the processes in the job can consume (including processes that have run
and exited). Once this limit is reached, by default all the processes in the job will be
terminated with an error code and no new processes can be created in the job (unless
the limit is reset). The job object is signaled, so any threads waiting for the job will be
released. You can change this default behavior with a call to EndOfJobTimeAction.

■■ Per-process user-mode CPU time limit  Allows each process in the job to accumulate
only a fixed maximum amount of user-mode CPU time. When the maximum is reached,
the process terminates (with no chance to clean up).

■■ Job scheduling class  Sets the length of the time slice (or quantum) for threads in pro-
cesses in the job. This setting applies only to systems running with long, fixed quantums
(the default for Windows Server systems). The value of the job-scheduling class deter-
mines the quantum as shown here:

Scheduling Class Quantum Units
0 6

1 12

2 18

3 24

4 30

5 36

6 42

7 48

8 54

9 Infinite if real-time; 60 otherwise

	 Chapter 5  Processes, Threads, and Jobs	 447

■■ Job processor affinity  Sets the processor affinity mask for each process in the job.
(Individual threads can alter their affinity to any subset of the job affinity, but processes
can’t alter their process affinity setting.)

■■ Job process priority class  Sets the priority class for each process in the job. Threads
can’t increase their priority relative to the class (as they normally can). Attempts to
increase thread priority are ignored. (No error is returned on calls to SetThreadPriority,
but the increase doesn’t occur.)

■■ Default working set minimum and maximum  Defines the specified working set
minimum and maximum for each process in the job. (This setting isn’t jobwide—each
process has its own working set with the same minimum and maximum values.)

■■ Process and job committed virtual memory limit  Defines the maximum amount of
virtual address space that can be committed by either a single process or the entire job.

Jobs can also be set to queue an entry to an I/O completion port object, which other threads
might be waiting for, with the Windows GetQueuedCompletionStatus function.

You can also place security limits on processes in a job. You can set a job so that each process
runs under the same jobwide access token. You can then create a job to restrict processes
from impersonating or creating processes that have access tokens that contain the local
administrator’s group. In addition, you can apply security filters so that when threads in pro-
cesses contained in a job impersonate client threads, certain privileges and security IDs (SIDs)
can be eliminated from the impersonation token.

Finally, you can also place user-interface limits on processes in a job. Such limits include
being able to restrict processes from opening handles to windows owned by threads outside
the job, reading and/or writing to the clipboard, and changing the many user-interface sys-
tem parameters via the Windows SystemParametersInfo function.

EXPERIMENT: Viewing the Job Object
You can view named job objects with the Performance tool. (See the Job Object and
Job Object Details performance objects.) You can view unnamed jobs with the kernel
debugger !job or dt nt!_ejob commands.

To see whether a process is associated with a job, you can use the kernel debugger
!process command or Process Explorer. Follow these steps to create and view an
unnamed job object:

	 1.	 From the command prompt, use the runas command to create a process running
the command prompt (Cmd.exe). For example, type runas /user:<domain>\
< username> cmd. You’ll be prompted for your password. Enter your password,
and a Command Prompt window will appear. The Windows service that executes
runas commands creates an unnamed job to contain all processes (so that it can
terminate these processes at logoff time).

448	 Windows Internals, Fifth Edition

	 2.	 From the command prompt, run Notepad.exe.

	 3.	 Then run Process Explorer and notice that the Cmd.exe and Notepad.exe pro-
cesses are highlighted as part of a job. (You can configure the colors used to
highlight processes that are members of a job by clicking Options, Configure
Highlighting.) Here is a screen shot showing these two processes:

	 4.	 Double-click either the Cmd.exe or Notepad.exe process to bring up the process
properties. You will see a Job tab in the process properties dialog box.

	 5.	 Click the Job tab to view the details about the job. In this case, there are no quo-
tas associated with the job, but there are two member processes:

	 Chapter 5  Processes, Threads, and Jobs	 449

	 6.	 Now run the kernel debugger on the live system, display the process list with
!process, and find the recently created process running Cmd.exe. Then display the
process block by using !process <process ID>, find the address of the job object,
and finally display the job object with the !job command. Here’s some partial
debugger output of these commands on a live system:

lkd> !process 0 0

**** NT ACTIVE PROCESS DUMP ****

 .

 .

PROCESS 8567b758 SessionId: 0 Cid: 0fc4 Peb: 7ffdf000 ParentCid: 00b0

 DirBase: 1b3fb000 ObjectTable: e18dd7d0 HandleCount: 19.

 Image: Cmd.exe

PROCESS 856561a0 SessionId: 0 Cid: 0d70 Peb: 7ffdf000 ParentCid: 0fc4

 DirBase: 2e341000 ObjectTable: e19437c8 HandleCount: 16.

 Image: Notepad.exe

lkd> !process 0fc4

Searching for Process with Cid == fc4

PROCESS 8567b758 SessionId: 0 Cid: 0fc4 Peb: 7ffdf000 ParentCid: 00b0

 DirBase: 1b3fb000 ObjectTable: e18dd7d0 HandleCount: 19.

 Image: Cmd.exe

 BasePriority 8

 .

 .

 Job 85557988

lkd> !job 85557988

Job at 85557988

 TotalPageFaultCount 0

 TotalProcesses 2

 ActiveProcesses 2

 TotalTerminatedProcesses 0

 LimitFlags 0

 MinimumWorkingSetSize 0

 MaximumWorkingSetSize 0

 ActiveProcessLimit 0

 PriorityClass 0

 UIRestrictionsClass 0

 SecurityLimitFlags 0

 Token 00000000

	 7.	 Finally, use the dt command to display the job object and notice the additional
fields shown about the job:

lkd> dt nt!_ejob 85557988

nt!_EJOB

 +0x000 Event : _KEVENT

 +0x010 JobLinks : _LIST_ENTRY [0x81d09478 - 0x87f55030]

 +0x018 ProcessListHead : _LIST_ENTRY [0x87a08dd4 - 0x8679284c]

 +0x020 JobLock : _ERESOURCE

 +0x058 TotalUserTime : _LARGE_INTEGER 0x0

450	 Windows Internals, Fifth Edition

 +0x060 TotalKernelTime : _LARGE_INTEGER 0x0

 +0x068 ThisPeriodTotalUserTime : _LARGE_INTEGER 0x0

 +0x070 ThisPeriodTotalKernelTime : _LARGE_INTEGER 0x0

 +0x078 TotalPageFaultCount : 0

 +0x07c TotalProcesses : 2

 +0x080 ActiveProcesses : 2

 +0x084 TotalTerminatedProcesses : 0

 +0x088 PerProcessUserTimeLimit : _LARGE_INTEGER 0x0

 +0x090 PerJobUserTimeLimit : _LARGE_INTEGER 0x0

 +0x098 LimitFlags : 0

 +0x09c MinimumWorkingSetSize : 0

 +0x0a0 MaximumWorkingSetSize : 0

 +0x0a4 ActiveProcessLimit : 0

 +0x0a8 Affinity : 0

 +0x0ac PriorityClass : 0 ''

 +0x0b0 AccessState : (null)

 +0x0b4 UIRestrictionsClass : 0

 +0x0b8 EndOfJobTimeAction : 0

 +0x0bc CompletionPort : 0x87e3d2e8

 +0x0c0 CompletionKey : 0x07a89508

 +0x0c4 SessionId : 1

 +0x0c8 SchedulingClass : 5

 +0x0d0 ReadOperationCount : 0

 +0x0d8 WriteOperationCount : 0

 +0x0e0 OtherOperationCount : 0

 +0x0e8 ReadTransferCount : 0

 +0x0f0 WriteTransferCount : 0

 +0x0f8 OtherTransferCount : 0

 +0x100 ProcessMemoryLimit : 0

 +0x104 JobMemoryLimit : 0

 +0x108 PeakProcessMemoryUsed : 0x19e

 +0x10c PeakJobMemoryUsed : 0x2ed

 +0x110 CurrentJobMemoryUsed : 0x2ed

 +0x114 MemoryLimitsLock : _EX_PUSH_LOCK

 +0x118 JobSetLinks : _LIST_ENTRY [0x8575cff0 - 0x8575cff0]

 +0x120 MemberLevel : 0

 +0x124 JobFlags : 0

Conclusion
In this chapter, we’ve examined the structure of processes and threads and jobs, seen how
they are created, and looked at how Windows decides which threads should run and for
how long.

In the next chapter we’ll look at a part of the system that’s received more attention in the last
few years than ever before, Windows security.

	 	 1183

Index

Symbols and
Numbers
! commands. See kernel debugger

commands
!analyze command, 1149
!apic command, 91
!devhandles command, 155–156
!devstack command, 579
!drvobj command, 671
!exqueue command, 200
!gflag command, 202
!handle command, 133, 154
!htrace command, 156
!idt command, 88–89, 102
!ioapic command, 91
!irp command, 1145–1147
!irql command, 95
!locks command, 191
!numa command, 437
!object command, 144, 489,

552–553
!obtrace command, 156
!pcr command, 62–64, 95
!pic command, 91
!process command

data displayed by, 345
identifying processes with, 144
job process associations,

displaying, 447–449
process page directory physical

addresses, 765
running processes, viewing all,

1144
!qlocks command, 176
!ready command, 391
!reg dumppool, 273
!reg findkcb, 278
!reg hivelist, 274
!reg kcb, 278
!reg openkeys, 278
!thread command, 376, 569
!timer command, 109
!vm command

memory data listed by, 703
memory exhaustion, checking

for, 1145
!wsle command, 830
.NET Framework components, 3
32-bit emulation on 64-bit

Windows. See Wow64
3DES (Triple-DES), 990–991

64-bit Windows versions (x64)
address space layouts, 745–746
address spaces, 15
CMPXCHG16B processor

instruction issue, 749–750
execution prevention, 714
Itanium versions. See IA64 CPUs
kernel mode code signing, 17
memory and processor support,

table of, 44–45
physical memory limits for,

818–819
process size limitations, 699
singly linked lists issue, 749–751
technologies supported by, 38
UAC virtualization disabled for

applications, 522
virtual addressing limitations,

749–751
x64 address translation, 773

A
AAM (Admin Approval Mode),

528–533
AcceptEx function, 1008
access checks

AccessCheck. See AccessCheck
tool

default security, 460
discretionary. See discretionary

access checks
events causing, 459–460
file object security, 460
integrity levels, 464–473
mandatory policies, 473
masks. See access masks
mechanics of, 459–461
ObCheckObjectAccess function

for, 459–460
ordering of ACEs, 497
referencing events causing, 460
SeAccessCheck function, 460
SIDs for, 461–464
tokens. See tokens
user-mode checks, 461

access control
access-denied errors, 909
ACEs. See ACEs (access control

entries)
ACLs. See ACLs (access control

lists)

checks. See access checks
desired access rights, 157, 1158
determining for objects, 492–501
discretionary. See discretionary

access control
effective permissions, 500
entries. See ACEs (access control

entries)
lists. See ACLs (access control lists)
mandatory integrity control, 22
masks. See access masks
object access checks. See access

checks
owner rights of objects, 495–497
privileged, 22
protected processes, 346–348
security descriptors for. See

security descriptors
stop codes from violations, 1122
tokens. See tokens
types of, 22
user logon test for, 518

access faults, page. See page faults
access masks

algorithm for applying, 496–497
DACL algorithm, role in, 495
defined, 486–487
granted-access masks, 495
protected processes, table for,

347
access tokens. See tokens
AccessCheck tool

object access, displaying, 158
object integrity levels, viewing,

472–473
security descriptors, viewing, 488

account rights
defined, 501
displaying, 501
functions for changing, 503
mechanism for, 502–503
table of user rights, 503

accounts
HKLM\SAM subkey, 258
local service account, 288, 291
local system. See local system

accounts
network service account, 290–291
privileges of. See privileges,

account
rights of. See account rights
service applications, for, 288–291
trusted facility management, 453

1184	 ACEs

ACEs (access control entries)
access masks, 496–497
ACLs, relation to, 1153
callback ACEs, 486–487
DACLs, types appearing in,

486–487
discretionary access checks using,

495
effective permissions, 500
GUI permissions editors issue,

498–499
inheritance flags, 487
inheritance mechanics, 490–492
order of, results from, 497–499
security descriptor interactions

with, 485–488
SIDs for, 462
system audit types, 488, 1176

ACLs (access control lists)
accumulation of ACE access rights,

487
assignment to new objects,

490–491
composition of, 486–487
defined, 1153
discretionary. See DACLs

(discretionary access control
lists)

displaying for objects, 157–158
entries in. See ACEs (access control

entries)
inheritance mechanics, 490–492
section objects, of, 713
service accounts, isolation issues

with, 294–300
system. See SACLs (system access

control lists)
ACPI (Advanced Configuration and

Power Interface), 636–638
act as part of operating system

privilege, 508, 510
activation stacks, thread, 381
Active Directory

ACE types for, 487
ADSI service interfaces, 1067
APIs for accessing, 1066–1067
authentication against, 518
connection security rules

management, 1052
defined, 454–455
Directory Services Restore mode,

1102
Distributed File System (DFS)

service, 1069–1071
ID lookups, 1067
IPSec for policies, 1050
MAPI support, 1067
SAM (Security Accounts Manager)

service, 1067
server name publishing, 1016

shadow copies, enabling, 688–689
Windows NT 4 networking APIs,

1067
Winsock support for, 1009, 1011

Active page state, 804
active partitions, 653–654
active processor masks, 434
add-device routines, 548, 607, 1153
address spaces

64-bit, 15, 745–751
ASLR for user address space,

757–761
AWE. See AWE (Address

Windowing Extension)
committing pages, 706–708
CreateProcess function, setup by,

355–357
granularity of allocations, 708
hypervisor managed, 238–239
kernel mode, 16
large address space aware images,

699, 739, 746
layouts of. See virtual address

space layouts
marshalling areas, 1167
pools. See pools, memory
private, 712
processes marked for extra space,

14–15
reserving pages, 706–708
section objects for mapping. See

section objects
shareable memory, 758
sizes of, 14–15
system. See system address spaces
user mode, 16
viewing with Vmmap utility,

758–759
virtual. See virtual address spaces
Wow64, 211
x86 address space layouts,

737–740
address translation

byte index fields, 768
caching of results, 768–769
defined, 761
IA64, 772
PAE, 769–771
page directory mechanics,

764–766
page table mechanics, 766–767
PTE mechanics, 762–763, 766–767
steps for, 764
translation look-aside buffers,

767–769
x64, 773
x86 mechanics overview, 762–764

Address Windowing Extension.
See AWE (Address Windowing
Extension)

Admin Approval Mode (AAM),
528–533

administrative rights, 473–474,
528–533

Advanced Configuration and Power
Interface (ACPI), 636–638

Advanced Encryption Standard
(AES), 990–991

Advanced Local Procedure Calls.
See ALPCs (Advanced Local
Procedure Calls)

AES (Advanced Encryption
Standard), 990–991

AFD (Ancillary Function Driver),
1012

affinity manager, LFH, 733
affinity masks

defined, 1153
drawbacks of, 440
functions for, 395
image headers, setting in, 439
job processor affinity setting, 447
job wide, 439
NUMA functions, 438
SetProcessAffinityMask function,

438
SetThreadAffinityMask function,

438
setting for processes, 439
thread affinity masks, 438–439
uniprocessor flags, 439

aging, 1153
AIS (application information

service), 529–531
alertable wait states, 1153–1154
AllocateUserPhysicalPages function,

720
allocation. See memory manager
allocation granularity values, 708,

1153–1154
Allow logon rights, table of, 503
ALPCs (Advanced Local Procedure

Calls)
client-server connections,

205–206
components using, 202–203
defined, 202, 1153
LPCs, 203
message exchange methods,

204–205
port objects, 205–206, 1170
role in executive, 60
RPC use of, 202–204, 1017–1018
securing, 206
security component use of, 457
UMDF support, 203
viewing, 203–204
Winlogon to Lsass, 515

altitudes, 170, 280, 1154
AMD64, 38

	 authentication	 1185

ANSI string parameters, 23–24
APCs (asynchronous procedure

calls)
APC level IRQL, 97
defined, 1154
device driver use of, 113
disabling, 112
executive use of, 112
I/O completion with, 575–577
interrupts, 112–114
KTHREAD field for, 373
modes with, 112
objects, 112
queues, 112, 1154
thread control with, 112
types of, 112–113
user mode, 113
wait queue reordering by, 114

APICs (Advanced Programmable
Interrupt Controllers)

BCD option for maximum
processor number, 1080

hypervisors with, 238
IRQ to IRQL mapping, 96
mechanics of, 89–91

APIs (application programming
interfaces)

AuthZ, 500–501
DeviceIoControlFile API, 214–215
HTTP Server API, 1019–1021
Hyper-V API library, 232
I/O subsystem API, 1162
job related, table of, 446
scheduling related, 395–396
translating DLL API functions to

service calls, 54
Win32. See Win32 API
Windows. See Windows API
Windows Networking API,

1033–1036
application information service

(AIS), 529–531
application layer, OSI, 1002
Application Verifier tool, 604
applications

compatibility shims, 522–523
crashes following new installations

of, 1124–1125
foreground, 1161
installing, UAC issues with. See

UAC (User Account Control)
legacy, well-known installers,

1111–1112
native applications, 1168
registries, reading during startup,

250
services. See service applications
Software Restriction Policies

controls for, 533–535
user, 36

architecture
applications in separate mode, 34
assembly language components,

38–39
boot process abstraction, 1073
C language, 35
checked build version, 47–49
core components, file names of,

37–38
design goals of Windows NT,

33–34
device drivers, 68–69
diagram of, 35–36, 49
executive component of, 37
fast LPC, 55
HAL (hardware abstraction layer),

37–39
hardware isolation by kernel,

64–65
Hyper-V, 230–231, 235–236
kernel mode, 34–35, 37
layered design, 38
microkernel-based operating

systems, 34–35
monolithic operating systems, 34
networking, overview of, 1001
Ntdll.dll, 57–58
object-oriented kernel code, 35
operating system model, 34–35
portability, 38–39
scalability of, 43
server versions compared to client

versions, 43–47
subsystem DLLs, 36–37
system processes. See system

processes
user-mode components, 36
windowing and graphics system,

37
Windows Driver Model. See WDM

(Windows Driver Model) drivers
Windows subsystem. See

Windows subsystem
WMI, 318–319

ARIES (Algorithm for Recovery and
Isolation Exploiting Semantics),
910

ASLR (Address Space Layout
Randomization)

disabling, 759
heap randomization, 760
image randomization by, 759–760
mechanics of, 759
purpose of, 757
stack randomization, 760
viewing processes for support

status, 761
ASMP (asymmetric multiprocessing),

39, 1154

ASR (Automated System Recovery).
See Complete PC Restore

assemblies, 364–366
assembly language components of

Windows, 38–39
asynchronous I/O

cancellations, 588
defined, 1154
Driver Verifier completion

simulation, 606
mechanics of, 563
requests to layered drivers,

578–587
asynchronous read-ahead with

history, 876, 1154
asynchronous RPC, 1015–1016
Ataport.sys, 647
ATL (Active Template Library) DEP

compatibility, 716
atomic execution, 197
atomic transactions, 918–919, 1154.

See also NTFS recovery support
Attachment Execution Service, 921
attribute lists, NTFS, 1154–1155
attributes, file

attribute definition tables,
940–941

attribute streams, 942
resident attributes, 948–951
table of, 943–944
type codes, 944
unnamed data attribute, 942

attributes, object. See object
attributes

audio, 346–347, 430–434
auditing, security

audit events, 511
defined, 1173–1174
local security policy, 511
Lsass support for, 511
privilege for, 505
privileges related to, 511
queuing of messages for, 512
TCSEC rating criteria for, 452

authentication
AuthIP, 1051–1052
calls to, 514
credential providers, 79
data origin authentication, 1050
IPSec-supported methods, 1051
Kerberos. See Kerberos

authentication
levels of, 1017
LSASS. See LSASS (local security

authentication server process)
MSV1_0, 513, 517–518
packages (DLLs), 455, 513, 1155
RPC, for, 1017
user logons, packages for, 517

1186	 authority, P2P

authority, P2P, 1040
AuthZ API, 500–501
Autochk, 1094
automatic working set trimming,

1155
auto-reset events, 195
Autoruns tool, 1011, 1100
AWE (Address Windowing

Extension)
defined, 1153
mechanics of, 719–721
purpose of, 15

B
Background Intelligent Transfer

Service (BITS), 1030
backups, 506, 692–693, 999
bad cluster files, 940–941, 1155
Bad page state, 804
bad-cluster remapping, 1155
balance set manager

defined, 1155
mechanics of, 427–430
memory manager, as a

component of, 700
system thread, as a, 76
working set expansion and

trimming by, 831–832
bandwidth reservation for I/O,

603–604
base LSNs, 973
base priority determination, 393
BaseNamedObjects namespace, 167
basic disks

defined, 652–653, 1155
enumeration of, 655
GPT partitioning, 654
MBR partitioning, 653–654
types of devices limited to, 653
volume manager with, 655

basic volumes, mounting, 667–668
.bat files, process creation for, 353
BCD (Boot Configuration Database)

bad physical pages list, 1079
BCDEdit utility, 256
Bootmgr file read of, 1077
debugging options, 1079–1080,

1148–1149
default selection by Bootmgr,

1084
editing tool for, 1078
entry storage, 255
HKEY_LOCAL_MACHINE\BCD,

255–257
hypervisor options, 1081
multiple boot selection entries

in, 1078
optional argument for Bootmgr,

1078

options for boot applications,
table of, 1079–1080

preparation by Setup, 1077
Registry Editor for editing,

256–257
troubleshooting configuration

issues, 1109–1110
watermarked desktop option,

1080
Winload options, 1080–1084

BFE (base filtering engine), 1047
binding, network, 1064–1065
bins, registry, 269–272
BIOS (basic I/O system)

BitLocker boot process, 683
boot process files, table of,

1074–1075
MBR reads by, 653
setup process for, 1073–1077
x64 vs. x86 boots, 1073

BitLocker
architecture of, 677–678
boot process, 683–684
cryptography algorithms of, 679
defined, 1155
Elephant diffuser algorithm, 681,

686
foreign volumes, 685
FVE (full volume encryption), 686
FVEK with, 679
Group Policy for, 687
key escrow services, 687
keys, 679–681
major protection capabilities of,

677
management of, 687
passwords for recovery, 684–685
PCRs (platform configuration

registers), 681–683
programmatic access to, 687
purpose of, 677
recoveries, 684–685
sealing VMKs, 681–682
sector encryption keys, 686
system change recoveries, 685
TPM for, 677, 681–683, 687
unsealing VMKs, 684
VMKs, 679–681

bitmap files ($BitMap), 940, 1155
BITS (Background Intelligent

Transfer Service), 1030
B-level security, 453
BLFs (base log files), 913–914
blocks, hive, 269
blue screen of death

causes of, 1119–1120
debugging causes. See crash

dump analysis
example, 1120
screen saver simulation of, 1152

stop code interpretation. See stop
codes

Bluetooth, 616, 1011
boot code, defined, 1155
boot loader

Bootmgr loads, 1084
image system addresses, 752
parameter block structure, 1088

boot process. See also EFI
(Extensible Firmware Interface)

architecture, abstraction of, 1073
automatic process startups, 1100
BCD file reads, 1077
BIOS role in. See BIOS (basic I/O

system)
BitLocker boot process, 683–684
boot disk based, recovery options,

1106
Boot Manager. See Bootmgr

(Windows Boot Manager)
boot start driver issues, 1106
boot status files, 1108
boot-selection menu

presentation, 1078
Bootvid initialization, 1089
code, defined, 1155
Csrss, starting and initialization,

1095–1096
disk access during boots, 646
DPC stack allocation, 1090
driver enumeration and symbol

loads, 1089
Driver Verifier initialization, 1089
EFI boot process, 1086–1087
executive Phase I initialization,

1089
HAL initiation steps, 1088–1089
hard disk setup for, 1073–1074
HKLM\SYSTEM subkey, 259
I/O manager initializations,

1091–1093
InitBootProcessor responsibilities,

1088–1090
KiInitializeKernel responsibilities,

1088–1099
last known good. See last known

good control sets
logging in safe mode, 1104–1105,

1114
MBRs, control transfer to, 1076.

See also MBR (Master Boot
Record)

memory manager, initializations
by, 1089, 1091

NTFS recoveries on, 981
Ntoskrnl phases, 1088–1093
object manager initializations,

1090
page file reads, 781
Phase 0 steps, 1088–1090

	 cache manager	 1187

Phase 1 steps, 1090–1093
prefetching, 823–827
process manager initializations,

1090, 1093
ReadyBoot, 1099
registry fixes during, 279
registry initializations, 1095
registry, reading of, 250
safe mode, 1101
SCM with, 300, 304, 1097
screen crashes during, 1112–1114
security reference monitor

initializations, 1090
Session Manager initialization,

1093–1096
system hive corruption, 1112
tracing with Process Monitor,

265–266
troubleshooting, 1106–1114
Wininit steps of, 1097
Winload role in, 1084–1086
Winlogon steps for, 1097–1098
x64 vs. x86, 1073

boot sectors
creation of, 1076
defined, 1155
format dependence of, 1077
FSD use of, 896
system partition, relation to, 1076
troubleshooting corruption issues,

1109
boot volumes, 1155
Bootmgr (Windows Boot Manager)

BCD optional arguments for, 1078
BIOS-interfacing functions, 1077
boot loader loads, 1084
boot-selection menu

presentation, 1078
crashes, detecting on reboot,

1124
defined, 1074
hibernation resumes, 1078
paging enabling by, 1077
protected mode, switching to,

1077
reading in of file, 1077
real mode execution, 1077
screen clears by, 1078
storage read role, 646

Bootvid initialization, 1089
Bootvid.dll, 67
boundary descriptors, 164
BSD Sockets, 1006
buckets, 732–733
buffer overflow errors, file systems,

910
buffers, I/O

buffer management types,
570–571

Direct I/O, 570

driver use of, 571
FILE_FLAG_NO_BUFFERING flag,

875
IRP references for, 571
mechanics of, 570–571
Neither I/O, 571
overruns, 1140–1142
pool corruption, 1140–1142

bugcheck codes. See stop codes
bus drivers

defined, 69, 542–543, 1155
device enumeration role, 624–628
HAL acting as, 624–625
instance IDs, 630
IRQ mapping IRQLs, 96
Multipath Bus Driver, 649
Plug and Play support, 621
responsibilities of, 542–543
Root virtual bus driver, 624–625

Bypass Traverse Checking privilege,
505, 509

C
C language, 35, 38–39
C2 security ratings, 451–452
cache manager

!defwrites debugger command,
886

!filecache debugger command,
857

architecture of, 850
boots, initialization during, 1091
buffer management, 871
CcDbg debugging variables,

861–862
client/server example, 858
coherency of data, 850–852
copying method, 869
data structure overview, 859–860
defined, 849, 1155
determining if files are in the

cache, 862–863
dirty page threshold, 885–886
disabling lazy writing, 883
DMA caching, 872
fast I/O, 873–875
fast teardown queues, 886–887
file I/O not handled by, 875
file mapping objects with, 850
file system drivers, 868, 904–905
file system interface overview, 868
flushing mapped files, 883–884
flushing of cache pages, 877
global look-aside lists, 887
hint support, 849
I/O operation interactions, 868
initialization for files not in cache,

868

intelligent read-ahead, 875–876,
878–883, 1163

key features of, 849
lazy writing, 877–883, 906, 1165
least recently used VACBs, 861
logical sequence numbers (LSNs),

853–854
mapped files, 566, 710
mapped page writer thread of,

881
mapping interfaces, 870–871
memory manager use by,

849–850
metadata, functions for finding

locations of, 870
modified page lists, 858–859
NTFS cache flushing operations,

977
NTFS file system driver with, 935
per-file data structures, 862–868
per-processor look-aside lists, 887
physical memory size, 858–859
pinning interfaces, 870–871
post tick queues, 887
private cache map structures,

862–867
private cache maps, 1171
purpose of, 59
queue types used by, 886–887
read activity, examining, 869–870
read-ahead. See intelligent

read-ahead
recoverable file system support,

853–854
remote file system driver oplock

protocol, 898–899
section objects, 850, 862
shared cache map structures,

862–867, 1174
size computation, 855–859
size system variables, table of, 856
standby lists, 858–859
stream-based caching, 852
system space to application buffer

issue, 869
system threads of, 886–887
systemwide data structures,

860–862
VACBs. See VACBs (virtual address

control blocks)
viewing cache maps, 866–867
viewing file system activity of,

878–883
views, 854–855, 862–863
virtual address space model, 850
virtual block caching, 852
virtual memory management,

854–855
virtual size, 855–856
working set size, 856–857

1188	 cache-aware pushlocks

cache manager, continued
write throttling, 885–886
write-back caching, 877–883
write-behinds, 878–882
write-through caching, 883

cache-aware pushlocks, 193
caches, CPU-specific code variants,

64
caches, HTTP, 1020–1021
call managers, NDIS, 1057
callbacks

bugcheck callbacks, 1120
callback ACEs, 486–487
driver, 170
Evtlo callback routines, 607
fast dispatch routines, 549
KMDF, 607, 614
reason callbacks for crash dumps,

1120
Wow64, 212

callouts, WFP, 1004, 1047
cancel I/O routines, 549, 587–592
case sensitivity of object names, 163
.cat files, 538–539
catalog files, assembly, 365
catalog files, device driver, 635–636
CBS (Component Based Servicing),

subkey for, 257–258
CC (Common Criteria), 453
CDFS (CD-ROM file system),

890–891, 896
CD-ROM drives, 890–891, 896
cells, registry

bins, 270–271
configuration management of,

272–276
data types of, 270
defined, 269–270
examining, 271
indexes, 271
maps, 272–276
organization of, 271

certificates, 533, 1051
change journal files, 941, 956–959,

1155–1156
change logging, NTFS, 927–928
charge notification, 834
checked build version, 47–49, 1156
checkpoint records, 1156
child partitions, hypervisor, 230,

232–234
chimney offloading, 1054
Chkdsk utility

Autochk run during boots, 1094
bad sector fixes by, 986–988
NTFS preventing need for, 974
system file corruption, fixing, 1110

chunked transfer encoding, 1019
Ci.dll, 67

CIFS (Common Internet File System)
protocol, 898

CIM (Common Information Model)
CIMOM (CIM Object Manager),

319
class model of, 320–321
common model, 1156
core model, 1157
Event Log provider use of,

321–322
MOF with, 322
specification for, 319–320

class drivers, 543, 1156
classifier, P2P, 1040
CLFS (Common Log File System)

ARIES, 910
base log files, 913–914
Clfs.sys, 67
common logs, 911
containers, 913–914
dedicated logs, 911–913
dump counts, 913–914
flush queues, 912–913
identifiers of containers, 914
layout of logs, 913–914
log blocks, 915
log space reservation, 911
LSNs (log sequence numbers),

914–915, 917
management policies, 918
marshalling, 910–911
multiplexed logs, 911–913
owner pages, 912, 915–916
pages, 915
physical vs. virtual clients, 911
purpose of, 910
regions, 915
sector signatures, 915
torn writes, 915
TxF log files, 970
types of logs, 911–913
virtual logs, 916
virtual LSNs, 916–917

client versions of Windows
architecture compared to server

versions, 43–47
list of, 43–44
optimization compared to servers,

46
physical memory limits for,

818–822
client/server model

impersonation with, 480–483
LogonUser function with, 481–483
remote file system drivers for,

897–899
Client/Server Run-Time Subsystem.

See Csrss.exe
clock algorithm, 827–828, 1156
clock interrupt handler, 1156

clock interval timer frequencies,
406–407

clock, system, 97
Clockres, 407
clone shadow copies, 688
C-LOOK algorithm, 647
close object method, 148
clouds, P2P, 1040
CLR. See Common Language

Runtime (CLR)
clustered page faults, 779–780
clustering, memory manager, 1156
clusters, file

bad clusters, 940–941, 985–988,
1155

defined, 889, 1156
dynamic bad-cluster remapping,

923
factors, defined, 1156
FAT size variations, 891–894
LCNs (logical cluster numbers),

938–940, 950–951
NTFS, 937–938
sectors, relationship to, 937–938
size of, setting, 937
sizes of, 895
VCNs (virtual cluster numbers),

938–940, 950–951
.cmd files, process creation for, 353
CMPXCHG16B processor instruction,

749–750
code corruption from drivers,

1143–1144
code integrity, 246–247, 1156
collided page faults, 779, 1156
COM (Component Object Model)

distributed. See DCOM
(Distributed Component Object
Model)

HKEY_CLASSES_ROOT class
registries, 255

WMI COM API, 319
comctl32.dll, 365
command prompts

safe mode with, 1101, 1104
troubleshooting with, 1106

commit charge notification, 834
commit charges, 782, 833–834
committed pages, 706–708, 710,

1156
common controls DLL, 365
Common Criteria (CC), 453
Common Internet File System (CIFS)

protocol, 898
Common Language Runtime

(CLR), 3
Common Log File System. See CLFS

(Common Log File System)
common logging file system driver

(Clfs.sys), 67

	 crash dump analysis	 1189

common model, CIM, 1156
compatible IDs, 634
complete memory dumps,

1126–1128, 1156
Complete PC Restore, 1106, 1110
completion ports. See I/O

completion ports
Compound TCP (CTCP), 1044
compression support, NTFS

file, directory, and volume basis,
951–952

nonsparse data compression,
954–956

sparse data compression, 952–954
sparse files, 956
types of compression, 927

concurrency values, 593–595
CoNDIS (connection-oriented

NDIS), 1055, 1057–1060
condition variables, 195–196
confidentiality, IPSec for, 1050
configuration manager

altitude, 280
ASCII vs. Unicode storage, 281
bins, 269–272
blocks, 269
cell indexes, 271
cells, 269–272
defined, 266, 1157
dirty sector arrays, 279
hive syncs, 279
hives, loading of, 266
kernel handle tables, 268
key control blocks, 276–278, 281
key object type, 276
lazy write operations, 279
log hives, 278–279
memory mapping of hives,

272–276
namespace integration, 276
new keys created by applications,

277
operation flow control, 277–278
performance optimizations by,

280–281
registry filtering, 280
registry initialization during

boots, 1095
search methods of, 272
self-healing operations, 279
symbolic links, 268
Windows executive, as

component of, 59
ConnectEx function, 1009
connecting an interrupt object,

105–106
connections, network, 1007–1008
consent elevations, 529
consistency check stop codes,

1122–1123

console windows, DLLs supporting,
54

consumers, ETW, 207
container objects, 1157
containers, log system, 913–914
context switching

address space sharing within
processes, 764–765

address translation after, 764
architecture dependence of,

64–65
defined, 1157
mechanics of, 418
minimizing, goal of, 592–593
multiprocessor threads, 435
quantum ends allowing for, 407
thread scheduling requiring, 392

control areas of section objects,
796–798

control objects, 62, 1157
control sets, 1113–1114
controllers, ETW, 207
cookies, stack, 717–718
copy-on-write page protection,

718–719
copy-on-write shadow copies, 688
core model, CIM, 1157
counters

descriptions of, viewing, 25
disk performance, 665–666
performance. See performance

counters
CPs. See credential providers (CPs)
CPU Stress tool

CPU starvation boosts, watching,
428–430

priority boosts, viewing, 423–425
CPU utilization, 9, 382
CPUs

dynamic processor addition, 238
GetLogicalProcessorInformation

function, 395
ideal processors, 1162
Itanium. See IA64 CPUs
memory cache entries, 815
memory protection built into, 712
mode-related performance

counters, 17–19
multiple-core, 40. See also SMP

(symmetric multiprocessing)
portability between architectures,

38
privilege levels of, 16
rate limits on, 444–445
starvation, priority level boosts

for, 427–430
unified kernel, 41
utilization. See CPU utilization
virtual, 237–238

CR3 register, 764–765

crash analysis server, Microsoft, 121
crash dump analysis

!analyze command, 1149
!irp command, 1145–1147, 1150
!locks command, 1150
!process command, 1144,

1149–1150
!stacks command, 1150
!thread command, 1149–1150
!vm command, 1145
advanced, using manual

commands, 1144–1145
auxiliary computer dump

captures, 1130, 1148–1149
basic analysis overview, 1134
booting into debugging mode,

1148–1149
bucket ID entries, 1134
causes of crashes, 1119
checksums, pre-write, 1130
code corruption from drivers,

1143–1144
complete memory dumps,

1126–1128
deadlock detection, 1147
dedicated dump files, 1131
default generation of crash

dumps, 1125
defined, 1119
device driver secondary dumps,

1127
dps (dump pointer with symbols)

command, 1146–1147
Drive Verifier as an aid to, 1139
driver information, viewing,

1138–1139
exceptions, kernel-mode, 1119
fail fast policy of Windows, 1119
generation of dumps, mechanics

of, 1130–1131
hung systems, troubleshooting,

1147–1150
IRP analysis, 1146
Kd for, 1134
KeBugCheckEx function,

1120–1121
kernel memory dumps,

1126–1129
lm kv command, 1144
manually crashing hung systems,

1148
miniport drivers for dumps, 1130
missing dumps, 1150–1152
Notmyfault utility, 1134–1139
OCA (Online Crash Analysis),

1133–1134
parameter information with stop

codes, 1120–1121
pool corruption, 1140–1142
recursive faults, 1151

1190	 crash dumps

crash dump analysis, continued
reporting settings, 1131–1132
sending reports to Microsoft,

1132
small memory dumps, 1127–1128
stack traces of executing threads,

1138, 1149–1150
stack trashes, 1145–1147
Startup And Recovery settings,

1125
stop codes, 1120–1123
troubleshooting crashes,

1124–1125
WER for. See WER (Windows Error

Reporting)
WinDbg for, 1134, 1137

crash dumps
analysis of. See crash dump

analysis
defined, 1157
system space for, 737

create global object privilege, 168
CreateEventEx for access checks,

159
CreateFile function

asynchronous I/O flag for, 563
file system driver operations after

calling, 902–906
mailslots with, 1024
named pipes with, 1024
read-ahead flags of, 876
write-through caching flag, 883

CreateProcess functions
address space setup steps, 357
debugging notifications, 363
decision tree for image types,

table of, 353
elevation check, 362
EPROCESS block setup, 354–355
executive objects vs. subsystem

process creation, 349
executive process object creation

stage, 354–359
executive process object

finalization, 359
handle table initialization, 355
initial process address space

creation, 355–356
initialization in new process

context stage, 363–370
job binding, 359
LdrpInitializeProcess, 369
NtCreateUserProcess with, 349,

351–352, 360
opening of executable images,

351–354
parameter validation and

conversion step, 350–351
parent process inheritance,

354–355

PEB setup, 357–358
performance options, applying,

355
prefetch checks, 363, 369
process creation overview,

348–349
PspAllocateProcess, 354–359
PspInsertProcess, 359
PspUserThreadStartup, 363–364
registry checks, 352, 367
section object creation, 351–352
single CPU flag, 358
stages, list of, 349
support images, 352
SxS setup, 361
table of, 344
thread execution start stage, 362
thread initialization stage,

359–360
thread seed initialization, 356
thread stack creation, 360
user vs. kernel mode, viewing,

367–368
validation checks, 361
viewing startup process, 366–370
virtualization check, 362
Windows subsystem operations

stage, 360–362
CreateThread function, 117–118,

380–381
Creator Group ID group, 462
Creator Owner ID group, 462
creator process IDs, 5–6
credential manger, 508
credential providers (CPs)

default and third-party, 514
defined, 455, 1157
logon role of, 79
user logon role, 516–517

critical code sections
advantages of, 194
condition variables, 195–196
defined, 171, 1157
EnterCriticalSection function,

187–188
kernel critical sections, 172
keyed events, 187–189
limitations of, 195
mutexes in, 194–195
semaphores in, 194–195
shared mode, 194
spinlocks for, 173–174, 177
SRW locks as replacement for, 196
user mode, staying in, 194

critical object stop codes, 1123
critical sections. See critical code

sections
critical worker threads, 199
CryptoAPI, 992–998
cryptographic services, 930

Csr functions, 58, 361
Csrss.exe. See also Windows

subsystem
boot process initialization of,

1095–1096
critical nature of, 1096
DLLs loaded by, 54
integrity levels of threads created

by, 494
process creation operations by,

361–362
process data structures of,

335–336
purpose of, 51–52
session manager launching of, 78
shutdowns, 1115–1118

CTCP TCP (Compound), 1044
Ctrl+Alt+Delete logon attention

beginning user logon, 516–517
desktop chosen by, 515
SAS implementation with, 516
trusted path functionality of, 453

CurrentControlSet subkey, 308–309

D
DACLs (discretionary access control

lists)
ACE flags, 487
ACEs of, 486–488
assignment to new objects,

490–491
Create APIs with, 159
discretionary access checks using,

495
inheritance mechanics, 490–492
security descriptors, in, 485–487
tokens, of, 476

daemon processes. See services
Data Collector Set Kernel Trace logs,

208–210
data execution prevention. See DEP

(data execution prevention)
data integrity, IPSec for, 1050
data origin authentication, 1050
data structures, process, 335–342
datagrams, 1008, 1013
data-link layer, OSI, 1003
DbgUi functions

DbgPrintEx function, 48–49
native application support,

217–218
Ntdll support for, 58
responsibilities of, 216

DCE (distributed computing
environment), 1014

DCOM (Distributed Component
Object Model), 1015, 1031–1032

DDE (Dynamic Data Exchange)
impersonation, 481

	 device drivers	 1191

deadlocks, 194, 1147–1150, 1157
debug objects, 216
debug ports, 216
debug programs privilege, 346, 506,

509–510
debugger commands, kernel. See

kernel debugger commands
debugging

BCD options for, 1079–1080
booting into debugging mode,

1148–1149
checked build version use, 47–49
commands, kernel. See kernel

debugger commands
copy-on-write with, 719
DbgPrintEx function, 48–49
DbgUi functions, 58
Debugging Tools. See Debugging

Tools for Windows
Driver Verifier, 604–606
HD content playback prohibition,

348
heap manager features for,

734–735
kernel data structures. See kernel

debugging
process creation checks, 363
tools for Windows. See

Debugging Tools for Windows
user mode. See user-mode

debugging
user-mode debugging framework

of executive, 60
Debugging Tools for Windows

attaching to user-mode
processes, 27

capabilities for kernel debugging,
28

command-line version, 28
crash dump files, 28
debugger extension commands,

29
dt command, 29–30
help file for, 29–30
invasive attachment option, 27
LiveKd tool with, 30–31
local kernel debugging, 28
noninvasive attachment option,

27
pageheap, 735
remote connection kernel

debugging, 28
source for latest versions, 27
stop codes, viewing, 1121. See

also stop codes
substructures, viewing, 30

decrementing, interlocked, 172–173
decryption, EFS, 998–999
default resource manager, TxR,

969–971

deferred deletion of objects, 160
deferred ready lists, 435
Deferred Ready thread execution

state, 400, 1157
defragmentation

API for, 931
fragmentation defined, 931
paging files, special tool for, 781
SuperFetch service use of,

826–827
tool for, 931–932

delayed worker threads, 199
delegation, privilege for, 506
deletion of objects, 148, 160
demand paging, 823, 1157
demand zero, 706–707
Deny logon rights, table of, 503
DEP (data execution prevention)

ATL framework compatibility, 716
BCD options for, 714–716
bugcheck codes from, 713–714
changing computer settings for,

714
defined, 713–714
PAE mode requirement, 714
pointer encoding, 717–718
registry values for exclusions, 714
self-disabling applications, 716
SetProcessDEPPolicy function, 716
software DEP, 717–718
stack cookies, 717–718
viewing, 715–717

dependencies, loading, 222–227
Dependency Walker tool, 52, 66
dereference segment threads, 701
desired access rights, 157, 1158
desktops

application, created by Winlogon,
515

association of windows with by
CreateProcess, 351

crashes or hangs, troubleshooting,
1112–1114

Desktop object type, 137,
148–149

watermarked desktop BCD
option, 1080

Winlogon desktop, 515
device driver functions, 58, 61,

547–550
device drivers

add-device routines, 548
APCs with, 113
architecture, place in, 37, 68–69
autostarting by SCM, 303–307
blue screens, data displayed in,

1120–1121
boot phase designation, 624
break on symbol load boot

option, 1089

bugcheck callbacks, 1120
bus. See bus drivers
cancel I/O routines, 549, 587–592
catalog files, 635–636
checked build version use, 47–49
class drivers, 543
completion ports for. See I/O

completion ports
crash dumps, secondary, 1127
crashes following new installations

of, 1124–1125
CRITICAL_STRUCTURE_

CORRUPTION crashes, work
arounds, 245–246

defined, 68, 538, 1158
detecting illegitimate

modifications, 247
development framework for.

See WDF (Windows Driver
Foundation)

device identifiers, 630
device objects, 550–555
DeviceIoControlFile API, 214–215
dispatch routines, 548, 568
DPC routines, 549
driver objects, 550–555
driver signing policies, 634–636
Driver Verifier tool. See Driver

Verifier
enumeration, PnP, 624–628
error logging routines, 550
fast dispatch routines, 549
file objects, 555–562
file system. See file system drivers

(FSDs)
filter. See filter drivers
forcing IRQL checking with Driver

Verifier, 802
FSDs. See file system drivers (FSDs)
function drivers. See function

drivers
functions, 58, 61, 547–550
Group values, 623–624
HAL, relationship to, 68
hardware device drivers, 68
I/O completion routines, 549
I/O requests to layered drivers,

578–587
I/O requests to single-layered

drivers, 572–578
INF files, 538–539, 632–634
initialization routines, 548
installation of, PnP, 632–636
IRP processing, 540
ISRs. See ISRs (interrupt service

routines)
kernel access with, 69
kernel address space access

dangers, 16
kernel-mode operation of, 68

1192	 device enumeration

device drivers, continued
Kernel Patch Protection (KPP)

against, 244–246
kernel streaming filter drivers, 68
kernel-mode, categories of, 542
KMDF. See KMDF (Kernel-Mode

Driver Framework)
layering of, 543–544
listing loaded, 71
load and unload privilege, 507,

510
load order of, 623–624, 626–627,

631–632
low resources simulation by Driver

Verifier, 802
miniport drivers, 543
names of devices, displaying,

552–553, 1125
network redirectors and servers,

68
Non–Plug and Play. See Non–Plug

and Play drivers
opening devices, 555–562
PAE support for, 770, 819–820
paged pools for, 721
Plug and Play. See Plug and Play

drivers
pools used by, monitoring,

725–726
port drivers, 543
portability of, 68
printer drivers, 542
protected driver lists, 636
protocol drivers, 68
reason callbacks for crash dumps,

1120
registry key records of, 628
safe mode loading of, 1102–1103
services registry parameters, table

of, 283–287
spinlocks with, 174–175
stacks, viewing, 579
start I/O routines, 548
Start values, 623–624
startup errors, 307–308
structures of, 547–550
system thread creation, 76
system threads, mapping to,

76–77
system worker threads for,

198–199
system-shutdown notification

routines, 550
Tag values, 624
test-signing mode, 1080
types of, 68, 541–542
UMDF. See UMDF (User-Mode

Driver Framework)

unkillable processes, debugging,
590–592

unload routines, 550
VDDs (virtual device drivers), 542
viewing lists of, 546–547
WDM. See WDM (Windows Driver

Model) drivers
Windows Driver Foundation.

See WDF (Windows Driver
Foundation)

Windows Driver Model. See WDM
(Windows Driver Model) drivers

Wow64 I/O request issues,
214–215

device enumeration, 624–628
device IDs, 630, 1158
Device Manager

devnodes, viewing, 631
memory, viewing reserved, 821
viewing devices, 626

device objects
!devobj command, 671
creation by drivers, 550–551
defined, 550, 1158
enumeration of, 551
listing addresses of, 671
names of, viewing, 552
partition objects, 651–652
symbolic links for, 551
VPB data structures of, 670

device trees
defined, 1158
devnodes of, 1158
PnP manager creation of, 625–628

devices
device instance IDs. See DIIDs

(device instance IDs)
drivers for. See device drivers
registry key records of, 628

device-specific modules (DSMs),
648–649

devnodes
defined, 1158
device identifiers, 630
device objects of, 628–629
DIIDs (device instance IDs), 630
driver loading, 630–632
enumeration, use in, 625–627
FDOs (functional device objects),

629, 1161
FiDOs (filter device objects),

628–629, 1160–1161
IRP flow, 627, 629
PDOs (physical device objects),

628
unloaded drivers during boots,

632
viewing with !devnode command,

627–628

viewing with Device Manager, 631
DFS (Distributed File System)

service, 1069–1071
Diagnostic Policy Service (DPS),

330–331
diagnostics, WDI for, 329–333
Differentiated Services Code Point

(DSCP), 1062
digital rights management, 346–348
DIIDs (device instance IDs), 630,

1158
direct I/O, 570–571
directories, file

Bypass Traverse Checking
privilege, 505, 509

index buffers, 950
nonresident attributes of, 950
restore files and directories

privilege, 507, 510
synchronization services privilege,

508
virtualization, UAC, 523–526

directories, object, 163
Directory object type, 137
Directory Services Restore mode,

1102
DirectX Win32k.sys wrappers, 54
dirty pages

cache manager flushes to disk,
541–542

mapped page writer, 700
modified page writer, 700
threshold, 885–886, 1158

DisconnectEx function, 1009
disconnecting an interrupt object,

105–106
discretionary access checks, 492,

494–497
discretionary access control

defined, 22, 1158
object protection, 458
TCSEC rating criteria for, 452

Disk (Disk.sys) driver, 647, 649–651
Disk Defragmenter, 931–932
disk groups, 1158
Disk Management MMC snap-in,

661–663, 665
disk storage drivers

class drivers, 647
class/port/miniport architecture

of, 647
C-LOOK algorithm, 647
Disk driver, 647
disk object representation,

650–651
DSMs (device-specific modules),

648–649
iSCSI drivers, 648
miniport drivers, 543, 647

	 Driver Verifier	 1193

MPIO (Multipath I/O) drivers,
648–649

port drivers, 647
request mechanics, 647
Scsiport.sys, 647
startup by Windows I/O manager,

647
symbolic links for disk objects,

650–651
Diskmon tool, 649
disks

basic. See basic disks
CD. See CD-ROM drives
defined, 645
defragmenting. See

defragmentation
diagnostics for, 332
drivers for. See disk storage

drivers
dynamic. See dynamic disks
IDs of, 652
integrity checking with Driver

Verifier, 606
letters for. See drive letters
monitoring disk activity, 649
names, backward compatibility

for, 650–651
objects representing, 650–651
partitions of. See partitions, disk
paths to, 648–649
ReadyDrive for H-HDD, 845–846
sectors of. See sectors
seek times, improvement with

prefetching, 823
setup for boot process, 1073–1074
virtual memory saved to. See

paging virtual memory to disks
volumes. See volumes

dispatch code, 101, 1158
dispatch routines, device driver, 548
dispatcher databases

defined, 1159
mechanics of, 404–405
multiprocessor thread scheduling

considerations, 434–435
dispatcher headers

debug active flag, 183
defined, 182–183, 1159
dt command, viewing with, 184
flags, table of, 185
KTHREAD field for, 372
Type field, 185

dispatcher objects
defined, 62, 178–179, 1159
dispatcher headers, 182–185
fast mutexes built on, 189
key traits of, 178
manual reset events, 182
nonsignaled state, 179
signaled state, 179–180

wait blocks, 183–186
WaitForMultipleObjects function,

178–179
WaitForSingleObject function,

178–179
dispatchers

defined, 1158–1159
headers, 1159
KMDF queue dispatch methods,

614
ready queues, 1159

dispatching
dispatcher locks, 594
exception. See exception

dispatching
fast dispatch routines, 549
interrupt. See interrupt

dispatching
objects for. See dispatcher objects
routines implementing. See

dispatchers
threads, 392
trap. See trap dispatching

display device drivers, 1122, 1159.
See also video

Distributed File System (DFS)
service, 1069–1071

distributed link-tracking service,
929–930

distributed transaction coordinator.
See DTC (distributed transaction
coordinator)

DLLs (dynamic-link libraries)
core subsystem, file names of, 37
defined, 4, 1159
HAL, 65
hotpatches to, 242–244
isolating application distributions

of, 364
known, opening during boots,

1095
loading by image loader, 222–227
mapped files, viewing as, 711
memory-mapping of, updating

issues from, 1096
randomization of image file

addresses, 759–760
subsystem DLLs, 36–37, 1175
translating API functions to

service calls, 54
user address space for, 757

DMA (direct memory access)
caching with, 872
defined, 1158
Driver Verifier, checking with, 606
I/O buffering, 570–571
pool corruption from, 1140

DMDiskManager, 661
DNS (Domain Name System)

client service account, 290–291

implementation of, 1039
NetBIOS names, 1027
PNRP advantages over, 1040
Winsock service provider for, 1011

domain controllers, 454–455
domains, 454–455, 473–474
DOS machine (VDM) processes, 54
DosDevices namespace, 167–168
doubly linked list ExInterlocked

functions, 176–177
DPC stacks, 787
DPC/dispatch level IRQLs, 97,

100–101, 106–107, 171–172
DPCs (deferred procedure calls)

boot process, stack allocation
during, 1090

clock IRQL with, 109
CPU time of, 75
defined, 1157
device interrupts, mechanics of,

573–574
DPC/dispatch IRQL (interrupt

request level), 97, 106–107
idle thread role for, 419
interrupt dispatching, 106–111
interrupt generation rules, table

of, 108
kernel use of, 109
monitoring with Process Explorer,

110–111
multiple processor issues, 108
object representation of, 107,

1157
purpose of, 107
queues, 107
restrictions requiring scheduler

thread changes, 100–101
routines for device drivers, 549
spinlocks with. See spinlocks
threaded, 110
unresponsiveness from, 110

DPS (Diagnostic Policy Service),
330–331

DPWS (Device Profile for Web
Services), 1033

drive letters
assigned by mounting. See

mounting devices
checking on boot, 673
mapping by network providers,

1036
registry storage of, 667–668

driver objects, 550–555, 1159
Driver Verifier

active items in free memory
checks, 802–803

boot initializations by, 1089
deadlock detection, 1147, 1157
defined, 1159

1194	 drivers

Driver Verifier, continued
enabling system code write

protection, 1144
forcing IRQL checking, 802
I/O verification, 604–606
locked memory page tracking,

801
low resources simulation by, 802
MDL checks, 803
mechanics of verification, 799
memory management options,

799–803
overview of troubleshooting

crashes with, 1139
Pool Tracking, 801
purpose of, 799
registry settings for, 799
special pool option, 1141–1142
Special Pool verification, 799–801

drivers. See also device drivers
altitude filtering, 170
boot start driver issues, 1106
callbacks, 170
code corruption from, 1143–1144
detecting illegitimate

modifications, 247
driver host processes, 616
Driver Verifier tool. See Driver

Verifier
file system. See file system drivers

(FSDs)
function. See function drivers
image ranges of, 751–752
installation of, PnP, 632–636
IRP processing, 540
lightweight filter drivers (LWDs),

1057
NDIS, 1053–1054
pool corruption caused by,

1140–1142
protected driver lists, 636

drives, disk. See disks
drives, logical, 653–654
DSCP (Differentiated Services Code

Point), 1062
DSMs (device-specific modules),

648–649, 1158
dt nt!_kinterrupt command,

102–106
dt nt!_OBJECT_HEADER command,

144
dt nt!_OBJECT_INITIALIZER

command, 145
dt nt!_OBJECT_TYPE command, 145
DTC (distributed transaction

coordinator), 240, 969–970
dump analysis. See crash dump

analysis

Dumpbin utility, 738–739
DVDs, UDF (Universal Disk Format),

891
dynamic disks

advantages over basic disks, 656
defined, 652–653, 1159
LDM partitioning for, 656–660
MBR or GPT partitioning for, 660
volume manager for, 661

dynamic-link libraries. See DLLs
(dynamic-link libraries)

dynamic processor additions
HAL support for, 441
overview of, 441
thread synchronization for,

441–442
dynamic volumes, drive letters for,

667–668
dynamic worker threads, 199–200

E
ECN (Explicit Congestion

Notification), 1044
editions of Microsoft Windows. See

versions of Microsoft Windows
EFI (Extensible Firmware Interface)

Boot Manager, 1087
boot process mechanics,

1086–1087
GPT structure of, 654
hardware detection, 1087
System partition for, 1087
x64 vs. x86 boots, 1073

EFS (Encrypting File System)
algorithm choices with, 990–991
architecture of, 991
backups of encrypted files, 999
crashes during encryption,

997–998
CryptoAPI with, 992–998
DDF (Data Decryption Field),

994–1000
decrypted FEK caching, 998
decryption process, 998–999
disadvantages for system file

protection, 677
DRF (Data Recovery Field),

994–1000
Encrypt Contents command of

Properties dialog box, 990
FEKs (file encryption keys),

990–991
file data encryption mechanics,

995–996
first time file encryption, 993
key pair assignment, 990
key ring construction, 994–995
KSecDD functions for, 455

Lsasrv with, 992–999
Lsass management of, 992
NTFS file attribute supporting,

944
NTFS use of, 930
overview of, 990
private keys, 991
public keys, 991
read/write process by

applications, 999
Recovery Agents, 994–1000
steps for encryption, outline of,

997–998
symmetric file data encryption,

991
user master keys, 991
viewing with EFSDump, 1000

elevations, UAC, 528–533
EM64T, 38
Embedded Standard, Windows,

104–106
EMS (Emergency Management

Services), 1079, 1081
encryption

EFS. See EFS (Encrypting File
System)

hashes, 1161
NTFS support for, 930
RPC, types available for, 1017
symmetric algorithms for, 1176

Enlistment objects, KTM, 241
enumeration of devices, 624–628
enumeration-based driver loading,

623
environment subsystems

defined, 1159
DLLs loaded by Csrss.exe, 54
executive objects, relationship

to, 136
role of, 51
server processes, 36

environment variables, setting
during boots, 1095

EPROCESS blocks
!process command, displaying

with, 345
DeviceMap field, 164–167
protected process access bit,

347–348
setup by CreateProcess function,

354–355
structure of, 335–342

ERESOURCE. See executive resources
errata manager, 60, 1092–1093
error logging routines, device driver,

550
errors

access-denied errors, 909
blue screens, causing. See stop

codes

	 Explicit Congestion Notification	 1195

difficulties for recovery, 240
KTM for recovery. See KTM

(Kernel Transaction Manager)
memory pages not found. See

page faults
startup errors, 307–308
troubleshooting. See crash dump

analysis; debugging
Windows hardware error

architecture, 61
ETHREAD blocks

creation by PspAllocateThread,
360

defined, 370
displaying, 374
fields of, 370–372

ETW (Event Tracing for Windows)
application types with, 207
defined, 61
enabling of, 207
Etw functions, 58
kernel logger, enabling, 208–210
kernel trace classes for, 207–208

Event Log
CIM basis for, 321–322
permissions for, 511
provider for, 320

Event Logger, 511
Event object type, 137
Event Tracing for Windows. See ETW

(Event Tracing for Windows)
events

defined, 1159
gate primitives, 189
keyed events, 186–187
manual reset events, 182
priority level boosts after waits

for, 421–422
synchronization based, 179

Everyone group, 462
Evtlo callback routines, 607
exception dispatching

64-bit application, 116
architecture-independent

exceptions, 114
debug event for, 217
debug registry key values, 120
debuggers with, 116–117
defined, 1159
exception handling role of, 114
frame-based exception handlers,

115
interrupt numbers, 114–115
kernel traps, 115
mechanism of, 116–117
POSIX, 117
start-of-thread function, 117–118
structured exception handling,

114

unhandled exceptions, 117–120
vectored exception handling, 116
WER. See WER (Windows Error

Reporting)
Wow64, 212

exception handling
basic concepts of, 114
mechanism of, 116–117
predefined interrupt numbers

for, 114
RtlUserThreadStart setup for, 364
safe structured exception

handling, 717–718
exceptions

defined, 86, 1159
dispatching. See exception

dispatching
handling. See exception handling
kernel-mode, 1119
stop codes from, 1122
structured exception handling,

114
table of, 114–115
unhandled exceptions, 117–120

Exchange Server shadow copies,
688–689

executable files
accessed as data, then as

executable, 795–796
load offset for address ranges,

759
processes from. See processes
section objects for, 792

executive mutexes. See fast mutexes
executive objects

creation of, 136
defined, 135, 1160
environment subsystems,

relationship to, 136
table of, 136–137
Windows subsystem use of, 136

executive process object creation,
354–359

executive resources
boosts during executive resource

waits, 422–423
defined, 190, 1160
key traits of, 178
listing, 191
mechanism of, 191
synchronization, 179

executive system services,
1176–1177. See also native
system services

executive, Windows
ALPC, 60
APCs with, 112
boot process initialization of

subsystems, 1088–1093

cache manager, 59
common run-time library

functions of, 60
configuration manager, 59
defined, 37, 1160
device driver functions, 58
Driver Verifier, 61
errata manager, 60
Event Tracing for Windows, 61.

See also ETW (Event Tracing for
Windows)

fast mutex acquisition functions,
189

function prefixes, table of, 72–73
hypervisor library, 60
I/O manager component of. See

I/O manager
Interlocked functions, 176–177
internal memory functions of, 58
Iop functions of, 58
kernel debugger library, 60
kernel of. See kernel, Windows
kernel transaction manager, 60
logical prefetcher, 60. See also

logical prefetching
major components of, 59–60
memory manager as part of, 59
Ntoskrnl.exe, place in, 58
object manager. See object

manager
PnP manager, 59. See also Plug

and Play manager
power manager component. See

power manager
process and thread manager, 59
SRM (security reference monitor),

59
subsystem DLL function calls to,

53
SuperFetch, 60. See also

SuperFetch service
support routines, 60
system services functions, 58
user-mode debugging

framework, 60
WDK functions, 58
Windows diagnostic

infrastructure, 61
Windows Driver Model Windows

Management instrumentation
routines, 59

Windows hardware error
architecture, 61

exFAT, 894
ExInterlocked functions, 176–177
exit from system service operations,

364
Explicit Congestion Notification

(ECN), 1044

1196	 explicit driver loading

explicit driver loading, 623
Explorer.exe, Userinit process for, 80
extended partitions, 653–654, 1160
Extensible Firmware Interface (EFI),

654

F
facilities, displaying, 47
fail fast policy of Windows, 1119
failed control sets, 1113–1114
fast dispatch routines, 549
fast I/O

defined, 1160
determination when used, 873
displaying file system driver

object table for, 564–565
performance counters, table of,

874–875
purpose of, 873
steps for I/O with, 873–874

fast LPC, 55
fast mutexes, 178, 189–190
fast user switching, 20, 840
FAT file systems

cluster sizes, table of, 892
exFAT, 894
FAT32, 894
file names, 945
format organization, 892
mechanics of, 891–894
recovery issues, 985–988

fault tolerance, 923. See also RAID
level 5

faults, page. See page faults
FCBs (file control blocks), 936
FCL. See Framework Class Library

(FCL)
FDOs (functional device objects),

1161
FEKs (file encryption keys), 990–991
fibers, 12
FiDOs (filter device objects),

1160–1161
file attributes, NTFS, 940–944,

948–951
file control blocks (FCBs), 936
file mapping objects, 12, 136, 1160.

See also section objects
file names, 255, 945–948
file objects

!fileobj command, 560
attributes, table of, 555–556
cached file pointers, 862
defined, 555
extension fields, table of, 556
File object type, 136
handles to devices, viewing,

559–560
NTFS interactions with, 935–936

opening of files, 557
security of, 558
shared underlying resources,

mechanics for, 560–561
symbolic links for, 556, 561–562
viewing data structures of, 557
viewing name mappings, 561–562

file records, NTFS, 938
file references, 1160
file system drivers (FSDs)

boot sectors, use of, 896
cache manager lazy writer, 906
cache responsibilities, 868, 897
caching file metadata with

mapping and pinning, 870–871
caching operations, 904–905
defined, 68, 542, 1160
dismount operations, 897
explicit file I/O operations,

902–906
file change notification support,

909
filter drivers. See file system filter

drivers
I/O manager interactions, 896
invocation path overview,

901–902
IRP handling, 903–906
kernel-mode drivers, differences

with standard, 895–896
LANMan, 897–899
layering of, 543–544
local, 896–897
mailslots with, 1025
memory manager modified and

mapped page writer, 906
memory manager page fault

handler, 906–907
named pipes with, 1025
neither I/O for, 571
NTFS driver, 934–936
operations of, 896–897
oplock protocol, 898–899
Raw, 896
remote, 897–899
requests to layered drivers,

578–587
shrinking engine with, 932–933
volume device objects, 896
volume I/O operations, 674–675
volume mounting, 670–674
volume recognition, 672–673, 896
VPBs with, 896
WDK required to build, 895–896
WebDAV, 897

file system filter drivers
defined, 68, 907, 1160
Filesystem Filter Manager, 907
Process Monitor as example of,

907–908

virus scanner use of, 907
file system runtime library, 61
file systems

access-denied errors, 909
buffer management by cache

manager, 871
buffer overflow errors, 910
caching for. See cache manager
CDFS, 890–891
clusters. See clusters, file
common logging. See CLFS

(Common Log File System)
common logging file system

driver (Clfs.sys), 67
defragmentation, 931–932
drivers. See file system drivers

(FSDs)
exFAT, 894
FAT. See FAT file systems
formats, 889–890, 1160
logical sequence numbers (LSNs),

853–854
metadata defined, 890
metadata update steps ensuring

recovery, 853
NTFS. See NTFS (NT File System)
overview of, 889–890
recovery from corruption of,

986–988
sectors of. See sectors
stop code for fatal errors, 1123
troubleshooting, 908–910
UDF (Universal Disk Format), 891
viewing registered, 900–901
Wow64 file system redirection,

212–213
FileInfo driver, 839
files

access-denied errors, 909
attributes, NTFS. See file

attributes, NTFS
CreateFile function, 557
creation of objects for, 136
file change notifications, 909
handles to open files, searching

for, 155–156
NTFS. See NTFS (NT File System)
object IDs for, 929–930
object security for, 460
objects, default, 146
reference numbers, NTFS, 942
restore files and directories

privilege, 507, 510
symbolic links, 167
virtualization, UAC, 523–526
writing to, access checks on, 460

filter drivers
defined, 543, 1161
file system. See file system filter

drivers

	 hardware	 1197

FVE (full volume encryption), 686
lightweight filter drivers (LWDs),

1057
loading order, 631–632
Plug and Play support, 621
purpose of, 69–70
UMDF reflectors, 617

filter engine, WFP, 1047
filtered admin tokens, 483–484
fingerprint readers, 79
firmware environment modify

privilege, 508
flags object header field, 139
flags, global, 200–202
flash memory, 844–846
floating point state, 101–102
foreground processes, 423–425,

1161
foreign volumes, 685
frame-based exception handlers,

115, 1161
frames, stack, 1175
Framework Class Library (FCL), 3
free builds of Windows, 1161
Free page state, 804
freeing virtual memory pages, 707
FRS (File Replication Service),

Windows, 956
FSDs. See file system drivers (FSDs)
Fsutil.exe

default resource manager queries,
971

NTFS volume information, 941
self-healing checks, 989
transaction queries, 968

FTP, WinInet API for, 1019
function drivers

defined, 69, 543, 1161
FDOs (functional device objects),

1161
loading order, 631–632

functional device objects. See FDOs
(functional device objects)

functions
cache copying, 869
fiber functions, 12
kernel support. See kernel support

functions
Ntdll.dll system support library,

57–58
prefixes, table of, 72–73
process-related, table of, 344–345
system services, 58
thread creation and manipulation,

table of, 380
time in, determining, 97–100
Windows API, 4

G
games, MMCSS with, 430–434
gates, 178, 189–190, 192–193
Gate Waiting thread execution

state, 401
GDI (Graphics Device Interface)

batched operations, 55
direct access for, 55
functions for, 54–55
GDI/User objects, 135
service descriptor tables for,

130–133
Win32k.sys, contained in, 54
windowing and graphics system,

37
GDTs (global descriptor tables), 64
Get process functions, table of,

344–345
GetThreadContext function, 12
Gflags.exe tool

enabling special pool with, 1141
image loader, viewing debug

output from, 221
viewing and editing flags,

200–202
global clouds, P2P, 1040
global flags, 200–202
global replacement policies, 828
GPT partitioning, 654, 660
granted access rights. See also

access control
defined, 1161
granted-access masks, 495
mechanics of, 157

granularity of memory allocations,
708

graphics device drivers, 54
Graphics Device Interface. See GDI

(Graphics Device Interface)
guarded mutexes, 178, 189–190
GUI permissions editors, 498–499
GUID Partition Table. See GPT

partitioning

H
HAL (hardware abstraction layer)

architecture, role in, 65–67
BCD options for, 1081
bus driver, acting as, 624–625
checked build version, 49
defined, 37, 1161
determining version running, 66
device drivers, interaction with, 68
DLLs for, 37, 65
driver verifier option, 604
dynamic processor support, 441
Hal.dll, 1075
I/O system component, as a, 539

IRQ mapping IRQLs, 96
kernel dependencies, viewing, 66
lazy IRQL, 93
NSIS miniport driver functions

for, 1004
portability role of, 38–39
purpose of, 65
system space for, 737, 752
undocumented interfaces,

viewing, 72–73
handles

!devhandles command, 155–156
!handle command, 154
!htrace command, 156
access masks of, 153
accessing objects without, 150
advantages of, 150
counters for, 159–161
creation of, 149
debugging mechanisms, 156
defined, 149, 1161
duplication of, 149
flags of, 153
granted access rights, 157
Handle count object header field,

139
handle information object

subheader, 139–140
Handle tool, 151
Handle Tracing Database, 156
Handle Viewer, 133
inheritance of, 149, 153
kernel handle tables, 154–156
leaks, 156
names of objects with, 163
object, 1169
object manager rights to, 150
Object Reference Tracing, 156
object retention, role in, 159–161
okay to close object method, 148
open file handles, searching for,

155–156
per process maximum, 151–153
processes, lists for, 5, 13
protect from close flag, 153
session namespaces, viewing,

168–169
structure of, 153
subhandle tables, 152
tables for, 150–152, 1161
Testlimit tool for, 152–153
user mode process requirement

for, 149
viewing open, 150–151

hard disks. See disks
hard links, 923–924
hardware

crashes following new installations
of, 1124–1125

disk drives. See disks

1198	 hardware abstraction layer

hardware, continued
hardware IDs, 634
HKEY_LOCAL_MACHINE\

HARDWARE subkey, 258
interrupt processing. See interrupt

dispatching
kernel support role, 64–65
memory. See physical memory
processors. See CPUs
stop codes for, 1123
Windows hardware error

architecture, 61
hardware abstraction layer. See HAL

(hardware abstraction layer)
hardware device drivers, 68, 1161.

See also device drivers
Hardware Installation Wizard, 632
hashes, 1161
headers, object. See object headers
heap manager

affinity manager of LFH, 733
allocation management, 730–731
architecture of, 730
C runtime use of, 730
core functionality, 731
debugging features, 734–735
defined, 1161–1162
front end layer, 731
functions for, 730
granularity of allocations by,

729–730
LFHs (Low Fragmentation Heaps),

732–733
locking heaps, 732
pageheap, debugging with, 735
purpose of, 729–730
security features, 733–734
structure of, 731
synchronization of heaps, 732

heaps
address ranges, viewing, 758
allocation management, 730–731
block header dumps, 734
buckets, 732–733
creation by processes, 730
default process heaps, 730
defined, 1161
destruction by processes, 730
functions for, 730
HeapWalk block enumeration

function, 732
IDs, displaying, 759
image loader initialization of,

220, 222
kernel mode. See pools, memory
LFHs (Low Fragmentation Heaps),

732–733
locking, 732
manager for. See heap manager

memory-mapped, issues with,
730–731

multiprocessor issues, 732
pageheap, debugging with, 735
randomization by ASLR, 760
security issues of, 733–734
synchronization, 732
system. See pools, memory

H-HDDs, 844–845
hibernation, 840, 1078
hierarchy prioritization strategy for

I/O, 599
high-IRQL synchronization

ExInterlocked functions, 176–177
fast mutexes, 189–190
Interlocked functions, 172–173
kernel critical sections, 172
motivation for, 171–172
overview of, 171–172
queued spinlocks, 175–176
spinlocks. See spinlocks

hives, registry
!reg hivelist, 274
ASCII vs. Unicode storage, 281
base blocks, 269
bins, 269–272
blocks, 269
cell indexes, 271
cells, 269–272
defined, 1162
dirty sector arrays, 279
handles, viewing, 268
key cell type, 270
lazy write operations, 279
loading with Regedit, 267
log hives, 278–279
memory mapping, 272–276
memory usage, viewing, 274
paged pool usage, viewing with

!reg dumppool, 273
root keys of, 266
security-descriptor cell type, 270
size limits of, 268
structure of, 266, 269–272
subkey cell type, 270
symbolic links, 268
syncs, 279
system hive corruption, 1112
table of registry and file paths,

267
value cell type, 270
value-list cell type, 270
version numbers, 269
volatile, 266

HKEY_CLASSES_ROOT (HKCR), 255
HKEY_CURRENT_CONFIGURATION

(HKCC), 259
HKEY_CURRENT_USER (HKCU), 253
HKEY_LOCAL_MACHINE (HKLM)

BCD subkey, 255–257

COMPONENTS subkey, 257–258
CurrentControlSet subkey,

308–309
defined, 23, 255
HARDWARE subkey, 258
hive file paths for, table of, 267
SAM subkey, 258
SECURITY subkey, 258
Services subkey, 282–287
SOFTWARE subkey, 258
SYSTEM subkey, 259, 268

HKEY_PERFORMANCE_DATA
(HKPD), 259

HKEY_USERS (HKU)
\DEFAULT, 253
hive file paths for, table of, 267
purpose of, 253
user profiles, 254

hooks to keystrokes, 516
host-based virtualization, 228
hotfixes, pending file moves for,

1096
hotpatches, 242–244
HTTP (Hypertext Transport Protocol)

1.0, WinInet API for, 1019
cache functions, 1020–1021
HTTP Server API, 1019–1021
Http.sys, 1019–1020
RPC transport interface for, 1016
serving. See Web servers
WebDAV miniport driver, 897
WinHTTP, 1019

hung systems, troubleshooting,
1147–1150

HungAppTimeout registry values,
1115–1116

hypercritical worker threads, 199
hyperspace, 737, 1162
hyperthreading

defined, 40
ideal processor numbers with, 440
idling processors, thread

preferences while, 443
pause assembly instructions, 174
viewing information for, 436

Hyper-V
address spaces for, 238–239
AMD vs. Intel implementations,

232
API library for, 232
architecture of, 230–231
child partitions, 230, 232–234
emulated devices, 235
enlightened storage I/O, 236
enlightenments, 229, 233–234
GPA (guest physical address)

space, 238–239
Guest Virtual Address Spaces,

232–233
hardware device support, 234–237

	 idle system polling behavior	 1199

hardware virtualization, 228
hypervisor architecture, 228
hypervisor component, 232
hypervisor stack, 230–231
I/O architecture, 235–236
integration components, 235–236
intercept mechanism, 239
memory, 238–239
partitions overview, 230
patch issues, 245
purpose of, 229
root partitions, 230–232
scheduler, 237
slowness of installations, 235
SPA (system physical address)

space, 238–239
synthetic devices, 235–237
VDevs (virtual devices), 234–235
VID (VM infrastructure driver),

232
virtual machine (VM) service, 231
virtual processors, 237–238
virtualization overview, 228
VMBus, 236–237
VSCs (virtualization service

clients), 233, 236–237
VSPs (virtualization service

providers), 232, 236–237
Windows Server Core, 231
worker processes, 231–232,

234–235
hypervisors. See also Hyper-V

BCD options for, 1081
defined, 1162
library, 60

I
I/O completion ports

advantages of, 592–593
completion status tests, 563
concurrency values, 593–595
creating, 595
defined, 1156
IoCompletion objects, 593
lock contention issues, 594
mechanics of, 593–597
notification modes, 597–598
queue basis of, 595–597
scalability from, 43
thread agnostic I/O, 587, 595
worker factory use of, 388

I/O completion routines, 1162
I/O manager

advantages of, 540
boots, initializations during,

1091–1093
cancellations, I/O, 587–592
defined, 538

device driver dispatch routines,
548

device load order role, 626
device objects, 550–555
driver abstraction, 540
driver objects, 550–555
driver verifier option, 604
drivers, layering of, 543–544
error logging routines of device

drivers, 550
fast I/O with, 565, 873–875
file object security, 460
file system driver interactions, 896
initialization routines, device

driver, 548
IRPs, 539–540, 570–571
MDLs (memory descriptor lists),

570–571
neither I/O, 571
NTFS file system driver

interactions with, 934–935
opening files, 557–561
packet-driven nature of, 539
requests to layered drivers,

578–587
requests to single-layered drivers,

572–578
shutdowns, 1117–1118
start I/O routines, 548
Start value for, 623–624
UMDF management, 617
volume mounting role, 670–671
Windows executive, as

component of, 59
I/O priorities

hierarchy prioritization strategy,
599

idle prioritization strategy, 599
purpose of, 598
storage port driver strategy, 600
system storage driver strategy,

600–601
table of, 598–599
viewing, 601–602

I/O processing
asynchronous I/O, 563
bandwidth reservation, 603–604
buffered I/O, 570–571
caching files, 565–566
cancellations, I/O, 587–592
completion ports. See I/O

completion ports
direct I/O, 570–571
fast I/O, 564–565
I/O completion, 575–577
in-paging I/O, 778–779
interrupts, mechanics of, 573–574
IoCompletion objects, 593. See

also I/O completion ports

IRPs in, 566–571
locked user buffers, 587
mapped file I/O, 565–566
neither I/O, 571
priorities, 598–603
requests to layered drivers,

578–587
requests to single-layered drivers,

572–578
scatter/gather I/O, 566
scheduled file I/O, 603–604
status blocks, 575
synchronization issues, 577–578
synchronous I/O, 563, 572–578
thread agnostic I/O, 587
thread termination cancellations,

589–592
types of I/O, 563–571
unkillable processes, debugging,

590–592
I/O subsystem API, 1162
I/O system. See also I/O processing

components of, 537–539
defined, 1162
design goals of, 537–538
device drivers. See device drivers
file abstraction, 540–541
file objects, 555–562
I/O completion routines, 549
INF files, 538–539
KMDF. See KMDF (Kernel-Mode

Driver Framework)
manager. See I/O manager
miniport drivers, 543
packet-driven nature of, 539
Plug and Play. See Plug and Play

manager
port drivers, 543
power management with. See

power manager
typical processing, 540–541
UMDF. See UMDF (User-Mode

Driver Framework)
I/O, explicit file, 902–906
IA64 CPUs

address translation, 772
page sizes for, 705
versions of Windows for, 44–45
virtual address space layouts, 746
Wow64 restrictions, 215

IDE, Ataport.sys, 647
ideal processors, 440–441, 1162
IDL (Interface Definition Language),

1016
idle prioritization strategy for I/O,

599
idle process, 75
idle summary masks, 434
idle system polling behavior, 909

1200	 idle threads

idle threads, 418–419
IDTs (interrupt dispatch tables)

defined, 1163
entry numbers, 89
indexes for, 88
interrupt objects, 101
one per processor rule, 89
viewing, 88–89

IEEE 1394 (FireWire), UMDF with,
616

IIS (Internet Information Server),
1019

IKE (Internet Key Exchange),
1051–1052

image files
accessed as data, then as

executable, 795–796
address ranges for, displaying, 758
DLLs. See DLLs (dynamic-link

libraries)
image bias computation, 759
large address space awareness,

699, 739, 746
loading. See image loader
randomization of, 759–760

image global flags, 200–202
image loader

behavior of, 220
bound import tables, 226
defined, 1162
dependencies of DLLs, loading,

222–227
flags, loader data table entry, 225
forwarder entries, 226
import parsing steps, 226–227
initialization steps of, 222
Ldr functions, 58
LDR_DATA_TABLE_ENTRY

structures, 223–225
linked DLLs, loading, 222, 226–227
loaded module database, 223–225
loader data table entries, 223–225
loader data table entry fields,

table of, 223
loader snaps, 221
mapped files, 710
Ntdll.dll, residence in, 220
PEB_LDR_DATA, 223–225
post-process initialization steps,

227–228
purpose of, 220
relocation, 226
tasks of, 220
viewing debug output from, 221

impersonation
advantages of, 480–481
client/server model with, 480–483
defined, 458, 1162
disadvantages of, 481

mechanisms available for, 481
modifiers for settings, 482
named pipes, for, 1022
privilege for, 506
RPC, for, 1017
servers, limitations on use of,

482–483
spoofing issues, 482–483
SQOS levels, 482
system global data location okay

for, 522
Winsock functions for, 1009

indexing NTFS files, 923, 960–961
INF files, 538–539, 632–634,

1064–1065
init once. See run once initialization
initialization routines, device driver,

548, 607, 1162–1163
Initialized thread execution state,

401
in-page I/O operations, 778–779,

1163
input/output. See I/O system
instack queued spinlocks, 176
InstallShield, 64-bit Windows issues,

215
instance IDs, PnP, 630
instancing namespaces, 1163
integrity levels

access of processes based on, 492
AccessCheck tool, displaying with,

158
default policies, 492
defined, 1163
explicit object integrity levels,

471–472
implicit object integrity levels, 471
launching programs in Low, 480
mandatory integrity checks, 492
object, viewing, 472–473
objects, of, 471–473
PMIE example, 466–470
process propagation of, 466
purpose of, 459
SIDs for, 464–465
spoofing prevention, 482–483
UIPI with, 493–494
viewing for processes, 465–466

integrity of data, IPSec for, 1050
intelligent read-ahead

defined, 1163
mechanics of, 875–876
preventing, 876
private cache maps, 1171
viewing with Process Monitor,

878–883
Interactive Services Detection

service, 299–300
intercepts, hypervisor management

of, 239

Interface Definition Language (IDL),
1016

Interlocked functions, 172–173
Internet APIs. See also Web access

APIs
FTP, 1019
HTTP APIs. See HTTP (Hypertext

Transport Protocol)
Internet Explorer

memory address ranges, viewing
for, 758

Protected Mode integrity levels,
466–470

Internet Key Exchange (IKE),
1051–1052

interrupt controllers
APICs, 89–91
IA64 systems, 90
IRQ queries, 88
IRQ to IDT mapping, 89
MP Specification, 89–90
PICs, 89–91
purpose of, 88
routing algorithms, 89–90
slaves, 89–90
state storage by KPCR, 62–64
x64 systems, 89–90
x86 systems, 89–90

interrupt dispatching
APC interrupts, 112–114
APICs, 89–91
connecting an interrupt object,

105–106
disconnecting an interrupt object,

105–106
dispatch code, 101
dispatchers defined, 1163
DPC interrupts, 106–111
dt nt!_kinterrupt command,

102–106
floating point state, 101–102
hardware interrupt overview,

88–89
I/O device generated of

interrupts, 87
interrupt objects, 101–106
IRQ queries, 88
IRQLs. See IRQLs (interrupt

request levels)
IRQs. See IRQs (interrupt requests)
ISRs, handing control to, 87
KiInterruptDispatch, 101
KiInterruptTemplate, 101
masked interrupts, 93–94
message-based interrupts, 106
overview of trap dispatching,

85–87
PICs, 89–91
Plug and Play manager with, 105

	 jobs	 1201

real-time processing issues,
104–106

service routines. See ISRs
(interrupt service routines)

software generated interrupts, 87
software interrupt overview, 106
tables. See IDTs (interrupt dispatch

tables)
trap handler installation, 87
x64 systems, 89–90
x86 systems, 89–90

interrupt objects, 101–106, 1163
interrupt request levels. See IRQLs

(interrupt request levels)
interrupt service routines. See ISRs

(interrupt service routines)
interrupts

APC interrupts, 112–114
controllers. See interrupt

controllers
defined, 86, 1163
device-based, mechanics of,

573–574
disabling by kernel, 87
dispatching. See interrupt

dispatching
dt nt!_kinterrupt command,

102–106
idle thread role for, 419
IoConnectInterruptEx API, 106
KINTERRUPT objects, 102,

174–175
masked, 93–94, 172
message-based interrupts, 106
request levels. See IRQLs

(interrupt request levels)
requests. See IRQs (interrupt

requests)
routing algorithms, 89–90
service routines. See ISRs

(interrupt service routines)
viewing objects associated with,

102–106
intrinsic functions, 172–173
IoCompletion objects, 137, 593
IoConnectInterruptEx API, 106
IoQueueWork functions, 198
IP filtering, 1049–1050
IPIs (interprocessor interrupts), 96,

1163
IPSec (Internet Protocol Security),

1050–1052, 1054
IPv4, 1044–1045
IPv6

HTTP Server API support for, 1019
Next Generation TCP/IP Stack for,

1044–1045
Peer Name Resolution Protocol

(PNRP), 1039–1041

SMB (Server Message Block)
protocol with, 1025

Winsock support for, 1007
WSK (Winsock Kernel) support

for, 1004
IrDA, Winsock Helper library for,

1011
IRPs (I/O request packets)

!irp debugger command, 570
associated, 584–585
buffer management, 570–571
cancel I/O routines, 549
components of, 568
crash dump analysis of, 1146,

1150
defined, 1162
device driver dispatch routines,

548
device trees, flow through, 627
examining, 581–582
file system driver handling of,

903–906
function codes, 568
headers of, 568
I/O completion, 575
I/O manager creation of, 539–540
IRP stack locations, 579
KMDF model with, 612–614
lists of, 569
mechanics of, 566–567
monitoring with Driver Verifier,

606
stack locations, 568–570
start I/O routines, 548
thread termination cancellations,

589–592
uncompleted, 581–582

IRQLs (interrupt request levels)
!irql command, 95
APC level, 97
clock level, 97, 109
correctable machine check levels,

97
crashes due to, 101
defined, 92, 1163–1164
device levels, 97
DPC/dispatch level, 97, 100–101,

106–107, 171–172
fast mutex raising of, 189
forcing IRQL checking with Driver

Verifier, 802
high level, 96
high, crashing systems with,

1135–1137
high, synchronization. See high-

IRQL synchronization
interprocessor interrupt level, 96
interrupt objects, 101–106
IPIs, 96

kernel-mode thread effects, 94
lazy IRQL, 93, 1165
levels, list of predefined, 96–97
levels, purposes of specific, 96
low, synchronization. See low-

IRQL synchronization
mapping IRQs to, 96
masked interrupts, 93–94, 172
multiprocessor system issues,

434–435
numbers for, 92
page fault stop codes, 1121
passive level, 97
PCR, values saved to, 95
power fail level, 96
processor IRQL settings, 93
profile level, 97
servicing order, 92–93
synchronization dependence on,

171–172
system worker threads for

lowering, 198
thread scheduling, raising for, 405
threads, of, 399
user-mode code level, 96

IRQs (interrupt requests)
defined, 1163
mapping IRQLs to, 96
mapping to IDTs, 89
queries for, 88
real-time processing issues,

104–106
verifying with Device Manager,

103–104
iSCSI drivers, 648
isolation of services, 294–300
isolation of transactions by TxR,

966–968
ISRs (interrupt service routines)

connecting an interrupt object,
105–106

control, transfers to, 87
defined, 1164
device driver use of, 548–549
device interrupts, mechanics of,

573–574
interrupt objects, 101–106
Plug and Play manager with, 105
purpose of, 87

Itanium processors. See IA64 CPUs

J
jobs

!job command, 447
binding during process creation,

359
default working sets, 447
defined, 13
job objects defined, 445, 1164

1202	 Joliet disk format

jobs, continued
maximum active processes limit,

446
object type for, 136
per-process user-mode CPU time

limits, 446
process priority class, 447
processor affinity setting, 447
scheduling class, 446
security limits, 447
user-interface limits, 447
user-mode CPU time limits, 446
viewing names and processes of,

447–449
virtual memory limits, 447
Windows API functions for, table

of, 446
Joliet disk format, 890–891
journaling, 1164
junctions, 926

K
Kd.exe, 28, 1134
Ke spinlock functions, 174–175
KeAcquireStackQueuedSpinLock,

176
KeBugCheckEx function, 87,

1120–1121
KeInitThread, 360
Kenrate tool, 97–100
Kerberos authentication

domains, user logons to, 517
IPSec support for, 1051
mechanics of logons, 518
purpose of, 513

kernel debugger commands
!analyze command, 1149
!apic command, 91
!dbgprint command, 49
!defwrites command, 886
!devhandles command, 155–156
!devnode command, 627
!devstack command, 579
!drvobj command, 671
!exqueue command, 200
!gflag command, 202
!handle command, 133, 154
!heap, 734
!htrace, 156
!idt command, 88–89, 102
!ioapic command, 91
!irp command, 1145–1147
!irql command, 95
!job command, 447
!locks command, 191
!memusage command, 807
!miniports, 1055
!numa command, 437

!object command, 144, 489,
552–553

!obtrace, 156
!pcr command, 62–64, 95
!pic command, 91
!popolicy command, 642
!process command, 144, 345,

447–449, 765, 1144
!qlocks command, 176
!ready command, 391
!reg dumppool, 273
!reg findkcb, 278
!reg hivelist, 274
!reg kcb, 278
!reg openkeys, 278
!teb command, 378
!thread command, 184, 376, 569
!timer command, 109
!token command, 478
!vm command, 703, 1145
!wdfkd.wdfldr, 608
!wsle, 830
defined, 29
lm kv, 547

kernel debugging
! commands. See kernel debugger

commands
attaching Debugging Tools to

user-mode processes, 27
booting into debugging mode,

1148–1149
crash dump files, 28
crashes, viewing with host

debuggers, 1151
debug events, table of, 216–217
debugger extension commands,

29
defined, 26
dt command, 29–30
handle tables, viewing, 154
help file for, 29–30
KPCR, displaying, 62–64
LiveKd tool for, 30–31
local, 28
remote connection method, 28
security descriptors, viewing,

488–490
substructures, viewing, 30
symbol files, 26–27
tools for, 26
Windows executive library, 60

kernel dispatcher objects. See
dispatcher objects

kernel event tracing, 207–210
kernel handle tables, 1164
kernel logger. See KT Kernel Logger
Kernel Memory counters, 702
kernel memory dumps, 1126–1129,

1164

kernel mode
access dangers, 16
address space of, 16
architecture, role in system, 34–35
cache copying functions, 869
code signing (KMCS), 17
components of Windows, 37
defined, 16, 1164
device drivers. See kernel-mode

device drivers
executive, Windows, 37
HAL (hardware abstraction layer),

37
handle tables for, 154–156
heaps. See pools, memory
KMDF. See KMDF (Kernel-Mode

Driver Framework)
monitoring in Task Manager, 18
Ntdll.dll system support library,

calls from, 57–58
performance counters for, 17–19
switching with user mode, 17
system service dispatching,

127–129
system threads. See system

threads
time in, determining, 97–100
windowing and graphics system,

37
Kernel-Mode Driver Framework

(KMDF). See KMDF (Kernel
Mode Driver Framework)

kernel objects, 135, 1164–1165
Kernel Patch Protection (KPP),

244–246
Kernel Profiler tool, 97–100
kernel profiling, 97
kernel queue worker factory

support, 388
Kernel Security Device Driver. See

KSecDD (Kernel Security Device
Driver)

kernel stacks, 786–787, 816
kernel streaming filter drivers, 68,

1165
kernel support functions, 4
kernel transaction manager. See

KTM (Kernel Transaction
Manager)

kernel trap handlers. See trap
dispatching

kernel variables, 342–343, 379
kernel, Windows

boot process initialization of
subsystems, 1088–1093

compatibility between Windows
versions, 45

context switching, 64–65
control objects, 62

	 KTM	 1203

debuggers in. See kernel
debugging

defined, 37, 1164
dispatcher objects. See dispatcher

objects
executive objects, relationship

to, 61
handle tables for, 154–156
hardware support role, 64–65
kernel-mode components of

Windows, 37
KPCR. See KPCR (kernel processor

control region)
KPRCB. See KPRCB (kernel

processor control block)
microkernel-based operating

systems, 34–35
mode for processes. See kernel

mode
MS-DOS support, 64
Ntoskrnl.exe binaries links, 67
objects, 61–62
processor control region, 62–64
protected process support, 347
structure of, 61
transaction manager. See KTM

(Kernel Transaction Manager)
unified for multiple CPUs, 41
user-written code for, using

device drivers, 69
variables. See kernel variables

Kernel32.dll
CreateThread function, 380–381
mailslots implementation by,

1024–1026
named pipes implementation by,

1024–1026
process initializing operations,

360–362
kernel-mode device drivers

bus drivers, 542–543
C programming language for, 550
categories of, 542
class drivers, 543
defined, 1165
file objects, 555–562
file system. See file system drivers

(FSDs)
filter drivers, 543
function drivers, 543
I/O requests to single-layered

drivers, 572–578
layering of, 543–544
listing, 546
lm kv command, listing with, 1144
miniport drivers, 543
Non–Plug and Play drivers, 542,

550
Plug and Play drivers, 542
port drivers, 543

structures of, 547–550
WDM. See WDM (Windows Driver

Model) drivers
kernel-mode graphics drivers, 1165
kernel-mode system threads. See

system threads
KeServiceDescriptorTable, 130–133
KeSynchronizeExecution, 578
key objects, 137, 276, 1165
keyed events, 186–189, 1165
keys, encryption, 991
keys, registry

cell indexes, 271
control blocks, 1165
defined, 251, 1165
HKEY_CLASSES_ROOT, 255
HKEY_CURRENT_CONFIGURATION

(HKCC), 259
HKEY_CURRENT_USER, 253
HKEY_LOCAL_MACHINE. See

HKEY_LOCAL_MACHINE
(HKLM)

HKEY_PERFORMANCE_DATA
(HKPD), 259

HKEY_USERS (HKU), 253–254
key cell type, 270
key control blocks, 276–278, 281
key object type, 276–277
naming convention, 251
new, created by applications, 277
object namespace form of key

names, 276
root keys. See root keys, registry
subkeys, 251
symbolic links, 268
value types, 251–252

KINTERRUPT, 102, 174–175
KiThreadStartup, 363
KiWaitTest function, 179
KMCS (kernel-mode code signing),

17, 246–247
KMDF (Kernel-Mode Driver

Framework)
add-device routines, 607
attributes, table of, 612
callback routines for events,

607–608, 614
data model for, 608–612
defined, 70
dispatch methods for queues, 614
displaying drivers, 608
events, 607–608
Evtlo callback routines, 607
handler tasks, 614
handlers for IRPs, 612–613
hierarchy of, 609–611
I/O model, 612–614
initialization routines, 607
IRPs with, 612–614
object contexts, 611–612

object management, 608–609
object types, table of, 609–610
power management states, 614
queues for, 613–614
structure of drivers for, 607
suitability of, 607
WDM, relation to, 607, 612

KOBJECTS enumeration, 185
KPCR (kernel processor control

region), 62–64
KPP (Kernel Patch Protection),

244–246
KPRCB (kernel processor control

block)
cache mapping and pinning

fields, 871
cache MDL activity fields, 872
cache read activity fields, 869–870
fast I/O fields, 874–875
flush operation fields, 883
lazy write fields, 877
mechanism of, 62–64
thread-scheduling fields, 405

KPROCESS blocks
creation of, 356
KeInitializeProcess, 356
page directories addresses, 764
structure of, 338–340

KSecDD (Kernel Security Device
Driver), 455

KT Kernel Logger, 207–210
KTHREAD blocks

defined, 372
displaying, 375
fields, table of, 372–373
initialization during process

creation, 360
system service pointer field, 372

KTM (Kernel Transaction Manager)
APIs for, 260
CommitTransaction function, 261
CreateTransaction function, 260
deferred deletion of objects, 160
defined, 60, 1165
DTC, enabling of, 240
Enlistment objects, 241
Ktmutil.exe tool for viewing, 241
logging operations, 260–261
NTFS use of, 240
purpose of, 240
resource manager (RM), 261–262
Resource Manager (RM) objects,

241
Tm object types, 137
Transaction Manager (TM)

objects, 241
Transaction objects, 241
TxF with, 240, 973
TxR with, 240

1204	 languages, single worldwide binary for

L
languages, single worldwide binary

for, 24
LANMan, 897–899
large address space aware images,

699, 739, 746
large pages, 705–706
last known good control sets

BCD option for booting, 1082
defined, 1165
HKLM\SYSTEM subkey, 259
mechanics of, 1101
SCM management of, 308–309
screen crashes during boots, for

correction of, 1113
last processor numbers, 440
latency, striped volumes for

reducing, 663–664
layered design of Windows, 38
lazy evaluation, 719, 787
lazy IRQL, 93, 1165
lazy writing, 877–883, 906, 1165
LCNs (logical cluster numbers)

data runs with, 950–951
defined, 1166
physical addresses, conversion

to, 938
VCN-to-LCN mapping, 939–940

LDAP (Lightweight Directory Access
Protocol), 1011, 1067

LDM (Logical Disk Manager)
partitioning

advantages of, 656
database for, 656–657
GPT or MBR with, 660
LDMDump, 658
viewing databases, 658
volume manager for, 661

Ldr. See image loader
LdrpInitializeProcess, 369
LDTs (local descriptor tables), 64
legacy drivers, 1166
LFHs (Low Fragmentation Heaps),

732–733
LFS (log file service), 976–978, 981
licensing, determining features

enabled by, 46–47
lightweight filter drivers (LWDs),

1057
line-based interrupts, 106
Link-Layer Topology Discovery

(LLTD), 1043
link-local clouds, P2P, 1040
Link-Local Multicast Name

Resolution (LLMNR), 1039
links, hard, 923–924
lists, ExInterlocked functions for,

176–177
LiveKd tool, 30–31, 1129

LKG. See last known good control
sets

LLMNR (Link-Local Multicast Name
Resolution), 1039

LLTD (Link-Layer Topology
Discovery), 1043

lm kv command, 1144
load and unload device drivers

privilege, 510
load balancing, network, 1068–1069
loaded module database, 223–225
loader data table entries, 223–225
loader snaps, 221
loader, image. See image loader
local FDSs, 896–897, 1166
Local group, SID for, 462
local kernel debugging, 28, 1166
local procedure calls

advanced. See ALPCs (Advanced
Local Procedure Calls)

fast. See fast LPC
LPCs replaced by ALPCs, 203

local replacement policies, 828
local RPC, 1017–1018
local security authentication server

process. See LSASS (local
security authentication server
process)

Local Security Authority Server
(Lsasrv), 992–998

Local Security Authority subsystem.
See Lsass (Local Security
Authority subsystem)

local security policy, 511
Local Security Policy Editor, 501,

511, 533–535
local service account, 288, 291
local system accounts

characteristics of, 289
defined, 288, 1166
group memberships of, 289
privileges of, 289–290
service applications running in,

288–290
Windows subsystem services in,

297
locally unique identifiers. See LUIDs

(locally unique identifiers)
LocalService default service

groupings, 314
location awareness. See NLA

(Network Location Awareness)
locking pages in physical memory,

707–708
log hives, 278–279, 1166
log sequence numbers (LSNs),

914–915
log start LSNs, 914
logging

base log files, 913–914

boot logging in safe mode, 1114
cache manager recovery support,

853–854
change logging, 927–928
CLFS. See CLFS (Common Log File

System)
common logging file system

driver (Clfs.sys), 67
containers, 913–914
dedicated logs, 911–913
defined, 910, 1166
Event Log logging. See Event Log;

Event Logger
event tracing for, 207–210
journaling, 1164
kernel logger, enabling, 208–210
log record structures, 910
LSNs (log sequence numbers),

914–915, 917
multiplexed logs, 911–913
NTFS log file writes, 940
security event log management

privilege, 511
torn writes, 915
transaction logs. See CLFS

(Common Log File System)
TxF logging, 973

Logical Disk Manager (LDM)
partitioning, 656–660

logical drives, 653–654
logical network identity and

interfaces, 1043
logical prefetching

DLL loading by, 369
mechanics of, 823–827
prefetcher kernel component,

1166
process initialization, during, 363

logical processors, 435
logical sequence numbers (LSNs),

853
logoffs, tracing with Process

Monitor, 265–266
logons. See also Winlogon

access check step, 518
account rights retrieval for,

502–503
authentication calls, 514
authentication of. See

authentication
components of, 513
credential providers for, 514
Ctrl+Alt+Delete logon attention,

453, 515–516
interface, displaying, 514. See also

LogonUI
listing active sessions, 519–520
logon process, 1167. See also

Winlogon
manager for. See Winlogon

	 memory	 1205

overview of, 513–515
registry, reading of, 250
SCM, notification of success to,

308–309
secure logon facility rating, 452
single sign-ons, 515
tokens, created for, 473, 518
tracing with Process Monitor,

265–266
trusted path functionality, 453
user interface for. See LogonUI
user logon steps, 516–518
user profiles, loading, 520

LogonUI
credential provider use of, 79
defined, 455
network secondary authentication

capabilities, 515
purpose of, 514
user logon steps, 516–518

LogonUser function, 481–483
look-aside lists, 728–729, 1167
low-IRQL synchronization

condition variables, 195–196
dispatcher headers, 182–185
event setting mechanism, 179
executive resources, 190–191
guarded mutexes, 189–190
kernel dispatcher objects. See

dispatcher objects
keyed events, 186–187
KiWaitTest function, 179
mechanisms for, lists of, 178
purpose of, 177–178
pushlocks, 192–193
SRW locks, 196
wait blocks, 183–186

low-memory conditions
keyed events, 187–188
simulating to test drivers, 802
trimming working sets to free

up, 829
LPCs (local procedure calls)

advanced. See ALPCs (Advanced
Local Procedure Calls)

fast. See fast LPC
KSecDD functions for, 455

LRU (least recently used) algorithm,
827–828

LSA (Local Security Authority)
account right retrieval, 502–503
audit record messages to, 512
policy database, 1166
server process, 1166

Lsasrv (Local Security Authority
Server), 992–999

LSASS (local security authentication
server process)

access token generation, 80
defined, 80

logging on services, 305
mechanics of, 80
SCM calls to, 301–302
services contained by, 313

Lsass (Local Security Authority
subsystem)

act as part of operating system
privilege, 508, 510

audit responsibilities, 511
defined, 454, 1166
EFS management, 992
initialization, 457
KSecDD functions for, 455
local security policy, 511
policy database, 454
SAM service, 454
token creation by, 473
user logon steps, 516–518
Winlogon authentication calls

to, 514
LSNs (log sequence numbers)

base LSNs, 973
defined, 1167
mechanics of, 914–915
restart LSNs, 914, 973–974
translating virtual of physical, 917

LSNs (logical sequence numbers),
853–854

LUIDs (locally unique identifiers),
476–477, 520

LWDs (lightweight filter drivers),
1057

M
magic packages, 1054
mailslots

defined, 1021
file system drivers for, 1025
implementation of, 1024–1026
operation of, 1023
UNC names for, 1021

Managed Object Format (MOF)
language, 319–323

management applications, 318–319
mandatory integrity checks, 492
mandatory integrity control, 22
mandatory labels, 471
mandatory policies, object, 473
mandatory policies, token, 476
manifests, assembly, 364–365
manual-reset events, 195
MAPI support, 1067
mapped files

ACLs for, 713
address ranges, viewing, 758
defined, 710
I/O of, 565–566, 1167
image loader with, 710
MapView functions, 710

prototype PTEs, 776–777
viewing with Process Explorer, 711

mapped page writer, 700, 812–813
MapUserPhysicalPages functions,

720
MapView functions, 710
marshalling areas, 1167
masks, access, 496–497
masks, active processor, 434
masks, affinity. See affinity masks
masks, IRQL, 93–94, 1167
Master Boot Record. See MBR

(Master Boot Record)
master file tables, NTFS, 938–941
MBR (Master Boot Record)

bootable partition searches by,
1076

GPT disks, on, 654
partition tables, 1170
partitioning based on, 653–654,

660
transfer of control to, 1076
troubleshooting corruption issues,

1109
MBR partitioning, 653–654, 660
MCMs (miniport call managers),

1057–1058
MDLs (memory descriptor lists)

Direct I/O memory descriptions,
570–571

DMA caching use of, 872
Driver Verifier checks of, 803
dummy pages, 780
support routines, 762

Media Foundation API, 346–348
MemInfo tool

paging list dumps with, 806
PFN entries, 817
physical memory layout, 821
standby paging list sizes, 810–812

MemLimit utility, 755
memory

!vm command, 703
64-bit address spaces, 15
address spaces for. See address

spaces
amounts supported, 818–819
bad physical pages list, BCD, 1079
commit charge notification, 834
committed. See committed pages
diagnostics tool, 332
execution prevention. See DEP

(data execution prevention)
file mapping objects, 12
flash, ReadyBoost for, 844–845
Hyper-V management of, 238–239
look-aside lists, 728–729
low, simulating to test drivers, 802
low, trimming to increase. See

working set manager

1206	 Memory and Process performance counters

memory, continued
manager. See memory manager
mapped files. See mapped files
mapping virtual to physical. See

address translation
mapping with PAE. See PAE

(Physical Address Extension)
Memory bar histogram, 702
nonpaged, 570–571
notification events, 833–835
paging. See paging virtual

memory to disks
paging defined, 1170
physical. See physical memory
Physical Memory counters, 702
pools. See pools, memory
priority numbers, 809–812
private address spaces for

processes, 712, 758
proactive management of. See

SuperFetch service
process page file quotas, 707
process virtual address spaces, 12
protecting, 711–713
quotas for types of processes, 756
RAM. See physical memory
registry hives, mapping of,

272–276
shared memory sections, 12
SuperFetch. See SuperFetch

service
versions of Windows, amount

supported by, 44–45
virtual implementation for

processes. See virtual memory
system

Write Copies/sec counter, 719
zeroing, 701, 808

Memory and Process performance
counters. See performance
counters

Memory Diagnostic Tool, Windows,
1106

memory dumps
analysis. See crash dump analysis
kernel. See kernel memory dumps

memory manager
boot initializations by, 1089, 1091
cache manager use of, 849–850
cache size issues, 855–859
cluster prefetches, 779–780
clustering, 1156
commitment, 1156
component overview, 700–701
copy-on-write page protection,

718–719
core services overview, 699–700
defined, 1167
demand paging, 787, 823
dereference segment threads, 701

DLL loading, 760
driver verifier option, 604
exception handler of, 700
execution prevention. See DEP

(data execution prevention)
executive, as component of, 59,

700
flushing of cache pages, 877
granularity of allocations, 708
Http.sys with, 1020–1021
internal synchronization of, 701
kernel-mode system thread

components, 700–701
logical prefetching, 823–827
look-aside lists, 728–729
mapped file I/O, 1167
mapped page writer, 700
mapping virtual to physical

memory, 699
Mm functions of, 704
modified and mapped page

writer, 812–813, 906
modified page writer, 700
multiprocessor system

capabilities, 701
notification events, 833–835
NUMA support, 791–792
page directories, 764–766
page fault handler, 906–907
page fault handling. See page

faults
page file management. See page

files
page priority handling, 809–812
page table creation, 762, 787–788
page units, 705–706
paging function of, 699
permissions for sections, 713
placement policies, 827–828
pools. See pools, memory
primary tasks of, 699
process handle permissions, 704
process/stack swapper

component, 700
prototype PTEs, 776–777
PTEs, setting bits in, 767
pushlocks in, 193
quotas, 756
replacement policies, 827–828
section objects. See section

objects
services overview, 704
shared memory sections, 709–711
stop codes generated by, 1122
system thread use, 76
transparency of, 14
virtual address spaces. See virtual

address space layouts
Windows API functions exposing

services of, 704

working set manager, 700
zero page threads, 701
zeroing memory, 807–809

memory-mapped executable issues,
1096

memory-mapped file functions, 704
Memtest.exe, 1075
Message Queuing API, 1032
message-based interrupts, 106
metadata

base log file structure, 913–914
defined, 890, 1167
extensions metadata directory,

NTFS, 941
logging by NTFS recovery support

system, 976–980
NTFS metadata, 938, 947–948
update steps ensuring recovery,

853
methods, object. See object

methods
MFTs (master file tables), NTFS

defined, 1167
mechanics of, 938–941
mirrors, 1167
TxF data stored in, 971
viewing information about, 941

microkernel-based operating
systems, 34–35

Microsoft Developer Network
(MSDN), 1168

Microsoft Interface Definition
Language (MIDL) compiler,
1016

Microsoft Systems Center 2007, 121
Microsoft Transaction Server (MTS),

1032
MIDL (Microsoft Interface Definition

Language) compiler, 1016
MiInitialize functions, 751
MiModifiedPageWriter, 812–813,

906
minidumps, 1127–1128
miniport drivers

defined, 543, 1167
Flags field, 1056
LANMan Redirector, 897
listing loaded, 1055
MCMs (miniport call managers),

1057–1058
NDIS, 1004, 1053
partitioning information, 651–652
place in disk driver architecture,

647
Remote NDIS, 1060–1062
WebDAV, 897
Windows-supplied, 648

mirror sets, 1167
mirrored volumes, 664–666, 675,

1167

	 named pipes	 1207

MiSystemVaType array, 753
MiSystemVaTypeCountLimit array,

755
mklink utility, 923–926
Mm functions, 704, 708
MMCSS (MultiMedia Class

Scheduler Service), 420,
430–434

modes
kernel. See kernel mode
performance counters for, 17–19
purpose of, 16
switching between by

applications, 17
user. See user mode
viewing in Task Manager, 18

modified and mapped page writer,
700, 812–813, 906, 1167–1168

Modified no-write page state, 804
Modified page state, 804
modified page writer, 700, 812–813,

906
Mount Manager, 667–674
mount points, 669–670, 1168
mounting devices

defined, 1168
dismount operations, 897
Plug and Play with, 668
registry storage of data for,

667–668
removable media, 674
reparse points, 669
types of devices mounted,

667–668
volume mounting, 670–671, 939
VPBs (volume parameter blocks),

670–673
MoveFileEx API, 1096
MP Specification, 89–90
MPIO (Multipath I/O) drivers,

648–649
MPR (Multiple Provider Router),

303, 1034–1036
MS DTC (Microsoft Distributed

Transaction Coordinator), 1032
Msconfig utility, 1100
MSDN (Microsoft Developer

Network), 1168
MS-DOS

file names, 945–947
granularity of memory

allocations, 708
kernel support for, 64
support images for process

creation, 352–353
symbolic link creation by Smss,

1094
Msinfo32, 71, 546
MSV1_0, 513, 517–518
MTS (Microsoft Transaction Server),

1032

multimedia playback priority
boosts, 420

multipartition volumes, 645,
661–667, 1168

Multipath I/O (MPIO), 648–649
multipathing, 1168
multiple core system thread

scheduling, 435
Multiple Provider Router. See MPR

(Multiple Provider Router)
multiple redirector support,

1033–1038
multiple sessions, Terminal Services

for, 19–20
Multiple UNC Provider. See MUP

(Multiple UNC Provider)
multiprocessor systems. See

also SMP (symmetric
multiprocessing)

boot initialization of extra
processors, 1091

fast mutexes, advantages of, 189
heap scaling issues, 732
idle threads, 418–419
IPIs (interprocessor interrupts), 96
memory manager capabilities

for, 701
number of supported processors,

40
scalability, 43
thread scheduling. See

multiprocessor thread
scheduling

unified kernel, 41
versions of Windows, amount

supported by, 44–45
multiprocessor thread scheduling

active processor masks, 434
affinity masks, 438–440
compared to uniprocessor

systems, 434
dispatcher database

considerations, 434–435
dynamic processor issues,

441–442
ideal processor numbers,

440–441
idle processors, scheduling while

there are, 443
idle summary masks, 434
IRQL issues, 434–435
last processor numbers, 440
logical processors, 435
no idle processors, choosing

when, 443–444
NUMA systems, 436–438
per-CPU deferred ready state

thread list, 435
specific CPUs, selecting threads

for, 444

multitasking. See also SMP
(symmetric multiprocessing)

defined, 39
preemption scheduling scenario,

414
voluntary switch scenario, 413

multithreading
atomic execution problem, 197
ideal processor numbers with, 440
multiprocessor support for, 43

MUP (Multiple UNC Provider)
defined, 1034
MPR use of, 1036
operation of, 1037–1038

mutants. See mutexes
mutexes

critical sections, inside, 194–195
defined, 1168
executive mutexes. See fast

mutexes
fast mutexes, 189–190
guarded mutexes, 189–190
Mutex object type, 137
OS/2 history of, 137
purpose of, 182

mutual exclusion, 170–171, 1168.
See also synchronization

N
name resolution

defined, 1039
DNS. See DNS (Domain Name

System)
LLMNR (Link-Local Multicast

Name Resolution), 1039
Peer Name Resolution Protocol

(PNRP), 1039–1041
WINS, 1039
Winsock name-resolution

functions, 1009
name retention, 159, 1168
named pipes

defined, 1021
driver for, protected prefix for,

1094
file system drivers for, 1025
format for names, 1021
functions for, 1021–1022, 1024
impersonation for, 481, 1022
implementation of, 1024–1026
mode options, 1021–1022
operation of, 1021–1022
PipeList tool, 1025–1026
reading and writing functions,

1022
RPC with, 1016–1018
servers, 1021
transactions with, 1022
UNC names for, 1021
viewing, 1025–1026

1208	 names of objects

names of objects
base object names, listing, 165
case sensitivity of, 163
directories, 163
global visibility of, 162
handles, relation to, 163
kernel objects, 163–164
management of, 162–166
network visibility of, 164
private namespaces, 164
session namespaces, 167–169
single-instancing with named

objects, 166
squatting attacks, 164

namespaces
BaseNamedObjects, 167
DosDevices, 167–168
global, 167
instancing, 167, 1163
Key object type, 137
local, 167
private namespaces, 164–167
registry, 276
session namespaces, 167–169
virtualization, UAC, 521–528
volume, 667
Winsock, adding service providers

to, 1009
WMI, 324–325

NAP health certificates, 1051
NAT (network address translation),

1049–1050
National Computer Security Center

(NCSC), 451
native applications, 1168
native system services, 4, 51,

130–133
Nbtstat command, 1028
NCSC (National Computer Security

Center), 451
NDIS (Network Driver Interface

Specification)
activity awareness of drivers, 1054
call managers, 1057–1058
components of, 1053–1055
connection-oriented (CoNDIS),

1055, 1057–1060
drivers, 1053–1054
header-data split capability, 1054
interfaces for drivers, 1055
intermediate drivers, 1057
IPSec with, 1054
library (Ndis.sys), 1004, 1053–1054
lightweight filter drivers (LWDs),

1057
listing loaded miniports, 1055
load balancing drivers, 1068–1069
MCMs (miniport call managers),

1057–1058
miniport drivers, 1004, 1053, 1056

Network Monitor, 1059–1060
protocol drivers, 1003–1004,

1053–1054
purpose of, 1053
receive scaling ability, 1054
Remote, 1060–1062
run-time configuration capability

of, 1054
TCP/IP offloading, 1054
wake-on-LAN, 1054

neither I/O, 571
NetBIOS (network basic I/O system)

API implementation, 1029
disadvantages of, 1027
LAN adapter (LANA) numbers,

1027–1028
name system, 1027
Next Generation TCP/IP Stack

with, 1045
operation of, 1028
routing scheme for, 1028
sessions, 1028
TCP/IP, over, 1029
viewing names with Nbtstat, 1028
WINS name resolution for, 1039
Winsock Helper library for, 1011

Netlogon, 455, 518
Netsh.exe, 1010, 1052
network adapters

header-data split capability, 1054
logical network interfaces for,

1043
NDIS miniport drivers, 1004
wake-on-LAN, 1054

Network and Sharing Center, 1034
network drives, SCM notification

role, 303
network file system, 872, 1168
Network Load Balancing, 1068–1069
Network Location Awareness (NLA),

1011, 1042–1043
network logon service, 1168
Network Map functionality, 1043
Network Monitor, 1059–1060
network protocol drivers. See

protocol drivers
network provider interfaces, 1035
network redirectors and servers, 68,

852, 885–886, 1168
network service account, 288,

290–291
networking

adapters. See network adapters
APIs for. See networking APIs
architecture for, overview of, 1001
binding, 1064–1065
BITS (Background Intelligent

Transfer Service), 1030
components for, list of, 1003–1005
datagrams, 1008, 1013

diagnostics for, 332
file system drivers, network, 1168
filtering for. See WFP (Windows

Filtering Platform)
goal for, 1001
Helper libraries for protocols with

Winsock, 1011
IP filtering, 1049–1050
IPSec (Internet Protocol Security),

1050–1052
layers, OSI, 1002–1003
LLTD (Link-Layer Topology

Discovery), 1043
location awareness. See NLA

(Network Location Awareness)
mailslots for. See mailslots
Message Queuing API, 1032
MUP for. See MUP (Multiple UNC

Provider)
named pipes for. See named pipes
NAT, 1049–1050
NetBIOS API. See NetBIOS

(Network Basic I/O System)
network layer, OSI, 1002
Network Monitor, 1059–1060
NetworkService default service

groupings, 314
OSI Reference Model, 1001–1003
Peer-to-Peer Infrastructure APIs,

1031
protocol drivers. See protocol

drivers
QoS (Quality of Service),

1062–1064
redirectors. See network

redirectors and servers
remote access, 1066
remote procedure call API. See

RPC (remote procedure call)
request-reply model, 1001
restriction rules, table of, 297
software types in stacks, 1001
stacks for. See stacks, network
TCP/IP protocol. See TCP/IP
TDI clients. See TDI (Transport

Driver Interface) clients
topology discovery. See LLTD

(Link-Layer Topology Discovery)
transport service providers,

adding, 1009
UPnP (Universal Plug and Play),

1032–1033
Web access. See Web access APIs
well-known addresses for

Winsock, 1009
Winsock API for. See Winsock
WNet API, 1033–1036

networking APIs
kernel. See WSK (Winsock Kernel)
list of, 1006

	 NTFS	 1209

mailslots. See mailslots
named pipes. See named pipes
NetBIOS. See NetBIOS (network

basic I/O system)
purpose of, 1003
RPC. See RPC (remote procedure

call)
sockets. See Winsock
Web access. See Web access APIs

Next Generation TCP/IP Stack,
1012–1013, 1044–1045,
1053–1054

NLA (Network Location Awareness),
1011, 1042–1043

NLS for internationalization, 222
NMR (Network Module Registrar),

1012–1013
no execute page protection,

713–718. See also DEP (data
execution prevention)

Nobody group, 462
nodes, NUMA, 436–438
nonpaged memory, 570–571
nonpaged pools

corruption of, 1140–1142
defined, 721, 1168
initial sizes of, 722
location of, 721
monitoring usage of, 724–728
notification events, 834
number of, 721–722
quotas for, 756
reservation of addresses for, 751
sizes of, 722–724
system, 737
system space addresses for, 752

Non–Plug and Play drivers
defined, 542
device object creation, 550–551
legacy drivers, 620–621
Process Monitor device driver

mechanics, 262
Start values, 623–624

nonsignaled state, 179
nonuniform memory access

architecture. See NUMA (Non
Uniform Memory Architecture)

No-Read-Up object policy, 473, 492
notification events, 195, 833–835
Notmyfault tool

Buffer Overflow bug, creating,
1141–1142

code corruption from drivers,
1143–1144

driver information commands,
1138–1139

Hang option, 1149–1150
High IRQL Fault option,

1135–1137
launching, 1134

pool leak detections, 727–728
Stack Crash option, 1145–1147
stack traces of executing threads,

1138
stop codes shown by, 1137
unkillable processes, debugging,

590–592
verbose analysis with, 1137–1139

NtCreateFile system service, 902
NtCreateUserProcess, 349, 351–352,

360
Ntddk.h ASSERT macro, 48
Ntdll.dll

defined, 37, 1168
functions in, 57–58
heap manager functions, 730
hotpatching, 242
image loader, 220
NtCreateFile function, 557
purpose of, 57
system services functions, 58
undocumented interfaces,

viewing, 72–73
user-mode debugging role,

217–218
NTFS (NT File System)

$DATA attribute, 943–944
advanced feature list, 920
advanced feature overview, 895
atomic transactions, 918–919
attribute lists, 1154–1155
attributes, file, 940–944, 948–951
bad clusters, 940–941, 985–988
base file records, 938
bitmap file of allocation state,

940, 1155
boot file, 940
cache manager recoverable file

system support, 853–854
cache manager with file system

driver, 935
change journal files, 941, 956–959
change logging, 927–928
clusters for, 895, 937–938
compression support, 927,

951–956
data attribute, 943
default resource manager

directory, 941
defined, 895
defragmentation support,

931–932
design goals of, 918–920
dynamic bad-cluster remapping,

923
dynamic partitioning, 932–933
encryption support. See EFS

(Encrypting File System)
extensions metadata directory,

941

FCBs (file control blocks), 936
file names, 945–948
file objects and handles, 935–936
file records, 938, 942–944
file reference numbers, 942
file system driver of, 934–936
Filename attribute, 943
hard links, 923–924
I/O manager interactions with file

system driver, 934–935
indexing facility of, 923, 943,

960–961
KTM update support for, 240
LCNs (logical cluster numbers),

938–940, 950–951
local file system driver for,

896–897
log file writes, 940
metadata files, 938
MFTs (master file tables), 938–941,

971
mirror, MTF, 939
mount points with, 669–670
mounting volumes, 939
MS-DOS file names, 945–947
nonresident attributes, 948–951
Ntfs.sys, 896
object IDs, 929–930, 941, 944, 961
OLE linking, 929–930
per-user volume quotas, 928
physical disk address calculations,

938
POSIX support, 931
quota files, 941, 962–963
recovery support. See NTFS

recovery support
redundancy support, 919–920
reparse points. See reparse points
resident attributes, 948–951
rollback operations, 918–919
root directory records, 940
SCBs (stream control blocks), 936
sector relationship to clusters, 938
security descriptor attribute. See

security descriptors
security file, 940
security model of, 919
self-healing feature, 895, 989
shortcuts, shell, tracking support

for, 929–930
shrinking engine, 932–933
spanned volumes, 662–663
sparse data compression, 952–954
sparse files, 927, 956
stop code for fatal errors, 1123
stream-based caching, 852
streams, 920–922
symbolic links, 924–926
tunneling file metadata, 947–948
TxF. See TxF (Transactional NTFS)

1210	 NTFS recovery support

NTFS (NT File System), continued
Unicode-based names, 922–923
uppercase file, 940–941
VCNs (virtual cluster numbers),

938–940, 950–951
viewing volume information with

Fsutil.exe, 941
volume file, 940–941
volumes, 937

NTFS recovery support
analysis passes, 981–982
atomic transaction basis of,

918–919
bad-cluster recoveries, 985–988
batching, 975
cache flushing operations, 975,

977
checkpoint records, 978–980
committed transactions, 978–979,

984
dirty page tables, 981–985
errors, file system, 984–985
file system corruption, recovery

from, 986–988
guaranteed consistent states, 984
importance of, 895
journaling, 975
lazy writes, 975
LFS (log file service), 976–978
LFS calls for recovery, 981
limits without TxF, 974
log file resets, 980
log file size issues, 980
log record types, 978–980
mechanics of recoveries, 981–985
metadata logging by, 976–980
overhead from, 975
overview of, 974
recoverable file system design,

975
redo entries, 978–979
redo passes, 982–983
reliability strategies of, 975
rollbacks, 978–979
scenarios, table of, 988
self-healing feature, 989
transaction tables, 981–985
TxF for. See TxF (Transactional

NTFS)
types of transactions tracked, 979
undo entries, 978–979
undo passes, 983–984
update records, 978–981
write-through operations, 975

NtGlobalFlag variable, 200–202
Ntkrnlmp.exe, 1169
Ntkrnlpa.exe, 37, 770
Ntoskrnl.exe

binaries linked to, 67
boot phase mechanics, 1088–1093

defined, 37, 1075, 1169
executive functions in, 58
executive of, 1160
HAL dependencies, 66–67
heap manager functions, 730
memory manager, 700
undocumented interfaces,

viewing, 72–73
version, checking which is

running, 41–42
NtReadFile function, 1143
NUMA (Non Uniform Memory

Architecture)
defined, 40
functions for application node

choice, 791
ideal nodes selection, 791–792
ideal processor numbers with, 440
mechanics of, 791–792
memory manager support for,

791–792
node graph construction, 791
page pool dependence on,

721–722
thread synchronization

mechanisms, 436–438

O
object attributes

defined, 21, 1169
flags, table of, 140–142
ObjectAttributes parameter, 21
type-specific, 143–147

Object Browser, WMI, 325–326
object directories, 1169
object headers, 138–140, 144, 162
object IDs, NTFS

application use of, 961
attribute for, 944
defined, 929–930
storage of, 941

object manager
access checks, 459–461
attribute flags, table of, 140–142
boot initializations, 1090
C2 security compliance, 134
close object method, 148
default object type, 146–147
defined, 21, 60, 1169
delete object method, 148
executive. See executive objects
filtering, 170
flags, table of, 140–142
generic services, 142–143
goals of, 134–135
granted access rights, 157
handles, object, 149–157. See also

handles
header fields, 138–140

headers, accessing, 142
methods, object, 147–149
names management, 162–166
namespaces, 133
naming scheme, 134
network I/O calls, 1036
object retention, 159–161
object security. See object security
object-tracking debug flag, 143
okay to close object method, 149
open object method, 148
Openfiles /query command

handle display, 133–134
parse object method, 148–149
purpose of, 133
pushlocks in, 193
resource accounting, 161–162
resource management role, 134
retention of objects goal, 135
section object management, 793
security descriptor management,

488
security object method, 149
security role of, 458
services, non-generic, 142
session namespaces, 167–169
session object isolation goal, 135
subheaders, 139–140
subheaders, accessing, 142
symbolic links, 167
synchronization, 146–147, 179
tools for viewing, 133
type creation issues, 147
type initializer fields, 146
type objects, 143–147
types with, 142
WinObj tool, 133

object methods
close object method, 148
defined, 21, 147, 1169
delete object method, 148
extensibility, 147
object manager with, 147–149
okay to close object method, 149
open object method, 148
parse object method, 148–149
security object method, 149
type creation issues, 147

Object Reference Tracing, 156
object retention, 159–161
object security

access checks for. See access
checks

access determination mechanics,
492–501

access masks, 496–497
ACLs, assignment to new objects,

490–491
ACLs, displaying for objects,

157–158

	 page faults	 1211

AuthZ API, 500–501
denial of service attacks, 164
desired access rights, 157
Ex versions of API vs. open API,

159
granted access rights, 157
integrity levels, 471–473
mandatory policies, 473
object manager role in, 458
overview of, 458–459
reuse protection, 452
security descriptors for. See

security descriptors
security reference monitor, 157
squatting attacks, 164
tokens, 473–480
UIPI for user processes, 493–494

object types
advantages of, 142
defined, 21, 1169
type data structures, viewing, 145
type object header field, 139

Object Viewer, 794
object-oriented kernel code, 35
objects

accessing without handles, 150
attributes. See object attributes
bodies of, 142
control objects, 62, 1157
creator information subheader,

139–140
data structures, compared to, 21
default object type, 146–147
deferred deletion of, 160
defined, 21, 1169
deletion of, 160
executive, 135
filtering, 170
Flags type initializer field, 146
flags, table of, 140–142
GDI/User objects, 135
global object create privilege, 506
handle information subheader,

139–140
handles for, 1169. See also handles
headers. See object headers
integrity levels of, 471–473
kernel, 61–62. See also kernel

objects
labels, modification privilege, 507
manager. See object manager
mandatory labels, 471
methods. See object methods
name information subheader,

139–140
names management, 162–166
ObjectAttributes parameter, 21
ObpCreateHandle function, 459
okay to close object method,

148–149

opening by name, 459
owner rights of, 495–497
permanent, 159
pointers to. See pointers, object
quota charges, 162
quota information subheader,

139–140
reference counts, 160
retention of, 159–161
reuse protection, 1169
security. See object security
security descriptors of. See

security descriptors
signaled state effects by type, 180
structure overview, 138
subheaders, 139–140
tasks performed by, 21
temporary, 159–161
type data structures, viewing, 145
type objects, 143–147
types. See object types

ObpCreateHandle function, 459
ObRegisterCallback API, 170
OCA (Online Crash Analysis),

1133–1134
OCI (open cryptographic interface),

1017
okay to close object method,

148–149
OLE (object linking and embedding),

929–930
one-time initialization. See run once

initialization
Online Crash Analysis (OCA),

1133–1134
open cryptographic interface (OCI),

1017
open object method, 148
Open Systems Interconnection (OSI)

reference model, 1001–1003
OpenEvent for access checks, 159
Openfiles /query command handle

display, 133–134
operating system model, 34–35
oplock protocol, 898–899
Orange Book, 451
OSI Reference Model

correlation with Windows APIs,
1004–1005

defined, 1001–1002
layers in, 1002–1003
protocol stacks, 1003

OTS (over-the-shoulder) elevation,
528–533

output. See I/O system
over-the-shoulder (OTS) elevation,

528–533
owner rights of objects, 495–497,

508, 510

P
P2P IDs, 1040
packet filtering, IPSec for, 1050
PAE (Physical Address Extension)

address translation example,
770–771

BCD options for, 1082–1083
defined, 37, 1170
DEP requirements, 714
device driver issues, 819–820
internal system file names, table

of, 41
kernel differences when present,

41
mechanics of, 769–771
Ntkrnlpa.exe, 770
Ntoskrnl.exe, checking version of,

41–42
page directory pointer tables,

769–771
page tables for, 763
purpose of, 769

page directories
address translation mechanics,

764–766
CPU register for, 764–765
defined, 764, 1169
indexes, 763
locating for the current process,

764
locating PDEs (page directory

entries), 764
structure of, 765
viewing address of for running

processes, 765
virtual addresses of, viewing, 765
widths for, 763
x64, 773

page directory pointer tables, PAE,
769–771

page faults
clustered, 779–780
collided page faults, 779
defined, 774, 1169
demand paging triggered by, 823
demand zero faults, 775, 807–809
in-page I/O operations from,

778–779
invalid PTE basis of, 774
invalid PTE types, 775–776
page file access faults, 775
prototype PTEs, 776–777
PTE unknown faults, 776
reasons for, table of, 774–775
replacement policies, 827–828
signaling page table creation

with, 787–788
transition faults, 775

1212	 page files

page files. See also paging virtual
memory to disks

adding new, 782
clearing at shutdown, 781
commit limit, viewing, 783
committed memory, relation to,

710
criteria for sizing, 782–783
default sizes, table of, 781
defragmenting, 781
locking with AWE, 721
maximum sizes of, 781
performance counter meaning,

780–781
performance counters for, 782
potential page file usage, viewing,

783
Process Explorer data on, 784
purpose of, 780–781
quotas for, 756, 781, 1169
registry tracking of, 781
Session Manager reads during

boots, 781
system running on virtual

memory errors, 783
viewing system page files, 782
viewing usage with Task Manager,

783
page frame numbers. See PFNs

(page frame numbers)
page tables

creation by memory manager, 762
defined, 1169
entries. See PTEs (page table

entries)
indexes for locating PTEs, 763, 766
kernel-mode-only marking of, 736
lazy evaluation for construction

of, 787–788
locating PTEs in indexes, 764
locating with page directory

indexes, 763
maximum number of, 765
mechanics of translations,

766–767
number required to cover address

space, 766
page directories of. See page

directories
private address space maps,

765–766
structure of, 763
x64, 773

paged pools
corruption of, 1140–1142
defined, 721, 1169–1170
limiting size of, 755
location of, 721
monitoring usage of, 724–728

notification events, 834
number of, 721–722
quotas for, 756
sizes of, 722–724
system paged pool, 737
system space addresses for, 752

Pagedefrag tool, 781
page-file-backed sections, 710, 1169
pageheap feature, 735
pages

bad, notification of, 834
committing, 706–708
copy-on-write page protection,

718–719
creation for initial process address

space, 355–356
defined, 705
disk writes of, 707. See also paging

virtual memory to disks
execution prevention. See DEP

(data execution prevention)
invalid, references to. See page

faults
large page advantages, 705–706
large page security issue, 706
locked memory page tracking,

801
locking in physical memory,

707–708
memory manager modified and

mapped page writer, 906
memory protection options,

712–713
owner pages, CLFS, 915–916
page fault handler, 906–907
page-related structure allocation,

753
pool corruption of, 1140–1142
prefetched, 779–780
priority numbers, 809–812
private, 706–707
reserving, 706–708
shared, 776–777
sizes of, 705–706
states, table of, 804
synchronization objects in bug,

802
tables of. See page tables

paging. See paging virtual memory
to disks

paging files. See page files
paging virtual memory to disks

!vm command, 703, 1145
address translation, 705–706
Bootmgr enabling of, 1077
cache management for, 701
defined, 14, 1170
dereference segment threads, 701
files on disk. See page files

free page requests, 700
freeing virtual memory pages, 707
in-page I/O operations, 778–779
Kernel Memory counters, 702
mapped page writer, 700
memory manager role in, 699–700
modified page writer, 700
purpose of, 14
System Page File counter, 702
writing pages to, 707
zero page threads, 701

parse object method, 148–149
partition manager

multipartition volume
management, 661–667

PnP coordination, 655
responsibilities of, 651–652
SAN policy, 670–671

partition tables, 1170
partitions, disk

active partitions, 653–654
boot sectors of, 653–654,

1073–1077
defined, 645, 1170
dynamic partitioning, 932–933
EFI (Extensible Firmware

Interface), 654
EFI System partitions, 1087
extended, 653–654
GPT partitioning, 654
hard versus soft, 660
hidden, 652
IDs of, 652
LDM partitioning. See LDM

(Logical Disk Manager)
partitioning

manager for. See partition
manager

MBR partitioning, 653–654
mirror sets, 1167
partition tables, 653
primary partitions, 653
spanned volumes, 662–663
stored key conversion to volume

drive letters, 1095
striped volumes, 663–664
volume equivalence for basic

disks, 655
volume possession mechanics,

652
Windows installations,

partitioning during, 660
partitions, hypervisor

child partitions, 230, 232–234
overview of, 230
root partitions, 230–232

passwords
credential providers, 79
user logon request mechanics,

516–517

	 physical memory	 1213

patches, 242–246
PatchGuard, 244–246
pause assembly instructions,

spinlocks with, 174
PCA (Program Compatibility

Assistant), 333
PCR (processor control region)

defined, 1171
IRQL values saved to, 95
viewing contents of, 95

PCRs (platform configuration
registers), 681–683

PDEs (page directory entries)
defined, 1169
locating, 764
PAE address translation example,

770–771
PAE width for, 769–771
PFNs in, 764
structure of, 765

PDOs (physical device objects), 628,
1160–1161, 1170

PEB (process environment block)
address space for, 335
CreateProcess setup of, 357–358
dumping, 342
initial value fields, table of,

357–358
purpose of, 340–341
structure of, 341
Windows replacements for initial

value fields, table of, 358
Peer Name Resolution Protocol

(PNRP), 1039–1041
Peer-to-Peer Infrastructure APIs

defined, 1170
mechanics of, 1031

per processor flags, 175–176
performance

counters. See performance
counters

diagnostics, 332
I/O caching. See cache manager
quantums, controlling, 408–410

performance counters
cache mapping and pinning, 871
cache MDL activity, 872
cache read activity fields, 869–870
Data Maps/sec, 884
fast I/O, 874–875
flush operation fields, 883
HKEY_PERFORMANCE_DATA

(HKPD), 259
Kernel Memory counters, 702
lazy write counters, 877, 884
Memory: Free System Page Table

Entries, 744
Memory: Write Copies/sec

counter, 719

memory-related, table of,
702–703

mode-related, 17–19
page file, table of, 782
Performance Data Helper (PDH)

functions, 259
Physical Memory counters, 702
pool size counters, 724
Process: Page File Bytes counter,

780–781
process related, table of, 343–344
Read Aheads/sec, 875–876
System Page File counter, 702
thread related, table of, 379–380
working set size counters, 830

Performance Monitor
counter descriptions, viewing, 25
CPU starvation boosts, watching,

428–430
disk monitoring with, 665–666
mode related counters, 17–19
priority boosts, viewing, 423–425
starting as Reliability and

Performance Monitor, 25
system threads, finding running,

76
thread execution states, viewing,

402–404
working set size counters, 830

performance options, applying to,
355

permanent objects, 159
permissions. See access control
PFNs (page frame numbers)

!memusage command, 807
Active state, 804
Bad state, 804
collided page faults processing,

779
Color field, 815
database structure of, 804
defined, 1169
field in PTEs, 766
fields of, variance of, 814–817
flags, 815–816
Free state, 804
I/Os in progress, 816
kernel stack field, 816
list link field, 816
lists of pages by state, 805
Modified no-write state, 804
Modified state, 804
Original PTE contents field, 815
page list mechanics, 807–809
page location step, 764
page priority handling, 809–812,

815
page states, table of, 804
PDEs, inside of, 764
PFN of PTE field, 815

physical memory limits, as reason
for limiting, 818–819

PTE address field, 814
PTE changes from, 809
purpose of, 803
reference count field, 814
Rom state, 804
share count field, 816
Standby state, 804, 809–812
synchronized access to database

of, 701
system space addresses for, 752
Transition state, 804
Valid state, 804
viewing the database, 806–807
viewing the entries in, 817
working set index field, 816
zero page threads, 808
zero pages, 804, 807–808

PGM (Pragmatic General Multicast)
Winsock Helper library, 1011

physical device objects. See PDOs
(physical device objects)

physical disks. See disks
physical layer, OSI, 1003
physical memory

!filecache debugger command,
857

!vm command, 703
32-bit client limits to useful,

820–821
amounts supported, 818–822
availability, viewing with Task

Manager, 821
AWE functions, 719–721
cache size in, 858–859
committed virtual pages for,

706–708
copy-on-write page protection,

718–719
DMA caching, 872
free, notification events, 834
freed memory checks, 802–803
granularity of allocations, 708
layout, viewing, 821
limitations, 818–819
locking pages in, 707–708
low, trimming to increase. See

working set manager
mapping virtual memory system

to. See address translation
Memory bar histogram, 702
nonpaged pools, 721
optimization software, 846–847
paging defined, 1170
PFN databases of. See PFNs (page

frame numbers)
Physical Memory counters, 702
priority numbers, 809–812
replacement policies, 827–828

1214	 PICs

physical memory, continued
reserved, viewing, 821–822
shared memory sections, 709–711
SuperFetch. See SuperFetch

service
system variables describing, 818
system working sets in, 856–857
versions of Windows, amount

supported by, 44–45
virtual address space in. See

working sets
working sets of. See working sets

PICs (Programmable Interrupt
Controllers), 89–91

PIDs (product IDs), 1158
PipeList tool, 1025–1026
placement policies, 827–828
Plug and Play

drivers. See Plug and Play drivers
manager. See Plug and Play

manager
PnP-X (Plug and Play Extensions),

1032–1033
UPnP (Universal Plug and Play),

1032–1033
Plug and Play drivers

boot initialization, 1090
defined, 542
device objects, 550–551
load order, 631–632
loading responsibility, 619
manager, support for, 621–622
signing policies, 634–636
UMDF reflectors for, 617

Plug and Play manager
capabilities provided by, 619–620
commands to drivers, 621–622
compatible IDs, 634
defined, 538, 1170
device identifiers, 630
device trees, 625–628
devnodes of trees. See devnodes
digital signing policy, 247
DIIDs (device instance IDs), 630
docking station removal privilege,

508
driver loading responsibility, 619
driver signing policies, 634–636
driver support for, 621–622
enumeration of devices, 624–628
filter driver support for, 621
hardware IDs, 634
Hardware Installation Wizard

calls, 632
inf files, 632–634
installation of drivers, 632–636
instance IDs, 630
interrupt chaining, 105
levels of support for non-PnP

devices, 620–621

load order of drivers, 626–627
Mount Manager registration with,

668
network device support, 620
notifications, 621
protected driver lists, 636
purpose of, 619
query-remove commands, 621
query-stop commands, 622
remove commands, 621
resource arbitration, 619, 621
Root virtual bus driver, 624–625
start device commands, 621
Start values, 623–624
state transitions, 622
stop commands, 622
surprise-remove commands, 622
volume manager, coordination

with, 655
Windows executive, as

component of, 59
PMIE (Protected Mode Internet

Explorer), 466–470
PnP. See Plug and Play
PnP (Plug and Play) manager. See

Plug and Play manager
PnP-X (Plug and Play Extensions),

1032–1033
PNRP (Peer Name Resolution

Protocol), 1039–1041
pointers, object

Pointer count object header field,
139

pointer encoding, 717–718
retention, role in, 160

policies
log management, 918
lsass database, 454
Software Restriction Policies,

533–535
pools, memory

!poolused command, 726
!vm command, 1145
allocation routines for, 721
corruption of, 1140–1142
defined, 4
device drivers, viewing usage by,

725–726
Driver Verifier special pool option,

1141–1142
Driver Verifier tracking of, 726
executive allocation routines for,

60
Gflags, enabling special, 1141
hives usage of, viewing with !reg

dumppool, 273
Kernel Memory counters, 702
leaks, detecting, 727–728
location of, 721
look-aside lists, 728–729

monitoring usage of, 724–728
nonpaged pools, 721
NUMA node dependence,

721–722
number of, 721–722
paged pools, 721
pool tags, 157, 725–726
Pool Tracking for drivers, 801
Poolmon tool, 724–726
sizes of, 722–724
Special Pool verification, 799–801

pools, thread. See worker factories
port drivers

C-LOOK algorithm, 647
defined, 1170
LANMan Redirector, 897
MPIO-aware, 649
place in disk driver architecture,

647
Scsiport.sys, 647
undocumented interfaces of, 543
Windows-supplied, 647

port objects, 1170
portability, 38–39, 68
POSIX

configuring, 57
DLL for, 52
enhanced version availability,

50–51
exception dispatching, 117
name space support for, 945
NTFS support for, 931
SUA. See SUA (Subsystem for

Unix-based Applications)
subsystem functions, 56–57
support images for process

creation, 352
user-mode processes for, 36
Windows subsystem, calls to, 53

power manager
!popolicy command, 642
ACPI compliance, 636–638
commands, sending of, 639–640
control of device power by drivers

and applications, 643–644
defined, 1170
device power states, 638
driver power operation, 639–643
hardware latency characteristic of

states, 636
option configuration, 641–642
PnP manager queries to devices,

639
policies, displaying, 642
power consumption characteristic

of states, 636
query commands, 640
sleeping states of, 637–638
software resumption

characteristic of states, 636

	 Process Monitor	 1215

stop codes for crashes, 1121
system power capabilities,

viewing, 641
system state definitions, table

of, 637
system to device state mappings,

639–640
time out values, 643
transition decisions, 638–639
viewing device status, 640
Windows executive, as

component of, 59
PPP support, 1057
PPs (Protection Profiles), 453
PRCB (processor control block)

IRQL values saved to, 95
multiprocessor thread scheduling,

434–435
queued spinlock pointers in, 175
ready queues, 404

preemptive multitasking, 413–414
prefetching. See logical prefetching
prefixes, function name, table of,

72–73
presentation layer, OSI, 1002
Previous Versions, 693–695, 698
primary partitions, 653
principal names, RPC, 1017
printer drivers

64-bit, from 32-bit processes, 215
defined, 1170–1171
port drivers with, 542

priority classes
job processes, setting for, 447
organization of threads by, 393
specifying, 350–351, 396
viewing, 397

priority levels, thread
balance set manager use of,

427–430
booster function, 395
boosts during executive resource

waits, 422–423
boosts to, list of cases for, 419
CPU starvation, boosts for,

427–430
determination of, 393–395
foreground process boosts after

waits, 423–425
functions for getting/setting, 395
GUI thread wake-up boosts,

425–427
I/O completion boosts to,

420–423
MMCSS boosts, 430–434
multimedia playback boost, 420
preemption scheduling scenario,

414
privilege for increasing, 506

quantum end scenario, 415–417
ready queues for, 404
real-time priorities, 399
tools for viewing, 396–398
voluntary switch scenario, 413
waits for events and semaphores,

boosts after, 421–422
private address space page tables,

765–766
private cache maps, 1171
private committed pages, 706–707
private memory allocations, 712,

758
private namespaces, 164–167
private pages, 706–707
privilege levels of CPUs, 16
privileged access control, 22
privileges, account

APIs for checking, 503
assignment tools, 501
component enforcement of, 503
defined, 501
displaying, 501
enabling of, 503–504
security auditing, 511
super privileges, 509–510
table of, 505–508

procedure calls. See local procedure
calls

process and thread manager. See
process manager

process blocks. See EPROCESS
blocks

Process Explorer
access rights, displaying for

objects, 158
ASLR support status of processes,

761
color coding of processes, 11
CPU utilization, viewing, 9
DEP settings, viewing, 716–717
device drivers, listing, 546
Difference Highlight Duration

option, 11
DPCs, display of time used by, 75
DPCs, monitoring, 110–111
evading single-instancing, 166
full paths for images, 11
handles, viewing open, 150–151
hive handles, viewing, 268
I/O priorities, 602–603
information available from, 8–9
integrity levels, viewing, 465–466
interrupts, 75
job objects, viewing, 447–449
layout of, 10
mapped files, viewing, 711
mapping system threads, 77

page file data, 784
page priority, viewing, 810
priority, viewing, 397
privileges, viewing, 503–504
processes requesting memory

resource notification, 835
section objects, viewing, 794
security descriptors, viewing, 488
service processes, 82, 315
session namespaces, 168–169
SIDs, viewing, 463–464
System Idle Process, 418
thread start addresses, viewing,

117–119
threads, viewing, 381–386
tree view, 11
viewing process details with,

10–11
worker factories, viewing,

388–390
process IDs, 5, 1171
process manager

boot initializations, 1090, 1093
CPU rate limit enforcement, 445
defined, 1171
quotas for address spaces, 756
thread creation, 380–381
Windows executive, as

component of, 59
Process Monitor

access-denied errors, 909
application settings, locating, 263
basic vs. advanced modes, 908
BUFFER OVERFLOW trace results,

264–265
cache file system activity, viewing,

878–883
device driver mechanics, 262
file system filter drivers, as

example of, 907–908
file system traces, 909–910
friendly names for I/O, 908
I/O priorities, viewing, 601–602
idle system polling behavior, 909
integrity levels, PMIE, 466–470
logon traces, 265–266
prefetcher activity, viewing, 826
privileges required for, 908
registry monitoring overview, 262
registry troubleshooting

techniques, 264–265
registry, viewing idle system

activity, 262
repetitive polling of registry,

viewing, 262
traces with, 264–265
troubleshooting file systems,

908–910
unprivileged user sessions,

tracing, 265

1216	 Process object type

Process Monitor, continued
viewing process startup process,

366–370
viewing system processes tree, 74

Process object type, 136
Process: Page File Bytes counter,

780–781
process page file quotas, 707
process VADs, 788–789
process working sets, 822, 1171
process/stack swapper, 700
processes

access tokens of, 5, 13
address space limitations on,

14–15
ASLR support status of, 761
components of, 5
CPU utilization, viewing, 9
creating. See CreateProcess

functions
data structures of, 335–342
debug ports of, 216
defined, 1171
elevation of, 528–533
EPROCESS blocks, 335–342, 345
executable programs of, 5
Explorer. See Process Explorer
functions related to, table of,

344–345
handles for objects. See handles
handles of, 5, 13. See also handles
idle, swapping out of memory,

832
IDs of. See process IDs
image loader initialization of, 222
integrity levels of, 465–466
jobs, relationship to, 13, 445
kernel global variables for, table

of, 342–343
KPROCESS blocks, 338–340
object basis of, 21
page directories of, 764–766
page file quotas, 707
page priority, 809–810
parent process IDs, viewing, 5–6
PEB (process environment block),

335–342
performance counters for, table

of, 343–344
priority of, 394–395
private address spaces of, 712,

736
Process Explorer for viewing, 8–9
programs, distinguished from, 5
protected processes, 346–348,

384–386
quantum reset values, 407
security structure for, 512
server processes, 1174

shared memory sections, 12,
709–711

signaled states for
synchronization, 179–180

start-of-thread function, 117–118
system. See system processes
system addresses for, 752
Task Manager, viewing

information with, 6–8
thread scheduling indifference to,

392–393
threads as components of, 5
threads of. See threads
unkillable I/O, debugging,

590–592
virtual address descriptors, 13
virtual address spaces of, 5, 12
virtual size limits, 699

Processor: % Privileged Time
counter, 17–19

Processor: % User Time counter,
17–19

processor affinity, 1171
processor masks, active. See active

processor masks
processors. See CPUs
profile system performance

privilege, 508
Program Compatibility Assistant

(PCA), 333
programs

application programs. See
applications

defined, 1171
processes, distinguished from, 5

protected driver lists, 636
protected mode, 1077, 1171
protected processes

access masks for, table of, 347
defined, 1171
mechanics of, 346–348
purpose of, 346
threads of, viewing, 384–386

protecting memory, 711–713
Protection Profiles (PPs), 453
protocol device classes, 616
protocol drivers

defined, 68, 1171
NDIS for device independence.

See NDIS (Network Driver
Interface Specification)

purpose of, 1044
TDI. See TDI (Transport Driver

Interface) transports
protocol stacks, 1003. See also

stacks, network
prototype PTEs, 776–777, 794, 1171
providers

ETW, 207
network provider interfaces, 1035

ordering of, 1035
WNET, 1034–1035

PsCreateSystemThread function, 76
Psexec tool

Blue Screen tool, running, 1152
launching programs at Low

integrity level, 480
PsExec, viewing security descriptors

with, 456
PsGetSid, 463
Pshed.dll, 67
PspAllocateProcess, 354–359
PspAllocateThread, 359–360
PspCreateThread, 359–360, 381
PspCreateThreadNotifyRoutine

variable, 379
PspInsertProcess, 359
PspInsertThread, 359–360
PspUserThreadStartup, 363–364
Psxss startup, 1096
PTEs (page table entries)

Accessed bits, 767
byte index fields, 768
byte indexes, 763–764
defined, 762, 1169
Dirty bits, 767, 775
fields of, 766
flags in, 766
invalid. See page faults
invalid types of, 775–776
limitations of, 744
locating in page table indexes,

764, 766
locating with page table indexes,

763
mechanics of translations,

766–767
PAE address translation example,

770–771
PAE width for, 769–771
page location step, 764
performance counter for, 744
PFN field, 766
PFNs, pointers from, 809
prefetched pages in, 779
prototype PTEs, 776–777
status and protection bits, table

of, 767
structure of, 763
system, 737, 1176
system space, 744–745
system space addresses for, 752
tracking and viewing, 745
transition, 1178
translation look-aside buffers,

767–769
widths, 763
Write bits, 767

pushlocks, 178, 192–193

	 registries	 1217

Q
QoS (Quality of Service), 1043,

1062–1064, 1171
Quality Windows Audio/Video

Experience (qWAVE), 1063–1064
quantums, thread

accounting for, 407–408
boosting, 410
clock intervals for, 406–408
controlling, 408–410
defined, 392, 1171
end processing, triggering of, 407
initial value set by CreateProcess,

356
job scheduling class, 446
jobs, values for, 409
partial quantum decay, 407
process reset values, 407
Programs vs. Background Services

settings, 409–410
quantum end scenario, 415–417
quantum targets, 406–407
registry values for, 410–412
reset values, 407
Short vs. Long settings, 410–412
targets, 1171
units, 1171
Variable vs. Fixed settings,

410–412
windows in foreground, effect

of, 410
query name object method, 148
queued spinlocks, 175–176, 1172
queues

defined, 1172
dispatcher ready threads, 404
I/O completion ports based on,

595–597
WDFQUEUE for KMDF, 613–614
work items, 1181

quotas
charges, 162, 1172
management system, 444–445
NTFS tracking of, 962–963
per user for disk space, 928
system address space, 756

qWAVE (Quality Windows Audio/
Video Experience), 1063–1064

R
race conditions, use after free bugs,

1140
RAID level 0, 663–664
RAID level 1, 664–666
RAID level 5, 666–667, 1172
RAM. See physical memory
RAM optimization software,

846–847

ramdisks, BCD options for, 1083
Raw FSD, 896
read I/O operations. See I/O

processing
read-ahead, intelligent. See

intelligent read-ahead
read-committed isolation, 966
ReadFile function

file system driver operations after
calling, 902–906

mailslots with, 1024–1025
named pipes with, 1024–1025
synchronous I/O, 563

ReadFileEx, 113, 577
ReadProcessMemory function,

706–707
ready queues, dispatcher, 404, 435
ready summary bit masks, 1172
Ready thread execution state, 400
ReadyBoost, 844–845, 1099
ReadyBoot, 1099
ReadyDrive, 845–846
real mode, 1077, 1172
real-time priorities, 399
real-time processing, 104–106, 399
receive scaling, 1054
Receive Window Auto Tuning, 1044
recovery

cache manager recoverable file
system support, 853–854

CLFS support for. See CLFS
(Common Log File System)

FAT file systems, 985–988
NTFS bad-cluster recoveries,

985–988
NTFS design goal for, 918–919
NTFS support for. See NTFS

recovery support
recoverability defined, 1172
TxF implementation of, 973–974

recursive faults, 1151
redirectors, 897–899, 1033–1038,

1065
redundancy, NTFS support for,

919–920
reference counts, 160, 1172
referencing objects, access checks

for, 460
Reg.exe, 249–250
Regedit, 249–250, 267, 1112–1114
Regini.exe, 249–250
registries

altitude, 280
application settings, locating, 263
application startups reading of,

250
ASCII vs. Unicode storage, 281
bins, 269–272
boot loader reading of, 250
cell indexes, 271

cells. See cells, registry
configuration management

subsystem. See configuration
manager

drive letter storage in, 667–668
editing, overview of tools for,

249–250
enumeration of devices in, 628,

630
filtering, 280
hives of. See hives, registry
HKEY_CLASSES_ROOT, 255
HKEY_CURRENT_CONFIGURATION

(HKCC), 259
HKEY_CURRENT_USER, 253
HKEY_LOCAL_MACHINE (HKLM),

255–259
HKEY_PERFORMANCE_DATA

(HKPD), 259
HKEY_USERS, 253–254
initialization during boots,

1094–1095
kernel reading of, 250
key control blocks, 276–278, 281
key object type, 137, 276
keys. See keys, registry
KTM support for updates to, 240
logon process reading of, 250
memory mapping of, 272–276
memory usage, viewing, 274
modification scenarios, common,

250
monitoring overview, 262
namespaces of, 276
object namespace form of key

names, 276
operation flow control, 277–278
overview of, 23
paged pool usage, viewing with

!reg dumppool, 273
performance optimizations of,

280–281
polling vs. notification of changes

in, 250
quantums, settings for, 410–412
readings of, principal times for,

250
REG_ value types, table of,

251–252
REG_LINK type, 251–252
Regedit.exe. See Regedit
RegNotifyChangeKey function,

262
repetitive polling, viewing, 262
resource manager (RM), 261–262
root keys. See root keys, registry
security descriptors, 280–281
security-descriptor cell type, 270
Services subkey values, table of,

282–287

1218	 Registry Editor

registries, continued
session manager configuration

information, 78
structure of, 252
subkeys, 251. See also keys,

registry
System.sav, 279
transaction operations on. See TxR

(Transactional Registry)
troubleshooting techniques,

Process Monitor, 264–265
value types, 251–252
virtualization of, 526–528
Wow64 structure for, 213–214

Registry Editor, 256–257
Reliability and Performance

Monitor. See Performance
Monitor

remote access, 1066
remote connections, Terminal

Services for, 19–20
remote FSDs (file system drivers),

897–899
Remote NDIS, 1060–1062
Remote Registry Service, 291
reparse data, 1172
reparse points

defined, 1172
junctions, 926
mount points with, 669
NTFS reparse point attribute, 944,

965
NTFS reparse point files, 941
symbolic links, 925–926

reparse tags, 1172
replacement policies, 827–828
replay protection, IPSec for, 1050
request packets. See IRPs (I/O

request packets)
reserving pages, 706–708
resident attribute, 1172
resource accounting, 161–162
resource arbitration, Plug and Play

manager, 619, 621, 1172
Resource Manager (RM)

group for, 462
objects, KTM, 241
TxF use of, 969–971

Resource Monitor, 25–26
resources

exhaustion prevention, 332
file objects, 555–562
low, simulation by Driver Verifier,

802
mutual exclusion rule, 170–171
TxF resource managers, 969–971

restart LSNs, 914, 973–974
restore files and directories

privilege, 510
restricted tokens, 483, 1172–1173

resuming after hibernation, 1078
rings, 1173
RM. See Resource Manager (RM)
Rom page state, 804
root keys, registry

defined, 251
hive root keys, relation to, 266
HKEY_CLASSES_ROOT, 255
HKEY_CURRENT_CONFIGURATION

(HKCC), 259
HKEY_CURRENT_USER, 253
HKEY_LOCAL_MACHINE (HKLM),

255–259
HKEY_PERFORMANCE_DATA

(HKPD), 259
HKEY_USERS, 253–254
tables of, 252

root partitions, hypervisor, 230–232
Root virtual bus driver, 624–625
rotate VADs, 790
routines, kernel support. See kernel

support functions
Routing and Remote Access service,

1066
RPC (remote procedure call)

advantages for programmers,
1014–1015

ALPC support for, 202–204
asynchronous version of,

1015–1016
availability of networking

provided by, 1016
defined, 1014
IDL (Interface Definition

Language), 1016
impersonation for, 481, 1017
implementation, 1017–1018
kernel-mode support for, 1018
local execution, appearance of,

1014
local RPC, 1017–1018
marshalling for remote execution,

1015
MIDL compiler for, 1016
named pipes with, 1017–1018
notification mechanism of,

1015–1016
operation mechanics, 1014–1016
principal names, 1017
procedural model of, 1014
purpose of, 1014
run-time DLL for, 1017–1018
security issues, 1017
server name publishing, 1016
stub procedures libraries, 1015
subsystem, 1018
transport provider interface of,

1016
unmarshalling procedures, 1015
Winsock with, 1017–1018

Rtl functions
Ntdll as container of, 58
RtlUserThreadStart, 364

Run As Administrator command,
531

run as functionality, 528–533
run once initialization, 197–198
run time library. See Rtl functions
Running thread execution state, 400

S
SACLs (system access control lists)

ACE types in, 488
assignment to new objects, 491
defined, 1176
security descriptors, in, 485–487
system audit ACEs, 1176

safe mode
boot logging in, 1104–1105
defined, 1173
Directory Services Restore mode,

1102
driver loading in, 1102–1103
F8 command for, 1101
options of, 1101–1102
purpose of, 1101
services loaded in, 1104
user program awareness of, 1104
Userinit in, 1104

safe structured exception handling,
717–718

SAM (Security Accounts Manager)
service

APIs, 1067
database for, 1173
defined, 454, 1173
viewing descriptors for, 456

SANs (storage area networks)
iSCSI drivers, 648
policy for volumes, 670–671

SAS (secure attention sequence)
beginning user logon, 516–517
B-level security provided by, 453
defined, 1173
logon process role of, 79
mechanics of, 516
notifications to Winlogon, 515

scalability
architectural support for, 43
dispatcher databases for, 404
worker factory, 387

scatter/gather I/O, 566, 1173
ScAutoStartServices, 303–304
SCBs (stream control blocks), 936
ScGenerateServiceDB, 300–301
SChannel (Secure Channel), 1017
scheduled file I/O, 603–604
scheduling threads. See thread

scheduling

	 security descriptors	 1219

SCM (service control manager)
application registration by,

282–283
auto started services, 303–307
auto starts completed event, 307
binding dependencies, specifying

for, 1064–1065
boot steps for, 1097
command processing for

applications, 287–288
database generation, 300–301
delayed auto starts, 306–307
dependencies, 304
device driver loading, 302, 306
failed service starts, 306
failures of services, 310–311
groups, organization of, 300–301
ImagePath values, 305
last known good boots, 308–309
logging on services, 305
looping through services stage,

306
LSASS calls, 301–302
network drive notifications, 303
preshutdown notifications,

312–313
privilege creation by, 291–292
recovery options, 310–311
RPC pipes of, 302
SCP dialog function, 300
SCP interaction with, 317
service processes, launching, 306
service startup process, 287,

303–307
service tags, 316
services database, 301
shared services processes,

313–316
shutdown mechanism, 311–313
shutdown preparations, 302
startup errors, 307–308
startup of, 300–302
SvcCtrlMain, 300–301
synchronization event of, 300
system architecture role, 80–82
time out value, 311

SCPs (service control programs)
defined, 317
policy layering, 317
SCM dialog function for, 300
Services MMC snap-in as example,

317
screen crashes during boots,

1112–1114
SCSI, 647–648
SDK. See Windows Software

Development Kit (SDK)
Search service change journals, 956
secondary resource manager, TxR,

969–971

section objects
access rights, 710
ACLs for, 713
Based attribute, 793
committed virtual pages, 706–708
control areas, 794, 796–798
copy-on-write page protection,

718–719
creation of, 351–352, 710
data structures for mapped

sections, 794
defined, 1173
execution prevention. See DEP

(data execution prevention)
executive use of, 792
mapped file I/O, 565–566, 792
mapped files, 710–711, 792
Maximum size attribute, 793
object manager allocation control

of, 793
page file backed sections, 1169
Page protection attribute, 793
Paging file/Mapped file attribute,

793
pointer structure, 794
pointers, 1173
prototype PTEs, 776–777, 794
Section object type, 136
segment structures, 794
sharing memory with, 709–711
structure of, 793
subsection structures, 794
subsections, 1175
viewing, 794
viewing mapped files, 711
views of partial sections, 710, 1179

sectors
bad-cluster recoveries, 985–988
boot sectors, use of, 896
clusters, relationship to, 937–938
defined, 645, 889, 1173

secure attention sequence (SAS),
79, 453

Secure Channel (SChannel), 1017
secure logon facilities, 1173
Secure Sockets Layer. See SSL

(Secure Sockets Layer)
security

access. See access control
auditing. See auditing, security
authentication for. See

authentication
AuthZ API, 500–501
B-level security, 453
C2 security ratings, 451–452
Common Criteria, 453
components, system, 454–457
contexts. See security contexts
descriptors. See security

descriptors

directory services. See Active
Directory

heap management, 733–734
HKLM\SECURITY subkey, 258
impersonating threads. See

impersonation
integrity mechanism. See integrity

levels
IPSec (Internet Protocol Security),

1050–1052, 1054
KSecDD, 455
locking paging files, 721
Lsass. See Lsass (Local Security

Authority subsystem)
LSASS. See LSASS (local security

authentication server process)
object access checks. See access

checks
object method, 148–149
object protection. See object

security
object reuse protection, 452
overview of, 22–23
protected process issues. See

protected processes
rating standards for, 451–453
reference monitor. See SRM

(security reference monitor)
routine, default object method

for, 147
RPC issues, 1017
security-descriptor cell type, 270
STs (Security Targets), 453
Trusted Computer System

Evaluation Criteria, 451–453
trusted facility management, 453
trusted path functionality, 453
Windows subsystem, 22–23

security contexts
access tokens of processes, 5
defined, 473
threads, of, 12
threads, when differing from their

processes. See impersonation
tokens for identifying. See tokens

security descriptors
access determination with,

492–501
ACEs with, 485–488
attributes, list of, 485
DACL assignments to objects,

490–491
defined, 484–485, 1174
flags, table of, 485–486
NTFS attribute for, 943, 963–965
NTFS security file database of, 940
NTFS use of, 919
null DACL access rights, 487
object header fields, 139, 489
object manager with, 488

1220	 security quality of service

security descriptors, continued
privilege for accessing, 507
viewing, 488–490

security quality of service (SQOS)
levels, 482

security reference monitor. See SRM
(security reference monitor)

segment structure prototype PTEs,
776–777

self-healing file systems, 989
semaphores

critical sections, inside, 194–195
defined, 1174
priority level boosts after waits

for, 421–422
Semaphore object type, 137

Server service, 897
server versions of Windows

architecture compared to client
versions, 43–47

list of, 43–44
optimization compared to clients,

46
physical memory limits for,

818–819
servers

communications ports, ALPC, 205
connection ports, ALPC, 205
name publishing, 1016
remote file system drivers for,

897–899
Server Message Block (SMB)

protocol, 898, 1025
server processes, defined, 1174
Web. See Web servers

service applications
accounts for, 288
alternative accounts, configuring,

291
auto starting of, 303–307
control handlers for, 287
CreateService function, 282–283
defined, 282
dependencies, 304
error control registry values, 284
installation and registration of,

282–283
isolation issues, 294–300
least privilege, running with,

291–294
local service account with, 291
local system account with,

288–290
multiple services per process,

286–287
network service account with,

290–291
registry key creation, 282–283
SCM command processing,

287–288

SCMs, relation to, 282
SCPs, control by, 282
security contexts for, 288
security descriptors, 286
Session 0 Isolation, 297–300
settings, table of, 283–287
SID registry values, 286
SIDs for, 295–300
Start registry values, 284
StartService function, 282
StartServiceCtrlDispatcher, 287
startup process, 303–307
status messages of, 287
Type registry values, 284, 286–287
user accounts, running under, 297
user interaction, configuring for,

298–299
Windows Services MMC snap-in,

291
service control manager. See SCM

(service control manager)
service descriptor tables, 130–133
service packs, pending file moves

for, 1096
service processes, 36
services

applications. See service
applications

components implemented as, 81
components of, 282
CurrentControlSet subkey,

308–309
defined, 4, 281, 1180
dialog box display prohibition,

297
failures and recoveries, 310–311
generic object manager, 142–143
groupings, table of, 314
ImagePath values, 305
Interactive Services Detection,

299–300
isolation issues, 294–300
listing, 81–82
mapping, 81
names of, 81
native system. See native system

services
privileges, viewing, 293–294
Process Explorer, viewing in, 82
recoveries, 310–311
Sc.exe tool, 293–294
SCM. See SCM (service control

manager)
SCPs. See SCPs (service control

programs)
server processes, 1174
service control manager (SCM),

80–82
Service Host (SvcHost), 313
Services registry key, 308–309

Services.exe, 81
shared processes, 313–316
shutdown mechanics, 1115–1118
shutdown mechanism, 311–313
SIDs for, 295–300
startup errors, 307–308
startup process, 303–307
types of, 4
user mode processes, 36
viewing services running inside

processes, 315–316
Services MMC snap-in, 291,

310–311
Services.exe. See SCM (service

control manager)
Session 0 Isolation, 297–300
session layer, OSI, 1002
Session Manager. See Smss.exe

(Session Manager)
session namespaces, 167–169
session spaces

defined, 736, 1174
global space addresses, 752
memory utilization, viewing, 743
system addresses for, 752
x86 layout of, 740–743

session working sets, 823
sessions

defined, 1174
multiple, 19–20
number of, 20
process membership in,

displaying, 742
version differences for, 20
viewing MM_SESSION_SPACE, 742

Setup, Windows
BCD preparation, 1077
boot sector creation by,

1076–1077
boot sector format dependence,

1077
EFI firmware setup, 1086
system partition formatting,

1076–1077
Sfc.exe (System File Checker),

1111–1112
shadow copies. See VSS (Volume

Shadow Copy Service)
shared assemblies, 364–365
shared cache maps, 862–867, 1174
shared memory sections. See also

section objects
defined, 709, 1174
prototype PTEs, 776–777
thread vs. process addressable

space, 12
shatter attacks, 494
shims, WFP, 1047
shortcuts, shell, 929–930
shrinking engine, 1174

	 Standby page state	 1221

shrinking partitions, 932–933
shutdowns

mechanics of, 1115–1118
privileges to, 507–508
services shutdown mechanism,

311–313
system-shutdown notification

routines, device driver, 550
side-by-side assemblies. See SxS

(Side-by-Side Assembly)/Fusion
SideShow, UMDF with, 616
SIDs (Security IDs)

access checks, for, 461–462
assignment of, 461–462
built-in, 462
defined, 461, 1174
enabled vs. disabled, 496
format of, 461
group, in tokens, 475–476
integrity levels with, 464–465
Owner Rights SID, 495–496
relative identifiers (RIDs), 461
restricted tokens, in, 483
security descriptors, in, 485–487
services, for, 295–300
user logons, generation for,

516–517
user, file tagging with, 928
viewing, 463–464
well-known
Winlogon session SIDs, 462

Sigcheck utility, 533
signaled state, 179–180, 1174
signed drivers, 634–636
simple volumes, 645, 1174
single sign-ons, 515, 1175
single-instancing with named

objects, 166
singly linked lists, 176–177, 749–751
slim reader writer locks. See SRW

(slim reader writer) locks
SlPolicy tool, 46–47
small memory dumps, 1127–1128,

1175
smartcard credential providers, 79
SMB (Server Message Block)

protocol
CIFS version of, 898
named pipe and mailslot reliance

on, 1025
WNet provider for, 1034–1035

SMP (symmetric multiprocessing)
ASMP compared to, 39
defined, 39, 1176
identical processor check during

boot, 1093
mutual exclusion rule, 171
scalability support, 43
threading synchronization.

See multiprocessor thread
scheduling

Smss.exe (Session Manager)
concurrency level, setting, 1094
configuration manager call during

boot, 1094
crashes on Csrss and Winlogon

termination, 79
critical process setting, 1094
Csrss, starting, 1095–1096
defined, 1075
known DLLs, opening, 1095
MS-DOS device symbolic link

creation, 1094
page files, reads during boots, 781
processes launched by, 78
protected prefix creation by, 1094
purpose of, 78–79
registry information for, 78
Smpinit duties, 1094
special characteristics of, 1094
start of process during boots,

1093–1096
subsystems, initializing lists to run

during boots, 1095
Terminal Services sessions, 79
user session creation, 78–79
Wininit/Winlogon launches, 1096

snapshots. See VSS (Volume Shadow
Copy Service)

sockets. See Winsock
soft links. See symbolic links
software DEP (data execution

prevention), 717–718
Software Development Kit.

See Windows Software
Development Kit (SDK)

software interrupts. See interrupt
dispatching

Software Restriction Policies,
533–535

spanned volumes, 662–663, 1175
sparse data compression, 952–954
sparse files, 927, 956, 1175
spinlocks

availability to executive, 174–175
defined, 173, 1175
device drivers requiring, 174–175
disadvantages of, 177
ExInterlocked functions, 176–177
global queued, 175
hardware support for, 173
instack queued spinlocks, 176
IRQLs of, 174
Ke functions with, 174–175
KeAcquireStackQueuedSpinLock,

176
lock operation, 173
mechanism of, 173–175
pause assembly instructions, 174
queued, 175–176

splash-screen crashes or hangs,
troubleshooting, 1112–1114

SQL Server shadow copies, enabling,
688–689

SQOS (security quality of service)
levels, 482, 1174

squatting attacks, 164
SRM (security reference monitor)

access checks, 459–461
auditing role, 511
boot initializations, 1090
calls to, 157
defined, 1174
discretionary access checks, 497
impersonation with. See

impersonation
inputs to model, 461
integrity levels with, 464
mechanics of, 457
privilege to act as part of the

operating system, 508, 510
responsibilities of, 454
SeAccessCheck function, 460
SID inputs to, 461–464
tokens with. See tokens
Windows executive, as

component of, 59
SRW (slim reader writer) locks, 196
SSL (Secure Sockets Layer)

HTTP Server API support for,
1019–1021

IPSec certificate support, 1051
SSP implementation of, 1017
WinHTTP support for, 1019

SSPIs (Security Support Provider
Interfaces)

built-in, list of, 1017
impersonation for, 481
RPC with, 1017

SSTP (Secure Socket Transmission
Protocol), 1066

stack cookies, 717–718
stack crashing, 124–125, 1145–1147
stacks, memory

address ranges for, 758
DPC stacks, 787
frames of, 1175
kernel stacks, 786–787
process/stack swapper, 700
randomization by ASLR, 760
threads, reservations for, 707
two stacks per thread model, 784
user stacks, 785
viewing for threads, 382–383

stacks, network
layers of software types

supporting, 1001
Next Generation TCP/IP Stack,

1012–1013, 1044–1045
OSI Reference Model, 1001–1003
protocol stacks, 1003

stacks, storage. See storage stacks
Standby page state, 804, 809–812

1222	 Standby thread execution state

Standby thread execution state, 400
standby, SuperFetch service

scenario for, 840
start I/O routines, 548
start-of-thread function, 117–118
Startup And Recovery settings, 1125
startups

automatic program executions
during, 1100

boots. See boot process
last known good. See last known

good control sets
startup repair tool, 332
Startup Repair tool, 1106–1108
troubleshooting with WinRE,

1106–1108
stop codes

access violation-based, 1122
blue screens, displayed in,

1120–1121
consistency check based,

1122–1123
critical object termination, 1123
defined, 1175
DEP-based, 713–714
display-based, 1122
exception-based, 1122, 1145
file system, 1123
hardware error based, 1123
IRQL issues, 1121
KeBugCheckEx function, as inputs

to, 1120–1121
kernel pool manager generated,

1122
memory management based,

1122
Notmyfault, shown by, 1137
page fault, 1121
parameter information with,

1120–1121
power management, 1121
reference information for, 1121
trap-based, 1122
USB error based, 1123

storage
basic disk based. See basic disks
BitLocker for security. See

BitLocker
class drivers. See storage class

drivers
defragmentation, 931–932
disks for. See disks
drivers for. See disk storage

drivers
dynamic. See dynamic disks
importance of, 645
latency, striped volumes for

reducing, 663–664
per user volume quotas, 928
port drivers, 647

self-healing, 989
stacks. See storage stacks
symbolic links for disk objects,

650–651
terminology, 645
Winload support for, 646

storage class drivers
Disk driver, 647
disk object representation,

650–651
place in disk driver architecture,

647
storage stacks

driver architecture of, 646
MPIO, 649
system storage driver strategy,

600–601
Storport.sys, 647
streams

caching based on, 852
defined, 1175
multiple data streams feature of

NTFS, 920–922
SCBs (stream control blocks), 936

string parameters, 23–24
Strings utility, viewing prefetch files

with, 825
striped volumes, 663–664, 674, 1175
structured exception handling, 114,

1175
STs (Security Targets), 453
SUA (Subsystem for Unix-based

Applications)
advantages over POSIX, 56
as enhancement to POSIX, 50–51
boot startup of, 1096
configuring, 57
defined, 1175
launching, 57

subheaders, object
conditions required for presence

of, 140
defined, 139
Subheader offsets field of

headers, 139
table of, 139–140

subkeys, registry, 251
subsections, 1175
subsystem DLLs, 1175
Subsystem for Unix-based

Applications. See SUA
(Subsystem for Unix-based
Applications)

subsystems
binding of executable images

to, 51
DLLs, applications calls to, 53
DLLs, purpose of, 36–37, 52
environment, role of, 51
I/O subsystem API, 1162

initializing lists to run during
boots, 1095

Ntdll.dll system support library,
57–58

POSIX, 56–57
RPC, 1018
specifying binding in Visual C++,

51
Unix-based applications, for. See

SUA (Subsystem for Unix-based
Applications)

viewing type for images, 52
Windows. See Windows

subsystem
super privileges, 509–510
super users, 509
SuperFetch service

advantages of, 842
agents, 837
application launch agent, 842
architecture of, 837
defined, 1175–1176
FileInfo driver with, 839
logical prefetches, role in,

823–827
memory manager, use of, 837
overview of, 836
page access tracking, 839
page prioritization, 840–841
ReadyDrive with, 846
rebalancer, 837, 841–842
robustness component, 843–844
Scenario manager, 837, 840
Trace Collector and Processor,

836–837
Tracer mechanism, 836, 838–839

support images, 352
SvcCtrlMain, 300–301
swapper, working set, 832
SxS (Side-by-Side Assembly)/Fusion

allocation by image loader, 222
mechanism of, 364
setup during process creation, 361
shared assembly capability, 365

symbol files for kernel debugging,
26–27

symbolic links
creating, 924–926
default evaluation policy, 925
defined, 1176
device objects, of, 551
disk objects, 650–651
explicit I/O operations, use in, 903
file object, 556, 561–562
keys for, registry, 268
mechanics of, 924–925
MS-DOS device, creation by Smss,

1094
network provider creation of,

1036

	 system services	 1223

NTFS feature for, 924–926
object manager implementation

of, 167
privilege for creating, 506, 925
reparse point basis of, 925–926

symmetric encryption algorithms,
1176

symmetric multiprocessing. See SMP
(symmetric multiprocessing)

synchronization
condition variables, 195–196
critical code sections for, 194–195
deadlocks, 194
defined, 146, 1176
dispatcher headers, 182–185
DPC/dispatch level, dependence

on, 171–172
events, condition variables to

replace, 195
executive resources, 190–191
executive, visibility to

programmers, 178–179
ExInterlocked functions, 176–177
gates, 189
guarded mutexes, 189–190
heaps, of, 732
high-IRQL. See high-IRQL

synchronization
Interlocked functions, 172–173
IRQL checking with Driver Verifier,

802
kernel dispatcher objects. See

dispatcher objects
kernel mechanisms, table of, 178
keyed events, 186–187
KiWaitTest function, 179
KTHREAD data for. See KTHREAD

blocks
mutexes. See mutexes
mutual exclusion, 170–171
nonsignaled state, 179
object support for, 146–147
overview of, 170–172
pushlocks, 192–193
queued spinlocks, 175–176
run once initialization, 197–198
signaled state, 179–180, 1174
spinlocks. See spinlocks
user-mode code primitives for, list

of, 178
user-visible objects, 178–179
wait blocks, 183–186

synchronous I/O
cancellations, 588
defined, 563, 1176
requests to single-layered drivers,

572–578
Sysinternals tools, 32
system address spaces

cache pages in, 869

code, 736
components of, 736–737
crash dump information space, 737
defined, 736
dynamic management of, 751–755
HAL space, 737
hyperspace, 737
initialization functions, 751
kernel virtual allocator

mechanism, 751–752
limiting range size by type,

754–755
mapped views, 736
MemLimit utility, 755
nonpaged pools, 737
paged pools, 737
page-related structure allocation,

753
PTEs, 737, 744–745
quotas, 756
reclaiming memory, 752–754
requests and releases, dynamic,

751
types of addresses, determining,

753
types of addresses, table of, 752
types of addresses, viewing usage,

754
working set list, 737
x86 system address space layouts,

740
system architecture. See

architecture
system audit ACEs, 488, 1176
system cache. See also cache

manager
defined, 737, 1176
prefetched pages, 779–780
system space addresses for, 752
working set, 737

System Calls/Sec counter, 133
system code write protection,

1143–1144, 1176
System File Checker, 1111–1112
system files, 41, 1110–1111
system functions

accessing internal, 69
DPCs for execution of, 107
KeBugCheckEx function, 87
services, 58
Windows. See Windows

subsystem
system global flags, 200–202
system global location namespace

virtualization, 521–528
system hive corruption, 1112
system idle process, 75, 418
System Information viewer, 900–901
system memory pools. See pools,

memory

System Page File counter, 702
system partitions

boot process role of, 1076
defined, 1176
formatting by Windows Setup,

1076–1077
System process

mapping system threads, 76–77
purpose of, 75
threads. See system threads

system processes
DPCs (deferred procedure calls),

75
idle process, 75
interrupts, 75
list of common, 74
LSASS. See LSASS (local security

authentication server process)
service control manager, 80–82
session manager. See Smss.exe

(Session Manager)
System process, 75–77
System process threads. See

system threads
tree of, 74
Userinit, 80
Winlogon. See Winlogon

system PTEs (page table entries),
737, 1176

System Restore
purpose of, 1106
rolling back option, 1114
shadow copies for, 694

system service dispatching
32-bit, 125–127
64-bit, 127
defined, 125
dispatch tables, 127, 129, 1176
drivers with, 128–129
epc for IA64, 127
handler registration, 126
iretd instruction, 125
kernel mode, 127–129
KeServiceDescriptorTable,

130–133
KiSystemService, 126, 128–129
mapping call numbers to

functions, 130–133
monitoring activity of, 133
previous mode values, 128
processor detection, 127
service descriptor tables, 130–133
syscall for 32-bit AMD processors,

126
syscall for x64, 127
sysenter instruction, 125, 127
sysexit instruction, 125
trampolines, 129
Zw calls, 128–129

system services, 58, 1176–1177

1224	 system support processes

system support processes, 36, 1177
system threads

balance set manager, 76
components calling, 76
defined, 1177
device driver creation of, 76
mapping to device drivers, 76–77
mechanics of, 75–76
memory for, 75
PsCreateSystemThread function,

76
tracing to calling routines, 76–77

system timers, 109
system variables

physical memory, for, 818
system working set, 833

system volumes, 660, 1076
system worker threads

cache manager use of, 886–887
defined, 198, 1177
device drivers with, 198–199
dynamic worker threads, 199–200
lazy writes with, 877
listing, 200
mechanics of, 198–199
number created, 199
requesting, 198
types of, 199

system working sets. See also
working sets

components included in, 856
defined, 823, 1177
examining, 833
list data structures of, 737
size computations, 833
system cache working set

misnomer, 737
types of pages in, 832
viewing, 856–857

system-shutdown notification
routines, 550

systemwide cookies, 363
systemwide data structures,

protection of, 711

T
take ownership privilege, 510
Task Manager

Applications tab, 7–8
kernel mode, monitoring, 18
Memory Usage bar, 783
page file usage, viewing, 783
physical memory availability, 821
process information, viewing with,

6–8
process priority, viewing, 397
System Idle Process, 418
virtualization status, changing,

525

virtualization status, viewing, 522
TCBs (thread control blocks). See

KTHREAD blocks
TCP/IP

binding to, 1065
Compound TCP (CTCP), 1044
ECN (Explicit Congestion

Notification), 1044
filtering. See WFP (Windows

Filtering Platform)
high loss throughput

improvements for, 1045
logging activity with kernel

logger, 208–210
name resolution protocols for,

1039
NDIS offloading of, 1054
NetBIOS over, 1029
Next Generation TCP/IP Stack,

1012–1013, 1044–1045,
1053–1054

preferred Windows protocol,
reasons for, 1044

QoS implementation, 1062–1063
Receive Window Auto Tuning,

1044
RPC transport interface for, 1016
UMDF with, 616
viewing device objects of, 1045
Winsock Helper library for, 1011

TCSEC (Trusted Computer System
Evaluation Criteria), 451–453

TDI (Transport Driver Interface)
clients

defined, 1003
replacement API for. See WSK

(Winsock Kernel)
TDI (Transport Driver Interface)

transports
defined, 1003–1004
NDIS functions for, 1004
TDI interface availability in WSK,

1012
TDX, 1045
TEBs (thread environment blocks)

!teb command, 378
allocation by PspAllocateThread,

360
CreateThread setup of, 381
granularity of memory

allocations, 708
KTHREAD pointer to, 373
storage of, 377
viewing, 378

temporary objects, 159–161
Terminal Server registry hives

memory issues, 268
Terminal Services

API for, 20
interactive window stations, 167

purpose of, 19–20
session manager session creation

for, 79
session namespaces, 167–168
version differences for, 20

Terminated thread execution state,
401

termination of threads, 417
TestLimit tool

handle creation limits, 152–153
memory leak data, 740
reserving address space with, 746

thread agnostic I/O
file object attribute data for, 556
I/O completion ports for, 587, 595.

See also I/O completion ports
locking user buffers mechanism,

587
mechanisms for, 587
user-initiated cancellation, 588

thread IDs, 12, 759
Thread object type, 136
thread pools. See worker factories
thread scheduling

!ready command, 391
API functions for, 395–396
balance set manager, 427–430
base priority determination,

393–395
code locations for, 392
context switching, 392
CPU rate limits, 444–445
current priority determination,

394
dispatcher databases, 404–405
dispatchers, 392
execution states for, 400–404
increase scheduling priority

privilege, 399
IRQLs with, 399, 405
KPRCB thread-scheduling fields,

405
KTHREAD field for data, 373
multiprocessor. See

multiprocessor thread
scheduling

overview of, 391
preemption scheduling scenario,

414
priority levels, 393–395
priority-driven nature of, 391
process indifference of, 392–393
quantum end scenario, 415–417
quantums. See quantums, thread
real-time priorities, 399
SetThreadIdealProcessor function,

395
sleep functions, 396
SwitchToThread function, 396
termination of threads, 417

	 tracing	 1225

tools for viewing priorities,
396–398

viewing ready threads, 391
voluntary switch scenario, 413
wait functions, 396

Thread: % Privileged Time counter,
17–19

Thread: % User Time counter, 17–19
threaded DPCs, 110
threads

access rights denied for protected
processes, table of, 384–386

access tokens of, 13
activation stacks, 381
alertable wait states, 1153–1154
APC control of, 112
completion ports for. See I/O

completion ports
components of, 12
context switching, 418
contexts of, 12, 1177
CPU register contents, 12
CreateProcess creation of, 359–360
creation steps, 380–381
creation, DLLs supporting, 54
critical worker threads, 199
data structures of, 370–378
Deferred Ready state, 1157
defined, 1177
delayed worker threads, 199
dispatcher databases, 404–405
dispatching, 392. See also thread

scheduling
dynamic worker threads, 199–200
environment blocks. See TEBs

(thread environment blocks)
ETHREAD blocks, 360, 370–378
examining activity of, 381–386
execution states for, 400–404
fibers compared to, 12
functions for creating and

manipulating, table of, 380
hypercritical worker threads, 199
I/O processing cancellations,

589–592
idle threads, 418–419
IDs of. See thread IDs
impersonation by. See

impersonation
KeInitThread, 360
kernel variables for, 379
killing in Process Explorer, 396–398
KiThreadStartup, 363
KTHREAD data. See KTHREAD

blocks
message states, viewing in Task

Manager, 7–8
modes, switching between, 17
multiprocessor support for

multiple, 43

multiprocessor, scheduling.
See multiprocessor thread
scheduling

mutual exclusion principle,
170–171

NtCreateThreadEx, 381
number per client requests,

importance of, 592–593
page priority, 809–810
performance counters for,

379–380
pools of. See worker factories
priority levels, 393–395
processes, as components of, 5
processes, use of resources of, 12
protected process threads,

384–386
PspAllocateThread, 359–360
PspCreateThread, 359–360, 381
PspInsertThread, 359–360
quantums. See quantums, thread
reserving memory for user-mode

stacks, 707
scheduling. See thread scheduling
security contexts pf, 12
security structure for, 512
seed initialization during process

creation, 356
shared memory sections, 12
signaled state, 179–180
spinlock acquisition, 174
stack crashing, 124–125
stack creation, 360
stack randomization, 760
stacks of, 12
stacks, viewing, 382–383
start addresses, viewing, 117–119,

382–383
storage area of, 12
system. See system threads
system worker. See system worker

threads
TEBs. See TEBs (thread

environment blocks)
termination of, 417
timers, 1177
TLS (thread-local storage), 12
TpWorkerFactory object type, 137
trap frames, 86–87
viewing information for, 376–377
wait queue reordering by APCs,

114
waiting, swapping memory of,

832
Windows subsystem structures

for, 371
thunk context setup, 364
time

change privileges, 508
system, 109

Timer object type, 137
timers, thread, 1177

TLBs (translation look-aside buffers),
767–769, 1178

Tlist.exe tool
process tree, viewing with, 5–6
thread information, 377

TLS (thread-local storage), 12
Tm object types, 137
tokens

!token debugger command, 478
create a token object privilege,

506, 510
DACLs of, 476
defined, 473, 1153
discretionary access checks using,

496–497
dt nt!_TOKEN debugger

command, 477
expiration time field, 477
fields of, 476–477
filtered admin tokens, 474,

483–484
flags of, 476
group SIDs in, 475–476
information contained in, 474
inheritance of, 474
LogonUser function creation of,

474
LSASS generation of, 80
LUIDs of, 476–477
mandatory integrity policies,

475–476
mandatory policies of, 476
primary compared to

impersonation, 476. See also
impersonation

privilege arrays, 476, 483
processes, of, 5, 13
restricted, 483
SIDs, restrictions with, 483
threads, of, 13
Token object type, 137
user logons, created for, 473, 518
viewing, 477–479

tools used in book, list of, 24–25
topology discovery. See LLTD (Link-

Layer Topology Discovery)
torn writes, 915
TPM (Trusted Platform Module)

defined, 677–678
Services, 687
TBS, 681–683

TpWorkerFactory object type, 137
tracing

consumers, ETW, 207
controllers, ETW, 207
ETW (Event Tracing for Windows),

207–210

1226	 Transactional Registry

tracing, continued
kernel events, 207–210
kernel trace classes for, 207–208
NtTraceControl system call, 207
providers, ETW, 207

Transactional Registry. See TxR
(Transactional Registry)

transactions
atomic transactions, 918–919
boots, manager initializations

during, 1091–1093
CLFS support for. See CLFS

(Common Log File System)
defined, 1177
Fsutil.exe transaction queries, 968
isolation of, 966–968
KTM for. See KTM (Kernel

Transaction Manager)
Ktmutil.exe tool for viewing, 241
listing current, 968
named pipes, for, 1022
nontransacted writers and

readers, 966–967
rollback operations, 918–919, 967
tables, transaction, 1177
TM (Transaction Manager)

objects, 241
Tm object types, 137
Transact-demo.exe tool, 967–968
transacted writers and readers,

966
TxF. See TxF (Transactional NTFS)
TxR. See TxR (Transactional

Registry)
transfer jobs, 1030
Transition page state, 804
transition PTE, 1178
Transition thread execution state,

401
translating virtual to physical

addresses. See address
translation

translation look-aside buffers,
767–769

TransmitFile function, 1008–1009
TransmitPackets function, 1009
Transport Driver Interface clients.

See TDI (Transport Driver
Interface) clients

transport drivers, NDIS intermediate
drivers, 1057

transport layer, OSI, 1002,
1004–1005

transport protocol drivers. See
protocol drivers

transport provider interface, RPC,
1016

transport service providers
adding to Winsock, 1009
Mswsock.dll, 1011

NMR with WSK for, 1012
TDI. See TDI (Transport Driver

Interface) transports
transports. See TDI (Transport Driver

Interface) transports
trap dispatching

activators of, 85–86
exceptions. See exception

dispatching
handlers. See trap handlers
interrupts. See interrupt dispatching
KeBugCheckEx function, 87
machine state capture, 86–87
page fault dispatching, 774
system service traps. See system

service dispatching
trap frames, 86–87, 1178
trap handlers

control transfer mechanism, 87
defined, 85, 1178
interrupt handler installation, 87
KeBugCheckEx function, 87

traps, 85, 1178
triage dumps, 1127
trimming, working set, 1155
triple faults, 1151
Triple-DES (3DES), 990–991
troubleshooting file systems,

908–910
Trusted Computer System

Evaluation Criteria (TCSEC),
451–453

trusted facility management, 453,
1178

trusted path functionality, 453, 1178
Trusted Platform Module. See TPM

(Trusted Platform Module)
TSCs (time stamp counters),

759–760
TxF (Transactional NTFS)

$TXT_DATA attribute, 971–973
APIs for, 968–969
architecture of, 965
CLRs (compensating log records),

973
defined, 1177
directories for, 941
Fsutil.exe transaction queries, 968
isolation of transactions, 966–967
KTM with, 240, 973
listing current transactions, 968
log files, 970
logging implementation, 973
LSN storage by, 972
LSNs, base and restart, 973
MFT, permanent data stores for

TxF, 971–973
recovery implementation of,

973–974
redo passes, 973–974

redo records, 973
resource managers of, 969–971
rollback criteria, 967
TOPS files, 970–971, 973–974
Transact-demo.exe tool, 967–968
transaction tables, 974
TxIDs, 972
undo passes, 974
undo records, 973
undo-next LSNs, 973
USN records, 972–973

TxR (Transactional Registry)
APIs for, 260
CommitTransaction function, 261
CreateTransaction function,

260–261
defined, 1177–1178
internal log files, 261
isolation levels, 261
KTM with, 240
logging operations, 260–261
resource manager (RM), 261–262
subkeys, deletions of, 260

type initializer fields, 146
type objects

defined, 143, 1178
initializer fields, table of, 146
uniform formats of objects with,

142
viewing, 144–145

U
UAC (User Account Control)

application-compatibility shims,
522–523

compatibility flags, using to run
applications, 533

compatible manifests with, 522
defined, 1178
digital signatures, effects of,

529–530
domain-based elevation, 529
elevation dialog boxes, 529–530
elevations, 528–533
file virtualization, 523–526
File Virtualization Filter Driver, 524
filtered admin tokens with,

483–484
HKEY_CLASSES_ROOT, 255
integrity levels of objects, impact

of, 471–472
issues and solutions of, 520–521
LSASS access token generation, 80
namespace virtualization, 521–528
purpose of, 520–521
registry virtualization, 526–528
requesting administrative rights,

531–533
super privileges with, 509

	 Valid page state	 1227

trustinfo elements in manifests,
532

UIPI bypasses, 532
viewing virtualization status, 522
virtualization status, changing,

525
UDF (Universal Disk Format), 891
UDP, RPC transport interface for,

1016
UI Access flag, 494
UIPI (User Interface Privilege

Isolation)
integrity levels for messaging,

493–494
UAC bypasses, 532

UMDF (User-Mode Driver
Framework)

architecture of, 616–619
defined, 70, 542
driver host processes, 616
driver manager, 618
host processes, 618
I/O manager with, 617
kernel-mode drivers for, 618
KMDF compared to, 616
protocol device classes, 616
reflectors, 617
stacks of drivers, 616–617

UNC (Universal Naming Convention)
defined, 1021
MUP. See MUP (Multiple UNC

Provider)
undocumented interfaces, 72–73
Unicode

defined, 1178
NTFS names based on, 922–923
Windows internal use of, 23–24

uniprocessor flag, 439
Universal Disk Format (UDF), 891
Universal Naming Convention.

See UNC (Universal Naming
Convention)

Universal Plug and Play (UPnP),
1032–1033

UNIX. See POSIX; SUA (Subsystem
for Unix-based Applications)

unkillable processes, debugging,
590–592

unload routines, 550
unresponsive systems, 1147–1150
update records, 1178
updates (hotpatches), 242–244
UPnP (Universal Plug and Play),

1032–1033
USB

PIDs (product IDs), 630
Remote NDIS for, 1060–1062
stop code for, 1123
UMDF with, 616, 618–619

user-mode drivers, 70
VIDs (vendor IDs), 630

use after free bugs, 1140
User Account Control. See UAC

(User Account Control)
user address spaces

ASLR for, 757–761
DLL image files in, 757
dynamic management of, 757
heap randomization, 760
image randomization, 759–760
layout of, 757–758
quotas for, 756
stack randomization, 760
types for allocations, 758
viewing with Vmmap utility,

758–759
user applications, types of, 36
user data, system global storage

issue, 521–522
USER functions

purpose of, 54
windowing and graphics system,

37
User Interface Privilege Isolation.

See UIPI (User Interface
Privilege Isolation)

user mode
address space of, 16
APCs, 113
attaching Debugging Tools to

processes, 27
AuthZ API security, 500–501
components of system

architecture, 36
critical sections, staying in, 194
debugging framework of

executive, 60
defined, 16, 1178
DLL function calls remaining in, 53
environment subsystem server

processes, 36
image loader initialization of

processes, 222
performance counters for, 17–19
services processes, 36
switching with kernel mode, 17
system support processes, 36
Windows subsystem use of, 56

user names
user logon request mechanics,

516–517
Winlogon processing of, 79–80

user process address space BCD
option, 1081

user profiles
HKEY_USERS, 253–254
storage locations for, 254

User Profiles management dialog
box, 254

USER service, service descriptor
tables for, 130–133

user stacks, 785
Userinit

LSASS invoking of, 80
purpose of, 80
safe mode awareness, 1104

user-mode debugging
boot initialization, 1090
consumers, 217
create events, 217
DbgUi APIs, 216–218
debug events, table of, 216–217
debug object, 216
debug ports, 216
defined, 1178
handles management, 219
kernel support for, 216–217
Kernel32.dll support for, 219
load dll events, 217
mechanics of debugger requests,

217
modules supporting, 216
native support for, 217–219
Ntdll.dll, 217–218
producers, 217
viewing debugger objects,

218–219
Windows subsystem support for,

219
User-Mode Driver Framework

(UMDF), 70
user-mode drivers, 70
users, super, 509
Usndump.exe change journal

dumps, 947–959

V
VACBs (virtual address control

blocks)
array structures, 860–862
defined, 1178–1179
index arrays, 863–865, 1178
priority mapping levels, 860
views, cache, 854–855

VADs (virtual address descriptors)
address translation role, 765
defined, 13, 1179
demand paging, 787
process VADs, 788–789
prototype PTEs with, 776–777
purpose of, 787–788
rotate VADs, 790
structure of, 788
viewing, 789

Valid page state, 804

1228	 VCNs

VCNs (virtual cluster numbers)
arrangement of, 938
defined, 1179
mappings to LCNs, 939–940,

950–951
VDDs (virtual device drivers), 542,

1179
VDM (virtual DOS machine)

processes, 54, 353–354
VDS (Virtual Disk Service), 675–677
vectored exception handling, 116
versions of Microsoft Windows

checked build version, 47–49
client. See client versions of

Windows
determining edition booted,

45–46
key differences between, 44
list of, 43–44
optimization differences between,

46
physical memory limits for,

818–822
server. See server versions of

Windows
table of, 1

video
drivers, GDI direct access to, 55
GDI. See GDI (Graphics Device

Interface)
mapped memory for, 821–822
MMCSS with, 430–434
rotate VADs for drivers, 790
VGA mode to default resolution

change during boots, 1096
VIDs (vendor IDs), 1158
views, section object, 710, 1179
views, VACB, 854–855, 862–863
virtual address control blocks

(VACBs). See VACBs (virtual
address control blocks)

virtual address descriptors.
See VADs (virtual address
descriptors)

virtual address space layouts
64-bit, 745–746
64-bit addressing limitations,

749–751
escaping 2GB process limits in

x86, 738–739
high addresses, forcing allocation

of, 739–740
IA64, 746
large address space awareness,

738–739
process address space overview,

736
session spaces, 736
shareable memory, 758

system space components,
736–737

types of data mapped into, 736
user address space layouts,

757–758
x86 address space layouts,

737–740
x86 session space layouts,

740–743
x86 system address space, 740

virtual address spaces
ASLR for user address space,

757–761
AWE functions with, 719–721
committing pages, 706–708
components of addresses for

translations, 763
defined, 1179
dynamic system management of,

751–755
freeing virtual memory pages, 707
layouts of. See virtual address

space layouts
limiting range size by type,

754–755
mapping to physical pages. See

address translation
nonpaged pool space. See

nonpaged pools
paged pool space. See paged

pools
pages, defined, 705. See also

pages; paging virtual memory
to disks

placement policies, 827–828
pools. See pools, memory
priority numbers, 809–812
process size limits, 699
quotas, 756
reclaiming memory, 752–754
reserving pages, 706–708
section objects for mapping. See

section objects
sizes of pages, 705–706
types of addresses, determining,

753
types of addresses, viewing usage,

754
viewing with Vmmap utility,

758–759
working sets of. See working sets

virtual address translation. See
address translation

virtual block caching, 852, 1179
Virtual Disk Service. See VDS (Virtual

Disk Service)
virtual DOS machine (VDM)

processes, 54
virtual memory system

!vm command, 1145
64-bit address spaces, 15
address space of. See virtual

address spaces
AWE extensions of, 15
cache manager with, 854–855
job limits for, 447
kernel mode address space, 16
mapping, 14
memory protection, 712
paging to disks, 14. See also

paging virtual memory to disks
purpose of, 14
RAM optimization software effect

on, 846–847
size of address spaces, 14–15

virtual memory, disk storage of.
See page files; paging virtual
memory to disks

virtual pages. See paging virtual
memory to disks; virtual
memory system

VirtualAlloc functions, 706–708, 720
virtualization, 362, 1179. See also

Hyper-V
virtualization, UAC, 521–528
VirtualLock function, 707–708
virus scanner use of file system filter

drivers, 907
Vista, Windows. See client versions

of Windows
VMBus, 236–237
VMKs (volume master keys)

purpose of, 679–681
sealing, 681–682
unsealing, 684

Vmmap utility, 758–759
volume files, 1179
volume manager

application direct requests, 674
bad-cluster recoveries, 985–988
basic disk management, 655
DMDiskManager, 661
driver nature of, 655
drivers, layering with file system

drivers, 544
dynamic disk, 661
I/O operations, 674–675
mirrored volumes, 664–667
mount operations, 655, 668
multipartition volume

management, 661–667
names of device objects, 650–651
object creation, 655
partition possession mechanics,

652
PnP manager, coordination with,

655
spanned volumes, 662–663

	 WER	 1229

striped volumes, 663–664
VolMgr, 661–662
VolMgrX, 661–662

volume master keys. See VMKs
(volume master keys)

volume sets, 662, 1179–1180. See
also spanned volumes

Volume Shadow Copy Service. See
VSS (Volume Shadow Copy
Service)

volumes
basic disks, equivalence to

partitions, 655
boot volume creation, 660
boot volumes defined, 1155
cache manager recoverable file

system support, 853–854
compression, testing for, 951–952
defined, 1179
dismount operations, 897
FAT, 892–894
foreign volumes, BitLocker, 685
I/O operations of, 674–675
MFTs (master file tables), 938–941
mirrored volumes, 664–667
mount points for, 669–670
namespace mechanism, 667
NTFS, 937
privilege for task performance,

507
quotas, per-user, 928
RAID level 0, 663–664
RAID level 1, 664–666
RAID level 5, 666–667
shrinking, 933
simple compared to

multipartition, 645
snapshots, scheduling for,

697–698
spanned volumes, 662–663
striped volumes, 663–664
system volumes, 660
types of multipartition volumes,

662
VPBs (volume parameter blocks),

670–673
VPBs (volume parameter blocks)

file system driver interactions
with, 896

mount mechanics with, 670–673
VPNs (Virtual Private Networks),

1066
VSS (Volume Shadow Copy Service)

architecture of, 688–689
backups, using for, 692–693
clone shadow copies, 688
copy-on-write shadow copies, 688
defined, 688
device objects of, 692–693
differential copies, 688

operation of, 689–690
Previous Versions feature use of,

693–695, 698
scheduling snapshots for volumes,

697–698
shadow copies defined, 1174
Shadow Copy Provider, 690–692
steps for copy creation, 689–690
System Restore use of, 694
transportable copies, 690
types of copy mechanisms, 688
Volsnap (Volume Shadow Copy

Driver), 690–692
Vssadmin utility for viewing

copies, 696–697

W
wait blocks

defined, 183, 1180
KTHREAD fields for, 373
relationship to threads and

dispatcher objects, 183
viewing, 184, 186

wait hints, 1180
wait queues, 114, 413
wait state

alertable wait states, 1153–1154
boosts during executive resource

waits, 422–423
priority level boosts after events

and semaphore waits, 421–422
voluntary switching from, 413
Waiting thread execution state,

401
WaitForMultipleObjects function,

178–179
WaitForSingleObject function,

178–179
wake-on-LAN, 1054
watermarked desktop option, 1080
WBEM (Web-Based Enterprise

Management)
basis for WMI, 318
CIM specification, 319–320
WbetTest tool, 323

WDF (Windows Driver Foundation)
defined, 1180
KMDF compared to UMDF, 70
purpose of, 70

Wdfkd.dll, 608
WDI (Windows Diagnostic

Infrastructure), 61, 329–333,
1180

WDK (Windows Driver Kit)
ASSERT macro, 48
documentation, 31
downloading, 31
file system drivers, required to

build, 895–896

header files, 31–32
Windows executive functions, 58

WDM (Windows Driver Model)
drivers

bus drivers, 69, 542–543
categories of, 542–543
defined, 69, 1180
filter drivers, 69–70
function drivers, 69
interactions of, 543
types of drivers, 69
WMI routines. See WMI (Windows

Management Instrumentation)
Web access APIs

HTTP Server API, 1019–1021
purpose of, 1018
WinHTTP, 1019
WinInet, 1019

Web servers
cache functions, 1020–1021
configuration functions for, 1021
HTTP Server API, 1019–1021
Http.sys, 1019–1020
port range reservations, 1019
request queues, 1019–1020
URL groups, 1019–1020
well-known addresses for

Winsock, 1009
WinHTTP API for, 1019
Winsock extensions for,

1008–1009
Web services, DPWS, 1033
WebDAV, 897
well-known addresses for Winsock,

1009
well-known installers, 1111–1112
WER (Windows Error Reporting)

ALPC error ports, 124
analysis at Microsoft, 1133–1134
configuration options, 122–124
configuring, 120
crashed unhandled exception

filters, 122
debugger option, 121
defined, 120
error report options, 121
Microsoft Systems Center 2007

with, 121
OCA (Online Crash Analysis),

1133–1134
purpose of, 1131
sending of reports to Microsoft,

1133
settings screen for, 1131
silent process deaths, 122–125
solutions suggested to users,

1133–1134
unhandled exceptions triggering

mechanism, 121
user input requests, 1133

1230	 WFP

WER (Windows Error Reporting),
continued

Wercon.exe, launching, 120
WerFault dump operations, 1132
WerFault execution during logons,

1133
WerFault pre-dump operations,

1130–1131
WerFault.exe, 121

WFP (Windows File Protection)
callout drivers, 1180
differences with WRP, 1111

WFP (Windows Filtering Platform)
BFE (base filtering engine), 1047,

1049–1050
callout drivers, 1004, 1047
components of, 1047
defined, 1004, 1180
filter engine, 1047
IPSec callout driver, 1052
NAT support, 1049
shims, 1047
Windows Firewall support,

1049–1050
WHQL (Windows Hardware Quality

Labs), 538–539, 635
Win16, process creation for,

353–354
Win32 API. See also Windows API

defined, 2
history of, 3–4

Win32k.sys. See also Windows
subsystem

components contained in, 54
defined, 37
GDI components, 54–55
kernel load during boots, 1096
system mapped views for, 736
threads, structures for, 371

WinDbg
crash dump analysis with, 1134,

1137
kernel debugging with, 28
loader databases, viewing,

223–225
viewing user-mode debugger

objects, 218–219
window stations

defined, 1180
opening by SCM, 305
service access to, 297–299
Winlogon, creation of, 515

windows
priority level boosts for, 425–427
quantums, effect of windows in

foreground on, 410
windows and graphics system, 37

Windows 3.1, 353–354
Windows API

categories of callable functions, 2

defined, 2, 1180
documentation in SDK, 2
functions, 4
Heap interfaces, 730
history of, 3–4
memory manager functions, 704
memory protection options,

712–713
Windows Boot Loader. See Winload

(Windows Boot Loader)
Windows Boot Manager. See

Bootmgr (Windows Boot
Manager)

Windows Diagnostic Infrastructure.
See WDI (Windows Diagnostic
Infrastructure)

Windows Driver Foundation.
See WDF (Windows Driver
Foundation)

Windows Driver Kit. See WDK
(Windows Driver Kit)

Windows drivers, 1180. See also
device drivers

Windows Error Reporting (WER). See
WER (Windows Error Reporting)

Windows executive. See executive,
Windows

Windows Filtering Platform. See
WFP (Windows Filtering
Platform)

Windows Firewall
connection security rules

management, 1052
IPSec support for, 1051
network restriction rules, 296–297
WFP support for, 1049–1050

Windows hardware error
architecture, 61

Windows Internet Name Service
(WINS), 1039

Windows Management
Instrumentation. See WMI
(Windows Management
Instrumentation)

Windows Media Player, 166,
430–434

Windows Memory Diagnostic Tool,
1106

Windows native API, 1094
Windows Networking API,

1033–1036
Windows Next Generation TCP/

IP Stack. See Next Generation
TCP/IP Stack

Windows NT
legacy drivers, 1166
networking APIs, 1067

Windows Recovery Environment
(WinRE), 1106–1108

Windows Resources Protection
(WRP), 1111–1112

Windows Server. See server versions
of Windows

Windows Server Core, 231
Windows services. See services
Windows Setup. See Setup,

Windows
Windows Sockets. See Winsock
Windows Software Development

Kit (SDK)
latest version of, obtaining, 31
Windows API documentation in, 2

Windows subsystem. See also
Win32k.sys

calls from other subsystems, 53
components of, 54
CreateProcess operations with,

360–362
DirectX wrappers, 54
DLLs loaded by Csrss.exe, 54
DLLs translating API functions to

service calls, 54
DLLs, application calls to, 53
executive objects, 136
file specification of, 51
GDI, 54–56
importance of, 51
kernel load during boots, 1096
kernel-mode device driver, 54
launch by Smss during boot

process, 1094
startup values, 51
threads, structures for, 371
undocumented interfaces, 72–73
user interface control calls, 54
user-mode functions, 56
window manager, 54

Windows System Resource Manager
(WSRM), 398–399

Windows Task Manager
Performance tab, 702–703

Windows Transport Driver Interface
standard, 1003

Windows Update
hotpatches, 242–244
TxR use by, 261

Windows Vista. See client versions
of Windows

Windows, versions of. See versions
of Microsoft Windows

WindowStation object type
components represented by, 137
okay to close object method, 149
open object method, 148

WinHTTP, 1019
WinInet, 1019
Wininit

boot steps of, 1097
critical nature of, 1096

	 working set manager	 1231

defined, 1075
Smss launches of during boots,

1096
Winlogon steps compared to, 516

Winload (Windows Boot Loader)
autorecovery BCD option for,

1080
BCD options for, table of,

1080–1084
boot volume file load steps,

1085–1086
configuration queries by, 1085
defined, 1074
loading by Bootmgr, 1084
registry fixes by, 279
storage support in, 646
troubleshooting menu, BCD

option for, 1080
WinRE, automatic launches of,

1107
Winlogon

activity triggers for, 80
authentication, 79
authentication calls to Lsass, 514
boot steps of, 1097–1098
credential providers, 79, 514
Ctrl+Alt+Delete logon attention,

515–516
defined, 455
desktops created by, 515
locked nature of desktop, 516
LogonUI, 79
LSASS calls, 80
Lsass connection creation, 515
passwords, 79–80
request handling by, 79
responsibilities of, 513
SAS notifications, 515
SCM, notification of success to,

308–309
secure attention sequence, 79
session SIDs, 462
shutdown initiation, 311
shutdown mechanics, 1115–1117
Smss launches of during boots,

1096
system initialization steps,

515–516
user logon steps, 516–518
user names, 79–80
window station creation, 515

WinObj tool
ACL display for objects, 157–158
ALPC port objects, viewing, 203
base object names, listing, 165
device object name display, 552
disk objects, displaying, 650–651
file systems, viewing registered,

900
memory condition events, 835

object manager namespace,
viewing, 133

purpose of, 133
session namespaces, 168
type objects, listing, 144

WinRE (Windows Recovery
Environment), 1106–1108

Winresume, 1074
WINS (Windows Internet Name

Service), 1039
Winsock

accept operations, 1007–1008
AcceptEx function, 1008
AFD (Ancillary Function Driver),

1012
binds, 1007
BSD Sockets basis of, 1006
client operation, 1007
ConnectEx function, 1009
connection backlogs, 1007–1008
connectionless operation, 1008
connection-oriented operation,

1007–1008
datagrams, 1008
DisconnectEx function, 1009
DLLs for, 1011
extensibility by third parties,

1009–1011
extension APIs, 1008–1009
feature list, 1006–1007
file handles for sockets, 1012
Helper libraries, 1011
history of, 1006
impersonation functions, 1009
implementation of, 1011–1012
initialization, 1007
IPv6 support, 1007
kernel API. See WSK (Winsock

Kernel)
listen operations, 1007–1008
Mswsock.dll, 1011
multipoint message support, 1007
name-resolution functions, 1009
namespace support, 1007, 1009
PNRP for IPv6, 1040
polling sockets, 1007–1008
protocol independence of, 1007
receive functions, 1007–1008
RPC run-time DLL use of,

1017–1018
select functions, 1007–1008
send functions, 1007–1008
server operation, 1007–1008
showing providers with Netsh,

1010
socket creation, 1007
SPI (service provider interface),

1009
TransmitFile function, 1008–1009
TransmitPackets function, 1009

transport service providers,
adding, 1009

well-known addresses with, 1009
Ws2_32.dll, 1011
WSAPoll functions, 1007–1008

Winsock Kernel. See WSK (Winsock
Kernel)

WinSta0, 167
WMI (Windows Management

Instrumentation)
APIs for, 319
architecture of, 318–319
association classes, 325–327
CIM with, 320–323
CIMOM, 319
COM API, 319
defined, 318
dynamic designator, 323
Event Log provider example, 320
infrastructure, 319
managed objects, 318–319
management applications,

318–319
MOF with, 320–323
namespace for, 324–325
Object Browser, 325–326
providers, 318–320
registry settings, 328
scripting support, 326
security issues, 329
service mechanics, 327–328
SQL support, 327
WDM routines, 1180
WMIC utility, 328

WNet API, 1033–1036
work items, 1181
worker factories

API for, 386
defined, 386
Factory object, 387
I/O completion ports, 388
kernel queue support for, 388
object manager type for, 387
responsibilities of, 387–388
scalability benefit of, 387
stop codes from bad references,

1122
viewing, 388–390
Vista compared to pre-Vista,

386–387
worker threads. See system worker

threads
working set manager

aging pages, 1153
automatic trimming, 1155
calls from and to the balance set

manager, 831–832
defined, 1181
purpose of, 700
trimming initialization by, 829

1232	 working sets

working sets
automatic trimming of, 829, 1155
balance set manager context of,

831–832
clock algorithm for, 1156
defined, 699, 1181
demand paging, 823
entries, viewing, 830
freeing a page during PFN

operations, 809
lock implementation for, 701
logical prefetching, 823–827
manager. See working set

manager
mechanics of, 829
PFN index field for, 816
placement policies, 827–828
process working sets, 822, 1171
quotas for, 756
replacement policies, 827–828
session working sets, 823
size of, viewing, 830
sizing of, 828–829
swapper mechanics, 832
system. See system working sets
system cache, 737

Workstation service, 897
Wow64

16-bit applications, 215
16-bit installer applications, 215
address space for, 211, 746
architecture of, 211
defined, 211
device driver issues, 214–215
DLLs for, 211
exception dispatching, 212
file system redirection, 212–213

I/O control functions, 214–215
IA64 (Itanium) issues, 215
printing from 32-bit processes,

215
registry reflected keys, 214
registry splits, 213–214
restrictions for, 215
Sysnative virtual directory, 213
system calls, 212
user callbacks, 212

WPD (Windows Portable Device)
Framework, 616

WQL (WMI Query Language), 327
write I/O operations. See also I/O

processing
fast I/O steps for, 873–874
lazy writing, 877–883
write throttling, 885–886
write-through caching, 883

write throttling, 1181
write-back caching, 877–883
WriteFile function

file system driver operations after
calling, 902–906

mailslots with, 1024–1025
named pipes with, 1024–1025
synchronous I/O, 563

WriteFileEx
I/O completion, 577
user-mode APCs with, 113

WriteProcessMemory function,
706–707

writing, memory protection against,
712–713

WRP (Windows Resources
Protection), 1111–1112

WS Discovery, 1033

Ws2_32.dll, 1011. See also Winsock
WSK (Winsock Kernel)

advantages of, 1012
binding of applications, 1013
defined, 1004
events of, 1013
extension interfaces, 1014
implementation, 1012–1014
NMR (Network Module Registrar)

with, 1012–1013
registration functions, 1013
socket categories, 1013
TDI SPI interface availability in,

1012
WSRM (Windows System Resource

Manager), 398–399

X
x.509 certificates, 1051
x64 Windows. See 64-bit Windows

versions (x64)
x86 systems

address space layouts, 737–740
session space layouts, 740–743
system address space layouts, 740

XP, Windows. See client versions of
Windows

Z
zero page threads, 701, 808, 1181
Zeroed page state, 804
zone security system, 921

Mark Russinovich
Mark Russinovich is a technical fellow in the Windows Core Operating
System Division. He is a member of the core team that provides archi-
tectural direction and oversight across Windows, with a focus on secu-
rity and virtualization. Mark is currently working on the technical
direction and architectural plan for Windows 8. He also continues
developing tools for the Windows Sysinternals Web site, the most pop-
ular TechNet subsite, with 2 million downloads per month. Mark consis-
tently delivers the top-rated sessions at major IT and developer
conferences, including Microsoft TechEd, TechReady, and WinHEC.

Mark has written dozens of magazine articles and serves as contributing editor for both
Microsoft TechNet and Windows IT Pro magazines. Mark joined Microsoft in 2006 when the
85-person company he cofounded 10 years earlier, Winternals Software, was acquired along
with Sysinternals. At Winternals he was chief software architect, defining the business and
technical direction for the company.

David Solomon
David Solomon, president of David Solomon Expert Seminars
(www.solsem.com), has focused on explaining the internals of the
Microsoft Windows NT operating system line since 1992. He has taught
his world-renowned Windows internals classes to thousands of devel-
opers and IT professionals worldwide. His clients include all the major
software and hardware companies, including Microsoft. He was nomi-
nated a Microsoft Most Valuable Professional in 1993 and from
2005–2008.

Prior to starting his own company, David worked for nine years
as a project leader and developer in the VMS operating system development group at
Digital Equipment Corporation. His first book was entitled Windows NT for Open VMS
Professionals (Digital Press/Butterworth Heinemann, 1996). It explained Windows NT to VMS-
knowledgeable programmers and system administrators. His second book, Inside Windows
NT, Second Edition (Microsoft Press, 1998), covered the internals of Windows NT 4.0. Since
the third edition (Inside Windows 2000) David has coauthored this book series with Mark
Russinovich.

In addition to organizing and teaching seminars, David is a regular speaker at technical con-
ferences such as Microsoft TechEd and Microsoft PDCs. He has also served as technical chair
for several past Windows NT conferences. When he’s not researching Windows, David enjoys
sailing, reading, and watching Star Trek.

Alex Ionescu
Alex Ionescu is the founder of Winsider Seminars & Solutions Inc., spe-
cializing in low-level system software for administrators and develop-
ers. He also teaches Windows internals courses for David Solomon
Expert Seminars, including at Microsoft. Alex was the lead kernel devel-
oper for ReactOS, an open source clone of Windows XP/Windows
Server 2003 written from scratch, for which he wrote most of the
Windows NT–based kernel.

Alex is also very active in the security research community, discover-
ing and reporting several vulnerabilities related to the Windows kernel

and presenting talks at conferences such as Blackhat and Recon. Alex’s experience in oper
ating system design and kernel coding dates back to his early adolescence, when he first
played with John Fine’s educational operating system and kernel and boot loader code. Since
then he has been active in the area of NT kernel development, offering help and advice for
driver developers, as well as in the NT reverse engineering and security fields, where he has
published a number of articles and source code, such as documentation for the Linux NTFS
project, extensive papers on the Visual Basic metadata and pseudo-code format and NTFS
structures and data streams. In the last three years, he has contributed to patches and devel-
opment in two major commercially used operating system kernels.

Windows Internals, Fifth Edition and MCTS Exam 70-660
This book delivers in-depth, kernel-level insights into the Windows OS. You may also find it helpful
when preparing for the following topics in Microsoft Certification Exam 70-660:

Exam Objectives/Skills See Topic-Related Coverage Here
Identifying Architectural Components
Identify memory types and mechanisms Chapter 9

Identify I/O mechanisms Chapter 7, see “I/O Processing”; Chapter 3

Identify subsystems Chapter 2, see “Key System Components”

Identify processor functions and architecture Chapter 3, see “System Service Dispatching”; Chapter 5, see
“Overview of Windows Scheduling”

Identify processes and threads Chapter 5, see “Process Internals,” “Thread Internals,” and
“Thread Scheduling”

Designing Solutions
Optimize a system for its drivers Chapter 7, see “Device Drivers” and “The Plug and Play (PnP)

Manager”; Chapter 3, see “Interrupt Dispatching” and “System
Worker Threads”; Chapter 9, see “Driver Verifier”

Design applications Chapter 3, see “Windows Global Flags,” “Exception
Dispatching,” and “Synchronization”; Chapter 5, see “Thread
Internals”; Chapter 9; Chapter 6

Deploy compatible applications Chapter 3, see “Windows Global Flags” (limited coverage)

Identify optimal I/O models for applications Chapter 7, see “I/O Processing” and “I/O Completion Ports”

Monitoring Windows
Monitor I/O latency Chapters 1, 7, and 8

Monitor I/O throughput Chapters 3, 7, 8, and 11

Monitor memory usage Chapter 9

Monitor CPU utilization Chapters 5 and 14

Monitor handled and unhandled exceptions Chapter 3, see “Exception Dispatching”; Chapter 14, see
“Windows Error Reporting”

Analyzing User Mode
Analyze heap leaks Chapter 9, see “Heap Manager”

Analyze heap corruption Chapter 9, see “Heap Manager”

Handle leaks Chapter 3, see “Object Handles and the Process Handle Table”

Resolve image load issues Chapter 3, see “Image Loader”

Analyze services and host processes Chapter 4, see “Services”

Analyze cross-process application calls Not covered

Analyze the modification of executables at
run time

Not covered

Analyze GUI performance issues Not covered

	

Exam Objectives/Skills See Topic-Related Coverage Here
Analyzing Kernel Mode
Find and identify objects in object manager
namespaces and identify the objects’
attributes

Chapter 3, see “Object Manager”

Analyze Plug and Play (PnP) device failure Chapter 7, see “The Plug and Play (PnP) Manager”; Chapter 13

Analyze pool corruption Chapters 1 and 3

Analyze pool leaks Chapters 1, 3, 9, and 14

Isolate the root cause of S state failure Chapter 7, see “Power Manager”

Analyze kernel mode CPU utilization Chapter 14, see “Hung or Unresponsive Systems”; Chapter 3

Debugging Windows
Debug memory Chapters 9 and 14

Identify a pending I/O Chapter 7

Identify a blocking thread Chapter 3, see “Synchronization”; Chapter 5, see “Thread
Scheduling”

Identify a runaway thread Chapter 5, see “Thread Scheduling”; Chapter 14

Debug kernel crash dumps Chapters 14, 3, and 5

Debug user crash dumps Not covered

Set up the debugger Chapters 14, 13, and 1

For complete information on MCTS Exam 70-660, go to www.microsoft.com/learning/en/us/Exams/70-
660.aspx. And for more information on Microsoft certifications, visit www.microsoft.com/learning.

http://www.microsoft.com/learning/en/us/Exams/70-660.aspx
http://www.microsoft.com/learning/en/us/Exams/70-660.aspx

	Windows® Internals
	Table of Contents
	Foreword
	Acknowledgments
	Introduction
	Chapter 5 Processes, Threads, and Jobs
	Process Internals
	Data Structures
	Kernel Variables
	Performance Counters
	Relevant Functions

	Protected Processes
	Flow of CreateProcess
	Stage 1: Converting and Validating Parameters and Flags
	Stage 2: Opening the Image to Be Executed
	Stage 3: Creating the Windows Executive Process Object (PspAllocateProcess)
	Stage 4: Creating the Initial Thread and Its Stack and Context
	Stage 5: Performing Windows Subsystem–Specific Post-Initialization
	Stage 6: Starting Execution of the Initial Thread
	Stage 7: Performing Process Initialization in the Context of the New Process

	Thread Internals
	Data Structures
	Kernel Variables
	Performance Counters
	Relevant Functions
	Birth of a Thread

	Examining Thread Activity
	Limitations on Protected Process Threads

	Worker Factories (Thread Pools)
	Thread Scheduling
	Overview of Windows Scheduling
	Priority Levels
	Windows Scheduling APIs
	Relevant Tools
	Real-Time Priorities
	Thread States
	Dispatcher Database
	Quantum
	Scheduling Scenarios
	Context Switching
	Idle Thread
	Priority Boosts
	Multiprocessor Systems
	Multiprocessor Thread-Scheduling Algorithms
	CPU Rate Limits

	Job Objects
	Conclusion

	Index

