
http://www.facebook.com/share.php?u=http://www.microsoftpressstore.com/title/9780735624306
http://twitter.com/?status=RT: download a free sample chapter http://www.microsoftpressstore.com/title/9780735624306
https://plusone.google.com/share?url=http://www.microsoftpressstore.com/title/9780735624306
http://www.linkedin.com/shareArticle?mini=true&url=http://www.microsoftpressstore.com/title/9780735624306
http://www.stumbleupon.com/submit?url=http://www.microsoftpressstore.com/title/9780735624306/Free-Sample-Chapter

● ● ● ● ● ● ● ● ● ● ●

How to access
your CD files

Microsoft Press

The print edition of this book includes a CD. To access the
CD files, go to http://aka.ms/624306/files, and look for the
Downloads tab.

Note: Use a desktop web browser, as files may not be
accessible from all ereader devices.

Questions? Please contact: mspinput@microsoft.com

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2008 by John Sharp

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

Library of Congress Control Number: 2007939305

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 2 1 0 9 8 7

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor-
mation about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress.
Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, MSDN, SQL Server, Excel, Intellisense, Internet Explorer, Jscript,
Silverlight, Visual Basic, Visual C#, Visual Studio, Win32, Windows, Windows Server, and Windows
Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries. Other product and company names mentioned herein may be the trademarks of their
respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its
resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions Editor: Ben Ryan
Developmental and Project Editor: Lynn Finnel
Editorial Production: Waypoint Press
Technical Reviewer: Kurt Meyer; Technical Review services provided by Content Master, a member
of CM Group, Ltd.

Body Part No. X14-22686

Contents at a Glance

Part I Introducing Microsoft Visual C# and
Microsoft Visual Studio 2008

 1 Welcome to C# . 3
 2 Working with Variables, Operators, and Expressions 29
 3 Writing Methods and Applying Scope . 49
 4 Using Decision Statements . 67
 5 Using Compound Assignment and Iteration Statements 85
 6 Managing Errors and Exceptions . 103

Part II Understanding the C# Language
 7 Creating and Managing Classes and Objects 123
 8 Understanding Values and References . 145
 9 Creating Value Types with Enumerations and Structures 167
 10 Using Arrays and Collections. 185
 11 Understanding Parameter Arrays . 207
 12 Working with Inheritance . 217
 13 Creating Interfaces and Defi ning Abstract Classes 239
 14 Using Garbage Collection and Resource Management. 257

Part III Creating Components
 15 Implementing Properties to Access Fields 275
 16 Using Indexers. 295
 17 Interrupting Program Flow and Handling Events 311
 18 Introducing Generics . 333
 19 Enumerating Collections . 355
 20 Querying In-Memory Data by Using Query Expressions 371
 21 Operator Overloading . 395
 iii

iv Contents at a Glance
Part IV Working with Windows Applications
 22 Introducing Windows Presentation Foundation 415
 23 Working with Menus and Dialog Boxes 451
 24 Performing Validation . 473

Part V Managing Data
 25 Querying Information in a Database . 499
 26 Displaying and Editing Data by Using Data Binding 529

Part VI Building Web Applications
 27 Introducing ASP.NET . 559
 28 Understanding Web Forms Validation Controls. 587
 29 Protecting a Web Site and Accessing Data with

Web Forms. 597
 30 Creating and Using a Web Service . 623
 Index . 645

Table of Contents
Acknowledgments . xvii

Introduction .xix

Part I Introducing Microsoft Visual C# and
Microsoft Visual Studio 2008

 1 Welcome to C# . 3
Beginning Programming with the Visual Studio 2008 Environment. 3
Writing Your First Program. 8
Using Namespaces. 14
Creating a Graphical Application. 17
Chapter 1 Quick Reference. 28

 2 Working with Variables, Operators, and Expressions 29
Understanding Statements. 29
Using Identifi ers . 30
Identifying Keywords. 30
Using Variables . 31

Naming Variables. 32
Declaring Variables . 32

Working with Primitive Data Types . 33
Displaying Primitive Data Type Values . 34

Using Arithmetic Operators . 38
Operators and Types . 39
Examining Arithmetic Operators. 40
Controlling Precedence . 43
Using Associativity to Evaluate Expressions . 44
Associativity and the Assignment Operator . 45
 v

www.microsoft.com/learning/booksurvey

Microsoft is interested in hearing your feedback so we can continually improve our books and

learning resources for you. To participate in a brief online survey, please visit:

What do you think of this book? We want to hear from you!

vi Table of Contents

Incrementing and Decrementing Variables . 45
Prefi x and Postfi x . 46

Declaring Implicitly Typed Local Variables. 47
Chapter 2 Quick Reference. 48

3 Writing Methods and Applying Scope . 49
Declaring Methods . 49

Specifying the Method Declaration Syntax. 50
Writing return Statements. 51
Calling Methods . 53
Specifying the Method Call Syntax. 53

Applying Scope . 56
Defi ning Local Scope. 56
Defi ning Class Scope . 56
Overloading Methods . 57

Writing Methods . 58
Chapter 3 Quick Reference. 66

4 Using Decision Statements . 67
Declaring Boolean Variables. 67
Using Boolean Operators . 68

Understanding Equality and Relational Operators 68
Understanding Conditional Logical Operators. 69
Summarizing Operator Precedence and Associativity 70

Using if Statements to Make Decisions . 71
Understanding if Statement Syntax . 71
Using Blocks to Group Statements . 73
Cascading if Statements . 73

Using switch Statements . 78
Understanding switch Statement Syntax . 79
Following the switch Statement Rules. 80

Chapter 4 Quick Reference. 84

5 Using Compound Assignment and Iteration Statements 85
Using Compound Assignment Operators . 85
Writing while Statements. 87
Writing for Statements . 91

Understanding for Statement Scope . 92

 Table of Contents vii
Writing do Statements . 93
Chapter 5 Quick Reference. 102

 6 Managing Errors and Exceptions . 103
Coping with Errors . 103
Trying Code and Catching Exceptions . 104

Handling an Exception . 105
Using Multiple catch Handlers . 106
Catching Multiple Exceptions . 106

Using Checked and Unchecked Integer Arithmetic . 111
Writing Checked Statements . 112
Writing Checked Expressions. 113

Throwing Exceptions . 114
Using a fi nally Block . 118
Chapter 6 Quick Reference. 120

Part II Understanding the C# Language
 7 Creating and Managing Classes and Objects 123

Understanding Classifi cation . 123
The Purpose of Encapsulation . 124
Defi ning and Using a Class . 124
Controlling Accessibility . 126
Working with Constructors. 127

Overloading Constructors . 128
Understanding static Methods and Data . 136

Creating a Shared Field. 137
Creating a static Field by Using the const Keyword 137

Chapter 7 Quick Reference. 142

 8 Understanding Values and References . 145
Copying Value Type Variables and Classes . 145
Understanding Null Values and Nullable Types . 150

Using Nullable Types . 151
Understanding the Properties of Nullable Types 152

Using ref and out Parameters . 152
Creating ref Parameters . 153
Creating out Parameters . 154

viii Table of Contents
How Computer Memory Is Organized . 156
Using the Stack and the Heap . 157

The System.Object Class . 158
Boxing . 159
Unboxing . 159
Casting Data Safely . 161

The is Operator . 161
The as Operator . 162

Chapter 8 Quick Reference. 164

 9 Creating Value Types with Enumerations and Structures 167
Working with Enumerations. 167

Declaring an Enumeration . 167
Using an Enumeration. 168
Choosing Enumeration Literal Values. 169
Choosing an Enumeration’s Underlying Type . 170

Working with Structures . 172
Declaring a Structure. 174
Understanding Structure and Class Differences. 175
Declaring Structure Variables. 176
Understanding Structure Initialization . 177
Copying Structure Variables. 179

Chapter 9 Quick Reference. 183

 10 Using Arrays and Collections. 185
What Is an Array? . 185

Declaring Array Variables . 185
Creating an Array Instance. 186
Initializing Array Variables . 187
Creating an Implicitly Typed Array . 188
Accessing an Individual Array Element . 189
Iterating Through an Array. 190
Copying Arrays . 191

What Are Collection Classes? . 192
The ArrayList Collection Class . 194
The Queue Collection Class . 196
The Stack Collection Class . 197
The Hashtable Collection Class . 198
The SortedList Collection Class . 199

 Table of Contents ix
Using Collection Initializers . 200
Comparing Arrays and Collections . 200
Using Collection Classes to Play Cards . 201

Chapter 10 Quick Reference. 206

 11 Understanding Parameter Arrays . 207
Using Array Arguments. 208

Declaring a params Array . 209
Using params object[] .211
Using a params Array. 212

Chapter 11 Quick Reference. 215

 12 Working with Inheritance . 217
What Is Inheritance? . 217
Using Inheritance . 218

Base Classes and Derived Classes . 218
Calling Base Class Constructors. 220
Assigning Classes . 221
Declaring new Methods . 222
Declaring Virtual Methods . 224
Declaring override Methods . 225
Understanding protected Access . 227

Understanding Extension Methods . 233
Chapter 12 Quick Reference. 237

 13 Creating Interfaces and Defi ning Abstract Classes 239
Understanding Interfaces . 239

Interface Syntax . 240
Interface Restrictions . 241

Implementing an Interface. 241
Referencing a Class Through Its Interface . 243
Working with Multiple Interfaces . 244

Abstract Classes . 244
Abstract Methods . 245

Sealed Classes . 246
Sealed Methods . 246

Implementing an Extensible Framework . 247
Summarizing Keyword Combinations . 255
Chapter 13 Quick Reference. 256

x Table of Contents
 14 Using Garbage Collection and Resource Management. 257
The Life and Times of an Object . 257

Writing Destructors . 258
Why Use the Garbage Collector? . 260
How Does the Garbage Collector Work?. 261
Recommendations. 262

Resource Management . 262
Disposal Methods . 263
Exception-Safe Disposal . 263
The using Statement. 264
Calling the Dispose Method from a Destructor. 266

Making Code Exception-Safe. 267
Chapter 14 Quick Reference. 270

Part III Creating Components
 15 Implementing Properties to Access Fields 275

Implementing Encapsulation by Using Methods . 276
What Are Properties?. 278

Using Properties. 279
Read-Only Properties . 280
Write-Only Properties . 280
Property Accessibility . 281

Understanding the Property Restrictions . 282
Declaring Interface Properties . 284

Using Properties in a Windows Application . 285
Generating Automatic Properties . 287
Initializing Objects by Using Properties . 288
Chapter 15 Quick Reference. 292

 16 Using Indexers. 295
What Is an Indexer? . 295

An Example That Doesn’t Use Indexers . 295
The Same Example Using Indexers . 297
Understanding Indexer Accessors. 299
Comparing Indexers and Arrays . 300

Indexers in Interfaces. 302
Using Indexers in a Windows Application . 303
Chapter 16 Quick Reference. 308

 Table of Contents xi
 17 Interrupting Program Flow and Handling Events 311
Declaring and Using Delegates . 311

The Automated Factory Scenario . 312
Implementing the Factory Without Using Delegates 312
Implementing the Factory by Using a Delegate. 313
Using Delegates . 316

Lambda Expressions and Delegates . 319
Creating a Method Adapter . 319
Using a Lambda Expression as an Adapter . 320
The Form of Lambda Expressions . 321

Enabling Notifi cations with Events . 323
Declaring an Event. 323
Subscribing to an Event . 324

Unsubscribing from an Event . 324
Raising an Event . 325

Understanding WPF User Interface Events . 325
Using Events . 327

Chapter 17 Quick Reference. 329

 18 Introducing Generics . 333
The Problem with objects. 333
The Generics Solution . 335

Generics vs. Generalized Classes . 337
Generics and Constraints . 338

Creating a Generic Class . 338
The Theory of Binary Trees. 338
Building a Binary Tree Class by Using Generics . 341

Creating a Generic Method . 350
Defi ning a Generic Method to Build a Binary Tree 351

Chapter 18 Quick Reference. 354

 19 Enumerating Collections . 355
Enumerating the Elements in a Collection. 355

Manually Implementing an Enumerator . 357
Implementing the IEnumerable Interface . 361

Implementing an Enumerator by Using an Iterator . 363
A Simple Iterator . 364
Defi ning an Enumerator for the Tree<TItem> Class by
Using an Iterator . 366

Chapter 19 Quick Reference . 368

xii Table of Contents
 20 Querying In-Memory Data by Using Query Expressions 371
What Is Language Integrated Query (LINQ)? . 371
Using LINQ in a C# Application . 372

Selecting Data . 374
Filtering Data . 377
Ordering, Grouping, and Aggregating Data. 377
Joining Data . 380
Using Query Operators. 381
Querying Data in Tree<TItem> Objects . 383
LINQ and Deferred Evaluation. 389

Chapter 20 Quick Reference. 392

 21 Operator Overloading . 395
Understanding Operators. 395

Operator Constraints. 396
Overloaded Operators . 396
Creating Symmetric Operators . 398

Understanding Compound Assignment . 400
Declaring Increment and Decrement Operators . 401
Defi ning Operator Pairs . 403
Implementing an Operator. 404
Understanding Conversion Operators . 406

Providing Built-In Conversions . 406
Implementing User-Defi ned Conversion Operators 407
Creating Symmetric Operators, Revisited . 408
Adding an Implicit Conversion Operator. 409

Chapter 21 Quick Reference. 411

Part IV Working with Windows Applications
 22 Introducing Windows Presentation Foundation 415

Creating a WPF Application . 415
Creating a Windows Presentation Foundation Application 416

Adding Controls to the Form . 430
Using WPF Controls . 430
Changing Properties Dynamically. 439

Handling Events in a WPF Form . 443
Processing Events in Windows Forms. 443

Chapter 22 Quick Reference. 449

 Table of Contents xiii
 23 Working with Menus and Dialog Boxes 451
Menu Guidelines and Style. 451
Menus and Menu Events. 452

Creating a Menu . 452
Handling Menu Events . 458

Shortcut Menus . 464
Creating Shortcut Menus . 464

Windows Common Dialog Boxes . 468
Using the SaveFileDialog Class . 468

Chapter 23 Quick Reference. 471

 24 Performing Validation . 473
Validating Data . 473

Strategies for Validating User Input . 473
An Example—Customer Information Maintenance . 474

Performing Validation by Using Data Binding . 475
Changing the Point at Which Validation Occurs 491

Chapter 24 Quick Reference. 495

Part V Managing Data
 25 Querying Information in a Database . 499

Querying a Database by Using ADO.NET . 499
The Northwind Database . 500
Creating the Database . 500
Using ADO.NET to Query Order Information . 503

Querying a Database by Using DLINQ. 512
Defi ning an Entity Class . 512
Creating and Running a DLINQ Query. 514
Deferred and Immediate Fetching . 516
Joining Tables and Creating Relationships . 517
Deferred and Immediate Fetching Revisited. 521
Defi ning a Custom DataContext Class . 522
Using DLINQ to Query Order Information . 523

Chapter 25 Quick Reference. 527

xiv Table of Contents
 26 Displaying and Editing Data by Using Data Binding 529
Using Data Binding with DLINQ . 529
Using DLINQ to Modify Data . 544

Updating Existing Data . 544
Handling Confl icting Updates . 545
Adding and Deleting Data . 548

Chapter 26 Quick Reference. 556

Part VI Building Web Applications
 27 Introducing ASP.NET . 559

Understanding the Internet as an Infrastructure . 560
Understanding Web Server Requests and Responses 560
Managing State . 561
Understanding ASP.NET . 561

Creating Web Applications with ASP.NET . 563
Building an ASP.NET Application. 564
Understanding Server Controls . 575
Creating and Using a Theme . 582

Chapter 27 Quick Reference. 586

 28 Understanding Web Forms Validation Controls. 587
Comparing Server and Client Validations . 587

Validating Data at the Web Server . 588
Validating Data in the Web Browser. 588
Implementing Client Validation. 589

Chapter 28 Quick Reference. 596

 29 Protecting a Web Site and Accessing Data with
Web Forms. 597

Managing Security . 597
Understanding Forms-Based Security . 598
Implementing Forms-Based Security . 598

Querying and Displaying Data. 605
Understanding the Web Forms GridView Control 605
Displaying Customer and Order History Information 606
Paging Data . 611

xv
 Table of Contents

Editing Data. 612
Updating Rows Through a GridView Control . 612

Navigating Between Forms . 614
Chapter 29 Quick Reference. 621

 30 Creating and Using a Web Service . 623
What Is a Web Service? . 623

The Role of SOAP. 624
What Is the Web Services Description Language? 625
Nonfunctional Requirements of Web Services . 625
The Role of Windows Communication Foundation 627

Building a Web Service . 627
Creating the ProductsService Web Service . 628

Web Services, Clients, and Proxies . 637
Talking SOAP: The Diffi cult Way . 637
Talking SOAP: The Easy Way . 637
Consuming the ProductsService Web Service . 638

Chapter 30 Quick Reference. .644

 Index . 645
www.microsoft.com/learning/booksurvey

Microsoft is interested in hearing your feedback so we can continually improve our books and

learning resources for you. To participate in a brief online survey, please visit:

What do you think of this book? We want to hear from you!

Acknowledgments
An old Latin proverb says “Tempora mutantur, nos et mutantur in illis,” which roughly

 translates into English as “Times change, and we change with them.” This proverb has a

quaint, sedate feel and was obviously penned before the Romans had heard of Microsoft,

Windows, the .NET Framework, and C#; otherwise, they would have written something more

like “Times change, and we run like mad trying to keep up!” When I look back over the last

seven or eight years, I am absolutely fl abbergasted to see how much the .NET Framework,

and the C# language in particular, has evolved. I am also very thankful, because it keeps me

in gainful employment, performing biannual updates on this book. I am not complaining

because the .NET Framework is a superb platform for building applications and services, and

I thank the visionaries in the various product groups at Microsoft who have dedicated sev-

eral millennia of person-years of effort in its development. In my opinion, C# is the greatest

 vehicle for taking full advantage of the .NET Framework. I have thoroughly enjoyed watching

its development and learning the new features that each new release provides. This book is

my attempt to convey my enthusiasm for the language to other programmers who are just

starting along the C# path of discovery.

As with all projects of this type, writing a book is a group effort. The team I have had

the pleasure of working with at Microsoft Press is second to none. In particular, I would

like to single out Lynn Finnel who has kept the faith in me over several editions of this

book, Christina Palaia and Jennifer Harris for their thorough editing of my manuscripts,

and Stephen Sagman who has worked like a Trojan keeping us all in order and on sched-

ule. I must pay special thanks to Kurt Meyer for his sterling efforts in reviewing my work,

 correcting my mistakes, and suggesting modifi cations, and of course to Jon Jagger who

 coauthored the fi rst edition of this book with me back in 2001.

My long-suffering family have been wonderful, as they always are. Diana is now familiar

with terms such as “DLINQ” and “lambda expression” and throws them into conversation

with effortless aplomb. (For example, “Will you ever stop talking about DLINQ and lambda

 expressions?”) James is still convinced that I spend my life playing computer games rather

than working. Francesca has developed a frowning nod that says, “I have no idea what you

are talking about, but I will nod anyway in the hope that you might stop.” And Ginger, my

arch-competitor for the chair in my study, has tried her best to completely distract me and

delay my efforts in the ways that only a cat can.

As ever, “Up the Gills!”

 —John Sharp
 xvii

Introduction
Microsoft Visual C# is a powerful but simple language aimed primarily at developers creating

applications by using the Microsoft .NET Framework. It inherits many of the best features of

C++ and Microsoft Visual Basic but few of the inconsistencies and anachronisms, resulting in

a cleaner and more logical language. With the advent of C# 2.0 in 2005, several important

new features were added to the language, including generics, iterators, and anonymous

methods. C# 3.0, available as part of Microsoft Visual Studio 2008, adds further features,

such as extension methods, lambda expressions, and, most famously of all, the Language

Integrated Query facility, or LINQ. The development environment provided by Visual Studio

2008 makes these powerful features easy to use, and the many new wizards and enhance-

ments included in Visual Studio 2008 can greatly improve your productivity as a developer.

Who This Book Is For
The aim of this book is to teach you the fundamentals of programming with C# by using

Visual Studio 2008 and the .NET Framework version 3.5. You will learn the features of the C#

language, and then use them to build applications running on the Microsoft Windows oper-

ating system. By the time you complete this book, you will have a thorough understanding

of C# and will have used it to build Windows Presentation Foundation (WPF) applications,

access Microsoft SQL Server databases, develop ASP.NET Web applications, and build and

consume a Windows Communication Foundation service.

Finding Your Best Starting Point in This Book
This book is designed to help you build skills in a number of essential areas. You can use

this book if you are new to programming or if you are switching from another programming

language such as C, C++, Sun Microsystems Java, or Visual Basic. Use the following table to

fi nd your best starting point.
 xix

xx Introduction
If you are Follow these steps

New to object-oriented

 programming

 1. Install the practice fi les as described in the next section,

“Installing and Using the Practice Files.”

 2. Work through the chapters in Parts I, II, and III sequentially.

 3. Complete Parts IV, V, and VI as your level of experience and

interest dictates.

Familiar with procedural

 programming languages such

as C, but new to C#

 1. Install the practice fi les as described in the next section,

“Installing and Using the Practice Files.” Skim the fi rst fi ve

chapters to get an overview of C# and Visual Studio 2008, and

then concentrate on Chapters 6 through 21.

 2. Complete Parts IV, V, and VI as your level of experience and

interest dictates.

Migrating from an object-

oriented language such as C++

or Java

 1. Install the practice fi les as described in the next section,

“Installing and Using the Practice Files.”

 2. Skim the fi rst seven chapters to get an overview of C# and

Visual Studio 2008, and then concentrate on Chapters 8

through 21.

 3. For information about building Windows-based applications

and using a database, read Parts IV and V.

 4. For information about building Web applications and Web

services, read Part VI.

Switching from Visual Basic 6 1. Install the practice fi les as described in the next section,

“Installing and Using the Practice Files.”

 2. Work through the chapters in Parts I, II, and III sequentially.

 3. For information about building Windows-based applications,

read Part IV.

 4. For information about accessing a database, read Part V.

 5. For information about creating Web applications and Web

services, read Part VI.

 6. Read the Quick Reference sections at the end of the chapters

for information about specifi c C# and Visual Studio 2008 con-

structs.

Referencing the book after

 working through the exercises

 1. Use the index or the table of contents to fi nd information

about particular subjects.

 2. Read the Quick Reference sections at the end of each chapter

to fi nd a brief review of the syntax and techniques presented

in the chapter.

 Introduction xxi
Conventions and Features in This Book
This book presents information using conventions designed to make the information

 readable and easy to follow. Before you start, read the following list, which explains

 conventions you’ll see throughout the book and points out helpful features that you

might want to use.

Conventions
 Each exercise is a series of tasks. Each task is presented as a series of numbered steps

(1, 2, and so on). A round bullet (•) indicates an exercise that has only one step.

 Notes labeled “tip” provide additional information or alternative methods for

 completing a step successfully.

 Notes labeled “important” alert you to information you need to check before

continuing.

 Text that you type appears in bold.

 A plus sign (+) between two key names means that you must press those keys at the

same time. For example, “Press Alt+Tab” means that you hold down the Alt key while

you press the Tab key.

Other Features
 Sidebars throughout the book provide more in-depth information about the exercise.

The sidebars might contain background information, design tips, or features related to

the information being discussed.

 Each chapter ends with a Quick Reference section. The Quick Reference section

 contains quick reminders of how to perform the tasks you learned in the chapter.

System Requirements
You’ll need the following hardware and software to complete the practice exercises in

this book:

 Windows Vista Home Premium Edition, Windows Vista Business Edition, or Windows

Vista Ultimate Edition. The exercises will also run using Microsoft Windows XP

Professional Edition with Service Pack 2

xxii Introduction
Important If you are using Windows XP, some of the dialog boxes and screen shots described

in this book might look a little different from those that you see. This is because of differences in

the user interface in the Windows Vista operating system and the way in which Windows Vista

manages security.

 Microsoft Visual Studio 2008 Standard Edition, Visual Studio 2008 Enterprise Edition,

or Microsoft Visual C# 2008 Express Edition and Microsoft Visual Web Developer 2008

Express Edition

 Microsoft SQL Server 2005 Express Edition, Service Pack 2

 1.6-GHz Pentium III+ processor, or faster

 1 GB of available, physical RAM

 Video (800 × 600 or higher resolution) monitor with at least 256 colors

 CD-ROM or DVD-ROM drive

 Microsoft mouse or compatible pointing device

You will also need to have Administrator access to your computer to confi gure SQL

Server 2005 Express Edition and to perform the exercises.

Code Samples
The companion CD inside this book contains the code samples that you’ll use as you perform

the exercises. By using the code samples, you won’t waste time creating fi les that aren’t rel-

evant to the exercise. The fi les and the step-by-step instructions in the lessons also let you

learn by doing, which is an easy and effective way to acquire and remember new skills.

Installing the Code Samples
Follow these steps to install the code samples and required software on your computer so

that you can use them with the exercises.

 1. Remove the companion CD from the package inside this book and insert it into your

CD-ROM drive.

Note An end-user license agreement should open automatically. If this agreement does not

 appear, open My Computer on the desktop or Start menu, double-click the icon for your

CD-ROM drive, and then double-click StartCD.exe.

 Introduction xxiii

 2. Review the end-user license agreement. If you accept the terms, select the accept

 option, and then click Next.

A menu will appear with options related to the book.

 3. Click Install Code Samples.

 4. Follow the instructions that appear.

The code samples are installed to the following location on your computer:

Documents\Microsoft Press\Visual CSharp Step By Step

Using the Code Samples
Each chapter in this book explains when and how to use any code samples for that chapter.

When it’s time to use a code sample, the book will list the instructions for how to open

the fi les.

Important The code samples have been tested by using an account that is a member of the

local Administrators group. It is recommended that you perform the exercises by using an

account that has Administrator rights.

For those of you who like to know all the details, here’s a list of the code sample Visual

Studio 2008 projects and solutions, grouped by the folders where you can fi nd them.

Project Description

Chapter 1

TextHello This project gets you started. It steps through the creation of a

simple program that displays a text-based greeting.

WPFHello This project displays the greeting in a window by using Windows

Presentation Foundation.

Chapter 2

PrimitiveDataTypes This project demonstrates how to declare variables by using each of

the primitive types, how to assign values to these variables, and how

to display their values in a window.

MathsOperators This program introduces the arithmetic operators (+ – * / %).

xxiv Introduction
Project Description

Chapter 3

Methods In this project, you’ll reexamine the code in the previous project and

investigate how it uses methods to structure the code.

DailyRate This project walks you through writing your own methods, running

the methods, and stepping through the method calls by using the

Visual Studio 2008 debugger.

Chapter 4

Selection This project shows how to use a cascading if statement to

 implement complex logic, such as comparing the equivalence of

two dates.

SwitchStatement This simple program uses a switch statement to convert characters

into their XML representations.

Chapter 5

WhileStatement This project uses a while statement to read the contents of a source

fi le one line at a time and display each line in a text box on a form.

DoStatement This project uses a do statement to convert a decimal number to its

octal representation.

Chapter 6

MathsOperators This project reexamines the MathsOperators project from Chapter 2,

“Working with Variables, Operators, and Expressions,” and causes

various unhandled exceptions to make the program fail. The try and

catch keywords then make the application more robust so that it no

longer fails.

Chapter 7

Classes This project covers the basics of defi ning your own classes, complete

with public constructors, methods, and private fi elds. It also shows

how to create class instances by using the new keyword and how to

defi ne static methods and fi elds.

Chapter 8

Parameters This program investigates the difference between value parameters

and reference parameters. It demonstrates how to use the ref and

out keywords.

Chapter 9

StructsAndEnums This project defi nes a struct type to represent a calendar date.

 Introduction xxv
Project Description

Chapter 10

Cards This project uses the ArrayList collection class to group together

playing cards in a hand.

Chapter 11

ParamsArrays This project demonstrates how to use the params keyword to create

a single method that can accept any number of int arguments.

Chapter 12

Vehicles This project creates a simple hierarchy of vehicle classes by using

inheritance. It also demonstrates how to defi ne a virtual method.

ExtensionMethod This project shows how to create an extension method for the int
type, providing a method that converts an integer value from base

10 to a different number base.

Chapter 13

Tokenizer This project uses a hierarchy of interfaces and classes to simulate

both reading a C# source fi le and classifying its contents into vari-

ous kinds of tokens (identifi ers, keywords, operators, and so on). As

an example of use, it also derives classes from the key interfaces to

display the tokens in a rich text box in color syntax.

Chapter 14

UsingStatement This project revisits a small piece of code from Chapter 5, “Using

Compound Assignment and Iteration Statements,” and reveals

that it is not exception-safe. It shows you how to make the code

 exception-safe with a using statement.

Chapter 15

WindowProperties This project presents a simple Windows application that uses

several properties to display the size of its main window. The display

updates automatically as the user resizes the window.

AutomaticProperties This project shows how to create automatic properties for a class

and use them to initialize instances of the class.

Chapter 16

Indexers This project uses two indexers: one to look up a person’s phone

number when given a name, and the other to look up a person’s

name when given a phone number.

Chapter 17
Delegates This project displays the time in digital format by using delegate

callbacks. The code is then simplifi ed by using events.

xxvi Introduction
Project Description

Chapter 18

BinaryTree This solution shows you how to use generics to build a typesafe

structure that can contain elements of any type.

BuildTree This project demonstrates how to use generics to implement a

 typesafe method that can take parameters of any type.

Chapter 19

BinaryTree This project shows you how to implement the generic

IEnumerator<T> interface to create an enumerator for the generic

BinaryTree class.

IteratorBinaryTree This solution uses an iterator to generate an enumerator for the

 generic BinaryTree class.

Chapter 20

QueryBinaryTree This project shows how to use LINQ queries to retrieve data from a

binary tree object.

Chapter 21

Operators This project builds three structs, called Hour, Minute, and Second,

that contain user-defi ned operators. The code is then simplifi ed by

using a conversion operator.

Chapter 22

BellRingers This project is a Windows Presentation Foundation application

 demonstrating how to defi ne styles and use basic WPF controls.

Chapter 23

BellRingers This project is an extension of the application created in Chapter 22,

“Introducing Windows Presentation Foundation,” but with drop-

down and pop-up menus added to the user interface.

Chapter 24

CustomerDetails This project demonstrates how to implement business rules

for validating user input in a WPF application using customer

 information as an example.

Chapter 25

ReportOrders This project shows how to access a database by using ADO.NET

code. The application retrieves information from the Orders table in

the Northwind database.

DLINQOrders This project shows how to use DLINQ to access a database and re-

trieve information from the Orders table in the Northwind database.

 Introduction xxvii

Project Description

Chapter 26

Suppliers This project demonstrates how to use data binding with a WPF

 application to display and format data retrieved from a database

in controls on a WPF form. The application also enables the user

to modify information in the Products table in the Northwind

 database.

Chapter 27

Litware This project creates a simple Microsoft ASP.NET Web site that

 enables the user to input information about employees working for

a fi ctitious software development company.

Chapter 28

Litware This project is an extended version of the Litware project from the

previous chapter and shows how to validate user input in an ASP.

NET Web application.

Chapter 29

Northwind This project shows how to use Forms-based security for

 authenticating the user. The application also demonstrates how to

use ADO.NET from an ASP.NET Web form, showing how to query

and update a database in a scalable manner, and how to create

 applications that span multiple Web forms.

Chapter 30

NorthwindServices This project implements a Windows Communication Foundation

Web service, providing remote access across the Internet to data in

the Products table in the Northwind database.

Uninstalling the Code Samples
Follow these steps to remove the code samples from your computer.

1. In Control Panel, open Add or Remove Programs.

2. From the list of Currently Installed Programs, select Microsoft Visual C# 2008 Step

by Step.

3. Click Remove.

4. Follow the instructions that appear to remove the code samples.

xxviii Introduction
Support for This Book
Every effort has been made to ensure the accuracy of this book and the contents of the

companion CD. As corrections or changes are collected, they will be added to a Microsoft

Knowledge Base article.

Microsoft Press provides support for books and companion CDs at the following Web site:

http://www.microsoft.com/learning/support/books/

Questions and Comments
If you have comments, questions, or ideas regarding the book or the companion CD, or

questions that are not answered by visiting the site above, please send them to Microsoft

Press via e-mail to

mspinput@microsoft.com

Or via postal mail to

Microsoft Press
Attn: Microsoft Visual C# 2008 Step by Step Series Editor
One Microsoft Way
Redmond, WA 98052-6399

Please note that Microsoft software product support is not offered through the

above addresses.

Chapter 1

Welcome to C#
 After completing this chapter, you will be able to:

 Use the Microsoft Visual Studio 2008 programming environment.

 Create a C# console application.

 Explain the purpose of namespaces.

 Create a simple graphical C# application.

 Microsoft Visual C# is Microsoft’s powerful component-oriented language. C# plays an

important role in the architecture of the Microsoft .NET Framework, and some people have

drawn comparisons to the role that C played in the development of UNIX. If you already

know a language such as C, C++, or Java, you’ll fi nd the syntax of C# reassuringly familiar. If

you are used to programming in other languages, you should soon be able to pick up the

syntax and feel of C#; you just need to learn to put the braces and semicolons in the right

place. Hopefully, this is just the book to help you!

 In Part I, you’ll learn the fundamentals of C#. You’ll discover how to declare variables and

how to use arithmetic operators such as the plus sign (+) and minus sign (–) to manipulate the

values in variables. You’ll see how to write methods and pass arguments to methods. You’ll

also learn how to use selection statements such as if and iteration statements such as while.

Finally, you’ll understand how C# uses exceptions to handle errors in a graceful, easy-to-use

manner. These topics form the core of C#, and from this solid foundation, you’ll progress to

more advanced features in Part II through Part VI.

Beginning Programming with the Visual Studio 2008
Environment

 Visual Studio 2008 is a tool-rich programming environment containing all the functionality

you need to create large or small C# projects. You can even create projects that seamlessly

combine modules compiled using different programming languages. In the fi rst exercise, you

start the Visual Studio 2008 programming environment and learn how to create a console

application.

 Note A console application is an application that runs in a command prompt window, rather

than providing a graphical user interface.
 3

4 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

Create a console application in Visual Studio 2008

 If you are using Visual Studio 2008 Standard Edition or Visual Studio 2008 Professional

Edition, perform the following operations to start Visual Studio 2008:

1. On the Microsoft Windows task bar, click the Start button, point to All Programs,
and then point to the Microsoft Visual Studio 2008 program group.

2. In the Microsoft Visual Studio 2008 program group, click Microsoft Visual Studio
2008.

 Visual Studio 2008 starts, like this:

Note If this is the fi rst time you have run Visual Studio 2008, you might see a dialog box

prompting you to choose your default development environment settings. Visual Studio

2008 can tailor itself according to your preferred development language. The various dia-

log boxes and tools in the integrated development environment (IDE) will have their de-

fault selections set for the language you choose. Select Visual C# Development Settings
from the list, and then click the Start Visual Studio button. After a short delay, the Visual

Studio 2008 IDE appears.

 If you are using Visual C# 2008 Express Edition, on the Microsoft Windows task bar,

click the Start button, point to All Programs, and then click Microsoft Visual C# 2008
Express Edition.

Create a console application in Visual Studio 2008

 Chapter 1 Welcome to C# 5

 Visual C# 2008 Express Edition starts, like this:

 Note To avoid repetition, throughout this book, I simply state, “Start Visual Studio” when

you need to open Visual Studio 2008 Standard Edition, Visual Studio 2008 Professional

Edition, or Visual C# 2008 Express Edition. Additionally, unless explicitly stated, all refer-

ences to Visual Studio 2008 apply to Visual Studio 2008 Standard Edition, Visual Studio

2008 Professional Edition, and Visual C# 2008 Express Edition.

 If you are using Visual Studio 2008 Standard Edition or Visual Studio 2008 Professional

Edition, perform the following tasks to create a new console application.

1. On the File menu, point to New, and then click Project.

 The New Project dialog box opens. This dialog box lists the templates that you

can use as a starting point for building an application. The dialog box categorizes

templates according to the programming language you are using and the type of

application.

2. In the Project types pane, click Visual C#. In the Templates pane, click the Console
Application icon.

6 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

3. In the Location fi eld, if you are using the Windows Vista operating system, type

C:\Users\YourName\Documents\Microsoft Press\Visual CSharp Step By
Step\Chapter 1. If you are using Microsoft Windows XP or Windows Server 2003,

type C:\Documents and Settings\YourName\My Documents\Microsoft
Press\Visual CSharp Step by Step\Chapter 1.

 Replace the text YourName in these paths with your Windows user name.

 Note To save space throughout the rest of this book, I will simply refer to the path “C:\

Users\YourName\Documents” or “C:\Documents and Settings\YourName\My Documents”

as your Documents folder.

 Tip If the folder you specify does not exist, Visual Studio 2008 creates it for you.

4. In the Name fi eld, type TextHello.

5. Ensure that the Create directory for solution check box is selected, and then click

OK.

 If you are using Visual C# 2008 Express Edition, the New Project dialog box won’t allow

you to specify the location of your project fi les; it defaults to the C:\Users\YourName\

AppData\Local\Temporary Projects folder. Change it by using the following procedure:

1. On the Tools menu, click Options.

2. In the Options dialog box, turn on the Show All Settings check box, and then click

Projects and Solutions in the tree view in the left pane.

3. In the right pane, in the Visual Studio projects location text box, specify the

Microsoft Press\Visual CSharp Step By Step\Chapter 1 folder under your

Documents folder.

4. Click OK.

 If you are using Visual C# 2008 Express Edition, perform the following tasks to create a

new console application.

1. On the File menu, click New Project.

2. In the New Project dialog box, click the Console Application icon.

3. In the Name fi eld, type TextHello.

4. Click OK.

 Chapter 1 Welcome to C# 7
 Visual Studio creates the project using the Console Application template and displays the

starter code for the project, like this:

 The menu bar at the top of the screen provides access to the features you’ll use in the pro-

gramming environment. You can use the keyboard or the mouse to access the menus and

commands exactly as you can in all Windows-based programs. The toolbar is located beneath

the menu bar and provides button shortcuts to run the most frequently used commands.

The Code and Text Editor window occupying the main part of the IDE displays the contents of

source fi les. In a multi-fi le project, when you edit more than one fi le, each source fi le has its

own tab labeled with the name of the source fi le. You can click the tab to bring the named

source fi le to the foreground in the Code and Text Editor window. The Solution Explorer dis-

plays the names of the fi les associated with the project, among other items. You can also

double-click a fi le name in the Solution Explorer to bring that source fi le to the foreground in

the Code and Text Editor window.

 Before writing the code, examine the fi les listed in the Solution Explorer, which Visual Studio

2008 has created as part of your project:

 Solution ‘TextHello’ This is the top-level solution fi le, of which there is one per appli-

cation. If you use Windows Explorer to look at your Documents\Microsoft Press\Visual

CSharp Step by Step\Chapter 1\TextHello folder, you’ll see that the actual name of this

fi le is TextHello.sln. Each solution fi le contains references to one or more project fi les.

8 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
 TextHello This is the C# project fi le. Each project fi le references one or more fi les con-

taining the source code and other items for the project. All the source code in a single

project must be written in the same programming language. In Windows Explorer, this

fi le is actually called TextHello.csproj, and it is stored in your \My Documents\Microsoft

Press\Visual CSharp Step by Step\Chapter 1\TextHello\TextHello folder.

 Properties This is a folder in the TextHello project. If you expand it, you will see that it

contains a fi le called AssemblyInfo.cs. AssemblyInfo.cs is a special fi le that you can use

to add attributes to a program, such as the name of the author, the date the program

was written, and so on. You can specify additional attributes to modify the way in which

the program runs. Learning how to use these attributes is outside the scope of this

book.

 References This is a folder that contains references to compiled code that your ap-

plication can use. When code is compiled, it is converted into an assembly and given

a unique name. Developers use assemblies to package useful bits of code they have

written so they can distribute it to other developers who might want to use the code in

their applications. Many of the features that you will be using when writing applications

using this book make use of assemblies provided by Microsoft with Visual Studio 2008.

 Program.cs This is a C# source fi le and is the one currently displayed in the Code and

Text Editor window when the project is fi rst created. You will write your code for the

console application in this fi le. It also contains some code that Visual Studio 2008 pro-

vides automatically, which you will examine shortly.

Writing Your First Program
 The Program.cs fi le defi nes a class called Program that contains a method called Main. All

methods must be defi ned inside a class. You will learn more about classes in Chapter 7,

“Creating and Managing Classes and Objects.” The Main method is special—it designates

the program’s entry point. It must be a static method. (You will look at methods in detail in

Chapter 3, “Writing Methods and Applying Scope,” and I discuss static methods in Chapter 7.)

 Important C# is a case-sensitive language. You must spell Main with a capital M.

 In the following exercises, you’ll write the code to display the message Hello World in the

console; you’ll build and run your Hello World console application; and you’ll learn how

namespaces are used to partition code elements.

 Chapter 1 Welcome to C# 9

Write the code by using IntelliSense

1. In the Code and Text Editor window displaying the Program.cs fi le, place the cursor in

the Main method immediately after the opening brace, {, and then press Enter to cre-

ate a new line. On the new line, type the word Console, which is the name of a built-

in class. As you type the letter C at the start of the word Console, an IntelliSense list

appears. This list contains all of the C# keywords and data types that are valid in this

context. You can either continue typing or scroll through the list and double-click the

Console item with the mouse. Alternatively, after you have typed Con, the IntelliSense

list will automatically home in on the Console item and you can press the Tab or Enter

key to select it.

 Main should look like this:

static void Main(string[] args)
{
 Console
}

 Note Console is a built-in class that contains the methods for displaying messages on the

screen and getting input from the keyboard.

2. Type a period immediately after Console. Another IntelliSense list appears, displaying

the methods, properties, and fi elds of the Console class.

3. Scroll down through the list, select WriteLine, and then press Enter. Alternatively, you

can continue typing the characters W, r, i, t, e, L until WriteLine is selected, and then

press Enter.

The IntelliSense list closes, and the word WriteLine is added to the source fi le. Main
should now look like this:

static void Main(string[] args)
{
 Console.WriteLine
}

4. Type an opening parenthesis , (. Another IntelliSense tip appears.

 This tip displays the parameters that the WriteLine method can take. In fact, WriteLine is

an overloaded method, meaning that the Console class contains more than one method

named WriteLine—it actually provides 19 different versions of this method. Each ver-

sion of the WriteLine method can be used to output different types of data. (Chapter 3

describes overloaded methods in more detail.) Main should now look like this:

static void Main(string[] args)
{
 Console.WriteLine(
}

Write the code by using IntelliSense

10 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

 Tip You can click the up and down arrows in the tip to scroll through the different

overloads of WriteLine.

5. Type a closing parenthesis,) followed by a semicolon, ;.

 Main should now look like this:

static void Main(string[] args)
{
 Console.WriteLine();
}

6. Move the cursor, and type the string “Hello World”, including the quotation marks,

between the left and right parentheses following the WriteLine method.

 Main should now look like this:

static void Main(string[] args)
{
 Console.WriteLine(“Hello World”);
}

 Tip Get into the habit of typing matched character pairs, such as (and) and { and }, before fi lling

in their contents. It’s easy to forget the closing character if you wait until after you’ve entered the

contents.

IntelliSense Icons
 When you type a period after the name of a class, IntelliSense displays the name of

every member of that class. To the left of each member name is an icon that depicts

the type of member. Common icons and their types include the following:

 Icon Meaning

method (discussed in Chapter 3)

property (discussed in Chapter 15)

class (discussed in Chapter 7)

struct (discussed in Chapter 9)

enum (discussed in Chapter 9)

 Chapter 1 Welcome to C# 11

Icon Meaning

interface (discussed in Chapter 13)

delegate (discussed in Chapter 17)

extension method (discussed in Chapter 12)

You will also see other IntelliSense icons appear as you type code in different contexts.

Note You will frequently see lines of code containing two forward slashes followed by ordinary

text. These are comments. They are ignored by the compiler but are very useful for developers

because they help document what a program is actually doing. For example:

Console.ReadLine(); // Wait for the user to press the Enter key

The compiler will skip all text from the two slashes to the end of the line. You can also add

multiline comments that start with a forward slash followed by an asterisk (/*). The compiler will

skip everything until it fi nds an asterisk followed by a forward slash sequence (*/), which could

be many lines lower down. You are actively encouraged to document your code with as many

meaningful comments as necessary.

Build and run the console application

 1. On the Build menu, click Build Solution.

 This action compiles the C# code, resulting in a program that you can run. The Output
window appears below the Code and Text Editor window.

Tip If the Output window does not appear, on the View menu, click Output to display it.

In the Output window, you should see messages similar to the following indicating how

the program is being compiled.

------ Build started: Project: TextHello, Configuration: Debug Any CPU ----
C:\Windows\Microsoft.NET\Framework\v3.5\Csc.exe /config /nowarn:1701;1702 …
Compile complete -- 0 errors, 0 warnings
TextHello -> C:\Documents and Settings\John\My Documents\Microsoft Press\…
========== Build: 1 succeeded or up-to-date, 0 failed, 0 skipped ========

If you have made some mistakes, they will appear in the Error List window. The

following image shows what happens if you forget to type the closing quotation marks

Build and run the console application

12 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
after the text Hello World in the WriteLine statement. Notice that a single mistake can

sometimes cause multiple compiler errors.

 Tip You can double-click an item in the Error List window, and the cursor will be placed

on the line that caused the error. You should also notice that Visual Studio displays a wavy

red line under any lines of code that will not compile when you enter them.

 If you have followed the previous instructions carefully, there should be no errors or

warnings, and the program should build successfully.

 Tip There is no need to save the fi le explicitly before building because the Build Solution

command automatically saves the fi le. If you are using Visual Studio 2008 Standard Edition

or Visual Studio 2008 Professional Edition, the project is saved in the location specifi ed

when you created it. If you are using Visual C# 2008 Express Edition, the project is saved in

a temporary location and is copied to the folder you specifi ed in the Options dialog box

only when you explicitly save the project by using the Save All command on the File menu

or when you close Visual C# 2008 Express Edition.

 An asterisk after the fi le name in the tab above the Code and Text Editor window indicates

that the fi le has been changed since it was last saved.

 Chapter 1 Welcome to C# 13
 2. On the Debug menu, click Start Without Debugging.

 A command window opens, and the program runs. The message Hello World appears,

and then the program waits for you to press any key, as shown in the following graphic:

 Note The prompt “Press any key to continue . . .” is generated by Visual Studio; you did

not write any code to do this. If you run the program by using the Start Debugging com-

mand on the Debug menu, the application runs, but the command window closes immedi-

ately without waiting for you to press a key.

 3. Ensure that the command window displaying the program’s output has the focus, and

then press Enter.

 The command window closes, and you return to the Visual Studio 2008 programming

environment.

 4. In Solution Explorer, click the TextHello project (not the solution), and then click the

Show All Files toolbar button on the Solution Explorer toolbar—this is the second

button from the left on the toolbar in the Solution Explorer window.

 Entries named bin and obj appear above the Program.cs fi le. These entries correspond

directly to folders named bin and obj in the project folder (Microsoft Press\Visual

CSharp Step by Step\Chapter 1\TextHello\TextHello). Visual Studio creates these folders

when you build your application, and they contain the executable version of the pro-

gram together with some other fi les used to build and debug the application.

 5. In Solution Explorer, click the plus sign (+) to the left of the bin entry.

 Another folder named Debug appears.

 Note You may also see a folder called Release.

14 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
 6. In Solution Explorer, click the plus sign (+) to the left of the Debug folder.

 Four more items named TextHello.exe, TextHello.pdb, TextHello.vshost.exe, and

TextHello.vshost.exe.manifest appear, like this:

Show All Files

 Note If you are using Visual C# 2008 Express Edition, you might not see all of these fi les.

 The fi le TextHello.exe is the compiled program, and it is this fi le that runs when you

click Start Without Debugging on the Debug menu. The other fi les contain information

that is used by Visual Studio 2008 if you run your program in Debug mode (when you

click Start Debugging on the Debug menu).

Using Namespaces
 The example you have seen so far is a very small program. However, small programs can soon

grow into much bigger programs. As a program grows, two issues arise. First, it is harder to

understand and maintain big programs than it is to understand and maintain smaller pro-

grams. Second, more code usually means more names, more methods, and more classes. As

the number of names increases, so does the likelihood of the project build failing because

two or more names clash (especially when a program also uses third-party libraries written by

developers who have also used a variety of names).

 In the past, programmers tried to solve the name-clashing problem by prefi xing names with

some sort of qualifi er (or set of qualifi ers). This solution is not a good one because it’s not

scalable; names become longer, and you spend less time writing software and more time

typing (there is a difference) and reading and rereading incomprehensibly long names.

 Chapter 1 Welcome to C# 15
 Namespaces help solve this problem by creating a named container for other identifi ers, such

as classes. Two classes with the same name will not be confused with each other if they live

in different namespaces. You can create a class named Greeting inside the namespace named

TextHello, like this:

namespace TextHello
{
 class Greeting
 {
 ...
 }
}

 You can then refer to the Greeting class as TextHello.Greeting in your programs. If another

developer also creates a Greeting class in a different namespace, such as NewNamespace, and

installs it on your computer, your programs will still work as expected because they are using

the TextHello.Greeting class. If you want to refer to the other developer’s Greeting class, you

must specify it as NewNamespace.Greeting.

 It is good practice to defi ne all your classes in namespaces, and the Visual Studio 2008 en-

vironment follows this recommendation by using the name of your project as the top-level

namespace. The .NET Framework software development kit (SDK) also adheres to this rec-

ommendation; every class in the .NET Framework lives inside a namespace. For example,

the Console class lives inside the System namespace. This means that its full name is actually

System.Console.

 Of course, if you had to write the full name of a class every time you used it, the situation

would be no better than prefi xing qualifi ers or even just naming the class with some glob-

ally unique name such SystemConsole and not bothering with a namespace. Fortunately, you

can solve this problem with a using directive in your programs. If you return to the TextHello

program in Visual Studio 2008 and look at the fi le Program.cs in the Code and Text Editor
window, you will notice the following statements at the top of the fi le:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

 A using statement brings a namespace into scope. In subsequent code in the same fi le,

you no longer have to explicitly qualify objects with the namespace to which they belong.

The four namespaces shown contain classes that are used so often that Visual Studio 2008

automatically adds these using statements every time you create a new project. You can add

further using directives to the top of a source fi le.

 The following exercise demonstrates the concept of namespaces in more depth.

16 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

Try longhand names

1. In the Code and Text Editor window displaying the Program.cs fi le, comment out the

fi rst using directive at the top of the fi le, like this:

//using System;

2. On the Build menu, click Build Solution.

The build fails, and the Error List window displays the following error message:

The name ’Console’ does not exist in the current context.

3. In the Error List window, double-click the error message.

 The identifi er that caused the error is selected in the Program.cs source fi le.

4. In the Code and Text Editor window, edit the Main method to use the fully qualifi ed

name System.Console.

 Main should look like this:

static void Main(string[] args)
{
 System.Console.WriteLine(“Hello World”);
}

 Note When you type System. the names of all the items in the System namespace are

displayed by IntelliSense.

5. On the Build menu, click Build Solution.

 The build should succeed this time. If it doesn’t, make sure that Main is exactly as it ap-

pears in the preceding code, and then try building again.

6. Run the application to make sure it still works by clicking Start Without Debugging on

the Debug menu.

Namespaces and Assemblies
 A using statement simply brings the items in a namespace into scope and frees you

from having to fully qualify the names of classes in your code. Classes are compiled into

assemblies. An assembly is a fi le that usually has the .dll fi le name extension, although

strictly speaking, executable programs with the .exe fi le name extension are also

assemblies.

Try longhand names

 Chapter 1 Welcome to C# 17
 An assembly can contain many classes. The classes that the .NET Framework class

library comprises, such as System.Console, are provided in assemblies that are installed

on your computer together with Visual Studio. You will fi nd that the .NET Framework

class library contains many thousands of classes. If they were all held in the same

assembly, the assembly would be huge and diffi cult to maintain. (If Microsoft updated

a single method in a single class, it would have to distribute the entire class library to all

developers!)

 For this reason, the .NET Framework class library is split into a number of assemblies,

partitioned by the functional area to which the classes they contain relate. For example,

there is a “core” assembly that contains all the common classes, such as System.Console,

and there are further assemblies that contain classes for manipulating databases, ac-

cessing Web services, building graphical user interfaces, and so on. If you want to make

use of a class in an assembly, you must add to your project a reference to that assem-

bly. You can then add using statements to your code that bring the items in namespac-

es in that assembly into scope.

 You should note that there is not necessarily a 1:1 equivalence between an assembly

and a namespace; a single assembly can contain classes for multiple namespaces, and a

single namespace can span multiple assemblies. This all sounds very confusing at fi rst,

but you will soon get used to it.

 When you use Visual Studio to create an application, the template you select auto-

matically includes references to the appropriate assemblies. For example, in Solution
Explorer for the TextHello project, click the plus sign (+) to the left of the References
folder. You will see that a Console application automatically includes references to as-

semblies called System, System.Core, System.Data, and System.Xml. You can add refer-

ences for additional assemblies to a project by right-clicking the References folder and

clicking Add Reference—you will practice performing this task in later exercises.

Creating a Graphical Application
 So far, you have used Visual Studio 2008 to create and run a basic Console application. The

Visual Studio 2008 programming environment also contains everything you need to create

graphical Windows-based applications. You can design the form-based user interface of a

Windows-based application interactively. Visual Studio 2008 then generates the program

statements to implement the user interface you’ve designed.

 Visual Studio 2008 provides you with two views of a graphical application: the design view

and the code view. You use the Code and Text Editor window to modify and maintain the

18 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
code and logic for a graphical application, and you use the Design View window to lay out

your user interface. You can switch between the two views whenever you want.

 In the following set of exercises, you’ll learn how to create a graphical application by using

Visual Studio 2008. This program will display a simple form containing a text box where you

can enter your name and a button that displays a personalized greeting in a message box

when you click the button.

Note Visual Studio 2008 provides two templates for building graphical applications—the

Windows Forms Application template and the WPF Application template. Windows Forms is a

technology that fi rst appeared with the .NET Framework version 1.0. WPF, or Windows

Presentation Foundation, is an enhanced technology that fi rst appeared with the .NET

Framework version 3.0. It provides many additional features and capabilities over Windows

Forms, and you should consider using it in preference to Windows Forms for all new

development.

Create a graphical application in Visual Studio 2008

 If you are using Visual Studio 2008 Standard Edition or Visual Studio 2008 Professional

Edition, perform the following operations to create a new graphical application:

 1. On the File menu, point to New, and then click Project.

 The New Project dialog box opens.

 2. In the Project Types pane, click Visual C#.

 3. In the Templates pane, click the WPF Application icon.

 4. Ensure that the Location fi eld refers to your Documents\Microsoft Press\Visual
CSharp Step by Step\Chapter 1 folder.

 5. In the Name fi eld, type WPFHello.

 6. In the Solution fi eld, ensure that Create new solution is selected.

 This action creates a new solution for holding the project. The alternative, Add to
Solution, adds the project to the TextHello solution.

 7. Click OK.

 If you are using Visual C# 2008 Express Edition, perform the following tasks to create a

new graphical application.

 1. On the File menu, click New Project.

 2. If the New Project message box appears, click Save to save your changes to

the TextHello project. In the Save Project dialog box, verify that the Location

fi eld is set to Microsoft Press\Visual CSharp Step By Step\Chapter 1 under your

Documents folder, and then click Save.

Create a graphical application in Visual Studio 2008

 Chapter 1 Welcome to C# 19

 3. In the New Project dialog box, click the WPF Application icon.

 4. In the Name fi eld, type WPFHello.

 5. Click OK.

 Visual Studio 2008 closes your current application and creates the new WPF application. It

displays an empty WPF form in the Design View window, together with another window con-

taining an XAML description of the form, as shown in the following graphic:

 Tip Close the Output and Error List windows to provide more space for displaying the Design
View window.

 XAML stands for Extensible Application Markup Language and is an XML-like language used

by WPF applications to defi ne the layout of a form and its contents. If you have knowledge of

XML, XAML should look familiar. You can actually defi ne a WPF form completely by writing

an XAML description if you don’t like using the Design View window of Visual Studio or if you

don’t have access to Visual Studio; Microsoft provides an XAML editor called XMLPad that

you can download free of charge from the MSDN Web site.

 In the following exercise, you’ll use the Design View window to add three controls to the

Windows form and examine some of the C# code automatically generated by Visual Studio

2008 to implement these controls.

20 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

Create the user interface

1. Click the Toolbox tab that appears to the left of the form in the Design View window.

The Toolbox appears, partially obscuring the form, and displaying the various com-

ponents and controls that you can place on a Windows form. The Common section

displays a list of controls that are used by most WPF applications. The Controls section

displays a more extensive list of controls.

2. In the Common section, click Label, and then click the visible part of the form.

A label control is added to the form (you will move it to its correct location in a mo-

ment), and the Toolbox disappears from view.

Tip If you want the Toolbox to remain visible but not to hide any part of the form, click

the Auto Hide button to the right in the Toolbox title bar (it looks like a pin). The Toolbox
appears permanently on the left side of the Visual Studio 2008 window, and the Design
View window shrinks to accommodate it. (You may lose a lot of space if you have a low-

resolution screen.) Clicking the Auto Hide button once more causes the Toolbox to disap-

pear again.

3. The label control on the form is probably not exactly where you want it. You can click

and drag the controls you have added to a form to reposition them. Using this tech-

nique, move the label control so that it is positioned toward the upper-left corner of

the form. (The exact placement is not critical for this application.)

Note The XAML description of the form in the lower pane now includes the label control,

together with properties such as its location on the form, governed by the Margin prop-

erty. The Margin property consists of four numbers indicating the distance of each edge of

the label from the edges of the form. If you move the control around the form, the value

of the Margin property changes. If the form is resized, the controls anchored to the form’s

edges that move are resized to preserve their margin values. You can prevent this by set-

ting the Margin values to zero. You learn more about the Margin and also the Height and

Width properties of WPF controls in Chapter 22, “Introducing Windows Presentation

Foundation.”

4. On the View menu, click Properties Window.

 The Properties window appears on the lower-right side of the screen, under Solution
Explorer (if it was not already displayed). The Properties window provides another way

for you to modify the properties for items on a form, as well as other items in a project.

It is context sensitive in that it displays the properties for the currently selected item.

If you click the title bar of the form displayed in the Design View window, you can see

that the Properties window displays the properties for the form itself. If you click the

label control, the window displays the properties for the label instead. If you click any-

where else on the form, the Properties window displays the properties for a mysterious

Create the user interface

 Chapter 1 Welcome to C# 21

item called a grid. A grid acts as a container for items on a WPF form, and you can use

the grid, among other things, to indicate how items on the form should be aligned and

grouped together.

5. Click the label control on the form. In the Properties window, locate the Text section.

 By using the properties in this section, you can specify the font and font size for the

label but not the actual text that the label displays.

6. Change the FontSize property to 20, and then click the title bar of the form.

 The size of the text in the label changes, although the label is no longer big enough to

display the text. Change the FontSize property back to 12.

 Note The text displayed in the label might not resize itself immediately in the Design
View window. It will correct itself when you build and run the application, or if you close

and open the form in the Design View window.

7. Scroll the XAML description of the form in the lower pane to the right, and examine the

properties of the label control.

 The label control consists of a <Label> tag containing property values, followed by the

text for the label itself (“Label”), followed by a closing </Label> tag.

8. Change the text Label (just before the closing tag) to Please enter your name, as

shown in the following image.

22 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

 Notice that the text displayed in the label on the form changes, although the label is

still too small to display it correctly.

9. Click the form in the Design View window, and then display the Toolbox again.

 Note If you don’t click the form in the Design View window, the Toolbox displays the

message “There are no usable controls in this group.”

10. In the Toolbox, click TextBox, and then click the form. A text box control is added to the

form. Move the text box control so that it is directly underneath the label control.

 Tip When you drag a control on a form, alignment indicators appear automatically when

the control becomes aligned vertically or horizontally with other controls. This gives you a

quick visual cue for making sure that controls are lined up neatly.

11. While the text box control is selected, in the Properties window, change the value of the

Name property displayed at the top of the window to userName.

 Note You will learn more about naming conventions for controls and variables in

Chapter 2, “Working with Variables, Operators, and Expressions.”

12. Display the Toolbox again, click Button, and then click the form. Drag the button con-

trol to the right of the text box control on the form so that the bottom of the button is

aligned horizontally with the bottom of the text box.

13. Using the Properties window, change the Name property of the button control to ok.

14. In the XAML description of the form, scroll the text to the right to display the caption

displayed by the button, and change it from Button to OK. Verify that the caption of

the button control on the form changes.

15. Click the title bar of the Window1.xaml form in the Design View window. In the

Properties window, change the Title property to Hello.

16. In the Design View window, notice that a resize handle (a small square) appears on the

lower right-hand corner of the form when it is selected. Move the mouse pointer over

the resize handle. When the pointer changes to a diagonal double-headed arrow, click

and drag the pointer to resize the form. Stop dragging and release the mouse button

when the spacing around the controls is roughly equal.

 Important Click the title bar of the form and not the outline of the grid inside the form

before resizing it. If you select the grid, you will modify the layout of the controls on the

form but not the size of the form itself.

 Chapter 1 Welcome to C# 23

 Note If you make the form narrower, the OK button remains a fi xed distance from the

right-hand edge of the form, determined by its Margin property. If you make the form too

narrow, the OK button will overwrite the text box control. The right-hand margin of the

label is also fi xed, and the text for the label will start to disappear when the label shrinks as

the form becomes narrower.

 The form should now look similar to this:

17. On the Build menu, click Build Solution, and verify that the project builds successfully.

18. On the Debug menu, click Start Without Debugging.

 The application should run and display your form. You can type your name in the text

box and click OK, but nothing happens yet. You need to add some code to process the

Click event for the OK button, which is what you will do next.

19. Click the Close button (the X in the upper-right corner of the form) to close the form

and return to Visual Studio.

 You have managed to create a graphical application without writing a single line of C# code.

It does not do much yet (you will have to write some code soon), but Visual Studio actually

generates a lot of code for you that handles routine tasks that all graphical applications must

perform, such as starting up and displaying a form. Before adding your own code to the ap-

plication, it helps to have an understanding of what Visual Studio has generated for you.

24 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
 In Solution Explorer, click the plus sign (+) beside the fi le Window1.xaml. The fi le Window1.

xaml.cs appears. Double-click the fi le Window1.xaml.cs. The code for the form is displayed in

the Code and Text Editor window. It looks like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

namespace WPFHello
{
 /// <summary>
 /// Interaction logic for Window1.xaml
 /// </summary>

 public partial class Window1 : Window
 {

 public Window1()
 {
 InitializeComponent();
 }

 }
}

 Apart from a good number of using statements bringing into scope some namespaces that

most WPF applications use, the fi le contains the defi nition of a class called Window1 but not

much else. There is a little bit of code for the Window1 class known as a constructor that calls

a method called InitializeComponent, but that is all. (A constructor is a special method with

the same name as the class. It is executed when an instance of the class is created and can

contain code to initialize the instance. You will learn about constructors in Chapter 7.) In fact,

the application contains a lot more code, but most of it is generated automatically based

on the XAML description of the form, and it is hidden from you. This hidden code performs

operations such as creating and displaying the form, and creating and positioning the various

controls on the form.

 The purpose of the code that you can see in this class is so that you can add your own

methods to handle the logic for your application, such as what happens when the user clicks

the OK button.

 Chapter 1 Welcome to C# 25
 Tip You can also display the C# code fi le for a WPF form by right-clicking anywhere in the

Design View window and then clicking View Code.

 At this point you might well be wondering where the Main method is and how the form gets

displayed when the application runs; remember that Main defi nes the point at which the pro-

gram starts. In Solution Explorer, you should notice another source fi le called App.xaml. If you

double-click this fi le, the Design View window displays the message “Intentionally Left Blank,”

but the fi le has an XAML description. One property in the XAML code is called StartupUri,
and it refers to the Window1.xaml fi le as shown here:

 If you click the plus sign (+) adjacent to App.xaml in Solution Explorer, you will see that there

is also an Application.xaml.cs fi le. If you double-click this fi le, you will fi nd it contains the

following code:

using System;
using System.Collections.Generic;
using System.Configuration;
using System.Data;
using System.Linq;
using System.Windows;

26 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

namespace WPFHello
{
 /// <summary>
 /// Interaction logic for App.xaml
 /// </summary>

 public partial class App : Application
 {

 }
}

 Once again, there are a number of using statements, but not a lot else, not even a Main

method. In fact, Main is there, but it is also hidden. The code for Main is generated based on

the settings in the App.xaml fi le; in particular, Main will create and display the form specifi ed

by the StartupUri property. If you want to display a different form, you edit the App.xaml fi le.

 The time has come to write some code for yourself!

Write the code for the OK button

1. Click the Window1.xaml tab above the Code and Text Editor window to display

Window1 in the Design View window.

2. Double-click the OK button on the form.

The Window1.xaml.cs fi le appears in the Code and Text Editor window, but a new

method has been added called ok_Click. Visual Studio automatically generates code to

call this method whenever the user clicks the OK button. This is an example of an event,

and you will learn much more about how events work as you progress through this

book.

3. Add the code shown in bold type to the ok_Click method:

void ok_Click(object sender, RoutedEventArgs e)
{
 MessageBox.Show(“Hello “ + userName.Text);
}

This is the code that will run when the user clicks the OK button. Do not worry too

much about the syntax of this code just yet (just make sure you copy it exactly as

shown) because you will learn all about methods in Chapter 3. The interesting part is

the MessageBox.Show statement. This statement displays a message box containing

the text “Hello” with whatever name the user typed into the username text box on the

appended form.

4. Click the Window1.xaml tab above the Code and Text Editor window to display

Window1 in the Design View window again.

Write the code for the OK button

Chapter 1 Welcome to C# 27

5. In the lower pane displaying the XAML description of the form, examine the Button

element, but be careful not to change anything. Notice that it contains an element

called Click that refers to the ok_Click method:

<Button Height=”23” … Click=”ok_Click”>OK</Button>

6. On the Debug menu, click Start Without Debugging.

7. When the form appears, type your name in the text box, and then click OK. A message

box appears, welcoming you by name.

8. Click OK in the message box.

 The message box closes.

9. Close the form.

 If you want to continue to the next chapter

 Keep Visual Studio 2008 running, and turn to Chapter 2.

 If you want to exit Visual Studio 2008 now

 On the File menu, click Exit. If you see a Save dialog box, click Yes (if you are using

Visual Studio 2008) or Save (if you are using Visual C# 2008 Express Edition) and

save the project.

28 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
Chapter 1 Quick Reference
 To Do this Key combination

 Create a new console application
using Visual Studio 2008
Standard or Professional Edition

On the File menu, point to New, and then click
Project to open the New Project dialog box.
For the project type, select Visual C#. For the
template, select Console Application. Select a
directory for the project fi les in the Location
box. Choose a name for the project. Click OK.

 Create a new console application

using Visual C# 2008 Express

Edition

On the Tools menu, click Options. In the Options
dialog box, click Projects and Solutions. In the

Visual Studio projects location box, specify a

directory for the project fi les.

On the File menu, click New Project to open the

New Project dialog box. For the template, select

Console Application. Choose a name for the

project. Click OK.

 Create a new graphical application

using Visual Studio 2008 Standard

or Professional Edition

On the File menu, point to New, and then click

Project to open the New Project dialog box. For

the project type, select Visual C#. For the template,

select WPF Application. Select a directory for the

project fi les in the Location box. Choose a name for

the project. Click OK.

 Create a new graphical application

using Visual C# 2008 Express

Edition

On the Tools menu, click Options. In the Options
dialog box, click Projects and Solutions. In the

Visual Studio projects location box, specify a

directory for the project fi les.

On the File menu, click New Project to open the

New Project dialog box. For the template, select

WPF Application. Choose a name for the project.

Click OK.

 Build the application On the Build menu, click Build Solution. F6

 Run the application On the Debug menu, click Start Without
Debugging.

Ctrl+F5

Chapter 25

Querying Information in a Database
 After completing this chapter, you will be able to:

 Fetch and display data from a Microsoft SQL Server database by using

Microsoft ADO.NET.

 Defi ne entity classes for holding data retrieved from a database.

 Use DLINQ to query a database and populate instances of entity classes.

 Create a custom DataContext class for accessing a database in a typesafe manner.

 In Part IV of this book, “Working with Windows Applications,” you learned how to use

Microsoft Visual C# to build user interfaces and present and validate information. In Part

V, you will learn about managing data by using the data access functionality available in

Microsoft Visual Studio 2008 and the Microsoft .NET Framework. The chapters in this part

of the book describe ADO.NET, a library of objects specifi cally designed to make it easy to

write applications that use databases. In this chapter, you will also learn how to query data by

using DLINQ—extensions to LINQ based on ADO.NET that are designed for retrieving data

from a database. In Chapter 26, “Displaying and Editing Data by Using Data Binding,” you will

learn more about using ADO.NET and DLINQ for updating data.

 Important To perform the exercises in this chapter, you must have installed Microsoft SQL

Server 2005 Express Edition, Service Pack 2. This software is available on the retail DVD with

Microsoft Visual Studio 2008 and Visual C# 2008 Express Edition and is installed by default.

Important It is recommended that you use an account that has Administrator privileges to

perform the exercises in this chapter and the remainder of this book.

Querying a Database by Using ADO.NET
 The ADO.NET class library contains a comprehensive framework for building applications

that need to retrieve and update data held in a relational database. The model defi ned by

ADO.NET is based on the notion of data providers. Each database management system (such

as SQL Server, Oracle, IBM DB2, and so on) has its own data provider that implements an

abstraction of the mechanisms for connecting to a database, issuing queries, and updating

data. By using these abstractions, you can write portable code that is independent of the
 499

500 Part V Managing Data
 underlying database management system. In this chapter, you will connect to a database

managed by SQL Server 2005 Express Edition, but the techniques that you will learn are

equally applicable when using a different database management system.

The Northwind Database
 Northwind Traders is a fi ctitious company that sells edible goods with exotic names.

The Northwind database contains several tables with information about the goods that

Northwind Traders sells, the customers they sell to, orders placed by customers, suppliers

from whom Northwind Traders obtains goods to resell, shippers that they use to send goods

to customers, and employees who work for Northwind Traders. Figure 25-1 shows all the

tables in the Northwind database and how they are related to one another. The tables that

you will be using in this chapter are Orders and Products.

Creating the Database
 Before proceeding further, you need to create the Northwind database.

 Chapter 25 Querying Information in a Database 501

Granting Permissions for Creating a SQL Server 2005 Database
 You must have administrative rights for SQL Server 2005 Express before you can cre-

ate a database. By default, if you are using the Windows Vista operating system, the

computer Administrator account and members of the Administrators group do not have

these rights. You can easily grant these permissions by using the SQL Server 2005 User

Provisioning Tool for Vista, as follows:

1. Log on to your computer as an account that has administrator access.

2. Run the sqlprov.exe program, located in the folder C:\Program Files\Microsoft

SQL Server\90\Shared.

3. In the User Account Control dialog box, click Continue. A console window briefl y

appears, and then the SQL Server User Provisioning on Vista window is displayed.

4. In the User to provision text box, type the name of the account you are using to

perform the exercises. (Replace YourComputer\YourAccount with the name of your

computer and your account.)

5. In the Available privileges box, click Member of SQL Server SysAdmin role on
SQLEXPRESS, and then click the >> button.

6. Click OK.

 The permission will be granted to the specifi ed user, and the SQL Server 2005

User Provisioning Tool for Vista will close automatically.

502 Part V Managing Data

Create the Northwind database

1. On the Windows Start menu, click All Programs, click Accessories, and then click

Command Prompt to open a command prompt window. If you are using Windows

Vista, in the command prompt window type the following command to go to the

\Microsoft Press\Visual CSharp Step by Step\Chapter 25 folder under your Documents

folder. Replace Name with your user name.

cd “\Users\Name\Documents\Microsoft Press\Visual CSharp Step by Step\Chapter 25”

If you are using Windows XP, type the following command to go to the \Microsoft

Press\Visual CSharp Step by Step\Chapter 25 folder under your My Documents folder,

replacing Name with your user name.

cd “\Documents and Settings\Name\My Documents\Microsoft Press\Visual CSharp Step by
Step\Chapter 25”

2. In the command prompt window, type the following command:

sqlcmd –S YourComputer\SQLExpress –E –iinstnwnd.sql

Replace YourComputer with the name of your computer.

This command uses the sqlcmd utility to connect to your local instance of SQL Server

2005 Express and run the instnwnd.sql script. This script contains the SQL commands

that create the Northwind Traders database and the tables in the database and fi lls

them with some sample data.

Tip Ensure that SQL Server 2005 Express is running before you attempt to create the

Northwind database. (It is set to start automatically by default. You will simply receive an

error message if it is not started when you execute the sqlcmd command.) You can check

the status of SQL Server 2005 Express, and start it running if necessary, by using the SQL

Confi guration Manager available in the Confi guration Tools folder of the Microsoft SQL

Server 2005 program group.

3. When the script fi nishes running, close the command prompt window.

Note You can run the command you executed in step 2 at any time if you need to reset

the Northwind Traders database. The instnwnd.sql script automatically drops the database

if it exists and then rebuilds it. See Chapter 26 for additional information.

Create the Northwind database

 Chapter 25 Querying Information in a Database 503

Using ADO.NET to Query Order Information
In the next set of exercises, you will write code to access the Northwind database and display

information in a simple console application. The aim of the exercise is to help you learn more

about ADO.NET and understand the object model it implements. In later exercises, you will

use DLINQ to query the database. In Chapter 26, you will see how to use the wizards includ-

ed with Visual Studio 2008 to generate code that can retrieve and update data and display

data graphically in a Windows Presentation Foundation (WPF) application.

The application you are going to create fi rst will produce a simple report displaying informa-

tion about customers’ orders. The program will prompt the user for a customer ID and then

display the orders for that customer.

Connect to the database

1. Start Visual Studio 2008 if it is not already running.

2. Create a new project called ReportOrders by using the Console Application template.

Save it in the \Microsoft Press\Visual CSharp Step By Step\Chapter 25 folder under your

Documents folder, and then click OK.

Note Remember, if you are using Visual C# 2008 Express Edition, you can specify the

 location for saving your project by setting the Visual Studio projects location in the Projects
and Solutions section of the Options dialog box on the Tools menu.

3. In Solution Explorer, change the name of the fi le Program.cs to Report.cs. In the

Microsoft Visual Studio message, click Yes to change all references of the Program class

to Report.

4. In the Code and Text Editor window, add the following using statement to the list at the

top of the fi le:

using System.Data.SqlClient;

 The System.Data.SqlClient namespace contains the SQL Server data provider classes for

ADO.NET. These classes are specialized versions of the ADO.NET classes, optimized for

working with SQL Server.

5. In the Main method of the Report class, add the following statement shown in bold

type, which declares a SqlConnection object:

static void Main(string[] args)
{
 SqlConnection dataConnection = new SqlConnection();
}

Connect to the database

504 Part V Managing Data

 SqlConnection is a subclass of an ADO.NET class called Connection. It is designed to

handle connections to SQL Server databases.

6. After the variable declaration, add a try/catch block to the Main method. All the code

that you will write for gaining access to the database goes inside the try part of this

block. In the catch block, add a simple handler that catches SqlException exceptions.

The new code is shown in bold type here:

static void Main(string[] args)
{
 ...
 try
 {
 // You will add your code here in a moment
 }
 catch(SqlException e)
 {
 Console.WriteLine(“Error accessing the database: {0}”, e.Message);
 }
}

 A SqlException is thrown if an error occurs when accessing a SQL Server database.

7. Replace the comment in the try block with the code shown in bold type here:

try
{
 dataConnection.ConnectionString =
 “Integrated Security=true;Initial Catalog=Northwind;” +
 “Data Source=YourComputer\\SQLExpress”;
 dataConnection.Open();
}

 Important In the ConnectionString property, replace YourComputer with the name of

your computer. Make sure that you type the string on a single line.

 This code attempts to create a connection to the Northwind database. The contents of

the ConnectionString property of the SqlConnection object contain elements that spec-

ify that the connection will use Windows Authentication to connect to the Northwind

database on your local instance of SQL Server 2005 Express Edition. This is the pre-

ferred method of access because you do not have to prompt the user for any form of

user name or password, and you are not tempted to hard-code user names and pass-

words into your application. Notice that a semicolon separates all the elements in the

ConnectionString.

 You can also encode many other elements in the connection string. See the

 documentation supplied with Visual Studio 2008 for details.

 Chapter 25 Querying Information in a Database 505

Using SQL Server Authentication
Windows Authentication is useful for authenticating users who are all members of a

Windows domain. However, there might be occasions when the user accessing the

 database does not have a Windows account, for example, if you are building an appli-

cation designed to be accessed by remote users over the Internet. In these cases, you

can use the User ID and Password parameters instead, like this:

string userName = ...;
string password = ...;
// Prompt the user for their name and password, and fill these variables

string connString = String.Format(
 “User ID={0};Password={1};Initial Catalog=Northwind;” +
 “Data Source=YourComputer\\SQLExpress”, username, password);

myConnection.ConnectionString = connString;

At this point, I should offer a sentence of advice: never hard-code user names and pass-

words into your applications. Anyone who obtains a copy of the source code (or who

reverse-engineers the compiled code) can see this information, and this renders the

whole point of security meaningless.

 The next step is to prompt the user for a customer ID and then query the database to fi nd all

of the orders for that customer.

Query the Orders table

1. Add the statements shown here in bold type to the try block after the dataConnection.
Open(); statement:

try
{
 ...
 Console.Write(“Please enter a customer ID (5 characters): “);
 string customerId = Console.ReadLine();
}

 These statements prompt the user for a customer ID and read the user’s response in

the string variable customerId.

2. Type the following statements shown in bold type after the code you just entered:

try
{
 ...
 SqlCommand dataCommand = new SqlCommand();
 dataCommand.Connection = dataConnection;

Query the Orders table

506 Part V Managing Data

 dataCommand.CommandText =
 “SELECT OrderID, OrderDate, ShippedDate, ShipName, ShipAddress, “ +
 “ShipCity, ShipCountry “ +
 “FROM Orders WHERE CustomerID=’” + customerId + “’”;
 Console.WriteLine(“About to execute: {0}\n\n”, dataCommand.CommandText);
}

 The fi rst statement creates a SqlCommand object. Like SqlConnection, this is a

 specialized version of an ADO.NET class, Command, that has been designed for per-

forming queries against a SQL Server database. An ADO.NET Command object is used

to execute a command against a data source. In the case of a relational database, the

text of the command is a SQL statement.

 The second line of code sets the Connection property of the SqlCommand object to

the database connection you opened in the preceding exercise. The next two state-

ments populate the CommandText property with a SQL SELECT statement that retrieves

information from the Orders table for all orders that have a CustomerID that matches

the value in the customerId variable. The Console.WriteLine statement just repeats the

command about to be executed to the screen.

Important If you are an experienced database developer, you will probably be about to

e-mail me telling me that using string concatenation to build SQL queries is bad practice.

This approach renders your application vulnerable to SQL injection attacks. However, the

purpose of this code is to quickly show you how to execute queries against a SQL Server

database by using ADO.NET, so I have deliberately kept it simple. Do not write code such

as this in your production applications.

 For a description of what a SQL injection attack is, how dangerous it can be, and how you

should write code to avoid such attacks, see the SQL Injection topic in SQL Server Books

Online, available at http://msdn2.microsoft.com/en-us/library/ms161953.aspx.

3. Add the following statement shown in bold type after the code you just entered:

try
{
 ...
 SqlDataReader dataReader = dataCommand.ExecuteReader();
}

 The ExecuteReader method of a SqlCommand object constructs a SqlDataReader object

that you can use to fetch the rows identifi ed by the SQL statement. The SqlDataReader
class provides the fastest mechanism available (as fast as your network allows) for

 retrieving data from a SQL Server.

 The next task is to iterate through all the orders (if there are any) and display them.

 Chapter 25 Querying Information in a Database 507

Fetch data and display orders

1. Add the while loop shown here in bold type after the statement that creates the

SqlDataReader object:

try
{
 ...
 while (dataReader.Read())
 {
 // Code to display the current row
 }
}

The Read method of the SqlDataReader class fetches the next row from the database. It

returns true if another row was retrieved successfully; otherwise, it returns false, usually

because there are no more rows. The while loop you have just entered keeps reading

rows from the dataReader variable and fi nishes when there are no more rows.

2. Add the statements shown here in bold type to the body of the while loop you created

in the preceding step:

while (dataReader.Read())
{
 int orderId = dataReader.GetInt32(0);
 DateTime orderDate = dataReader.GetDateTime(1);
 DateTime shipDate = dataReader.GetDateTime(2);
 string shipName = dataReader.GetString(3);
 string shipAddress = dataReader.GetString(4);
 string shipCity = dataReader.GetString(5);
 string shipCountry = dataReader.GetString(6);
 Console.WriteLine(
 “Order: {0}\nPlaced: {1}\nShipped: {2}\n” +
 “To Address: {3}\n{4}\n{5}\n{6}\n\n”, orderId, orderDate,
 shipDate, shipName, shipAddress, shipCity, shipCountry);
}

This block of code shows how you read the data from the database by using a

SqlDataReader object. A SqlDataReader object contains the most recent row retrieved

from the database. You can use the GetXXX methods to extract the information from

each column in the row—there is a GetXXX method for each common type of data. For

example, to read an int value, you use the GetInt32 method; to read a string, you use

the GetString method; and you can probably guess how to read a DateTime value. The

GetXXX methods take a parameter indicating which column to read: 0 is the fi rst col-

umn, 1 is the second column, and so on. The preceding code reads the various columns

from the current Orders row, stores the values in a set of variables, and then prints out

the values of these variables.

Fetch data and display orders

508 Part V Managing Data

Firehose Cursors
 One of the major drawbacks in a multiuser database application is locked data.

Unfortunately, it is common to see applications retrieve rows from a database and keep

those rows locked to prevent another user from changing the data while the applica-

tion is using them. In some extreme circumstances, an application can even prevent

other users from reading data that it has locked. If the application retrieves a large

number of rows, it locks a large proportion of the table. If there are many users run-

ning the same application at the same time, they can end up waiting for one another to

 release locks and it all leads to a slow-running and frustrating mess.

 The SqlDataReader class has been designed to remove this drawback. It fetches rows

one at a time and does not retain any locks on a row after it has been retrieved. It is

wonderful for improving concurrency in your applications. The SqlDataReader class is

sometimes referred to as a “fi rehose cursor.” (The term cursor is an acronym that stands

for “current set of rows.”)

 When you have fi nished using a database, it’s good practice to close your connection and

release any resources you have been using.

Disconnect from the database, and test the application

1. Add the statement shown here in bold type after the while loop in the try block:

try
{
 ...
 while(dataReader.Read())
 {
 ...
 }
 dataReader.Close();
}

This statement closes the SqlDataReader object. You should always close a SqlDataReader
object when you have fi nished with it because you will not able to use the current

SqlConnection object to run any more commands until you do. It is also considered good

practice to do it even if all you are going to do next is close the SqlConnection.

Note If you activate multiple active result sets (MARS) with SQL Server 2005, you can

open more than one SqlDataReader object against the same SqlConnection object and

process multiple sets of data. MARS is disabled by default. To learn more about MARS and

how you can activate and use it, consult SQL Server 2005 Books Online.

Disconnect from the database, and test the application

Chapter 25 Querying Information in a Database 509

2. After the catch block, add the following fi nally block:

catch(SqlException e)
{
 ...
}
finally
{
 dataConnection.Close();
}

 Database connections are scarce resources. You need to ensure that they are closed

when you have fi nished with them. Putting this statement in a fi nally block guarantees

that the SqlConnection will be closed, even if an exception occurs; remember that the

code in the fi nally block will be executed after the catch handler has fi nished.

 Tip An alternative approach to using a fi nally block is to wrap the code that creates the

SqlDataConnection object in a using statement, as shown in the following code. At the end

of the block defi ned by the using statement, the SqlConnection object is closed automati-

cally, even if an exception occurs:

using (SqlConnection dataConnection = new SqlConnection())
{
 try
 {
 dataConnection.ConnectionString = “...”;
 ...
 }
 catch (SqlException e)
 {
 Console.WriteLine(“Error accessing the database: {0}”, e.Message);
 }
}

3. On the Debug menu, click Start Without Debugging to build and run the application.

4. At the customer ID prompt, type the customer ID VINET, and press Enter.

 The SQL SELECT statement appears, followed by the orders for this customer, as shown

in the following image:

510 Part V Managing Data

 You can scroll back through the console window to view all the data. Press the Enter

key to close the console window when you have fi nished.

5. Run the application again, and then type BONAP when prompted for the customer ID.

 Some rows appear, but then an error occurs. If you are using Windows Vista, a mes-

sage box appears with the message “ReportOrders has stopped working.” Click Close
program (or Close the program if you are using Visual C# Express). If you are using

Windows XP, a message box appears with the message “ReportOrders has encountered

a problem and needs to close. We are sorry for the inconvenience.” Click Don’t Send.

 An error message containing the text “Data is Null. This method or property cannot be

called on Null values” appears in the console window.

 The problem is that relational databases allow some columns to contain null values.

A null value is a bit like a null variable in C#: It doesn’t have a value, but if you try to

read it, you get an error. In the Orders table, the ShippedDate column can contain a

null value if the order has not yet been shipped. You should also note that this is a

SqlNullValueException and consequently is not caught by the SqlException handler.

6. Press Enter to close the console window and return to Visual Studio 2008.

Closing Connections
 In many older applications, you might notice a tendency to open a connection when

the application starts and not close the connection until the application terminates. The

rationale behind this strategy was that opening and closing database connections were

expensive and time-consuming operations. This strategy had an impact on the scalabil-

ity of applications because each user running the application had a connection to the

database open while the application was running, even if the user went to lunch for a

few hours. Most databases limit the number of concurrent connections that they allow.

(Sometimes this is because of licensing, but usually it’s because each connection con-

sumes resources on the database server that are not infi nite.) Eventually, the database

would hit a limit on the number of users that could operate concurrently.

 Most .NET Framework data providers (including the SQL Server provider) implement

connection pooling. Database connections are created and held in a pool. When an

application requires a connection, the data access provider extracts the next available

connection from the pool. When the application closes the connection, it is returned

to the pool and made available for the next application that wants a connection. This

means that opening and closing database connections are no longer expensive op-

erations. Closing a connection does not disconnect from the database; it just returns

the connection to the pool. Opening a connection is simply a matter of obtaining

an already-open connection from the pool. Therefore, you should not hold on to

 connections longer than you need to—open a connection when you need it, and close

it as soon as you have fi nished with it.

 Chapter 25 Querying Information in a Database 511

You should note that the ExecuteReader method of the SqlCommand class,

which creates a SqlDataReader, is overloaded. You can specify a System.Data.
CommandBehavior parameter that automatically closes the connection used by the

SqlDataReader when the SqlDataReader is closed, like this:

SqlDataReader dataReader =
 dataCommand.ExecuteReader(System.Data.CommandBehavior.CloseConnection);

 When you read the data from the SqlDataReader object, you should check that the

data you are reading is not null. You’ll see how to do this next.

Handle null database values

1. In the Main method, change the code in the body of the while loop to contain an if …

else block, as shown here in bold type:

while (dataReader.Read())
{
 int orderId = dataReader.GetInt32(0);
 if (dataReader.IsDBNull(2))
 {
 Console.WriteLine(“Order {0} not yet shipped\n\n”, orderId);
 }
 else
 {
 DateTime orderDate = dataReader.GetDateTime(1);
 DateTime shipDate = dataReader.GetDateTime(2);
 string shipName = dataReader.GetString(3);
 string shipAddress = dataReader.GetString(4);
 string shipCity = dataReader.GetString(5);
 string shipCountry = dataReader.GetString(6);
 Console.WriteLine(
 “Order {0}\nPlaced {1}\nShipped{2}\n” +
 “To Address {3}\n{4}\n{5}\n{6}\n\n”, orderId, orderDate,
 shipDate, shipName, shipAddress, shipCity, shipCountry);
 }
}

The if statement uses the IsDBNull method to determine whether the ShippedDate

column (column 2 in the table) is null. If it is null, no attempt is made to fetch it (or

any of the other columns, which should also be null if there is no ShippedDate value);

 otherwise, the columns are read and printed as before.

2. Build and run the application again.

3. Type BONAP for the customer ID when prompted.

 This time you do not get any errors, but you receive a list of orders that have not yet

been shipped.

4. When the application fi nishes, press Enter and return to Visual Studio 2008.

Handle null database values

512 Part V Managing Data
Querying a Database by Using DLINQ
 In Chapter 20, “Querying In-Memory Data by Using Query Expressions,” you saw how to

use LINQ to examine the contents of enumerable collections held in memory. LINQ pro-

vides query expressions, which use SQL-like syntax for performing queries and generating

a result set that you can then step through. It should come as no surprise that you can use

an extended form of LINQ, called DLINQ, for querying and manipulating the contents of

a database. DLINQ is built on top of ADO.NET. DLINQ provides a high level of abstraction,

 removing the need for you to worry about the details of constructing an ADO.NET Command

object, iterating through a result set returned by a DataReader object, or fetching data

 column by column by using the various GetXXX methods.

Defi ning an Entity Class
 You saw in Chapter 20 that using LINQ requires the objects that you are querying be

 enumerable; they must be collections that implement the IEnumerable interface. DLINQ can

create its own enumerable collections of objects based on classes you defi ne and that map

directly to tables in a database. These classes are called entity classes. When you connect to

a database and perform a query, DLINQ can retrieve the data identifi ed by your query and

 create an instance of an entity class for each row fetched.

 The best way to explain DLINQ is to see an example. The Products table in the Northwind

database contains columns that contain information about the different aspects of the vari-

ous products that Northwind Traders sells. The part of the instnwnd.sql script that you ran in

the fi rst exercise in this chapter contains a CREATE TABLE statement that looks similar to this

(some of the columns, constraints, and other details have been omitted):

CREATE TABLE “Products” (
 “ProductID” “int” NOT NULL ,
 “ProductName” nvarchar (40) NOT NULL ,
 “SupplierID” “int” NULL ,
 “UnitPrice” “money” NULL,
 CONSTRAINT “PK_Products” PRIMARY KEY CLUSTERED (“ProductID”),
 CONSTRAINT “FK_Products_Suppliers” FOREIGN KEY (“SupplierID”)
 REFERENCES “dbo”.”Suppliers” (“SupplierID”)
)

 You can defi ne an entity class that corresponds to the Products table like this:

[Table(Name = “Products”)]
public class Product
{
 [Column(IsPrimaryKey = true, CanBeNull = false)]
 public int ProductID { get; set; }

 [Column(CanBeNull = false)]
 public string ProductName { get; set; }

 Chapter 25 Querying Information in a Database 513
 [Column]
 public int? SupplierID { get; set; }

 [Column(DbType = “money”)]
 public decimal? UnitPrice { get; set; }
}

 The Product class contains a property for each of the columns in which you are interested in

the Products table. You don’t have to specify every column from the underlying table, but

any columns that you omit will not be retrieved when you execute a query based on this

 entity class. The important points to note are the Table and Column attributes.

 The Table attribute identifi es this class as an entity class. The Name parameter specifi es the

name of the corresponding table in the database. If you omit the Name parameter, DLINQ

assumes that the entity class name is the same as the name of the corresponding table in the

database.

 The Column attribute describes how a column in the Products table maps to a property in the

Product class. The Column attribute can take a number of parameters. The ones shown in this

example and described in the following list are the most common:

 The IsPrimaryKey parameter specifi es that the property makes up part of the primary

key. (If the table has a composite primary key spanning multiple columns, you should

specify the IsPrimaryKey parameter for each corresponding property in the entity class.)

 The DbType parameter specifi es the type of the underlying column in the database.

In many cases, DLINQ can detect and convert data in a column in the database to the

type of the corresponding property in the entity class, but in some situations you need

to specify the data type mapping yourself. For example, the UnitPrice column in the

Products table uses the SQL Server money type. The entity class specifi es the corre-

sponding property as a decimal value.

 Note The default mapping of money data in SQL Server is to the decimal type in an entity

class, so the DbType parameter shown here is actually redundant. However, I wanted to

show you the syntax.

 The CanBeNull parameter indicates whether the column in the database can contain a

null value. The default value for the CanBeNull parameter is true. Notice that the two

properties in the Product table that correspond to columns that permit null values in

the database (SupplierID and UnitPrice) are defi ned as nullable types in the entity class.

514 Part V Managing Data
 Note You can also use DLINQ to create new databases and tables based on the defi nitions of

your entity classes by using the CreateDatabase method of the DataContext object. In the cur-

rent version of DLINQ, the part of the library that creates tables uses the defi nition of the DbType

parameter to specify whether a column should allow null values. If you are using DLINQ to create

a new database, you should specify the nullability of each column in each table in the DbType

parameter, like this:

[Column(DbType = “NVarChar(40) NOT NULL”, CanBeNull = false)]
public string ProductName { get; set; }
...
[Column(DbType = “Int NULL”, CanBeNull = true)]
public int? SupplierID { get; set; }

 Like the Table attribute, the Column attribute provides a Name parameter that you can use

to specify the name of the underlying column in the database. If you omit this parameter,

DLINQ assumes that the name of the column is the same as the name of the property in the

entity class.

Creating and Running a DLINQ Query
 Having defi ned an entity class, you can use it to fetch and display data from the Products
table. The following code shows the basic steps for doing this:

DataContext db = new DataContext(“Integrated Security=true;” +
 “Initial Catalog=Northwind;Data Source=YourComputer\\SQLExpress”);

Table<Product> products = db.GetTable<Product>();
var productsQuery = from p in products
 select p;

foreach (var product in productsQuery)
{
 Console.WriteLine(“ID: {0}, Name: {1}, Supplier: {2}, Price: {3:C}”,
 product.ProductID, product.ProductName,
 product.SupplierID, product.UnitPrice);
}

 Note Remember that the keywords from, in, and select in this context are C# identifi ers. You

must type them in lowercase.

 The DataContext class is responsible for managing the relationship between your entity

 classes and the tables in the database. You use it to establish a connection to the database

and create collections of the entity classes. The DataContext constructor expects a connec-

tion string as a parameter, specifying the database that you want to use. This connection

string is exactly the same as the connection string that you would use when connecting

 Chapter 25 Querying Information in a Database 515
through an ADO.NET Connection object. (The DataContext class actually creates an ADO.NET

connection behind the scenes.)

 The generic GetTable<TEntity> method of the DataContext class expects an entity class as its

TEntity type parameter. This method constructs an enumerable collection based on this type

and returns the collection as a Table<TEntity> type. You can perform DLINQ queries over this

collection. The query shown in this example simply retrieves every object from the Products
table.

 Note If you need to recap your knowledge of LINQ query expressions, turn back to Chapter 20.

 The foreach statement iterates through the results of this query and displays the details of

each product. The following image shows the results of running this code. (The prices shown

are per case, not per individual item.)

 The DataContext object controls the database connection automatically; it opens the

 connection immediately prior to fetching the fi rst row of data in the foreach statement and

then closes the connection after the last row has been retrieved.

 The DLINQ query shown in the preceding example retrieves every column for every row

in the Products table. In this case, you can actually iterate through the products collection

 directly, like this:

Table<Product> products = db.GetTable<Product>();

foreach (Product product in products)
{
 ...
}

 When the foreach statement runs, the DataContext object constructs a SQL SELECT state-

ment that simply retrieves all the data from the Products table. If you want to retrieve a

single row in the Products table, you can call the Single method of the Products entity class.

516 Part V Managing Data
Single is an extension method that itself takes a method that identifi es the row you want

to fi nd and returns this row as an instance of the entity class (as opposed to a collection of

rows in a Table collection). You can specify the method parameter as a lambda expression.

If the lambda expression does not identify exactly one row, the Single method returns an

InvalidOperationException. The following code example queries the Northwind database for

the product with the ProductID value of 27. The value returned is an instance of the Product
class, and the Console.WriteLine statement prints the name of the product. As before, the

 database connection is opened and closed automatically by the DataContext object.

Product singleProduct = products.Single(p => p.ProductID == 27);
Console.WriteLine(“Name: {0}”, singleProduct.ProductName);

Deferred and Immediate Fetching
 An important point to emphasize is that by default, DLINQ retrieves the data from the

 database only when you request it and not when you defi ne a DLINQ query or create a Table

collection. This is known as deferred fetching. In the example shown earlier that displays

all of the products from the Products table, the productsQuery collection is populated only

when the foreach loop runs. This mode of operation matches that of LINQ when querying

in-memory objects; you will always see the most up-to-date version of the data, even if the

data changes after you have run the statement that creates the productsQuery enumerable

collection.

 When the foreach loop starts, DLINQ creates and runs a SQL SELECT statement derived from

the DLINQ query to create an ADO.NET DataReader object. Each iteration of the foreach loop

performs the necessary GetXXX methods to fetch the data for that row. After the fi nal row

has been fetched and processed by the foreach loop, DLINQ closes the database connection.

 Deferred fetching ensures that only the data an application actually uses is retrieved from

the database. However, if you are accessing a database running on a remote instance of SQL

Server, fetching data row by row does not make the best use of network bandwidth. In this

scenario, you can fetch and cache all the data in a single network request by forcing immedi-

ate evaluation of the DLINQ query. You can do this by calling the ToList or ToArray extension

methods, which fetch the data into a list or array when you defi ne the DLINQ query, like this:

var productsQuery = from p in products.ToList()
 select p;

 In this code example, productsQuery is now an enumerable list, populated with information

from the Products table. When you iterate over the data, DLINQ retrieves it from this list

rather than sending fetch requests to the database.

 Chapter 25 Querying Information in a Database 517
Joining Tables and Creating Relationships
 DLINQ supports the join query operator for combining and retrieving related data held in

multiple tables. For example, the Products table in the Northwind database holds the ID of

the supplier for each product. If you want to know the name of each supplier, you have to

query the Suppliers table. The Suppliers table contains the CompanyName column, which

specifi es the name of the supplier company, and the ContactName column, which con-

tains the name of the person in the supplier company that handles orders from Northwind

Traders. You can defi ne an entity class containing the relevant supplier information like this

(the SupplierName column in the database is mandatory, but the ContactName allows null

values):

[Table(Name = “Suppliers”)]
public class Supplier
{
 [Column(IsPrimaryKey = true, CanBeNull = false)]
 public int SupplierID { get; set; }

 [Column(CanBeNull = false)]
 public string CompanyName { get; set; }

 [Column]
 public string ContactName { get; set; }
}

 You can then instantiate Table<Product> and Table<Supplier> collections and defi ne a DLINQ

query to join these tables together, like this:

DataContext db = new DataContext(...);
Table<Product> products = db.GetTable<Product>();
Table<Supplier> suppliers = db.GetTable<Supplier>();
var productsAndSuppliers = from p in products
 join s in suppliers
 on p.SupplierID equals s.SupplierID
 select new { p.ProductName, s.CompanyName, s.ContactName };

 When you iterate through the productsAndSuppliers collection, DLINQ will execute a SQL

SELECT statement that joins the Products and Suppliers tables in the database over the

SupplierID column in both tables and fetches the data.

 However, with DLINQ you can specify the relationships between tables as part of the

 defi nition of the entity classes. DLINQ can then fetch the supplier information for each

 product automatically without requiring that you code a potentially complex and error-prone

join statement. Returning to the products and suppliers example, these tables have a many-

to-one relationship in the Northwind database; each product is supplied by a single supplier,

but a single supplier can supply several products. Phrasing this relationship slightly differ-

ently, a row in the Product table can reference a single row in the Suppliers table through the

SupplierID columns in both tables, but a row in the Suppliers table can reference a whole set

518 Part V Managing Data
of rows in the Products table. DLINQ provides the EntityRef<TEntity> and EntitySet<TEntity>

generic types to model this type of relationship. Taking the Product entity class fi rst, you

can defi ne the “one” side of the relationship with the Supplier entity class by using the

EntityRef<Supplier> type, as shown here in bold type:

[Table(Name = “Products”)]
public class Product
{
 [Column(IsPrimaryKey = true, CanBeNull = false)]
 public int ProductID { get; set; }
 ...
 [Column]
 public int? SupplierID { get; set; }
 ...
 private EntityRef<Supplier> supplier;
 [Association(Storage = “supplier”, ThisKey = “SupplierID”, OtherKey = “SupplierID”)]
 public Supplier Supplier
 {
 get { return this.supplier.Entity; }
 set { this.supplier.Entity = value; }
 }
}

 The private supplier fi eld is a reference to an instance of the Supplier entity class. The public

Supplier property provides access to this reference. The Association attribute specifi es how

DLINQ locates and populates the data for this property. The Storage parameter identifi es

the private fi eld used to store the reference to the Supplier object. The ThisKey parameter

indicates which property in the Product entity class DLINQ should use to locate the Supplier
to reference for this product, and the OtherKey parameter specifi es which property in the

Supplier table DLINQ should match against the value for the ThisKey parameter. In this exam-

ple, The Product and Supplier tables are joined across the SupplierID property in both entities.

 Note The Storage parameter is actually optional. If you specify it, DLINQ accesses the

corresponding data member directly when populating it rather than going through the set
accessor. The set accessor is required for applications that manually fi ll or change the entity

object referenced by the EntityRef<TEntity> property. Although the Storage parameter is actually

redundant in this example, it is recommended practice to include it.

 The get accessor in the Supplier property returns a reference to the Supplier entity by using

the Entity property of the EntityRef<Supplier> type. The set accessor populates this property

with a reference to a Supplier entity.

 Chapter 25 Querying Information in a Database 519
 You can defi ne the “many” side of the relationship in the Supplier class with the

EntitySet<Product> type, like this:

[Table(Name = “Suppliers”)]
public class Supplier
{
 [Column(IsPrimaryKey = true, CanBeNull = false)]
 public int SupplierID { get; set; }
 ...
 private EntitySet<Product> products = null;
 [Association(Storage = “products”, OtherKey = “SupplierID”, ThisKey = “SupplierID”)]
 public EntitySet<Product> Products
 {
 get { return this.products; }
 set { this.products.Assign(value); }
 }
}

 Tip It is conventional to use a singular noun for the name of an entity class and its properties.

The exception to this rule is that EntitySet<TEntity> properties typically take the plural form

 because they represent a collection rather than a single entity.

 This time, notice that the Storage parameter of the Association attribute specifi es the private

EntitySet<Product> fi eld. An EntitySet<TEntity> object holds a collection of references to en-

tities. The get accessor of the public Products property returns this collection. The set acces-

sor uses the Assign method of the EntitySet<Product> class to populate this collection.

 So, by using the EntityRef<TEntity> and EntitySet<TEntity> types you can defi ne properties

that can model a one-to-many relationship, but how do you actually fi ll these properties

with data? The answer is that DLINQ fi lls them for you when it fetches the data. The follow-

ing code creates an instance of the Table<Product> class and issues a DLINQ query to fetch

the details of all products. This code is similar to the fi rst DLINQ example you saw earlier. The

 difference is in the foreach loop that displays the data.

DataContext db = new DataContext(...);
Table<Product> products = db.GetTable<Product>();

var productsAndSuppliers = from p in products
 select p;

foreach (var product in productsAndSuppliers)
{
 Console.WriteLine(“Product {0} supplied by {1}”,
 product.ProductName, product.Supplier.CompanyName);
}

520 Part V Managing Data
 The Console.WriteLine statement reads the value in the ProductName property of the product

entity as before, but it also accesses the Supplier entity and displays the CompanyName

property from this entity. If you run this code, the output looks like this:

 As the code fetches each Product entity, DLINQ executes a second, deferred, query to

 retrieve the details of the supplier for that product so that it can populate the Supplier
 property, based on the relationship specifi ed by the Association attribute of this property in

the Product entity class.

 When you have defi ned the Product and Supplier entities as having a one-to-many

 relationship, similar logic applies if you execute a DLINQ query over the Table<Supplier>

 collection, like this:

DataContext db = new DataContext(...);
Table<Supplier> suppliers = db.GetTable<Supplier>();
var suppliersAndProducts = from s in suppliers
 select s;

foreach (var supplier in suppliersAndProducts)
{
 Console.WriteLine(“Supplier name: {0}”, supplier.CompanyName);
 Console.WriteLine(“Products supplied”);
 foreach (var product in supplier.Products)
 {
 Console.WriteLine(“\t{0}”, product.ProductName);
 }
 Console.WriteLine();
}

 In this case, when the foreach loop fetches a supplier, it runs a second query (again deferred)

to retrieve all the products for that supplier and populate the Products property. This time,

however, the property is a collection (an EntitySet<Product>), so you can code a nested

 Chapter 25 Querying Information in a Database 521
 foreach statement to iterate through the set, displaying the name of each product. The

 output of this code looks like this:

Deferred and Immediate Fetching Revisited
 Earlier in this chapter, I mentioned that DLINQ defers fetching data until the data is actually

requested but that you could apply the ToList or ToArray extension method to retrieve data

immediately. This technique does not apply to data referenced as EntitySet<TEntity> or

EntityRef<TEntity> properties; even if you use ToList or ToArray, the data will still be fetched

only when accessed. If you want to force DLINQ to query and fetch referenced data immedi-

ately, you can set the LoadOptions property of the DataContext object as follows:

DataContext db = new DataContext(...);
Table<Supplier> suppliers = db.GetTable<Supplier>();
DataLoadOptions loadOptions = new DataLoadOptions();
loadOptions.LoadWith<Supplier>(s => s.Products);
db.LoadOptions = loadOptions;
var suppliersAndProducts = from s in suppliers
 select s;

 The DataLoadOptions class provides the generic LoadWith method. By using this method,

you can specify whether an EntitySet<TEntity> property in an instance should be loaded

when the instance is populated. The parameter to the LoadWith method is another method,

which you can supply as a lambda expression. The example shown here causes the Products
property of each Supplier entity to be populated as soon as the data for each Product en-

tity is fetched rather than being deferred. If you specify the LoadOptions property of the

DataContext object together with the ToList or ToArray extension method of a Table collec-

tion, DLINQ will load the entire collection as well as the data for the referenced properties for

the entities in that collection into memory as soon as the DLINQ query is evaluated.

522 Part V Managing Data
 Tip If you have several EntitySet<TEntity> properties, you can call the LoadWith method of the

same LoadOptions object several times, each time specifying the EntitySet<TEntity> to load.

Defi ning a Custom DataContext Class
 The DataContext class provides functionality for managing databases and database connec-

tions, creating entity classes, and executing commands to retrieve and update data in a da-

tabase. Although you can use the raw DataContext class provided with the .NET Framework,

it is better practice to use inheritance and defi ne your own specialized version that declares

the various Table<TEntity> collections as public members. For example, here is a special-

ized DataContext class that exposes the Products and Suppliers Table collections as public

members:

public class Northwind : DataContext
{
 public Table<Product> Products;
 public Table<Supplier> Suppliers;

 public Northwind(string connectionInfo) : base(connectionInfo)
 {
 }
}

 Notice that the Northwind class also provides a constructor that takes a connection string as

a parameter. You can create a new instance of the Northwind class and then defi ne and run

DLINQ queries over the Table collection classes it exposes like this:

Northwind nwindDB = new Northwind(...);

var suppliersQuery = from s in nwindDB.Suppliers
 select s;

foreach (var supplier in suppliersQuery)
{
 ...
}

 This practice makes your code easier to maintain, especially if you are retrieving data from

multiple databases. Using an ordinary DataContext object, you can instantiate any entity class

by using the GetTable method, regardless of the database to which the DataContext object

connects. You fi nd out that you have used the wrong DataContext object and have con-

nected to the wrong database only at run time, when you try to retrieve data. With a custom

DataContext class, you reference the Table collections through the DataContext object. (The

base DataContext constructor uses a mechanism called refl ection to examine its members,

and it automatically instantiates any members that are Table collections—the details of how

 Chapter 25 Querying Information in a Database 523

refl ection works are outside the scope of this book.) It is obvious to which database you need

to connect to retrieve data for a specifi c table; if IntelliSense does not display your table

when you defi ne the DLINQ query, you have picked the wrong DataContext class, and your

code will not compile.

Using DLINQ to Query Order Information
In the following exercise, you will write a version of the console application that you

 developed in the preceding exercise that prompts the user for a customer ID and displays the

details of any orders placed by that customer. You will use DLINQ to retrieve the data. You

will then be able to compare DLINQ with the equivalent code written by using ADO.NET.

Defi ne the Order entity class

1. Using Visual Studio 2008, create a new project called DLINQOrders by using the

Console Application template. Save it in the \Microsoft Press\Visual CSharp Step By

Step\Chapter 25 folder under your Documents folder, and then click OK.

2. In Solution Explorer, change the name of the fi le Program.cs to DLINQReport.cs. In the

Microsoft Visual Studio message, click Yes to change all references of the Program class

to DLINQReport.

3. On the Project menu, click Add Reference. In the Add Reference dialog box, click the

.NET tab, select the System.Data.Linq assembly, and then click OK.

This assembly holds the DLINQ types and attributes.

4. In the Code and Text Editor window, add the following using statements to the list at

the top of the fi le:

using System.Data.Linq;
using System.Data.Linq.Mapping;
using System.Data.SqlClient;

5. Add the Order entity class to the DLINQReport.cs fi le after the DLINQReport class, as

follows:

[Table(Name = “Orders”)]
public class Order
{
}

The table is called Orders in the Northwind database. Remember that it is common

practice to use the singular noun for the name of an entity class because an entity ob-

ject represents one row from the database.

Defi ne the Order entity classr

524 Part V Managing Data

6. Add the property shown here in bold type to the Order class:

[Table(Name = “Orders”)]
public class Order
{
 [Column(IsPrimaryKey = true, CanBeNull = false)]
 public int OrderID { get; set; }
}

 The OrderID column is the primary key for this table in the Northwind database.

7. Add the following properties shown in bold type to the Order class:

[Table(Name = “Orders”)]
public class Order
{
 ...
 [Column]
 public string CustomerID { get; set; }

 [Column]
 public DateTime? OrderDate { get; set; }

 [Column]
 public DateTime? ShippedDate { get; set; }

 [Column]
 public string ShipName { get; set; }

 [Column]
 public string ShipAddress { get; set; }

 [Column]
 public string ShipCity { get; set; }

 [Column]
 public string ShipCountry { get; set; }
}

 These properties hold the customer ID, order date, and shipping information for an or-

der. In the database, all of these columns allow null values, so it is important to use the

nullable version of the DateTime type for the OrderDate and ShippedDate properties

(string is a reference type that automatically allows null values). Notice that DLINQ au-

tomatically maps the SQL Server NVarChar type to the .NET Framework string type and

the SQL Server DateTime type to the .NET Framework DateTime type.

8. Add the following Northwind class to the DLINQReport.cs fi le after the Order entity

class:

public class Northwind : DataContext
{
 public Table<Order> Orders;

 Chapter 25 Querying Information in a Database 525

 public Northwind(string connectionInfo) : base (connectionInfo)
 {
 }
}

The Northwind class is a DataContext class that exposes a Table property based on

the Order entity class. In the next exercise, you will use this specialized version of the

DataContext class to access the Orders table in the database.

Retrieve order information by using a DLINQ query

1. In the Main method of the DLINQReport class, add the statement shown here in bold

type, which creates a Northwind object. Be sure to replace YourComputer with the

name of your computer:

static void Main(string[] args)
{
 Northwind northwindDB = new Northwind(“Integrated Security=true;” +
 “Initial Catalog=Northwind;Data Source=YourComputer\\SQLExpress”);
}

 The connection string specifi ed here is exactly the same as in the earlier exercise. The

northwindDB object uses this string to connect to the Northwind database.

2. After the variable declaration, add a try/catch block to the Main method:

static void Main(string[] args)
{
 ...
 try
 {
 // You will add your code here in a moment
 }
 catch(SqlException e)
 {
 Console.WriteLine(“Error accessing the database: {0}”, e.Message);
 }
}

 As when using ordinary ADO.NET code, DLINQ raises a SqlException if an error occurs

when accessing a SQL Server database.

3. Replace the comment in the try block with the following code shown in bold type:

try
{
 Console.Write(“Please enter a customer ID (5 characters): “);
 string customerId = Console.ReadLine();
}

 These statements prompt the user for a customer ID and save the user’s response in the

string variable customerId.

Retrieve order information by using a DLINQ query

526 Part V Managing Data

4. Type the statement shown here in bold type after the code you just entered:

try
{
 ...
 var ordersQuery = from o in northwindDB.Orders
 where String.Equals(o.CustomerID, customerId)
 select o;
}

 This statement defi nes the DLINQ query that will retrieve the orders for the specifi ed

customer.

5. Add the foreach statement and if…else block shown here in bold type after the code

you added in the preceding step:

try
{
 ...
 foreach (var order in ordersQuery)
 {
 if (order.ShippedDate == null)
 {
 Console.WriteLine(“Order {0} not yet shipped\n\n”, order.OrderID);
 }
 else
 {
 // Display the order details
 }
 }
}

 The foreach statement iterates through the orders for the customer. If the value in the

ShippedDate column in the database is null, the corresponding property in the Order
entity object is also null, and then the if statement outputs a suitable message.

6. Replace the comment in the else part of the if statement you added in the preceding

step with the code shown here in bold type:

if (order.ShippedDate == null)
{
 ...
}
else
{
 Console.WriteLine(“Order: {0}\nPlaced: {1}\nShipped: {2}\n” +
 “To Address: {3}\n{4}\n{5}\n{6}\n\n”, order.OrderID,
 order.OrderDate, order.ShippedDate, order.ShipName,
 order.ShipAddress, order.ShipCity,
 order.ShipCountry);
}

 Chapter 25 Querying Information in a Database 527

 7. On the Debug menu, click Start Without Debugging to build and run the application.

 8. In the console window displaying the message “Please enter a customer ID (5 charac-

ters):”, type VINET.

 The application should display a list of orders for this customer. When the application

has fi nished, press Enter to return to Visual Studio 2008.

 9. Run the application again. This time type BONAP when prompted for a customer ID.

 The fi nal order for this customer has not yet shipped and contains a null value for the

ShippedDate column. Verify that the application detects and handles this null value.

When the application has fi nished, press Enter to return to Visual Studio 2008.

 You have now seen the basic elements that DLINQ provides for querying information from a

database. DLINQ has many more features that you can employ in your applications, includ-

ing the ability to modify data and update a database. You will look briefl y at some of these

aspects of DLINQ in the next chapter.

 If you want to continue to the next chapter

 Keep Visual Studio 2008 running, and turn to Chapter 26.

 If you want to exit Visual Studio 2008 now

 On the File menu, click Exit. If you see a Save dialog box, click Yes (if you are using

Visual Studio 2008) or Save (if you are using Visual C# 2008 Express Edition) and save

the project.

Chapter 25 Quick Reference
 To Do this

 Connect to a SQL Server data-

base by using ADO.NET

Create a SqlConnection object, set its ConnectionString property

with details specifying the database to use, and call the Open

method.

 Create and execute a database

query by using ADO.NET

Create a SqlCommand object. Set its Connection property to a

valid SqlConnection object. Set its CommandText property to a

valid SQL SELECT statement. Call the ExecuteReader method to

run the query and create a SqlDataReader object.

 Fetch data by using an ADO.NET

SqlDataReader object

Ensure that the data is not null by using the IsDBNull method. If

the data is not null, use the appropriate GetXXX method (such

as GetString or GetInt32) to retrieve the data.

528 Part V Managing Data
 Defi ne an entity class Defi ne a class with public properties for each column. Prefi x the

class defi nition with the Table attribute, specifying the name of

the table in the underlying database. Prefi x each property with

the Column attribute, and specify parameters indicating the

name, type, and nullability of the corresponding column in the

database.

 Create and execute a query by

using DLINQ

Create a DataContext variable, and specify a connection string

for the database. Create a Table collection variable based on

the entity class corresponding to the table you want to query.

Defi ne a DLINQ query that identifi es the data to be retrieved

from the database and returns an enumerable collection of en-

tities. Iterate through the enumerable collection to retrieve the

data for each row and process the results.

	Cover
	Copyright Page

	Contents at a Glance
	Table of Contents
	Acknowledgments
	Introduction
	Who This Book Is For
	Finding Your Best Starting Point in This Book
	Conventions and Features in This Book
	Conventions
	Other Features

	System Requirements
	Code Samples
	Installing the Code Samples
	Using the Code Samples

	Support for This Book
	Questions and Comments

	Chapter 1: Welcome to C#
	Beginning Programming with the Visual Studio 2008 Environment
	Writing Your First Program
	Using Namespaces
	Creating a Graphical Application
	Chapter 1 Quick Reference

	Chapter 25: Querying Information in a Database
	Querying a Database by Using ADO.NET
	The Northwind Database
	Creating the Database
	Using ADO.NET to Query Order Information

	Querying a Database by Using DLINQ
	Defining an Entity Class
	Creating and Running a DLINQ Query
	Deferred and Immediate Fetching
	Joining Tables and Creating Relationships
	Deferred and Immediate Fetching Revisited
	Defining a Custom DataContext Class
	Using DLINQ to Query Order Information

	Chapter 25 Quick Reference

