

Software Requirement Patterns

Stephen Withall

A01T623989.fm Page i Thursday, May 10, 2007 12:00 PM

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2007 by Stephen Withall

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

Library of Congress Control Number: 2007926327

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor-
mation about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress.
Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, Excel, Internet Explorer, Outlook, and Windows are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. Other
product and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

This
without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its
resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions Editor: Ben Ryan
Developmental Editor: Devon Musgrave
Project Editor: Maria Gargiulo
Illustrations: Stephen Withall
Editorial Production: ICC Macmillan Inc.

This product is printed digitally on demand.

Printed and bound in the United States of America.

Second Printing: July 2014

iii

Contents at a Glance

Part I Setting the Scene
1 Synopsis of “Crash Course in Specifying Requirements” 3
2 Synopsis of “The Contents of a Requirements Specification” 11
3 Requirement Pattern Concepts. 19
4 Using and Producing Requirement Patterns . 39

Part II Requirement Pattern Catalog
5 Fundamental Requirement Patterns . 51
6 Information Requirement Patterns . 85
7 Data Entity Requirement Patterns . 119
8 User Function Requirement Patterns . 155
9 Performance Requirement Patterns . 191

10 Flexibility Requirement Patterns. 239
11 Access Control Requirement Patterns . 281
12 Commercial Requirement Patterns . 325

Glossary . 341

References . 349

A03C623989.fm Page iii Thursday, May 10, 2007 1:05 PM

A03C623989.fm Page iv Thursday, May 10, 2007 1:05 PM

v

Table of Contents
Foreword . ix

Preface. xi

Part I Setting the Scene
1 Synopsis of “Crash Course in Specifying Requirements” 3

1.1 What Are Requirements? . 4

1.2 Where Do Requirements Fit in the Grand Scheme? . 5

1.3 A Few General Principles . 6

1.4 A Traditional Requirements Process . 7

1.5 Agile Requirements Processes. 8

An Extreme Requirements Process . 9

An Incremental Requirements Process . 10

2 Synopsis of “The Contents of a Requirements Specification” 11

2.1 Introduction Section. 12

System Purpose . 12

Document Purpose . 12

Requirement Format . 13

Glossary. 14

References. 14

Document History . 15

2.2 Context Section . 15

Scope . 15

Major Assumptions . 16

Major Exclusions . 16

Key Business Entities . 16

Infrastructures . 17

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

A04T623989.fm Page v Thursday, May 10, 2007 12:47 PM

vi Table of Contents

2.3 Functional Area Sections . 17

2.4 Major Nonfunctional Capabilities Section . 18

3 Requirement Pattern Concepts. 19

3.1 Introduction to Requirement Patterns . 19

3.2 The Anatomy of a Requirement Pattern . 21

Basic Details . 22

Applicability . 23

Discussion. 24

Content. 24

Template(s). 24

Example(s) . 26

Extra Requirements. 26

Considerations for Development . 28

Considerations for Testing . 29

3.3 Domains. 29

Domains and Infrastructures . 30

3.4 Requirement Pattern Groups . 31

3.5 Relationships Between Requirement Patterns . 32

Requirement Pattern Classifications. 33

Refinement Requirements . 35

Divertive Requirement Patterns . 36

Requirement Patterns and Diversity of Approaches . 36

Use Cases for Requirement Patterns . 37

Business Rules and Requirement Patterns. 38

4 Using and Producing Requirement Patterns . 39

4.1 When and How to Use Requirement Patterns . 39

4.2 Tailoring Requirement Patterns . 41

4.3 Writing New Requirement Patterns. 42

How to Find Candidate Requirement Patterns. 43

How to Write a Requirement Pattern . 45

Part II Requirement Pattern Catalog
5 Fundamental Requirement Patterns . 51

5.1 Inter-System Interface Requirement Pattern . 51

5.2 Inter-System Interaction Requirement Pattern . 62

A04T623989.fm Page vi Thursday, May 10, 2007 12:47 PM

Table of Contents vii

5.3 Technology Requirement Pattern . 65

5.4 Comply-with-Standard Requirement Pattern . 71

5.5 Refer-to-Requirements Requirement Pattern . 79

5.6 Documentation Requirement Pattern . 81

6 Information Requirement Patterns . 85

6.1 Data Type Requirement Pattern . 86

6.2 Data Structure Requirement Pattern . 94

6.3 ID Requirement Pattern . 97

6.4 Calculation Formula Requirement Pattern . 102

6.5 Data Longevity Requirement Pattern. 107

6.6 Data Archiving Requirement Pattern . 110

7 Data Entity Requirement Patterns . 119

7.1 Living Entity Requirement Pattern . 129

7.2 Transaction Requirement Pattern . 133

7.3 Configuration Requirement Pattern. 138

7.4 Chronicle Requirement Pattern. 144

7.5 Information Storage Infrastructure . 154

Implementation Requirements . 154

8 User Function Requirement Patterns . 155

8.1 Inquiry Requirement Pattern. 156

8.2 Report Requirement Pattern . 161

8.3 Accessibility Requirement Pattern . 168

8.4 User Interface Infrastructure . 187

8.5 Reporting Infrastructure . 189

9 Performance Requirement Patterns . 191

9.1 Response Time Requirement Pattern. 195

9.2 Throughput Requirement Pattern . 204

9.3 Dynamic Capacity Requirement Pattern . 212

9.4 Static Capacity Requirement Pattern . 215

9.5 Availability Requirement Pattern . 217

10 Flexibility Requirement Patterns. 239

10.1 Scalability Requirement Pattern . 241

10.2 Extendability Requirement Pattern . 246

10.3 Unparochialness Requirement Pattern . 254

A04T623989.fm Page vii Thursday, May 10, 2007 12:47 PM

viii Table of Contents

10.4 Multiness Requirement Pattern . 261

10.5 Multi-Lingual Requirement Pattern. 272

10.6 Installability Requirement Pattern . 274

11 Access Control Requirement Patterns . 281

11.1 User Registration Requirement Pattern . 284

11.2 User Authentication Requirement Pattern . 295

11.3 User Authorization Requirement Patterns . 305

11.4 Specific Authorization Requirement Pattern . 308

11.5 Configurable Authorization Requirement Pattern . 313

11.6 Approval Requirement Pattern . 318

12 Commercial Requirement Patterns . 325

12.1 Multi-Organization Unit Requirement Pattern . 325

12.2 Fee/Tax Requirement Pattern . 330

Glossary. 341

References. 349

Index . 351

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

A04T623989.fm Page viii Thursday, May 10, 2007 12:47 PM

ix

Foreword

Requirements development is hard! Requirements analysts often are not adequately trained or
experienced, so they do the best they can without necessarily knowing how to write high-quality
requirements. Analysts struggle with questions such as “Where do I start?,” “How do I know when
I’m done?,” “How detailed should my requirements be?,” “Have I missed any requirements?,” and
“Have I overlooked any critical information in the requirements I’ve written?” Unfortunately,
there’s no formulaic approach to the communication-intensive challenge of understanding and
specifying requirements.

Stephen Withall’s Software Requirement Patterns can help any analyst write better requirements.
These patterns provide a way to embody comprehensive and structured knowledge about different
types of requirements. Requirements development is a journey of exploration, not just a simple
collection or transcription process. The patterns Steve presents can help analysts ask the right
questions to properly understand and specify requirements of many types in an appropriate level
of detail. From the perspective of “know your audience,” the patterns include guidance to assist the
developers and testers who must take the requirements to the next development stages. People
learn from examples, and they work more efficiently with the help of templates rather than blank
pages. To this end, Steve’s requirement patterns provide both templates and examples.

These requirements patterns are applicable to a wide variety of projects and products. You can
apply the concepts in the book to develop new requirement patterns specific to your own industry,
application domain, or product line. Too many projects begin specifying requirements from
scratch, but the requirement patterns let organizations effectively reuse requirements knowledge
captured on previous projects.

This book communicates a wealth of wisdom and insight for writing stellar requirements. Through
the patterns, Steve points out the value of using a consistent style when writing requirements,
which can enhance every analyst’s capabilities. Even if you don’t apply the patterns rigorously, the
book contains hundreds of practical tips for specifying better requirements. Use the book as a
reference: read the relevant patterns, try them, and absorb the ideas and advice Steve presents.
Internalizing those patterns that fit your situation will make them a routine aspect of how you
explore, analyze, document, and use software requirements.

Requirement patterns just might represent the next generation of software requirements thinking.
Stephen Withall’s Software Requirement Patterns will likely remain the definitive treatise on
requirement patterns for years to come.

Karl Wiegers
April 2007

A05F623989.fm Page ix Thursday, May 10, 2007 12:00 PM

A05F623989.fm Page x Thursday, May 10, 2007 12:00 PM

xi

Preface
The Purpose of This Book

There is nothing new under the sun. It has all been done before.

—Sherlock Holmes: A Study in Scarlet,
Arthur Conan Doyle

The purpose of this book is to help you decide and define what a new software system needs to
do and to suggest what extra features to add to make it a good system—or even an excellent one. It
saves you effort and enables you to be more precise, by providing detailed guidance on how to
specify individual requirements. Requirement patterns are encapsulated expertise, conveniently
prepackaged for reuse. The book contains 37 requirement patterns, each of which describes an
approach to tackling a particular type of situation that crops up repeatedly in all kinds of systems,
but focusing on commercial business software. Only a fraction of any system is specific to its
business area; the bulk occurs over and over again no matter what your system is for. These
patterns cover more than half of all requirements in some systems—a lot more if we add the extra
requirements the patterns suggest.

If you’re wary of the word “requirement” here, don’t be; it doesn’t mean you have to be embroiled
in paperwork. This book is suitable for use by business analysts using a traditional analysis
approach and by software architects and engineers who use agile methods. You can use requirement
patterns to help you identify and define what a system needs to do even if you don’t write
formal requirements as a result.

The requirements for a software system specify the problem it needs to solve—its purpose and
goals. If they’re omitted or done badly—which is, unfortunately, all too frequently the case—a
system is unlikely to be a perfect fit, no matter how well it’s implemented. A disturbing proportion
of computer systems are judged to be inadequate; many are not even delivered; more are late or
over budget. Studies consistently show that the single biggest cause is poorly defined requirements:
not properly nailing down a system’s purpose and what it must do. Even a modest contribution to
improving requirements offers the prospect of saving businesses part of a huge sum of wasted
investment.

To build good systems more often, improvements are needed all along the chain. Serious efforts
have been (and continue to be) made in nearly all of them. But most fundamental of all is what
the requirements themselves actually say (and, just as importantly, fail to say). That’s been
neglected, but it’s what this book concentrates on. If I want to define a requirement of a specific
type, what do I need to write? How do I go about it? What extra requirements should I consider
writing? What else should I worry about? This book identifies many areas (big and small) for
which requirements are frequently inadequate, imprecise, or missed altogether—and suggests what
you can do about it. The patterns themselves aim to be down-to-earth and practical—primarily
distilled from personal experience—things I wish I’d known all along.

This is primarily a reference work, to be pulled out whenever you want help in a particular situation—
to explain what a requirement needs to convey, raise questions to ask, point out potential
pitfalls, suggest extra requirements, provide example requirements, and generally provide practical
advice. You can start using the requirement patterns without having read the book through.

A06P623989.fm Page xi Thursday, May 10, 2007 12:01 PM

xii Preface

This book contains lots of example requirements—over 400—many of which are suitable for
applying unchanged to any system and others that are a useful starting point for a requirement to
suit the reader’s needs. These examples are the heart of the book. It was from the study of real-life
requirements that the requirement patterns in this book were identified. Omissions, ambiguities,
and other weaknesses in these real requirements fed much of what the requirement patterns
have to say.

This book also provides guidance on how to write other kinds of information that belong in a
requirements specification—such as system scope, assumptions, a glossary, document history, and
references—and how to structure a requirements specification.

What This Book is Not
This is not a book about the process of specifying requirements or about analysis techniques
or requirements management. There are other good books that explain all those things,
and this book can be used as a reference alongside them. This book can, however, be used
perfectly well by itself; it includes a “crash course in specifying requirements” for readers
with no previous experience.

This book doesn’t advocate any particular methodology, approach, or specification software
tool. It provides relevant advice no matter which way you choose to work. It isn’t prescriptive:
it doesn’t say, “You must do it this way.” It steers clear of jargon and avoids introducing
its own terminology as far as possible.

You won’t agree with everything in this book, and you won’t need to act on all the suggestions
made by any requirement pattern. But if the time it saves you, when writing requirements or later,
is worth more than the purchase price, it has earned its keep. I hope that these patterns prove
useful one way or another, by containing enough useful and thought-provoking material to lead
you to produce better systems.

Who Will Benefit from Using This Book
The primary audience of this book is anyone involved in deciding what a new software
system needs to do. This is the business of specifying the requirements for a software system,
even if you don’t like the word “requirement” or you don’t end up writing a full requirements
specification. For convenience, we refer to any person who specifies requirements as an analyst;
they could be a business analyst, a systems analyst, a systems architect, or a software engineer; they
could be a business-oriented or technical person. They might have previous experience with
specifying requirements, or they might not. They can be divided into those who use traditional
analysis processes and those who use more agile methods:

a. Business analysts, or anyone fulfilling that role. This book makes no assumptions about
how much the reader knows: it’s suitable for both junior and experienced business analysts
as well as for business executives and software engineers who have never specified require-
ments before. Requirement patterns can be put into practice quickly.

b. Software architects and engineers on any system for which requirements have not been
written—because the gap must be filled, and it will be one way or another. This book’s advice

A06P623989.fm Page xii Thursday, May 10, 2007 12:01 PM

Preface xiii

is equally relevant no matter who decides what a system needs to do. Its advice is of just
as much value to any organization that does not have dedicated analysts, and particularly
those that take an agile approach to development. Agile methods place little (if any) emphasis
on writing requirements specifications, but still the functionality of the system must be
identified—and the requirement patterns in the book can help just as well here as when using
a traditional approach. In extreme programming, in particular, requirement patterns can help
you write user stories, interpret user stories, and formulate “rules” for good practices for
developers to follow. Software architects and engineers who are familiar with design patterns
should be particularly comfortable using requirement patterns.

Secondary audiences are:

c. Anyone asked to review a requirements specification, which covers a wide range of technical,
managerial, and sales people as well as a new system’s user community. This book can
help reviewers judge a specification’s quality and completeness, and discover omissions.

d. Software developers who must implement requirements. Each requirement pattern contains
a “Considerations for Development” section to assist developers.

e. Software testers who must test how well the delivered system satisfies its requirements.
Each requirement pattern contains a “Considerations for Testing” section for testers with
suggestions on how to test requirements of that type.

f. Project managers who manage a system’s requirements, changes to them, and a project to
implement them.

Job titles of people who will find this book valuable include business analyst, systems analyst,
business systems analyst, software architect, systems architect, software engineer, testing engineer,
product manager, project manager, project office manager, and chief technical officer.

Benefits the Reader Will Gain
You, dear reader, will be able to improve your skills and productivity in the following ways from
reading this book (and from using it as a reference):

1. You will be able to define better requirements—with more detail, precision, and clarity, and
with less ambiguity.

2. You will be able to write requirements more quickly and with less effort, by taking advantage
of the effort already put into the book (reuse!).

3. You will recognize extra topics that requirements should specify, further improving their
results and making them more complete.

4. You will be better able to organize a requirements specification and to write general sections
(such as the glossary).

As a result you, your colleagues, and the organization you work for will see further benefits:

5. It is easier to estimate the effort needed to build a specified system.

6. Development and testing teams will find it easier to understand the requirements.

7. The resulting system will better reflect the organization’s needs, potentially yielding
considerable extra return on the investment in it. What price can you put on avoiding a big
mistake?

A06P623989.fm Page xiii Thursday, May 10, 2007 12:01 PM

xiv Preface

8. Fundamental mistakes, misunderstandings, and omissions will be spotted earlier—with
potentially huge savings, given that fixing a defect during the design phase costs roughly ten
times more than during requirements, and during development ten times more again.

Skills and Experience Needed by the Reader
This book can be used with no previous experience of specifying requirements. Chapter 1 is a
“crash course” containing the bare minimum that a novice reader needs to get started. A good
general book on requirements engineering (such as those cited at the beginning of Chapter 1) is a
better introduction, and readers who have read them or who are already experienced business
analysts are likely to get more from this book. Software engineers using agile methods can use the
book in isolation. Anyone responsible for reviewing a requirements specification needs no previous
knowledge or skills in order to use this book to help them.

This book is accessible to a nontechnical reader. It focuses on writing textual requirements in
natural language that can be read by anyone. It is free of arcane diagram formats, deep theory,
and jargon. You can read it without knowing UML (Unified Modeling Language) or any other
formal technique.

The Structure of This Book
This book is divided into two parts:

■ Part I: Setting the Scene These four explanatory chapters open with Chapter 1, “Crash
Course In Specifying Requirements,” written for someone who is inexperienced at specifying
requirements—but everyone should read it, because it states a few principles that are
important to the rest of the book. Chapter 2, “The Contents of a Requirements Specification,”
describes the types of material, in addition to requirements, that belong in a requirements
specification. The versions of Chapters 1 and 2 printed in the book are merely synopses
of much longer, “full” versions that can be downloaded from the associated Web page
(as described in the “Supporting Resources” section that follows). Chapter 3, “Requirement
Pattern Concepts,” explains what requirement patterns are all about: the basics, what each
pattern contains, how they’re organized (into domains), and related concepts. Chapter 4,
“Using and Producing Requirement Patterns,” explains how to use requirement patterns
and to write your own.

■ Part II: Requirement Pattern Catalog These are sets of patterns for types of require-
ments that occur repeatedly, to be used as a reference. It opens with a snapshot of the
requirement patterns in this book and then has eight chapters (5 through 12) containing
the requirement patterns themselves.

Bringing up the rear are a glossary of terms and acronyms used and encountered in the book, plus
a list of references.

I advise that you read through Part I to understand what’s going on. If Chapters 1 and 2 in the
book don’t tell you enough, refer to the Web page for the full versions. You don’t need to devour
Part II systematically: familiarize yourself with the patterns that it contains (unless you’re an
analyst keen for advancement!), and refer to it whenever you encounter a situation in which one of
the patterns will help.

A06P623989.fm Page xiv Thursday, May 10, 2007 12:01 PM

Preface xv

Supporting Resources
You can download the following documents from the book’s companion Web page at

1. The full version of Chapter 1, “Crash Course in Specifying Requirements.”

2. The full version of Chapter 2, “The Contents of a Requirements Specification.”

3. “Example Requirements,” a complete set of all the examples in the book, plus the
requirement templates for all the requirement patterns, to make it easy to copy and paste an
individual template or example to use as a starting point when writing a requirement of
your own. This document also includes a requirement pattern template, to use if you want to
write your own patterns.

4. A “Ready Reference” suitable for printing, containing a diagram of all the requirement
patterns plus a list of all the requirement patterns and the “applicability” of each one (to
make it easy to figure out which pattern to use when).

The first two are available both as Adobe PDF (Portable Document Format) documents and
Microsoft XML Paper Specification (XPS) documents. The last two are available as Microsoft Word
documents. To download these documents, you will need about 6 MB of disk space. For system
requirements for viewing these files, see the companion Web page.

Acknowledgments
I greatly appreciate the diligent and generous contributions of a number of people, without
whose assistance this book would have been much the poorer—or wouldn’t even have been
completed at all. First, special thanks to Trish Reader for encouragement all the way through,
sound business analysis advice, and feedback on various drafts.

I am deeply indebted to all my reviewers, especially those who heroically read and commented
cover to cover: to Roxanne Miller, for her deep understanding of what all business analysts will
look for in this book, and for keeping me (relatively) honest on analysis techniques; and to Lydia
Ash, for her expertise on testing but also countless invaluable suggestions on almost everything.
I appreciate the feedback and suggestions of Robert Posener for scrutinizing the text with the all-
seeing eye of the consummate project manager; Craig Malone on development methodologies
(especially agile matters); Marc Munro for his database expertise on the information and data
entity patterns; security guru Eric Fitzgerald on access control; and accessibility experts Annuska
Perkins, Norm Hodne, Ramkumar Subramanian, and Laura Ruby. Finally, thanks to Shanno
Sanders for perceptive insights on the overall direction of the book. Sometimes I have rashly
persisted in disregarding their advice, for which I assume full responsibility—as I do for all errors
that remain.

I am grateful to Karl Wiegers for contributing such a generous Foreword, and for the early
encouragement that was the nudge I needed to write this book.

I’d like to thank everyone at Microsoft Press, especially acquisitions editor Ben Ryan for his faith
in the concept, and editors Devon Musgrave and Maria Gargiulo for their never-failing patience,
their good-natured reactions to even the quirkiest of my ideas, and their painstaking copy editing.

A06P623989.fm Page xv Wednesday, May 16, 2007 7:46 PM

http://aka.ms/623989/files

http://aka.ms/623989/files

xvi Preface

Finally, this book could never have been written at all if not for the innumerable people who
have contributed to my professional experience over the years. The most valuable have been those
at the two extremes of the spectrum: the excellent, from whom I’ve learned so much about how
to specify and develop good systems; and the inept, whose creativity in finding ways to do things
wrong is an education in itself. Thanks to you all.

Microsoft Press Support
Every effort has been made to ensure the accuracy of this book. Microsoft Press provides
corrections for books through the World Wide Web at the following address:

http://www.microsoft.com/mspress/support/

To connect directly to the Microsoft Press Knowledge Base and enter a query regarding a
question or issue that you may have, go to:

http://www.microsoft.com/mspress/support/search.asp

If you have comments, questions, or ideas regarding this book, please send them to Microsoft
Press using either of the following methods:

Postal Mail:

Microsoft Press
Attn: Software Requirement Patterns Editor
One Microsoft Way
Redmond, WA 98052-6399

E-Mail:

mspinput@microsoft.com

A06P623989.fm Page xvi Thursday, May 10, 2007 12:01 PM

P01623989.fm Page 2 Thursday, May 10, 2007 12:36 PM

19

Chapter 3
Requirement Pattern Concepts

In this chapter:
3.1 Introduction to Requirement Patterns . 19

3.2 The Anatomy of a Requirement Pattern . 21

3.3 Domains . 29

3.4 Requirement Pattern Groups . 31

3.5 Relationships Between Requirement Patterns . 32

3.1 Introduction to Requirement Patterns
In all but trivial systems you’ll have requirements that are similar in nature to one another or that
crop up in most systems—and probably lots of them. For example, you might have a number of
inquiry functions, each with its own requirement. When specifying a business system, a significant
proportion of the requirements fall into a relatively small number of types. It’s worthwhile to make
an effort to specify all the requirements of one type in a consistent manner. To do this, we introduce
the notion of a requirement pattern, to allow us to describe how each requirement that uses it
should be defined.

Requirement pattern: an approach to specifying a particular type of requirement.

A requirement pattern is applied at the level of an individual requirement, to guide the specifying of
a single requirement at a time. For example, if you have a requirement for a certain report, you can
engage the report requirement pattern to help you specify it. Once you’ve written the requirement
(and any extra requirements it suggests), the pattern’s job is done, and you can put it away and
move on. But when a software designer or developer comes to decide how to implement the
requirement, the pattern is available to give them some hints relevant to their job, if they wish. A
tester can similarly use the pattern for ideas on how to test it.

What are the benefits of using requirement patterns? First, they provide guidance: suggesting the
information to include, giving advice, warning of common pitfalls, and suggesting other matters
you ought to consider. Second, they save time: you don’t have to write each requirement from
scratch, because the pattern gives you a suitable starting point, a foundation to build on. Third,
patterns promote consistency across requirements of the same type. Of these, guidance is of the
greatest value. Saving specification time and increasing consistency are nice, but sound guidance
that leads to much better requirements can avoid immense trouble and work later on.

The guidance provided by a requirement pattern usually goes deeper than just “say this….” It
can give background insight into the problem at hand. It can raise questions you ought to ask your-
self. In some cases it can lead you to write a requirement (or several) very different from the
one you first envisaged. Answering a big question often raises a number of smaller questions. A
requirement pattern is a response to a big question and aims to give both the big answer and the
smaller questions.

C03623989.fm Page 19 Thursday, May 10, 2007 12:03 PM

20 Part I Setting the Scene

Some requirement patterns either demand or invite the specification of extra requirements: both
follow-on requirements that expand on the original requirement, and systemwide pervasive
requirements to support the pattern itself (for instance, for an underlying feature needed by all
requirements of this type). It is therefore useful to be aware of which patterns you have used
(perhaps by keeping a simple list), so you can run through them asking yourself whether each one
needs its own extra supporting requirements and whether you have defined them. This topic is
explained in more detail in the “Extra Requirements” section later in this chapter.

Patterns can vary in their level of detail (their preciseness) and their value. Some types of require-
ments can be defined in great detail, and instances of them vary little. Others have something
worthwhile in common but vary to such an extent that we can’t prescribe what they ought to say.
These variations are natural. To justify itself, a pattern simply needs to be of value; it doesn’t
have to do everything a pattern could possibly do. On the other hand, just because we encounter a
particular type of requirement repeatedly does not mean a pattern for it would automatically
have value. If it’s hard to encapsulate what the requirements have in common, it’s hard to provide
guidance on how to specify requirements of this type.

Where do requirement patterns come from? This book defines patterns for a range of common
types of requirements, which can be used as they stand. Other patterns may become publicly
available in due course. Or you can write your own—see the “Writing New Requirement Patterns”
section in Chapter 4, “Using and Producing Requirement Patterns,” for guidance. You can also
modify existing patterns to suit your own preferences and circumstances.

Pattern Ecosystems
“Each pattern describes a problem which occurs over and over again in our environment.” So says
Christopher Alexander, the godfather of the technical use of patterns (as quoted by Gamma,
Helm, Johnson, and Vlissides, 1995). In a complex environment, there are many niches for pat-
terns to fill, within which different species of patterns can live together harmoniously.

Individual requirements reside low down in the food chain. Designs live high up the food
chain, feeding on the requirements (or, in their absence, on whatever unhealthy carrion they
can find). In information technology, different species of patterns can coexist at various
scales—big or small—and on both sides of the problem/solution divide. They all have their
place: it just depends on what you seek guidance about.

Requirement-related patterns have been suggested at the large scale—for sets of requirements
(by Robertson and Robertson, 2006) and requirements for a whole system (by Ferdinandi,
2002). Conceptually, both of these levels are valid.

Martin Fowler’s analysis patterns are worth mentioning, too. They live on the other side of
the fence from requirement patterns, in the design domain next door. Each one serves to
guide the solution of a specific application problem. Analysis patterns are one step higher in
the food chain than requirement patterns, and design patterns can feed upon them in turn.
(Martin Fowler’s analysis patterns can be found at http://www.martinfowler.com or in his
book [1996].) Tony Morgan presents a few handy business rule patterns in his Business Rules
and Information Systems (2002). (A reminder: see “References” at the back of this book for
details on the publications mentioned.)

Patterns to apply at the level of individual requirements are especially useful because of the
atomic nature of requirements. That is, requirements have a lot more in common with
one another than aspects of design do. This is not to say that requirement patterns are in any

C03623989.fm Page 20 Thursday, May 10, 2007 12:03 PM

Chapter 3 Requirement Pattern Concepts 21

way better than design patterns—certainly not. It merely means that they are easier to
apply because we’re always applying requirement patterns to requirement objects that are
conveniently self-contained. Also, choosing a requirement pattern delivers a concrete
requirement instance to use as our starting point.

Because various species of patterns coexist, this book uses the term “requirement pattern”
throughout, rather than just “pattern.” For the same reason, it’s a good idea to always
explicitly qualify the word “pattern” with the sort of pattern you’re talking about.

3.2 The Anatomy of a Requirement Pattern
This section describes what a requirement pattern contains, how it is organized, and why. Bear in
mind that it talks about patterns and how to write them, not the requirements that might result
from a pattern. A requirement pattern is considerably more substantial than a requirement.
Writing a requirement pattern is correspondingly a lot more involved, too. Indeed, writing a
requirement pattern deserves much thought. To be useful as a guide to writing requirements, it
needs to take into account all the situations and variations that are likely to be encountered in the
type of requirement for which it‘s written.

A requirement pattern needs to say when to use the pattern and how to write requirements based
on it. It can also give hints on how to implement and how to test requirements of this type. To
convey these sorts of information, each requirement pattern contains the following sections:

1. Basic details The pattern manifestation, owning domain, related patterns (if any),
anticipated frequency of use, pattern classifications, and pattern author.

2. Applicability In what situations can the pattern be applied? And when can it not be applied?

3. Discussion How do we write a requirement of this type? What does a requirement of this
type need to consider?

4. Content What must a requirement of this type say? What extra things might it say? This is
the main substance of the pattern.

5. Template(s) A starting point for writing a requirement of this type—or more than one if there
are distinct alternative ways.

6. Example(s) One or more representative requirement written using this pattern.

7. Extra requirements What sorts of requirements often follow on from a requirement of
this type? And what pervasive systemwide requirements might define something for all
requirements of this type?

8. Considerations for development Hints for software designers and engineers on how to
implement a requirement of this type.

9. Considerations for testing What do we need to bear in mind when deciding how to test this
type of requirement?

Preceding all of this we have the pattern name, which appears in the title of the whole pattern.
Each requirement pattern needs a unique name so that it can be referred to unambiguously. A
pattern name should be meaningful—to clearly capture the nature of the pattern. A pattern’s name
should also be as concise as possible—preferably a single word, but not more than three. It’s also
recommended that each pattern name be a noun-phrase. The name of a pattern for functional
requirements reflects the function name (for example, “inquiry” for the pattern that guides how to
specify an inquiry function).

C03623989.fm Page 21 Thursday, May 10, 2007 12:03 PM

22 Part I Setting the Scene

The number of sections in each pattern has been deliberately kept to a minimum to make them as
easy to read and to follow as possible.

Basic Details
The “Basic Details” section of a requirement pattern is simply a convenient vehicle for all those
items that can be answered briefly (rather than clogging up our patterns with lots of tiny
subsections). In fact, the items lumped together here are a mixed bag. The items indicated by
an asterisk (*) are omitted from all the patterns in this book, either because they are obvious from
the context (the chapter they’re in) or because they’re the same in every case.

Pattern manifestation*: There can be more than one manifestation of a particular
requirement pattern, which means different variants or versions.
This item tells us which manifestation we have before us, to
distinguish it from others. The first manifestation of a pattern is
referred to as the “Standard” one. The manifestation can
convey one or more of the following things:

a. The pattern’s version number.

b. The date the pattern was last changed.

c. The requirements approach (or author).

d. The customer organization (company name).

e. The requirements specification language (for example,
English).

(See the “Requirement Patterns and Diversity of Approaches”
section later in this chapter and “Tailoring Requirement
Patterns” in Chapter 4 for more.)

“Pattern manifestation” is omitted from all the patterns in this
book. All should be regarded as being “Standard.”

Belongs to domain*: Every requirement pattern belongs in a domain, and this states
which one.

Many requirements for which patterns are used need some sort
of supporting infrastructure. For example, requirements for
reports imply the existence of an underlying reporting
infrastructure for producing those reports. Requirements
should be defined for the infrastructure itself. (See the next
section, “Domains and Infrastructures,” for more information.)

One purpose of identifying whether a particular pattern implies
the presence of supporting software is to prompt you to
consider whether the requirements for that software have been
adequately specified.

“Belongs to domain” is omitted from all the patterns in this
book because it is clear from the chapter in which the pattern
resides. This item becomes essential if the domain cannot be
determined from its context, such as a single pattern that
resides in a stand-alone document.

Related patterns: This lists any other requirement patterns that apply to related
situations. If it would be helpful, this item can also say a little
about how the patterns relate to each other.

C03623989.fm Page 22 Thursday, May 10, 2007 12:03 PM

Chapter 3 Requirement Pattern Concepts 23

Applicability
The “Applicability” section describes the situations in which the requirement pattern can be
applied. It should be clear and precise. Conciseness helps too, to let the reader form as quickly as
possible a picture of when to use this pattern. It’s advisable for the first sentence to capture the
essence of the matter, and for the rest to clarify and expand it—just like a requirement, in fact. All
such statements in this book begin with, “Use the «Pattern name» to….”

Anticipated frequency: How many times is this pattern likely to be used in a typical
requirements specification? For rarely used patterns, this is best
stated as an absolute number, or an absolute number for each
occurrence of a parent requirement. For more commonly used
patterns, expressing it as a percentage of the requirements is
more useful and easier. Often the frequency is best expressed as
a range (of absolute numbers or percentages). This item is also
at liberty to point out circumstances in which the frequency
might fall outside the normal range.

For most patterns, this value is indicative only; it might vary
considerably from one system to another. Don’t lose sleep if
your number of requirements falls outside the suggested range.

The frequencies stated for the requirement patterns in this book
derive from a diverse set of real-world requirements
specifications. Sometimes the actual numbers encountered
have been adjusted to create a broader range, to bear in mind
factors not present in the specifications studied.

Pattern classifications: Each requirement pattern can be classified in multiple ways, and
this item lists all that apply to the main type of requirement
covered by the pattern. No attempt is made to apply these
classifications to any of the extra requirements described in the
pattern. See the “Requirement Pattern Classifications” section
later in this chapter for more information about how to use
classifications.

Classification lists are given in a standard format of “Name:
Value”, separated by semicolons. For example:

Functional: Yes; Performance: Yes

This format is concise, readable, and easy to follow. It allows
new classifications to be added without changing the standard
structure of requirement patterns.

Pattern author*: Knowing who wrote a pattern can help you decide whether you
want to use it. For patterns written in-house, it tells you who to
go to for help.

For manifestations other than the first, this identifies both the
original author and who tailored it.

The pattern author is omitted from all the requirement patterns
in this book but should be included in all patterns whose
authorship isn’t obvious.

C03623989.fm Page 23 Thursday, May 10, 2007 12:03 PM

24 Part I Setting the Scene

Normally, a requirement pattern is applicable in only one clear situation: two different situations
usually demand two different patterns. That’s not to say that all the requirements that use a
pattern will look the same—far from it, because there may be considerable variations between
them. Some might have optional extra clauses, and they might vary greatly in their size and
complexity. However, they will all share the same underlying nature.

The “Applicability” section can also state situations in which the pattern should not be used, if
there’s any danger of the pattern being misapplied. If there are no situations of this kind, this state-
ment is omitted. All such statements in this book begin with, “Do not use the «Pattern name» to….”

Discussion
The “Discussion” section of a requirement pattern tells you how to write a requirement of this type.
It explains everything it can that’s likely to help someone who wants to specify a requirement
of this type. It generally opens with an overview, to set the scene. It can describe a process to follow,
if figuring what to write in such a requirement isn’t straightforward. It can raise topics to which to
give special thought. It can mention potential pitfalls. The quantity of this discussion material
can vary enormously from one requirement pattern to another: from one paragraph to many
pages; it all depends on the nature of the requirement and what there can usefully be said about it.

Content
The “Content” section is a detailed list of each item of information that a requirement of this type
must convey. Each content item begins with a name by which to refer to the item, followed by an
indication of whether it’s optional, and then general descriptive material. It is presented like this:

1. Item 1 name Item 1 description.

2. Item 2 name (optional) Item 2 description.

3. …

It’s useful for the description to justify the item, to explain its purpose if it’s not obvious: if the
writer of a requirement understands why it’s needed, they are more likely to write it (and to write
it well). The description can also suggest what to say about the item in the requirement, offer
advice, and generally say anything that might help. The order in which the elements of the content
are described is implicitly the best order for them to appear in a requirement.

Template(s)
The aim of a requirement template is to allow you to copy it into a requirement description to
use as a starting point. A template is a fill-in-the-blanks definition for a requirement that is deemed
to be typical of the type.

The “Content” section of a pattern can describe various optional topics a requirement might need
to address but that aren’t relevant in all requirements. When deciding which of these topics to
include in a template, our guide is efficiency: to minimize the effort in using the template. If a topic
is likely to be needed in only a small percentage of requirements, it’s best left out of the template.
But we must bear in mind that it’s much easier to delete an unwanted item than to type in an item
for which we have no starting point. A useful rule of thumb is to include a starting point for a topic
in the template if at least 20 percent of requirements are likely to possess it.

C03623989.fm Page 24 Thursday, May 10, 2007 12:03 PM

Chapter 3 Requirement Pattern Concepts 25

Be warned that templates for documents or parts of documents are dangerous, because they can
lull you into avoiding the thinking you really need to do, or they give you the impression that
all the thinking has already been done. Another pitfall is that you end up saying what the template
writer felt should be said when they had a different situation in mind. Nevertheless, if taken with
a suitably large pinch of salt, using a template can save a little time when writing a requirement.

Each template is shown within a table like the one below, which is in a form suitable for direct
copying into a requirement:

Additional explanatory notes can follow the table.

Here’s an example of a template, from the inquiry requirement pattern, that demonstrates the main
aspects:

Both the summary and the definition can contain placeholders for variable information, which
are indicated by being enclosed in double-angled brackets and in italics—for example, «Entity
name» or «Description». Each placeholder must have the same name as that used in the list of
content items in the “Content” section (or sufficiently similar that they can be readily matched up).
The summary format typically comprises two parts:

1. A fixed word or brief phrase related to the name of the pattern.

2. A brief description to distinguish this requirement from all others of this type.

A template can contain optional parts: items of information that are not needed in all cases.
This is indicated by surrounding each option part in square brackets: [like this]. This is indicative
only; it doesn’t mean that everything not in square brackets is always essential. Conversely, an
optional item might be essential in a particular situation for which you’re writing a requirement.

When a requirement can contain a list of items, a sequence number is added to the name of
each one (as with ‘«Information item 1»’ in the example above), to allow the template to show more
than one. An ellipsis (…) indicates that the list continues and might contain as many items as
are needed.

A requirement pattern can contain several alternative templates, each tailored to a particular
situation. For example, there might be one for a simple case, one containing every possible item,
and one or more in between.

Summary Definition
The format of the summary The format of the definition

Summary Definition
«Inquiry name» inquiry There shall be an [«Inquiry name»] inquiry that shows «Informa-

tion to show». Its purpose is «Business intent».

For each «Entity name», the inquiry shall show the following:

■ «Information item 1»

■ …

C03623989.fm Page 25 Thursday, May 10, 2007 12:03 PM

26 Part I Setting the Scene

Example(s)
Each requirement pattern contains at least one—usually more—example requirement definitions
that demonstrate use of the pattern in practice. For instance, a typical requirement that uses
the pattern may be very simple, but some might need to say more; in such a case, we might give
examples of each.

Each example is shown within a box like the one below, containing information exactly as they
would appear in real requirements of which they are representative:

Anything that follows the box (like this) is explanatory material that is not part of the example
requirement itself. There ought to be no need for notes to make clear the meaning of any require-
ment, because requirements should be self-explanatory, but notes can be used to point out an
aspect of a requirement that renders it a useful example.

Example requirements need not be consistent with one another. Each one is present to demon-
strate a representative situation. Spanning a range of possibilities often demands requirements
from different sorts of system and sometimes requirements that conflict with one another. All
examples are intended to be good examples; there are no examples of what not to do. Examples
are also intended to be realistic, which means not simplified when being added to a requirement
pattern. Sometimes this involves the inclusion of extra clauses that might make an example look
a little long-winded; this is preferable to giving an example that says less than one would want
in practice.

Some requirement patterns contain real-world examples that can be copied directly into
requirements specifications and then modified as you see fit. For example, the comply-with-
standard requirement pattern has examples for a range of frequently used, general-purpose
standards. A list of examples, then, can serve as a body of knowledge to be tapped at will and not
just as representatives that show you what such requirements might look like.

Extra Requirements
In many situations, one requirement isn’t sufficient to say all that must be said: you might (or,
in some cases, always) need to specify additional requirements to spell out the implications
properly. The “Extra Requirements” section in a requirement pattern explains what sorts of
extra requirements should be considered and in what circumstances. It provides guidance on what
to do beyond simply specifying the main requirement. What other things should you think
about? What more needs to be said? If there’s nothing further to specify, a requirement pattern’s
“Extra Requirements” section can be empty.

For example, a requirement that mandates compliance with a particular standard (see the comply-
with-standard requirement pattern) is rarely sufficient. Just what does that standard say? Which
parts are relevant to our system? What must our system do to satisfy this standard? We need
detailed requirements that reflect the answers to these questions. The “Extra Requirements”
section of the comply-with-standard pattern is the place that points out what further work needs to
be done.

Summary Definition
Summary for the example The definition of the example

C03623989.fm Page 26 Thursday, May 10, 2007 12:03 PM

Chapter 3 Requirement Pattern Concepts 27

There are two types of extra requirements:

■ Type 1: Follow-on requirements These come after the original requirement and define
additional things about it. They expand the original requirement. For ease of reading, follow-on
requirements should come immediately after the original requirement.

■ Type 2: Pervasive requirements These are defined once for the whole system and define
things that apply implicitly to all requirements of this type. Usually there is only one
pervasive requirement for a particular aspect (for example, “Every page on every report shall
show the company logo”), but sometimes there are more, with each applying in clearly defined
circumstances (for example, “Every page on every report to an agent shall show the agent’s
company logo,” in addition to the previous example). The use of pervasive requirements of this
sort means that each original requirement has fewer topics to cover and can be simpler. They
save repetition, and as a result they avoid the chance of inconsistency in their areas.

Pervasive requirements can also be “catch-alls” that define implicit functions for all instances
of this pattern. For example, “All data shall be displayable on some inquiry or another.”

An extra requirement could itself be written with the assistance of a requirement pattern. It can
have extra requirements of its own.

Figure 3-1 shows how use of a pattern can result in an original requirement plus two sets of extra
requirements: follow-on requirements that add details about the original requirement, and perva-
sive requirements that define common aspects shared by all original requirements of this type.

Figure 3-1 Pervasive and follow-on relationships between requirements

You should group related pervasive requirements together, either before all the original require-
ments to which they relate or after them all. The pervasive requirements for a requirement pattern
might look as though they belong in the specification for an infrastructure supporting the domain
in which the pattern lives, but actually they should be kept separate. The infrastructure’s require-
ments define what the infrastructure can do; the pervasive requirements define what our system
needs (because another system might use that same infrastructure differently). That’s fine,
although if both systems use the same instance of software that implements the infrastructure, it
can impose extra functional demands on that software. In such cases, you can place the pervasive
requirements in a separate “common” requirements specification that both systems refer to.

Created once
for the pattern Pervasive requirement

Expands

Requirement
pattern

Follow-on requirement

Original requirement

Has aspects
defined by

C03623989.fm Page 27 Thursday, May 10, 2007 12:03 PM

28 Part I Setting the Scene

Take care to alert all readers to the presence of pervasive requirements—especially developers,
because pervasive requirements often have profound design and development implications.
Imagine how you’d feel upon discovering that some characteristic you demanded for every user
function was possessed by none of them. So,

1. Don’t rely on readers reading the whole requirements specification. A developer might read
only those parts that look relevant to them, plus the introduction.

2. Don’t bury important pervasive requirements where they might be missed (such as at the
end of the requirements specification).

3. Make references to relevant pervasive requirements from elsewhere as you see fit.

4. Explain in the requirements specification’s introduction the significance of pervasive require-
ments and the importance of not missing them.

5. Consider putting all the pervasive requirements in one place and pointing all developers
unequivocally to it.

6. Consider highlighting each pervasive requirement in some way, such as a clear statement
at the end of the requirement’s definition. For example, “This is a pervasive requirement”
or “This requirement applies across the whole system” or “This requirement applies to all
user functions in the system”.

An “Extra Requirements” section can contain its own example requirements to demonstrate
what each kind of extra requirement might look like. If so, follow-on and pervasive requirements
should be kept separate and clearly labeled so that they won’t get mixed up. Example pervasive
requirements are often suitable for direct copying into a requirements specification. In rare cases,
the number of pervasive requirements in a pattern could run to a dozen or more.

In extreme cases, the follow-on requirements resulting from a single original requirement could
involve more work than all the other requirements put together. For example, complying with
a demanding standard (for, say, safety) might be a massive undertaking and much harder than
building a simple system that has the functionality you need.

Considerations for Development
The “Considerations for Development” section is intended to assist a developer who needs to
design and implement software to satisfy a requirement of this type. It gives them hints and
suggestions and points out things not to forget. The “Considerations for Development” section
should be written in the language of developers.

C03623989.fm Page 28 Thursday, May 10, 2007 12:03 PM

Chapter 3 Requirement Pattern Concepts 29

The best way to look at this section is as the sort of guidance a very experienced developer would
give to a junior developer. If a grizzled, seen-it-all engineer were asking a wet-behind-the-ears
graduate to implement a requirement of this type and giving them advice on how to tackle it, what
would they say? The amount to be said varies greatly from one requirement pattern to another.
In some cases, the requirement is self-explanatory; in others, there are various pitfalls to point out.

This section can also point out things that a development representative could look out for when
reviewing requirements. Is a requirement being unreasonable? If it’s likely to be impractical to
implement, press to have the requirement changed.

Considerations for Testing
A requirement pattern is a useful place to explain how to test requirements of its type. This section
is aimed at testers. It is written primarily with user acceptance testing in mind, because that’s
the sort of testing that can be done most closely against the requirements. But it can be used for
other sorts of testing, too.

Since requirements vary considerably in their nature, they vary as much in the ways they need to
be tested. Each “Considerations for Testing” section aims to convey three sorts of information:

1. Points to look out for when reviewing a requirement of this type. If a requirement is likely to
be difficult to test, suggest how it can be reframed to make testing easier.

2. Overall guidance on how to approach the testing of this type of requirement.

3. Notes on matters to bear in mind and (where possible) tips on how to deal with them.

Universal requirement patterns can discuss testing only in general terms—because a pattern knows
nothing about a particular organization’s testing practices, the testing tools it uses, the nature of
the environment in which the system will run, or the nature of the system.

An organization may well find it worthwhile to tailor—or rewrite—the “Considerations for Testing”
sections in its patterns to suit the ways it does testing (taking into account, in particular,
whatever tools it uses for testing) and the expertise and culture of those responsible for testing.
Indeed, by taking into account the organization’s individual situation, it’s possible to write sections
that are far more than considerations for testing; they can become instructions on how to test
requirements of the requisite type. If you aim to do this, you may find it more useful to leave the
“Considerations for Testing” section alone and add (or replace it with) your own “Testing
Instructions” section. This could be augmented by additional artifacts to use when testing this type
of requirement, such as tailored forms for writing test cases.

3.3 Domains
There is much to be gained by organizing our requirement patterns rather than presenting a
monolithic list of them. We do this by assigning every requirement pattern to a domain. Each
domain has a theme, which all its patterns share, but the nature of the theme can vary greatly from
one domain to another. The domains used in this book—each with its own chapter in Part II,
“Requirement Pattern Catalog”—are Fundamental, for things that any kind of system might need;
Information, for several aspects of the storage and manipulation of information (data); Data
entity, on how to treat specific kinds of data; User function, for a couple of common types of
functions, plus accessibility; Performance; Flexibility; Access control; and Commercial, for

C03623989.fm Page 29 Thursday, May 10, 2007 12:03 PM

30 Part I Setting the Scene

business-oriented matters. This shouldn’t be regarded as a definitive list: new domains might be
needed if further requirement patterns are written. For example, if requirement patterns were to
be written for a particular industry, they would deserve their own domain (or possibly more than
one). The applicability of a domain can range from very broad to very narrow: from nearly all
systems, through systems in one industry, to just a couple of systems in a single company.

When you begin specifying a system, you can look through all the requirement pattern domains
(in this book, plus any extras you have from elsewhere) and decide which ones are relevant to your
system. If it’s a noncommercial system, you might decide to drop the Commercial domain. The
set of requirement patterns that are available for use in your system depends on the domains
you decide are relevant. Regard only the patterns in your chosen domains as available. Conversely,
if you want to use some other pattern, it can force you to add a domain you hadn’t previously
recognized, which can alert you to extra topics you need to address (such as an infrastructure it
depends upon). Identifying the available patterns is more useful if you have patterns in specialized
domains; the patterns in this book are too general for drawing up a list of relevant domains to
make much of a difference.

Each domain needs an introduction to explain its theme. It can then describe features that are
common to all its patterns. The size of an introduction could be anywhere from one short
paragraph to many pages; it depends solely on how much there is to say. The domain also needs
to describe any infrastructure(s) its patterns depend upon (or, more properly, the requirements
produced by these patterns), as discussed in the next section.

Domains and Infrastructures
Some types of requirements depend upon infrastructures, as discussed in the “Infrastructures”
section of Chapter 2, “The Contents of a Requirements Specification.” A requirement pattern gives
us the opportunity to identify any infrastructure(s) its type of requirement depends upon, which
saves having to figure them out for individual requirements. We can go further and discuss each
infrastructure—things to bear in mind when you specify requirements for the infrastructures your
system needs. It’s not possible to go into detail or specify actual requirements because they will
vary considerably according to the demands of each organization and each system. They’re called
infrastructure overviews to make this clear.

Rather than expect that each requirement pattern describes any infrastructure it needs, we pass
the burden of explanation up to the domain the pattern belongs to. This is because each infrastruc-
ture tends to be needed by more than one pattern in the domain. To avoid repetition, each
type of infrastructure is described in only one domain. Each chapter of patterns in this book
contains a subsection for each infrastructure in its domain. This book discusses three infrastruc-
tures: information storage (in Chapter 7, “Data Entity Requirement Patterns”), user interface, and
reporting (both in Chapter 8, “User Interface Requirement Patterns”). The key concepts relate
to each other as shown in Figure 3-2.

A requirement pattern is free to use infrastructures in other domains. It’s always good practice
to avoid mutual dependencies, so if anything in one domain depends on another domain, nothing
in the latter domain should depend on the former—that is, if you can avoid it. An infrastructure
can also depend upon another infrastructure.

C03623989.fm Page 30 Thursday, May 10, 2007 12:03 PM

Chapter 3 Requirement Pattern Concepts 31

Figure 3-2 Relationships between domains, requirement patterns, and infrastructures

What should such an infrastructure overview say? Its role is to give guidance and advice to
someone who’s going to specify requirements for an infrastructure of this kind for a particular
system, to suggest topics for requirements to cover. At a minimum, it should state what a calling
system expects from the infrastructure: what it’s there for, and its main functions. For problems for
which there are obvious alternative solutions, the overview should avoid making judgments.

Each infrastructure overview is divided into the following subsections:

1. Purpose An explanation of why the infrastructure exists, the role it plays.

2. Invocation requirements Suggestions for sorts of requirements that define how a system
will interact with the infrastructure—for those functions that the infrastructure must
make available to a system—plus any other capabilities systems might want from it (such
as access control). The needed functions can be regarded collectively as the interface (or
interfaces) the infrastructure needs to make available to callers.

3. Implementation requirements Some ideas on the other features the infrastructure needs
in order to stand on its own feet (for example, inquiry, maintenance and configuration
functions). These are brief and merely hint at the likely main areas of functionality to think
about when defining the infrastructure itself.

For example, for a reporting infrastructure, our invocation requirements might be very simple: just
a function that lets our system request the running of a chosen report. The implementation
requirements, on the other hand, would be far more extensive, addressing the complexities of
various ways of delivering a report to a user, other ways of requesting reports, designing reports,
and so on. (These topics are discussed further in the “Reporting Infrastructure” section in Chapter
8.) To take the analogy of building a house, one of the infrastructures we’d want is an electricity
supply. In this case, the invocation requirements would cover how many sockets we want in
each room, and the implementation requirements would deal with the parts you can’t see, such as
the connection to the power grid and adherence to building quality regulations.

3.4 Requirement Pattern Groups
When several requirement patterns have features in common, we can create a requirement pattern
group and use it as a place to describe all of their common aspects, to save repeating them in each
individual pattern. A requirement pattern group is not a requirement pattern: you can’t create
requirements of this type. But the definition of a group can contain any of the following sections

Infrastructure

Domain

Depends
upon

Requirement
Pattern

C03623989.fm Page 31 Thursday, May 10, 2007 12:03 PM

32 Part I Setting the Scene

that appear in the definition of a requirement pattern: “Extra Requirements,” “Consideration for
Development,” and “Considerations for Testing.” The rule is to include whichever of these sections
in which something valuable can be said and to omit the rest. Whenever one of these sections
is present in the group, it’s worth including a note in the equivalent section in each pattern based
on the group as a reminder to refer to it.

The difference between a domain and a requirement pattern group is that the patterns in a domain
share a common theme, whereas those in a group have detailed features in common. The patterns
in a group don’t need to belong to the same domain. (For those familiar with Java programming,
the relationship between requirement patterns and domains is akin to that between classes
and packages: every class belongs to a package just as each pattern belongs to a domain. Also, a
requirement pattern can build upon a pattern belonging to a different domain, just as a Java class
can extend a class in a different package.)

3.5 Relationships Between Requirement Patterns
When you use a requirement pattern, it generally says everything you need to know to create a
requirement of that type. But a pattern might refer to other patterns for several reasons. Two
fundamental types of relationship between requirement patterns exist:

1. Refers to A requirement pattern can mention another pattern somewhere in its definition.
There are several reasons why a requirement pattern might refer to another:

a. A requirement defines something that contains (has) something else defined by
another requirement.

b. A requirement that’s an instance of one pattern uses information defined in require-
ments that are instances of a second pattern. For example, a requirement that defines
a data structure might use a value of a kind defined by a data type requirement.

c. A requirement might suggest the creation of an extra requirement of a type for which
a pattern is available.

d. A divertive pattern might persuade you to create a requirement using a different
pattern. (See the “Divertive Requirement Patterns” section later in this chapter.)

e. A requirement pattern could refer to another pattern that contains relevant discursive
information on a particular topic.

2. Extends A requirement pattern builds upon (or is a specialization of) another pattern.
In object-oriented terms, this is an inheritance relationship. Instead of extending another
pattern, a requirement pattern can build upon (extend) a requirement pattern group.
(In object-oriented terms, the group acts like an abstract base class for the pattern.) A require-
ment pattern is not allowed to extend more than one pattern or group.

We can draw a collection of patterns and infrastructures and the relationships between them in
a diagram. Figure 3-3 is an example that shows two domains, with elements of the notation
annotated. Inheritance is the most important type of relationship. For simplicity, every other type
of relationship is shown as “Refers to,” though its role can be indicated by a label on the link.
When showing several domains on one diagram, it can become impractical to show all the relation-
ships. In such a case, show all relationships within each domain and all extends relationships, but
omit refers to relationships between domains as you see fit. For readers familiar with object-oriented
concepts (or UML), this is akin to a class diagram showing relationships between classes.

C03623989.fm Page 32 Thursday, May 10, 2007 12:03 PM

Chapter 3 Requirement Pattern Concepts 33

Figure 3-3 Annotated sample requirement pattern diagram

In Figure 3-3, “Data entity” is not a pattern. It’s a requirement pattern group: a place for describing
the common features of the four patterns that build on it. Any descriptive information that applies
to all patterns in a group should be given for the group, rather than repeated for each pattern.
Also, by convention, labels for relationships between requirement patterns are placed nearer the
subject of the relationship, rather than the object. So, it is a Data entity that has an ID (rather than
vice versa). The hexagonal shape of “Information storage” denotes it as an infrastructure.

See the beginning of Part II of this book for a diagram of this sort for all the requirement
patterns in this book. Each of the eight domain chapters contains a diagram of this sort in
its introduction, with annotations giving a brief explanation of each pattern, pattern group,
and infrastructure.

Requirement Pattern Classifications
Requirements can be classified in various ways (for example, by dividing them into functional and
nonfunctional ones). Using requirement patterns has the advantage that if we classify the patterns,
we automatically classify the requirements that use those patterns. Classifications tell us a little
about the nature of the requirements that result from using each requirement pattern.

Other ways of using these classifications include finding requirements according to their classifica-
tion and producing statistics. People like statistics (some people, at least, and they tend to be senior
executives it’s worth our while keeping happy). Statistics on the requirements for a system can be
useful in a variety of ways. They can give a rough picture of the scale and complexity of the system.
To do this, we need to tag each requirement with whatever values are needed for all the sorts of

Data Entity

Living entity Transaction Configuration Chronicle

Has
Information

storage

Data entity

Calculation
formula

Information

ID Uses

Data
longevity

Data
archiving

Data type
Data

structure
Uses

Uses

Requirement
pattern

”Refers to”
relationship

Domain
name

“Extends”
relationship

Domain
boundary

Requirement pattern
group (“abstract
base pattern”)

Infrastructure

C03623989.fm Page 33 Thursday, May 10, 2007 12:03 PM

34 Part I Setting the Scene

statistics we want. (Requirements management tools typically do this by letting you define extra
requirement “attributes.” Then you enter the value of each attribute for each requirement. It’s a
tedious business.) Using requirement patterns can save some of this effort, because all requirements
created using a pattern have attributes in common. They need be defined only once, when the pat-
tern is written. This information is recorded in the “Pattern classifications” section of each pattern.

Once requirements are tagged in this way, it’s also possible to search on the classifications to find
all the requirements that match your criteria. How you transport this classification information
from the patterns to your requirements depends on how you store the requirements. (This is left as
an exercise for the reader!) A straightforward way is to copy the requirements into a spreadsheet,
add a column identifying the requirement pattern used by each requirement (if any), and add
a column for each classification. (Sorting on the pattern name makes it easier to apply classifica-
tion values many at a time.)

The requirement patterns in this book contain classifications according to a small number of
basic classification schemes that are defined below. You can define extra classification schemes of
your own and classify patterns according to them. If you do, write proper definitions in a similar
manner to those below, and make them available in the same place as the requirement patterns
that refer to them.

Classifications can be defined that assist anyone who uses requirements, including developers. As
a result, it’s not necessary for everyone to understand every classification. For this reason, each
classification has its primary audience explicitly stated. If you’re not part of this audience, don’t
worry if you can’t follow what it’s for or if you’re not interested in it.

Requirement pattern classifications need to be properly and precisely defined, or else any statistics
based on them can’t be regarded as reliable. Each classification needs the following defined for it:

There are three requirement pattern classifications used in this book, which we now describe
using this format.

“Functional” Classification

Name: A self-explanatory, unique name for the classification.

Audience: An explanation of who is likely to be most interested in this classification: who
it’s aimed at.

Purpose: A description of what the classification is intended to be used for.

Allowed values: A definition of the values that a pattern may have for this classification, and
explanations of their meanings. The most common way is to define a list of
individual values. Numeric or alphabetic or other kinds of values may be used,
provided it’s clear to the reader what each value means.

Default value: This is the value assumed for this classification if it’s not present (explicitly
stated) in a pattern. This saves cluttering patterns with explicit mentions of
classifications that are meaningful for relatively few patterns (that is, the few
that have a significant value for it).

Name: Functional
Audience: Anyone interested in picking out the functionality of the system, or the number

of functions.

Purpose: This indicates whether a requirement of this type defines a function that must
be provided by the system.

C03623989.fm Page 34 Thursday, May 10, 2007 12:03 PM

Chapter 3 Requirement Pattern Concepts 35

“Pervasive” Classification

“Affects Database” Classification

Refinement Requirements
It is good practice to keep the size of each requirement’s definition within moderate bounds;
one that runs to ten paragraphs is way too long. A requirement pattern may identify several pieces
of information, although a typical requirement of its type might possess only one or two. From
time to time you might have a requirement that possesses more and, as a result, is unreasonably
large. In this situation, it makes sense to split the requirement into two or more requirements.

The way to do this is to retain the initial requirement but to cut out parts and make them into
additional requirements, which are refinements of the main requirement. Each refinement require-
ment should specify one extra aspect. And each refinement should identify the requirement it
builds on. For readability, the main requirement should be immediately followed in the specification

Allowed values: Yes Every requirement of this type is a functional requirement.

Maybe Some requirements of this type are functional requirements;
some are not. If you’re writing a pattern, use this value with care.
Ask yourself whether your pattern is well-defined; perhaps it
ought to be split into two, one for the functional part and one for
the nonfunctional.

No No requirement of this type is itself a functional requirement.

Default value: No

Name: Pervasive
Audience: Software developers

Purpose: This indicates whether a requirement of this type is pervasive (that is, applies
systemwide). Its intent is to bring to the attention of developers requirements
that may apply to them no matter which part of the system they’re developing.

Allowed values: Yes Every requirement of this type is pervasive.

Maybe Some requirements of this type are pervasive; some are not.

No No requirement of this type is pervasive.

Default value: No

Name: Affects database
Audience: Database administrator (and software developers, too)

Purpose: This indicates whether a requirement of this type has an impact on the design of
the system’s database. Its intent is to highlight those requirements that are of
most interest to whoever is responsible for designing the database.

Allowed values: Yes Every requirement of this type affects the database.

Maybe Some requirements of this type affect the database; some do not.

No No requirement of this type itself directly affects the database
(though this doesn’t necessarily mean a database administrator
will have no interest in it).

Default value: Maybe

C03623989.fm Page 35 Thursday, May 10, 2007 12:03 PM

36 Part I Setting the Scene

by its refinements. This practice makes sense whether or not you’re using a requirement pattern—
but when you are, you can regard the pattern as applying to both the main requirement and
the refinements. If a requirement pattern suggests that several pieces of information be present, this
is satisfied if all are present in one of the requirements or another. A second reason for splitting
a requirement is if different parts of it have different priorities.

Depending on the nature of the system you’re specifying, up to a quarter of all requirements could
be refinements of other requirements. If you use a very fine level of requirements granularity,
you’ll increase the number of requirements and with it the percentage of requirements that are
refinements.

Divertive Requirement Patterns
Usually when you apply a requirement pattern, the result is a requirement that matches what
you asked for. However, a pattern could be sneakier than this: it could try to lead you away from
the obvious and towards an alternative, better way of formulating what you want. It explains the
difficulties that the obvious way causes (usually for developers), and it provides advice on how
to avoid these problems by using requirements that are stated in different terms but that aim to
achieve the same underlying aim. A divertive requirement pattern can either explain the alternative
itself or it can divert you to a different requirement pattern entirely—or both.

Requirement patterns can be much more valuable than just saying, “If you want to require X, this
is what to write. . . .” They can be like having an expert sitting at your shoulder saying, “Hang on!
If you specify it like that, you’re asking for trouble. Let me explain. Why don’t you try this instead?”
Several of the performance patterns are divertive, because the most obvious ways to specify perfor-
mance are often a nightmare to satisfy. (For example, “The system shall be available 24×7” gives
developers little idea of what they must do to achieve it.)

Requirement Patterns and Diversity of Approaches
There’s no single right or best way of formulating or expressing requirements. For a given system,
there’s no single perfect set of requirements to define it. Different requirements approaches
might break down a problem in different ways, resulting in requirements that vary in their level of
granularity and the way they’re expressed. The term “requirements approach” as used in this
section simply means a way of going about the specifying of requirements in general or certain
types of requirements in particular. Each approach could have its own set of requirement patterns.
They might simply be the approach’s own distinct manifestations of recognized standard patterns,
or they might be patterns specific to the approach.

We can accommodate a diversity of requirements approaches—to let the proponents of each
approach create whatever requirement patterns they wish, including their own manifestations of
existing patterns. And by recognizing different approaches explicitly, we make the available choices
clearer to analysts.

Nevertheless, the greater agreement there is on standard patterns (and the fewer different manifes-
tations of patterns), the better. It’s perhaps a testament to the excellence of the choices for design
patterns made by Gamma et al. that there’s been no apparent call for variants (although lots of
extras have appeared), and thus accommodating diverse sets hasn’t been necessary. In allowing
for multiple requirements approaches, I’m heading off potential criticism of the requirement

C03623989.fm Page 36 Thursday, May 10, 2007 12:03 PM

Chapter 3 Requirement Pattern Concepts 37

patterns given here. I can cite it as proof that there’s no single “right” set of requirement patterns.
If anyone doesn’t like them, they can devise their own alternatives without demanding to
replace the ones here. There’s room for many schools of thought.

To avoid potential confusion, don’t mix material for multiple requirements approaches in the same
requirement pattern. It is clearer to have multiple manifestations of the pattern and to pick
only one to use on your system.

When creating a new pattern (or manifestation of an existing pattern) for a particular requirements
approach, state the approach it relates to in the “Manifestation” section of the pattern. Note
that when a manifestation is created for a different approach, it takes on a life of its own and might
go through a succession of versions independent of the manifestation for the original “standard”
approach.

Where two sets of requirement patterns exist that cover the same ground, there are two ways they
can be organized:

1. One domain specification can contain both sets of requirement patterns. (A “domain
specification” is a document, or part of a document, that contains its requirement patterns
and a section about each of its infrastructures. Each of the eight domain chapters that follows
is a domain specification.)

2. There can be two manifestations of the domain specification, each containing one set of the
requirement patterns.

The second way is easier and less confusing to use (and thus less liable to have an analyst apply
the wrong manifestation of a pattern). The second way also allows each manifestation of the
infrastructure specification to be tailored to the methodology its patterns use, which is useful if the
infrastructure’s own requirements use these patterns (which they might).

Use Cases for Requirement Patterns
It is perfectly possible to write use cases for some requirement patterns, those that result in require-
ments that demand the presence of a well-defined function (or, indeed, more than one function).
For example, for the inquiry requirement pattern we could write a use case that shows the steps
in a typical inquiry. Use cases for requirement patterns are always generalizations, an official
UML concept that means they are written to apply in any circumstance that fits, using an “is-a-
kind-of” relationship.

One requirement pattern might demand the presence of more than one function for each of
the resulting requirement. For example, the configuration requirement pattern implies the
presence of create, read (inquire), update, and delete functions (commonly called CRUD) for each
item of configuration data. We can write a use case for each of these functions, and four use
cases will suffice for all configuration, rather than attempting to write four for each type of config-
uration (or, more likely, writing use cases for a few but not the rest).

It makes sense to write requirement pattern use cases to suit your particular environment. To
attempt to write universally applicable use cases risks them being so high-level as to be of no
practical value. For example, a universal “create configuration data” use case has little to say—
perhaps just an actor entering the data and the system storing it in a data store. But if we have a
browser-based user interface with remote users and a Web server that is outside our system’s

C03623989.fm Page 37 Thursday, May 10, 2007 12:03 PM

38 Part I Setting the Scene

scope, the use cases will look very different. Also, the use cases’ preconditions might insist the
actor be logged in and authorized to access this type of configuration data—to satisfy particular
security requirements. (All this illustrates how hard it is to write detailed use cases without bring-
ing in elements of the solution, even though use cases are meant to reflect only the problem to be
solved.) No use cases have been written for the requirement patterns in this book.

Business Rules and Requirement Patterns
A business rule is a definition of one aspect of how a business operates. For example, a business
rule could define how a particular business should act in a given situation (such as when a
customer credit card payment is rejected) or a constraint (such as a policy of not selling to anyone
under sixteen). A business rules approach to building systems recognizes the importance of
business rules, with a view to making it easier to understand and change how the business works.
In an ideal world, you’d be able to modify your business rules and all affected systems would
instantly jump in line. It’s a very attractive prospect. There exist business rules products to
help you do this. They act a bit like a guru who knows your business inside-out and of whom
you can ask questions, but there’s a lot more to it than that. That’s not to say you need a
specialized product to adopt a business rules approach. Two places to go for more information are
http://www.brcommunity.com and http://www.businessrulesgroup.org.

Quite a few types of requirements reflect business rules, including several covered by requirement
patterns in this book. So why not say which ones they are? The trouble is that there isn’t a
single agreed-upon set of business rule types. There are many, and it would be arbitrary to pick
one. (The same argument applies when you consider mentioning in an individual requirement
how it maps to a business rule.) One could create a requirement pattern classification for a selected
business rule scheme to indicate how each pattern relates to a business rule. My excuse for not
doing so in this book is not wishing to offend any scheme I left out.

It’s also worth pointing out that adopting a particular business rule classification scheme might
not happen until after the requirements have been written. Consider the case where you invite
tenders from three prospective suppliers. The first might use one business rules scheme. The
second might use a different one. And the third might not think in business rules terms at all.

Nevertheless, if your organization has made a commitment to using a particular business rule
scheme, you can write requirements in a way that’s friendly to that scheme (and, if you wish,
mention the type of business rule that each requirement reflects, where applicable). If you’re
committed to using a business rule product, you can treat it as an infrastructure that your system
must interface to. Then, just like for any infrastructure, you can specify requirements for what you
need from it, and use those requirements as your basis for choosing the most suitable product.

C03623989.fm Page 38 Thursday, May 10, 2007 12:03 PM

351

Index
All page numbers that begin with “F-” refer to the full versions of Chapters 1 and 2. These are
not in the printed book, but are available for download from http://www.microsoft.com/
mspress/companion/9780735623989.

A
acceptance of requirements, F-21–F-22
acceptance tests, 9, F-25
access control

chronicle, 149, 150–151
configuration, 140
for data archiving, 115
described, 281
infrastructure considerations, 283
integral to a software system, 282–283
making more friendly, 306
for organization units, 329
recording changes in, 317
for reporting, 190
underlying mechanism for, 318

access control domain, 29–30, 281
access control extensions, 234–235
Access Controller, F-57
access control requirement pattern, 281–323
access only when logged in requirement, 310
access privileges for users, 285
access rights. See privileges
access rules, applying, 308–309
accessibility

authentication alternatives, 298
as a source of nonfunctional system aspects, F-70
specific needs for, 168, 169, 172, 174–175,

178–182, 183–184
accessibility requirement pattern, 168–186
accountants, as programmers, 332
accounting entries, 260
accounting system interface, 56
ACID properties, 123, 154
acknowledgement of receipt, 58, 59
acronyms, use of, F-47–F-48
actions

approving, 318
authorizing within functions, 308, 310
not approving own, 322
pending, storage of, 129

active attack, 60, 61
active user sessions, terminating, 300
active users, number of, 149
activity peaks, 213
activity triggers, 209
actors, F-13, F-69

adapters, 53, 54, 250
address formats, unparochialness and, 259
“Affects Database” pattern classification, 35
agile manifesto, 8, F-22
agile outlook, adopting, F-22
agile requirements processes, 8–10, F-22–F-28
alarm monitor interface, 56
alarms, 214, 233
alphabetic characters, 87
alphabetic mnemonic, F-37
alphanumeric characters, 87
alternative templates, 25
ambiguities of fee calculation, 336–337
Americans with Disabilities Act, 170
analysis paralysis, F-4
analysis patterns, 20
analyst, F-8, F-16
anecdotal checking, 261
animated graphics, 188
Apache Web server, 69
Applicability section, 21, 23–24, 45
approval, 321–322, 323
approval mechanisms, 322
approval requirement pattern, 281, 282, 318–323
“approved” version, determining, F-52–F-53
architecture, infrastructures contributing to, F-64
archiving

chronicles, 150
data. See data archiving

artifacts in agile development, F-23
assistive technology, 172, 176, 178–179, 185
assumptions, 16, F-59, F-60
atomic changes, 123
atomic nature of requirements, 20–21
attachments, email, 123
attributes, defining, 34
audience, identifying, 13, 34, F-33
audio alert, visual cue for, 182
audit trails, 121, 190
Australian Privacy Act of 1988, 75
authentication

biometric, 178
defined, 295
information for users, 285
mechanisms, 296
strength of, 308, 311

Z03I623989.fm Page 351 Wednesday, May 16, 2007 3:08 PM

352

authors
for each reference, F-50
listing in the document history, F-52
of a requirement pattern, 23

authority, ability to delegate, 307
authorization

chronicling changes, 317
example requirements, 309–313

authorization checks, 317, 318
authorization inquiries, 316–317
automatic refreshing of inquiries, 157, 159, 177, 188
availability

of an interface, 57, 58
lack of. See downtime
scalability and, 242, 244

availability requirement pattern, 217–238
availability window, 208, 219, 221, 222–223

B
back door access, preventing, 293
background processing, responsibility for, 282
backups. See also data archiving

database, 110
information, 123
reports, 190
system, 229

Basic details section of requirement pattern, 21,
22–23, 45

basis of a fee or tax, 332–333
binary numbers, 87
binding part. See formal part
biometric authentication, 178
biometric reader, 285
blanket bans, 309, 312–313
blanket permission, 309
blocking users, 298, 302–303
Boolean operators, 88
brackets, double-angled and square, 25, 46
break locked session, 301
bureau service, 329
business entities, identifying, 16, F-61
business hours, availability during, 222
business intent of inquiry, 156–157
business motivation behind a system, F-31
business purposes, data types for, 86
business rule patterns, 20
business rules, 38
business significance, 147
business systems, data categories in, 120–122
business volume, growth in, 241

C
calculations, 102–107
calculation formula, subcalculations, 103, 106
calculation formula requirement pattern, 102–107

calendar date, 88, 259
calendar time period, 336–337
candidate glossary terms, 14, F-45
candidate infrastructures, building a list of, F-64
candidate multinesses, 264–265
candidate patterns, multiple variants of, 44
candidate requirement pattern, 43
candidate solutions, F-10
capacity, patterns for, 47
capitalization, F-41, F-48
capped data line in reports, 167
card number format, 92
case of alphabetic characters, 87
case-sensitive identifiers, 98
cash withdrawal limit, 142
catch-alls, pervasive requirements as, 27
categorization of data entities, 119–120
certification authority (CA) interface, 56
change history for living entities, 131
changes, listing in the document history, F-52
changing passwords, 287, 289
characters, 87, 88
character sets, allowing, 87
charging fees over time, 333
charts in reports, 164
check digits, 89
chronicles, 121, 144–153

chronicle entries for reports, 190
chronicle requirement pattern, 144–153
circumstances of approval, 319
classes of users, 285
classification lists, format of, 23
classification of requirement patterns, 23, 33–35
codes of conduct, as standards, 71
coding standards, compliance with, 76
cognitive abilities (accessibility), 171, 174, 182
collaboration over contracts, F-23
collaborative approach, 8, F-17, F-18, F-19
color, use of, 180, 183
commenting, of source code, 83
commercial domain, 29–30, 325
commercial requirement pattern, 325–340
commercial systems

availability of, 217
detailed requirements specification for, 79
importance of transactions in, 134
performance types in, 191

common data for living entities, 131
common inquiry characteristics, 159, 161
common requirements, 10, F-26
communication links, F-56
communication medium, 60
communications, disaster recovery, 237
communications mechanism, interfaces involving, 58
company coding standards, compliance with, 76
company financial information, restricting access to, 311

authors

Z03I623989.fm Page 352 Wednesday, May 16, 2007 3:08 PM

353

company standards, 71
company Web style guidelines, compliance with, 76
company-specific requirement patterns, 43
compatible technology, 70
completeness

of chronicles, 145
of requirements, 40

complex transactions, 134–135, 138
compliance

with accessibility standards, 169, 170, 175, 184
with data longevity regulations, 107
demands for a standard, 73

comply-with-standard requirement pattern, 26, 71–79
component status inquiry, 159
components of a system, 15, F-55
compound data item, 95
compound data types, 88
comprehensive inquiries, 159, 160
computer literacy, accessibility and, 171, 174
conciseness of identifiers, 97
conciseness of requirement IDs, 13, F-37
confidentiality of reports, 166
configurable authorization, 47, 281, 282, 313–318
configurable authorization requirement

pattern, 313–318
configuration, 120

of drivers, 248, 251–252, 253
multiness requirements and, 263, 264

configuration entities, 138, 141, 142
configuration files, 123
configuration requirement pattern, 37, 138–144
configuration values

changing, 139–140, 143, 144, 149
content requirements, 141
defining, 140
examples of, 142
flexibility of, 138
hard-coded, avoidance of, 138–139, 143
representative, 141
storing, 140
systemwide, 138, 139
templates for, 142

Considerations for development section, 21, 28–29,
40, 48

Considerations for testing section, 21, 29, 40, 48
consistency

of data, 123
of glossary terms, F-49
maintaining, 14, F-48
promoted by requirement patterns, 19

consolidation of fees/taxes, 338
constraints, F-54
contact details, 96
Content section, 21, 24, 47
context diagrams

advantages of, F-57

comparing for old and new systems, F-58
defined, F-54–F-55
in every requirements specification, 52
kinds of information on, 15–16, F-55–F-56
notable points about, F-57
samples, 52, 53

context of data types, 92
Context section of a requirements specification, 15–17,

F-30, F-53–F-68
continuity of IDs, 99, 101
contradictions, resolving, F-43
core database, 124
core terms in a glossary, F-48
corporate restructuring, 245
cosmetic script, 181
cost-benefit analysis, 45
countries

differences between, 258–260
installing systems in different, 255
ISO 3166 standard, 76

CPU cycle rate, throughput targets and, 207
cross-instance access, 270
cross-instance conversion, 270
CRUD operations, 154
cultural differences, unparochialness and, 259
currency details

configuration values for, 142
ISO 4, 217
multiness in, 267
number types for, 87
unparochialness and, 258

customers
putting in control, F-5
using requirements, F-3

customer agreement, F-26
customer capacity, 216
customer details, storing, 130
customer number, 100
customer orders, archiving of, 113
customer password format requirement, 288
customer scalability, 243
customer service, accessible, 184
customer support for multiness instances, 268

D
data. See also information

backdated, 109
backing up, 123
configurable authorization to, 314
derived, 121
disaster recovery, 237
historic, 121
restricting access to, 308, 310–311
segregated, 261–262
unaddable, 262

data access, recording unsuccessful, 148

data access, recording unsuccessful

Z03I623989.fm Page 353 Wednesday, May 16, 2007 3:08 PM

354

data archiving requirement pattern, 110–117
data consistency, 123
data description for archiving, 112
data display, types of, 86
data durability, 123
data entities. See also living entities

categorization of, 119–120
naming, 122, 130

data entity domain, 29
data entity requirement pattern, 119–154
data entry function, testing user registration as, 295
data format error response time, 200
data husbandry, 85
data longevity requirement pattern, 107–110
data loss, 123, 124
data modification, archiving and, 115
data protection, 123, 287, 290–292
data recovery, 123, 124
data storage, 107, 108. See also data archiving
data stores, 122, 126–127, F-56
data structure, 136
data structure requirement pattern, 94–96
data type requirement pattern, 86–94
data types

in calculation formulas, 103
for different organizations, 260

data warehouse, 164
database

ACID properties of, 123, 154
backing up of, 110
CRUD operations, 154
estimating disk space needed for, 216
recording events in, 151
specifying a widely used, 68
as storage mechanism, 120, 154

dates, 88, 89–90
of each version released, F-52
event, 151
report, 166
systemwide aspects of, 93
unparochialness and, 259

date display formats, 90
day one considerations for user

registration, 287, 294
Daylight Saving Time, 90
de-authentication of users, 298, 299–300
default language of a system, 274
default multiness instances, 268
definitions

in a glossary, 14, F-44, F-45, F-46
of requirements. See requirement definitions

delays, warning users about, 203
deliberate shutdowns, 231
delivery mechanisms for reports, 190
denial-by-default rule, 305–306, 308, 310
dependencies, 16, 45, F-59
de-registration of users, 287, 290

derived data, 121
descriptive placeholders, 46
design patterns, 20, 21, 42
designers, constraining, F-9
destination of archived data, 112–113
detailed requirements, 4, F-3, F-27
details in a requirement definition, F-42
developers

constraining, F-9
guidance to, 47, 48
using requirements, F-3
writing in the language of, 28–29

development
approaches, 5–6, F-6
facilities, 69
splitting between multiple teams, 54
technology, 66, 70

devolution of information, 135
dexterity, accessibility and, 171, 174, 182
dialects, 259, 272
diminishing returns, availability increases and, 220
disabilities, people with, 168, 169
disaster recovery systems, 237
disclaimers

regarding the glossary, F-44
stating, 13, F-33

discounts, specifying, 334
Discussion section in requirement pattern, 21, 24
disk space needed, estimating, 216
display format, 91, 99
display of data, 86
distinct user experiences, 261, 267–269, 271
distinctive requirement IDs, 13, F-37
distributed office scalability, 243
divertive performance patterns, 192
divertive requirement pattern, 32, 36
Document history section of requirements

specification, 15, F-51–F-53
document library scalability, 243
document management system, 154
document purpose, F-30
Document purpose section, 12–13, F-32–F-33
document templates, 123
documentary efficiency, 9
documentation

accessibility of, 175, 184
of interfaces, 57, 61
purpose of, F-24
unparochial, 258

documentation requirement pattern, 81–84
domains

assigning requirement patterns to, 29–31
compared to requirement pattern groups, 32
creating new, 44–45
infrastructures in, 30
as a source of candidate infrastructures, F-64
specifying, 22

data archiving requirement pattern

Z03I623989.fm Page 354 Wednesday, May 16, 2007 3:08 PM

355

domain expert, F-15
domain specification, 37
downtime

business impact of, 221, 223–224
causes of, 221, 225
levels of, 218
reducing, 225–235
scheduled, 219
tolerated, 222

draft requirements specification, writing, 8, F-18–F-19
drivers

configuration information for, 248, 249–250
extendability requirements and, 247, 249
installation requirements for, 251–252, 253
switching between, 253
system requirements for, 250–251
third-party, development requirements, 252
upgrading, 253

driving entity, 215–216
durability of data, 123
duration start trigger, 108
dynamic capacity, 47
dynamic capacity requirement pattern, 212–215
dynamic users, counting, 213
dynamic Web functions, 222

E
effort estimation, F-26
ejecting users, 214
electronic communication medium for approval, 320
email, 91, 123
emergency extended access, 235
emergency remote access, 235
employee ID, 100
employee roles, 260
end of report line, 167
end-to-end response time, 196–197
English as a second language, accessibility and, 171
entity life history diagram. See state transition diagram
errors, 148, 233, 236. See also failures
error messages, 83, 236, 237
essence of a requirement, F-42
European Union, data protection provisions, 290
events, 144–145, 148–149, 333
event date, recording, 151
event record, 151, 152
event severity levels. See severity level
evolution of requirements, F-38
example requirements, 45–46
examples in a requirement definition, F-42
Examples section in a requirement pattern, 21, 26
excluded entities, determining, 216
exclusions, 16, F-61
executive summaries, avoiding acronyms in, F-48
explanatory text, displaying, 181
explicit interaction requirements, 62

extendability, 239
of fees, 336
of an interface, 57
multiness requirements and, 262
requirement pattern, 52, 73, 246–253
types of, 264

extendability requirement pattern, 52, 73,
246–253

extended access, 234–235
extends requirement pattern relationship, 32, 33
external dependencies, F-54
external interfaces, standards affecting, 72
external requirements specification, 79
external sources, allocating IDs from, 99
external systems, 127, 260
external users, 212
extra requirements, 27, 47
Extra requirements section

considering during requirements definition, 39
example requirements in, 28
in a requirement pattern, 21, 26–28
writing, 47–48

extreme programming (XP), 9, F-6, F-24
extreme requirements process, 9–10, F-24–F-26

F
failures, 231–237
faithful nature of chronicles, 145
federation of systems, 54
fee rates, determinants of, 333
feedback on requirements specification, dealing

with, F-21
fee/tax requirement pattern, 330–340
financial data, storage of, 109
financial flows, diagramming, 331–332
financial transaction, 137–138, 158
financial year, 259
flat files, 123, 124
flexibility, 135

of configuration values, 138
described, 239
domain, 29–30
of identifiers, 98
importance of, 239
performance requirements and, 240
as a source of nonfunctional system aspects, F-70
testing, 240

flexibility requirement pattern, 239–279
follow-on requirements, 20, 27, 28, 47, 132
forgotten passwords, handling, 297, 298–299
formal part of a requirements specification, 6–7,

F-11–F-12
formal statement of a requirement, F-42
formats

for documentation, 82
for requirement IDs, F-37

formats

Z03I623989.fm Page 355 Wednesday, May 16, 2007 3:08 PM

356

framework, compared to infrastructure, F-64
freezing requirement IDs, F-38
frequencies for requirement patterns, 23
full year, storing dates for, 90
functions

authorizing access to, 308, 310, 311
availability goals related to, 225
compared to use cases, F-13
controlling access to, 314
controlling use of, 305
recording, 145
testing access to, 318
user. See user function requirement pattern
for viewing chronicles, 152

functional areas, 41, F-68–F-69
functional area sections in a requirements specification,

12, 17–18, F-30, F-68–F-70
“Functional” requirement pattern classification, 34–35
functional requirements, 4, F-3
functional testing of user authentication, 304
fundamental domain, 29, 51
fundamental requirement patterns, 51–84

G
gaps in a domain, 45
Gather information requirements process step, 8, F-17
generalizations, use cases as, 37
general-purpose glossary, writing, F-49
geographic distribution of users, 209, 259
geographic variations for calculations, 103
glossary, 14, F-44–F-49
government regulations as standards, 71
graceful degrading of response time, 199
graphics, 180–181, 188. See also images
Greenwich Mean Time, 90
groupable requirement IDs, 13, F-37
guidance, provided by requirement patterns, 19

H
hand strain, accessibility and, 171, 174, 182
happen time for a transaction, 136
hard-coded configuration values, avoidance of,

138–139, 143
hard-coding language-specific text, banning, 258
hardware

availability issues related to, 226
power of, 193
replication of, 231
scalability requirements and, 244, 245

hardware setup
response time and, 199
for throughput, 205, 206–207

Have specification reviewed step, 8, F-19–F-20
hearing, accessibility and, 171, 174, 181–182
hexadecimal numbers, 87

high load caveat, response time and, 199
high-level requirements, 4, F-3
HIPAA standard requirements, 75
historic data, 110, 121
housekeeping. See maintenance

I
IBM, accessibility guidelines, 186
icons, consistent meanings of, 182
identification details for users, 285
identifier. See also IDs

unique for each requirement, 13, F-33
identity card issuance, 201
ID requirement pattern, 97–101
IDs, allocation of, 99, 263
IEEE (Institute of Electrical and Electronics Engineers)

technical standards, 74
IETF (Internet Engineering Task Force), 74
images, 123, 180–181, 188. See also graphics
implementation, 40, F-43
implicit interactions, 62
inaccessible data, filtering, 311
inaccessible functions, hiding or disabling, 306
inactive information, removal of, 217
inactivity time-out, 301
incorrect password entry, recording, 149
incremental approach to requirements, 3, 10, F-2,

F-6, F-26, F-28
independent reviews, approach to, 8, F-19
indexes of data archives, 114
industry-specific codes of practice, 71
industry-specific patterns, 43
industry-specific regulations, 71
industry-specific standards, 75
inflexibility

system, 135, 138
temporal, 256

informal elements in a requirement definition, 13,
F-42–F-43

informal part of a requirements specification, 6–7,
F-11–F-12

information. See also data
backing up, 123
changes, 122
described, 85
devolution of, 135
domain, 29
entry, multi-part, 122, 124–125
flowing in an interaction, 64
form of, 86
gathering, F-17
gathering from people, 8
infrastructure, 154
inquiries for, 123
integrity, 122, 123

framework, compared to infrastructure

Z03I623989.fm Page 356 Wednesday, May 16, 2007 3:08 PM

357

restricting access to, 305
retrieval mechanisms, 154
standards, 71
storage, 120, 124, 154
types of, 123

information requirement pattern, 85–117
infrastructures

defined, 17, F-63
disentangling from business functions, F-67
extendability requirements and, 250
fewer distinct actors, F-69
identifying, 30
improving the boundary of each, F-67
for information storage, 120, 154
for a new domain, 45
numbered list of, F-65
overviews, 30, 31
process for identifying and specifying, F-64–F-68
relationships with domains and requirement

patterns, 30, 31
reporting, 155, 189–190
in a requirement pattern diagram, 33
requirements, 27, F-67, F-68
requiring technical analysis, F-67
treating a business rule product as, 38
user interface, 155, 187–189
using from other domains, 30

Infrastructures section in a requirements specification,
17, F-54, F-63–F-68

inheritance relationship between requirement
patterns, 32, 33

initial customer capacity, 216
input, 171. See also throughput
input interpretation by multiness instances, 268
inquiry

automatic refreshing of, 157, 159, 177, 188
dynamic use, 214
for information, 123
for living entities, 131
multiness requirements and, 263
from offline storage, 117
versus report, 162
response time, 200
scalability requirements and, 245
static capacity, 217

inquiry requirement pattern, 156–161
inspection of a requirements specification, F-19
installability requirement pattern, 274–279
installation requirements for drivers, 251–252
installing

driver software, 251–252
scalability requirements and, 245

instances, giving users access to, 270
Institute of Electrical and Electronics Engineers (IEEE)

technical standards, 74

integers, data type, 87
integrity, 122, 123, 126, 140
intent of a requirement, F-42
interactions

across an interface, 57, 62, 63
describing an activity across the interface, 52
with inquiries, 157
specifying types of, 63, 64

interactive documentation, 84
interactive tutorial, 83–84
interest calculations, 104–106
interfaces

defining, 15–16, 54, 55, F-55
describing within other systems, F-57
development considerations, 62
documentation of, 61
examples, 56, F-58
indeterminate number of, 53
influencing the design of, 63
of an infrastructure, 31
interactions in requirements, 63
to multiple systems for the same purpose, 52, 54
ownership of, 63
passport control for, 58
positioning in a context diagram, F-57
security requirements for, 60–61
specifying between systems, 52
standards defining, 79
switching to new versions of, 59
templates, 56, 64
testing, 62, 65
upgrading, 59–61
as weak links, 52

interface adapters, 53–54
Interface Developer’s Guide, writing, 61
interface ID, 55, 64
interface name, 55, 64
interface ownership, 54–55
interface resilience requirements, 58
internal interactions, 52
internal users, 212, F-57
international dimension, unparochialness and, 258–260
International Organization for Standardization (ISO), 74
International Standard Book Number (ISBN), F-51
Internet Engineering Task Force (IETF), 74
Internet Explorer Web browser, 68
Internet-based retail system, F-35–F-36
inter-system interaction requirement pattern, 47, 62–65
inter-system interface requirement pattern, 51–62
inter-system interfaces, 15–16, 65, 206, F-55
interview approach to gathering information, F-17, F-18
introduction of the glossary, F-44
Introduction section of a requirements specification,

12–15, F-30, F-31–F-53
invalid interactions, testing for an interface, 65

invalid interactions, testing for an interface

Z03I623989.fm Page 357 Wednesday, May 16, 2007 3:08 PM

358

invisible ID scheme, 101
invocation requirements

information infrastructure, 154
for an infrastructure, F-67, F-68
in an infrastructure overview, 31
reporting infrastructure, 189–190
user interface infrastructure, 187–188

“is-a-kind-of” relationship, 37
ISBN (International Standard Book Number), F-51
ISO (International Organization for Standardization), 74
ISO 639 standard for natural languages, 76, 272
ISO 3166 standard for countries and regions, 76
ISO 4217 standard for currencies, 76, 142
isolated changes, 123
iterative development, F-6

J
Java programming language, 69
Javadoc, 81
Joint Application Development (JAD), F-17
Joint Requirements Planning (JRP), F-17
justification

for a requirement’s existence, F-42–F-43
for the requirement’s form, F-42
stating for every exclusion, F-60

K
Key Business Entities section of a requirements

specification, 16–17, F-54, F-61–F-63
keyboards, accessibility and, 171, 174, 182

L
lack of confidence in requirements, F-4
languages

accessibility and, 171
displaying user interface in more than one

alternative, 272
of documentation, 82
ISO 639, 76, 272
multiness requirements and, 262
unparochialness and, 258–259

language-specific resources, substituting for missing, 274
language-specific text, banning hard-coding of, 258
lapsed time period, 336–337
layouts, consistent for reports, 166
levels of registration, 286
liability to pay a fee, 333
life support mechanisms for a system, 17, F-63
life-critical systems, 217
lifespan of a data entity, 120, 129
list of allowed values, 88
living entity

event in life of, 120, 133
lifespan of, 120, 129
multiness of, 264

naming, 122, 130
testing considerations, 133, 144

living entity requirement pattern, 129–133
load on a system, reducing, 214, 215, 245
loan approval decision rule ID, 100
local context diagram, F-56
local currency, configuration values for, 142
local scope, F-46
locale, 272
logging in, 295
logging messages, 58
logging out, 298, 299–300
logical data types, 86, 264–265
logical pattern for requirement IDs, F-37
logical remove only, 131
logical view of a system, F-56
login function, coding, 304
logs, 121, 123
longevity of transactions, 136
loopholes in access control, 307
lowest-priority requirements, including, F-40

M
machines, distributing loads across, 214, 215, 245
machine shutdown, user access and, 230
maintenance, 190, 225, 228–229
Major assumptions section in a requirements

specification, 16, F-54, F-59–F-60
Major exclusions section in a requirements

specification, 16, F-54, F-60–F-61
Major nonfunctional capabilities section in a

requirements specification, 18, F-30, F-70–F-71
manifestations

of a domain specification, 37
of an infrastructure, F-65
of a requirement pattern, 22, 42

manual dexterity, accessibility and, 171, 174, 182
marketing campaigns, multiness in, 267
masking wait times, 203
maximum acceptable response time, 198–199
meaningfulness of identifiers, 97
medium for documentation, 82
memorability of identifiers, 97
memory leaks, testing for, 238
messages, recording, 58, 59
metrics, attaching to a requirement pattern, 40
Microsoft Windows operating system, 69
missing resources, substituting for, 268
mistakes, correcting for fees/taxes, 339
modification rules for transactions, 137–138
modularity, extendability and, 247
monetary amounts, 87
month basis for interest calculation, 105
morsel sizes for different development approaches,

5–6, F-6
multibyte characters, allowing, 87

invisible ID scheme

Z03I623989.fm Page 358 Wednesday, May 16, 2007 3:08 PM

359

multilevel numbers as version numbers, F-52
multilingual organization, 262
multilingual requirement pattern, 272–279
multi-locale, 272
multimedia resources, 123, 176
multiness requirement pattern, 261–272
multi-organization unit, 262, 328
multi-organization unit requirement pattern, 325–330
multi-part information entry, 122, 124–125
multiple data stores, 122, 126–127
multiple instances of a particular interface, 52
multiple parts, IDs comprising, 97, 99
multiple sites, 254, 255
multi-release deliveries, F-40

N
names, data structure for personal, 96
naming

configuration values, 141
data entities, 122, 130
data types, 90
identifiers, 98
inquiries, 156
transactions, 135

natural availability level, 220
natural languages, ISO 639 standard, 76, 272
navigation among inquiries, 157, 160
negative numbers, 87
new users, processes for, 287, 293–294
nonbinding part. See informal part
nonfunctional requirements, 4, 69, F-3, F-40
Nonfunctional requirements section of requirements

specification, F-71
noninterference archiving, 110
non-repudiation, 282
normal opening times, 217
notification methods

customer preferences for, 133
for driver requirements, 251
for report recipients, 190
for system failures, 233, 234

novice users, accessibility and, 171, 174
numeric display formats, unparochialness and, 258

O
Object Management Group (OMG), 74
objectives of requirements, F-36
objects of a system, F-10
occurrence. See events
offline transactions, 117
off-the-shelf products, implementing infrastructures, F-68
OMG (Object Management Group), 74
online data storage, 107, 108
online documentation, testing, 84
open issues in a requirements specification, F-54
operating systems, 69, 185

operational rules, 308, 312
opportunistic approach to capturing requirement

patterns, 43–44
optional parts of a requirement template, 25
Oracle database, 68
order events, storing, 147
order ID, 100
organization units, 264, 326, 327
organizational construct, 325
organizational structure, 260, 327
organizations, system building for different, 255, 260
origin

of a term, F-47
of transactions, 206

outages, 225, 232–237. See also failures
output, 171. See also throughput
outsourcing, tailoring documentation for, 84
over time, charging a fee, 333
overall processing state, specifying, 143
overflows, highlighting on reports, 167
owner

of a glossary, F-49
of transactions, 136

owner entity name, 98
ownership shyness, F-50

P
page count on a report, 164, 167
page throw levels on a report, 165
paper type for a report, 167
parameter values, 138, 195
parent entity, 130
parochial data type definition, 89
parochialness, 256, 257. See also unparochialness
participants in the requirements process, F-15
passive attack on an interface, 60–61
passive reviewers of a requirements specification, F-19
passwords

changing, 287, 289
criteria for acceptable, 288–289
generating initial, 287
system-generated, 293

password entry, recording incorrect, 149
password format, criteria for, 287, 288–289
password guesser utility, 289
pattern author, 23
“Pattern classifications” in a requirement pattern, 23
pattern manifestation, 22
pattern name, 21
patterns, 20, 43. See also requirement patterns
peak customer capacity, 213
peak minute, calculating throughput for, 208
peak period, 213
pending actions, 128, 129
people over processes, agile exhortation, F-23
percentages, as data type 87, 218

percentages, as data type

Z03I623989.fm Page 359 Wednesday, May 16, 2007 3:08 PM

360

performance
common issues with, 192–195
defined, 191–192
degrading of, 225, 244
flexibility and, 240
as a source of nonfunctional system aspects, F-70
transactions and, 137

performance domain, 29–30, 191-238
performance requirement patterns, 191–238
performance targets, 192, 193–194
PERL scripts, 69
permissions. See privileges
personal contact details, data structure for, 96
personal name details, data structure for, 96
“Pervasive” requirement pattern classification, 35
pervasive requirements

alerting readers to the presence of, 28
defined, 20, 27
grouping related, 27
for inquiries, 159, 161
for living entities, 131–132
for reports, 166–167, 168
writing, 47

post codes, unparochialness and, 259
postmortem, 42
power users, accessibility concerns and, 171, 174
preciseness of requirement patterns, 20
precision

of calculations, 103
of a glossary definition, 14, F-46

preemptive corrections, 225
preferences of users, 285
Prepare step in requirements process, 7, F-16–F-17
presentation unit, 176
preset thresholds, passing, 145
previous screen, returning to, 125
pricing changes, 129
primary programming language, 69
primary reviewers of requirements specification, F-19
principles, regarding requirements specification, 6–7, F-9
priorities, F-40–F-41
prioritizing requirements, 14
priority of a requirement, F-34, F-36, F-39–F-41, F-43
privacy requirements for reports, 166
privileges, 305
privilege types inquiry, 317
problems

distinguishing from solutions, 9
specifying, 6, F-9

procedures manual, documentation requirement, 83
processing abilities, accessibility concerns and, 171,

174, 182
processing load, 215
product mailing list, customers joining, 133
product restarts, need for, 229
production line, non-interference with, 139–140
programming language, 69, 188

progress bar, displaying, 204
project manager, F-3, F-15
proof of existence archiving, 111
prospective installations, scope of, 255
protection of data, 123
prototypes, developing, F-14
pseudo-localization, testing, 271
punctuation, unparochialness and, 259

Q
quality

defining, 192
shutdowns and, 231
as a source of nonfunctional system aspects, F-70
upgrade frequency and, 229

quality standards, 71, F-49
quantity limitations, removing, 241

R
range, expressing frequency as, 23
rationale of a requirement, F-42
readability of a requirement, F-34
rearchiving, 114
recent orders inquiry, 159
recorded event inquiry, 152
recovery of data, 123
refactoring, 239
reference numbering scheme, F-49
referenced requirements, 80–81
referenced specification, 79, 80
references

for calculation formulas, 103
details required, F-50–F-51
to other glossaries, F-44
withholding, F-49

References section of a requirements specification,
14–15, F-49–F-51

Refers to requirement pattern relationship, 32, 33
refer-to-requirements requirement pattern, 79–81
refinement requirements, 35–36
reflective monitoring of throughput, 210
refreshing user interface, 157, 159, 177, 188
regions, installing systems in varied geographic, 255
registering users, 284
registration, process of, 285
regulations

accessibility, 169, 170, 184
data longevity, 107, 109

rejection, during approval process, 320
“Related patterns” in section in requirement pattern, 22
relationships between requirements, F-43
relative volumes for throughput, 205, 206
releases, as independent of priority levels, F-40
relevance of glossary terms, 14, F-45
reliability

of chronicles, 145
system, 231

performance

Z03I623989.fm Page 360 Wednesday, May 16, 2007 3:08 PM

361

reloading of archived data, 116–117
remote access

facilities, 234–235
restricting access to, 311

removing requirements, F-38
renumbering requirements, F-38
reorganizing organizations, 329
repetition, avoiding, 7, F-48
repetitive strain injury, accessibility concerns

and, 171, 174
replay attack on an inter-system interface, 305
replication of hardware, 231
reports

access control, 190
availability, 233
content requirements, 164–165, 190
defined, 189
delivery mechanisms for, 190
designing, 162, 190
dynamic use, 214
format considerations, 167, 190
multiness requirements and, 263
purging, 190
recipients of, 163, 166, 190
scalability requirements and, 245
scheduling of, 190
size limits on, 244
static capacity, 217

report design changes, recording, 149
report design tool, 190
report fee requirement, 335
report instance, 189
report requirement pattern, 161–168
report run request, recording, 149
reporting infrastructure, 31, 155, 189–190
representative configuration values, 141
Request For Comment (RFC) standards, 74
requirements

arguments against specifying, F-4
audiences for, F-3
case for specifying, F-4
compared to requirement patterns, 21
defined, 4, F-2, F-8
grouping by functional area, 41
identifying, 9, F-24
impact of an agile outlook on, F-23
indications of pattern use, 40
introducing a variety into, 41
items given for each, F-36–F-43
lack of confidence in, F-4
levels of detail for, 4, F-3
nonfunctional, F-40
not specifying for an infrastructure, F-66
overall approaches to, 3, F-1
presenting in a specification, F-34
prioritizing, F-39

proportion covered by patterns, 41
putting customer in control, F-5
referencing an infrastructure, F-65
referencing applicable, 80
refinements of the main, 35–36
reflecting business rules, 38
relationships, F-43
removing, F-38
requirement patterns when defining, 39
responsibility for overall organization of, F-27
specifying, 4–5, F-3, F-28, F-64
treating constraints as, F-54
types of, 19
writing down during extreme programming, 10, F-26

requirement definitions, 13, F-33, F-35–F-36, F-42–F-43
Requirement format section, 13–14, F-33–F-43
requirement IDs, 13, F-33

example of, F-35
grouping, F-37
qualities of, F-36–F-43

requirement pattern classifications, 34
requirement pattern domains. See domains
requirement pattern groups, 31–32, 33
requirement pattern use cases, 37–38
requirement priority. See priority of a requirement
requirement summary. See summary description
requirement template, 24, 46–47
requirement patterns. See also specific names of

requirement patterns
access control, 281
applicability of, 24
in association with extreme programming, 10, F-26
benefits of using, 19, 40–41
classifications of, 33–35
commercial, 325
contents of, 21–29
data entity, 119–154
defined, 19
diversity of approaches to, 36–37
drawbacks of, 41
and extreme programming, F-25–F-26
finding candidate, 43–44
flexibility, 239–279
fundamental, 51–84
information, 85–117
misapplying, 41
naming, 21
performance, 191–238
refining, 42
relationships between, 32–38
relationships with domains and infrastructures, 30, 31
during requirement definition, 39
reviewing, 48
sections of, 21
sources of, 20
specifying better in the future, 44
tailoring, 41–42

requirement patterns

Z03I623989.fm Page 361 Wednesday, May 16, 2007 3:08 PM

362

requirement patterns, continued
use cases for, 37–38
user function, 155–190
using after the fact, 40
using and producing, 39–48
using to consider completeness, 40
writing, 21, 42–48

requirements approaches, diversity of, 36
Requirements Management Tools Survey, F-2
requirements process, 7–8, F-12–F-14, F-15
requirements specifications

contents of, 11–18, F-29–F-71
defined, 4, F-2
essential items of information in, F-33
example for infrastructures, F-66
example text for, F-35–F-36
formal and informal parts of, F-11–F-12
for an infrastructure, F-65, F-67
introduction of, F-33
language, 22
organizing, 11, F-29–F-30
reviewing, 8, 40, F-19
as a source of candidate infrastructures, F-64–F-65
suggested structure for, 11, F-29–F-30

requirements-take-too-long argument, F-4
resilience, 57, 58
resource checker utility, 269
resources, managing multiple sets of, 269
response time

evaluating, 203–204
scalability and, 242

response time requirement pattern, 195–204
responsiveness over plan, agile exhortation, F-23
restatement of a formal requirement, F-42
restoring data, 123
restructuring, corporate, 245
revenue model, 331–332
review cycles, F-20–F-21
reviewers, F-19, F-20
reviews, feedback from, 48
Revise after review step, 8, F-20–F-21
RFC (Request For Comment) standards, 74
roles, assigning to users, 285
rolling window, 188
rounding, 103
rule IDs, 100
run time, infrastructures used during, F-63

S
sales tax, 335
sales tax rate, 129
Sarbanes-Oxley Act (SOX), 75
scalability

dynamic capacity and, 212
of an interface, 57
specifying, 205

scalability requirement pattern, 241–246
scaling out, 242
scaling up, 242
scheduling of reports, 190
scope

defined, F-7
of the glossary, F-44
of a glossary definition, F-46
of a glossary term, F-49
of requirement ID uniqueness, F-36–F-37
writing, F-8

scope boundary, 15, F-55, F-56
scope document, F-31–F-32
Scope section of a requirements specification, 15–16,

F-53, F-54–F-58
screen

refreshing, 177, 188
returning to previous, 125

screen focus, accessibility requirements, 179
screen size, accessibility requirements, 179
secondary reviewers, F-19
secret information, identifying users, 298
Section 508 of Rehabilitation Act, 170, 175, 186
sections in a requirement pattern, 21
security

against deliberate shutdowns, 231
archiving for, 110
extendability requirements and, 249, 252
of an interface, 57
outlawing bad practices, 293
requirements for good practices, 287, 292–293
requirements for interfaces, 60–61
requirements for reports, 166
as a source of nonfunctional system aspects, F-70

security breaches, helping users to spot, 298, 301–302
security procedures manual, 83
security risks during installation, 276
security violations, recording, 149
segregated data, 261–262, 269–270, 271
selection criteria

for inquiries, 157, 161
for recorded events, 152

semantic requirements, 178, 186
sender, verifying the identity of, 58, 59
sensitive data, recording access to, 148
sensitive information, 292
sensors, data recorded by, 123
separate requirements specification for a standard,

77–78
separator characters, 88
sequence numbers in templates, 25
sequential numbers, allocating, 99, 101
sequential requirement IDs, 13, F-37
sets of requirements, 20
severity level, 145, 150, 152–153
shutdowns, 225, 232. See also failures
“sign off” of requirements, F-21

requirements approaches, diversity of

Z03I623989.fm Page 362 Wednesday, May 16, 2007 3:08 PM

363

signed numbers, data type, 87
simple data type, IDs as, 97
simplicity of identifiers, 98
simplification of transactions, 135
simultaneous customer capacity, 213
single requirement for standards compliance, 77
single site, installing system in, 255
sites, scaling number of, 245
sizing model, 195, 211, 216
skeleton pattern, 45
software

for archiving, 116
availability issues related to, 226
changing at both ends of an interface, 59, 60
data types represented in, 94
for drivers, 251–252
extending using, 246
over documentation, agile exhortation, 8, F-23
performance targets for, 192–193
recording changes, 149
scalability requirements and, 245
for system integrity monitoring, 236
writing to support documentation, 83

software download
accessibility concerns, 177
need for, 188

solutions
distinguishing problems from, 9
formulating based on requirements, F-8
not specifying in requirements, 6, F-9

sort order for IDs, 99
sort sequence for inquiries, 157
sound, accessibility concerns and, 171, 174, 181–182
sound alerts, 182
sounds, 123
source code

commenting, 84
documentation, 83, 84
for driver software, 252

SOX (Sarbanes-Oxley Act), 75
specific authorization, 281, 282
specific authorization requirement pattern, 47, 308–313
specific needs for accessibility, 168, 169, 172,

174–175, 178–182
specific privileges, 305
specifications, purpose of, F-2
spelling notes in a glossary, F-47
splitting a requirement pattern in two, 46–47
spreadsheets of mind-boggling complexity, 332
stale user sessions, 213, 215
standards

categories of, 71–72
complying with multiple versions, 72–73
complying with parts of, 73
contents of requirements mandating, 73–74
defined, 71

defining an interface, 55
development considerations, 78–79
for documentation, 82
examples of, 74–77
location of, 74
making accessible, 78
multiple different for the same thing, 72–73
names of, 73
purposes of, 73
as a source of nonfunctional system aspects, F-70
specifying that a system comply with, 71
technology and, 66
testing considerations, 79
versions of, 73

standard patterns, agreement on, 36
standard-related requirements, prioritizing, 78
state transition diagram, 17, F-62–F-63
static capacity requirement pattern, 47, 215–217
statistical functions for viewing chronicles, 152
statistics on requirements for a system, 33–34
stopwatch, recording response times, 203
storage medium for archiving, 112
strategic stratosphere, report design and, 163
“strikethrough” text, F-38
style sheet, 177
subcalculations, in a calculation formula, 103, 106
subtotals on reports, 166
subtransactions, 134
suffix, adding to a previous requirement ID, F-38
suggestions, resolving conflicting, F-21
suitability conditions, 256
summary description, 14, F-34, F-36, F-41
support, accessible, 184
surreptitious unavailability, 221, 224–225, 238
switching time transaction, 200
systems

accommodating old and new interface versions, 59, 60
activities in building new, 5, F-6
availability window of, 208, 219
defined, 4, F-1
describing purpose of, F-31
difficulty of migrating from old, F-58
driver type requirements for, 250–251
at each end of an interface, 55
human being as part of, 171
load on, reducing, 214, 215, 245
monitoring response times within, 202–203
popular times for using, 208
reliability of, 231
replacing existing, F-58
specifying, 6, F-10

system activity inquiry, 143
system building, specificity of, 254
system capacity. See dynamic capacity; static capacity
system clock, data longevity and, 109
system configuration. See configuration

system configuration

Z03I623989.fm Page 363 Wednesday, May 16, 2007 3:08 PM

364

system context diagram. See context diagrams
system defects, testing for, 238
system design, documentation requirement, 83
system designer, F-15
system events, recording significant, 148
system expansion, allowing for. See scalability
system failures, minimizing, 225
system flexibility. See flexibility
system glossary. See glossary
system gone live state, 143
system information, viewing of, 160
system monitor, requirements for, 234
system operation efforts, non-growth in, 244
system performance, 193
system processing state, 143
System Purpose section in requirements specification,

12, F-31–F-32
system resources, freeing up, 214
system threshold, passing of defined, 148
system unavailable page, 224
systematic approach to capturing patterns, 43
system-generated passwords, no access via, 293
systemwide configuration values, 138, 139

T
table, distinguishing a list of requirements, F-34, F-35
taxes, 330–331
“TBD” paragraphs, removing, F-54
teams, splitting development between multiple, 54
technical data types, 86
technical standards, 71, 72, 76–77
technology

constraints on the user interface, 188
defined, 65
description of, 66
development considerations, 70
examples of, 68–69
for an interface, 55
specifying to build or run a system, 65
usage of, 67
used in development, 66
for user interface infrastructure, 187
versions of, 67
working with a range of, 67
working with multiple, 70

technology requirement pattern, 65–70
telephone numbers, data type 92, 259
templates section of a requirement pattern, 21, 24–25
temporal parochialness, 256, 257
temporary dispensation from compliance to

a standard, 73
terminology, variation in, 260
terms

choosing new, F-45–F-46
establishing the meaning of, F-44
in a glossary, 14, F-45

listing alphabetically in a glossary, F-48
of local scope, F-46

test system for external developers interface software, 61
testers, 47, 48, F-15
testing

acceptance, 9, F-25
accessibility, 186
availability, 238
calculation formula, 106–107
chronicle, 153
configuration, 144
considerations for, 29
considerations for interfaces, 65
data archiving, 117
data longevity, 109–110
data structure, 96
data types, 94
of documentation, 84
dynamic capacity, 215
extendability, 253
flexibility, 240
ID, 101
inquiries, 161
of interfaces, 62
living entities, 133, 144
report, 167–168
response time, 204
scalability, 246
static capacity, 217
technology requirements demands on, 70
throughput, 211
transactions, 138
unparochialness, 260–261
using patterns during, 40

testing regime, F-27
tests

exclusions and, F-60
using requirements, F-3

text
display, accessibility requirements, 179, 184
equivalent of cosmetic script, 181
not burying in code, 269

theme
introduction explaining, 30
for a new domain, 44
of patterns in a domain, 29, 32

third-party interface development, 57, 61
third-party system, interfacing to, 54
threshold rates for fees, 333
throughput of an interface, 57
throughput requirement pattern, 204–211
throughput targets

CPU cycle rate and, 207
for inter-system interface, 206
justification for, 209
purpose of, 205
selecting, 205, 206

system context diagram

Z03I623989.fm Page 364 Wednesday, May 16, 2007 3:08 PM

365

timeframe for, 208, 209
transactions as, 206

tiered rates for fees, 333
time, 89–90

of system use, 208
systemwide aspects of, 93

time limits for data longevity, 108
time periods, measuring, 337
time, response. See response time
time to detect (availability), 232–234
time to fix (availability), 232, 235–237
time to react (availability), 232, 234–235
time zones, 90, 93, 133, 259
timed changes, 127–128, 129
timed responses, control of, 177
timeless requirements specification, 6, F-11, F-56
timestamps, 88, 90, 92, 153
title for each reference, F-50
“To Be Done” (TBD) paragraph format, F-18
top-level sections of requirements specification, F-29–F-30
totaling levels for reports, 165, 166
traceability, ID facilitating, F-35
traditional approach, 3, F-6

to specifying requirements, 7–8, F-1–F-2, F-12–F-22
traditional documentation, 84
traffic verification and recording, 57, 58–59, 60–61
training for installation, 277
transactions

determining origin of, 206
integrity of, 126
multiness of, 264
requirement pattern for, 133–138
restoring offline, 117
steps in, 125
switching time, 200
as throughput target, 206

transaction data scalability, 244
transaction fee requirement, 334
transaction monitor, 154
transaction number, 125
transaction requirement pattern, 133–138
transference of restrictions, 308, 312
transitions, state, 17, F-62
troubleshooting installation, 276

U
U.K. Data Protection Act (1998), 75, 292
U.K. Disability Discrimination Act, 170
UML (Unified Modeling Language) standard, 74
unaddable amounts, not sorting on, 270
unaddable data, 262, 270, 271
unapproved actions, storing, 323
unavailability, surreptitious, 221, 224–225, 238
unavailability window, 219
undecipherable form of passwords, 292
Unified Modeling Language (UML) standard, 74

uninstalling, 277, 279
unique identifiers, 98–99

for requirements, 13, F-33, F-36–F-37
scheme for assigning, 97

unique interface IDs, 52
unit IDs for organizations, 329
units, associated with values, 87
Universal Time Co-ordinated (UTC), 90, 92
unknown information, 160
unpaid fees, tracking, 336
unparochialness

content requirements, 256
examples of, 257
extra requirements for, 257–260
specifying, 254–255
templates for, 256
testing, 260–261

unparochialness requirement pattern, 254–261
unsigned numbers, data type, 87
upgrade from any previous version requirement, 277
upgrade instructions, documentation requirement, 83
upgrade requirements for an interface, 59–61
upgrades

as downtime, 225
duration of, 230
frequency of, 229–230
preparation for, 230
scalability requirements and, 245
testing, 278
uninstalling, 277

upgrading, 276
of an interface, 57
specifying requirements for, 277
by versions, 278

urgency of a requirement, F-39
U.S. Rehabilitation Act, Section 508, 170, 175, 186
usability, 168, 169, 175, 185, F-70. See also accessibility
use cases

compared to user stories, F-24
defined, F-13
for requirement patterns, 37–38
writing, F-13–F-14

use case diagram, F-13
users

allocating IDs to, 99
availability of system to. See availability
behavior of, 212–213
counting dynamic, 213
forcibly ejecting, 214
geographic distribution of, 209
limiting number of, 214
number of active, 149
with specific needs, 168, 169, 172, 174–175, 183–184.

See also accessibility
as system, 171
wait time warnings for, 203

users

Z03I623989.fm Page 365 Wednesday, May 16, 2007 3:08 PM

366

user access state, specifying, 143
user access via Web browser, 68
user accountability, 282
user actions, 147, 148
user authentication, described, 281, 282
user authentication requirement pattern, 295–305
user authorization

described, 281, 282
inquiry requirement, 317

user authorization requirement pattern, 305–307
user classes, 285
user colors, accessibility requirements, 180
user de-registration, 287, 290
user experiences, distinct, 261, 267–269
user function domain, 29
user function requirement pattern, 155–190
user IDs, requirement for no special, 293
user interfaces

allowing user to adjust to, 175
capabilities, 187, 188
inter-system interface requirement pattern not used

for, 52
multiness in, 267
semantic requirements, 178, 186
tailoring for specific needs, 183–184

user interface designer, F-15
user interface infrastructure, 155, 187–189
user preferences, 132–133
user registration, 281, 282
user registration requirement pattern, 284–295
user response time, 196, 201
user roles, 15, 316, F-55
user sessions

allocating, 214
created by authentication, 296
ending, 298, 300–301
viewing, 298, 303–304

user stories, 9, 10, F-24, F-26
user times per time zone, 93
user-accessible information, viewing of, 160
users

blocking, 298, 302–303
details about, 285
performing their own registration, 284
protection of, 298, 301
registering, 284
special processes for new, 287, 293–294

UTC (Universal Time Co-ordinated), 90, 92

V
valid interactions, testing for an interface, 65
values

allowed, list of, 88
of requirement patterns, 20, 45

variables, 103, 195

variants of a requirement pattern, 22
versions

required for an upgrade, 277
of a requirement pattern, 22
of technology, 67

version history, F-51, F-53
version numbers

in the document history, F-51
of patterns, 22
of references, F-50
strategies for, F-52–F-53

viewing
archived data, 114, 115–116
of systemwide information, 160

vision, accessibility concerns and, 171, 173–174,
178–181

visual cue for audio alert, 182
visually distinct requirements, F-34
voice use, accessibility concerns, 171, 174
Voluntary Product Accessibility Template (VPAT), 184

W
waiving a fee, 335
warnings about wait times, 203
waterfall approach to software development, F-6
Web browsers, 68, 188
Web content accessibility guidelines, 170
Web page display time, 200
Web pages, 123
Web site availability requirements, 223
“what changed” section of a document history, F-52
whole numbers, data type, 87
whole system, requirements for, 20
window, rolling, 188
window size, accessibility requirements, 179
Windows operating system, specifying, 69
Windows Vista password complexity requirements, 288
Word, specifying documentation in, 69
word processor table, presenting requirements with, F-34
World Wide Web Consortium, 74
Write draft requirements specification step, 8, F-18–F-19

X
X.509 standard, 76
XP. See extreme programming

Y
Y2K problem, 89, 256
year

date storage by, 90
financial, 259
interest days in, 105

yes or no data type (Boolean), 88

user access state, specifying

Z03I623989.fm Page 366 Wednesday, May 16, 2007 3:08 PM

About the Author
Stephen Withall has been working as
a software professional since 1979,
in a range of roles from programmer to
chief technical officer. Along the way,
he has accumulated many years
experiencing both the satisfactions
and the frustrations of business analysis,
systems analysis, and specifying
requirements. He has worked in diverse
environments in companies big and
small, in 17 countries across four
continents. The first half of his career
found him roaming the world of
banking and finance, and the second
half (so far) in diverse kinds of e-commerce. He actively maintains his hands-on software
development skills.

Stephen holds a BSc in Mathematical Sciences from Bristol University, U.K. He lives in
Sydney, Australia, and he enjoys going to places where few others are. You can reach him
at http://www.withallyourequire.com.

Z04A623989.fm Page 1 Thursday, May 10, 2007 12:39 PM

	Table of Contents
	Foreword
	Preface
	Chapter 3. Requirement Pattern Concepts
	Index

