

Inside Microsoft
®
 SQL

Server
™
 2005: The

Storage Engine

Kalen Delaney
(Solid Quality Learning)

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/7436.aspx

9780735621053
Publication Date: October 2006

Table of Contents
Foreword . xv

Acknowledgments . xvii

Introduction . xxi

1 Installing and Upgrading to SQL Server 2005 .1

SQL Server 2005 Prerequisites. 2

SQL Server 2005 Editions . 3

Software Requirements. 4

Hardware Requirements . 5

Pre-Installation Decisions . 7

Security and the User Context . 7

Characters and Collation . 9

Sort Orders . 11

Installing Multiple Instances of SQL Server . 15

Installing Named Instances of SQL Server . 16

Getting Ready to Install . 18

SQL Server 2005 Upgrade Advisor . 18

To Migrate or Upgrade? . 20

Migrating . 20

Upgrading. 21

Selecting Components . 25

SQL Server Database Services (Database Engine) . 26

Analysis Services . 27

Reporting Services. 27

Notification Services . 27

Integration Services. 27

Workstation Components, Books Online, and Development Tools. 27

Summary. 28
vii

What do you think of this book?
We want to hear from you!

Microsoft is interested in hearing your feedback about this publication so we can
continually improve our books and learning resources for you. To participate in a brief
online survey, please visit: www.microsoft.com/learning/booksurvey/

viii Table of Contents
2 SQL Server 2005 Architecture . 29
Components of the SQL Server Engine . 29

Observing Engine Behavior . 30
Protocols . 31

The Relational Engine . 33

The Storage Engine . 35
The SQLOS . 39

Memory. 49

The Buffer Pool and the Data Cache . 50
Access to In-Memory Data Pages . 50

Managing Pages in the Data Cache . 51

Checkpoints . 53
Managing Memory in Other Caches . 54

Sizing Memory . 56

Sizing the Buffer Pool . 56
Final Words . 63

3 SQL Server 2005 Configuration . 65
Using SQL Server Configuration Manager . 65

Configuring Network Protocols . 65

Default Network Configuration . 66

Managing Services . 67

System Configuration. 67

Task Management. 67

Resource Allocation . 68

System Paging File Location . 69

Nonessential Services . 69

Network Protocols . 69

Compatibility with Earlier Versions of SQL Server . 69

Trace Flags . 70

SQL Server Configuration Settings. 70

The Default Trace . 83

Final Words . 85

Table of Contents ix
4 Databases and Database Files . 87
System Databases . 88

master . 88
model . 89

tempdb . 89

mssqlsystemresource . 89
msdb . 90

Sample Databases. 90

AdventureWorks . 91
pubs . 91

Northwind . 91

Database Files . 92
Creating a Database . 94

A CREATE DATABASE Example . 96

Expanding or Shrinking a Database. 97
Automatic File Expansion . 97

Manual File Expansion . 97

Fast File Initialization . 98
Automatic Shrinkage . 98

Manual Shrinkage . 98

Using Database Filegroups . 101
The Default Filegroup . 101

A FILEGROUP CREATION Example. 103

Altering a Database . 104
ALTER DATABASE Examples . 105

Databases Under the Hood. 106

Space Allocation . 106

Checking Database Consistency . 109
Setting Database Options . 115

State Options. 117

Cursor Options . 122
Auto Options. 123

SQL Options . 124

Database Recovery Options . 125
Other Database Options . 127

x Table of Contents
Database Snapshots. 127

Creating a Database Snapshot. 127
Space Used by Database Snapshots . 130

Managing Your Snapshots . 131

The tempdb Database . 132
Objects in tempdb . 132

Optimizations in tempdb . 134

Best Practices . 135
tempdb Space Monitoring . 136

Database Security . 137

Database Access. 138
Managing Database Security . 140

Databases vs. Schemas . 140

Separation of Principals and Schemas . 141
Default Schemas . 141

Moving or Copying a Database. 142

Detaching and Reattaching a Database. 143
Backing Up and Restoring a Database . 144

Moving System Databases . 145

Moving the master Database and Resource Database 146
Compatibility Levels . 147

Summary . 148

5 Logging and Recovery . 149
Transaction Log Basics. 149

Phases of Recovery . 152

Changes in Log Size. 154

Virtual Log Files . 154
Observing Virtual Log Files . 155

Automatic Truncation of Virtual Log Files . 157

Maintaining a Recoverable Log. 158
Automatic Shrinking of the Log . 160

Log File Size . 161

Reading the Log. 162

Table of Contents xi
Backing Up and Restoring a Database . 162

Types of Backups . 163
Recovery Models . 164

Choosing a Backup Type . 167

Restoring a Database . 168
Summary . 174

6 Tables . 175
System Objects . 176

Compatibility Views . 176

Catalog Views . 178

Other Metadata . 180
Creating Tables . 183

Naming Tables and Columns . 183

Reserved Keywords . 184
Delimited Identifiers . 185

Naming Conventions . 186

Data Types . 186
Much Ado About NULL. 195

User-Defined Data Types . 198

CLR Data Types . 200
IDENTITY Property . 200

Internal Storage . 203

The sys.indexes Catalog View . 204
Data Storage Metadata . 205

Data Pages. 209

Examining Data Pages . 211

The Structure of Data Rows . 215
Column Offset Arrays. 217

Storage of Fixed-Length Rows . 217

Storage of Variable-Length Rows. 221
Page Linkage. 224

Row-Overflow Data . 224

Large Object Data . 228
Storage of varchar(MAX) Data . 233

Storage of sql_variant Data. 234

xii Table of Contents
Constraints . 237

Constraint Names and Catalog View Information . 238
Constraint Failures in Transactions and Multiple-Row
Data Modifications . 241

Altering a Table . 242

Changing a Data Type . 242
Adding a New Column . 243

Adding, Dropping, Disabling, or Enabling a Constraint 243

Dropping a Column. 244
Enabling or Disabling a Trigger . 245

Internals of Altering Tables. 245

Summary . 248

7 Index Internals and Management . 249
Index Organization . 250

Clustered Indexes. 252
Nonclustered Indexes . 253

Creating an Index. 254

Included Columns . 257
Index Placement . 257

Constraints and Indexes . 258

The Structure of Index Pages . 259
Clustered Index Rows with a Uniqueifier . 262

Index Row Formats . 266

Index Space Requirements . 275
B-Tree Size . 275

Actual vs. Estimated Size . 276

Special Indexes . 280

Prerequisites . 280
Indexes on Computed Columns . 282

Indexed Views . 285

Table and Index Partitioning . 288
Partition Functions and Partition Schemes . 288

Metadata for Partitioning. 290

Partition Power. 293

Table of Contents xiii
Data Modification Internals . 296

Inserting Rows. 296
Splitting Pages . 296

Deleting Rows . 300

Updating Rows . 306
Table-Level vs. Index-Level Data Modification . 311

Logging . 313

Locking. 313
Managing Indexes . 314

ALTER INDEX . 314

Types of Fragmentation. 315
Removing Fragmentation . 322

Rebuilding an Index . 325

Using Indexes . 329
Looking for Rows . 329

Joining . 329

Sorting . 329
Grouping . 329

Maintaining Uniqueness . 330

Summary . 330

8 Locking and Concurrency . 331
Concurrency Models . 332

Pessimistic Concurrency . 332
Optimistic Concurrency. 332

Transaction Processing. 332

ACID Properties . 333

Isolation Levels . 336
Locking. 340

Locking Basics . 340

Spinlocks . 341
Lock Types for User Data. 341

Lock Modes . 342

Lock Granularity . 345
Lock Duration . 354

Lock Ownership . 354

Viewing Locks . 355
Locking Examples . 358

xiv Table of Contents
What do you think of this book?
We want to hear from you!

Microsoft is interested in hearing your feedback about this publication so we can
continually improve our books and learning resources for you. To participate in a brief
online survey, please visit: www.microsoft.com/learning/booksurvey/

Lock Compatibility . 364

Internal Locking Architecture. 365
Lock Partitioning . 367

Lock Blocks . 368

Lock Owner Blocks . 370
syslockinfo Table. 370

Bound Connections . 372

Using Bound Connections . 372
Multiple Active Result Sets . 374

Row-Level Locking vs. Page-Level Locking . 374

Lock Escalation. 375
Deadlocks . 377

Row Versioning. 381

Overview of Row Versioning . 382
Row Versioning Details . 382

Snapshot-Based Isolation Levels . 383

Choosing a Concurrency Model . 402
Other Features That Use Row Versioning. 404

Triggers and Row Versioning . 404

MARS and Row Versioning. 405
Controlling Locking . 407

Lock Hints . 407

Summary . 411

Index . 413

Chapter 2

SQL Server 2005 Architecture

In this chapter:

Components of the SQL Server Engine .29

Memory. .49

Final Words .63

Throughout this book, I’ll drill down into the details of specific features of the Microsoft SQL
Server Database Engine. In this chapter, you’ll get a high-level view of the components of that
engine and how they work together. My goal is to help you understand how the topics covered
in subsequent chapters fit into the overall operations of the engine.

In this chapter, however, I’ll dig deeper into one big area of the SQL Server engine that isn’t
covered later: the SQL operating system (SQLOS) and, in particular, the components related
to memory management and scheduling.

Components of the SQL Server Engine
Figure 2-1 shows the general architecture of SQL Server, which has four major components
(three of whose subcomponents are listed): protocols, the relational engine (also called the
Query Processor), the storage engine, and the SQLOS. Every batch submitted to SQL Server
for execution, from any client application, must interact with these four components. (For
simplicity, I’ve made some minor omissions and simplifications and ignored certain “helper”
modules among the subcomponents.)

The protocol layer receives the request and translates it into a form that the relational engine
can work with, and it also takes the final results of any queries, status messages, or error
messages and translates them into a form the client can understand before sending them back
to the client. The relational engine layer accepts SQL batches and determines what to do with
them. For Transact-SQL queries and programming constructs, it parses, compiles, and
optimizes the request and oversees the process of executing the batch. As the batch is
executed, if data is needed, a request for that data is passed to the storage engine. The storage
engine manages all data access, both through transaction-based commands and bulk
operations such as backup, bulk insert, and certain DBCC (Database Consistency Checker)
commands. The SQLOS layer handles activities that are normally considered to be operating
system responsibilities, such as thread management (scheduling), synchronization primitives,
deadlock detection, and memory management, including the buffer pool.
29

30 Inside Microsoft SQL Server 2005: The Storage Engine
Figure 2-1 The major components of the SQL Server database engine

Observing Engine Behavior

SQL Server 2005 introduces a suite of new system objects that allow developers and database
administrators to observe much more of the internals of SQL Server than before. These
metadata objects are called dynamic management views (DMVs) and dynamic management
functions (DMFs). You can access them as if they reside in the new sys schema, which exists
in every SQL Server 2005 database, but they are not real objects. They are similar to the
pseudo-tables used in SQL Server 2000 for observing the active processes (sysprocesses) or
the contents of the plan cache (syscacheobjects). However, the pseudo-tables in SQL Server
2000 do not provide any tracking of detailed resource usage and are not always directly usable
to detect resource problems or state changes. Some of the DMVs and DMFs do allow tracking
of detailed resource history, and there are more than 80 such objects that you can directly
query and join with SQL SELECT statements. The DMVs and DMFs expose changing server
state information that might span multiple sessions, multiple transactions, and multiple user
requests. These objects can be used for diagnostics, memory and process tuning, and
monitoring across all sessions in the server.

SQLOS API

Transaction Services

Lock Manager

File Manager

Buffer Manager

Synchronization
Services

Storage Engine

Utilities:
Bulk Load DBCC
Backup/Restore

Access Methods
Managers for:

Row Operations
Indexes
Pages
Allocations
Versions

Deadlock Monitor

Resource Monitor

Lazy Writer

Scheduler Monitor

SQ
LO

S H
osting

 A
PI

Buffer
Pool Memory Manager

Lock ManagerSQLOS

= thread

I/O

Protocols

SQ
LO

S A
P

I

Query Processor

Parser Optimizer
SQL

Manager
Database
Manager

Query
Executor

Extern
al C

o
m

p
o

n
en

ts (C
LR

/M
D

A
C

)Scheduling

Chapter 2 SQL Server 2005 Architecture 31
The DMVs and DMFs aren’t based on real tables stored in database files but are based on
internal server structures, some of which I’ll discuss in this chapter. I’ll discuss further details
about the DMVs and DMFs in various places in this book, where the contents of one or more
of the objects can illuminate the topics being discussed. The objects are separated into several
categories based on the functional area of the information they expose. They are all in the sys
schema and have a name that starts with dm_, followed by a code indicating the area of the
server with which the object deals. The main categories I’ll address are:

■ dm_exec_* Contains information directly or indirectly related to the execution of user
code and associated connections. For example, sys.dm_exec_sessions returns one row per
authenticated session on SQL Server. This object contains much of the same informa-
tion that sysprocesses contains in SQL Server 2000 but has even more information
about the operating environment of each sessions.

■ dm_os_* Contains low-level system information such as memory, locking, and
scheduling. For example, sys.dm_os_schedulers is a DMV that returns one row per
scheduler. It is primarily used to monitor the condition of a scheduler or to identify
runaway tasks.

■ dm_tran_* Contains details about current transactions. For example,
sys.dm_tran_locks returns information about currently active lock resources. Each row
represents a currently active request to the lock management component for a lock that
has been granted or is waiting to be granted. This object replaces the pseudo table
syslockinfo in SQL Server 2000.

■ dm_io_* Keeps track of input/output activity on network and disks. For example, the
function sys.dm_io_virtual_file_stats returns I/O statistics for data and log files. This
object replaces the table-valued function fn_virtualfilestats in SQL Server 2000.

■ dm_db_* Contains details about databases and database objects such as indexes. For
example, sys.dm_db_index_physical_stats is a function that returns size and fragmenta-
tion information for the data and indexes of the specified table or view. This function
replaces DBCC SHOWCONTIG in SQL Server 2000.

SQL Server 2005 also has dynamic management objects for its functional components; these
include objects for monitoring full-text search catalogs, service broker, replication, and the
common language runtime (CLR).

Now let’s look at the major SQL Server engine modules.

Protocols

When an application communicates with the SQL Server Database Engine, the application
programming interfaces (APIs) exposed by the protocol layer formats the communication

32 Inside Microsoft SQL Server 2005: The Storage Engine
using a Microsoft-defined format called a tabular data stream (TDS) packet. There are
Net-Libraries on both the server and client computers that encapsulate the TDS packet inside
a standard communication protocol, such as TCP/IP or Named Pipes. On the server side of
the communication, the Net-Libraries are part of the Database Engine, and that protocol layer
is illustrated in Figure 2-1. On the client side, the Net-Libraries are part of the SQL Native
Client. The configuration of the client and the instance of SQL Server determine which proto-
col is used.

SQL Server can be configured to support multiple protocols simultaneously, coming from
different clients. Each client connects to SQL Server with a single protocol. If the client
program does not know which protocols SQL Server is listening on, you can configure the
client to attempt multiple protocols sequentially. In Chapter 3, I’ll discuss how you can
configure your machine to use one or more of the available protocols. The following protocols
are available:

■ Shared Memory The simplest protocol to use, with no configurable settings. Clients
using the Shared Memory protocol can connect only to a SQL Server instance running
on the same computer, so this protocol is not useful for most database activity. Use this
protocol for troubleshooting when you suspect that the other protocols are configured
incorrectly. Clients using MDAC 2.8 or earlier cannot use the Shared Memory protocol.
If such a connection is attempted, the client is switched to the Named Pipes protocol.

■ Named Pipes A protocol developed for local area networks (LANs). A portion of
memory is used by one process to pass information to another process, so that the
output of one is the input of the other. The second process can be local (on the same
computer as the first) or remote (on a networked computer).

■ TCP/IP The most widely used protocol over the Internet. TCP/IP can communicate
across interconnected networks of computers with diverse hardware architectures and
operating systems. It includes standards for routing network traffic and offers advanced
security features. Enabling SQL Server to use TCP/IP requires the most configuration
effort, but most networked computers are already properly configured.

■ Virtual Interface Adapter (VIA) A protocol that works with VIA hardware. This is a
specialized protocol; configuration details are available from your hardware vendor.

Tabular Data Stream Endpoints

 SQL Server 2005 also introduces a new concept for defining SQL Server connections: the
connection is represented on the server end by a TDS endpoint. During setup, SQL Server
creates an endpoint for each of the four Net-Library protocols supported by SQL Server, and
if the protocol is enabled, all users have access to it. For disabled protocols, the endpoint still
exists but cannot be used. An additional endpoint is created for the dedicated administrator
connection (DAC), which can be used only by members of the sysadmin fixed server role. (I’ll
discuss the DAC in more detail shortly.)

Chapter 2 SQL Server 2005 Architecture 33
The Relational Engine

As mentioned earlier, the relational engine is also called the query processor. It includes the
components of SQL Server that determine exactly what your query needs to do and the best
way to do it. By far the most complex component of the query processor, and maybe even of
the entire SQL Server product, is the query optimizer, which determines the best execution
plan for the queries in the batch. The optimizer is discussed in great detail in Inside Microsoft
SQL Server 2005: Query Tuning and Optimization; in this section, I’ll give you just a high-level
overview of the optimizer, as well as of the other components of the query processor.

The relational engine also manages the execution of queries as it requests data from the
storage engine and processes the results returned. Communication between the relational
engine and the storage engine is generally in terms of OLE DB row sets. (Row set is the OLE
DB term for a result set.) The storage engine comprises the components needed to actually
access and modify data on disk.

The Command Parser

The command parser handles Transact-SQL language events sent to SQL Server. It checks for
proper syntax and translates Transact-SQL commands into an internal format that can be
operated on. This internal format is known as a query tree. If the parser doesn’t recognize the
syntax, a syntax error is immediately raised that identifies where the error occurred. However,
non-syntax error messages cannot be explicit about the exact source line that caused the
error. Because only the command parser can access the source of the statement, the statement
is no longer available in source format when the command is actually executed.

The Query Optimizer

The query optimizer takes the query tree from the command parser and prepares it for
execution. Statements that can’t be optimized, such as flow-of-control and DDL commands,
are compiled into an internal form. The statements that are optimizable are marked as such
and then passed to the optimizer. The optimizer is mainly concerned with the DML statement
SELECT, INSERT, UPDATE, and DELETE, which can be processed in more than one way, and
it is the optimizer’s job to determine which of the many possible ways is the best. It compiles
an entire command batch, optimizes queries that are optimizable, and checks security. The
query optimization and compilation result in an execution plan.

The first step in producing such a plan is to normalize each query, which potentially breaks
down a single query into multiple, fine-grained queries. After the optimizer normalizes a
query, it optimizes it, which means it determines a plan for executing that query. Query
optimization is cost based; the optimizer chooses the plan that it determines would cost the
least based on internal metrics that include estimated memory requirements, CPU utilization,
and number of required I/Os. The optimizer considers the type of statement requested,
checks the amount of data in the various tables affected, looks at the indexes available for

34 Inside Microsoft SQL Server 2005: The Storage Engine
each table, and then looks at a sampling of the data values kept for each index or column
referenced in the query. The sampling of the data values is called distribution statistics. (I’ll
discuss this topic further in Chapter 7.) Based on the available information, the optimizer
considers the various access methods and processing strategies it could use to resolve a query
and chooses the most cost-effective plan.

The optimizer also uses pruning heuristics to ensure that optimizing a query doesn’t take
longer than it would take to simply choose a plan and execute it. The optimizer doesn’t
necessarily do exhaustive optimization. Some products consider every possible plan and then
choose the most cost-effective one. The advantage of this exhaustive optimization is that the
syntax chosen for a query will theoretically never cause a performance difference, no matter
what syntax the user employed. But with a complex query, it could take much longer to
estimate the cost of every conceivable plan than it would to accept a good plan, even if not the
best one, and execute it.

After normalization and optimization are completed, the normalized tree produced by those
processes is compiled into the execution plan, which is actually a data structure. Each
command included in it specifies exactly which table will be affected, which indexes will
be used (if any), which security checks must be made, and which criteria (such as equality
to a specified value) must evaluate to TRUE for selection. This execution plan might be
considerably more complex than is immediately apparent. In addition to the actual
commands, the execution plan includes all the steps necessary to ensure that constraints are
checked. Steps for calling a trigger are slightly different from those for verifying constraints.
If a trigger is included for the action being taken, a call to the procedure that comprises the
trigger is appended. If the trigger is an instead-of trigger, the call to the trigger’s plan replaces
the actual data modification command. For after triggers, the trigger’s plan is branched to
right after the plan for the modification statement that fired the trigger, before that modifica-
tion is committed. The specific steps for the trigger are not compiled into the execution plan,
unlike those for constraint verification.

A simple request to insert one row into a table with multiple constraints can result in an
execution plan that requires many other tables to also be accessed or expressions to be
evaluated. In addition, the existence of a trigger can cause many additional steps to be
executed. The step that carries out the actual INSERT statement might be just a small part of
the total execution plan necessary to ensure that all actions and constraints associated with
adding a row are carried out.

The SQL Manager

The SQL manager is responsible for everything related to managing stored procedures and
their plans. It determines when a stored procedure needs recompilation, and it manages the
caching of procedure plans so that other processes can reuse them.

Chapter 2 SQL Server 2005 Architecture 35
The SQL manager also handles autoparameterization of queries. In SQL Server 2005, certain
kinds of ad hoc queries are treated as if they were parameterized stored procedures, and query
plans are generated and saved for them. SQL Server can save and reuse plans in several other
ways, but in some situations using a saved plan might not be a good idea. For details on
autoparameterization and reuse of plans, see Inside Microsoft SQL Server 2005: Query Tuning
and Optimization.

The Database Manager

The database manager handles access to the metadata needed for query compilation and
optimization, making it clear that none of these separate modules can be run completely
separately from the others. The metadata is stored as data and is managed by the storage
engine, but metadata elements such as the datatypes of columns and the available indexes on
a table must be available during the query compilation and optimization phase, before actual
query execution starts.

The Query Executor

The query executor runs the execution plan that the optimizer produced, acting as a dis-
patcher for all the commands in the execution plan. This module steps through each com-
mand of the execution plan until the batch is complete. Most of the commands require
interaction with the storage engine to modify or retrieve data and to manage transactions and
locking.

The Storage Engine

The SQL Server storage engine has traditionally been considered to include all the compo-
nents involved with the actual processing of data in your database. SQL Server 2005 separates
out some of these components into a module called the SQLOS, which I’ll describe shortly.
In fact, the SQL Server storage engine team at Microsoft actually encompasses three areas:
access methods, transaction management, and the SQLOS. For the purposes of this book, I’ll
consider all the components that Microsoft does not consider part of the SQLOS to be part of
the storage engine.

Access Methods

When SQL Server needs to locate data, it calls the access methods code. The access methods
code sets up and requests scans of data pages and index pages and prepares the OLE DB
row sets to return to the relational engine. Similarly when data is to be inserted, the access
methods code can receive an OLE DB row set from the client. The access methods code
contains components to open a table, retrieve qualified data, and update data. The access
methods code doesn’t actually retrieve the pages; it makes the request to the buffer manager,
which ultimately serves up the page in its cache or reads it to cache from disk. When the scan
starts, a look-ahead mechanism qualifies the rows or index entries on a page. The retrieving of
rows that meet specified criteria is known as a qualified retrieval. The access methods code

36 Inside Microsoft SQL Server 2005: The Storage Engine
is employed not only for queries (selects) but also for qualified updates and deletes (for
example, UPDATE with a WHERE clause) and for any data modification operations that need
to modify index entries.

The Row and Index Operations You can consider row and index operations to be compo-
nents of the access methods code because they carry out the actual method of access. Each
component is responsible for manipulating and maintaining its respective on-disk data
structures—namely, rows of data or B-tree indexes, respectively. They understand and manip-
ulate information on data and index pages.

 The row operations code retrieves, modifies, and performs operations on individual rows. It
performs an operation within a row, such as “retrieve column 2” or “write this value to column
3.” As a result of the work performed by the access methods code, as well as by the lock and
transaction management components (discussed shortly), the row is found and appropriately
locked as part of a transaction. After formatting or modifying a row in memory, the row
operations code inserts or deletes a row. There are special operations that the row operations
code needs to handle if the data is a Large Object (LOB) datatype—text, image, or ntext—or if
the row is too large to fit on a single page and needs to be stored as overflow data. We’ll look
at the different types of page storage structures in Chapter 6.

The index operations code maintains and supports searches on B-trees, which are used for
SQL Server indexes. An index is structured as a tree, with a root page and intermediate-level
and lower-level pages (or branches). A B-tree groups records that have similar index keys,
thereby allowing fast access to data by searching on a key value. The B-tree’s core feature is its
ability to balance the index tree. (B stands for balanced.) Branches of the index tree are spliced
together or split apart as necessary so the search for any given record always traverses the
same number of levels and therefore requires the same number of page accesses.

Page Allocation Operations The allocation operations code manages a collection of pages
as named databases and keeps track of which pages in a database have already been used,
 for what purpose they have been used, and how much space is available on each page. Each
database is a collection of 8-kilobyte (KB) disk pages that are spread across one or more phys-
ical files. (In Chapter 4, you’ll find more details about the physical organization of databases.)

SQL Server uses eight types of disk pages: data pages, LOB pages, index pages, Page Free
Space (PFS) pages, Global Allocation Map and Shared Global Allocation Map (GAM and
SGAM) pages, Index Allocation Map (IAM) pages, Bulk Changed Map (BCM) pages, and
Differential Changed Map (DCM) pages. All user data is stored on data or LOB pages, and all
index rows are stored on index pages. PFS pages keep track of which pages in a database are
available to hold new data. Allocation pages (GAMs, SGAMs, and IAMs) keep track of the
other pages. They contain no database rows and are used only internally. Bulk Changed Map
pages and Differential Changed Map pages are used to make backup and recovery more
efficient. I’ll explain these types of pages in Chapter 6 and Chapter 7.

Chapter 2 SQL Server 2005 Architecture 37
Versioning Operations Another type of data access new to SQL Server 2005 is access
through the version store. Row versioning allows SQL Server to maintain older versions of
changed rows SQL Server’s row versioning technology supports snapshot isolation as well as
other features of SQL Server 2005, including online index builds and triggers, and it is the ver-
sioning operations code that maintains row versions for whatever purpose they are needed.

Chapters 4, 6, and 7 deal extensively with the internal details of the structures that the access
methods code works with: databases, tables, and indexes.

Transaction Services

A core feature of SQL Server is its ability to ensure that transactions are atomic—that is, all or
nothing. In addition, transactions must be durable, which means that if a transaction has been
committed, it must be recoverable by SQL Server no matter what—even if a total system failure
occurs 1 millisecond after the commit was acknowledged. There are actually four properties
that transactions must adhere to, called the ACID properties: atomicity, consistency, isolation,
and durability. I’ll discuss all four of these properties in Chapter 8, when I discuss transaction
management and concurrency issues.

In SQL Server, if work is in progress and a system failure occurs before the transaction is
committed, all the work is rolled back to the state that existed before the transaction began.
Write-ahead logging makes it possible to always roll back work in progress or roll forward
committed work that has not yet been applied to the data pages. Write-ahead logging ensures
that the record of each transaction’s changes are captured on disk in the transaction log before
a transaction is acknowledged as committed and that the log records are always written to
disk before the data pages where the changes were actually made are written. Writes to the
transaction log are always synchronous—that is, SQL Server must wait for them to complete.
Writes to the data pages can be asynchronous because all the effects can be reconstructed
from the log if necessary. The transaction management component coordinates logging,
recovery, and buffer management. These topics are discussed later in this book; at this point,
we’ll just look briefly at transactions themselves.

The transaction management component delineates the boundaries of statements that must
be grouped together to form an operation. It handles transactions that cross databases within
the same SQL Server instance, and it allows nested transaction sequences. (However, nested
transactions simply execute in the context of the first-level transaction; no special action
occurs when they are committed. And a rollback specified in a lower level of a nested transac-
tion undoes the entire transaction.) For a distributed transaction to another SQL Server
instance (or to any other resource manager), the transaction management component
coordinates with the Microsoft Distributed Transaction Coordinator (MS DTC) service using
operating system remote procedure calls. The transaction management component marks
save points—points you designate within a transaction at which work can be partially rolled
back or undone.

38 Inside Microsoft SQL Server 2005: The Storage Engine
The transaction management component also coordinates with the locking code regarding
when locks can be released, based on the isolation level in effect. It also coordinates with the
versioning code to determine when old versions are no longer needed and can be removed
from the version store. The isolation level in which your transaction runs determines how
sensitive your application is to changes made by others and consequently how long your
transaction must hold locks or maintain versioned data to protect against those changes.

SQL Server 2005 supports two concurrency models for guaranteeing the ACID properties of
transactions: optimistic concurrency and pessimistic concurrency. Pessimistic concurrency
guarantees correctness and consistency by locking data so that it cannot be changed; this is
the concurrency model that every earlier version of SQL Server has used exclusively. SQL
Server 2005 introduces optimistic concurrency, which provides consistent data by keeping
older versions of rows with committed values in an area of tempdb called the version store.
With optimistic concurrency, readers will not block writers and writers will not block readers,
but writers will still block writers. The cost of these non-blocking reads and writes must be
considered. To support optimistic concurrency, SQL Server needs to spend more time
managing the version store. In addition, administrators will have to pay even closer attention
to the tempdb database and the extra maintenance it requires.

Five isolation-level semantics are available in SQL Server 2005. Three of them support only
pessimistic concurrency: Read Uncommitted (also called “dirty read”), Repeatable Read, and
Serializable. Snapshot Isolation Level supports optimistic concurrency. The default isolation
level, Read Committed, can support either optimistic or pessimistic concurrency, depending
on a database setting.

The behavior of your transactions depends on the isolation level and the concurrency model
you are working with. A complete understanding of isolation levels also requires an
understanding of locking because the topics are so closely related. The next section gives an
overview of locking; you’ll find more detailed information on isolation, transactions, and
concurrency management in Chapter 8.

Locking Operations Locking is a crucial function of a multi-user database system such as
SQL Server, even if you are operating primarily in the snapshot isolation level with optimistic
concurrency. SQL Server lets you manage multiple users simultaneously and ensures that the
transactions observe the properties of the chosen isolation level. Even though readers will not
block writers and writers will not block readers in snapshot isolation, writers do acquire locks
and can still block other writers, and if two writers try to change the same data concurrently,
a conflict will occur that must be resolved. The locking code acquires and releases various
types of locks, such as share locks for reading, exclusive locks for writing, intent locks taken
at a higher granularity to signal a potential “plan” to perform some operation, and extent
locks for space allocation. It manages compatibility between the lock types, resolves dead-
locks, and escalates locks if needed. The locking code controls table, page, and row locks as
well as system data locks.

Chapter 2 SQL Server 2005 Architecture 39
Concurrency, with locks or row versions, is an important aspect of SQL Server. Many develop-
ers are keenly interested in it because of its potential effect on application performance. Chap-
ter 8 is devoted to the subject, so I won’t go into it further here.

Other Operations

Also included in the storage engine are components for controlling utilities such as bulk
load, DBCC commands, and backup and restore operations. There is a component to control
sorting operations and one to physically manage the files and backup devices on disk. These
components are discussed in Chapter 4. The log manager makes sure that log records are
written in a manner to guarantee transaction durability and recoverability; I’ll go into detail
about the transaction log in Chapter 5.

Finally, there is the buffer manager, a component that manages the distribution of pages
within the buffer pool. I’ll discuss the buffer pool in much more detail later in the chapter.

The SQLOS

Whether the components of the SQLOS layer are actually part of the storage engine depends
on whom you ask. In addition, trying to figure out exactly which components are in the
SQLOS layer can be rather like herding cats. I have seen several technical presentations on the
topic at conferences and have exchanged e-mail and even spoken face to face with members of
the product team, but the answers vary. The manager who said he was responsible for the
SQLOS layer defined the SQLOS as everything he was responsible for, which is a rather
circular definition. Earlier versions of SQL Server have a thin layer of interfaces between the
storage engine and the actual operating system through which SQL Server makes calls to
the OS for memory allocation, scheduler resources, thread and worker management, and
synchronization objects. However, the services in SQL Server that needed to access these
interfaces can be in any part of the engine. SQL Server requirements for managing memory,
schedulers, synchronization objects, and so forth have become more complex. Rather than
each part of the engine growing to support the increased functionality, all services in SQL
Server that need this OS access have been grouped together into a single functional unit called
the SQLOS. In general, the SQLOS is like an operating system inside SQL Server. It provides
memory management, scheduling, IO management, a framework for locking and transaction
management, deadlock detection, general utilities for dumping, exception handling, and so
on.

Another member of the product team described the SQLOS to me as a set of data structures
and APIs that could potentially be needed by operations running at any layer of the engine.
For example, consider various operations that require use of memory. SQL Server doesn’t just
need memory when it reads in data pages through the storage engine; it also needs memory to
hold query plans developed in the query processor layer. Figure 2-1 (shown earlier) depicts
the SQLOS layer in several parts, but this is just a way of showing that many SQL Server com-
ponents use SQLOS functionality.

40 Inside Microsoft SQL Server 2005: The Storage Engine
The SQLOS, then, is a collection of structures and processes that handles many of the tasks
you might think of as being operating system tasks. Defining them in SQL Server gives the
Database Engine greater capacity to optimize these tasks for use by a powerful relational data-
base system.

NUMA Architecture

SQL Server 2005 is Non-Uniform Memory Access (NUMA) aware, and both scheduling and
memory management can take advantage of NUMA hardware by default. You can use some
special configurations when you work with NUMA, so I’ll provide some general background
here before discussing scheduling and memory.

The main benefit of NUMA is scalability, which has definite limits when you use symmetric
multiprocessing (SMP) architecture. With SMP, all memory access is posted to the same
shared memory bus. This works fine for a relatively small number of CPUs, but problems
appear when you have many CPUs competing for access to the shared memory bus. The
trend in hardware has been to have more than one system bus, each serving a small set of
processors. NUMA limits the number of CPUs on any one memory bus. Each group of proces-
sors has its own memory and possibly its own I/O channels. However, each CPU can access
memory associated with other groups in a coherent way, and I’ll discuss this a bit more
later in the chapter. Each group is called a NUMA node and the nodes are connected to each
other by means of a high speed interconnection. The number of CPUs within a NUMA node
depends on the hardware vendor. It is faster to access local memory than the memory associ-
ated with other NUMA nodes. This is the reason for the name Non-Uniform Memory Access.
Figure 2-2 shows a NUMA node with four CPUs.

Figure 2-2 A NUMA node with four CPUs

SQL Server 2005 allows you to subdivide one or more physical NUMA nodes into smaller
NUMA nodes, referred to as software NUMA or soft-NUMA. You typically use soft-NUMA when
you have many CPUs and do not have hardware NUMA because soft-NUMA allows only for
the subdividing of CPUs but not memory. You can also use soft-NUMA to subdivide hardware

CPU

CPU LazywriterI/O

Resource
Monitor

CPU MEM

CPU

Memory
controller

System
Interconnect

Chapter 2 SQL Server 2005 Architecture 41
NUMA nodes into groups of fewer CPUs than is provided by the hardware NUMA. Your
soft-NUMA nodes can also be configured to listen on its own port.

Only the SQL Server scheduler and SQL Server Network Interface (SNI) are soft-NUMA
aware. Memory nodes are created based on hardware NUMA and are therefore not affected by
soft-NUMA.

TCP/IP, VIA, Named Pipes, and shared memory can take advantage of NUMA round-robin
scheduling, but only TCP and VIA can affinitize to a specific set of NUMA nodes. See Books
Online for how to use the SQL Server Configuration Manager to set a TCP/IP address and port
to single or multiple nodes.

The Scheduler

Prior to SQL Server 7.0, scheduling was entirely dependent on the underlying Windows
operating system. Although this meant that SQL Server could take advantage of the hard work
done by the Windows engineers to enhance scalability and efficient processor use, there were
definite limits. The Windows scheduler knew nothing about the needs of a relational database
system, so it treated SQL Server worker threads the same as any other process running on the
operating system. However, a high-performance system such as SQL Server functions best
when the scheduler can meet its special needs. SQL Server 7.0 was designed to handle its own
scheduling to gain a number of advantages, including the following:

■ A private scheduler could support SQL Server tasks using fibers (newly available in Win-
dows NT 4.0) as easily as it supported using threads.

■ Context switching and switching into kernel mode could be avoided as much as
possible.

The scheduler in SQL Server 7.0 and SQL Server 2000 was called the User Mode Scheduler
(UMS) to reflect the fact that it ran primarily in user mode, as opposed to kernel mode. SQL
Server 2005 calls its scheduler the SOS Scheduler and improves on UMS even more.

One major difference between the SQL Server scheduler, whether UMS or SOS, and the
Windows scheduler is that the SQL Server scheduler runs as a cooperative rather than
pre-emptive scheduler. This means it relies on the workers threads or fibers to voluntarily
yield often enough so one process or thread doesn’t have exclusive control of the system. The
SQL Server product team has to make sure that its code runs efficiently and voluntarily yields
the scheduler in appropriate places; the reward for this is much greater control and scalability
than is possible with the Windows generic scheduler.

SQL Server Workers You can think of the SQL Server scheduler as a logical CPU used
by SQL Server workers. A worker can be either a thread or a fiber that is bound to a logical
scheduler. If the Affinity Mask Configuration option is set, each scheduler is affinitized to a
particular CPU. (I’ll talk about configuration in the next chapter.) Thus, each worker is
also associated with a single CPU. Each scheduler is assigned a worker limit based on the

42 Inside Microsoft SQL Server 2005: The Storage Engine
configured Max Worker Threads and the number of schedulers, and each scheduler is
responsible for creating or destroying workers as needed. A worker cannot move from one
scheduler to another, but as workers are destroyed and created, it can appear as if workers are
moving between schedulers.

Workers are created when the scheduler receives a request (a task to execute) and there are no
idle workers. A worker can be destroyed if it has been idle for at least 15 minutes, or if SQL
Server is under memory pressure. Each worker can use at least half a megabyte of memory on
a 32-bit system and at least 2 gigabytes (GB) on a 64-bit system, so destroying multiple
workers and freeing their memory can yield an immediate performance improvement on
memory-starved systems. SQL Server actually handles the worker pool very efficiently, and
you might be surprised to know that even on very large systems with hundreds or even
thousands of users, the actual number of SQL Server workers might be much lower than the
configured value for Max Worker Threads. In a moment, I’ll tell you about some of the
dynamic management objects that let you see how many workers you actually have, as well as
scheduler and task information (discussed next).

SQL Server Schedulers In SQL Server 2005, each actual CPU (whether hyperthreaded or
physical) has a scheduler created for it when SQL Server starts up. This is true even if the
affinity mask option has been configured so that SQL Server is set to not use all of the
available physical CPUs. In SQL Server 2005, each scheduler is set to either ONLINE or
OFFLINE based on the affinity mask settings, and the default is that all schedulers are
ONLINE. Changing the affinity mask value can set a scheduler’s status to OFFLINE, and you
can do this without having to restart SQL Server. Note that when a scheduler is switched
from ONLINE to OFFLINE due to a configuration change, any work already assigned to the
scheduler is first completed and no new work is assigned.

SQL Server Tasks The unit of work for a SQL Server worker is a request, or a task, which you
can think of as being equivalent to a single batch sent from the client to the server. Once a
request is received by SQL Server, it is bound to a worker, and that worker processes the entire
request before handling any other request. This holds true even if the request is blocked for
some reason, such as while it waits for a lock or for I/O to complete. The particular worker will
not handle any new requests but will wait until the blocking condition is resolved and the
request can be completed. Keep in mind that a SPID (session ID) is not the same as a task. A
SPID is a connection or channel over which requests can be sent, but there is not always an
active request on any particular SPID.

In SQL Server 2000, each SPID is assigned to a scheduler when the initial connection is made,
and all requests sent over the same SPID are handled by the same scheduler. The assignment
of a SPID to a scheduler is based on the number of SPIDs already assigned to the scheduler,
with the new SPID assigned to the scheduler with the fewest users. Although this provides a
rudimentary form of load balancing, it doesn’t take into account SPIDs that are completely
quiescent or that are doing enormous amounts of work, such as data loading.

Chapter 2 SQL Server 2005 Architecture 43
In SQL Server 2005, a SPID is no longer bound to a particular scheduler. Each SPID has a
preferred scheduler, which is the scheduler that most recently processed a request from the
SPID. The SPID is initially assigned to the scheduler with the lowest load. (You can get some
insight into the load on each scheduler by looking at the load_factor column in the DMV
dm_os_schedulers.) However, when subsequent requests are sent from the same SPID, if
another scheduler has a load factor that is less than a certain percentage of the average of all
the scheduler’s load factor, the new task is given to the scheduler with the smallest load factor.
There is a restriction that all tasks for one SPID must be processed by schedulers on the same
NUMA node. The exception to this restriction is when a query is being executed as a parallel
query across multiple CPUs. The optimizer can decide to use more CPUs that are available on
the NUMA node processing the query, so other CPUs (and other schedulers) can be used.

Threads vs. Fibers The User Mode Scheduler, as mentioned earlier, was designed to
work with workers running on either threads or fibers. Windows fibers have less overhead
associated with them than threads do, and multiple fibers can run on a single thread. You can
configure SQL Server to run in fiber mode by setting the Lightweight Pooling option to 1.
Although using less overhead and a “lightweight” mechanism sounds like a good idea, you
should carefully evaluate the use of fibers.

Certain components of SQL Server don’t work, or don’t work well, when SQL Server runs in
fiber mode. These components include SQLMail and SQLXML. Other components, such as
heterogeneous and CLR queries, are not supported at all in fiber mode because they need
certain thread-specific facilities provided by Windows. Although it is possible for SQL Server
to switch to thread mode to process requests that need it, the overhead might be greater than
the overhead of using threads exclusively. Fiber mode was actually intended just for special
niche situations in which SQL Server reaches a limit in scalability due to spending too much
time switching between threads contexts or switching between user mode and kernel mode.
In most environments, the performance benefit gained by fibers is quite small compared to
benefits you can get by tuning in other areas. If you’re certain you have a situation that could
benefit from fibers, be sure to do thorough testing before you set the option on a production
server. In addition, you might even want put in a call to Microsoft Customer Support Services
just to be certain.

NUMA and Schedulers With a NUMA configuration, every node has some subset of the
machine’s processors and the same number of schedulers. When a machine is configured for
hardware NUMA, each node has the same number of processors, but for soft-NUMA that you
configure yourself, you can assign different numbers of processors to each node. There will
still be the same number of schedulers as processors. When SPIDs are first created, they are
assigned to nodes on a round-robin basis. The scheduler monitor then assigns the SPID to the
least loaded scheduler on that node. As mentioned earlier, if the spid is moved to another
scheduler, it stays on the same node. A single processor or SMP machine will be treated as a
machine with a single NUMA node. Just like on an SMP machine, there is no hard mapping
between schedulers and a CPU with NUMA, so any scheduler on an individual node can run

44 Inside Microsoft SQL Server 2005: The Storage Engine
on any CPU on that node. However, if you have set the Affinity Mask Configuration option,
each scheduler on each node will be fixed to run on a particular CPU.

Every NUMA node has its own lazywriter, which I’ll talk about later. Every node also has its
own Resource Monitor, which are managed by a hidden scheduler. The Resource Monitor has
its own spid, which you can see by querying the sys.dm_exec_requests and sys.dm_os_workers
DMVs, as shown here:

SELECT session_id,
CONVERT (varchar(10), t1.status) AS status,
CONVERT (varchar(20), t1.command) AS command,
CONVERT (varchar(15), t2.state) AS worker_state

FROM sys.dm_exec_requests AS t1 JOIN sys.dm_os_workers AS t2
ON t2.task_address = t1.task_address
WHERE command = 'RESOURCE MONITOR'

Every node has its own Scheduler Monitor, which can run on any SPID and runs in a preemp-
tive mode. The Scheduler Monitor checks the health of the other schedulers running on the
node, and it is also responsible for sending messages to the schedulers to help them balance
their workload. Every node also has its own I/O Completion Port (IOCP), which is the
network listener.

Dynamic Affinity In SQL Server 2005 (in all editions except SQLExpress), processor
affinity can be controlled dynamically. When SQL Server starts up, all scheduler tasks are
started on server startup, so there is one scheduler per CPU. If the affinity mask has been set,
some of the schedulers are then marked as offline and no tasks are assigned to them.

When the affinity mask is changed to include additional CPUs, the new CPU is brought
online. The Scheduler Monitor then notices an imbalance in workload and starts picking
workers to move to the new CPU. When a CPU is brought offline by changing the affinity
mask, the scheduler for that CPU continues to run active workers, but the scheduler itself
is moved to one of the other CPUs that is still online. No new workers are given to this
scheduler, which is now offline, and when all active workers have finished their tasks, the
scheduler stops.

Binding Schedulers to CPUs Remember that normally schedulers are not bound to CPUs
in a strict one-to-one relationship, even though there is the same number of schedulers as
CPUs. A scheduler is bound to a CPU only when the affinity mask is set. This is true even if
you set the affinity mask to use all of the CPUs which is the default. For example, the default
Affinity Mask Configuration value is 0, which means to use all CPUs, with no hard binding of
scheduler to CPU. In fact, in some cases when there is a heavy load on the machine, Windows
can run two schedulers on one CPU.

For an eight-processor machine, an affinity mask value of 3 (bit string 00000011) means that
only CPUs 0 and 1 will be used and two schedulers will be bound to the two CPUs. If you set the

Chapter 2 SQL Server 2005 Architecture 45
affinity mask to 255 (bit string 11111111), all the CPUs will be used, just like with the default.
However, with the affinity mask set, the eight CPUS will be bound to the eight schedulers.

In some situations, you might want to limit the number of CPUs available but not bind a
particular scheduler to a single CPU—for example, if you are using a multiple-CPU machine for
server consolidation. Suppose you have a 64-processor machine on which you are running
eight SQL Server instances and you want each instance to use eight of the processors. Each
instance will have a different affinity mask that specifies a different subset of the 64 proces-
sors, so you might have affinity mask values 255 (0xFF), 65280 (0xFF00), 16711680
(0xFF0000), and 4278190080 (0xFF000000). Because the affinity mask is set, each instance
will have hard binding of scheduler to CPU. If you want to limit the number of CPUs but still
not constrain a particular scheduler to running on a specific CPU, you can start SQL Server
with traceflag 8002. This lets you have CPUs mapped to an instance, but within the instance,
schedulers are not bound to CPUs.

Observing Scheduler Internals SQL Server 2005 has several dynamic management objects
that provide information about schedulers, work, and tasks. These are primarily intended for
use by Microsoft Customer Support Services, but you can use them to gain a greater appreci-
ation for the information SQL Server keeps track of. Note that all these objects require a SQL
Server 2005 permission called View Server State. By default, only an administrator has that
permission, but it can be granted to others. For each of the objects, I will list some of the more
useful or interesting columns and provide the description of the column taken from SQL
Server 2005 Books Online. For the full list of columns, most of which are useful only to
support personnel, you can refer to Books Online, but even then you’ll find that some of the
columns are listed as “for internal use only.”

sys.dm_os_schedulers This view returns one row per scheduler in SQL Server. Each sched-
uler is mapped to an individual processor in SQL Server. You can use this view to monitor the
condition of a scheduler or to identify runaway tasks. Interesting columns include the follow-
ing:

■ parent_node_id The ID of the node that the scheduler belongs to, also known as the
parent node. This represents a NUMA node.

■ scheduler_id The ID of the scheduler. All schedulers that are used to run regular
queries have IDs of less than 255. Those with IDs greater than or equal to 255, such as
the dedicated administrator connection scheduler, are used internally by SQL Server.

■ cpu_id The ID of the CPU with which this scheduler is associated. If SQL Server is
configured to run with affinity, the value is the ID of the CPU on which the scheduler is
supposed to run. If the affinity mask has not been specified, the cpu_id will be 255.

■ is_online If SQL Server is configured to use only some of the available processors on
the server, this can mean that some schedulers are mapped to processors that are not in
the affinity mask. If that is the case, this column returns 0. This means the scheduler is
not being used to process queries or batches.

46 Inside Microsoft SQL Server 2005: The Storage Engine
■ current_tasks_count The number of current tasks associated with this scheduler,
including the following. (When a task is completed, this count is decremented.)

❑ Tasks that are waiting to be executed by a worker

❑ Tasks that are currently running or waiting

❑ Completed tasks

■ runnable_tasks_count The number of tasks waiting to run on the scheduler.

■ current_workers_count The number of workers associated with this scheduler, includ-
ing workers that are not assigned any task.

■ active_workers_count The number of workers that have been assigned a task.

■ work_queue_count The number of tasks waiting for a worker. If current_workers
_count is greater than active_workers_count, this work queue count should be 0 and the
work queue should not grow.

■ pending_disk_io_count The number of pending I/Os. Each scheduler has a list of
pending I/Os that are checked every time there is a context switch to determine whether
they have been completed. The count is incremented when the request is inserted. It is
decremented when the request is completed. This number does not indicate the state of
the I/Os.

■ load_factor The internal value that indicates the perceived load on this scheduler. This
value is used to determine whether a new task should be put on this scheduler or
another scheduler. It is useful for debugging purposes when schedulers appear to not be
evenly loaded. In SQL Server 2000, a task is routed to a particular scheduler. In SQL
Server 2005, the routing decision is based on the load on the scheduler. SQL Server
2005 also uses a load factor of nodes and schedulers to help determine the best location
to acquire resources. When a task is added to the queued, the load factor increases.
When a task is completed, the load factor decreases. Using load factors helps the SQLOS
balance the work load better.

sys.dm_os_workers This view returns a row for every worker in the system. Interesting
columns include the following:

■ is_preemptive A value of 1 means that the worker is running with preemptive sched-
uling. Any worker running external code is run under preemptive scheduling.

■ is_fiber A value of 1 means that the worker is running with lightweight pooling.

sys.dm_os_threads This view returns a list of all SQLOS threads that are running under the
SQL Server process. Interesting columns include the following:

■ started_by_sqlservr Indicates the thread initiator. A 1 means that SQL Server started
the thread and 0 means that another component, such as an extended procedure from
within SQL Server, started the thread.

Chapter 2 SQL Server 2005 Architecture 47
■ creation_time The time when this thread was created.

■ stack_bytes_used The number of bytes that are actively being used on the thread.

■ Affinity The CPU mask on which this thread is supposed to be running. This depends
on the value in the sp_configure “affinity mask.”

■ Locale The cached locale LCID for the thread.

sys.dm_os_tasks This view returns one row for each task that is active in the instance of SQL
Server. Interesting columns include the following:

■ task_state The state of the task. The value can be one of the following:

❑ PENDING: Waiting for a worker thread

❑ RUNNABLE: Runnable but waiting to receive a quantum

❑ RUNNING: Currently running on the scheduler

❑ SUSPENDED: Has a worker but is waiting for an event

❑ DONE: Completed

❑ SPINLOOP: Processing a spinlock, as when waiting for a signal

■ context_switches_count The number of scheduler context switches that this task has
completed.

■ pending_io_count The number of physical I/Os performed by this task.

■ pending_io_byte_count The total byte count of I/Os performed by this task.

■ pending_io_byte_average The average byte count of I/Os performed by this task.

■ scheduler_id The ID of the parent scheduler. This is a handle to the scheduler informa-
tion for this task.

■ session_id The ID of the session associated with the task.

sys.dm_os_waiting_tasks This view returns information about the queue of tasks that are
waiting on some resource. Interesting columns include the following:

■ session_id The ID of the session associated with the task.

■ exec_context_id The ID of the execution context associated with the task.

■ wait_duration_ms The total wait time for this wait type, in milliseconds. This time is
inclusive of signal_wait_time.

■ wait_type The name of the wait type.

■ resource_address The address of the resource for which the task is waiting.

■ blocking_task_address The task that is currently holding this resource.

■ blocking_session_id The ID of the session of the blocking task.

48 Inside Microsoft SQL Server 2005: The Storage Engine
■ blocking_exec_context_id The ID of the execution context of the blocking task.

■ resource_description The description of the resource that is being consumed.

The Dedicated Administrator Connection

Kalen, Use “extreme” or “unusual” rather than “pathological”?

Under pathological conditions such as a complete lack of available resources, it is possible for
SQL Server to enter an abnormal state in which no further connections can be made to the
SQL Server instance. In SQL Server 2000, this situation means that an administrator cannot
get in to kill any troublesome connections or even begin to diagnose the possible cause of the
problem. SQL Server 2005 introduces a special connection called the dedicated administrator
connection (DAC) that is designed to be accessible even when no other access can be made.

Access via the DAC must be specially requested. You can also connect to the DAC using the
command-line tool SQLCMD, by using the /A flag. This method of connection is recom-
mended because it uses fewer resources than the graphical interface method but offers more
functionality than other command-line tools, such as osql. Through SQL Server Management
Studio, you can specify that you want to connect using DAC by preceding the name of your
SQL Server with ADMIN: in the Connection dialog box.

For example, to connect to the default SQL Server instance on my machine, TENAR, I would
enter ADMIN:TENAR. To connect to a named instance called SQL2005 on the same machine,
I would enter ADMIN:TENAR\SQL2005.

DAC is a special-purpose connection designed for diagnosing problems in SQL Server and
possibly resolving them. It is not meant to be used as a regular user connection. Any attempt
to connect using DAC when there is already an active DAC connection will result in an error.
The message returned to the client will say only that the connection was rejected; it will not
state explicitly that it was because there already was an active DAC. However, a message will
be written to the error log indicating the attempt (and failure) to get a second DAC connec-
tion. You can check whether a DAC is in use by running the following query. If there is an
active DAC, the query will return the SPID for the DAC; otherwise, it will return no rows.

SELECT t2.session_id
FROM sys.tcp_endpoints as t1 JOIN sys.dm_exec_sessions as t2

ON t1.endpoint_id = t2.endpoint_id
WHERE t1.name=’Dedicated Admin Connection’

You should keep the following in mind about using the DAC:

■ By default, the DAC is available only locally. However, an administrator can configure
SQL Server to allow remote connection by using the configuration option called Remote
Admin Connections.

■ The user logon to connect via the DAC must be a member of SYSADMIN server role.

Chapter 2 SQL Server 2005 Architecture 49
■ There are only a few restrictions on the SQL statements that can be executed on the
DAC. (For example, you cannot run BACKUP or RESTORE using the DAC.) However, it
is recommended that you do not run any resource-intensive queries that might exacer-
bate the problem that led you to use the DAC. The DAC connection is created primarily
for troubleshooting and diagnostic purposes. In general, you’ll use the DAC for running
queries against the dynamic management objects, some of which you’ve seen already
and many more of which I’ll discuss later in this book.

■ A special thread is assigned to the DAC that allows it to execute the diagnostic functions
or queries on a separate scheduler. This thread cannot be terminated. You can kill only
the DAC session, if needed. The DAC scheduler always uses the scheduler_id value of
255, and this thread has the highest priority. There is no lazywriter thread for the DAC,
but the DAC does have its own IOCP, a worker thread, and an idle thread.

You might not always be able to accomplish your intended tasks using the DAC. Suppose you
have an idle connection that is holding on to a lock. If the connection has no active task, there
is no thread associated with it, only a connection ID. Suppose further than many other
processes are trying to get access to the locked resource, and that they are blocked. Those
connections still have an incomplete task, so they will not release their worker. If 255 such
processes (the default number of worker threads) try to get the same lock, all available work-
ers might get used up and no more connections can be made to SQL Server. Because the DAC
has its own scheduler, you can start it, and the expected solution would be to kill the connection
that is holding the lock but not do any further processing to release the lock. But if you try to
use the DAC to kill the process holding the lock, the attempt will fail. SQL Server would need
to give a worker to the task in order to kill it, and there are no workers available. The only solution
is to kill several of the (blameless) blocked processes that still have workers associated with
them.

Note To conserve resources, SQL Server 2005 Express Edition does not support a DAC
connection unless started with a trace flag 7806.

The DAC is not guaranteed to always be usable, but because it reserves memory and a private
scheduler and is implemented as a separate node, a connection will probably be possible
when you cannot connect in any other way.

Memory
Memory management is a huge topic, and to cover every detail would require a whole volume
in itself. My goal in this section is twofold: first, to provide enough information about how
SQL Server uses its memory resources so you can determine whether memory is being
managed well on your system; and second, to describe the aspects of memory management
that you have control over so you can understand when to exert that control.

50 Inside Microsoft SQL Server 2005: The Storage Engine
By default, SQL Server 2005 manages its memory resources almost completely dynamically.
When allocating memory, SQL Server must communicate constantly with the operating
system, which is one of the reasons the SQLOS layer of the engine is so important.

The Buffer Pool and the Data Cache

The main memory component in SQL Server is the buffer pool. All memory not used by
another memory component remains in the buffer pool to be used as a data cache for pages
read in from the database files on disk. The buffer manager manages disk I/O functions for
bringing data and index pages into the data cache so data can be shared among users. When
other components require memory, they can request a buffer from the buffer pool. A buffer is
a page in memory that’s the same size as a data or index page. You can think of it as a page
frame that can hold one page from a database. Most of the buffers taken from the buffer pool
for other memory components go to other kinds of memory caches, the largest of which is
typically the cache for procedure and query plans, which is usually called the procedure cache.

Occasionally, SQL Server must request contiguous memory in larger blocks than the 8-KB
pages that the buffer pool can provide so memory must be allocated from outside the buffer
pool. Use of large memory blocks is typically kept to a minimum, so direct calls to the operat-
ing system account for a small fraction of SQL Server memory usage.

Access to In-Memory Data Pages

Access to pages in the data cache must be fast. Even with real memory, it would be ridicu-
lously inefficient to scan the whole data cache for a page when you have gigabytes of data.
Pages in the data cache are therefore hashed for fast access. Hashing is a technique that
uniformly maps a key via a hash function across a set of hash buckets. A hash table is a struc-
ture in memory that contains an array of pointers (implemented as a linked list) to the buffer
pages. If all the pointers to buffer pages do not fit on a single hash page, a linked list chains to
additional hash pages.

Given a dbid-fileno-pageno identifier (a combination of the database ID, file number, and page
number), the hash function converts that key to the hash bucket that should be checked; in
essence, the hash bucket serves as an index to the specific page needed. By using hashing,
even when large amounts of memory are present, SQL Server can find a specific data page in
cache with only a few memory reads. Similarly, it takes only a few memory reads for SQL
Server to determine that a desired page is not in cache and that it must be read in from disk.

Note Finding a data page might require that multiple buffers be accessed via the hash
buckets chain (linked list). The hash function attempts to uniformly distribute the dbid-fileno-
pageno values throughout the available hash buckets. The number of hash buckets is set
internally by SQL Server and depends on the total size of the buffer pool.

Chapter 2 SQL Server 2005 Architecture 51
Managing Pages in the Data Cache

You can use a data page or an index page only if it exists in memory. Therefore, a buffer in the
data cache must be available for the page to be read into. Keeping a supply of buffers available
for immediate use is an important performance optimization. If a buffer isn’t readily available,
many memory pages might have to be searched simply to locate a buffer to free up for use as
a workspace.

In SQL Server 2005, a single mechanism is responsible both for writing changed pages to disk
and for marking as free those pages that have not been referenced for some time. SQL Server
maintains a linked list of the addresses of free pages, and any worker needing a buffer page
uses the first page of this list.

Every buffer in the data cache has a header that contains information about the last two times
the page was referenced and some status information, including whether the page is dirty (has
been changed since it was read in to disk). The reference information is used to implement the
page replacement policy for the data cache pages, which uses an algorithm called LRU-K.1 This
algorithm is a great improvement over a strict LRU (Least Recently Used) replacement policy,
which has no knowledge of how recently a page was used. It is also an improvement over an LFU
(Least Frequently Used) policy involving reference counters because it requires far fewer adjust-
ments by the engine and much less bookkeeping overhead. An LRU-K algorithm keeps track
of the last K times a page was referenced and can differentiate between types of pages, such as
index and data pages, with different levels of frequency. Its can actually simulate the effect of
assigning pages to different buffer pools of specifically tuned sizes. SQL Server 2005 uses a
K value of 2, so it keeps track of the two most recent accesses of each buffer page.

The data cache is periodically scanned from the start to the end. Because the buffer cache is all
in memory, these scans are quick and require no I/O. During the scan, a value is associated
with each buffer based on it usage history. When the value gets low enough, the dirty page
indicator is checked. If the page is dirty, a write is scheduled to write the modifications to disk.
Instances of SQL Server use a write-ahead log so the write of the dirty data page is blocked
while the log page recording the modification is first written to disk. (I’ll discuss logging in
much more detail in Chapter 5.) After the modified page has been flushed to disk, or if the
page was not dirty to start with, the page is freed. The association between the buffer page and
the data page it contains is removed, by removing information about the buffer from the hash
table, and the buffer is put on the free list.

Using this algorithm, buffers holding pages that are considered more valuable remain in the
active buffer pool while buffers holding pages not referenced often enough eventually return
to the free buffer list. The instance of SQL Server determines internally the size of the free
buffer list, based on the size of the buffer cache. The size cannot be configured.

1 The LRU-K algorithm was introduced by O’Neil, O’Neil, and Weikum, in the Proceedings of the ACM SIGMOD
Conference, May 1993.

52 Inside Microsoft SQL Server 2005: The Storage Engine
The work of scanning the buffer, writing dirty pages, and populating the free buffer list is
primarily performed by the individual workers after they have scheduled an asynchronous
read and before the read is completed. The worker gets the address of a section of the buffer
pool containing 64 buffers from a central data structure in the SQL Server engine. Once the
read has been initiated, the worker checks to see whether the free list is too small. (Note that
this process has consumed one or more pages of the list for its own read.) If so, the worker
searches for buffers to free, examining all 64 buffers, regardless of how many it actually finds
to free in that group of 64. If a write must be performed for a dirty buffer in the scanned
section, the write is also scheduled.

Each instance of SQL Server also has a lazywriter thread for each NUMA node that scans
through the buffer cache associated with that node. The lazywriter thread sleeps for a specific
interval of time, and when it wakes up, it examines the size of the free buffer list. If the list is
below a certain threshold, which depends on the total size of the buffer pool, the lazywriter
thread scans the buffer pool to repopulate the free list. As buffers are added to the free list,
they are also written to disk if they are dirty.

When SQL Server uses memory dynamically, it must constantly be aware of the amount of
free memory. The lazywriter for each node queries the system periodically to determine the
amount of free physical memory available. The lazywriter expands or shrinks the data cache
to keep the operating system’s free physical memory at 5 megabytes (MB) plus or minus 200
KB to prevent paging. If the operating system has less than 5 MB free, the lazywriter releases
memory to the operating system instead of adding it to the free list. If more than 5 MB of
physical memory is free, the lazywriter recommits memory to the buffer pool by adding it to
the free list. The lazywriter recommits memory to the buffer pool only when it repopulates the
free list; a server at rest does not grow its buffer pool.

SQL Server also releases memory to the operating system if it detects that too much paging is
taking place. You can tell when SQL Server increases or decreases its total memory use by
using the SQL Server Profiler to monitor the Server Memory Change event (in the Server
category). An event is generated whenever memory in SQL Server increases or decreases by 1
MB or 5 percent of the maximum server memory, whichever is greater. You can look at the
value of the data element called Event Sub Class to see whether the change was an increase or
a decrease. An Event Sub Class value of 1 means a memory increase; a value of 2 means a
memory decrease. I'll cover the SQL Server Profiler in more detail in Inside Microsoft SQL
Server 2005: Query Tuning and Optimization.

Note Prior to SQL Server 2005, you could mark tables so their pages were never put on
the free list and were therefore kept in memory indefinitely. This process is called pinning a
table. To pin and unpin, you used the pintable option of the sp_tableoption stored procedure.
This command is still available in SQL Server 2005, but it has no effect. Therefore, if you used
the pintable option in your SQL Server 2000 code, you don’t have to immediately remove it.
The SQL Server buffer management algorithm is good enough that you should never need
pinning. There is no way in SQL Server 2005 to force a table’s pages to stay in cache.

Chapter 2 SQL Server 2005 Architecture 53
Checkpoints

The checkpoint process also scans the buffer cache periodically and writes any dirty data
pages for a particular database to disk. The difference between the checkpoint process and the
lazywriter (or the worker threads’ management of pages) is that the checkpoint process never
puts buffers on the free list. The purpose of the checkpoint process is only to ensure that
pages written before a certain time are written to disk, so that the number of dirty pages in
memory is always kept to a minimum, which in turn ensures that the length of time SQL
Server requires for recovery of a database after a failure is kept to a minimum. In some cases,
checkpoints may find few dirty pages to write to disk if most of the dirty pages have been
written to disk by the workers or the lazywriters in the period between two checkpoints.

When a checkpoint occurs, SQL Server writes a checkpoint record to the transaction log,
which lists all the transactions that are active. This allows the recovery process to build a table
containing a list of all the potentially dirty pages. Checkpoints occur automatically at regular
intervals but can also be requested manually.

Checkpoints are triggered when:

■ A database owner explicitly issues a checkpoint command to perform a checkpoint in
that database. In SQL Server 2005, you can run multiple checkpoints (in different data-
bases) concurrently by using the CHECKPOINT command.

■ The log is getting full (more than 70 percent of capacity) and the database is in SIMPLE
recovery mode. (I’ll tell you about recovery modes in Chapter 3.) A checkpoint is
triggered to truncate the transaction log and free up space. However, if no space can be
freed up, perhaps because of a long-running transaction, no checkpoint occurs.

■ A long recovery time is estimated. When recovery time is predicted to be longer than the
Recovery Interval configuration option, a checkpoint is triggered. SQL Server 2005 uses
a simple metric to predict recovery time because it can recover, or redo, in less time than
it took the original operations to run. Thus, if checkpoints are taken at least as often
as the recovery interval frequency, recovery completes within the interval. A recovery
interval setting of 1 means that checkpoints occur at least every minute as long as trans-
actions are being processed in the database. A minimum amount of work must be done
for the automatic checkpoint to fire; this is currently 10 MB of log per minute. In this
way, SQL Server doesn’t waste time taking checkpoints on idle databases. A default
recovery interval of 0 means that SQL Server chooses an appropriate value; for the
current version, this is one minute.

■ An orderly shutdown of SQL Server is requested, without the NOWAIT option. A check-
point operation is then run in each database on the instance. An orderly shutdown
occurs when you explicitly shut down SQL Server, unless you do so by using the SHUT-
DOWN WITH NOWAIT command. An orderly shutdown also occurs when the SQL
Server service is stopped through Service Control Manager or the net stop command
from an operating system prompt. You can also use the sp_configure Recovery Interval

54 Inside Microsoft SQL Server 2005: The Storage Engine
option to influence checkpointing frequency, balancing the time to recover vs. any
impact on run-time performance. If you’re interested in tracing how often checkpoints
actually occur, you can start SQL Server with trace flag 3502, which writes information
to the SQL Server error log every time a checkpoint occurs.

The checkpoint process goes through the buffer pool, scanning the pages in a non-sequential
order, and when it finds a dirty page, it looks to see whether any physically contiguous (on
the disk) pages are also dirty so that it can do a large block write. But this means that it might,
for example, write buffers 14, 200, 260, and 1000 when it sees that buffer 14 is dirty. (Those
pages might have contiguous disk locations even though they’re far apart in the buffer pool. In
this case, the noncontiguous pages in the buffer pool can be written as a single operation
called a gather-write.) The process continues to scan the buffer pool until it gets to page 1000.
In some cases, an already written page could potentially be dirty again, and it might need to be
written out to disk a second time.

The larger the buffer pool, the greater the chance that a buffer that has already been written
will be dirty again before the checkpoint is done. To avoid this, SQL Server uses a bit associ-
ated with each buffer called a generation number. At the beginning of a checkpoint, all the bits
are toggled to the same value, either all 0’s or all 1’s. As a checkpoint checks a page, it toggles
the generation bit to the opposite value. When the checkpoint comes across a page whose bit
has already been toggled, it doesn’t write that page. Also, any new pages brought into cache
during the checkpoint process get the new generation number so they won’t be written
during that checkpoint cycle. Any pages already written because they’re in proximity to other
pages (and are written together in a gather write) aren’t written a second time.

Managing Memory in Other Caches

Buffer pool memory that isn’t used for the data cache is used for other types of caches, prima-
rily the procedure cache, which actually holds plans for all types of queries, not just procedure
plans. The page replacement policy, and the mechanism by which freeable pages are searched
for, is quite a bit different than for the data cache.

SQL Server 2005 introduces a new common caching framework that is leveraged by all caches
except the data cache. The framework consists of set of stores and the Resource Monitor.
There are three types of stores: cache stores, user stores (which don’t actually have anything to
do with users), and object stores. The procedure cache is the main example of a cache store,
and the metadata cache is the prime example of a user store. Both cache stores and user stores
use the same LRU mechanism and the same costing algorithm to determine which pages can
stay and which can be freed. Object stores, on the other hand, are just pools of memory blocks
and don’t require LRU or costing. One example of the use of an object store is the SQL Server
Network Interface (SNI), which leverages the object store for pooling network buffers. For the
rest of this section, my discussion of stores refers only to cache stores and user stores.

Chapter 2 SQL Server 2005 Architecture 55
The LRU mechanism used by the stores is a straightforward variation of the clock algorithm,
which SQL Server 2000 used for all its buffer management. You can imagine a clock hand
sweeping through the store, looking at every entry; as it touches each entry, it decreases the
cost. Once the cost of an entry reaches 0, the entry can be removed from the cache. The cost
is reset whenever an entry is reused. With SQL Server 2000, the cost was based on a common
formula for all caches in the store, taking into account the memory usage, the I/O, and the
CPUs required to generate the entry initially. The cost is decremented using a formula that
simply divides the current value by 2.

Memory management in the stores takes into account both global and local memory manage-
ment policies. Global policies consider the total memory on the system and enable the run-
ning of the clock algorithm across all the caches. Local policies involve looking at one store or
cache in isolation and making sure it is not using a disproportionate amount of memory.

To satisfy global and local policies, the SQL Server stores implement two hands: external and
internal. Each store has two clock hands, and you can observe these by examining the DMV
sys.dm_os_memory_cache_clock_hands. This view contains one internal and one external
clock hand for each cache store or user store. The external clock hands implement the global
policy, and the internal clock hands implement the local policy. The Resource Monitor is in
charge of moving the external hands whenever it notices memory pressure. There are many
types of memory pressure, and it is beyond the scope of this book to go into all the details of
detecting and troubleshoot memory problems. However, if you take a look at the DMV
sys.dm_os_memory_cache_clock_hands, specifically at the removed_last_round_count column,
you can look for a very large value (compared to other values). If you notice that value increas-
ing dramatically, that is a strong indication of memory pressure. The companion content for
this book contains a comprehensive white paper called “Troubleshooting Performance Prob-
lems in SQL Server 2005” that includes many details on tracking down and dealing with
memory problems.

The internal clock moves whenever an individual cache needs to be trimmed. SQL Server
attempts to keep each cache reasonably sized compared to other caches. The internal clock
hands move only in response to activity. If a worker running a task that accesses a cache
notices a high number of entries in the cache or notices that the size of the cache is greater
than a certain percentage of memory, the internal clock hand for that cache starts up to free
up memory for that cache.

The Memory Broker

Because memory is needed by so many components in SQL Server, and to make sure each
component uses memory efficiently, Microsoft introduced a Memory Broker late in the
development cycle for SQL Server 2005. The Memory Broker’s job is to analyze the behavior
of SQL Server with respect to memory consumption and to improve dynamic memory
distribution. The Memory Broker is a centralized mechanism that dynamically distributes
memory between the buffer pool, the query executor, the query optimizer, and all the various

56 Inside Microsoft SQL Server 2005: The Storage Engine
caches, and it attempts to adapt its distribution algorithm for different types of workloads. You
can think of the Memory Broker as a control mechanism with a feedback loop. It monitors
memory demand and consumption by component, and it uses the information it gathers
to calculate the optimal memory distribution across all components. It can broadcast this
information to the component, which then uses the information to adapt its memory usage.
You can monitor Memory Broker behavior by querying the Memory Broker ring buffer:

SELECT * FROM sys.dm_os_ring_buffers
WHERE ring_buffer_type =
'RING_BUFFER_MEMORY_BROKER'

The ring buffer for the Memory Broker is updated only when the Memory Broker wants the
behavior of a given component to change—that is, to grow, shrink, or remain stable (if it has
previously been growing or shrinking).

Sizing Memory

When we talk about SQL Server memory, we’re actually talking about more than just the
buffer pool. SQL Server memory is actually organized into three sections, and the buffer pool
is usually the largest and most frequently used. The buffer pool is used as a set of 8-KB buffers,
so any memory that is needed in chunks larger than 8 KB is managed separately. The DMV
called sys.dm_os_memory_clerks has a column called multi_pages_kb that shows how much
space is used by a memory component outside the buffer pool:

SELECT type, sum(multi_pages_kb)
FROM sys.dm_os_memory_clerks
WHERE multi_pages_kb != 0
GROUP BY type

If your SQL Server instance is configured to use Address Windowing Extensions (AWE)
memory, that can be considered a third memory area. AWE is an API that allows a 32-bit
application to access physical memory beyond the 32-bit address limit. Although AWE
memory is measured as part of the buffer pool, it must be kept track of separately because
only data cache pages can use AWE memory. None of the other memory components, such as
the plan cache, can use AWE memory.

Note If AWE is enabled, the only way to get information about SQL Server’s actual memory
consumption is by using SQL Server specific counters or DMVs inside the server; you won’t
get this information from OS-level performance counters.

Sizing the Buffer Pool

When SQL Server starts up, it computes the size of the virtual address space (VAS) of the SQL
Server process. Each process running on Windows has its own VAS. The set of all virtual
addresses available for process use constitutes the size of the VAS. The size of the VAS
depends on the architecture (32- or 64-bit) and the operating system. VAS is just the set of all
possible addresses; it might be much greater than the physical memory on the machine.

Chapter 2 SQL Server 2005 Architecture 57
A 32-bit machine can directly address only 4 GB of memory, and by default, Windows itself
reserves the top 2 GB of address space for its own use, which leaves only 2 GB as the maxi-
mum size of the VAS for any application, such as SQL Server. You can increase this by enabling
a /3GB flag in the system’s Boot.ini file, which allows applications to have a VAS of up to 3 GB.
If your system has more than 3GB of RAM, the only way a 32-bit machine can get to it is by
enabling AWE. One benefit in SQL Server 2005 of using AWE, is that memory pages allocated
through the AWE mechanism are considered locked pages and can never be swapped out.

On a 64-bit platform, the AWE Enabled configuration option is present, but its setting is
ignored. However, the Windows policy Lock Pages in Memory option is available, although it
is disabled by default. This policy determines which accounts can make use of a Windows
feature to keep data in physical memory, preventing the system from paging the data to virtual
memory on disk. It is recommended that you enable this policy on a 62-bit system.

On 32-bit operating systems, you will have to enable Lock Pages in Memory policy when
using AWE. It is recommended that you don’t enable the Lock Pages in Memory policy if you
are not using AWE. Although SQL Server will ignore this option when AWE is not enabled,
other processes on the system may be impacted.

Note Memory management is much more straightforward on a 64-bit machine, both for
SQL Server, which has so much more VAS to work with, and for an administrator, who doesn’t
have to worry about special operating system flags or even whether to enable AWE. Unless
you are working only with very small databases and do not expect to need more than a cou-
ple of gigabytes of RAM, you should definitely consider running a 64-bit edition of SQL
Server 2005.

Table 2-1 shows the possible memory configurations for various editions of SQL Server 2005.

In addition to the VAS size, SQL Server also calculates a value called Target Memory, which is
the number of 8-KB pages it expects to be able to allocate. If the configuration option Max
Server Memory has been set, Target Memory is the lesser of these two values. Target Memory
is recomputed periodically, particularly when it gets a memory notification from Windows. A
decrease in the number of target pages on a normally loaded server might indicate a response
to external physical memory pressure. You can see the number of target pages by using the
Performance Monitor—examine the Target Server Pages counter in the SQL Server: Memory

Table 2-1 SQL Server 2005 Memory Configurations

Configuration VAS
Max Physical
Memory

AWE/Locked
Pages Support

Native 32-bit on 32-bit OS

with /3GB boot parameter

2 GB

3 GB

64 GB

16 GB

AWE

AWE

32-bit on x64 OS (WOW) 4 GB 64 GB AWE

Native 64-bit on x64 OS 8 terabyte 1 terabyte Locked Pages

Native 64-bit on IA64 OS 7 terabyte 1 terabyte Locked Pages

58 Inside Microsoft SQL Server 2005: The Storage Engine
Manager object. There is also a DMV called sys.dm_os_sys_info that contains one row of
general-purpose SQL Server configuration information, including the following columns:

■ physical_memory_in_bytes The amount of physical memory available.

■ virtual_memory_in_bytes The amount of virtual memory available to the process in
user mode. You can use this value to determine whether SQL Server was started by using
a 3-GB switch.

■ bpool_commited The total number of buffers with pages that have associated mem-
ory. This does not include virtual memory.

■ bpool_commit_target The optimum number of buffers in the buffer pool.

■ bpool_visible Number of 8-KB buffers in the buffer pool that are directly accessible in
the process virtual address space. When not using AWE, when the buffer pool has
obtained its memory target (bpool_committed = bpool_commit_target), the value of
bpool_visible equals the value of bpool_committed. When using AWE on a 32-bit
version of SQL Server, bpool_visible represents the size of the AWE mapping window
used to access physical memory allocated by the buffer pool. The size of this mapping
window is bound by the process address space and, therefore, the visible amount will be
smaller than the committed amount, and can be further reduced by internal compo-
nents consuming memory for purposes other than database pages. If the value of
bpool_visible is too low, you might receive out of memory errors.

 Although the VAS is reserved, the physical memory up to the target amount is committed
only when that memory is required for the current workload that the SQL Server instance is
handling. The instance continues to acquire physical memory as needed to support the work-
load, based on the users connecting and the requests being processed. The SQL Server
instance can continue to commit physical memory until it reaches its target or the operating
system indicates that there is no more free memory. If SQL Server is notified by the operating
system that there is a shortage of free memory, it frees up memory if it has more memory than
the configured value for Min Server Memory. Note that SQL Server does not commit memory
equal to Min Server Memory initially. It commits only what it needs and what the operating
system can afford. The value for Min Server Memory comes into play only after the buffer pool
size goes above that amount, and then SQL Server does not let memory go below that setting.

As other applications are started on a computer running an instance of SQL Server, they
consume memory, and SQL Server might need to adjust its target memory. Normally, this
should be the only situation in which target memory is less than commit memory, and it
should stay that way only until memory can be released. The instance of SQL Server adjusts
its memory consumption, if possible. If another application is stopped and more memory
becomes available, the instance of SQL Server increases the value of its target memory,
allowing the memory allocation to grow when needed.. SQL Server adjusts its target and
releases physical memory only when there is pressure to do so. Thus, a server that is busy for
a while can commit large amounts of memory that will not necessarily be released if the
system becomes quiescent.

Chapter 2 SQL Server 2005 Architecture 59
Note There is no special handling of multiple SQL Server instances on the same machine;
there is no attempt to balance memory across all instances. They all compete for the same
physical memory, so to make sure none of the instances becomes starved for physical mem-
ory, you should use the Min and Max Server Memory option on all SQL Server instances on a
multiple-instance machine.

Observing Memory Internals

SQL Server 2005 includes several dynamic management objects that provide information
about memory and the various caches. Like the dynamic management objects containing
information about the schedulers, these objects are primarily intended for use by Customer
Support Services to see what SQL Server is doing, but you can use them for the same purpose.
To select from these objects, you must have the View Server State permission. Once again,
I will list some of the more useful or interesting columns for each object; most of these
descriptions are taken from SQL Server 2005 Books Online.

sys.dm_os_memory_clerks This view returns one row per memory clerk that is currently
active in the instance of SQL Server. You can think of a clerk as an accounting unit. Each store
described earlier is a clerk, but some clerks are not stores, such as those for the CLR and for
full-text search. The following query returns a list of all the types of clerks:

SELECT DISTINCT type FROM sys.dm_os_memory_clerks

Interesting columns include the following:

■ single_pages_kb The amount of single-page memory allocated, in kilobytes. This is the
amount of memory allocated by using the single-page allocator of a memory node. This
single-page allocator steals pages directly from the buffer pool.

■ multi_pages_kb The amount of multiple-page memory allocated, in kilobytes. This is
the amount of memory allocated by using the multiple-page allocator of the memory
nodes. This memory is allocated outside the buffer pool and takes advantage of the
virtual allocator of the memory nodes.

■ virtual_memory_reserved_kb The amount of virtual memory reserved by a memory
clerk. This is the amount of memory reserved directly by the component that uses this
clerk. In most situations, only the buffer pool reserves virtual address space directly by
using its memory clerk.

■ virtual_memory_committed_kb The amount of memory committed by the clerk. The
amount of committed memory should always be less than the amount of Reserved
Memory.

■ awe_allocated_kb The amount of memory allocated by the memory clerk by using
AWE. In SQL Server, only buffer pool clerks (MEMORYCLERK_SQLBUFFERPOOL)
use this mechanism, and only when AWE is enabled.

60 Inside Microsoft SQL Server 2005: The Storage Engine
sys.dm_os_memory_cache_counters This view returns a snapshot of the health of each
cache of type userstore and cachestore. It provides run-time information about the cache
entries allocated, their use, and the source of memory for the cache entries. Interesting
columns include the following:

■ single_pages_kb The amount of the single page memory allocated, in kilobytes. This is
the amount of memory allocated by using the single-page allocator. This refers to the
8-KB pages that are taken directly from the buffer pool for this cache.

■ multi_pages_kb The amount of multiple-page memory allocated, in kilobytes. This is
the amount of memory allocated by using the multiple-page allocator of the memory
node. This memory is allocated outside the buffer pool and takes advantage of the
virtual allocator of the memory nodes.

■ multi_pages_in_use_kb The amount of multiple-page memory being used, in kilobytes.

■ single_pages_in_use_kb The amount of single-page memory being used, in kilobytes.

■ entries_count The number of entries in the cache.

■ entries_in_use_count: The number of entries in use in the cache.

sys.dm_os_memory_cache_hash_tables This view returns a row for each active cache in
the instance of SQL Server. This view can be joined to sys.dm_os_memory_cache_counters
on the cache_address column. Interesting columns include the following:

■ buckets_count The number of buckets in the hash table.

■ buckets_in_use_count The number of buckets currently being used.

■ buckets_min_length The minimum number of cache entries in a bucket.

■ buckets_max_length The maximum number of cache entries in a bucket.

■ buckets_avg_length The average number of cache entries in each bucket. If this num-
ber gets very large, it might indicate that the hashing algorithm is not ideal.

■ buckets_avg_scan_hit_length The average number of examined entries in a bucket
before the searched-for item was found. As above, a big number might indicate a less-
than-optimal cache. You might consider running DBCC FREESYSTEMCACHE to
remove all unused entries in the cache stores. You can get more details on this command
in Books Online.

sys.dm_os_memory_cache_clock_hands This DMV, discussed earlier, can be joined to
the other cache DMVs using the cache_address column. Interesting columns include the
following:

■ clock_hand The type of clock hand, either external or internal. Remember that there
are two clock hands for every store.

■ clock_status The status of the clock hand: suspended or running. A clock hand runs
when a corresponding policy kicks in.

Chapter 2 SQL Server 2005 Architecture 61
■ rounds_count The number of rounds the clock hand has made. All the external clock
hands should have the same (or close to the same) value in this column.

■ removed_all_rounds_count The number of entries removed by the clock hand in all
rounds.

Another tool for observing memory use is the command DBCC MEMORYSTATUS, which is
greatly enhanced in SQL Server 2005. The book’s companion content includes a Knowledge
Base article that describes the output from the enhanced command.

NUMA and Memory

As mentioned earlier, one major reason for implementing NUMA is to handle large amounts
of memory efficiently. As clock speed and the number of processors increase, it becomes
increasingly difficult to reduce the memory latency required to use this additional processing
power. Large L3 caches can help alleviate part of the problem, but this is only a limited
solution. NUMA is the scalable solution of choice. SQL Server 2005 has been designed to take
advantage of NUMA-based computers without requiring any application changes. Keep in
mind that the NUMA memory nodes are completely dependent on the hardware NUMA
configuration. If you define your own soft-NUMA, as discussed earlier, you will not affect the
number of NUMA memory nodes. So, for example, if you have an SMP computer with eight
CPUs and you create four soft-NUMA nodes with two CPUs each, you will have only one
MEMORY node serving all four NUMA nodes. Soft-NUMA does not provide memory to CPU
affinity. However, there is a network I/O thread and a lazywriter thread for each NUMA node,
either hard or soft.

The principle reason for using soft-NUMA is to reduce I/O and lazywriter bottlenecks on
computers with many CPUs and no hardware NUMA. For instance, on a computer with eight
CPUs and no hardware NUMA, you have one I/O thread and one lazywriter thread that could
be a bottleneck. Configuring four soft-NUMA nodes provides four I/O threads and four
lazywriter threads, which could definitely help performance.

If you have multiple NUMA memory nodes, SQL Server divides the total target memory
evenly among all the nodes. So if you have 10 GB of physical memory and four NUMA nodes
and SQL Server determines a 10-GB target memory value, all nodes will eventually allocate
and use 2.5 GB of memory as if it were their own. In fact, if one of the nodes has less memory
than another, it must use memory from other one to reach its 2.5 GB. This memory is called
foreign memory. Foreign memory is considered local, so if SQL Server has readjusted its target
memory and each node needs to release some, no attempt will be made to free up foreign
pages first. In addition, if SQL Server has been configured to run on a subset of the available
NUMA nodes, the target memory will not automatically be limited to the memory on those
nodes. You must set the Max Server Memory value to limit the amount of memory.

In general, the NUMA nodes function largely independently of each other, but that is not
always the case. For example, if a worker running on a node N1 needs to access a database

62 Inside Microsoft SQL Server 2005: The Storage Engine
page that is already in node N2’s memory, it does so by accessing N2’s memory, which is
called non-local memory. Note that non-local is not the same as foreign memory.

Read-Ahead

SQL Server supports a mechanism called read-ahead whereby the need for data and index
pages can be anticipated and pages can be brought into the buffer pool before they’re actually
needed. This performance optimization allows large amounts of data to be processed effec-
tively. Read-ahead is managed completely internally, and no configuration adjustments are
necessary.

There are two kinds of read-ahead: one for table scans on heaps and one for index ranges. For
table scans, the table’s allocation structures are consulted to read the table in disk order. Up
to 32 extents (32 * 8 pages/extent * 8192 bytes/page = 2 MB) of read-ahead may be outstand-
ing at a time. Four extents (32 pages) at a time are read with a single 256-KB scatter read. If the
table is spread across multiple files in a file group, SQL Server will attempt to distribute the
read-ahead activity across the files evenly.

For index ranges, the scan uses level one of the index structure (the level immediately above
the leaf) to determine which pages to read ahead. When the index scan starts, read-ahead is
invoked on the initial descent of the index to minimize the number of reads performed. For
instance, for a scan of WHERE state = ‘WA’, read-ahead searches the index for key = ‘WA’, and
it can tell from the level-one nodes how many pages must be examined to satisfy the scan. If
the anticipated number of pages is small, all the pages are requested by the initial read-ahead;
if the pages are non-contiguous, they’re fetched in scatter reads. If the range contains a large
number of pages, the initial read-ahead is performed and thereafter every time another 16
pages are consumed by the scan, the index is consulted to read in another 16 pages. This has
several interesting effects:

■ Small ranges can be processed in a single read at the data page level whenever the index
is contiguous.

■ The scan range (for example, state = ‘WA’) can be used to prevent reading ahead of pages
that won’t be used because this information is available in the index.

■ Read-ahead is not slowed by having to follow page linkages at the data page level. (Read-
ahead can be done on both clustered indexes and nonclustered indexes.)

As you can see, memory management in SQL Server is a huge topic, and I’ve provided you
with only a basic understanding of how SQL Server uses memory. This information should
give you a start in interpreting the wealth of information valuable through the DMVs and
troubleshooting. The companion content includes a white paper that offers many more
troubleshooting ideas and scenarios.

Chapter 2 SQL Server 2005 Architecture 63
Final Words
In this chapter, we’ve looked at the general workings of the SQL Server engine, including
the key modules and functional areas that make up the engine. We’ve also looked at the
interaction between SQL Server and the operating system. By necessity, I’ve made some
simplifications throughout the chapter, but the information should provide some insight into
the roles and responsibilities of the major components in SQL Server and the interrelation-
ships among components.

87

Chapter 4

Databases and Database Files

In this chapter:

System Databases. .88

Sample Databases .90

Database Files .92

Creating a Database .94

Expanding or Shrinking a Database .97

Using Database Filegroups. .101

Altering a Database .104

Databases Under the Hood .106

Setting Database Options. .115

Database Snapshots. .127

The tempdb Database .132

Database Security .137

Moving or Copying a Database .142

Compatibility Levels .147

Summary .148

Simply put, a Microsoft SQL Server database is a collection of objects that hold and manipulate
data. A typical SQL Server instance has only a handful of databases, but it’s not unusual for a
single installation to contain several dozen databases. The technical limit for one SQL Server
instance is 32,767 databases. But practically speaking, this limit would never be reached.

To elaborate a bit, you can think of a SQL Server database as having the following properties
and features:

■ It is a collection of many objects, such as tables, views, stored procedures, and con-
straints. The technical limit is 231–1 (more than 2 billion) objects. The number of objects
typically ranges from hundreds to tens of thousands.

■ It is owned by a single SQL Server login account.

■ It maintains its own set of user accounts, roles, schemas, and security.

■ It has its own set of system tables and views to hold the database catalog.

■ It is the primary unit of recovery and maintains logical consistency among objects within
it. (For example, primary and foreign key relationships always refer to other tables
within the same database, not in other databases.)

88 Inside Microsoft SQL Server 2005: The Storage Engine
■ It has its own transaction log and manages its own transactions.

■ It can span multiple disk drives and operating system files.

■ It can range in size from 1 megabyte (MB) to a technical limit of 1,048,516 terabytes.

■ It can grow and shrink, either automatically or by command.

■ It can have objects joined in queries with objects from other databases in the same SQL
Server instance or on linked servers.

■ It can have specific options set or disabled. (For example, you can set a database to be
read-only or to be a source of published data in replication.)

And here is what a SQL Server database is not:

■ It is not synonymous with an entire SQL Server instance.

■ It is not a single SQL Server table.

■ It is not a specific operating system file.

While a database isn’t the same thing as an operating system file, it always exists in two or
more such files. These files are known as SQL Server database files and are specified either at
the time the database is created, using the CREATE DATABASE command, or afterward, using
the ALTER DATABASE command.

System Databases
A new SQL Server 2005 installation always includes four databases: master, model, tempdb,
and msdb. It also contains a fifth, “hidden” database that you will never see using any of the
normal SQL commands that list all your databases. This database is referred to as the resource
database, but its actual name is mssqlsystemresource.

master

The master database is composed of system tables that keep track of the server installation
as a whole and all other databases that are subsequently created. Although every database has
a set of system catalogs that maintain information about objects it contains, the master data-
base has system catalogs that keep information about disk space, file allocations and usage,
systemwide configuration settings, endpoints, login accounts, databases on the current
instance, and the existence of other SQL servers (for distributed operations).

The master database is critical to your system, so always keep a current backup copy of it.
Operations such as creating another database, changing configuration values, and modifying
login accounts all make modifications to master, so after performing such actions, you should
back up master.

Chapter 4 Databases and Database Files 89
model

The model database is simply a template database. Every time you create a new database, SQL
Server makes a copy of model to form the basis of the new database. If you’d like every new
database to start out with certain objects or permissions, you can put them in model, and all
new databases will inherit them. You can also change most properties of the model database
by using the ALTER DATABASE command, and those property values will then be used by
any new database you create.

tempdb

The tempdb database is used as a workspace. It is unique among SQL Server databases
because it’s re-created—not recovered—every time SQL Server is restarted. It’s used for tempo-
rary tables explicitly created by users, for worktables that will hold intermediate results cre-
ated internally by SQL Server during query processing and sorting, for maintaining row
versions used in
snapshot isolation and certain other operations, and for materializing static cursors and the
keys of keyset cursors. Because the tempdb database is re-created, any objects or permissions
that you create in the database will be lost the next time you restart your SQL Server instance.
An alternative is to create the object in the model database, from which tempdb is copied.

The tempdb database sizing and configuration is critical for optimal functioning and perfor-
mance of SQL Server, so I’ll discuss tempdb in more detail in its own section later in this chapter.

mssqlsystemresource

As mentioned, the mssqlsystemresource database is a hidden database and is usually referred to
as the resource database. Executable system objects, such as system stored procedures and
functions, are stored here. Microsoft created it to allow very fast and safe upgrades. If no one
can get to this database, no one can change it, and you can upgrade to a new service pack that
introduces new system objects by simply replacing the resource database with a new one.
Keep in mind that you can’t see this database using any of the normal means for viewing
databases, such as selecting from sys.databases or executing sp_helpdb. It also won’t show up
in the system databases tree in the Object Explorer pane of SQL Server Management Studio,
and it will not appear in the drop-down list of databases accessible from your query windows.
However, this database still needs disk space.

You can see the files in your default data directory by using Windows Explorer. My data
directory is at C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\data; I can see a
file called mssqlsystemresource.mdf, which is 38 MB in size, and mssqlsystemresource.ldf,
which is 0.5 MB. The created and modified date for both of these files is the day I installed this
SQL Server instance, but their last accessed date is today.

If you have a burning need to “see” the contents of mssqlsystemresource, a couple of methods
are available. The easiest, if you just want to see what’s there, is to stop SQL Server, make
copies of the two files for the resource database, restart SQL Server, and then attach the

90 Inside Microsoft SQL Server 2005: The Storage Engine
copied files to create a database with a new name. You can do this by using Object Explorer in
SQL Server Management Studio or by using the CREATE DATABASE FOR ATTACH syntax to
create a clone database, as shown here:

CREATE DATABASE resource_COPY ON (NAME = data, FILENAME =
'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Data\

mssqlsystemresource_COPY.mdf'), (NAME = log, FILENAME =
'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Data\mssqlsystemresource_COPY.ldf')
FOR ATTACH;

SQL Server will treat this new resource_COPY database like any other user database, and it will
not treat the objects in it as special in any way. If you want to change anything in the resource
database, such as the text of a supplied system stored procedure, changing it in resource_COPY
will obviously not affect anything else on your instance. However, if you start your SQL Server
instance in single-user mode, you can make a single connection, and that connection will be
able to use the mssqlsystemresource database. Starting an instance in single-user mode is not
the same thing as setting a database to single-user mode. For details on how to start SQL
Server in single-user mode, see the SQL Server Books Online entry for the Sqlservr.exe
application. In Chapter 6, when I discuss database objects, I’ll discuss some of the objects in
the resource database.

msdb

The msdb database is used by the SQL Server Agent service, which performs scheduled
activities such as backups and replication tasks, and the Service Broker, which provides
queuing and reliable messaging for SQL Server. When you are not performing backups and
maintenance on this database, you should generally ignore msdb. (But you might take a peek
at the backup history and other information kept there.) All the information in msdb is
accessible from Object Explorer in SQL Server Management Studio, so you usually don’t need
to access the tables in this database directly. You can think of the msdb tables as another form
of system tables: Just as you can never directly modify system tables, you shouldn’t directly
add data to or delete data from tables in msdb unless you really know what you’re doing or are
instructed to do so by a Microsoft SQL Server technical support engineer. Prior to SQL Server
2005, it was actually possible to drop the msdb database; your SQL Server instance was still
usable, but you couldn’t maintain any backup history, and you weren’t able to define tasks,
alerts, or jobs, or set up replication. In SQL Server 2005, there is an undocumented traceflag
that allows you to drop the msdb database, but because the default msdb database is so small,
I recommend leaving it alone even if you think you might never need it.

Sample Databases
Prior to SQL Server 2005, the installation program automatically installed sample databases
so you would have some actual data for exploring SQL Server functionality. As part of
Microsoft’s efforts to tighten security, SQL Server 2005 does not automatically install any
sample databases. However, three sample databases are widely available.

Chapter 4 Databases and Database Files 91
AdventureWorks

The AdventureWorks database was created by the Microsoft User Education group as an
example of what a “real” database might look like. It is an optional component that you can
choose to install during the installation process. The database was designed to showcase SQL
Server 2005 features, in particular the organization of objects into different schemas. The
design is also highly normalized. While normalized data and many separate schemas might
closely map to a real production database’s design, they can make it quite difficult to write and
test simple queries and to learn basic SQL.

Database design is not a major focus of this book, so most of my examples will use simple
tables that I create; if more than a few rows of data are needed, I’ll copy data from one or more
AdventureWorks tables into tables of my own. It’s a good idea to become familiar with the
design of the AdventureWorks database because many of the examples in Books Online and in
white papers published on the Microsoft Web site use data from this database. Note that it is
also possible to install an AdventureWorksDW database, which includes data and features
relevant to a data warehouse as well as SQL Server 2005 data warehousing features. I will not
discuss that database in this book.

pubs

The pubs database is a sample database that was used extensively in earlier versions of SQL
Server. Many older publications with SQL Server examples assume that you have this
database because it was automatically installed on versions of SQL Server prior to SQL Server
2005. You can download a script for building this database from Microsoft’s Web site, and I
have also included the script with this book’s companion content.

The pubs database is admittedly simple, but that’s a feature, not a drawback. It provides good
examples without a lot of peripheral issues to obscure the central points. You shouldn’t worry
about making modifications in the pubs database as you experiment with SQL Server features.
You can completely rebuild the pubs database from scratch by running the supplied script. In
a query window, open the file named Instpubs.sql and execute it. Make sure there are no
current connections to pubs, because the current pubs database is dropped before the new one
is created.

Northwind

The Northwind database is a sample database that was originally developed for use with
Microsoft Access. Much of the pre–SQL Server 2005 documentation dealing with APIs uses
Northwind. Northwind is a bit more complex than pubs, and, at almost 4 MB, it is slightly larger.
As with pubs, you can download a script from the Microsoft Web site to build it, or you can use
the script provided with the companion content. The file is called Instnwnd.sql.

92 Inside Microsoft SQL Server 2005: The Storage Engine
Database Files
A database file is nothing more than an operating system file. (In addition to database files,
SQL Server also has backup devices, which are logical devices that map to operating system
files or to physical devices such as tape drives. In this chapter, I won’t be discussing files that
are used to store backups.) A database spans at least two, and possibly several, database files,
and these files are specified when a database is created or altered. Every database must span
at least two files, one for the data (as well as indexes and allocation pages) and one for the
transaction log.

SQL Server 2005 allows the following three types of database files:

■ Primary data files Every database has one primary data file that keeps track of all the
rest of the files in the database, in addition to storing data. By convention, a primary data
file has the extension .mdf.

■ Secondary data files A database can have zero or more secondary data files. By
convention, a secondary data file has the extension .ndf.

■ Log files Every database has at least one log file that contains the information
necessary to recover all transactions in a database. By convention, a log file has the
extension .ldf.

Each database file has five properties that can be specified when you create the file: a logical
filename, a physical filename, an initial size, a maximum size, and a growth increment. The
value of these properties, along with other information about each file, can be seen through
the metadata view sys.database_files, which contains one row for each file used by a database.
Most of the columns shown in sys.database_files are listed in Table 4-1. The columns not
mentioned here contain information dealing with transaction log backups relevant to the
particular file, and I’ll be discussing the transaction log in Chapter 5.

Table 4-1 The sys.database_files View

Column Description

fileid The file identification number (unique for each database).

file_guid GUID for the file.

NULL = Database was upgraded from an earlier version of
Microsoft SQL Server.

type File type:

0 = Rows

1 = Log

2 = Reserved for future use.

3 = Reserved for future use.

4 = Full-text

Chapter 4 Databases and Database Files 93
type_desc Description of the file type:

ROWS

LOG

FULLTEXT

data_space_id ID of the data space to which this file belongs. Data space is a
filegroup.

0 = Log file.

name The logical name of the file.

physical_name Operating-system file name.

state File state:

0 = ONLINE

1 = RESTORING

2 = RECOVERING

3 = RECOVERY_PENDING

4 = SUSPECT

5 = Reserved for future use.

6 = OFFLINE

7 = DEFUNCT

state_desc Description of the file state:

ONLINE

RESTORING

RECOVERING

RECOVERY_PENDING

SUSPECT

OFFLINE

DEFUNCT

size Current size of the file, in 8-kilobyte (KB) pages.

0 = Not applicable

For a database snapshot, size reflects the maximum space that
the snapshot can ever use for the file.

max_size Maximum file size, in 8-KB pages:

0 = No growth is allowed.

–1 = File will grow until the disk is full.

268435456 = Log file will grow to a maximum size of 2 terabytes.

Table 4-1 The sys.database_files View

Column Description

94 Inside Microsoft SQL Server 2005: The Storage Engine
Creating a Database
The easiest way to create a database is to use Object Explorer in SQL Server Management
Studio, which provides a graphical front end to the Transact-SQL commands and stored
procedures that actually create the database and set its properties. Figure 4-1 shows the New
Database dialog box, which represents the Transact-SQL CREATE DATABASE command for
creating a new user database. Only someone with the appropriate permissions can create a
database, either through Object Explorer or by using the CREATE DATABASE command. This
includes anyone in the sysadmin role, anyone who has been granted CONTROL or ALTER
permission on the server, and any user who has been granted CREATE DATABASE permis-
sion by someone with the sysadmin or dbcreator role.

When you create a new database, SQL Server copies the model database. If you have an object
that you want created in every subsequent user database, you should create that object in
model first. You can also use model to set default database options in all subsequently created
databases. The model database includes 47 objects— 41 system tables and 6 objects used for
SQL Server Notification Services and Service Broker. You can see these objects by selecting
from the system table called sys.objects. However, if you run the procedure sp_help in the model
database, it will list 1788 objects. It turns out that most of these objects are not really stored in
the model database but are accessible through it. In Chapter 6, I’ll tell you what the other kinds

growth 0 = File is fixed size and will not grow.

>0 = File will grow automatically.

If is_percent_growth = 0, growth increment is in units of 8-KB
pages, rounded to the nearest 64 KB.

If is_percent_growth = 1, growth increment is expressed as a
whole number percentage.

is_media_read_only 1 = File is on read-only media.

0 = File is on read/write media.

is_read_only 1 = File is marked read-only.

0 = File is marked read/write.

is_sparse 1 = File is a sparse file.

0 = File is not a sparse file.

(Sparse files are used with database snapshots, discussed later in
this chapter.)

is_percent_growth See description for growth column, above.

is_name_reserved 1 = Dropped file name (name or physical_name) is reusable only
after the next log backup. When files are dropped from a data-
base, the logical names stay in a reserved state until the next log
backup. This column is relevant only under the full recovery
model and the bulk-logged recovery model.

Table 4-1 The sys.database_files View

Column Description

Chapter 4 Databases and Database Files 95
of objects are and how you can tell whether an object is really stored in a particular database.
Most of the objects you see in model will show up when you run sp_help in any database, but
your user databases will probably have more objects added to this list. The contents of model
are just the starting point.

Figure 4-1 The New Database dialog box, where you can create a new database

A new user database must be 1 MB in size or larger, and the primary data file size must be
at least as large as the primary data file of the model database. (The model database only has
one file and cannot be altered to add more. So the size of the primary data file and the size
of the database are basically the same for model.) Almost all the possible arguments to the
CREATE DATABASE command have default values, so it’s possible to create a database using
a simple form of CREATE DATABASE, such as this:

CREATE DATABASE newdb;

This command creates the newdb database, with a default size, on two files whose logical
names—newdb and newdb_log—are derived from the name of the database. The corresponding
physical files, newdb.mdf and newdb_log.ldf, are created in the default data directory
(as determined at the time SQL Server was installed).

The SQL Server login account that created the database is known as the database owner, and
that information is stored with the information about the database properties in the master
database. A database can have only one actual owner, who always corresponds to a login
name. Any login that uses any database has a user name in that database, which might be the
same name as the login name but doesn’t have to be. The login that is the owner of a database
always has the special user name dbo when using the database it owns. I’ll discuss database

96 Inside Microsoft SQL Server 2005: The Storage Engine
users later in this chapter when I tell you about the basics of database security. The default size
of the data file is the size of the primary data file of the model database, and the default size of
the log file is 1 MB. Whether the database name, newdb, is case sensitive depends on the sort
order you chose during setup. If you accepted the default, the name is case insensitive. (Note
that the actual command CREATE DATABASE is case insensitive, regardless of the case
sensitivity chosen for data.)

Other default property values apply to the new database and its files. For example, if the LOG
ON clause is not specified but data files are specified, SQL Server creates a log file with a size
that is 25 percent of the sum of the sizes of all data files.

If the MAXSIZE clause isn’t specified for the files, the file will grow until the disk is full.
(In other words, the file size is considered unlimited.) You can specify the values for SIZE,
MAXSIZE, and FILEGROWTH in units of terabyte, gigabyte (GB), MB (the default), or KB.
You can also specify the FILEGROWTH property as a percentage. A value of 0 for
FILEGROWTH indicates no growth. If no FILEGROWTH value is specified, the default
growth increment for data files is 1 MB. This is a change from SQL Server 2000, where the
default growth increment for data files was 10 percent. In SQL Server 2005, the log file FILE-
GROWTH default is 10 percent, the same as it was in SQL Server 2000.

A CREATE DATABASE Example

The following is a complete example of the CREATE DATABASE command, specifying three
files and all the properties of each file:

CREATE DATABASE Archive
ON
PRIMARY
(NAME = Arch1,
FILENAME =

'c:\program files\microsoft sql server\mssql.1\mssql\data\archdat1.mdf',
SIZE = 100MB,
MAXSIZE = 200,
FILEGROWTH = 20),
(NAME = Arch2,
FILENAME =

'c:\program files\microsoft sql server\mssql.1\mssql\data\archdat2.ndf',
SIZE = 100MB,
MAXSIZE = 200,
FILEGROWTH = 20)
LOG ON
(NAME = Archlog1,
FILENAME =

'c:\program files\microsoft sql server\mssql.1\mssql\data\archlog1.ldf',
SIZE = 100MB,
MAXSIZE = 200,
FILEGROWTH = 20);

Chapter 4 Databases and Database Files 97
Expanding or Shrinking a Database
Databases can be expanded and shrunk automatically or manually. The mechanism for
automatic expansion is completely different from the mechanism for automatic shrinkage.
Manual expansion is also handled differently than manual shrinkage. Log files have their own
rules for growing and shrinking; I’ll discuss changes in log file size in Chapter 5.

Warning Shrinking a database or any data file is an extremely resource-intensive
operation, and the only reason to do it is if you absolutely must recover disk space.

Automatic File Expansion

Expansion can happen automatically to any one of the database’s files when that particular
file becomes full. The file property FILEGROWTH determines how that automatic expansion
happens. The FILEGROWTH specified when the file is first defined can be qualified using the
suffix MB, KB, or %, and it is always rounded up to the nearest 64 KB. If the value is specified
as a percentage, the growth increment is the specified percentage of the size of the file when
the expansion occurs. The file property MAXSIZE sets an upper limit on the size.

Allowing SQL Server to grow your data files automatically is no substitute for good capacity
planning before you build or populate any tables. Enabling autogrow might prevent some
failures due to unexpected increases in data volume, but it can also cause problems. If a data
file is full and your autogrow percentage is set to grow by 10 percent, if an application
attempts to insert a single row and there is no space, the database might start to grow by a
large amount. (Ten percent of 10,000 MB is 1000 MB.) This in itself can take a lot of time if fast
file initialization (discussed in the next section) is not being used. The growth might take so
long that the client application’s timeout value is exceeded, which means the insert query will
fail. The query would have failed anyway if autogrow wasn’t set, but with autogrow enabled,
SQL Server will spend a lot of time trying to grow the file, and you won’t be informed of the
problem immediately.

With autogrow enabled, your database files still cannot grow the database size beyond the
limits of the available disk space on the drives on which files are defined, or beyond the size
specified in the MAXSIZE file property. So if you rely on the autogrow functionality to size
your databases, you must still independently check your available hard disk space or the total
file size. To reduce the possibility of running out of space, you can watch the Performance
Monitor counter SQL Server: Databases Object: Data File Size and set up a performance alert
to fire when the database file reaches a certain size.

Manual File Expansion

You can manually expand a database file by using the ALTER DATABASE command to change
the SIZE property of one or more of the files. When you alter a database, the new size of a file

98 Inside Microsoft SQL Server 2005: The Storage Engine
must be larger than the current size. To decrease the size of a file, you use the DBCC SHRINK-
FILE command, which I’ll tell you about shortly.

Fast File Initialization

In SQL Server 2005, data files can be initialized instantaneously. This allows for fast execution
of the file creation and growth. Instant file initialization adds space to the data file without
filling the newly added space with zeros. Instead, the actual disk content is overwritten only
as new data is written to the files. Until the data is overwritten, there is always the chance that
a hacker using an external file reader tool can see the data that was previously on the disk.
Although the SQL Server 2005 documentation describes the instant file initialization feature
as an “option,” it is not an option within SQL Server. It is actually controlled through a
Windows security setting called SE_MANAGE_VOLUME_NAME, which is granted to
Windows Administrators by default. (This right can be granted to other Windows users by
adding them to the Perform Volume Maintenance Tasks security policy.) If your SQL Server
(MSSQLSERVER) service account is in the Windows Administrator role and your SQL Server
is running on a Windows XP or Windows 2003 file system, instant file initialization will be
used. If you want to make sure your database files are zeroed out as they are created and
expanded, you can use traceflag 1806 to always zero the space, as previous SQL Server
versions did.

Automatic Shrinkage

The database property autoshrink allows a database to shrink automatically. The effect is
the same as doing a DBCC SHRINKDATABASE (dbname, 25). This option leaves 25 percent
free space in a database after the shrink, and any free space beyond that is returned to the
operating system. The thread that performs autoshrink—which always has a session ID (SPID)
of 6 in SQL Server 2005 (but there’s no guarantee SQL Server will use the same SPID in future
versions)—shrinks databases at 30-minute intervals. I’ll discuss the DBCC SHRINKDATA-
BASE command in more detail momentarily.

Manual Shrinkage

You can manually shrink a database using one of the following DBCC commands:

DBCC SHRINKFILE ({file_name | file_id }
[, target_size][, {EMPTYFILE | NOTRUNCATE | TRUNCATEONLY}])

DBCC SHRINKDATABASE (database_name [, target_percent]
[, {NOTRUNCATE | TRUNCATEONLY}])

DBCC SHRINKFILE

DBCC SHRINKFILE allows you to shrink files in the current database. When you specify
target_size, DBCC SHRINKFILE attempts to shrink the specified file to the specified size in

Chapter 4 Databases and Database Files 99
megabytes. Used pages in the part of the file to be freed are relocated to available free space in
the part of the file retained. For example, for a 15-MB data file, a DBCC SHRINKFILE with a
target_size of 12 causes all used pages in the last 3 MB of the file to be reallocated into any free
slots in the first 12 MB of the file. DBCC SHRINKFILE doesn’t shrink a file past the size
needed to store the data. For example, if 70 percent of the pages in a 10-MB data file are used,
a DBCC SHRINKFILE statement with a target_size of 5 shrinks the file to only 7 MB, not 5 MB.

DBCC SHRINKDATABASE

DBCC SHRINKDATABASE shrinks all files in a database. The database can’t be made smaller
than the model database, and DBCC SHRINKDATABASE does not allow any file to be shrunk
smaller than its minimum size. The minimum size of a database file is the initial size of the file
(specified when the database was created) or the size to which the file has been explicitly
extended or reduced, using either the ALTER DATABASE or DBCC SHRINKFILE command.
If you need to shrink a database smaller than its minimum size, you should use the DBCC
SHRINKFILE command to shrink individual database files to a specific size. The size to which
a file is shrunk becomes the new minimum size.

The numeric target_percent argument passed to the DBCC SHRINKDATABASE command is a
percentage of free space to leave in each file of the database. For example, if you’ve used 60 MB
of a 100-MB database file, you can specify a shrink percentage of 25 percent. SQL Server
will then shrink the file to a size of 80 MB, and you’ll have 20 MB of free space in addition to
the original 60 MB of data. In other words, the 80-MB file will have 25 percent of its space
free. If, on the other hand, you’ve used 80 MB or more of a 100-MB database file, there is no
way SQL Server can shrink this file to leave 25 percent free space. In that case, the file size
remains unchanged.

Because DBCC SHRINKDATABASE shrinks the database on a file-by-file basis, the mecha-
nism used to perform the actual shrinking is the same as that used with DBCC SHRINKFILE.
SQL Server first moves pages to the front of files to free up space at the end, and then it
releases the appropriate number of freed pages to the operating system.

Two options for the DBCC SHRINKDATABASE and DBCC SHRINKFILE commands can force
SQL Server to do either of the two steps just mentioned, while a third option is available only
to DBCC SHRINKFILE:

■ NOTRUNCATE This option causes all the freed file space to be retained in the database
files. SQL Server compacts the data only by moving it to the front of the file. The default
is to release the freed file space to the operating system.

■ TRUNCATEONLY This option causes any unused space in the data files to be released
to the operating system. No attempt is made to relocate rows to unallocated pages. When
TRUNCATEONLY is used, target_size and target_percent are ignored.

■ EMPTYFILE This option, available only with DBCC SHRINKFILE, empties the
contents of a data file and moves them to other files in the filegroup.

100 Inside Microsoft SQL Server 2005: The Storage Engine
Note DBCC SHRINKFILE specifies a target size in megabytes. DBCC SHRINKDATABASE
specifies a target percentage of free space to leave in the database.

Both the DBCC SHRINKFILE command and the DBCC SHRINKDATABASE command give
a report for each file that can be shrunk. For example, if my pubs database currently has an
8-MB data file and a log file of about the same size, I get the following report when I issue this
DBCC SHRINKDATABASE command:

DBCC SHRINKDATABASE(pubs, 10);
RESULTS:
DbId FileId CurrentSize MinimumSize UsedPages EstimatedPages
------ ------ ----------- ----------- ----------- --------------
5 1 256 80 152 152
5 2 1152 63 1152 56

The current size is the size in pages after any shrinking takes place. In this case, the database
file (FileId = 1) was shrunk to 256 pages of 8 KB each, which is 2 MB. But only 152 pages were
used. There might be several reasons for the difference between used pages and current pages:

■ If I asked to leave a certain percentage free, the current size will be bigger than the used
pages because of that free space.

■ If the minimum size to which I can shrink a file is bigger than the used pages, the current
size cannot become smaller than the minimum size.

■ If the size of the data file for the model database is bigger than the used pages, the current
size cannot become smaller than the size of model’s data file.

For the log file (FileId = 2), the only values that really matter are the current size and the
minimum size. The other two values are basically meaningless for log files because the current
size is always the same as the used pages and because there is really no simple way to estimate
how small a log file can be shrunk. Shrinking a log file is very different from shrinking a data
file, and understanding how much you can shrink a log file, and what exactly happens
when you shrink it, requires an understanding of how the log is used. For this reason, I will
postpone the discussion of shrinking log files until Chapter 5.

As the warning at the beginning of this section indicated, shrinking a database or any data
files is a resource-intensive operation. If you absolutely need to recover disk space from the
database, you should plan the shrink operation carefully and perform it when it will have
the least impact on the rest of the system. You should never enable the AUTOSHRINK option,
which will shrink all the data files at regular intervals and wreak havoc with system perfor-
mance. Because shrinking data files can move data all around a file, it can also introduce
fragmentation, which you then might want to remove. Defragmenting your data files can then
have its own impact on productivity because it uses system resources. I'll discuss fragmenta-
tion and defragmentation in Chapter 7.

It is possible for shrink operations to be blocked by a transaction that has been enabled
for the snapshot isolation level. When this happens, DBCC SHRINKFILE and DBCC

Chapter 4 Databases and Database Files 101
SHRINKDATABASE print out an informational message to the error log every five minutes
in the first hour and then every hour after that. SQL Server 2005 also provides progress
reporting for the SHRINK commands, available through the sys.dm_exec_requests view. I
discuss progress reporting in the section on DBCC commands, or you can get the full details
from the Books Online page for sys.dm_exec_requests.

Using Database Filegroups
You can group data files for a database into filegroups for allocation and administration
purposes. In some cases, you can improve performance by controlling the placement of data
and indexes into specific filegroups on specific disk drives. The filegroup containing the
primary data file is called the primary filegroup. There is only one primary filegroup, and if you
don’t specifically ask to place files in other filegroups when you create your database, all of
your data files will be in the primary filegroup.

In addition to the primary filegroup, a database can have one or more user-defined filegroups.
You can create user-defined filegroups by using the FILEGROUP keyword in the CREATE
DATABASE or ALTER DATABASE statement.

Don’t confuse the primary filegroup and the primary file:

■ The primary file is always the first file listed when you create a database, and it typically
has the file extension .mdf. The one special feature of the primary file is that it has point-
ers into a table in the master database called sysfiles1 that contains information about all
the files belonging to the database.

■ The primary filegroup is always the filegroup that contains the primary file. This file-
group contains the primary data file and any files not put into another specific filegroup.
All pages from system tables are always allocated from files in the primary filegroup.

The Default Filegroup

One filegroup always has the property of DEFAULT. Note that DEFAULT is a property of a
filegroup, not a name. Only one filegroup in each database can be the default filegroup. By
default, the primary filegroup is the also the default filegroup. A database owner can change
which filegroup is the default by using the ALTER DATABASE statement. The default
filegroup contains the pages for all tables and indexes that aren’t placed in a specific filegroup.

Most SQL Server databases have a single data file in one (default) filegroup. In fact, most users
will probably never know enough about how SQL Server works to know what a filegroup is.
As a user acquires greater database sophistication, she might decide to use multiple devices to
spread out the I/O for a database. The easiest way to do this is to create a database file on a
RAID device. Still, there would be no need to use filegroups. At the next level of sophistication
and complexity, the user might decide that she really wants multiple files—perhaps to create a
database that uses more space than is available on a single drive. In this case, she still doesn’t

102 Inside Microsoft SQL Server 2005: The Storage Engine
need filegroups—she can accomplish her goals using CREATE DATABASE with a list of files on
separate drives.

More sophisticated database administrators might decide to have different tables assigned to
different drives or to use the table and index partitioning feature in SQL Server 2005. Only
then will they need to use filegroups. They can then use Object Explorer in SQL Server
Management Studio to create the database on multiple filegroups. Then they can right-click
on the database name in Object Explore and create a script of the CREATE DATABASE
command that includes all the files in their appropriate filegroups. They can save and reuse
this script when they need to re-create the database or build a similar database.

Why Use Multiple Files?

You might wonder why you would want to create a database on multiple files located on
one physical drive. There’s usually no performance benefit in doing so, but it gives you
added flexibility in two important ways.

First, if you need to restore a database from a backup because of a disk crash, the new
database must contain the same number of files as the original. For example, if your orig-
inal database consisted of one large 12-GB file, you would need to restore it to a database
with one file of that size. If you don’t have another 12-GB drive immediately available,
you cannot restore the database! If, however, you originally created the database on sev-
eral smaller files, you have added flexibility during a restoration. You might be more
likely to have several 4-GB drives available than one large 12-GB drive.

Second, spreading the database onto multiple files, even on the same drive, gives you the
flexibility of easily moving the database onto separate drives if you modify your hard-
ware configuration in the future.

Objects that have space allocated to them, namely tables and indexes, are created on a partic-
ular filegroup. If the filegroup is not specified, they are created on the default filegroup. When
you add space to objects stored in a particular filegroup, the data is stored in a proportional fill
manner, which means that if you have one file in a filegroup with twice as much free space as
another, the first file will have two extents (or units of space) allocated from it for each extent
allocated from the second file. I’ll discuss extents in more detail later in this chapter.

You can also use filegroups to allow backups of parts of the database. Because a table is
created on a single filegroup, you can choose to back up just a certain set of critical tables by
backing up the filegroups in which you placed those tables. You can also restore individual
files or filegroups in two ways. First, you can do a partial restore of a database and restore only
a subset of filegroups, which must always include the primary filegroup. The database will be
online as soon as the primary filegroup has been restored, but only objects created on the
restored filegroups will be available. Partial restore of just a subset of filegroups can be a
solution to allow very large databases (VLDBs) to be available within a mandated time

Chapter 4 Databases and Database Files 103
window. Alternatively, if you have a failure of a subset of the disks on which you created your
database, you can restore backups of the filegroups on those disks on top of the existing data-
base. This method of restoring also requires that you have log backups, so I’ll discuss it in
more detail in Chapter 5.

A FILEGROUP CREATION Example

This example creates a database named sales with three filegroups:

■ The primary filegroup with the files Spri1_dat and Spri2_dat. The FILEGROWTH
increment for both of these files is specified as 15 percent.

■ A filegroup named SalesGroup1 with the files SGrp1Fi1 and SGrp1Fi2.

■ A filegroup named SalesGroup2 with the files SGrp2Fi1 and SGrp2Fi2.

CREATE DATABASE Sales
ON PRIMARY
(NAME = SPri1_dat,
FILENAME =
 'c:\program files\microsoft sql server\mssql.1\mssql\data\SPri1dat.mdf',
SIZE = 10,
MAXSIZE = 50,
FILEGROWTH = 15%),
(NAME = SPri2_dat,
FILENAME =
 'c:\program files\microsoft sql server\mssql.1\mssql\data\SPri2dat.ndf',
SIZE = 10,
MAXSIZE = 50,
FILEGROWTH = 15%),
FILEGROUP SalesGroup1
(NAME = SGrp1Fi1_dat,
FILENAME =
 'c:\program files\microsoft sql server\mssql.1\mssql\data\SG1Fi1dt.ndf',
SIZE = 10,
MAXSIZE = 50,
FILEGROWTH = 5),
(NAME = SGrp1Fi2_dat,
FILENAME =
 'c:\program files\microsoft sql server\mssql.1\mssql\data\SG1Fi2dt.ndf',
SIZE = 10,
MAXSIZE = 50,
FILEGROWTH = 5),
FILEGROUP SalesGroup2
(NAME = SGrp2Fi1_dat,
FILENAME =
 'c:\program files\microsoft sql server\mssql.1\mssql\data\SG2Fi1dt.ndf',
SIZE = 10,
MAXSIZE = 50,
FILEGROWTH = 5),
(NAME = SGrp2Fi2_dat,
FILENAME =
 'c:\program files\microsoft sql server\mssql.1\mssql\data\SG2Fi2dt.ndf',
SIZE = 10,

104 Inside Microsoft SQL Server 2005: The Storage Engine
MAXSIZE = 50,
FILEGROWTH = 5)
LOG ON
(NAME = 'Sales_log',
FILENAME =
 'c:\program files\microsoft sql server\mssql.1\mssql\data\saleslog.ldf',
SIZE = 5MB,
MAXSIZE = 25MB,
FILEGROWTH = 5MB);

Altering a Database
You can use the ALTER DATABASE statement to change a database’s definition in one of the
following ways:

■ Change the name of the database.

■ Add one or more new data files to the database. You can optionally put these files in a
user-defined filegroup. All files added in a single ALTER DATABASE statement must go
in the same filegroup.

■ Add one or more new log files to the database.

■ Remove a file or a filegroup from the database. You can do this only if the file or filegroup
is completely empty. Removing a filegroup removes all the files in it.

■ Add a new filegroup to a database. (Adding files to those filegroups must be done in a
separate ALTER DATABASE statement.)

■ Modify an existing file in one of the following ways:

❑ Increase the value of the SIZE property.

❑ Change the MAXSIZE or FILEGROWTH property.

❑ Change the logical name of a file by specifying a NEWNAME property. The value
of NEWNAME is then used as the NAME property for all future references to
this file.

❑ Change the FILENAME property for files, which can effectively move the files to a
new location. (In SQL Server 2000, only files in the tempdb database can be moved
in this way.) The new name or location doesn’t take effect until you restart SQL
Server. For tempdb, SQL Server automatically creates the files with the new name in
the new location; for other databases, you must move the file manually after stop-
ping your SQL Server instance. SQL Server then finds the new file when it restarts.

❑ Mark the file as OFFLINE. You should set a file to OFFLINE when the physical
file has become corrupted and the file backup is available to use for restoring.
(There is also an option to mark the whole database as OFFLINE, which I'll
discuss shortly when I talk about database properties.) Marking a file as OFFLINE

Chapter 4 Databases and Database Files 105
is a new feature in SQL Server 2005; it allows you to indicate that you don’t want
SQL Server to recover that particular file when it is restarted.

■ Modify an existing filegroup in one of the following ways:

❑ Mark the filegroup as READONLY so that updates to objects in the filegroup aren’t
allowed. The primary filegroup cannot be made READONLY.

❑ Mark the filegroup as READWRITE, which reverses the READONLY property.

❑ Mark the filegroup as the default filegroup for the database.

❑ Change the name of the filegroup.

■ Change one or more database options. (I’ll discuss database options later in the chap-
ter.)

The ALTER DATABASE statement can make only one of the changes described each time it is
executed. Note that you cannot move a file from one filegroup to another.

ALTER DATABASE Examples

The following examples demonstrate some of the changes you can make using the ALTER
DATABASE command.

This example increases the size of a database file:

USE master
GO
ALTER DATABASE Test1
MODIFY FILE
(NAME = 'test1dat3',
SIZE = 20MB);

The following example creates a new filegroup in a database, adds two 5-MB files to the file-
group, and makes the new filegroup the default filegroup. We need three ALTER DATABASE
statements.

ALTER DATABASE Test1
ADD FILEGROUP Test1FG1;
GO
ALTER DATABASE Test1
ADD FILE
(NAME = 'test1dat3',
FILENAME =
 'c:\program files\microsoft sql server\ mssql.1\mssql\data\t1dat3.ndf',
SIZE = 5MB,
MAXSIZE = 100MB,
FILEGROWTH = 5MB),
(NAME = 'test1dat4',
FILENAME =
 'c:\program files\microsoft sql server\ mssql.1\mssql\data\t1dat4.ndf',
SIZE = 5MB,
MAXSIZE = 100MB,
FILEGROWTH = 5MB)

106 Inside Microsoft SQL Server 2005: The Storage Engine
TO FILEGROUP Test1FG1;
GO
ALTER DATABASE Test1
MODIFY FILEGROUP Test1FG1 DEFAULT;
GO

Databases Under the Hood
A database consists of user-defined space for the permanent storage of user objects such as
tables and indexes. This space is allocated in one or more operating system files.

Databases are divided into logical pages (of 8 KB each), and within each file the pages are
numbered contiguously from 0 to x, with the value x being defined by the size of the file. You
can refer to any page by specifying a database ID, a file ID, and a page number. When you use
the ALTER DATABASE command to enlarge a file, the new space is added to the end of the
file. That is, the first page of the newly allocated space is page x + 1 on the file you’re enlarging.
When you shrink a database by using the DBCC SHRINKDATABASE or DBCC SHRINKFILE
command, pages are removed starting at the highest-numbered page in the database (at the
end) and moving toward lower-numbered pages. This ensures that page numbers within a file
are always contiguous.

When you create a new database using the CREATE DATABASE command, it is given a unique
database ID, or DBID, and you can see a row for the new database in the sys.databases view.
The rows returned in sys.databases include basic information about each database, such as its
name, DBID, and creation date, as well as the value for each database option that can be set
with the ALTER DATABASE command. I’ll discuss database options in more detail later in the
chapter.

Space Allocation

The space in a database is used for storing tables and indexes. The space is managed in units
called extents. An extent is made up of eight logically contiguous pages (or 64 KB of space). To
make space allocation more efficient, SQL Server 2005 doesn’t allocate entire extents to tables
with small amounts of data. SQL Server 2005 has two types of extents:

■ Uniform extents These are owned by a single object; all eight pages in the extent can
be used only by the owning object.

■ Mixed extents These are shared by up to eight objects.

SQL Server allocates pages for a new table or index from mixed extents. When the table or
index grows to eight pages, all future allocations use uniform extents.

When a table or index needs more space, SQL Server needs to find space that’s available to be
allocated. If the table or index is still less than eight pages total, SQL Server must find a mixed
extent with space available. If the table or index is eight pages or larger, SQL Server must find
a free uniform extent.

Chapter 4 Databases and Database Files 107
SQL Server uses two special types of pages to record which extents have been allocated and
which type of use (mixed or uniform) the extent is available for:

■ Global Allocation Map (GAM) pages These pages record which extents have been
allocated for any type of use. A GAM has a bit for each extent in the interval it covers. If
the bit is 0, the corresponding extent is in use; if the bit is 1, the extent is free. Almost
8000 bytes, or 64,000 bits, are available on the page after the header and other overhead
are accounted for, so each GAM can cover about 64,000 extents, or almost 4 GB of data.
This means that one GAM page exists in a file for every 4 GB of size.

■ Shared Global Allocation Map (SGAM) pages These pages record which extents are
currently used as mixed extents and have at least one unused page. Just like a GAM, each
SGAM covers about 64,000 extents, or almost 4 GB of data. The SGAM has a bit for each
extent in the interval it covers. If the bit is 1, the extent being used is a mixed extent and
has free pages; if the bit is 0, the extent isn’t being used as a mixed extent, or it’s a mixed
extent whose pages are all in use.

Table 4-2 shows the bit patterns that each extent has set in the GAM and SGAM, based on its
current use.

If SQL Server needs to find a new, completely unused extent, it can use any extent with a
corresponding bit value of 1 in the GAM page. If it needs to find a mixed extent with available
space (one or more free pages), it finds an extent with a value in the GAM of 0 and a value in
the SGAM of 1. If there are no mixed extents with available space, it uses the GAM page to find
a whole new extent to allocate as a mixed extent, and uses one page from that. If there are no
free extents at all, the file is full.

SQL Server can quickly locate the GAMs in a file because a GAM is always the third page in
any database file (page 2). An SGAM is the fourth page (page 3). Another GAM appears every
511,230 pages after the first GAM on page 2, and another SGAM appears every 511,230 pages
after the first SGAM on page 3. Page 0 in any file is the File Header page, and only one exists
per file. Page 1 is a Page Free Space (PFS) page (which I’ll discuss shortly). In Chapter 6, I’ll say
more about how individual pages within a table look. For now, because I’m talking about
space allocation, I’ll examine how to keep track of which pages belong to which tables.

Index Allocation Map (IAM) pages keep track of the extents in a 4-GB section of a database file
used by an allocation unit. An allocation unit is a set of pages belonging to a single partition in
a table or index and comprises pages of one of three types: pages holding regular in-row data,

Table 4-2 Bit Settings in GAM and SGAM Pages

Current Use of Extent GAM Bit Setting SGAM Bit Setting

Free, not in use 1 0

Uniform extent or full mixed extent 0 0

Mixed extent with free pages 0 1

108 Inside Microsoft SQL Server 2005: The Storage Engine
pages holding Large Object (LOB) data, or pages holding row-overflow data. I'll discuss these
three types of pages, and when each kind is used, in Chapter 6.

For example, a table on four partitions that has all three types of data (in-row, LOB, and
row-overflow) will have at least 12 IAM pages. Again, a single IAM covers only a 4-GB section
of a single file, so if the partition spans files, there will be multiple IAM pages, and if the file is
more than 4 GB in size and the partition uses pages in more than one 4-GB section, there will
be additional IAM pages.

An IAM page contains a page header; an IAM page header, which contains eight page-pointer
slots; and a set of bits that map a range of extents onto a file, which doesn’t necessarily have
to be the same file that the IAM page is in. The header has the address of the first extent in the
range mapped by the IAM. The eight page-pointer slots might contain pointers to pages
belonging to the relevant object contained in mixed extents; only the first IAM for an object
has values in these pointers. Once an object takes up more than eight pages, all its extents are
uniform extents—which means that an object will never need more than eight pointers to
pages in mixed extents. If rows have been deleted from a table, the table can actually use fewer
than eight of these pointers. Each bit of the bitmap represents an extent in the range, regard-
less of whether the extent is allocated to the object owning the IAM. If a bit is on, the relative
extent in the range is allocated to the object owning the IAM; if a bit is off, the relative extent
isn’t allocated to the object owning the IAM.

For example, if the bit pattern in the first byte of the IAM is 1100 0000, the first and second
extents in the range covered by the IAM are allocated to the object owning the IAM and
extents 3 through 8 aren’t allocated to the object owning the IAM.

IAM pages are allocated as needed for each object and are located randomly in the database
file. Each IAM covers a possible range of about 512,000 pages.

The internal system view called sys.system_internals_allocation_units has a column called
first_iam_page that points to the first IAM page for an allocation unit. All the IAM pages for that
allocation unit are linked in a chain, with each IAM page containing a pointer to the next in
the chain. I’ll discuss allocation units in more detail in Chapter 6 when I discuss object data
storage.

In addition to GAMs, SGAMs, and IAMs, a database file has three other types of special alloca-
tion pages. Page Free Space (PFS) pages keep track of how each particular page in a file is
used. The second page (page 1) of a file is a PFS page, as is every 8088th page thereafter. I’ll
talk about them more in Chapter 6. The seventh page (page 6) is called a Differential Changed
Map (DCM) page. It keeps track of which extents in a file have been modified since the last
full database backup. The eighth page (page 7) is called a Bulk Changed Map (BCM) page and
is used when an extent in the file is used in a minimally or bulk-logged operation. I’ll tell you
more about these two kinds of pages when I talk about the internals of backup and restore
operations in Chapter 5. Like GAM and SGAM pages, DCM and BCM pages have 1 bit for each
extent in the section of the file they represent. They occur at regular intervals—every 511,230
pages.

Chapter 4 Databases and Database Files 109
Checking Database Consistency

DBCC stood for Database Consistency Checker in versions of SQL Server prior to SQL Server
2000. However, since Microsoft acquired the code base for the product from Sybase, DBCC
began to take on more and more functionality, and eventually went way beyond mere consis-
tency checking. For example, DBCC is used to shrink a database or a data file and to clear out
the data or plan cache. Starting in SQL Server 2000, Microsoft finally acknowledged this
evolution, and the glossary in Books Online for both SQL Server 2000 and SQL Server 2005
actually defines DBCC as Database Console Command and divides the commands into four
categories: validation, maintenance, informational, and miscellaneous.

In this section, I will discuss the DBCC commands that actually do consistency checking of
the database, that is, the validation commands. These commands are the CHECK commands:
DBCC CHECKTABLE, DBCC CHECKDB, DBCC CHECKALLOC, DBCC CHECKFILE-
GROUP, and DBCC CHECKCATALOG. Two others, DBCC CHECKCONSTRAINT and
DBCC CHECKIDENT, will be described in Chapter 7, where I’ll also discuss some of the table
and index maintenance DBCC commands, such as DBCC CLEANTABLE and DBCC UPDA-
TEUSAGE. I will cover DBCC INDEXDEFRAG and its SQL Server 2005 replacement when I
cover indexes in Chapter 7.

The most comprehensive of the DBCC validation commands is DBCC CHECKDB. Here is the
complete syntax:

DBCC CHECKDB
[

[('database_name' | database_id | 0
[, NOINDEX
| , { REPAIR_ALLOW_DATA_LOSS | REPAIR_FAST | REPAIR_REBUILD }]
)]

[WITH
{

[ALL_ERRORMSGS]
[, NO_INFOMSGS]
[, TABLOCK]
[, ESTIMATEONLY]
[, { PHYSICAL_ONLY | DATA_PURITY }]

}
]

]

I'll discuss most of these options to the DBCC CHECKDB command shortly. As part of its
operation, DBCC CHECKDB runs all of the other DBCC validation commands in this order:

■ DBCC CHECKALLOC is run on the database. DBCC CHECKALLOC validates the
allocation information maintained in the GAM, SGAM, and IAM pages. You can think of
DBCC CHECKALLOC as performing cross-reference checks to verify that every extent
that the GAM or SGAM indicates has been allocated really has been allocated, and that
any extents not allocated are indicated in the GAM and SGAM as not allocated. DBCC

110 Inside Microsoft SQL Server 2005: The Storage Engine
CHECKALLOC also verifies the IAM chain for each allocation unit, including the consis-
tency of the links between the IAM pages in the chain. Finally, DBCC CHECKALLOC
verifies that all extents marked as allocated to the allocation unit really are allocated.

■ DBCC CHECKTABLE is run on every table and indexed view in the database. DBCC
CHECKTABLE performs a comprehensive set of checks on the structure of a table, and
by default these checks are both physical and logical. With the physical_only option to
the DBCC command specified, you can exclude the logical checks and only validate the
physical structure of the page and the record headers. The physical_only option is
intended to provide a lightweight check of the physical consistency of the table and
common hardware failures that can compromise data. In SQL Server 2005, a full run of
DBCC CHECKTABLE can take considerably longer than in earlier versions.

Indexed views are verified by regenerating the view’s rowset from the underlying
SELECT statement definition and comparing the results with the data stored in the
indexed view. SQL Server performs two left-anti-semi joins between the two rowsets to
make sure that there are no rows in one that are not in the other.

■ DBCC CHECKCATALOG is run on the database. DBCC CHECKCATALOG performs
more than 50 crosschecks between various metadata tables. You cannot fix errors that it
finds by running the DBCC operation with any of the REPAIR options. Prior to SQL
Server 2005, DBCC CHECKCATALOG was not included in a DBCC CHECKDB opera-
tion and had to be run separately.

■ The Service Broker data in the database is verified. Running this command is the
only way to check the Service Broker data because there is no specific DBCC command
to perform the checks. You can also consider DBCC CHECKFILEGROUP to be a subset
of DBCC CHECKDB because DBCC CHECKFILEGROUP performs DBCC CHECKTA-
BLE on all tables and views in a specified filegroup.

Because they are included as part of DBCC CHECKDB, the DBCC CHECKALLOC, DBCC
CHECKTABLE, and DBCC CHECKCATALOG commands do not have to be run separately if
DBCC CHECKDB is run regularly. If you choose to run any of these commands individually,
you can refer to Books Online for the complete syntax.

On an upgraded database with no 2005 features or indexed views, DBCC CHECKDB will
actually run slightly faster than its SQL Server 2000 counterpart. However, on a new SQL
Server 2005 database, some of the logical checks added to complement new features in SQL
Server 2005 are necessarily complex and do add to the runtime when invoked, so you may
find that DBCC CHECKDB takes longer to run than you might have expected.

Performing Validation Checks

In SQL Server 2005, all of the DBCC validation commands use database snapshot technology
to keep the validation operation from interfering with ongoing database operations and to
allow the validation operation to see a quiescent, consistent view of the data, no matter how
many changes were made to the underlying data while the operation was under way. I’ll

Chapter 4 Databases and Database Files 111
discuss database snapshots in more detail later in this chapter. A snapshot of the database is
created at the beginning of the CHECK command, and no locks are acquired on any of the
objects being checked. The actual check operation is executed against the snapshot.

As you’ll see when we discuss database snapshots, the original version of a page is copied into
the snapshot database when updates occur in the source, so the snapshot always reflects the
original version of the data. Unlike regular database snapshots, the “snapshot file” that DBCC
CHECKDB creates with the original page images is not visible to the end user and its location
cannot be configured; it always uses space on the same volume as the database being checked.
This capability is available only when your data directory is on an NTFS partition.

If you aren’t using NTFS, or if you don’t want to use the space necessary for the snapshot,
you can avoid creating the snapshot by using the WITH TABLOCK option with the DBCC
command. In addition, if you are using one of the REPAIR options to DBCC, a snapshot is not
created because the database is in single-user mode, so no other transactions can be altering
data. Without the TABLOCK option, the DBCC validation commands are considered online
operations because they don’t interfere with other work taking place in a database. With the
TABLOCK option, however, a Shared Table lock is acquired for each table as it processed, so
concurrent modification operations will be blocked. Similarly, if modification operations are
in progress on one or more tables, a DBCC validation command being run with TABLOCK
will block until the transaction performing the modifications is completed.

The DBCC validation checks can require a significant amount of space because SQL Server
needs to temporarily store information about pages and structures that have been observed
during the check operation, for cross-checking against pages and structures that are observed
later during the DBCC scan. To determine the tempdb needs in advance, you can run a DBCC
validation check with the ESTIMATEONLY option. For example, if I want to see how much
tempdb space I might need to run DBCC CHECKDB on the AdventureWorks database, I can
run the following:

SET NOCOUNT ON;
DBCC CHECKDB ('AdventureWorks') WITH ESTIMATEONLY;

Here is the output I receive:

Estimated TEMPDB space needed for CHECKALLOC (KB)

72

Estimated TEMPDB space needed for CHECKTABLES (KB)
--
198542

Note that even though AdventureWorks is considered just a sample database, it can require
up to193 MB of tempdb space to run to completion. There are several large indexes in tempdb
that contribute to this large space requirement, and in addition, this value is computed as a

112 Inside Microsoft SQL Server 2005: The Storage Engine
worst-case estimate and assumes there will not be room in memory for any of the sort opera-
tions required.

SQL Server keeps track of the last error-free run of DBCC CHECKDB in the bootpage for every
database, and it reports the date and time of the operation in the error log when SQL Server
is started. Here is what the message might look like for the AdventureWorks database:

Date1/24/2006 2:15:52 PM

Message
DBCC CHECKDB (AdventureWorks) executed by TENAR\Administrator found 0 errors and repaired 0
errors. Elapsed time: 0 hours 5 minutes 8 seconds.

Validation Checks

SQL Server 2005 includes a set of logical validation checks to verify that data is appropriate
for the column’s datatype. These checks can be expensive and can affect the server’s perfor-
mance, so you can choose to disable this, along with all the other non-core logical validations
by using the PHYSICAL_ONLY option. All new databases created in SQL Server 2005 have
the DATA_PURITY logical validations enabled by default. For databases that have been
upgraded from previous SQL Server versions, you must run DBCC CHECKDB with the
DATA_PURITY option once, preferably immediately after the upgrade, as follows:

DBCC CHECKDB (<db_name>) WITH DATA_PURITY

After the purity check completes without any errors for a database, performing the logical
validations is the default behavior in all future executions of DBCC CHECKDB, and there is
no way to change this default. You can, of course, override the default with the PHYSICAL_
ONLY option. This option not only skips the data purity checks, but it also skips any checks
that actually have to analyze the contents of individual rows of data and basically limits the
checks that DBCC performs to the integrity of the physical structure of the page and the row
headers.

If the CHECKSUM option is enabled for a database, which is the default in all new SQL Server
2005 databases, a checksum will be performed on each allocated page as it is read by the
DBCC CHECK commands. As I will mention again in the upcoming section on database
options, when the CHECKSUM option is on, a page checksum is calculated and written on
each page as it is written to disk, so only pages that have been written since CHECKSUM was
enabled will have this check done. The page checksum value is checked during the read and
compared with the original checksum value stored on the page. If they do not match, an error
is generated. In addition, pages with errors are recorded in the suspect_pages table in the
msdb database.

DBCC Repair Options

The validation commands DBCC CHECKDB, DBCC CHECKTABLE, and DBCC CHECKAL-
LOC allow you to indicate whether you want SQL Server to attempt to repair any errors that

Chapter 4 Databases and Database Files 113
might be found. The syntax for the DBCC validation commands (except for DBCC CHECK-
CATALOG) allows you to specify either REPAIR_ALLOW_DATA_LOSS or REPAIR_
REBUILD. Syntactically, you can also specify REPAIR_FAST, but that option is maintained
only for backward compatibility, and no repair actions are performed.

Almost all the possible errors that the DBCC command can detect can be repaired. The
exceptions are errors found through DBCC CHECKCATALOG and data purity errors found
through DBCC CHECKTABLE. When you run DBCC CHECKDB with one of the REPAIR
options, SQL Server first runs DBCC CHECKALLOC and repairs what it can, and then it runs
DBCC CHECKTABLE on all tables and makes the appropriate repairs on all the tables. The
possible repairs for each table are ranked as SQL Server compiles the list of what needs repair-
ing, to make the entire DBCC operation as efficient as possible. In this way, you won’t end up,
for example, in a situation where an index is being rebuilt, and then a page from table has to
be removed, invalidating the work of rebuilding the index.

If you’re running a DBCC command with REPAIR_ALLOW_DATA_LOSS, SQL Server tries to
repair almost all detected errors, even at the risk of losing some data. Keep in mind that for
almost any severe error, some data will be lost when the repair is run. During the repair, rows
might be deleted if they are found to be inconsistent, such as when a computed column value
is incorrect. Whole pages can be deleted if checksum errors are discovered. During the repair,
no attempt is made to maintain any constraints on the tables, or between tables. Some errors
SQL Server won’t even try to repair—particularly if the GAM or SGAM pages themselves are
corrupted and unreadable.

If you use the REPAIR_REBUILD option, SQL Server performs both minor, relatively fast
repair actions such as repairing extra keys in nonclustered indexes and time-consuming
repairs such as rebuilding indexes. These types of repairs can be performed without risk of
data loss. After the successful completion of the DBCC command, the database is physically
consistent and online but might not be in a logically consistent state in terms of constraints
and your business rules. For this reason, you should use the REPAIR options only as a last
resort. A much better solution in the case of non-fixable errors is to restore a database from a
backup or restore a smaller unit of the database, such as a single filegroup. If you are going to
use the REPAIR_ALLOW_DATA_LOSS option, you should back up the database before you
run the DBCC command.

You can run the REPAIR options for DBCC inside a user-defined transaction, which means
you can perform a ROLLBACK to undo the repairs that have been made. The exception is
when you are running the REPAIR options on a database in EMERGENCY mode, which I
discuss later in the section on database options. (If a repair in EMERGENCY mode fails, there
are no further options except to restore the database from a backup.) Each individual repair in
the DBCC operation runs in its own system transaction, which means that if a repair is not
possible, it will not affect any of the other repairs, unless subsequent repairs depended on an
earlier success repair. If you do run one of the REPAIR options, you can provide a partial safe-
guard by creating a database snapshot before the repair is initiated, starting a transaction, and
then running DBCC with the REPAIR option. Before committing or rolling back, you can

114 Inside Microsoft SQL Server 2005: The Storage Engine
compare the repaired database with the original in the snapshot. If you are not satisfied with
the changes made as part of the repair, you can roll back the repair operation.

Progress Reporting

Many of the DBCC commands in SQL Server 2005 provide progress reporting in the dynamic
management view called sys.dm_exec_requests. Take a look at the following columns:

■ command—indicates current DBCC command phase

■ percent_complete—represents [%] completion of DBCC command phase

■ estimated_completion_time (in milliseconds)—represents an estimate of
how long it will take to finish the task, based on past progress

Progress reporting is available for DBCC CHECKDB, DBCC CHECKTABLE, and DBCC
CHECKFILEGROUP. DBCC CHECKALLOC is not included in this list because it is such a fast
command there would be no need (and usually no time) to check the progress. The
command would be done before you had a chance to select from sys.dm_exec_requests. Progress
reporting is also available for some of the maintenance commands, such as DBCC SHRINKFILE
and DBCC SHRINKDATABASE. SQL Server will also populate the progress report columns
when defragmenting an index using ALTER INDEX with the REORG option, because this com-
mand is equivalent to DBCC INDEXDEFRAG, which also supports progress reporting.

DBCC Best Practices

Consider the following guidelines when planning how and when to use the DBCC validation
commands:

■ Use CHECKDB with the CHECKSUM database options and a sound backup strategy to
protect the integrity of your data from hardware-caused corruption.

■ There is no hard-and-fast rule for how often to run DBCC—it depends on how critical
your data is, the quality of your hardware, and the frequency of your backups.

■ Perform DBCC CHECKDB with the DATA_PURITY option after upgrading a database to
SQL Server 2005 to check for invalid data values.

■ Make sure you have enough disk space available to accommodate the database snapshot
that will be created.

■ Make sure you have space available in tempdb to allow the DBCC command to run. Note
that you can use the ESTIMATEONLY option to find out how much tempdb space will be
required for DBCC CHECKDB, DBCC CHECKTABLE, DBCC CHECKFILEGROUP, and
DBCC CHECKALLOC.

Warning Use REPAIR_ALLOW_DATA_LOSS only as a last resort.

Chapter 4 Databases and Database Files 115
Setting Database Options
You can set several dozen options, or properties, for a database to control certain behavior
within that database. Some options must be set to ON or OFF, some must be set to one of a
list of possible values, and others are enabled by just specifying their name. By default, all of
the options that require ON or OFF have an initial value of OFF unless the option was set to
ON in the model database. All databases created after an option is changed in model will have
the same values as model. You can easily change the value of some of these options by using
SQL Server Management Studio. You can set all of them directly by using the ALTER DATA-
BASE command. (You can also use the sp_dboption system stored procedure to set some of the
options, but that procedure is provided for backward compatibility only and is scheduled to
be removed in a future version of SQL Server.)

Examining the sys.databases catalog view can show you the values of all the options that have
been set. The procedure also returns other useful information, such as database ID, creation
date, and the Security ID (SID) of the database owner. The following query retrieves some of
the most important columns from sys.databases for the four databases that exist on a new
default installation of SQL Server.

SELECT name, database_id, suser_sname(owner_sid) as owner ,
 create_date, user_access_desc, state_desc
FROM sys.databases
WHERE database_id <= 4;

The query produces this output, although the created dates may vary:

name database_id owner create_date user_access_desc state_desc

------ ----------- ----- ----------------------- ---------------- ----------

master 1 sa 2003-04-08 09:13:36.390 MULTI_USER ONLINE

tempdb 2 sa 2006-05-27 12:02:35.327 MULTI_USER ONLINE

model 3 sa 2003-04-08 09:13:36.390 MULTI_USER ONLINE

msdb 4 sa 2005-10-14 01:54:05.240 MULTI_USER ONLINE

The sys.databases view actually contains both a number and a name for both the user_access
and state information. Selecting all the columns from sys.databases would show you that the
user_access_desc value of MULTI_USER has a corresponding user_access value of 0, and the
state_desc value of ONLINE has a state value of 0. Books Online shows the complete list of
number and name relationships for the columns in sys.databases. These are just two of the
database options displayed in the sys.databases view. The complete list of database options is
divided into seven main categories: state options, cursor options, auto options, parameterization
options, SQL options, database recovery options, and external access options. There are also
options for specific technologies SQL Server can participate in, including database mirroring,
Service Broker activities, and snapshot isolation. Some of the options, particularly the SQL
options, have corresponding SET options that you can turn on or off for a particular connection.

116 Inside Microsoft SQL Server 2005: The Storage Engine
Be aware that the ODBC or OLE DB drivers turn on a number of these SET options by default,
so applications will act as if the corresponding database option has already been set.

Here is a list of the options, by category. Options listed on a single line and values separated
by vertical bars (|) are mutually exclusive.

State options

SINGLE_USER | RESTRICTED_USER | MULTI_USER

OFFLINE | ONLINE | EMERGENCY

READ_ONLY | READ_WRITE

Cursor options

CURSOR_CLOSE_ON_COMMIT { ON | OFF }

CURSOR_DEFAULT { LOCAL | GLOBAL }

Auto options

AUTO_CLOSE { ON | OFF }

AUTO_CREATE_STATISTICS { ON | OFF }

AUTO_SHRINK { ON | OFF }

AUTO_UPDATE_STATISTICS { ON | OFF }

AUTO_UPDATE_STATISTICS_ASYNC { ON | OFF }

Parameterization options

DATE_CORRELATION_OPTIMIZATION { ON | OFF }

PARAMETERIZATION { SIMPLE | FORCED }

SQL options

ANSI_NULL_DEFAULT { ON | OFF }

ANSI_NULLS { ON | OFF }

ANSI_PADDING { ON | OFF }

ANSI_WARNINGS { ON | OFF }

ARITHABORT { ON | OFF }

CONCAT_NULL_YIELDS_NULL { ON | OFF }

NUMERIC_ROUNDABORT { ON | OFF }

QUOTED_IDENTIFIER { ON | OFF }

RECURSIVE_TRIGGERS { ON | OFF }

Database recovery options

RECOVERY { FULL | BULK_LOGGED | SIMPLE }

Chapter 4 Databases and Database Files 117
TORN_PAGE_DETECTION { ON | OFF }

PAGE_VERIFY { CHECKSUM | TORN_PAGE_DETECTION | NONE }

External access options

DB_CHAINING { ON | OFF }

TRUSTWORTHY { ON | OFF }

Database mirroring options

PARTNER { = 'partner_server'

| FAILOVER

| FORCE_SERVICE_ALLOW_DATA_LOSS

| OFF

| RESUME

| SAFETY { FULL | OFF }

| SUSPEND

| TIMEOUT integer

}

WITNESS { = 'witness_server' |

OFF

}

Service Broker options

ENABLE_BROKER | DISABLE_BROKER

NEW_BROKER

ERROR_BROKER_CONVERSATIONS

Snapshot Isolation options

ALLOW_SNAPSHOT_ISOLATION {ON | OFF }

READ_COMMITTED_SNAPSHOT {ON | OFF } [WITH <termination>]

State Options

The state options control who can use the database and for what operations. There are
three aspects to usability: The user access state determines which users can use the database,
the status state determines whether the database is available to anybody for use, and the
updateability state determines what operations can be performed on the database. You
control each of these aspects by using the ALTER DATABASE command to enable an option

118 Inside Microsoft SQL Server 2005: The Storage Engine
for the database. None of the state options uses the keywords ON and OFF to control the state
value.

SINGLE_USER | RESTRICTED_USER | MULTI_USER

These three options describe the user access property of a database. They are mutually
exclusive; setting any one of them unsets the others. To set one of these options for your
database, you just use the option name. For example, to set the AdventureWorks database to
single-user mode, use the following code:

ALTER DATABASE AdventureWorks SET SINGLE_USER;

A database in SINGLE_USER mode can have only one connection at a time. A database in
RESTRICTED_USER mode can have connections only from users who are considered
“qualified”—those who are members of the dbcreator or sysadmin server role or the db_owner
role for that database. The default for a database is MULTI_USER mode, which means anyone
with a valid user name in the database can connect to it. If you attempt to change a database’s
state to a mode that is incompatible with the current conditions—for example, if you try to
change the database to SINGLE_USER mode when other connections exist—the behavior of
SQL Server will be determined by the TERMINATION option you specify. I’ll discuss termina-
tion options shortly.

To determine which user access value is set for a database, you can examine the sys.databases
catalog view, as shown here:

SELECT USER_ACCESS_DESC FROM sys.databases
WHERE name = '<name of database>';

This query will return one of MULTI_USER, SINGLE_USER or RESTRICTED_USER.

OFFLINE | ONLINE | EMERGENCY

You use these three options to describe the status of a database. They are mutually exclusive.
The default for a database is ONLINE. As with the user access options, when you use ALTER
DATABASE to put the database in one of these modes, you don’t specify a value of ON or
OFF—you just use the name of the option. When a database is set to OFFLINE, it is closed and
shut down cleanly and marked as offline. Any snapshots for the data are automatically
dropped. The database cannot be modified while the database is offline. A database cannot be
put into OFFLINE mode if there are any connections in the database. Whether SQL Server
waits for the other connections to terminate or generates an error message is determined by
the TERMINATION option specified.

The following code examples show how to set a database’s status value to OFFLINE and how
to determine the status of a database:

ALTER DATABASE AdventureWorks SET OFFLINE;
SELECT state_desc from sys.databases
WHERE name = 'AdventureWorks';

Chapter 4 Databases and Database Files 119
A database can be explicitly set to EMERGENCY mode, and I’ll explain why you might want
to do that after I discuss the database status values that cannot be set.

As shown in the preceding query, you can determine the current status of a database by
examining the state_desc column of the sys.databases view. This column can return status
values other than OFFLINE, ONLINE, and EMERGENCY, but those values are not directly
settable using ALTER DATABASE. A database can have the status value RESTORING while it
is in the process of being restored from a backup. It can have the status value RECOVERING
during a restart of SQL Server. The restore process is done on one database at a time, and until
SQL Server has finished restoring a database, the database has a status of RECOVERING. If
the recovery process cannot be completed for some reason (most likely because one or more
of the log files for the database is unavailable or unreadable), SQL Server gives the database
the status of RECOVERY_PENDING. Your databases can also be put into RECOVERY_ PEND-
ING mode if SQL Server runs out of either log or data space during rollback recovery, or if
SQL Server runs out of locks or memory during any part of the startup process. I’ll go into
more detail about the difference between rollback recovery and startup recovery in Chapter 5.

If all the needed resources, including the log files, are available, but corruption is detected
during recovery, the database may be put in the SUSPECT state. You can determine the state
value by looking at the state_desc column in the sys.databases view. A database is completely
unavailable if it’s in the SUSPECT state, and you will not even see the database listed if you
run sp_helpdb. However, you can look at the DATABASEPROPERTYEX values of a suspect
database and see its status in the sys.databases view. In many cases, you can make a suspect
database available for read-only operations by setting its status to EMERGENCY mode. If you
really have lost one or more of the log files for a database, EMERGENCY mode allows you to
access the data while you copy it to a new location. When you move from RECOVERY_
PENDING to EMERGENCY, SQL Server shuts down the database and then restarts it with a
special flag that allows it to skip the recovery process. Skipping recovery can mean you have
logically or physically inconsistent data—missing index rows, broken page links, or incorrect
metadata pointers. By specifically putting your database in EMERGENCY mode, you are
acknowledging that the data might be inconsistent but that you want access to it anyway.

Emergency Mode Repair

You can run the DBCC CHECKDB command while in EMERGENCY mode, and when you
specify the REPAIR_ALLOW_DATA_LOSS option, SQL Server can perform some special
repairs on the database, which may allow for ordinarily unrecoverable databases to be made
physically consistent and brought back online. These repairs should be used as a last resort
and only when you cannot restore the database from a backup.

When the database is set to EMERGENCY mode, the database is internally set to
READ_ONLY, logging is disabled, and access is limited to members of the sysadmin role.

120 Inside Microsoft SQL Server 2005: The Storage Engine
However, the properties of the database that you see in sys.databases will not reflect these
restrictions.

When the database is in emergency mode and DBCC CHECKDB with the REPAIR_ALLOW_
DATA_LOSS clause is run, the following actions are taken:

■ DBCC CHECKDB uses pages that have been marked inaccessible because of I/O or
checksum errors, as if the errors have not occurred in order to increase the chances for
data recovery.

■ DBCC CHECKDB attempts to recover the database using regular log-based recovery
techniques.

■ If database recovery is unsuccessful, the transaction log is rebuilt. Rebuilding the trans-
action log may result in the loss of transactional consistency.

If the DBCC CHECKDB command succeeds, the database is in a physically consistent state
and the database status is set to ONLINE. However, the database may contain one or more
transactional or logical inconsistencies. You should consider running DBCC CHECKCON-
STRAINTS to identify any business logic flaws and immediately back up the database.

If the DBCC CHECKDB command fails, the database cannot be repaired.

In some cases, EMERGENCY mode is not possible, in particular if some of the metadata
related to space allocation, which is needed to start up the database, is missing or corrupt.

You can attempt to set a database that is in EMERGENCY mode into ONLINE mode (if the
missing files have been made available, for example), and SQL Server will try to run recovery
on the database. If the transition to ONLINE cannot be completed, the database will be left in
either RECOVERY_PENDING or SUSPECT status, just like when you first bring up your SQL
Server instance and try to recover the database. Once again, you can change the state of the
RECOVERY_PENDING database to EMERGENCY mode to allow the data to be read.

It’s relatively easy to test emergency status value for a database on a test server. You can create
a simple database with the three-word command CREATE DATABASE TESTDB, and then
stop your SQL Server instance and rename (or remove) the log file. When you restart your
instance, check the status of the new database:

SELECT name, database_id, user_access_desc, state_desc
FROM sys.databases
WHERE name = 'testdb';

The state_desc should show RECOVERY_PENDING, which you can now change to
EMERGENCY:

ALTER DATABASE testdb SET EMERGENCY;

Chapter 4 Databases and Database Files 121
The database will now be available for reading data, even though there is no transaction log.
If you try to update the database in any way, you’ll get the following error:

Msg 3908, Level 16, State 1, Line 1
Could not run BEGIN TRANSACTION in database 'testdb' because the database is in bypass
recovery mode.
The statement has been terminated.

If you try to set the database state back to ONLINE, you will get an error indicating that
recovery is not possible, and the database will be put back in RECOVERY_PENDING mode.
As previously mentioned, running DBCC CHECKDB with the repair option while in
EMERGENCY mode can put the database back in ONLINE mode if the database can be
repaired.

READ_ONLY | READ_WRITE

These options describe the updatability of a database. They are mutually exclusive. The
default for a database is READ_WRITE. As with the user access options, when you use ALTER
DATABASE to put the database in one of these modes, you don’t specify a value of ON or OFF,
you just use the name of the option. When the database is in READ_WRITE mode, any user
with the appropriate permissions can carry out data modification operations. In READ_
ONLY mode, no INSERT, UPDATE, or DELETE operations can be executed. In addition,
because no modifications are done when a database is in READ_ONLY mode, automatic
recovery is not run on this database when SQL Server is restarted, and no locks need to be
acquired during any SELECT operations. Shrinking a database in READ_ONLY mode is not
possible.

A database cannot be put into READ_ONLY mode if there are any connections to the data-
base. Whether SQL Server waits for the other connections to terminate or generates an error
message is determined by the TERMINATION option specified.

The following code shows how to set a database’s updatability value to READ_ONLY and how
to determine the updatability of a database:

ALTER DATABASE AdventureWorks SET READ_ONLY;
SELECT name, is_read_only FROM sys.databases
WHERE name = 'AdventureWorks';

When READ_ONLY is enabled for database, the is_read_only column will return 1; other-
wise, for a READ_WRITE database, it will return 0.

Termination Options

As I just mentioned, several of the state options cannot be set when a database is in use or
when it is in use by an unqualified user. You can specify how SQL Server should handle this
situation by indicating a termination option in the ALTER DATABASE command. You can
have SQL Server wait for the situation to change, generate an error message, or terminate the

122 Inside Microsoft SQL Server 2005: The Storage Engine
connections of unqualified users. The termination option determines the behavior of SQL
Server in the following situations:

■ When you attempt to change a database to SINGLE_USER and it has more than one
current connection

■ When you attempt to change a database to RESTRICTED_USER and unqualified users
are currently connected to it

■ When you attempt to change a database to OFFLINE and there are current connections
to it

■ When you attempt to change a database to READ_ONLY and there are current connec-
tions to it

The default behavior of SQL Server in any of these situations is to wait indefinitely. The follow-
ing TERMINATION options change this behavior:

■ ROLLBACK AFTER integer [SECONDS] This option causes SQL Server to wait for
the specified number of seconds and then break unqualified connections. Incomplete
transactions are rolled back. When the transition is to SINGLE_USER mode, all connec-
tions are unqualified except the one issuing the ALTER DATABASE statement. When the
transition is to RESTRICTED_USER mode, unqualified connections are those of users
who are not members of the db_owner fixed database role or the dbcreator and sysadmin
fixed server roles.

■ ROLLBACK IMMEDIATE This option breaks unqualified connections immediately. All
incomplete transactions are rolled back. Keep in mind that although the connection may
be broken immediately, the rollback might take some time to complete. All work done
by the transaction must be undone, so for certain operations, such as a batch update of
millions of rows or a large index rebuild, you could be in for a long wait. Unqualified
connections are the same as those described previously.

■ NO_WAIT This option causes SQL Server to check for connections before attempting
to change the database state and causes the ALTER DATABASE statement to fail if certain
connections exist. If the database is being set to SINGLE_USER mode, the ALTER DATA-
BASE statement fails if any other connections exist. If the transition is to RESTRICTED_
USER mode, the ALTER DATABASE statement fails if any unqualified connections exist.

The following command changes the user access option of the AdventureWorks database
to SINGLE_USER and generates an error if any other connections to the AdventureWorks
database exist:

ALTER DATABASE AdventureWorks SET SINGLE_USER WITH NO_WAIT;

Cursor Options

The cursor options control the behavior of server-side cursors that were defined using one of
the following Transact-SQL commands for defining and manipulating cursors: DECLARE,

Chapter 4 Databases and Database Files 123
OPEN, FETCH, CLOSE, and DEALLOCATE. Transact-SQL cursors are discussed in detail in
Inside SQL Server 2005: TSQL Programming.

■ CURSOR_CLOSE_ON_COMMIT {ON | OFF} When this option is set to ON, any open
cursors are closed (in compliance with SQL-92) when a transaction is committed or
rolled back. If OFF (the default) is specified, cursors remain open after a transaction is
committed. Rolling back a transaction closes any cursors except those defined as
INSENSITIVE or STATIC.

■ CURSOR_DEFAULT {LOCAL | GLOBAL} When this option is set to LOCAL and cursors
aren’t specified as GLOBAL when they are created, the scope of any cursor is local to the
batch, stored procedure, or trigger in which it was created. The cursor name is valid only
within this scope. The cursor can be referenced by local cursor variables in the batch,
stored procedure, or trigger, or by a stored procedure output parameter. When this
option is set to GLOBAL and cursors aren’t specified as LOCAL when they are created,
the scope of the cursor is global to the connection. The cursor name can be referenced
in any stored procedure or batch executed by the connection.

Auto Options

The auto options affect actions that SQL Server might take automatically. All of these options
are Boolean options, with a value of ON or OFF.

■ AUTO_CLOSE When this option is set to ON, the database is closed and shut down
cleanly when the last user of the database exits, thereby freeing any resources. All file
handles are closed, and all in-memory structures are removed so that the database is not
using any memory. When a user tries to use the database again, it reopens. If the data-
base was shut down cleanly, the database isn’t initialized (reopened) until a user tries to
use the database the next time SQL Server is restarted. The AUTO_CLOSE option is
handy for personal SQL Server databases because it allows you to manage database files
as normal files. You can move them, copy them to make backups, or even e-mail them to
other users. However, you shouldn’t use this option for databases accessed by an appli-
cation that repeatedly makes and breaks connections to SQL Server. The overhead of
closing and reopening the database between each connection will hurt performance.

■ AUTO_SHRINK When this option is set to ON, all of a database’s files are candidates for
periodic shrinking. Both data files and log files can be automatically shrunk by SQL
Server. The only way to free space in the log files so that they can be shrunk is to back up
the transaction log or set the recovery mode to SIMPLE. The log files shrink at the point
that the log is backed up or truncated.

■ AUTO_CREATE_STATISTICS When this option is set to ON (the default), the SQL Server
query optimizer creates statistics on columns referenced in a query’s WHERE clause.

124 Inside Microsoft SQL Server 2005: The Storage Engine
Adding statistics improves query performance because the SQL Server query optimizer
can better determine how to evaluate a query.

■ AUTO_UPDATE_STATISTICS When this option is set to ON (the default), existing
statistics are updated if the data in the tables has changed. SQL Server keeps a counter
of the modifications made to a table and uses it to determine when statistics are
outdated. When this option is set to OFF, existing statistics are not automatically
updated. (They can be updated manually.) I’ll discuss statistics in more detail in Chapter 7.

The preceding two statistics options, as well as AUTO_UPDATE_STATISTICS_ASYNC and
the parameterization options DATE_CORRELATION_OPTIMIZATION and PARAMETER-
IZATION (all of which are new in SQL Server 2005), will be discussed in more detail in Inside
SQL Server 2005: Query Optimization and Tuning.

SQL Options

The SQL options control how various SQL statements are interpreted. They are all Boolean
options. The default for all these options is OFF for SQL Server, but many tools, such as the
SQL Server Management Studio, and many programming interfaces, such as ODBC, enable
certain session-level options that override the database options and make it appear as if the
ON behavior is the default.

■ ANSI_NULL_DEFAULT When this option is set to ON, columns comply with the ANSI
SQL-92 rules for column nullability. That is, if you don’t specifically indicate whether a
column in a table allows NULL values, NULLs are allowed. When this option is set to
OFF, newly created columns do not allow NULLs if no nullability constraint is specified.

■ ANSI_NULLS When this option is set to ON, any comparisons with a NULL value
result in UNKNOWN, as specified by the ANSI-92 standard. If this option is set to OFF,
comparisons of non-Unicode values to NULL result in a value of TRUE if both values
being compared are NULL.

■ ANSI_PADDING When this option is set to ON, strings being compared with each
other are set to the same length before the comparison takes place. When this option is
OFF, no padding takes place.

■ ANSI_WARNINGS When this option is set to ON, errors or warnings are issued when
conditions such as division by zero or arithmetic overflow occur.

■ ARITHABORT When this option is set to ON, a query is terminated when an arithmetic
overflow or division-by-zero error is encountered during the execution of a query. When
this option is OFF, the query returns NULL as the result of the operation.

■ CONCAT_NULL_YIELDS_NULL When this option is set to ON, concatenating two
strings results in a NULL string if either of the strings is NULL. When this option is set
to OFF, a NULL string is treated as an empty (zero-length) string for the purposes of
concatenation.

Chapter 4 Databases and Database Files 125
■ NUMERIC_ROUNDABORT When this option is set to ON, an error is generated if
an expression will result in loss of precision. When this option is OFF, the result is
simply rounded. The setting of ARITHABORT determines the severity of the error. If
ARITHABORT is OFF, only a warning is issued and the expression returns a NULL. If
ARITHABORT is ON, an error is generated and no result is returned.

■ QUOTED_IDENTIFIER When this option is set to ON, identifiers such as table and
column names can be delimited by double quotation marks, and literals must then be
delimited by single quotation marks. All strings delimited by double quotation marks
are interpreted as object identifiers. Quoted identifiers don’t have to follow the Transact-
SQL rules for identifiers when QUOTED_IDENTIFIER is ON. They can be keywords
and can include characters not normally allowed in Transact-SQL identifiers, such as
spaces and dashes. You can’t use double quotation marks to delimit literal string
expressions; you must use single quotation marks. If a single quotation mark is part of
the literal string, it can be represented by two single quotation marks (''). This option
must be set to ON if reserved keywords are used for object names in the database. When
it is OFF, identifiers can’t be in quotation marks and must follow all Transact-SQL rules
for identifiers.

■ RECURSIVE_TRIGGERS When this option is set to ON, triggers can fire recursively,
either directly or indirectly. Indirect recursion occurs when a trigger fires and performs
an action that causes a trigger on another table to fire, thereby causing an update to
occur on the original table, which causes the original trigger to fire again. For example,
an application updates table T1, which causes trigger Trig1 to fire. Trig1 updates table T2,
which causes trigger Trig2 to fire. Trig2 in turn updates table T1, which causes Trig1 to
fire again. Direct recursion occurs when a trigger fires and performs an action that causes
the same trigger to fire again. For example, an application updates table T3, which
causes trigger Trig3 to fire. Trig3 updates table T3 again, which causes trigger Trig3 to fire
again. When this option is OFF (the default), triggers can’t be fired recursively.

Database Recovery Options

The database option RECOVERY (FULL, BULK_LOGGED or SIMPLE) determines how much
recovery can be done on a SQL Server database. It also controls how much information is
logged and how much of the log is available for backups. I’ll cover this option in more detail
in Chapter 5.

Two other options also apply to work done when a database is recovered. Setting the
TORN_PAGE_DETECTION option to ON or OFF is possible in SQL Server 2005, but that
particular option will go away in a future version. The recommended alternative is to set
the PAGE_VERIFY option to a value of TORN_PAGE_DETECTION or CHECKSUM. (So
TORN_PAGE_DETECTION should now be considered a value, rather the name of an option.)

The PAGE_VERIFY options discover damaged database pages caused by disk I/O path errors,
which can cause database corruption problems. The I/O errors themselves are generally

126 Inside Microsoft SQL Server 2005: The Storage Engine
caused by power failures or disk failures that occur when a page is being written to disk.

■ CHECKSUM When the PAGE_VERIFY option is set to CHECKSUM, SQL Server
calculates a checksum over the contents of each page and stores the value in the page
header when a page is written to disk. When the page is read from disk, a checksum is
recomputed and compared with the value stored in the page header. If the values do not
match, error message 824 (indicating a checksum failure) is reported.

■ TORN_PAGE_DETECTION When the PAGE_VERIFY option is set to TORN_PAGE_
DETECTION, it causes a bit to be flipped for each 512-byte sector in a database page
(8 KB) whenever the page is written to disk. It allows SQL Server to detect incomplete
I/O operations caused by power failures or other system outages. If a bit is in the wrong
state when the page is later read by SQL Server, it means that the page was written
incorrectly. (A torn page has been detected.) Although SQL Server database pages are
8 KB, disks perform I/O operations using 512-byte sectors. Therefore, 16 sectors are
written per database page. A torn page can occur if the system crashes (for example,
because of power failure) between the time the operating system writes the first 512-byte
sector to disk and the completion of the 8-KB I/O operation. When the page is read from
disk, the torn bits stored in the page header are compared with the actual page sector
information. Unmatched values indicate that only part of the page was written to disk. In
this situation, error message 824 (indicating a torn page error) is reported. Torn pages
are typically detected by database recovery if it is truly an incomplete write of a page.
However, other I/O path failures can cause a torn page at any time.

■ NONE (No Page Verify Option) You can specify that that neither the CHECKSUM nor
the TORN_PAGE_DETCTION value will be generated when a page is written, and these
values will not be verified when a page is read.

Both checksum and torn page errors generate error message 824, which is written to both
the SQL Server error log and the Windows event log. For any page that generates an 824 error
when read, SQL Server will insert a row into the system table suspect_pages in the msdb
database. (Books Online has more information on “Understanding and Managing the
suspect _pages table.”)

SQL Server will retry any read that fails with a checksum, torn page, or other I/O error four
times. If the read is successful in any one of those attempts, a message will be written to the
error log and the command that triggered the read will continue. If the attempts fail, the
command will fail with error message 824.

You can “fix” the error by restoring the data or potentially rebuilding the index if the failure is
limited to index pages. If you encounter a checksum failure, you can run DBCC CHECKDB
to determine the type of database page or pages affected. You should also determine the root
cause of the error and correct the problem as soon as possible to prevent additional or
ongoing errors. Finding the root cause requires investigating the hardware, firmware drivers,
BIOS, filter drivers (such as virus software), and other I/O path components.

Chapter 4 Databases and Database Files 127
In SQL Server 2005, the default is CHECKSUM. In SQL Server 2000, TORN_PAGE_
DETECTION is the default, and CHECKSUM is not available. If you upgrade a database from
SQL Server 2000, the PAGE_VERIFY value will be NONE or TORN_PAGE_DETECTION.
If it is TORN_PAGE_DETECTION, you should consider changing it to CHECKSUM.
Although TORN_PAGE_DETECTION uses fewer resources, it provides less protection than
CHECKSUM.

Other Database Options

Of the four other main categories of database options, I will cover only one category in detail—
the external access options. The snapshot isolation options will be discussed in Chapter 8.
The Service Broker options are discussed in Inside SQL Server 2005: TSQL Programming. The
database mirroring options are also beyond the scope of this book. Database mirroring is a
new SQL Server 2005 technology that provides more options for high availability and is
fully supported as of Service Pack 1. (Microsoft did not fully support database mirroring in
the initial RTM release of SQL Server 2005, but mirroring can be enabled in that release by
using trace flag 1400 as a startup parameter.) All the details, both internal and external, that
you might want to know about database mirroring in SQL Server 2005 can be found in the
white paper “Database Mirroring in SQL Server 2005” by Ron Talmage and the Microsoft
TechNet article “Database Mirroring Best Practices and Performance Considerations” by
Sanjay Mishra, which are both included with the companion content for this book.

Database Snapshots
One of the most interesting new features in SQL Server 2005 is database snapshots, which
allows you to create a point-in-time read-only copy of any database. In fact, you can create
multiple snapshots of the same source database at different points in time. The actual space
needed for each snapshot is typically much less than the space required for the original
database because the snapshot only stores pages that have changed, as we’ll see shortly.

Database snapshots allow you to do the following:

■ Turn a database mirror into a reporting server. (You cannot read from a database mirror,
but you can create a snapshot of the mirror and read from that.)

■ Generate reports without blocking or being blocked by production operations.

■ Protect against administrative or user errors.

You’ll probably think of more ways to use snapshots as you gain experience working with
them.

Creating a Database Snapshot

The mechanics of snapshot creation are straightforward—you simply specify an option for the
CREATE DATABASE command. As of this writing, there is no graphical equivalent through

128 Inside Microsoft SQL Server 2005: The Storage Engine
Object Explorer, so you must use the Transact-SQL syntax. When you create a snapshot, you
must include each data file from the source database in the CREATE DATABASE command,
with the original logical name and a new physical name. No other properties of the files can be
specified, and no log file is used.

Here is the syntax to create a snapshot of the AdventureWorks database, putting the snapshot
files in the SQL Server 2005 default data directory:

CREATE DATABASE AdventureWorks_snapshot ON
(NAME = N'AdventureWorks_Data',

FILENAME =
N'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Data\AW_snapshot.mdf')

AS SNAPSHOT OF AdventureWorks;

Each file in the snapshot is created as a sparse file, which is a feature of the NTFS file system.
Initially, a sparse file contains no user data, and disk space for user data has not been allocated
to it. As data is written to the sparse file, NTFS allocates disk space gradually. A sparse file can
potentially grow very large. Sparse files grow in 64-KB increments; thus, the size of a sparse
file on disk is always a multiple of 64 KB.

The snapshot files contain only the data that has changed from the source. For every file, SQL
Server creates a bitmap that is kept in cache, with a bit for each page of the file, indicating whether
that page has been copied to the snapshot. Every time a page in the source is updated, SQL Server
checks the bitmap for the file to see if the page has already been copied, and if it hasn’t, it is copied
at that time. This operation is called a copy-on-write operation. Figure 4-2 shows a database with
a snapshot that contains 10 percent of the data (one page) from the source.

Figure 4-2 A database snapshot that contains one page of data from the source database

Unallocated

Original page
Updated page

Copy-on-write
operation

Percent copied 10%

Source database
Page

Snapshot
Page

Chapter 4 Databases and Database Files 129
When a process reads from the snapshot, it first accesses the bitmap to see whether the page
it wants is in the snapshot file or is still the source. Figure 4-3 shows read operations from the
same database as in Figure 4-2. Nine of the pages are accessed from the source database, and
one is accessed from the snapshot because it has been updated on the source. When a process
reads from a snapshot database, no locks are taken no matter what isolation level you are in.
This is true whether the page is read from the sparse file or from the source database. This is
one of the big advantages of using database snapshots.

Figure 4-3 Read operations from a database snapshot, reading changed pages from the snapshot
and unchanged pages from the source database

As mentioned earlier, the bitmap is stored in cache, not with the file itself, so it is always
readily available. When SQL Server shuts down or the database is closed, the bitmaps are lost
and need to be reconstructed at database startup. SQL Server determines whether each page
is in the sparse file as it is accessed, and then it records that information in the bitmap for
future use.

The snapshot reflects the point in time when the CREATE DATABASE command is issued—
that is, when the creation operation commences. SQL Server checkpoints the source database
and records a synchronization Log Sequence Number (LSN) in the source database’s transaction
log. As you’ll see in Chapter 5, when I talk about the transaction log, the LSN is a way to
determine a specific point in time in a database. SQL Server then runs recovery on the source
database so that any uncommitted transactions are rolled back in the snapshot. So, although
the sparse file for the snapshot starts out empty, it might not stay that way for long. If transactions
are in progress at the time the snapshot is created, the recovery process will undo uncommitted

Source database
Page

Snapshot

Unallocated

Original page
Updated page

Percent copied 10%

Page

Read operation
on the snapshot

130 Inside Microsoft SQL Server 2005: The Storage Engine
transactions before the snapshot database is usable, so the snapshot will contain the original
versions of any page in the source that contains modified data.

Snapshots can be created only on NTFS volumes because they are the only volumes that
support the sparse file technology. If you try to create a snapshot on a FAT or FAT32 volume,
you’ll get an error like one of the following:

Msg 1823, Level 16, State 2, Line 1
A database snapshot cannot be created because it failed to start.

Msg 5119, Level 16, State 1, Line 1
Cannot make the file "E:\AW_snapshot.MDF" a sparse file. Make sure the file system supports
sparse files.

The first error is basically the generic failure message, and the second message provides more
details about why the operation failed.

Space Used by Database Snapshots

You can find out the number of bytes each sparse file of the snapshot is currently using on
disk by looking at the dynamic management function sys.dm_io_virtual_file_stats, which
returns the current number of bytes in a file in the size_on_disk_bytes column. This function
takes database_id and file_id as parameters. The database ID of the snapshot database and the
file IDs of each of its sparse files are displayed in the sys.master_files catalog view. You can also
view the size in Windows Explorer. Right-click on the file name and look at the properties, as
shown in Figure 4-4. The Size value is the maximum size, and the size on disk should be the
same value that you see using sys.dm_io_virtual_file_stats. The maximum size should be about
the same size the source database was when the snapshot was created.

Figure 4-4 The snapshot file’s Properties dialog box in Windows Explorer shows the current size of
the sparse file as the size on disk.

Chapter 4 Databases and Database Files 131
Because it is possible to have multiple snapshots for the same database, you need to make sure
you have enough disk space available. The snapshots will start out relatively small, but as the
source database is updated, each snapshot will grow. Allocations to sparse files are made in
fragments called regions, in units of 64 KB. When a region is allocated, all the pages are zeroed
out except the one page that has changed. There is then space for seven more changed pages
in the same region, and a new region is not allocated until those seven pages are used.

It is possible to over-commit your storage. This means that under normal circumstances, you
can have many times more snapshots than you have physical storage for, but if the snapshots
grow, the physical volume might run out of space. (Note that this can happen when running
online DBCC CHECKDB, and related commands, because you have no control of the place-
ment of the internal snapshot that the command uses—it’s placed on the same volume that
the files of the parent database reside on. If this happens, the DBCC check will fail.) Once the
physical volume runs out of space, the write operations to the source cannot copy the before
image of the page to the sparse file. The snapshots that cannot write their pages out are
marked as
suspect and are unusable, but the source database continues operating normally. There is no
way to “fix” a suspect snapshot; you must drop the snapshot database.

Managing Your Snapshots

If any snapshots exist on a source database, the source database cannot be dropped,
detached, or restored. Snapshots will be dropped automatically if you change a database to
OFFLINE status. In addition, you can basically replace the source database with one of its
snapshots by reverting the source database to the way it was when a snapshot was made. You
do this by using the RESTORE command:

RESTORE DATABASE AdventureWOrks
FROM SNAPSHOT = AdventureWorks_snapshot;

During the revert operation, both the snapshot and the source database are unavailable and
are marked as “In restore.” If an error occurs during the revert operation, the operation will
try to finish reverting when the database starts up again. You cannot revert to a snapshot if
multiple snapshots exist, so you should first drop all snapshots except the one you want to
revert to. Dropping a snapshot is like using any other DROP DATABASE operation. When the
snapshot is deleted, all of the NTFS sparse files are also deleted.

Keep in mind these additional considerations regarding database snapshots:

■ Snapshots cannot be created for the model, master, or tempdb databases. (Internally,
snapshots can be created to run the online DBCC checks on the master database, but
they cannot be explicitly created.)

■ A snapshot inherits the security constraints of its source database, and because it is read-
only, you cannot change the permissions.

■ If you drop a user from the source database, the user is still in the snapshot.

132 Inside Microsoft SQL Server 2005: The Storage Engine
■ Snapshots cannot be backed up or restored, but backing up the source database works
normally; it is unaffected by database snapshots.

■ Snapshots cannot be attached or detached.

■ Full-text indexing is not supported on database snapshots, and full-text catalogs are not
propagated from the source database.

The tempdb Database
In some ways, your tempdb database is just like any other database, but it has some unique
behaviors. They are not all relevant to the topic of this chapter, so I will provide some
references to other chapters where you can find additional information.

As mentioned earlier, the biggest difference between tempdb and all the other databases in
your SQL Server instance is that tempdb is re-created—not recovered—every time SQL Server is
restarted. You can think of tempdb as a workspace for temporary user objects and internal
objects explicitly created by SQL Server itself.

Every time tempdb is re-created, it inherits most database options from the model database.
However, the recovery mode is not copied because tempdb always uses simple recovery, which
will be discussed in detail in Chapter 5. Certain database options cannot be set for tempdb,
such as OFFLINE, READONLY, and CHECKSUM. You also cannot drop the tempdb database.

In SIMPLE mode, the tempdb database’s log is constantly being truncated, and it can never
be backed up. No recovery information is needed because every time SQL Server is started,
tempdb is completely re-created; any previous user-created temporary objects (that is, all your
tables and data) will be gone.

Logging for tempdb is also different than for other databases. (Normal logging will be
discussed in Chapter 5.) Many people assume that there is no logging in tempdb, but this is
not true. Operations within tempdb are logged so that transactions on temporary objects can
be rolled back, but the records in the log contain only enough information to roll back a trans-
action, not to recover (or redo) it.

As I mentioned earlier, recovery is run on a database as one of the first steps in creating a
snapshot. We can’t recover tempdb, so we cannot create a snapshot of it, and this means we can’t
run DBCC CHECKDB (or, in fact, most of the DBCC validation commands) in online mode.
Another difference with running DBCC in tempdb is that SQL Server will skip all allocation and
catalog checks. Running DBCC CHECKDB (or CHECKTABLE) in tempdb acquires a Shared
Table lock on each table as it is checked. (Locking will be discussed in Chapter 8.)

Objects in tempdb

Three types of objects are stored in tempdb: user objects, internal objects, and the version
store, which is new in SQL Server 2005.

Chapter 4 Databases and Database Files 133
User Objects

All users have the privileges to create and use private and global temporary tables that reside
in tempdb. (Private and global table names have the # or ## prefix, respectively, which are
discussed in Inside SQL Server 2005: TSQL Programming.) However, by default, users don’t
have the privileges to USE tempdb and then create a table there (unless the table name is
prefaced with # or ##). But you can easily add such privileges to model, from which tempdb is
copied every time SQL Server is restarted, or you can grant the privileges in an autostart
procedure that runs each time SQL Server is restarted. If you choose to add those privileges to
the model database, you must remember to revoke them on any other new databases that you
subsequently create if you don’t want them to appear there as well.

Other user objects that need space in tempdb include table variables and table-valued func-
tions. The user objects that are created in tempdb are in many ways treated just like user
objects in any other database. Space must be allocated for them when they are populated, and
the metadata needs to be managed. You can see user objects by examining the system catalog
views, such as sys.objects, and information in the sys.partitions and sys.allocation_units views
will allow you to see how much space is taken up by user objects. I’ll discuss these views in
Chapter 6.

Internal Objects

Internal objects in tempdb are not visible using the normal tools, but they still take up space from
the database. They are not listed in the catalog views because their metadata is stored only in
memory. The three basic types of internal objects are work tables, work files, and sort units.

Work tables are created by SQL Server during the following operations:

■ Spooling, to hold intermediate results during a large query

■ Running DBCC CHECKDB or DBCC CHECKTABLE

■ Working with XML or varchar(MAX) variables

■ Processing SQL Service Broker objects

■ Working with static or keyset cursors

Work files are used when SQL Server is processing a query that uses a hash operator, either
for joining or aggregating data.

Sort units are created when a sort operation takes place, and this occurs in many situations in
addition to a query containing an ORDER BY clause. SQL Server uses sorting to build an
index, and it might use sorting to process queries involving grouping. Certain types of joins
might require that SQL Server first sort the data before performing the join. Sort units are
created in tempdb to hold the data as it is being sorted. SQL Server can also create sort units in
user databases in addition to tempdb, in particular when creating indexes. As you’ll see in
Chapter 7, when you create an index, you have the option to do the sort in the current user
database or in tempdb.

134 Inside Microsoft SQL Server 2005: The Storage Engine
Version Store

The version store supports a new technology in SQL Server 2005 for row-level versioning of
data. Older versions of updated rows are kept in tempdb in the following situations:

■ When a trigger is fired

■ When a DML command is executed in a database that allows snapshot transactions

■ When multiple active result sets (MARS) is invoked from a client application

■ During online index builds or rebuilds when there is concurrent DML on the index

Versioning, which is a new concurrency control feature in SQL Server 2005, and snapshot
transactions will be discussed in detail in Chapter 8.

Optimizations in tempdb

Because tempdb is so much more heavily used in SQL Server 2005 than in previous versions,
you have to take much more care in managing it. The next section will present some best
practices and monitoring suggestions. In this section, I’ll tell you about some of the internal
optimizations in SQL Server that allow tempdb to manage objects much more efficiently.

Logging Optimizations

As you know, every operation that affects your user database in any way is logged. In tempdb,
however, this is not entirely true. For example, with logging update operations, only the
original data (the before image) is logged, not the new values (the after image). In addition,
the commit operations and committed log records are not flushed to disk synchronously in
tempdb, as they are in other databases.

Allocation and Caching Optimizations

Many of the allocation optimizations are used in all databases, not just tempdb. However,
tempdb is most likely the database in which the greatest number of new objects are created
and dropped during production operations, so the impact on tempdb is greater than on user
databases. In SQL Server 2005, allocation pages are accessed much more efficiently
to determine where free extents are available; you should see far less contention on the
allocation pages than in previous versions. SQL Server 2005 also has a more efficient search
algorithm for finding an available single page from mixed extents. When a database has
multiple files, SQL Server 2005 has a very efficient proportional fill algorithm that allocates
space to multiple data files, proportional to the amount of free space available in each file.

Another optimization specific to tempdb prevents you from having to allocate any new space
for some objects. If a work table is dropped, one Index Allocation Map (IAM) page and one
extent are saved (for a total of nine pages), so there is no need to deallocate and then reallocate
the space if the same work table needs to be created again. This dropped work table cache is

Chapter 4 Databases and Database Files 135
not very big and has room for only 64 objects. If a work table is truncated internally and the
query plan that uses that worktable is still in the plan cache, again the first IAM page and the
first extent are saved. For these truncated tables, there is no specific limitation on the number
of objects that can be cached; it depends only on the available memory space.

User objects in tempdb can also have some of their space cached if they are dropped. For a
small table of less than 8 MB, dropping a user object in tempdb causes one IAM page and one
extent to be saved. However, if the table has had any additional DDL performed, such as
creating indexes or constraints, or if the table was created using dynamic SQL, no caching
is done.

For a large table, the entire drop is done as a deferred operation. Deferred drop operations are
in fact used in every database as a way to improve overall throughput because a thread does
not need to wait for the drop to complete before proceeding with its next task. Like the other
allocation optimizations that are available in all databases, the deferred drop probably
provides the most benefit in tempdb, which is where tables are most likely to be dropped
during production operations. A background thread eventually cleans up the space allocated
for dropped tables, but until then, the allocated space remains. You can detect this space by
looking at the sys.allocation_units system view for rows with a type value of 0, which indicates
a dropped object; you will also see that the column called container_id is 0, which indicates
that the allocated space does not really belong to any object. We’ll look at sys.allocation_units
and the other system views that keep track of space usage in Chapter 6.

Best Practices

By default, your tempdb database is created on only one data file. You will probably find that
multiple files give you better I/O performance and less contention on the global allocation
structures (the GAM and SGAM pages). An initial recommendation is that you have one file
per CPU, but your own testing based on your data and usage patterns might indicate more or
less than that. For the greatest efficiency with the proportional fill algorithm, the files should
be the same size. The downside of multiple files is that every object will have multiple IAM
pages and there will be more switching costs as objects are accessed. It will also take more
effort just to manage the files. No matter how many files you have, they should be on the
fastest disks you can afford. One log file should be sufficient, and that should also be on a
fast disk.

To determine the optimum size of your tempdb, you must test your own applications with
your data volumes, but knowing when and how tempdb is used can help you make preliminary
estimates. Keep in mind that there is only one tempdb for each SQL Server instance, so one
badly behaving application can affect all other users in all other applications. In Chapter 7,
we’ll look at estimating the size of tables and indexes, and we’ll talk more about online
index building and the tempdb space required for that operation. Finally, in Chapter 8, you’ll
see how to determine the size of the version store. All these factors affect the space needed
for your tempdb.

136 Inside Microsoft SQL Server 2005: The Storage Engine
Database options for tempdb should rarely be changed, and some options are not applicable to
tempdb. In particular, the autoshrink option is ignored in tempdb. In any case, shrinking
tempdb is not recommended, unless your workload patterns have changed significantly. If you
do need to shrink your tempdb, you’re probably better off shrinking each file individually.
Keep in mind that the files might not be able to shrink if any internal objects or version store
pages need to be moved. The best way to shrink tempdb is to ALTER the database, change the
files’ sizes, and then stop and restart SQL Server so tempdb is rebuilt to the desired size. You
should allow your tempdb files to autogrow only as a last resort and only to prevent errors due
to running out of room. You should not rely on autogrow to manage the size of your tempdb
files. Autogrow causes a delay in processing when you can probably least afford it, although
the impact is somewhat less if you use instant file initialization. You should determine the size
of tempdb through testing and planning so that tempdb can start with as much space as it
needs and won’t have to grow while your applications are running.

Here are some tips for making optimum use of your tempdb. Later chapters will elaborate on
why these suggestions are considered best practices:

■ Take advantage of tempdb object caching.

■ Keep your transactions short, especially those that use snapshot isolation, MARS, or
triggers.

■ If you expect a lot of allocation page contention, force a query plan that uses less of
tempdb.

■ Avoid page allocation and deallocation by keeping columns that are to be updated at a
fixed size rather than a variable size (which can implement the update as a delete fol-
lowed by an update).

■ Do not mix long and short transactions from different databases (in the same instance)
if versioning is being used.

tempdb Space Monitoring

Quite a few tools, stored procedures, and system views report on object space usage, as dis-
cussed in Chapter 6 and Chapter 7. However, one set of system views reports information only
for tempdb. The simplest view is sys.dm_db_file_space_usage, which returns one row for each
file in tempdb. It returns the following columns:

■ database_id (even though the database ID 2 is the only one used)

■ file_id

■ unallocated_extent_page_count

■ version_store_reserved_page_count

■ user_object_reserved_page_count

Chapter 4 Databases and Database Files 137
■ internal_object_reserved_page_count

■ mixed_extent_page_count

These columns can show you how the space in tempdb is being used for the three types of
storage: user objects, internals objects, and version store.

Two other system views are similar to each other:

■ sys.dm_db_task_space_usage This view returns one row for each active task and
shows the space allocated and deallocated by the task for user objects and internal
objects. If no tasks are being run by a session, this view still gives you one row for the
session, with all the space values showing 0. No version store information is reported
because that space is not associated one any particular task or session. Every running
task starts with zeros for all the space allocation and deallocation values.

■ sys.dm_db_session_space_usage This view returns one row for each session, with the
cumulative values for space allocated and deallocated by the session for user objects and
internal objects, for all tasks that have been completed. In general, the space allocated
values should be the same as the space deallocated values, but if there are deferred drop
operations, allocated values will be greater than the deallocated values. Keep in mind
that this information is not available to all users; a special permission called VIEW
SERVER STATE is needed to select from this view.

Database Security
Security is a huge topic that affects almost every action of every SQL Server user, including
administrators and developers, and it deserves an entire book of its own. However, some
areas of the SQL Server security framework are crucial to understanding how to work with a
database or with any objects in a SQL Server database, and vast changes have been made in
the security realm for SQL Server 2005, so I can’t leave the topic completely untouched here.

SQL Server manages a hierarchical collection of entities. The most prominent of these entities
are the server and databases in the server. Underneath the database level are objects. Each of
these entities below the server level is owned by individuals or groups of individuals. The SQL
Server security framework controls access to the entities within a SQL Server instance. Like
any resource manager, the SQL Server security model has two parts: authentication and
authorization.

Authentication is the process by which the SQL Server validates and establishes the identity of
an individual who wants to access a resource. Authorization is the process by which SQL
Server decides whether a given identity is allowed to access a resource.

In this section, I’ll discuss the basic issues of database access and then describe the metadata
where information on database access is stored. I’ll also tell you about the new concept of
schemas in SQL Server 2005 and describe how they are used to access objects.

138 Inside Microsoft SQL Server 2005: The Storage Engine
SQL Server 2005 uses some new terms to describe features of the SQL Server security model,
and some old terms are used in slightly new ways. In particular, the following two terms now
have a broader meaning than in SQL Server 2000:

■ Securable Known as an object in SQL Server 2000, a securable is an entity on which
permissions can be granted. Securables include databases, schemas, and objects.

■ Principal Known as a user in SQL Server 2000, a principal is an entity that can access
securable objects. A primary principal represents a single user (such as a SQL Server or
a Windows login); a secondary principal represents multiple users (such as a role or a
Windows group).

Database Access

Authentication is performed at two different levels in SQL Server. First, anyone who wants to
access any SQL Server resource must be authenticated at the server level. SQL Server 2005
security provides two basic methods for authenticating logins: Windows Authentication
and SQL Server Authentication. In Windows Authentication, SQL Server login security is
integrated directly with Windows security, allowing the operating system to authenticate SQL
Server users. In SQL Server Authentication, an administrator creates SQL Server login
accounts within SQL Server, and any user connecting to SQL Server must supply a valid SQL
Server login name and password.

Windows Authentication makes use of trusted connections, which rely on the impersonation
feature of Windows. Through impersonation, SQL Server can take on the security context of
the Windows user account initiating the connection and test whether the security identifier
(SID) has a valid privilege level. Windows impersonation and trusted connections are
supported by any of the available network libraries when connecting to SQL Server.

Under Windows 2000 and Windows 2003, SQL Server can use Kerberos to support mutual
authentication between the client and the server, as well as to pass a client’s security creden-
tials between computers so that work on a remote server can proceed using the credentials of
the impersonated client. With Windows 2000 and Windows 2003, SQL Server uses Kerberos
and delegation to support Windows Authentication as well as SQL Server Authentication.

The authentication method (or methods) used by SQL Server is determined by its security
mode. SQL Server can run in one of two security modes: Windows Authentication Mode
(which uses only Windows Authentication) and Mixed Mode (which can use either Windows
Authentication or SQL Server Authentication, as chosen by the client). When you connect to
an instance of SQL Server configured for Windows Authentication Mode, you cannot supply
a SQL Server login name, and your Windows user name determines your level of access to
SQL Server.

One advantage of Windows Authentication has always been that it allows SQL Server to take
advantage of the security features of the operating system, such as password encryption,

Chapter 4 Databases and Database Files 139
password aging, and minimum and maximum length restrictions on passwords. As of SQL
Server 2005, when running on Windows 2003, SQL Server Authentication can also take
advantage of the Windows password policies. Take a look at the ALTER LOGIN command in
Books Online for the full details. Another change in SQL Server 2005 is that if you choose
Windows Authentication during setup, the default SQL Server sa login will be disabled. If you
switch to Mixed Mode after setup, you can enable the sa login using the ALTER LOGIN
command. You can change the authentication mode in SQL Server Management Studio by
right-clicking on the server name, choosing properties, and then selecting the security page.
Under Server authentication, select the new server authentication mode, as shown in Figure 4-5.

Figure 4-5 Choosing an authentication mode for your SQL Server instance in the Server Properties
dialog box

Under Mixed Mode, Windows-based clients can connect using Windows Authentication,
and connections that don’t come from Windows clients or that come across the Internet can
connect using SQL Server Authentication. In addition, when a user connects to an instance of
SQL Server that has been installed in Mixed Mode, the connection can always explicitly
supply a SQL Server login name. This allows a connection to be made using a login name
distinct from the user name in Windows.

All login names, whether from Windows or SQL Server Authentication, can be seen in the
sys.server_principals catalog view, which also contains a SID for each server principal. If the
principal is a Windows login, the SID is the same SID used by Windows to validate the user’s
access to Windows resources. The view contains rows for server roles, Windows groups, and
logins mapped to certificates and asymmetric keys, but I will not discuss those principals
here.

140 Inside Microsoft SQL Server 2005: The Storage Engine
Note Not everyone who can log in to SQL Server can see the data in the sys.server_
principals view. In SQL Server 2005, metadata is fully secured, and unless you are a very priv-
ileged user or have been granted the VIEW DEFINITION permission at the server level, you
cannot select from this view.

Managing Database Security

Login names can be the owners of databases, as seen in the sys.databases view, which has a
column for the SID of the login that owns the database. Databases are the only resource
owned by login names. As you’ll see, all objects within a database are owned by database
users.

The SID used by a principal determines which databases that principal has access to. Each
database has a sys.database_principals catalog view, which you can think of as a mapping
table that maps login names to users in that particular database. Although a login name and
a user name can have the same value, they are separate things. The following query shows the
mapping of users in the AdventureWorks database to login names, and it also shows the default
schema (which I will discuss shortly) for each database user:

SELECT s.name as [Login Name], d.name as [User Name],
default_schema_name as [Default Schema]

FROM sys.server_principals s
JOIN sys.database_principals d

ON d.sid = s.sid;

In my AdventureWorks database, these are the results I get back:

Login Name User Name Default Schema
---------- ---------- --------------
sa dbo dbo
sue sue sue

Note that the login sue has the same value for the user name in this database. There is no
guarantee that other databases that sue has access to will use the same user name. The login
name sa has the user name dbo. This name is a special login that is used by the sa login, by all
logins in the sysadmin role, and by whatever login is listed in sys.databases as the owner of the
database. Within a database, it is users, not logins, who own objects, and users, not logins, to
whom permissions are granted.

The preceding results also indicate the default schema for each user in my AdventureWorks
database. In this case, the default schema is the same as the user name, but that doesn’t have
to be the case, as you’ll see in the next section.

Databases vs. Schemas

In the ANSI SQL-92 standard, a schema is defined as a collection of database objects that are
owned by a single user and form a single namespace. A namespace is a set of objects that

Chapter 4 Databases and Database Files 141
cannot have duplicate names. For example, two tables can have the same name only if they are
in separate schemas, so no two tables in the same schema can have the same name. You can
think of a schema as a container of objects. (In the context of database tools, a schema also
refers to the catalog information that describes the objects in a schema or database. In SQL
Server Analysis Services, a schema is a description of multidimensional objects such as cubes
and dimensions.)

Separation of Principals and Schemas

The previous version, SQL Server 2000, provides a CREATE SCHEMA statement, but it
effectively does nothing because there is an implicit relationship between users and schemas
that cannot be changed or removed. In fact, the relationship is so close that many users of SQL
Server 2000 are unaware that users and schemas are different things. Every user is the owner
of a schema that has the same name as the user. If you create a user sue, for example, SQL
Server 2000 creates a schema called sue, which is sue’s default schema. Permissions are
granted to users, but objects are placed in schemas.

In SQL Server 2000, the statement GRANT CREATE TABLE TO sue refers to the user sue. Let’s
say sue then creates a table:

CREATE TABLE mytable (col1 varchar(20));

This table is put in the schema sue because that is sue’s default schema. If another user wants
to retrieve data from this table, he can issue this statement:

SELECT col1 FROM sue.mytable;

In this statement, sue refers to the schema that contains the table.

In the new version, SQL Server 2005 breaks apart the linking of users to schemas. Schemas
can be owned by either primary or secondary principals. Although every object in a SQL
Server 2005 database is owned by a user, we never reference an object by its owner; we
reference it by the schema in which it is contained. In addition, a user is never added to a
schema; schemas contain objects, not users. For backward compatibility, if you execute the
sp_adduser or sp_grantdbaccess procedure to add a user to a database, SQL Server 2005
creates both a user and a schema, and it makes the schema the default schema for the new
user. However, you should get used to using the new DDL CREATE USER and CREATE
SCHEMA. When you create a user, you can optionally specify a default schema, but the default
for the default schema is the dbo schema.

Default Schemas

When you create a new database in SQL Server 2005, several schemas are included in it.
These include schemas that correspond to the default user names in SQL Server 2000: dbo,
INFORMATION_SCHEMA, and guest. In addition, every database has a schema called sys,

142 Inside Microsoft SQL Server 2005: The Storage Engine
which provides a way to access all the system tables and views. Finally, every predefined data-
base role from SQL Server 2000 has a schema in SQL Server 2005.

Users can be assigned a default schema that might or might not exist when the user is created.
A user can have at most one default schema at any time. As mentioned earlier, if no default
schema is specified for a user, the default schema for the user is dbo. A user’s default schema
is used for name resolution during object creation or object reference. This can be both good
news and bad news for backward compatibility. The good news is that if you’ve upgraded a
database from SQL Server 2000, which has many objects in the dbo schema, your code can
continue to reference those objects without having to specify the schema explicitly. The bad
news is that for object creation, SQL Server will try to create the object in the dbo schema
rather than in a schema owned by the user creating the table. The user might not have permis-
sion to create objects in the dbo schema, even if that is the user’s default schema. To avoid
confusion, in SQL Server 2005 you should always specify the schema name for all object
access as well as object management.

Regardless of a user’s default schema, SQL Server 2005 always checks the sys schema first for
any object access. For example, if a user Sue runs the query select col1 from mytable and the
default schema for Sue is SueSchema, the name resolution process is as follows:

1. Look for sys.table1.

2. Look for SueSchema.table1.

3. Look for dbo.table1.

Note that when a login in the sysadmin role creates an object with a single part name, the
schema is always dbo. However, a sysadmin can explicitly specify an alternate schema in
which to create an object.

To create an object in a schema, you must satisfy the following conditions:

■ The schema must exist.

■ The user creating the object must have permission to create the object (CREATE TABLE,
CREATE VIEW, CREATE PROCEDURE, and so on), either directly or through role
membership.

■ The user creating the object must be the owner of the schema or a member of the role
that owns the schema, or the user must have ALTER rights on the schema or have the
ALTER ANY SCHEMA permission in the database.

We’ll look again at schemas and the objects within them in Chapter 6, when we discuss
metadata and tables.

Moving or Copying a Database
You might need to move a database before performing maintenance on your system, after a
hardware failure, or when you replace your hardware with a newer, faster system. Copying a

Chapter 4 Databases and Database Files 143
database is a common way to create a secondary development or testing environment. You
can move or copy a database by using a technique called “detach and attach” or by backing up
the database and restoring it in the new location.

Detaching and Reattaching a Database

You can detach a database from a server by using a simple stored procedure. Detaching a
database requires that no one is using the database. If you find existing connections that you
can’t terminate, you can use the ALTER DATABASE command and set the database to
SINGLE_USER mode using one of the termination options that breaks existing connections.
Detaching a database ensures that no incomplete transactions are in the database and that
there are no dirty pages for this database in memory. If these conditions cannot be met, the
detach operation will not succeed. Once the database is detached, the entry for it is removed
from the sys.databases catalog view and from the underlying system tables.

Here is the command to detach a database:

EXEC sp_detach_db <name of database>;

Once the database has been detached, from the perspective of SQL Server it’s as if you had
dropped the database. No trace of the database remains within the SQL Server instance. If you
are planning to reattach the database later, it’s a good idea to record the properties of all the
files that were part of the database.

Note The DROP DATABASE command removes all traces of the database from your
instance, but dropping a database is more severe. SQL Server makes sure that no one is
connected to the database before dropping it, but it doesn’t check for dirty pages or open
transactions. Dropping a database also removes the physical files from the operating system,
so unless you have a backup, the database is really gone.

To attach a database, you can use the sp_attach_db stored procedure, or you can use the
CREATE DATABASE command with the FOR ATTACH option. In SQL Server 2005, the
CREATE DATABASE option is the recommended one because it gives you more control over
all the files and their placement and because sp_attach_db is being deprecated. With sp_attach
_db, the limit is 16 files. CREATE DATABASE has no such limit—in fact, you can specify up to
32,767 files and 32,767 file groups for each database.

CREATE DATABASE database_name
ON <filespec> [,...n]
FOR { ATTACH

| ATTACH_REBUILD_LOG }

Note that only the primary file is required to have a <filespec> entry because the primary file
contains information about the location of all the other files. If you’ll be attaching existing files
with a different path than when the database was first created or last attached, you must have

144 Inside Microsoft SQL Server 2005: The Storage Engine
additional <filespec> entries. In any event, all the data files for the database must be available,
whether or not they are specified in the CREATE DATABASE command. If there are multiple
log files, they must all be available.

However, if a read/write database has a single log file that is currently unavailable and if the
database was shut down with no users or open transactions before the attach operation, FOR
ATTACH rebuilds the log file and updates information about the log in the primary file. If the
database is read-only, the primary file cannot be updated, so the log cannot be rebuilt. There-
fore, when you attach a read-only database, you must specify the log file or files in the FOR
ATTACH clause.

Alternatively, you can use the FOR ATTACH_REBUILD_LOG option, which specifies that the
database will be created by attaching an existing set of operating system files. This option is
limited to read/write databases. If one or more transaction log files are missing, the log is
rebuilt. There must be a <filespec> entry specifying the primary file. In addition, if the log files
are available, SQL Server will use those files instead of rebuilding the log files, so the FOR
ATTACH_REBUILD_LOG will function as if you used FOR ATTACH.

If your transaction log is rebuilt by attaching the database, using the FOR ATTACH_REBUILD
_LOG will break the log backup chain. You should consider making a full backup after
performing this operation.

You typically use FOR ATTACH_REBUILD_LOG when you copy a read/write database with a
large log to another server where the copy will be used mostly or exclusively for read opera-
tions and will therefore require less log space than the original database.

Although the documentation says that you should use sp_attach_db or CREATE DATABASE
FOR ATTACH only on databases that were previously detached using sp_detach_db, some-
times following this recommendation isn’t necessary. If you shut down the SQL Server
instance, the files will be closed, just as if you had detached the database. However, you will
not be guaranteed that all dirty pages from the database were written to disk before the
shutdown. This should not cause a problem when you attach such a database if the log file is
available. The log file will have a record of all completed transactions, and a full recovery will
be done when the database is attached to make sure the database is consistent. One benefit of
using the sp_detach_db procedure is that SQL Server will know that the database was shut
down cleanly, and the log file does not have to be available to attach the database. SQL Server
will build a new log file for you. This can be a quick way to shrink a log file that has become
much larger than you would like, because the new log file that sp_attach_db creates for you
will be the minimum size—less than 1 MB.

Backing Up and Restoring a Database

You can also use backup and restore to move a database to a new location, as an alternative to
detach and attach. One benefit of this method is that the database does not need to come
offline at all because backup is a completely online operation. Because this book is not a

Chapter 4 Databases and Database Files 145
how-to book for database administrators, you should refer to the bibliography in the compan-
ion content for several excellent book recommendations about the mechanics of backing up
and restoring a database and to learn best practices for setting up a backup-and-restore plan
for your organization. Nevertheless, some issues relating to backup-and-restore processes can
help you understand why one backup plan might be better suited to your needs than another,
so I will discuss backup and restore in Chapter 5. Most of these issues involve the role of the
transaction log in backup-and-restore operations.

Moving System Databases

You might need to move system databases as part of a planned relocation or scheduled main-
tenance operation. The steps for moving tempdb, model, and msdb are slightly different than for
moving the master database or the resource database.

Here are the steps for moving an undamaged system database (that is not the master database
or the resource database):

1. For each file in the database to be moved, use the ALTER DATABASE command with the
MODIFY FILE option to specify the new physical location.

2. Stop the SQL Server instance.

3. Physically move the files.

4. Restart the SQL Server instance.

5. Verify the change by running the following query:

SELECT name, physical_name AS CurrentLocation, state_desc
FROM sys.master_files
WHERE database_id = DB_ID(N'<database_name>');

If the system database needs to be moved because of a hardware failure, the solution is a bit
more problematical because you might not have access to the server to run the ALTER DATA-
BASE command. Here are the steps to move a damaged system database (other than the
master database or the resource database):

1. Stop the instance of SQL Server if it has been started.

2. Start the instance of SQL Server in master-only recovery mode by entering one of the
following commands at the command prompt.

-- If the instance is the default instance:
NET START MSSQLSERVER /f /T3608

-- For a named instance:
NET START MSSQL$instancename /f /T3608

3. For each file in the database to be moved, use the ALTER DATABASE command with the
MODIFY FILE option to specify the new physical location. You can use either SQL
Server Management Studio or the SQLCMD utility.

146 Inside Microsoft SQL Server 2005: The Storage Engine
4. Exit SQL Server Management Studio or the SQLCMD utility.

5. Stop the instance of SQL Server.

6. Physically move the file or files to the new location.

7. Restart the instance of SQL Server. For example, run NET START MSSQLSERVER.

8. Verify the change by running the following query:

SELECT name, physical_name AS CurrentLocation, state_desc
FROM sys.master_files
WHERE database_id = DB_ID(N'<database_name>');

Moving the master Database and Resource Database

The location of the resource database (which is actually named mssqlsystemresource) depends
on the location of the master database. If you move the master database, you must move the
resource database files to the same directory.

Full details on moving these special databases can be found in Books Online, but I will
summarize the steps here. The biggest difference between moving these databases and
moving other system databases is that you must go through the SQL Server Configuration
Manager.

To move the master database and resource database, follow these steps.

1. Open the SQL Server Configuration Manager. Right-click on the desired instance of SQL
Server, choose Properties, and then click on the Advanced tab.

2. Edit the Startup Parameters values to point to the new directory location for the master
database data and log files. You can optionally choose to also move the SQL Server error
log files. The parameter value for the data file must follow the -d parameter, the value for
the log file must follow the -l parameter, and the value for the error log must follow the
–e parameter, as shown here:

-dE:\SQLData\master.mdf;-
eC:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\LOG\ERRORLOG;
-lE:\SQLData\mastlog.ldf;
-eE:\ SQLData\LOG\ERRORLOG;-

3. Stop the instance of SQL Server and physically move the files for master and mssqlsystem-
resource to the new location.

4. Start the instance of SQL Server in master-only recovery mode by using the /f and /
T3608 flags, as shown previously.

5. Using SQLCMD commands or SQL Server Management Studio, use ALTER DATABASE
to change the FILENAME path for the mssqlsystemresource database to match the new
location of the master data file. Do not change the name of the database or the file names.

Chapter 4 Databases and Database Files 147
ALTER DATABASE mssqlsystemresource MODIFY FILE (NAME=data, FILENAME=
'new_path_of_master\mssqlsystemresource.mdf');
ALTER DATABASE mssqlsystemresource MODIFY FILE (NAME=log, FILENAME=
'new_path_of_master\mssqlsystemresource.ldf');

6. Set the mssqlsystemresource database to read-only, and stop the instance of SQL Server.

7. Move the resource database’s data and log files to the new location.

8. Restart the instance of SQL Server.

9. Verify the file change for the master database by running the following query. Note that
you cannot view the resource database metadata by using the system catalog views or
system tables.

SELECT name, physical_name AS CurrentLocation, state_desc
FROM sys.master_files
WHERE database_id = DB_ID('master');

Compatibility Levels
Each new version of SQL Server includes a tremendous amount of new functionality, much
of which requires new keywords and also changes certain behaviors that existed in earlier
versions. To provide maximum backward compatibility, Microsoft allows you to set the
compatibility level of a database to one of the following modes: 90, 80, 70, 65, or 60. Compat-
ibility levels 65 and 60 are being deprecated, and 60 is not supported by SQL Server Manage-
ment Studio or SMO. All newly created databases in SQL Server 2005 have a compatibility
level of 90 unless you change the level for the model database. A database that has been
upgraded or attached from an older version will have its compatibility level set to the version
from which the database was upgraded.

All the examples and explanations in this book assume that you’re using a database in
90 compatibility mode, unless otherwise noted. If you find that your SQL statements behave
differently than the ones in the book, you should first verify that your database is in
90 compatibility mode by executing this procedure:

EXEC sp_dbcmptlevel '<database name>';

To change to a different compatibility level, run the procedure using a second argument of one
of the possible modes:

EXEC sp_dbcmptlevel '<database name>', <compatibility-level>;

Note The compatibility-level options merely provide a transition period while you’re
upgrading a database or an application to SQL Server 2005. I strongly suggest that you try
to change your applications so that compatibility options are not needed. Microsoft doesn’t
guarantee that these options will continue to work in future versions of SQL Server.

148 Inside Microsoft SQL Server 2005: The Storage Engine
Not all changes in behavior from older versions of SQL Server can be duplicated by changing
the compatibility level. For the most part, the differences have to do with whether new
keywords and new syntax are recognized, and they do not affect how your queries are
processed internally. For example, if you change to compatibility level 80, you don’t make the
system tables viewable or do away with schemas. But because the word PIVOT is a new
reserved keyword in SQL Server 2005 (compatibility level 90), by setting your compatibility
level to 80 you can create a table called PIVOT without using any special delimiters—or a table
you already have in a SQL Server 2000 database will continue to be accessible if the database
stays in 80 compatibility level.

For a complete list of the behavioral differences between the compatibility levels and the new
keywords, see the online documentation for the sp_dbcmptlevel procedure.

Summary
A database is a collection of objects such as tables, views, and stored procedures. Although a
typical SQL Server installation has many databases, it always includes the following three:
master, model, and tempdb. (An installation usually also includes msdb, but that database can
be removed.) Every database has its own transaction log; integrity constraints among objects
keep a database logically consistent.

Databases are stored in operating system files in a one-to-many relationship. Each database
has at least one file for data and one file for the transaction log. You can easily increase and
decrease the size of databases and their files either manually or automatically.

	Cover
	Table of Contents
	Chapter 2: SQL Server 2005 Architecture
	Components of the SQL Server Engine
	Observing Engine Behavior
	Protocols
	The Relational Engine
	The Storage Engine
	The SQLOS

	Memory
	The Buffer Pool and the Data Cache
	Access to In-Memory Data Pages
	Managing Pages in the Data Cache
	Checkpoints
	Managing Memory in Other Caches
	Sizing Memory
	Sizing the Buffer Pool

	Final Words

	Chapter 4: Databases and Database Files
	System Databases
	master
	model
	tempdb
	mssqlsystemresource
	msdb

	Sample Databases
	AdventureWorks
	pubs
	Northwind

	Database Files
	Creating a Database
	A CREATE DATABASE Example

	Expanding or Shrinking a Database
	Automatic File Expansion
	Manual File Expansion
	Fast File Initialization
	Automatic Shrinkage
	Manual Shrinkage

	Using Database Filegroups
	The Default Filegroup
	A FILEGROUP CREATION Example

	Altering a Database
	ALTER DATABASE Examples

	Databases Under the Hood
	Space Allocation
	Checking Database Consistency

	Setting Database Options
	State Options
	Cursor Options
	Auto Options
	SQL Options
	Database Recovery Options
	Other Database Options

	Database Snapshots
	Creating a Database Snapshot
	Space Used by Database Snapshots
	Managing Your Snapshots

	The tempdb Database
	Objects in tempdb
	Optimizations in tempdb
	Best Practices
	tempdb Space Monitoring

	Database Security
	Database Access
	Managing Database Security
	Databases vs. Schemas
	Separation of Principals and Schemas
	Default Schemas

	Moving or Copying a Database
	Detaching and Reattaching a Database
	Backing Up and Restoring a Database
	Moving System Databases
	Moving the master Database and Resource Database

	Compatibility Levels
	Summary

