
 

Inside Microsoft
®
 SQL 

Server
™
 2005: T-SQL 

Programming 

 

Itzik Ben-Gan (Solid Quality 
Learning), Dejan Sarka;  
Roger Wolter 

 

 

 

 

To learn more about this book, visit Microsoft Learning at 
http://www.microsoft.com/MSPress/books/8564.aspx 

9780735621978 
Publication Date: May 2006 

 
 

http://www.microsoft.com/MSPress/books/8564.aspx


Contents

Foreword. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xvii

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

1 Datatype-Related Problems, XML, and CLR UDTs . . . . . . . . . . . . . . . . . . . .1
DATETIME Datatypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Storage Format of DATETIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Datetime Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Datetime-Related Querying Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Character-Related Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Pattern Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Case-Sensitive Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Large Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

MAX Specifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

BULK Rowset Provider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Implicit Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Scalar Expressions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Filter Expressions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

CLR-Based User-Defined Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Theoretical Introduction to UDTs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Programming a UDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

XML Data Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

XML Support in a Relational Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

When Should You Use XML Instead of Relational Representation? . . . . . . . . . 67

XML Serialized Objects in a Database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Using XML with Open Schema. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

XML Data Type as a Parameter of a Stored Procedure. . . . . . . . . . . . . . . . . . . . 81

XQuery Modification Statements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
v

What do you think of this book?
We want to hear from you!

Microsoft is interested in hearing your feedback about this publication so we can 
continually improve our books and learning resources for you. To participate in a brief 
online survey, please visit: www.microsoft.com/learning/booksurvey/



vi Contents
2 Temporary Tables and Table Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Temporary Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Local Temporary Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Global Temporary Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Table Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Limitations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

tempdb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Scope and Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Transaction Context. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

tempdb Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Table Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Comparison Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Summary Exercise—Relational Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3 Cursors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Using Cursors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Cursor Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Dealing with Each Row Individually  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Order-Based Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Custom Aggregates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Running Aggregations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Maximum Concurrent Sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Matching Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4 Dynamic SQL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
EXEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A Simple EXEC Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

EXEC Has No Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Concatenating Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

EXEC AT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

sp_executesql . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

The sp_executesql Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Statement Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Environmental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Uses of Dynamic SQL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Dynamic Maintenance Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Storing Computations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156



Contents vii
Dynamic Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Dynamic PIVOT/UNPIVOT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

SQL Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

SQL Injection: Code Constructed Dynamically at Client  . . . . . . . . . . . . . . . . . 172

SQL Injection: Code Constructed Dynamically at Server . . . . . . . . . . . . . . . . . 173

Protecting Against SQL Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5 Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
What Are Views?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

ORDER BY in a View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Refreshing Views. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Modular Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Updating Views. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

View Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

ENCRYPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

SCHEMABINDING  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

CHECK OPTION  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

VIEW_METADATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Indexed Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

6 User-Defined Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Some Facts About UDFs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Scalar UDFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

T-SQL Scalar UDFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Performance Issues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

UDFs Used in Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

CLR Scalar UDFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

SQL Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Table-Valued UDFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Inline Table-Valued UDFs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Split Array  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

Multistatement Table-Valued UDFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

Per-Row UDFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255



viii Contents
7 Stored Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Types of Stored Procedures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

User-Defined Stored Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Special Stored Procedures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

System Stored Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

Other Types of Stored Procedures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

The Stored Procedure Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Output Parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

Compilations, Recompilations, and Reuse of Execution Plans  . . . . . . . . . . . . . . . . . . 275

Reuse of Execution Plans  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

Recompilations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

Parameter Sniffing Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

EXECUTE AS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

Parameterizing Sort Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Dynamic Pivot  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

CLR Stored Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

8 Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
AFTER Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

The inserted and deleted Special Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

Identifying the Number of Affected Rows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

Identifying the Type of Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

Not Firing Triggers for Specific Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

Nesting and Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

UPDATE and COLUMNS_UPDATED. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

Auditing Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

INSTEAD OF Triggers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

Per-Row Triggers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

Used with Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

Automatic Handling of Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

DDL Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

Database-Level Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

Server-Level Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

CLR Triggers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360



Contents ix
9 Transactions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
What Are Transactions? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

Locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

Isolation Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

Read Uncommitted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

Read Committed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

Repeatable Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

Serializable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

New Isolation Levels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

Save Points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

Deadlocks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

Simple Deadlock Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

Deadlock Caused by Missing Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

Deadlock with a Single Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

10 Exception Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
Exception Handling prior to SQL Server 2005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

Exception Handling in SQL Server 2005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

TRY/CATCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

New Exception-Handling Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

Errors in Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

11 Service Broker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
Dialog Conversations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

Conversations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

DEFAULT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

Services  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

Begining and Ending Dialogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

Conversation Endpoints  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

Conversation Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428

Sending and Receiving  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430

Sample Dialog. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

Poison Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442

Dialog Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443



x Contents
What do you think of this book?
We want to hear from you!

Microsoft is interested in hearing your feedback about this publication so we can 
continually improve our books and learning resources for you. To participate in a brief 
online survey, please visit: www.microsoft.com/learning/booksurvey/

Asymmetric Key Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

Configuring Dialog Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

Routing and Distribution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448

Adjacent Broker Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

Service Broker Endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

Routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455

Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

Reliable SOA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

Asynchronous Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

Where Does Service Broker Fit?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462

What Service Broker Is  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462

What Service Broker Isn’t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462

Service Broker and MSMQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462

Service Broker and BizTalk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

Service Broker and Windows Communication Foundation  . . . . . . . . . . . . . . 463

Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

Appendix A: Companion to CLR Routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
Create the CLRUtilities Database: SQL Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466

Development: Visual Studio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466

Deployment and Testing: Visual Studio and SQL Server . . . . . . . . . . . . . . . . . . . . . . . 467

Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491



Chapter 3

Cursors

In this chapter: 

Using Cursors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112

Cursor Overhead  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114

Dealing with Each Row Individually . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115

Order-Based Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116

Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138

You probably won’t find many database professionals arguing about the necessity for SELECT 
statements, but many argue about whether cursors are necessary. Arguments also arise about the 
use of temporary tables; dynamic code; and integrated XML, XQuery, and CLR. There must be 
a reason why database professionals are in complete agreement about some aspects of Microsoft 
SQL Server 2005 but have conflicting opinions about other aspects (call the constructs under 
conflicting opinions arguable constructs). Let me offer my two cents’ worth on the subject.

These arguable constructs have a high potential for misuse because database professionals 
often lack knowledge and experience in set-based querying and the relational model. Such 
misuse can lead to very poor implementations. Defenders of these arguable constructs would 
argue that any construct can be abused because of lack of knowledge and experience. Still, 
I think that there is a difference between these constructs and many others. Knives and 
matches are very useful tools, but only in the hands of responsible people. You wouldn’t want 
those devices in the hands of children. Even with no bad intentions on the part of the users, 
the potential for catastrophe is high. A child could also do damage with crayons and books, 
but the likelihood of that happening is much lower and the damage wouldn’t be as severe. 

I didn’t say that I side with those who oppose the arguable constructs, or that I’m on any side 
for that matter. But I do think that placing such tools in the hands of programmers who lack 
adequate knowledge of set-based querying and the relational model can yield bad results. The 
key is having the maturity to recognize the appropriate time and place to use each construct 
(static set-based queries, dynamic SQL, cursors, XML, CLR, table expressions, temporary 
tables, and so on). This book tries to guide you to that level of maturity.

I hope you will forgive me for the philosophical approach to this subject, but for me SQL is 
a “way” that has important philosophical aspects. In my mind—and you don’t have to agree—
I separate the careers of T-SQL programmers into three typical phases:

1. Procedural. This is the phase in which programmers have just started to work with 
databases. They have insufficient experience working with the relational model 
111



112 Inside Microsoft SQL Server 2005: T-SQL Programming
and set-based thinking. In this phase, it’s common to see misuse of tools such as cursors, 
temporary tables, dynamic execution, and procedural coding in general. Programmers 
at this stage are usually oblivious to the damage that they’re causing.

2. Becoming sober. This is the phase in which programmers realize there’s more to data-
base programming—that SQL is not a nuisance that interferes with writing procedural 
code but, rather, it’s based on the strong foundations of set theory and the relational 
model. In this phase, programmers tend to believe “experts” who say cursors, temporary 
tables, and dynamic execution are evil and should never be used. At this point, program-
mers either avoid using such constructs altogether or really feel bad about the code they 
write. There’s usually lack of confidence at this stage.

3. Maturity. This stage is characterized by the void or Zen mindset. In this phase, program-
mers have deep knowledge and understanding, and they feel confident about their code. 
This doesn’t mean they stop pursuing deeper knowledge or improving fundamental 
techniques. In this phase, programmers apply set-based thinking for the most part, but 
they realize that there’s a time and place for other constructs as well. I refer to this phase 
as the “void” in the positive and abstract sense—that is, programmers develop intuition 
regarding the type of solution that would fit a given task and don’t need to spend much 
time determining which technique is appropriate. 

Developing the intuition described in phase three involves knowing when the typical 
approach of using pure static SQL programming will not do the job. Although pure static SQL 
programming is typically the way to go, it will only get you so far in some cases. There are 
cases where using temporary tables can substantially improve performance; where dynamic 
execution actually overcomes complex problems; where the use of procedural languages such 
as C# and Visual Basic allows more flexibility without conflicting with the relational model; 
and where storing states of data in XML format makes sense. This book explores these cases 
in dedicated chapters and sections. 

Using Cursors
In this chapter, I’ll explain the types of problems for which cursors are a reasonable solution, 
even though such cases are not common. The goal of the chapter is to show you how to use 
them wisely.

I’ll assume that you have sufficient technical knowledge of the various cursor types and know 
the syntax for declaring and using them. If you don’t, you can find a lot of information about 
cursors in Books Online. My focus is to explain why cursors are typically not the right choice 
and to present the cases in which cursors do make sense. 

So why should you avoid using cursors for the most part?

For one, cursors conflict with the main premise of the relational model. Using cursors, you 
apply procedural logic rather than set-based logic. That is, you write a lot of code with itera-
tions, where you mainly focus on “how” to deal with data. When you apply set-based logic, 



Chapter 3 Cursors 113
you typically write substantially less code, as you focus on “what” you want and not how to get 
it. You need to be able to recognize the cases where a problem is procedural/iterative in 
nature—where you truly need to process one row at a time. In these cases, you should consider 
using a cursor. For example, you have a table that contains user information along with e-mail 
addresses, and you need to send e-mail to all users. Or you need to invoke a stored procedure 
per each row in some table and provide the stored procedure with column values from each 
row as arguments. 

Cursors also have a lot of overhead involved with the row-by-row manipulation and are typi-
cally substantially slower than set-based code (queries). I demonstrate the use of set-based 
solutions throughout the book. You need to be able to measure and estimate the cursor over-
head and identify the few scenarios where cursors will yield better performance than set-
based code. In some cases, data distribution will determine whether a cursor or a set-based 
solution will yield better performance.

There’s another very important aspect of cursors—they can request and assume ordered data 
as input, whereas queries can accept only a relational input, which by definition cannot 
assume a particular order. This difference is important in identifying scenarios in which 
cursors might actually be faster—such as problems that are tightly based on ordered access 
to the data. Examples of such problems are running aggregations and ranking calculations, 
resolving some temporal problems, and so on. The I/O cost involved with the cursor activity 
plus the cursor overhead might end up being lower than a set-based solution that performs 
substantially more I/O. 

ANSI recognizes the practical need for manipulation of ordered data and provides some stan-
dards for addressing this need. In extensions to the ANSI SQL:1999 standard and in the ANSI 
SQL:2003 standard, you can find several query constructs that inherently rely on ordering—
for example, the ANSI OVER(ORDER BY …) clause, which determines the calculation order 
for ranking and aggregate calculations, or the SEARCH clause defined with recursive CTEs, 
which determines the order of traversal of trees.

SQL Server 2005 implements the OVER clause with support for ORDER BY only for ranking 
functions, and SQL Server 2005’s engine was, of course, enhanced to support the rapid per-
formance of such calculations. As a result, ranking calculations using queries are now substan-
tially faster than cursor-based solutions. With aggregate functions in SQL Server 2005, 
however, the OVER clause does not support ORDER BY. Therefore, set-based solutions to 
compute running aggregations with large groups of data are slower than cursor-based solu-
tions. I’ll demonstrate this in the section Running Aggregations later in this chapter. The 
SEARCH clause for recursive common table expressions (CTEs) has not been implemented in 
SQL Server 2005.

Another kind of problem where cursor solutions are faster than query solutions is matching 
problems, which I’ll also demonstrate. With those, I haven’t found set-based solutions that 
perform nearly as well as cursor solutions. But I haven’t given up. One of my goals is to find 
set-based solutions for problems that are not procedural. Some of those problems could have 



114 Inside Microsoft SQL Server 2005: T-SQL Programming
set-based solutions if newer ANSI constructs had been supported in SQL Server. I hope that 
SQL Server will implement those in future versions. And when the ANSI standard doesn’t 
have answers, I believe there will be vendor-specific product extensions, followed by motions 
to the ANSI committee to add them to the standard.

Cursor Overhead
In this chapter’s introduction, I talked about the benefits that set-based solutions have over 
cursor-based ones. I mentioned both logical and performance benefits. For the most part, 
efficiently written set-based solutions will outperform cursor-based solutions for two reasons. 

First, you empower the optimizer to do what it’s so good at—generating multiple valid execu-
tion plans, and choosing the most efficient one. When you apply a cursor-based solution, 
you’re basically forcing the optimizer to go with a rigid plan that doesn’t leave much room for 
optimization—at least not as much room as with set-based solutions.

Second, row-by-row manipulation creates a lot of overhead. You can run some simple tests to 
witness and measure this overhead—for example, just scanning a table with a simple query 
and comparing the results to scanning it with a cursor. To compare apples to apples, make 
sure you’re scanning the same amount of data as you did with the cursor-based query. You can 
eliminate the actual disk I/O cost by running the code twice. (The first run will load the data 
to cache.) To eliminate the time it takes to generate the output, you should run your code with 
the Discard Results After Execution option in SQL Server Management Studio (SSMS) turned 
on. The difference in performance between the set-based code and the cursor code will then 
be the cursor’s overhead.

I will now demonstrate how to compare scanning the same amount of data with set-based 
code versus with a cursor. Run the following code to generate a table called T1, with a million 
rows, each containing slightly more than 200 bytes:

SET NOCOUNT ON; 

USE tempdb; 

GO 

IF OBJECT_ID('dbo.T1') IS NOT NULL 

DROP TABLE dbo.T1; 

GO 

SELECT n AS keycol, CAST('a' AS CHAR(200)) AS filler 

INTO dbo.T1 

FROM dbo.Nums; 

 

CREATE UNIQUE CLUSTERED INDEX idx_keycol ON dbo.T1(keycol);

You can find the code to create and populate the Nums table in Chapter 1.

Turn on the Discard Results After Execution option in SSMS (under Tools|Options|Query 
Results|SQL Server|Results to Grid or Results to Text). Now clear the cache:

DBCC DROPCLEANBUFFERS;



Chapter 3 Cursors 115
Run the following set-based code twice—the first run will measure performance against cold 
cache, and the second will measure it against warm cache:

SELECT keycol, filler FROM dbo.T1;

On my system, this query ran for 4 seconds against cold cache and 2 seconds against warm 
cache. Clear the cache again, and then run the cursor code twice:

DECLARE @keycol AS INT, @filler AS CHAR(200); 

DECLARE C CURSOR FAST_FORWARD FOR SELECT keycol, filler FROM dbo.T1; 

OPEN C 

FETCH NEXT FROM C INTO @keycol, @filler; 

WHILE @@fetch_status = 0 

BEGIN 

-- Process data here 

FETCH NEXT FROM C INTO @keycol, @filler; 

END 

CLOSE C; 

DEALLOCATE C;

This code ran for 22 seconds against cold cache and 20 seconds against warm cache. Consid-
ering the warm cache example, in which there’s no physical I/O involved, the cursor code ran 
ten times more slowly than the set-based code, and notice that I used the fastest cursor you 
can get—FAST_FORWARD. Both solutions scanned the same amount of data. Besides the per-
formance overhead, you also have the development and maintenance overhead of your code. 
This is a very basic example involving little code; in production environments with more 
complex code, the problem is, of course, much worse. 

Dealing with Each Row Individually
Remember that cursors can be useful when the problem is a procedural one, and you must 
deal with each row individually. I provided examples of such scenarios earlier. Here I want to 
show an alternative to cursors that programmers may use to apply iterative logic, and compare 
its performance with the cursor code I just demonstrated in the previous section. Remember 
that the cursor code that scanned a million rows took approximately 20 seconds to complete. 
Another common technique to iterate through a table’s rows is to loop through the keys and 
use a set-based query for each row. To test the performance of such a solution, make sure the 
Discard Results After Execution option in SSMS is still turned on. Then run the following code:

DECLARE @keycol AS INT, @filler AS CHAR(200); 

 

SELECT @keycol = keycol, @filler = filler 

FROM (SELECT TOP (1) keycol, filler 

FROM dbo.T1 

ORDER BY keycol) AS D; 

 

WHILE @@rowcount = 1 

BEGIN 

-- Process data here 

 



116 Inside Microsoft SQL Server 2005: T-SQL Programming
-- Get next row 

SELECT @keycol = keycol, @filler = filler 

FROM (SELECT TOP (1) keycol, filler 

FROM dbo.T1 

WHERE keycol > @keycol 

ORDER BY keycol) AS D; 

END

This implementation is a bit “cleaner” than dealing with a cursor, and that’s the aspect of it 
that I like. You use a TOP (1) query to grab the first row (based on key order). Within a 
loop, when a row was found in the previous iteration, you process the data and request the 
next row (the row with the next key). This code ran for about 90 seconds—several times 
slower than the cursor code. I created a clustered index on keycol to improve performance 
by accessing the desired row in each iteration with minimal I/O. Without that index, this 
code would run substantially slower because each invocation of the query would need to 
rescan large portions of data. A cursor solution based on sorted data would also benefit 
from an index and would run substantially slower without one because it would need to 
sort the data after scanning it. With large tables and no index on the sort columns, the sort 
operation can be very expensive because sorting in terms of complexity is O(n log n), while 
scanning is only O(n). 

Before you proceed, make sure you turn off the “Discard Results After Execution” option in 
SSMS.

Order-Based Access
In the introduction, I mentioned that cursors have the potential to yield better performance 
than set-based code when the problem is inherently order based. In this section, I’ll show 
some examples. Where relevant, I’ll discuss query constructs that ANSI introduces to allow 
for “cleaner” code that performs well without the use of cursors. However, some of these ANSI 
constructs have not been implemented in SQL Server 2005. 

Custom Aggregates

In Inside T-SQL Querying, I discussed custom aggregates by describing problems that require 
you to aggregate data even though SQL Server doesn’t provide such aggregates as built-in 
functions—for example, product of elements, string concatenation, and so on. I described four 
classes of solutions and demonstrated three of them: pivoting, which is limited to a small 
number of elements in a group; user-defined aggregates (UDAs) written in a .NET language, 
which force you to write in a language other than T-SQL and enable CLR support in SQL 
Server; and specialized solutions, which can be very fast but are applicable to specific cases 
and are not suited to generic use. Another approach to solving custom aggregate problems is 
using cursors. This approach is not very fast; nevertheless, it is straightforward, generic, and 
not limited to situations in which you have a small number of elements in a group. To see a 
demonstration of a cursor-based solution for custom aggregates, run the code in Listing 3-1 to 



Chapter 3 Cursors 117
create and populate the Groups table, which I also used in my examples in Inside T-SQL 
Querying.

Listing 3-1 Creating and populating the Groups table

USE tempdb; 

GO 

IF OBJECT_ID('dbo.Groups') IS NOT NULL 

DROP TABLE dbo.Groups; 

GO 

 

CREATE TABLE dbo.Groups 

( 

groupid VARCHAR(10) NOT NULL, 

memberid INT NOT NULL, 

string VARCHAR(10) NOT NULL, 

val INT NOT NULL, 

PRIMARY KEY (groupid, memberid) 

); 

 

INSERT INTO dbo.Groups(groupid, memberid, string, val) 

VALUES('a', 3, 'stra1', 6); 

INSERT INTO dbo.Groups(groupid, memberid, string, val) 

VALUES('a', 9, 'stra2', 7); 

INSERT INTO dbo.Groups(groupid, memberid, string, val) 

VALUES('b', 2, 'strb1', 3); 

INSERT INTO dbo.Groups(groupid, memberid, string, val) 

VALUES('b', 4, 'strb2', 7); 

INSERT INTO dbo.Groups(groupid, memberid, string, val) 

VALUES('b', 5, 'strb3', 3); 

INSERT INTO dbo.Groups(groupid, memberid, string, val) 

VALUES('b', 9, 'strb4', 11); 

INSERT INTO dbo.Groups(groupid, memberid, string, val) 

VALUES('c', 3, 'strc1', 8); 

INSERT INTO dbo.Groups(groupid, memberid, string, val) 

VALUES('c', 7, 'strc2', 10); 

INSERT INTO dbo.Groups(groupid, memberid, string, val) 

VALUES('c', 9, 'strc3', 12);

Listing 3-2 shows cursor code that calculates the aggregate product of the val column for each 
group represented by the groupid column, and it generates the output shown in Table 3-1.

Listing 3-2 Cursor code for custom aggregate

DECLARE 

@Result TABLE(groupid VARCHAR(10), product BIGINT); 

DECLARE 

@groupid AS VARCHAR(10), @prvgroupid AS VARCHAR(10), 

@val AS INT, @product AS BIGINT; 

 

DECLARE C CURSOR FAST_FORWARD FOR 

SELECT groupid, val FROM dbo.Groups ORDER BY groupid; 

 



118 Inside Microsoft SQL Server 2005: T-SQL Programming
OPEN C 

 

FETCH NEXT FROM C INTO @groupid, @val; 

SELECT @prvgroupid = @groupid, @product = 1; 

 

WHILE @@fetch_status = 0 

BEGIN 

IF @groupid <> @prvgroupid 

BEGIN 

INSERT INTO @Result VALUES(@prvgroupid, @product); 

SELECT @prvgroupid = @groupid, @product = 1; 

END 

 

SET @product = @product * @val; 

 

FETCH NEXT FROM C INTO @groupid, @val; 

END 

 

IF @prvgroupid IS NOT NULL 

INSERT INTO @Result VALUES(@prvgroupid, @product); 

 

CLOSE C; 

 

DEALLOCATE C; 

 

SELECT groupid, product FROM @Result;

The algorithm is straightforward: scan the data in groupid order; while traversing the rows 
in the group, keep multiplying by val; and whenever the groupid value changes, store the result 
of the product for the previous group aside in a table variable. When the loop exits, you still 
hold the aggregate product for the last group, so store it in the table variable as well unless the 
input was empty. Finally, return the aggregate products of all groups as output. 

Running Aggregations

The previous problem, which discussed custom aggregates, used a cursor-based solution that 
scanned the data only once, but so did the pivoting solution, the UDA solution, and some of 
the specialized set-based solutions. If you consider that cursors incur more overhead than set-
based solutions that scan the same amount of data, you can see that the cursor-based solu-
tions are bound to be slower. On the other hand, set-based solutions for running aggregation 
problems in SQL Server 2005 involve rescanning portions of the data multiple times, whereas 
the cursor-based solutions scan the data only once.

Table 3-1 Aggregate Product

Groupid product

A 42

B 693

C 960



Chapter 3 Cursors 119
I covered Running Aggregations in Inside T-SQL Querying. Here, I’ll demonstrate cursor-based 
solutions. Run the following code, which creates and populates the EmpOrders table:

USE tempdb; 

GO 

 

IF OBJECT_ID('dbo.EmpOrders') IS NOT NULL 

DROP TABLE dbo.EmpOrders; 

GO 

 

CREATE TABLE dbo.EmpOrders 

( 

empid INT NOT NULL, 

ordmonth DATETIME NOT NULL, 

qty INT NOT NULL, 

PRIMARY KEY(empid, ordmonth) 

); 

 

INSERT INTO dbo.EmpOrders(empid, ordmonth, qty) 

SELECT O.EmployeeID,  

CAST(CONVERT(CHAR(6), O.OrderDate, 112) + '01' 

AS DATETIME) AS ordmonth, 

SUM(Quantity) AS qty 

FROM Northwind.dbo.Orders AS O 

JOIN Northwind.dbo.[Order Details] AS OD 

ON O.OrderID = OD.OrderID 

GROUP BY EmployeeID, 

CAST(CONVERT(CHAR(6), O.OrderDate, 112) + '01' 

AS DATETIME);

This is the same table and sample data I used in Inside T-SQL Querying to demonstrate 
set-based solutions.

The cursor-based solution is straightforward. In fact, it’s similar to calculating custom aggre-
gates except for a simple difference: the code calculating custom aggregates set aside in a table 
variable only the final aggregate for each group, while the code calculating running aggrega-
tions sets aside the accumulated aggregate value for each row. Listing 3-3 shows the code that 
calculates running total quantities for each employee and month and yields the output shown 
in Table 3-2 (abbreviated).

Listing 3-3 Cursor code for running aggregations

DECLARE @Result 

TABLE(empid INT, ordmonth DATETIME, qty INT, runqty INT); 

DECLARE 

@empid AS INT,@prvempid AS INT, @ordmonth DATETIME, 

@qty AS INT, @runqty AS INT; 

 

DECLARE C CURSOR FAST_FORWARD FOR 

SELECT empid, ordmonth, qty 

FROM dbo.EmpOrders 

ORDER BY empid, ordmonth; 

 

OPEN C 

 



120 Inside Microsoft SQL Server 2005: T-SQL Programming
FETCH NEXT FROM C INTO @empid, @ordmonth, @qty; 

SELECT @prvempid = @empid, @runqty = 0; 

 

WHILE @@fetch_status = 0 

BEGIN 

IF @empid <> @prvempid 

SELECT @prvempid = @empid, @runqty = 0; 

 

SET @runqty = @runqty + @qty; 

 

INSERT INTO @Result VALUES(@empid, @ordmonth, @qty, @runqty); 

 

FETCH NEXT FROM C INTO @empid, @ordmonth, @qty; 

END 

 

CLOSE C; 

 

DEALLOCATE C; 

 

SELECT empid, CONVERT(VARCHAR(7), ordmonth, 121) AS ordmonth, 

qty, runqty 

FROM @Result 

ORDER BY empid, ordmonth;

Table 3-2 Running Aggregations (Abbreviated)

empid Ordmonth qty runqty

1 1996-07 121 121

1 1996-08 247 368

1 1996-09 255 623

1 1996-10 143 766

1 1996-11 318 1084

1 1996-12 536 1620

1 1997-01 304 1924

1 1997-02 168 2092

1 1997-03 275 2367

1 1997-04 20 2387

... ... ... ...

2 1996-07 50 50

2 1996-08 94 144

2 1996-09 137 281

2 1996-10 248 529

2 1996-11 237 766

2 1996-12 319 1085

2 1997-01 230 1315

2 1997-02 36 1351



Chapter 3 Cursors 121
The cursor solution scans the data only once, meaning that it has linear performance degra-
dation with respect to the number of rows in the table. The set-based solution suffers from an 
n2 performance issue, in which n refers to the number of rows per group. If you have g groups 
with n number of rows per group, you scan g × (n + n2)/2 rows. This formula assumes that 
you have an index on (groupid, val). Without an index, you simply have n2 rows scanned, 
where n is the number of rows in the table. If the group size is small enough (for example, 
a dozen rows), the set-based solution that uses an index would typically be faster than the 
cursor solution. The cursor’s overhead is still higher than the set-based solution’s extra work 
of scanning more data. However, the set-based solution scans substantially more data (unless 
there are only a few rows per group), resulting in a slower solution where performance 
degrades in an n2 manner with respect to the group size.

To gain a sense of these performance differences, look at Figure 3-1, which has the result of a 
benchmark. 

Figure 3-1 Benchmark for running calculations

You can see the run time of the solutions with respect to the number of rows in the table, 
assuming a single group—that is, by calculating running aggregations for the whole table. The 
horizontal axis has the number of rows in the table divided by 1000, ranging from 0 through 

2 1997-03 151 1502

2 1997-04 468 1970

... ... ... ...

Table 3-2 Running Aggregations (Abbreviated)

empid Ordmonth qty runqty

360

400

320

280

240

200

160

120

80

40

0
0 10 20 30 40 50 60 70 80 90 100

set-based cursor

Rows (thousands)

Running Aggregations Benchmark

R
u

n
 T

im
e 

(S
ec

)



122 Inside Microsoft SQL Server 2005: T-SQL Programming
100,000 rows. The y axis ranges from 0 through 400 seconds. You can see a linear graph for 
the cursor solution, and a nice n2 parabola for the set-based one. You can also notice clearly 
that beyond a very small number of rows the cursor solution performs dramatically faster.

This is one of the problems that ANSI already provided an answer for in the form of query 
constructs; however, SQL Server has not yet implemented it. According to ANSI, you would 
write the following solution:

SELECT empid, CONVERT(VARCHAR(7), ordmonth, 121) AS ordmonth, qty, 

SUM(qty) OVER(PARTITION BY empid ORDER BY ordermonth) AS runqty 

FROM dbo.EmpOrders;

As mentioned earlier, SQL Server 2005 already introduced the infrastructure to support the 
OVER clause. It currently implements it with both the PARTITION BY and ORDER BY clauses 
for ranking functions, but only with the PARTITION BY clause for aggregate functions. Hope-
fully, future versions of SQL Server will enhance the support for the OVER clause. Queries 
such as the one just shown have the potential to run substantially faster than the cursor solu-
tion; the infrastructure added to the product relies on a single scan of the data to perform such 
calculations. 

Maximum Concurrent Sessions

The Maximum Concurrent Sessions problem is yet another example of calculations based on 
ordered data. You record data for user sessions against different applications in a table called 
Sessions. Run the code in Listing 3-4 to create and populate the Sessions table.

Listing 3-4 Creating and populating the Sessions table

USE tempdb; 

GO 

IF OBJECT_ID('dbo.Sessions') IS NOT NULL 

DROP TABLE dbo.Sessions; 

GO 

 

CREATE TABLE dbo.Sessions 

( 

keycol INT NOT NULL IDENTITY PRIMARY KEY, 

app VARCHAR(10) NOT NULL, 

usr VARCHAR(10) NOT NULL, 

host VARCHAR(10) NOT NULL, 

starttime DATETIME NOT NULL, 

endtime DATETIME NOT NULL, 

CHECK(endtime > starttime) 

); 

 

INSERT INTO dbo.Sessions 

VALUES('app1', 'user1', 'host1', '20030212 08:30', '20030212 10:30'); 

INSERT INTO dbo.Sessions 

VALUES('app1', 'user2', 'host1', '20030212 08:30', '20030212 08:45'); 

INSERT INTO dbo.Sessions 

VALUES('app1', 'user3', 'host2', '20030212 09:00', '20030212 09:30'); 



Chapter 3 Cursors 123
INSERT INTO dbo.Sessions 

VALUES('app1', 'user4', 'host2', '20030212 09:15', '20030212 10:30'); 

INSERT INTO dbo.Sessions 

VALUES('app1', 'user5', 'host3', '20030212 09:15', '20030212 09:30'); 

INSERT INTO dbo.Sessions 

VALUES('app1', 'user6', 'host3', '20030212 10:30', '20030212 14:30'); 

INSERT INTO dbo.Sessions 

VALUES('app1', 'user7', 'host4', '20030212 10:45', '20030212 11:30'); 

INSERT INTO dbo.Sessions 

VALUES('app1', 'user8', 'host4', '20030212 11:00', '20030212 12:30'); 

INSERT INTO dbo.Sessions 

VALUES('app2', 'user8', 'host1', '20030212 08:30', '20030212 08:45'); 

INSERT INTO dbo.Sessions 

VALUES('app2', 'user7', 'host1', '20030212 09:00', '20030212 09:30'); 

INSERT INTO dbo.Sessions 

VALUES('app2', 'user6', 'host2', '20030212 11:45', '20030212 12:00'); 

INSERT INTO dbo.Sessions 

VALUES('app2', 'user5', 'host2', '20030212 12:30', '20030212 14:00'); 

INSERT INTO dbo.Sessions 

VALUES('app2', 'user4', 'host3', '20030212 12:45', '20030212 13:30'); 

INSERT INTO dbo.Sessions 

VALUES('app2', 'user3', 'host3', '20030212 13:00', '20030212 14:00'); 

INSERT INTO dbo.Sessions 

VALUES('app2', 'user2', 'host4', '20030212 14:00', '20030212 16:30'); 

INSERT INTO dbo.Sessions 

VALUES('app2', 'user1', 'host4', '20030212 15:30', '20030212 17:00'); 

 

CREATE INDEX idx_app_st_et ON dbo.Sessions(app, starttime, endtime);

The request is to calculate, for each application, the maximum number of sessions that were 
open at the same point in time. Such types of calculations are required to determine the cost 
of a type of service license that charges by the maximum number of concurrent sessions.

Try to develop a set-based solution that works; then try to optimize it; and then try to estimate 
its performance potential. Later I’ll discuss a cursor-based solution and show a benchmark 
that compares the set-based solution with the cursor-based solution.

One way to solve the problem is to generate an auxiliary table with all possible points in time 
during the covered period, use a subquery to count the number of active sessions during each 
such point in time, create a derived table/CTE from the result table, and finally group the rows 
from the derived table by application, requesting the maximum count of concurrent sessions 
for each application. Such a solution is extremely inefficient. Assuming you create the optimal 
index for it—one on (app, starttime, endtime)—the total number of rows you end up scanning 
just in the leaf level of the index is huge. It’s equal to the number of rows in the auxiliary table 
multiplied by the average number of active sessions at any point in time. To give you a sense 
of the enormity of the task, if you need to perform the calculations for a month’s worth of 
activity, the number of rows in the auxiliary table will be: 31 (days) × 24 (hours) × 60 (min-
utes) × 60 (seconds) × 300 (units within a second). Now multiply the result of this calculation 
by the average number of active sessions at any given point in time (say 20 as an example), 
and you get 16,070,400,000.



124 Inside Microsoft SQL Server 2005: T-SQL Programming
Of course there’s room for optimization. There are periods in which the number of concurrent 
sessions doesn’t change, so why calculate the counts for those? The count changes only when 
a new session starts (increased by 1) or an existing session ends (decreased by 1). Further-
more, because a start of a session increases the count and an end of a session decreases it, a 
start event of one of the sessions is bound to be the point at which you will find the maximum 
you’re looking for. Finally, if two sessions start at the same time, there’s no reason to calculate 
the counts for both. So you can apply a DISTINCT clause in the query that returns the start 
times for each application, although with an accuracy level of 31/3 milliseconds (ms), the num-
ber of duplicates would be very small—unless you’re dealing with very large volumes of data.

In short, you can simply use as your auxiliary table a derived table or CTE that returns all dis-
tinct start times of sessions per application. From there, all you need to do is follow logic sim-
ilar to that mentioned earlier. Here’s the optimized set-based solution, yielding the output 
shown in Table 3-3:

SELECT app, MAX(concurrent) AS mx 

FROM (SELECT app, 

(SELECT COUNT(*) 

FROM dbo.Sessions AS S2 

WHERE S1.app = S2.app 

AND S1.ts >= S2.starttime 

AND S1.ts < S2.endtime) AS concurrent 

FROM (SELECT DISTINCT app, starttime AS ts 

FROM dbo.Sessions) AS S1) AS C 

GROUP BY app;

Notice that instead of using a BETWEEN predicate to determine whether a session was active 
at a certain point in time (ts), I used ts >= starttime AND ts < endtime. If a session ends at the ts 
point in time, I don’t want to consider it as active.

The execution plan for this query is shown in Figure 3-2.

Figure 3-2 Execution plan for Maximum Concurrent Sessions, set-based solution

First, the index I created on (app, starttime, endtime) is scanned and duplicates are removed 
(by the stream aggregate operator). Unless the table is huge, you can assume that the number 

Table 3-3 Maximum Concurrent Sessions Set-Based Solution

app mx

app1 4

app2 3



Chapter 3 Cursors 125
of rows returned will be very close to the number of rows in the table. For each app, starttime 
(call it ts) returned after removing duplicates, a Nested Loops operator initiates activity that 
calculates the count of active sessions (by a seek within the index, followed by a partial scan 
to count active sessions). The number of pages read in each iteration of the Nested Loops 
operator is the number of levels in the index plus the number of pages consumed by the num-
ber of active sessions. To make my point, I’ll focus on the number of rows scanned at the leaf 
level because this number varies based on active sessions. Of course, to do adequate perfor-
mance estimations, you should take page counts (logical reads) as well as many other factors 
into consideration. If you have n rows in the table, assuming that most of them have unique 
app, starttime values and there are o overlapping sessions at any given point in time, you’re 
looking at the following: n × o rows scanned in total at the leaf level, beyond the pages scanned 
by the seek operations that got you to the leaf.

You now need to figure out how this solution scales when the table grows larger. Typically, 
such reports are required periodically—for example, once a month, for the most recent month. 
With the recommended index in place, the performance shouldn’t change as long as the traf-
fic doesn’t increase for a month’s worth of activity—that is, if it’s related to n × o (where n is the 
number of rows for the recent month). But suppose that you anticipate traffic increase by a 
factor of f?  If traffic increases by a factor of f, both total rows and number of active sessions at 
a given time grow by that factor; so in total, the number of rows scanned at the leaf level 
becomes (n × f)(o × f) = n × o × f 2. You see, as the traffic grows, performance doesn’t degrade 
linearly; rather, it degrades much more drastically.

Next let’s talk about a cursor-based solution. The power of a cursor-based solution is that it 
can scan data in order. Relying on the fact that each session represents two events—one that 
increases the count of active sessions, and one that decreases the count—I’ll declare a cursor 
for the following query:

SELECT app, starttime AS ts, 1 AS event_type FROM dbo.Sessions 

UNION ALL 

SELECT app, endtime, -1 FROM dbo.Sessions 

ORDER BY app, ts, event_type;

This query returns the following for each session start or end event: the application (app), the 
timestamp (ts); an event type (event_type) of +1 for a session start event or –1 for a session end 
event. The events are sorted by app, ts, and event_type. The reason for sorting by app, ts is obvi-
ous. The reason for adding event_type to the sort is to guarantee that if a session ends at the 
same time another session starts, you will take the end event into consideration first (because 
sessions are considered to have ended at their end time). Other than that, the cursor code is 
straightforward—simply scan the data in order and keep adding up the +1s and –1s for each 
application. With every new row scanned, check whether the cumulative value to that point is 
greater than the current maximum for that application, which you store in a variable. If it is, 
store it as the new maximum. When done with an application, insert a row containing the 
application ID and maximum into a table variable. That’s about it. You can find the complete 
cursor solution in Listing 3-5.



126 Inside Microsoft SQL Server 2005: T-SQL Programming
Listing 3-5 Cursor code for Maximum Concurrent Sessions, cursor-based solution

DECLARE 

@app AS VARCHAR(10), @prevapp AS VARCHAR (10), @ts AS datetime, 

@event_type AS INT, @concurrent AS INT, @mx AS INT; 

 

DECLARE @Result TABLE(app VARCHAR(10), mx INT); 

 

DECLARE C CURSOR FAST_FORWARD FOR 

SELECT app, starttime AS ts, 1 AS event_type FROM dbo.Sessions 

UNION ALL 

SELECT app, endtime, -1 FROM dbo.Sessions 

ORDER BY app, ts, event_type; 

 

OPEN C; 

 

FETCH NEXT FROM C INTO @app, @ts, @event_type; 

SELECT @prevapp = @app, @concurrent = 0, @mx = 0; 

 

WHILE @@fetch_status = 0 

BEGIN 

IF @app <> @prevapp 

BEGIN 

INSERT INTO @Result VALUES(@prevapp, @mx); 

SELECT @prevapp = @app, @concurrent = 0, @mx = 0; 

END 

 

SET @concurrent = @concurrent + @event_type; 

IF @concurrent > @mx SET @mx = @concurrent; 

 

FETCH NEXT FROM C INTO @app, @ts, @event_type; 

END 

 

IF @prevapp IS NOT NULL 

INSERT INTO @Result VALUES(@prevapp, @mx); 

 

CLOSE C 

 

DEALLOCATE C 

 

SELECT * FROM @Result;

The cursor solution scans the leaf of the index only twice. You can represent its cost as n × 2 × v, 
where v is the cursor overhead involved with each single row manipulation. Also, if the traffic 
grows by a factor of f, the performance degrades linearly to n × 2 × v × f. You realize that unless 
you’re dealing with a very small input set, the cursor solution has the potential to perform 
much faster, and as proof, you can use the code in Listing 3-6 to conduct a benchmark test. 
Change the value of the @numrows variable to determine the number of rows in the table. I ran 
this code with numbers varying from 10,000 through 100,000 in steps of 10,000. Figure 3-3 
shows a graphical depiction of the benchmark test I ran.



Chapter 3 Cursors 127
Listing 3-6 Benchmark code for Maximum Concurrent Sessions problem

SET NOCOUNT ON; 

USE tempdb; 

GO 

IF OBJECT_ID('dbo.Sessions') IS NOT NULL 

DROP TABLE dbo.Sessions 

GO 

 

DECLARE @numrows AS INT; 

SET @numrows = 10000; 

-- Test with 10K - 100K 

 

SELECT 

IDENTITY(int, 1, 1) AS keycol,  

D.*, 

DATEADD( 

second, 

1 + ABS(CHECKSUM(NEWID())) % (20*60), 

starttime) AS endtime 

INTO dbo.Sessions 

FROM 

( 

SELECT  

'app' + CAST(1 + ABS(CHECKSUM(NEWID())) % 10 AS VARCHAR(10)) AS app, 

'user1' AS usr, 

'host1' AS host, 

DATEADD( 

second, 

1 + ABS(CHECKSUM(NEWID())) % (30*24*60*60), 

'20040101') AS starttime 

FROM dbo.Nums 

WHERE n <= @numrows 

) AS D; 

 

ALTER TABLE dbo.Sessions ADD PRIMARY KEY(keycol); 

CREATE INDEX idx_app_st_et ON dbo.Sessions(app, starttime, endtime); 

 

DBCC FREEPROCCACHE WITH NO_INFOMSGS; 

DBCC DROPCLEANBUFFERS WITH NO_INFOMSGS; 

 

DECLARE @dt1 AS DATETIME, @dt2 AS DATETIME, 

@dt3 AS DATETIME, @dt4 AS DATETIME; 

SET @dt1 = GETDATE(); 

 

-- Set-Based Solution 

SELECT app, MAX(concurrent) AS mx 

FROM (SELECT app, 

(SELECT COUNT(*) 

FROM dbo.Sessions AS S2 

WHERE S1.app = S2.app 

AND S1.ts >= S2.starttime 

AND S1.ts < S2.endtime) AS concurrent 

FROM (SELECT DISTINCT app, starttime AS ts 

FROM dbo.Sessions) AS S1) AS C 



128 Inside Microsoft SQL Server 2005: T-SQL Programming
GROUP BY app; 

 

SET @dt2 = GETDATE(); 

 

DBCC FREEPROCCACHE WITH NO_INFOMSGS; 

DBCC DROPCLEANBUFFERS WITH NO_INFOMSGS; 

 

SET @dt3 = GETDATE(); 

 

-- Cursor-Based Solution 

DECLARE 

@app AS VARCHAR(10), @prevapp AS VARCHAR (10), @ts AS datetime, 

@event_type AS INT, @concurrent AS INT, @mx AS INT; 

 

DECLARE @Result TABLE(app VARCHAR(10), mx INT); 

 

DECLARE C CURSOR FAST_FORWARD FOR 

SELECT app, starttime AS ts, 1 AS event_type FROM dbo.Sessions 

UNION ALL 

SELECT app, endtime, -1 FROM dbo.Sessions 

ORDER BY app, ts, event_type; 

 

OPEN C; 

 

FETCH NEXT FROM C INTO @app, @ts, @event_type; 

SELECT @prevapp = @app, @concurrent = 0, @mx = 0; 

 

WHILE @@fetch_status = 0 

BEGIN 

IF @app <> @prevapp 

BEGIN 

INSERT INTO @Result VALUES(@prevapp, @mx); 

SELECT @prevapp = @app, @concurrent = 0, @mx = 0; 

END 

 

SET @concurrent = @concurrent + @event_type; 

IF @concurrent > @mx SET @mx = @concurrent; 

 

FETCH NEXT FROM C INTO @app, @ts, @event_type; 

END 

 

IF @prevapp IS NOT NULL 

INSERT INTO @Result VALUES(@prevapp, @mx); 

 

CLOSE C 

 

DEALLOCATE C 

 

SELECT * FROM @Result; 

 

SET @dt4 = GETDATE(); 

 

PRINT CAST(@numrows AS VARCHAR(10)) + ' rows, set-based: ' 

+ CAST(DATEDIFF(ms, @dt1, @dt2) / 1000. AS VARCHAR(30)) 

+ ', cursor: ' 

+ CAST(DATEDIFF(ms, @dt3, @dt4) / 1000. AS VARCHAR(30)) 

+ ' (sec)';



Chapter 3 Cursors 129
Figure 3-3 Benchmark for Maximum Concurrent Sessions solutions

Again, you can see a nicely shaped parabola in the set-based solution’s graph, and now you 
know how to explain it: remember—if traffic increases by a factor of f, the number of leaf-level 
rows inspected by the set-based query grows by a factor of  f 2.

Tip It might seem that all the cases in which I show cursor code that performs better than 
set-based code have to do with problems where cursor code has a complexity of O(n) and 
set-based code has a complexity of O(n²), where n is the number of rows in the table. These 
are just convenient problems to demonstrate performance differences. However, you might 
face problems for which the solutions have different complexities. The important point is to 
be able to estimate complexity and performance. If you want to learn more about algorith-
mic complexity, visit the Web site of the National Institute for Standards and Technologies. Go 
to http://www.nist.gov/dads/, and search for complexity, or access the definition directly at 
http://www.nist.gov/dads/HTML/complexity.html. 

Interestingly, this is yet another type of problem where a more complete implementation of 
the OVER clause would have allowed for a set-based solution to perform substantially faster 
than the cursor one. Here’s what the set-based solution would have looked like if SQL Server 
supported ORDER BY in the OVER clause for aggregations:

SELECT app, MAX(concurrent) AS mx 

FROM (SELECT app, SUM(event_type) 

OVER(PARTITION BY app ORDER BY ts, event_type) AS concurrent 

FROM (SELECT app, starttime AS ts, 1 AS event_type FROM dbo.Sessions 

UNION ALL 

SELECT app, endtime, -1 FROM dbo.Sessions) AS D1) AS D2 

GROUP BY app;

180

200

160

140

120

100

80

60

40

20

0
0 10 20 30 40 50 60 70 80 90 100

set-based cursor

Rows (thousands)

Max Concurrent Sessions Benchmark

R
u

n
 T

im
e 

(S
ec

)



130 Inside Microsoft SQL Server 2005: T-SQL Programming
Before I proceed to the next class of problems, I’d like to stress the importance of using good 
sample data in your benchmarks. Too often I have seen programmers simply duplicate data 
from a small table many times to generate larger sets of sample data. With our set-based solu-
tion, remember the derived table query that generates the timestamps:

SELECT DISTINCT app, starttime AS ts 

FROM dbo.Sessions

If you simply duplicate the small sample data that I provided in Listing 3-4 (16 rows) many 
times, you will not increase the number of DISTINCT timestamps accordingly. So the sub-
query that counts rows will end up being invoked only 16 times regardless of how many times 
you duplicated the set. The results that you will get when measuring performance won’t give 
you a true indication of cost for production environments where, obviously, you have almost 
no duplicates in the data.

The solution to the problem can be even more elusive if you don’t have any DISTINCT applied 
to remove duplicates. To demonstrate the problem, first rerun the code in Listing 3-4 to repop-
ulate the Sessions table with 16 rows. 

Next, run the following query, which is similar to the solution I showed earlier, but run it with-
out removing duplicates first. Then examine the execution plan shown in Figure 3-4:

SELECT app, MAX(concurrent) AS mx 

FROM (SELECT app, 

(SELECT COUNT(*) 

FROM dbo.Sessions AS S2 

WHERE S1.app = S2.app 

AND S1.starttime >= S2.starttime 

AND S1.starttime < S2.endtime) AS concurrent 

FROM dbo.Sessions AS S1) AS C 

GROUP BY app;

Figure 3-4 Execution plan for revised Maximum Concurrent Sessions solution, 

small data set

Here the problem is not yet apparent because there are no duplicates. The plan is, in fact, 
almost identical to the one generated for the solution that does remove duplicates. The only 
difference is that here there’s no stream aggregate operator that removes duplicates, 
naturally.



Chapter 3 Cursors 131
Next, populate the table with 10,000 duplicates of each row:

INSERT INTO dbo.Sessions 

SELECT app, usr, host, starttime, endtime 

FROM dbo.Sessions, dbo.Nums 

WHERE n <= 10000;

Rerun the solution query, and examine the execution plan shown in Figure 3-5.

Figure 3-5 Execution plan for revised Maximum Concurrent Sessions solution, large data 

set with high density

If you have a keen eye, you will find an interesting difference between this plan and the previ-
ous one, even though the query remained the same and only the data density changed. This 
plan spools, instead of recalculating, row counts that were already calculated for a given app, 
ts. Before counting rows, the plan first looks in the spool to check whether the count has 
already been calculated. If the count has been calculated, the plan will grab the count from the 
spool instead of scanning rows to count. The Index Seek and Stream Aggregate operations  
took place here only 16 times—once for each unique app, ts value, and not once for each row 
in the table as might happen in production. Again, you see how a bad choice of sample data 
can yield a result that is not representative of your production environment. Using this sample 
data and being oblivious to the discrepancy might lead you to believe that this set-based solu-
tion scales linearly. But of course, if you use more realistic sample data, such as the data I used 
in my benchmark, you won’t fall into that trap. I used random calculations for the start times 
within the month and added a random value of up to 20 minutes for the end time, assuming 
that this represents the average session duration in my production environment.

Matching Problems

The algorithms for the solutions that I have discussed so far, both set-based and cursor-based, 
had simple to moderate complexity levels. This section covers a class of problems that are 
algorithmically much more complex, known as matching problems. In a matching problem, 
you have a specific set of items of different values and volumes and one container of a given 
size, and you must find the subset of items with the greatest possible value that will fit into the 
container. I have yet to find reasonable set-based solutions that are nearly as good as cursor-
based solutions, both in terms of performance and simplicity. I won’t even bother to provide 
the set-based solutions I devised because they’re very complex and slow. Instead, I’ll focus on 
cursor-based solutions.

I’ll introduce a couple of simple variations of the problem. You’re given the tables Events and 
Rooms, which you create and populate by running the code in Listing 3-7.



132 Inside Microsoft SQL Server 2005: T-SQL Programming
Listing 3-7 Code that creates and populates the Events and Rooms tables

USE tempdb; 

GO 

IF OBJECT_ID('dbo.Events') IS NOT NULL 

DROP TABLE dbo.Events; 

GO 

IF OBJECT_ID('dbo.Rooms') IS NOT NULL 

DROP TABLE dbo.Rooms; 

GO 

 

CREATE TABLE dbo.Rooms 

( 

roomid VARCHAR(10) NOT NULL PRIMARY KEY, 

seats INT NOT NULL 

); 

 

INSERT INTO dbo.Rooms(roomid, seats) VALUES('C001', 2000); 

INSERT INTO dbo.Rooms(roomid, seats) VALUES('B101', 1500); 

INSERT INTO dbo.Rooms(roomid, seats) VALUES('B102', 100); 

INSERT INTO dbo.Rooms(roomid, seats) VALUES('R103', 40); 

INSERT INTO dbo.Rooms(roomid, seats) VALUES('R104', 40); 

INSERT INTO dbo.Rooms(roomid, seats) VALUES('B201', 1000); 

INSERT INTO dbo.Rooms(roomid, seats) VALUES('R202', 100); 

INSERT INTO dbo.Rooms(roomid, seats) VALUES('R203', 50); 

INSERT INTO dbo.Rooms(roomid, seats) VALUES('B301', 600); 

INSERT INTO dbo.Rooms(roomid, seats) VALUES('R302', 55); 

INSERT INTO dbo.Rooms(roomid, seats) VALUES('R303', 55); 

 

CREATE TABLE dbo.Events 

( 

eventid INT NOT NULL PRIMARY KEY, 

eventdesc VARCHAR(25) NOT NULL, 

attendees INT NOT NULL 

); 

 

INSERT INTO dbo.Events(eventid, eventdesc, attendees) 

VALUES(1, 'Adv T-SQL Seminar', 203); 

INSERT INTO dbo.Events(eventid, eventdesc, attendees) 

VALUES(2, 'Logic Seminar', 48); 

INSERT INTO dbo.Events(eventid, eventdesc, attendees) 

VALUES(3, 'DBA Seminar', 212); 

INSERT INTO dbo.Events(eventid, eventdesc, attendees) 

VALUES(4, 'XML Seminar', 98); 

INSERT INTO dbo.Events(eventid, eventdesc, attendees) 

VALUES(5, 'Security Seminar', 892); 

INSERT INTO dbo.Events(eventid, eventdesc, attendees) 

VALUES(6, 'Modeling Seminar', 48); 

GO 

 

CREATE INDEX idx_att_eid_edesc 

ON dbo.Events(attendees, eventid, eventdesc); 

CREATE INDEX idx_seats_rid 

ON dbo.Rooms(seats, roomid);



Chapter 3 Cursors 133
The Events table holds information for seminars that you’re supposed to run on a given date. 
Typically, you will need to keep track of events on many dates, but our task here will be one 
that we would have to perform separately for each day of scheduled events. Assume that this 
data represents one day’s worth of events; for simplicity’s sake, I didn’t include a date column 
because all its values would be the same. The Rooms table holds room capacity information. 
To start with a simple task, assume that you have reserved a conference center with the guar-
antee that there will be enough rooms available to host all your seminars. You now need to 
match events to rooms with as few empty seats as possible, because the cost of renting a room 
is determined by the room’s seating capacity, not by the number of seminar attendees.

A naïve algorithm that you can apply is somewhat similar to a merge join algorithm that the 
optimizer uses to process joins. Figure 3-6 has a graphical depiction of it, which you might 
find handy when following the verbal description of the algorithm. Listing 3-8 has the code 
implementing the algorithm.

Figure 3-6 Matching algorithm for guaranteed solution scenario

R101

40

R104

40

R203

50

R302

55

R303

55

B102

100

R202

100

B301

600

B201

1000

B101

1500

C001

2000

2

48

6

48

4

98

1

203

3

212

5

892

In
cr

e
a
si

n
g

Event Room

Event Room

No Match

Match

Events

Rooms



134 Inside Microsoft SQL Server 2005: T-SQL Programming
Listing 3-8 Cursor code for matching problem (guaranteed solution)

DECLARE 

@roomid AS VARCHAR(10), @seats AS INT, 

@eventid AS INT, @attendees AS INT; 

 

DECLARE @Result TABLE(roomid VARCHAR(10), eventid INT); 

 

DECLARE CRooms CURSOR FAST_FORWARD FOR 

SELECT roomid, seats FROM dbo.Rooms 

ORDER BY seats, roomid; 

DECLARE CEvents CURSOR FAST_FORWARD FOR 

SELECT eventid, attendees FROM dbo.Events 

ORDER BY attendees, eventid; 

 

OPEN CRooms; 

OPEN CEvents; 

 

FETCH NEXT FROM CEvents INTO @eventid, @attendees; 

WHILE @@FETCH_STATUS = 0 

BEGIN 

FETCH NEXT FROM CRooms INTO @roomid, @seats; 

 

WHILE @@FETCH_STATUS = 0 AND @seats < @attendees 

FETCH NEXT FROM CRooms INTO @roomid, @seats; 

 

IF @@FETCH_STATUS = 0 

INSERT INTO @Result(roomid, eventid) VALUES(@roomid, @eventid); 

ELSE 

BEGIN 

RAISERROR('Not enough rooms for events.', 16, 1); 

BREAK; 

END 

 

FETCH NEXT FROM CEvents INTO @eventid, @attendees; 

END 

 

CLOSE CRooms; 

CLOSE CEvents; 

 

DEALLOCATE CRooms; 

DEALLOCATE CEvents; 

 

SELECT roomid, eventid FROM @Result;

Here’s a description of the algorithm as it’s implemented with cursors:

■ Declare two cursors, one on the list of rooms (CRooms) sorted by increasing capacity 
(number of seats), and one on the list of events (CEvents) sorted by increasing number 
of attendees.

■ Fetch the first (smallest) event from the CEvents cursor.



Chapter 3 Cursors 135
■ While the fetch returned an actual event that needs a room:

❑ Fetch the smallest unrented room from CRooms. If there was no available room, or 
if the room you fetched is too small for the event, fetch the next smallest room from 
CRooms, and continue fetching as long as you keep fetching actual rooms and they 
are too small for the event. You will either find a big enough room, or you will run 
out of rooms without finding one.

❑ If you did not run out of rooms, and the last fetch yielded a room and the number 
of seats in that room is smaller than the number of attendees in the current event:

● If you found a big enough room, schedule the current event in that room. If you 
did not, then you must have run out of rooms, so generate an error saying that 
there are not enough rooms to host all the events, and break out of the loop.

● Fetch another event.

■ Return the room/event pairs you stored aside.

Notice that you scan both rooms and events in order, never backing up; you merge matching 
pairs until you either run out of events to find rooms for or you run out of rooms to accom-
modate events. In the latter case—you run out of rooms, generating an error, because the 
algorithm used was guaranteed to find a solution if one existed.

Next, let’s complicate the problem by assuming that even if there aren’t enough rooms for all 
events, you still want to schedule something. This will be the case if you remove rooms with 
a number of seats greater than 600:

DELETE FROM dbo.Rooms WHERE seats > 600;

Assume you need to come up with a greedy algorithm that finds seats for the highest possible 
number of attendees (to increase revenue) and for that number of attendees, involves the low-
est cost. The algorithm I used for this case is graphically illustrated in Figure 3-7 and imple-
mented with cursors in Listing 3-9. 

Listing 3-9 Cursor code for matching problem (nonguaranteed solution)

DECLARE 

@roomid AS VARCHAR(10), @seats AS INT, 

@eventid AS INT, @attendees AS INT; 

 

DECLARE @Events TABLE(eventid INT, attendees INT); 

DECLARE @Result TABLE(roomid VARCHAR(10), eventid INT); 

 

-- Step 1: Descending 

DECLARE CRoomsDesc CURSOR FAST_FORWARD FOR 

SELECT roomid, seats FROM dbo.Rooms 

ORDER BY seats DESC, roomid DESC; 

DECLARE CEventsDesc CURSOR FAST_FORWARD FOR 

SELECT eventid, attendees FROM dbo.Events 

ORDER BY attendees DESC, eventid DESC; 

 



136 Inside Microsoft SQL Server 2005: T-SQL Programming
OPEN CRoomsDesc; 

OPEN CEventsDesc; 

 

FETCH NEXT FROM CRoomsDesc INTO @roomid, @seats; 

WHILE @@FETCH_STATUS = 0 

BEGIN 

FETCH NEXT FROM CEventsDesc INTO @eventid, @attendees; 

 

WHILE @@FETCH_STATUS = 0 AND @seats < @attendees 

FETCH NEXT FROM CEventsDesc INTO @eventid, @attendees; 

 

IF @@FETCH_STATUS = 0 

INSERT INTO @Events(eventid, attendees) 

VALUES(@eventid, @attendees); 

ELSE 

BREAK; 

 

FETCH NEXT FROM CRoomsDesc INTO @roomid, @seats; 

END 

 

CLOSE CRoomsDesc; 

CLOSE CEventsDesc; 

 

DEALLOCATE CRoomsDesc; 

DEALLOCATE CEventsDesc; 

 

-- Step 2: Ascending 

DECLARE CRooms CURSOR FAST_FORWARD FOR 

SELECT roomid, seats FROM Rooms 

ORDER BY seats, roomid; 

DECLARE CEvents CURSOR FAST_FORWARD FOR 

SELECT eventid, attendees FROM @Events 

ORDER BY attendees, eventid; 

 

OPEN CRooms; 

OPEN CEvents; 

 

FETCH NEXT FROM CEvents INTO @eventid, @attendees; 

WHILE @@FETCH_STATUS = 0 

BEGIN 

FETCH NEXT FROM CRooms INTO @roomid, @seats; 

 

WHILE @@FETCH_STATUS = 0 AND @seats < @attendees 

FETCH NEXT FROM CRooms INTO @roomid, @seats; 

 

IF @@FETCH_STATUS = 0 

INSERT INTO @Result(roomid, eventid) VALUES(@roomid, @eventid); 

ELSE 

BEGIN 

RAISERROR('Not enough rooms for events.', 16, 1); 

BREAK; 

END 

 

FETCH NEXT FROM CEvents INTO @eventid, @attendees; 

END 

 



Chapter 3 Cursors 137
CLOSE CRooms; 

CLOSE CEvents; 

 

DEALLOCATE CRooms; 

DEALLOCATE CEvents; 

 

SELECT roomid, eventid FROM @Result;

Figure 3-7 Greedy matching algorithm for nonguaranteed solution scenario

The algorithm has two phases:

1. Use logic similar to the previous algorithm to match events to rooms, but scan both in 
descending order to assure the largest events can find rooms. Store the eventids that 
found a room in a table variable (@Events). At this point, you have the list of events you 
can fit that produce the highest revenue, but you also have the least efficient room utili-
zation, meaning the highest possible costs. However, the purpose of the first step was 
merely to figure out the most profitable events that you can accommodate.

2. The next step is identical to the algorithm in the previous problem with one small revision: 
declare the CEvents cursor against the @Events table variable and not against the real Events 
table. By doing this, you end up with the most efficient room utilization for this set of events.

R101

40

R104

40

R203

50

R302

55

R303

55

B102

100

R202

100

B301

600

2

48

6

48

4

98

3

212
In

cr
e
a
si

n
g

Rooms

Events

Event Room

Event Room

No Match

Match

R101

40

R104

40

R203

50

R302

55

R303

55

B102

100

R202

100

B301

600

2

48

6

48

4

98

1

203

3

212

5

892

D
e
cr

e
a
si

n
g

Rooms

Events



138 Inside Microsoft SQL Server 2005: T-SQL Programming
I’d like to thank my good friend, SQL Server MVP Fernando G. Guerrero, who is the CEO of 
Solid Quality Learning. Fernando suggested ways to improve and optimize the algorithms 
for this class of problems.

If you’re up for challenges, try to look for ways to solve these problems with set-based solu-
tions. Also, try to think of solutions when adding another layer of complexity. Suppose each 
event has a revenue value stored with it that does not necessarily correspond to the number of 
attendees. Each room has a cost stored with it that does not necessarily correspond to its 
capacity. Again, you have no guarantee that there will be enough rooms to host all events. The 
challenge is to find the most profitable solution.

Conclusion
Throughout the book, I try to stress the advantages set-based solutions have over cursor-based 
ones. I show many examples of tuned set-based solutions that outperform the cursor alterna-
tives. In this chapter, I explained why that’s the case for most types of problems. Nevertheless, 
I tried giving you the tools to identify the classes of problems that are exceptions—where 
currently SQL Server 2005 doesn’t provide a better solution than using cursors. Some of the 
problems would have better set-based answers if SQL Server implemented additional ANSI 
constructs, whereas others don’t even have proper answers in the ANSI standard yet. The 
point is that there’s a time and place for cursors if they are used wisely and if a set-based 
means of solving the problem cannot be found.



Chapter 7

Stored Procedures

In this chapter: 

Types of Stored Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258

The Stored Procedure Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267

Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273

Compilations, Recompilations, and Reuse of Execution Plans . . . . . . . . . . . . . . . .275

EXECUTE AS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .288

Parameterizing Sort Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289

Dynamic Pivot  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294

CLR Stored Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .305

Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313

Stored procedures are executable server-side routines. They give you great power and perfor-
mance benefits if used wisely. Unlike user-defined functions (UDFs), stored procedures are 
allowed to have side effects. That is, they are allowed to change data in tables, and even the 
schema of objects. Stored procedures can be used as a security layer. You can control access to 
objects by granting execution permissions on stored procedures and not to underlying 
objects. You can perform input validation in stored procedures, and you can use stored proce-
dures to allow activities only if they make sense as a whole unit, as opposed to allowing users 
to perform activities directly against objects.

Stored procedures also give you the benefits of encapsulation; if you need to change the imple-
mentation of a stored procedure because you developed a more efficient way to achieve a task, 
you can issue an ALTER PROCEDURE statement. As long as the procedure’s interface 
remains the same, the users and the applications are not affected. On the other hand, if you 
implement your business logic in the client application, the impact of a change can be very 
painful.

Stored procedures also provide many important performance benefits. By default, a stored 
procedure will reuse a previously cached execution plan, saving the CPU resources and the 
time it takes to parse, resolve, and optimize your code. Network traffic is minimized by short-
ening the code strings that the client submits to Microsoft SQL Server—the client submits only 
the stored procedure’s name and its arguments, as opposed to the full code. Moreover, all the 
activity is performed at the server, avoiding multiple roundtrips between the client and the 
server. The stored procedure will pass only the final result to the client through the network.
257



258 Inside Microsoft SQL Server 2005: T-SQL Programming
This chapter explores stored procedures. It starts with brief coverage of the different types of 
stored procedures supported by SQL Server 2005 and then delves into details. The chapter 
covers the stored procedure’s interface, resolution process, compilation, recompilations and 
execution plan reuse, the EXECUTE AS clause, and the new common language runtime 
(CLR) stored procedures. You will have a couple of chances in the chapter to practice what 
you’ve learned by developing stored procedures that serve common practical needs.

Types of Stored Procedures
SQL Server 2005 supports different types of stored procedures: user-defined, system, and 
extended. You can develop user-defined stored procedures with T-SQL or with the CLR. This 
section briefly covers the different types.

User-Defined Stored Procedures

A user-defined stored procedure is created in a user database and typically interacts with 
the database objects. When you invoke a user-defined stored procedure, you specify the 
EXEC (or EXECUTE) command and the stored procedure’s schema-qualified name, and 
arguments:

EXEC dbo.usp_Proc1 <arguments>;

As an example, run the code in Listing 7-1 to create the usp_GetSortedShippers stored proce-
dure in the Northwind database:

Listing 7-1 Creation Script for usp_GetSortedShippers

USE Northwind; 

GO 

IF OBJECT_ID('dbo.usp_GetSortedShippers') IS NOT NULL 

DROP PROC dbo.usp_GetSortedShippers; 

GO 

-- Stored procedure usp_GetSortedShippers 

-- Returns shippers sorted by requested sort column 

CREATE PROC dbo.usp_GetSortedShippers 

@colname AS sysname = NULL 

AS 

 

DECLARE @msg AS NVARCHAR(500); 

 

-- Input validation 

IF @colname IS NULL 

BEGIN 

SET @msg = N'A value must be supplied for parameter @colname.'; 

RAISERROR(@msg, 16, 1); 

RETURN; 

END 

 



Chapter 7 Stored Procedures 259
IF @colname NOT IN(N'ShipperID', N'CompanyName', N'Phone') 

BEGIN 

SET @msg = 

N'Valid values for @colname are: ' 

+ N'N''ShipperID'', N''CompanyName'', N''Phone''.'; 

RAISERROR(@msg, 16, 1); 

RETURN; 

END 

 

-- Return shippers sorted by requested sort column 

IF @colname = N'ShipperID' 

SELECT ShipperID, CompanyName, Phone 

FROM dbo.Shippers 

ORDER BY ShipperID; 

ELSE IF @colname = N'CompanyName' 

SELECT ShipperID, CompanyName, Phone 

FROM dbo.Shippers 

ORDER BY CompanyName; 

ELSE IF @colname = N'Phone' 

SELECT ShipperID, CompanyName, Phone 

FROM dbo.Shippers 

ORDER BY Phone; 

GO

The stored procedure accepts a column name from the Shippers table in the Northwind data-
base as input (@colname); after input validation, it returns the rows from the Shippers table 
sorted by the specified column name. Input validation here involves verifying that a column 
name was specified, and that the specified column name exists in the Shippers table. Later in 
the chapter, I will discuss the subject of parameterizing sort order in more detail; for now, 
I just wanted to provide a simple example of a user-defined stored procedure. Run the follow-
ing code to invoke usp_GetSortedShippers specifying N'CompanyName' as input, generating 
the output shown in Table 7-1:

USE Northwind; 

EXEC dbo.usp_GetSortedShippers @colname = N'CompanyName';

You can leave out the keyword EXEC if the stored procedure is the first statement of a batch, 
but I recommend using it all the time. You can also omit the stored procedure’s schema name 
(dbo in our case), but when you neglect to specify it, SQL Server must resolve the schema. The 
resolution in SQL Server 2005 occurs in the following order (adapted from Books Online):

■ The sys schema of the current database.

Table 7-1 Shippers Sorted by CompanyName

ShipperID CompanyName Phone

3 Federal Shipping (503) 555-9931

1 Speedy Express (503) 555-9831

2 United Package (503) 555-3199



260 Inside Microsoft SQL Server 2005: T-SQL Programming
■ The caller’s default schema if executed in a batch or in dynamic SQL. Or, if the nonqual-
ified procedure name appears inside the body of another procedure definition, the 
schema containing this other procedure is searched next. 

■ The dbo schema in the current database.

As an example, suppose that you connect to the Northwind database and your user’s default 
schema in Northwind is called schema1. You invoke the following code in a batch:

EXEC usp_GetSortedShippers @colname = N'CompanyName';

The resolution takes place in the following order:

■ Look for usp_GetSortedShippers in the sys schema of Northwind (sys.usp_
GetSortedShippers). If found, execute it; if not, proceed to the next step (as in 
our case).

■ If invoked in a batch (as in our case) or dynamic SQL, look for usp_GetSortedShippers 
in schema1 (schema1.usp_GetSortedShippers). Or, if invoked in another procedure 
(say, schema2.usp_AnotherProc), look for usp_GetSortedShippers in schema2 next. If 
found, execute it; if not, proceed to the next step (as in our case).

■ Look for usp_GetSortedShippers in the dbo schema (dbo.usp_GetSortedShippers). If 
found (as in our case), execute it; if not, generate a resolution error.

Besides the potential for confusion and ambiguity when not specifying the schema, there’s 
also an important performance reason to always specify it. When many connections are simul-
taneously running the same stored procedure, they may begin to block each other due to com-
pile locks that they need to obtain when the schema name is not specified.

More Info For more information about this problem, please refer to Knowledge Base 
Article ID 263889, “Description of SQL blocking caused by compile locks,” at http://
support.microsoft.com/?id=263889.

As I mentioned earlier, stored procedures can be used as a security layer. You can control 
access to objects by granting execution permissions on stored procedures and not to underly-
ing objects. For example, suppose that there’s a database user called user1 in the Northwind 
database. You want to allow user1 to invoke the usp_GetSortedShippers procedure, but you 
want to deny user1 from accessing the Shippers table directly. You can achieve this by grant-
ing the user with EXECUTE permissions on the procedure, and denying SELECT (and possi-
bly other) permissions on the table, as in:

DENY SELECT ON dbo.Shippers TO user1; 

GRANT EXECUTE ON dbo.usp_GetSortedShippers TO user1;



Chapter 7 Stored Procedures 261
SQL Server will allow user1 to execute the stored procedure. However, if user1 attempts to 
query the Shippers table directly:

SELECT ShipperID, CompanyName, Phone 

FROM dbo.Shippers;

SQL Server will generate the following error:

Msg 229, Level 14, State 5, Line 1 

SELECT permission denied on object 'Shippers', database 'Northwind', schema 'dbo'.

This security model gives you a high level of control over the activities that users will be 
allowed to perform. 

I’d like to point out other aspects of stored procedure programming through the 
usp_GetSortedShippers sample procedure: 

■ Notice that I explicitly specified column names in the query and didn’t use SELECT *. 
Using SELECT * is a bad practice. In the future, the table might undergo schema changes 
that cause your application to break. Also, if you really need only a subset of the table’s 
columns and not all of them, the use of SELECT * prevents the optimizer from utilizing 
covering indexes defined on that subset of columns.

■ The query is missing a filter. This is not a bad practice by itself; this is perfectly valid if 
you really need all rows from the table. But you might be surprised to learn that in per-
formance-tuning projects at Solid Quality Learning, we still find production applications 
that need filtered data but filter it only at the client. Such an approach introduces 
extreme pressure on both SQL Server and the network. Filters allow the optimizer to 
consider using indexes, which minimizes the I/O cost. Also, by filtering at the server, you 
reduce network traffic. If you need filtered data, make sure you filter it at the server; use 
a WHERE clause (or ON, HAVING where relevant)!

■ Notice the use of a semicolon (;) to suffix statements. Although not a requirement of 
T-SQL for all statements, the semicolon suffix is an ANSI requirement. In SQL Server 
2000, a semicolon is not required at all but is optional. In SQL Server 2005, you are 
required to suffix some statements with a semicolon to avoid ambiguity of your code. 
For example, the WITH keyword is used for different purposes—to define a CTE, to spec-
ify a table hint, and others. SQL Server requires you to suffix the statement preceding the 
CTE’s WITH clause to avoid ambiguity. Getting used to suffixing all statements with a 
semicolon is a good practice. 

Now let’s get back to the focus of this section—user-defined stored procedures.

As I mentioned earlier, to invoke a user-defined stored procedure, you specify EXEC, the 
schema-qualified name of the procedure, and the parameter values for the invocation if there 
are any. References in the stored procedure to system and user object names that are not fully 
qualified (that is, without the database prefix) are always resolved in the database in which 



262 Inside Microsoft SQL Server 2005: T-SQL Programming
the procedure was created. If you want to invoke a user-defined procedure created in another 
database, you must database-qualify its name. For example, if you are connected to a database 
called db1 and want to invoke a stored procedure called usp_Proc1, which resides in db2, you 
would use the following code: 

USE db1; 

EXEC db2.dbo.usp_Proc1 <arguments>;

Invoking a procedure from another database wouldn’t change the fact that object names that 
are not fully qualified would be resolved in the database in which the procedure was created 
(db2, in this case).

If you want to invoke a remote stored procedure residing in another instance of SQL Server, 
you would use the fully qualified stored procedure name, including the linked server name: 
server.database.schema.proc.

When done, run the following code for cleanup:

USE Northwind; 

GO 

IF OBJECT_ID('dbo.usp_GetSortedShippers') IS NOT NULL 

DROP PROC dbo.usp_GetSortedShippers;

Special Stored Procedures

By “special stored procedure,” I mean a stored procedure created with a name beginning with 
sp_ in the master database. A stored procedure created in this way has special behavior. 

Important Note that Microsoft strongly recommends against creating your own stored 
procedures with the sp_ prefix. This prefix is used by SQL Server to designate system stored 
procedures. In this section, I will create stored procedures with the sp_ prefix to demonstrate 
their special behavior.

As an example, the following code creates the special procedure sp_Proc1, which prints the 
database context and queries the INFORMATION_SCHEMA.TABLES view—first with 
dynamic SQL, then with a static query:

SET NOCOUNT ON; 

USE master; 

GO 

 

IF OBJECT_ID('dbo.sp_Proc1') IS NOT NULL 

DROP PROC dbo.sp_Proc1; 

GO 

 

CREATE PROC dbo.sp_Proc1 

AS 

PRINT 'master.dbo.sp_Proc1 executing in ' + DB_NAME(); 

 



Chapter 7 Stored Procedures 263
-- Dynamic query 

EXEC('SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME 

FROM INFORMATION_SCHEMA.TABLES 

WHERE TABLE_TYPE = ''BASE TABLE'';'); 

 

-- Static query 

SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME 

FROM INFORMATION_SCHEMA.TABLES 

WHERE TABLE_TYPE = 'BASE TABLE'; 

GO

One of the unique aspects of a special procedure is that you don’t need to database-qualify its 
name when connected to another database. For example, you can be connected to Northwind 
and still be able to run it without database-qualifying its name:

USE Northwind; 

EXEC dbo.sp_Proc1;

The PRINT command returns 'master.dbo.sp_Proc1 executing in Northwind'. The database name 
in the printed message was obtained by the DB_NAME function. It seems that DB_NAME 
“thinks” that the database context is Northwind (the current database) and not master. Simi-
larly, dynamic SQL also assumes the context of the current database; so the EXEC command 
(which invokes a query against INFORMATION_SCHEMA.TABLES) returns table names 
from the Northwind database. In contrast to the previous two statements, the static query 
against INFORMATION_SCHEMA.TABLES seems to “think” that it is running in master—it 
returns table names from the master database and not Northwind. Similarly, if you refer with 
static code to user objects (for example, a table called T1), SQL Server will look for them in 
master. If that’s not confusing enough, in SQL Server 2000, static code referring to system 
tables (for example, sysobjects) was resolved in the current database. SQL Server 2005 pre-
serves this behavior with the corresponding backward compatibility views (for example, 
sys.sysobjects)—but not with the new catalog views (for example, sys.objects). 

Interestingly, the sp_ prefix works magic also with other types of objects besides stored procedures. 

Caution The behavior described in the following section is undocumented, and you 
should not rely on it in production environments.

For example, the following code creates a table with the sp_ prefix in master:

USE master; 

GO 

IF OBJECT_ID('dbo.sp_Globals') IS NOT NULL 

DROP TABLE dbo.sp_Globals; 

GO 

 

CREATE TABLE dbo.sp_Globals 

( 

var_name sysname NOT NULL PRIMARY KEY, 

val SQL_VARIANT NULL 

);



264 Inside Microsoft SQL Server 2005: T-SQL Programming
And the following code switches between database contexts, and it always manages to find the 
table even though the table name is not database-qualified.

USE Northwind; 

INSERT INTO dbo.sp_Globals(var_name, val) 

VALUES('var1', 10); 

USE pubs; 

INSERT INTO dbo.sp_Globals(var_name, val) 

VALUES('var2', CAST(1 AS BIT)); 

USE tempdb; 

SELECT var_name, val FROM dbo.sp_Globals;

The last query produces the output shown in Table 7-2.

For cleanup, run the following code:

USE master; 

GO 

IF OBJECT_ID('dbo.sp_Globals') IS NOT NULL 

DROP TABLE dbo.sp_Globals;

Do not drop sp_Proc1 yet because it is used in the following section.

System Stored Procedures

System stored procedures are procedures that were shipped by Microsoft. In SQL Server 
2000, system stored procedures resided in the master database, had the sp_ prefix, and were 
marked with the “system” (MS Shipped) flag. In SQL Server 2005, system stored procedures 
reside physically in an internal hidden Resource database, and they exist logically in every 
database.

A special procedure (sp_ prefix, created in master) that is also marked as a system procedure 
gets additional unique behavior. When the installation scripts that are run by SQL Server’s 
setup program create system procedures, they mark those procedures as system using the 
undocumented procedure sp_MS_marksystemobject. 

Caution You should not use the sp_MS_marksystemobject stored procedure in production 
because you won’t get any support if you run into trouble with them. Also, there’s no guar-
antee that the behavior you get by marking your procedures as system will remain the same 
in future versions of SQL Server, or even future service packs. Here, I’m going to use it for 
demonstration purposes to show additional behaviors that system procedures have.

Table 7-2 Contents of sp_Globals Table

var_name Val

var1 10

var2 1



Chapter 7 Stored Procedures 265
Run the following code to mark the special procedure sp_Proc1 also as a system 
procedure:

USE master; 

EXEC sp_MS_marksystemobject 'dbo.sp_Proc1';

If you now run sp_Proc1 in databases other than master, you will observe that all code state-
ments within the stored procedure assume the context of the current database:

USE Northwind; 

EXEC dbo.sp_Proc1; 

USE pubs; 

EXEC dbo.sp_Proc1; 

EXEC Northwind.dbo.sp_Proc1;

As a practice, avoid using the sp_ prefix for user-defined stored procedures. Remember that if 
a local database has a stored procedure with the same name and schema as a special proce-
dure in master, the user-defined procedure will be invoked. To demonstrate this, create 
a procedure called sp_Proc1 in Northwind as well:

USE Northwind; 

GO 

IF OBJECT_ID('dbo.sp_Proc1') IS NOT NULL 

DROP PROC dbo.sp_Proc1; 

GO 

 

CREATE PROC dbo.sp_Proc1 

AS 

PRINT 'Northwind.dbo.sp_Proc1 executing in ' + DB_NAME(); 

GO

If you run the following code, you will observe that when connected to Northwind, sp_Proc1 
from Northwind was invoked:

USE Northwind; 

EXEC dbo.sp_Proc1; 

USE pubs; 

EXEC dbo.sp_Proc1;

Drop the Northwind version because it would interfere with the following examples:

USE Northwind; 

GO 

IF OBJECT_ID('dbo.sp_Proc1') IS NOT NULL 

DROP PROC dbo.sp_Proc1;

Interestingly, system procedures have an additional unique behavior. They also resolve user 
objects in the current database, not just system objects. To demonstrate this, run the 



266 Inside Microsoft SQL Server 2005: T-SQL Programming
following code to re-create the sp_Proc1 special procedure, which queries a user table called 
Orders, and to mark the procedure as system: 

USE master; 

GO 

IF OBJECT_ID('dbo.sp_Proc1') IS NOT NULL 

DROP PROC dbo.sp_Proc1; 

GO 

 

CREATE PROC dbo.sp_Proc1 

AS 

PRINT 'master.dbo.sp_Proc1 executing in ' + DB_NAME(); 

SELECT OrderID FROM dbo.Orders; 

GO 

 

EXEC sp_MS_marksystemobject 'dbo.sp_Proc1';

Run sp_Proc1 in Northwind, and you will observe that the query ran successfully against the 
Orders table in Northwind:

USE Northwind; 

EXEC dbo.sp_Proc1;

Make a similar attempt in pubs:

USE pubs; 

EXEC dbo.sp_Proc1; 

master.dbo.sp_Proc1 executing in pubs 

Msg 208, Level 16, State 1, Procedure sp_Proc1, Line 5 

Invalid object name 'dbo.Orders'.

The error tells you that SQL Server looked for an Orders table in pubs but couldn’t find one.

When you’re done, run the following code for cleanup:

USE master; 

GO 

IF OBJECT_ID('dbo.sp_Proc1') IS NOT NULL 

DROP PROC dbo.sp_Proc1; 

GO 

USE Northwind 

GO 

IF OBJECT_ID('dbo.sp_Proc1') IS NOT NULL 

DROP PROC dbo.sp_Proc1;

Other Types of Stored Procedures

SQL Server also supports other types of stored procedures:

■ Temporary stored procedures You can create temporary procedures by prefixing their 
names with a single number symbol or a double one (# or ##). A single number symbol 
would make the procedure a local temporary procedure, and two number symbols 



Chapter 7 Stored Procedures 267
would make it a global one. Local and global temporary procedures behave in terms of 
visibility and scope like local and global temporary tables, respectively.

More Info For details about local and global temporary tables, please refer to 
Chapter 2. 

■ Extended stored procedures These procedures allow you to create external routines 
with a programming language such as C using the Open Data Services (ODS) API. These 
were used in prior versions of SQL Server to extend the functionality of the product. 
External routines were written using the ODS API, compiled to a .dll file, and registered 
as extended stored procedures in SQL Server. They were used like user-defined stored 
procedures with T-SQL. In SQL Server 2005, extended stored procedures are supported 
for backward compatibility and will be removed in a future version of SQL Server. Now 
you can rely on the .NET integration in the product and develop CLR stored procedures, 
as well as other types of routines. I’ll cover CLR procedures later in the chapter.

The Stored Procedure Interface
This section covers the interface (that is, the input and output parameters) of stored procedures.

Input Parameters

You can define input parameters for a stored procedure in its header. An input parameter must 
be provided with a value when the stored procedure is invoked unless you assign the param-
eter with a default value. As an example, the following code creates the usp_GetCustOrders 
procedure, which accepts a customer ID and datetime range boundaries as inputs, and 
returns the given customer’s orders in the given datetime range:

USE Northwind; 

GO 

 

IF OBJECT_ID('dbo.usp_GetCustOrders') IS NOT NULL 

DROP PROC dbo.usp_GetCustOrders; 

GO 

 

CREATE PROC dbo.usp_GetCustOrders 

@custid AS NCHAR(5), 

@fromdate AS DATETIME = '19000101', 

@todate AS DATETIME = '99991231' 

AS 

 

SET NOCOUNT ON; 

 

SELECT OrderID, CustomerID, EmployeeID, OrderDate 

FROM dbo.Orders 

WHERE CustomerID = @custid 

AND OrderDate >= @fromdate 

AND OrderDate < @todate; 

GO



268 Inside Microsoft SQL Server 2005: T-SQL Programming
Tip The SET NOCOUNT ON option tells SQL Server not to produce the message saying 
how many rows were affected for data manipulation language (DML) statements. Some client 
database interfaces, such as OLEDB, absorb this message as a row set. The result is that 
when you expect to get a result set of a query back to the client, instead you get this mes-
sage of how many rows were affected as the first result set. By issuing SET NOCOUNT ON, 
you avoid this problem in those interfaces, so you might want to adopt the practice of 
specifying it.

When invoking a stored procedure, you must specify inputs for those parameters that were 
not given default values in the definition (for @custid in our case). There are two formats for 
assigning values to parameters when invoking a stored procedure: unnamed and named. In the 
unnamed format, you just specify values without specifying the parameter names. Also, you 
must specify the inputs by declaration order of the parameters. You can omit inputs only for 
parameters that have default values and that were declared at the end of the parameter list. 
You cannot omit an input between two parameters for which you do specify values. If you 
want such parameters to use their default values, you would need to specify the DEFAULT 
keyword for those.

As an example, the following code invokes the procedure without specifying the inputs for the 
two last parameters, which will use their default values, and produces the output shown in 
Table 7-3: 

EXEC dbo.usp_GetCustOrders N'ALFKI';

If you want to specify your own value for the third parameter but use the default for the sec-
ond, specify the DEFAULT keyword for the second parameter:

EXEC dbo.usp_GetCustOrders N'ALFKI', DEFAULT, '20060212';

This code also produces the output in Table 7-3.

And, of course, if you want to specify your own values for all parameters, just specify them in 
order, as in:

EXEC dbo.usp_GetCustOrders N'ALFKI', '19970101', '19980101';

Table 7-3 Customer ALFKI’s Orders

OrderID CustomerID EmployeeID OrderDate

10643 ALFKI 6 1997-08-25 00:00:00.000

10692 ALFKI 4 1997-10-03 00:00:00.000

10702 ALFKI 4 1997-10-13 00:00:00.000

10835 ALFKI 1 1998-01-15 00:00:00.000

10952 ALFKI 1 1998-03-16 00:00:00.000

11011 ALFKI 3 1998-04-09 00:00:00.000



Chapter 7 Stored Procedures 269
which produces the output shown in Table 7-4:

These are the basics of stored procedures. You’re probably already familiar with them, but 
I decided to include this coverage to lead to a recommended practice. There are many 
maintenance-related issues that can arise when using the unnamed assignment format. You 
must specify the arguments in order; you must not omit an optional parameter; and by look-
ing at the code, it might not be clear what the inputs actually mean and to which parameter 
they relate. Therefore, it’s a good practice to use the named assignment format, where you 
specify the name of the argument and assign it with an input value, as in: 

EXEC dbo.usp_GetCustOrders 

@custid = N'ALFKI', 

@fromdate = '19970101', 

@todate = '19980101';

The code is much more readable; you can play with the order in which you specify the inputs; 
and you can omit any parameter that you like if it has a default value.

Output Parameters

Output parameters allow you to return output values from a stored procedure. A change made 
to the output parameter within the stored procedure is reflected in the variable from the 
calling batch that was assigned to the output parameter. The concept is similar to a pointer in 
C or a ByRef parameter in Visual Basic.

As an example, the following code alters the definition of the usp_GetCustOrders procedure, 
adding to it the output parameter @numrows:

ALTER PROC dbo.usp_GetCustOrders 

@custid AS NCHAR(5), 

@fromdate AS DATETIME = '19000101', 

@todate AS DATETIME = '99991231', 

@numrows AS INT OUTPUT 

AS 

 

SET NOCOUNT ON; 

DECLARE @err AS INT; 

 

SELECT OrderID, CustomerID, EmployeeID, OrderDate 

FROM dbo.Orders 

WHERE CustomerID = @custid 

AND OrderDate >= @fromdate 

AND OrderDate < @todate; 

 

Table 7-4 Customer ALFKI’s Orders in 1997

OrderID CustomerID EmployeeID OrderDate

10643 ALFKI 6 1997-08-25 00:00:00.000

10692 ALFKI 4 1997-10-03 00:00:00.000

10702 ALFKI 4 1997-10-13 00:00:00.000



270 Inside Microsoft SQL Server 2005: T-SQL Programming
SELECT @numrows = @@rowcount, @err = @@error; 

 

RETURN @err; 

GO

@numrows will return the number of rows affected by the query. Notice that the stored proce-
dure also uses a RETURN clause to return the value of the @@error function after the invoca-
tion of the query.

To get the output parameter back from the stored procedure when invoking it, you will need 
to assign it with a variable defined in the calling batch and mention the keyword OUTPUT. To 
get back the return status, you will also need to provide a variable from the calling batch right 
before the procedure name and an equal sign. Here’s an example: 

DECLARE @myerr AS INT, @mynumrows AS INT; 

 

EXEC @myerr = dbo.usp_GetCustOrders 

@custid = N'ALFKI', 

@fromdate = '19970101', 

@todate = '19980101', 

@numrows = @mynumrows OUTPUT; 

 

SELECT @myerr AS err, @mynumrows AS rc;

The stored procedure returns the output shown in Table 7-4, plus it assigns the return status 
0 to @myerr and the number of affected rows (in this case, 3) to the @mynumrows variable.

If you want to manipulate the row set returned by the stored procedure with T-SQL, you will 
need to create a table first and use the INSERT/EXEC syntax, as shown in Listing 7-2.

Listing 7-2 Send output of usp_GetCustOrders to a table

IF OBJECT_ID('tempdb..#CustOrders') IS NOT NULL 

DROP TABLE #CustOrders; 

GO 

CREATE TABLE #CustOrders 

( 

OrderID INT NOT NULL PRIMARY KEY, 

CustomerID NCHAR(5) NOT NULL, 

EmployeeID INT NOT NULL, 

OrderDate DATETIME NOT NULL 

); 

 

DECLARE @myerr AS INT, @mynumrows AS INT; 

 

INSERT INTO #CustOrders(OrderID, CustomerID, EmployeeID, OrderDate) 

EXEC @myerr = dbo.usp_GetCustOrders 

@custid = N'ALFKI', 

@fromdate = '19970101', 

@todate = '19980101', 

@numrows = @mynumrows OUTPUT; 

 



Chapter 7 Stored Procedures 271
SELECT OrderID, CustomerID, EmployeeID, OrderDate 

FROM #CustOrders; 

 

SELECT @myerr AS err, @mynumrows AS rc; 

GO

A client will accept output from a stored procedure into client objects. For example, in ADO 
programming you define items in a Parameters collection for input parameters, output param-
eters, and return status. A stored procedure can return more than one result set if within it you 
invoke multiple queries. In the client code, you will absorb the result sets, moving from one 
record set to another—for example, using the .NextRecordset property of the Recordset object in 
ADO. A stored procedure can generate other types of outputs as well, including the output of 
PRINT and RAISERROR commands. Both would be received by the client through the client 
interface’s structures—for example, the Errors collection in ADO.

ADO.NET allows you to accept any possible output from a SQL Server stored procedure at the 
client side. Of course, in order to accept some output, as the first step, you have to execute the 
procedure. You execute a stored procedure by using the SqlCommand object. To denote you 
are executing a stored procedure, you have to set the CommandType property of the SqlCommand 
object to CommandType.StoredProcedure. To define which procedure to execute, you have to 
insert the name of the procedure to the CommandText property. To actually execute the proce-
dure, use the ExecuteScalar, ExecuteNonQuery, ExecuteReader, or ExecuteXmlReader methods of 
the SqlCommand object, depending on the output(s) of the stored procedure. Following are 
the different types of output of stored procedures needed to get the output:

■ A single row set A single row set can be accepted to an object of the SqlDataReader 
class for the connected environment (connected means that your application maintains 
a permanent connection to the SQL Server—that is, the connection is always available), 
and an object of the SqlDataAdapter class. If you want to fill an object of the DataTable 
class, which is a member of an object of the DataSet class for the disconnected scenario 
(disconnected here means that after you read the data in the DataTable, in your applica-
tion, you can disconnect from SQL Server, and you can still use the data read in your 
application from the DataTable object).

■ Multiple row sets The SqlDataReader class. Use the NextResult method of a data reader 
object to loop through all row sets returned by a stored procedure.

■ Output parameters Accept output parameters in the Parameters collection of a 
SqlCommand object. A SqlParameter object in ADO.NET can have four possible directions: 
Input, Output, InputOutput, or ReturnValue. Of course, a single parameter can have a single 
direction selected at a time. For ReturnValue direction, please see the next bullet. Input 
parameters can be used for input only, and output parameters can be used for output 
only. SQL Server stored procedure output parameters are actually input/output param-
eters, so you can pass a value through an output parameter when executing a stored pro-
cedure. Therefore, you can specify the InputOutput direction of a SqlParameter object 
in ADO.NET, but you have to assign the input value to it before executing the stored 
procedure or you will get a compile error.



272 Inside Microsoft SQL Server 2005: T-SQL Programming
■ Return value Accept it in a SqlParameter object with the ReturnValue direction. 
The return value parameter has to be the first one in the Parameters collection of a 
SqlCommand object.

■ Number of rows affected This can be tricky. You can’t rely on the output of SQL 
Server here, because the developer could add the SET NOCOUNT ON statement to the 
stored procedure. SqlDataReader objects have the RecordsAffected property, which gets 
the number of rows updated, inserted, or deleted. For a SELECT statement, this prop-
erty can’t be used. But there is a problem also with INSERT, UPDATE, and DELETE 
statements: the RecordAffected property gets only the total number of rows affected by all 
DML statements in the stored procedure. What if you need the number of rows for each 
DML statement separately? In this case, you can define as many output parameters as 
the number of DML statements in the procedure, and then store the @@rowcount value 
in every output parameter after every DML statement. This way you can easily get the 
number of rows affected by SELECT statements as well.

■ Errors All your .NET code should use a Try..Catch block for every risky operation. In the 
Catch block, you can trap real errors—that is, errors with severity levels greater than 10, 
meaning significant errors, not just warnings or info messages. You run the statements 
that can produce an error, like executing a stored procedure by using a SqlCommand 
object, in the Try block. When an error occurs in the Try block, the control of the appli-
cation is transferred immediately to the Catch block, where you can access a SqlException 
object that describes the error. This SqlException object has an Errors collection. In the 
collection, you get objects of SqlError type, a single object for any error of severity level 
from 11 through 16 thrown by your SQL Server. You can loop through the collection and 
read all errors returned by SQL Server. Among the properties of the SqlError are a Num-
ber property, which holds the error number, and a Message property, which holds the 
error message.

■ Warnings This can be tricky as well. Warnings in SQL Server are error messages with 
a severity level of 10 or lower. If there is no real error in your code, you can get the warn-
ings in the procedure that handles the InfoMessage event of the SqlConnection object. The 
InfoMessage event receives a SqlInfoMessageEventArgs object. SqlInfoMessageEventArgs 
has an Errors collection, which is similar to previously mentioned Errors collection of the 
SQLException object—it is a collection of objects of SqlError type, this time with SQL 
Server errors of severity level 10 or lower. Again, you can loop through the collection and 
get all the information from SQL Server warnings that you need. But if there were a real 
error in the stored procedure, you could catch all the warnings as well as the errors in the 
Catch block, and the InfoMessage event would never occur.

■ T-SQL PRINT statement output You handle this output in the same way that you han-
dle warnings. Read the output using the InfoMessage event handler of a SqlConnection, 
or read it in a Catch block if there was a real error in the stored procedure.

■ DBCC statement output Some DBCC commands support the TABLERESULTS 
option. If you use this option, you can read the output using the SqlDataReader object 



Chapter 7 Stored Procedures 273
just as you would read any other row set. If the output of the DBCC statement is textual 
and not a table, you can get it by using the InfoMessage event of the SqlConnection object. 
Again, the same rules apply as for warnings and PRINT output.

■ XML output ADO.NET 2.0 fully supports the new XML data type, so you can simply 
use a SqlDataReader object to get the results in table format, including XML data type 
columns. XML output from a SELECT statement with the FOR XML clause can be 
retrieved into an XmlReader object, and you have to use the ExecuteXmlReader method of 
the SqlCommand object, of course.

■ User-defined data types (UDTs) ADO.NET fully supports UDTs as well, so you can 
fetch values of UDT columns the same way you fetch values of columns of native types. 
Note that SQL Server sends only the values, not the code for the UDT; therefore, to use 
any of the UDT’s methods at the client side, the code must be available at the client side 
as well.

■ Schema of a row set retrieved with a SqlDataReader SqlDataReader in ADO.NET 2.0 
has a new method called GetSchemaTable. This method can be used to get a DataTable 
that describes the column metadata of the SqlDataReader.

For examples and more details about ADO.NET, please refer to ADO.NET Examples and Best 
Practices for C# Programmers (Apress, 2002) by William R. Vaughn and Peter Blackburn.

When you’re done, run the following code for cleanup:

USE Northwind; 

GO 

IF OBJECT_ID('dbo.usp_GetCustOrders') IS NOT NULL 

DROP PROC dbo.usp_GetCustOrders; 

GO 

IF OBJECT_ID('tempdb..#CustOrders') IS NOT NULL 

DROP TABLE #CustOrders; 

GO

Resolution
When you create a stored procedure, SQL Server first parses the code to check for syntax 
errors. If the code passes the parsing stage, successfully, SQL Server attempts to resolve the 
names it contains. The resolution process verifies the existence of object and column names, 
among other things. If the referenced objects exist, the resolution process will take place 
fully—that is, it will also check for the existence of the referenced column names. 

If an object name exists but a column within it doesn’t, the resolution process will produce an 
error and the stored procedure will not be created. However, if the object doesn’t exist at all, 
SQL Server will create the stored procedure and defer the resolution process to run time, 
when the stored procedure is invoked. Of course, if a referenced object or a column is still 
missing when you execute the stored procedure, the code will fail. This process of postponing 
name resolution until run time is called deferred name resolution.



274 Inside Microsoft SQL Server 2005: T-SQL Programming
I’ll demonstrate the resolution aspects I just described. First run the following code to make 
sure that the usp_Proc1 procedure, the usp_Proc2 procedure, and the table T1 do not exist 
within tempdb:

USE tempdb; 

GO 

IF OBJECT_ID('dbo.usp_Proc1') IS NOT NULL 

DROP PROC dbo.usp_Proc1; 

GO 

IF OBJECT_ID('dbo.usp_Proc2') IS NOT NULL 

DROP PROC dbo.usp_Proc2; 

GO 

IF OBJECT_ID('dbo.T1') IS NOT NULL 

DROP TABLE dbo.T1;

Run the following code to create the stored procedure usp_Proc1, which refers to a table 
named T1, which doesn’t exist: 

CREATE PROC dbo.usp_Proc1 

AS 

 

SELECT col1 FROM dbo.T1; 

GO

Because table T1 doesn’t exist, resolution was deferred to run time, and the stored procedure 
was created successfully. If T1 does not exist when you invoke the procedure, it fails at run 
time. Run the following code:

EXEC dbo.usp_Proc1;

You will get the following error:

Msg 208, Level 16, State 1, Procedure usp_Proc1, Line 6 

Invalid object name 'dbo.T1'.

Next create table T1 with a column called col1:

CREATE TABLE dbo.T1(col1 INT); 

INSERT INTO dbo.T1(col1) VALUES(1);

Invoke the stored procedure again:

EXEC dbo.usp_Proc1;

This time it will run successfully.

Next, attempt to create a stored procedure called usp_Proc2, referring to a nonexistent col-
umn (col2) in the existing T1 table:

CREATE PROC dbo.usp_Proc2 

AS 

 

SELECT col2 FROM dbo.T1; 

GO



Chapter 7 Stored Procedures 275
Here, the resolution process was not deferred to run time because T1 exists. The stored pro-
cedure was not created, and you got the following error:

Msg 207, Level 16, State 1, Procedure usp_Proc2, Line 4 

Invalid column name 'col2'.

When you’re done, run the following code for cleanup:

USE tempdb; 

GO 

IF OBJECT_ID('dbo.usp_Proc1') IS NOT NULL 

DROP PROC dbo.usp_Proc1; 

GO 

IF OBJECT_ID('dbo.usp_Proc2') IS NOT NULL 

DROP PROC dbo.usp_Proc2; 

GO 

IF OBJECT_ID('dbo.T1') IS NOT NULL 

DROP TABLE dbo.T1;

Compilations, Recompilations, and Reuse 
of Execution Plans

Earlier I mentioned that when you create a stored procedure, SQL Server parses your code 
and then attempts to resolve it. If resolution was deferred, it will take place at first invocation. 
Upon first invocation of the stored procedure, if the resolution phase finished successfully, 
SQL Server analyzes and optimizes the queries within the stored procedure and generates an 
execution plan. An execution plan holds the instructions to process the query. These instruc-
tions include which order to access the tables in; which indexes, access methods, and join 
algorithms to use; whether to spool interim sets; and so on. SQL Server typically generates 
multiple permutations of execution plans and will choose the one with the lowest cost out of 
the ones that it generated.

Note that SQL Server won’t necessarily create all possible permutations of execution plans; if 
it did, the optimization phase might take too long. SQL Server will limit the optimizer by 
calculating a threshold for optimization, which is based on the sizes of the tables involved as 
well as other factors.

Stored procedures can reuse a previously cached execution plan, thereby saving the resources 
involved in generating a new execution plan. This section will discuss the reuse of execution 
plans, cases when a plan cannot be reused, and a specific issue relating to plan reuse called 
the “parameter sniffing problem.”

Reuse of Execution Plans

The process of optimization requires mainly CPU resources. SQL Server will, by default, reuse 
a previously cached plan from an earlier invocation of a stored procedure, without investigat-
ing whether it actually is or isn’t a good idea to do so.



276 Inside Microsoft SQL Server 2005: T-SQL Programming
To demonstrate plan reuse, first run the following code, which creates the usp_GetOrders 
stored procedure:

USE Northwind; 

GO 

IF OBJECT_ID('dbo.usp_GetOrders') IS NOT NULL 

DROP PROC dbo.usp_GetOrders; 

GO 

 

CREATE PROC dbo.usp_GetOrders 

@odate AS DATETIME 

AS 

 

SELECT OrderID, CustomerID, EmployeeID, OrderDate 

FROM dbo.Orders 

WHERE OrderDate >= @odate; 

GO

The stored procedure accepts an order date as input (@odate) and returns orders placed on or 
after the input order date. 

Turn on the STATISTICS IO option to get back I/O information for your session’s activity:

SET STATISTICS IO ON;

Run the stored procedure for the first time, providing an input with high selectivity (that is, an 
input for which a small percentage of rows will be returned); it will generate the output shown 
in Table 7-5:

EXEC dbo.usp_GetOrders '19980506';

Examine the execution plan produced for the query, shown in Figure 7-1.

Figure 7-1 Execution plan showing that the index on OrderDate is used

Table 7-5 Output of EXEC dbo.usp_GetOrders '19980506'

OrderID CustomerID EmployeeID OrderDate

11074 SIMOB 7 1998-05-06 00:00:00.000

11075 RICSU 8 1998-05-06 00:00:00.000

11076 BONAP 4 1998-05-06 00:00:00.000

11077 RATTC 1 1998-05-06 00:00:00.000



Chapter 7 Stored Procedures 277
Because this is the first time the stored procedure is invoked, SQL Server generated an execu-
tion plan for it based on the selective input value and cached that plan.

The optimizer uses cardinality and density information to estimate the cost of the access 
methods that it considers applying, and the selectivity of filters is an important factor. For 
example, a query with a highly selective filter can benefit from a nonclustered, noncovering 
index, while a low selectivity filter (that is, one that returns a high percentage of rows) would 
not justify using such an index. 

For highly selective input such as that provided to our stored procedure, the optimizer chose 
a plan that uses a nonclustered noncovering index on the OrderDate column. The plan first 
performed a seek within that index (Index Seek operator), reaching the first index entry that 
matches the filter at the leaf level of the index. This seek operation caused two page reads, one 
at each of the two levels in the index. In a larger table, such an index might contain three or 
four levels.

Following the seek operation, the plan performed a partial ordered forward scan within the 
leaf level of the index (which is not seen in the plan but is part of the Index Seek operator). 
The partial scan fetched all index entries that match the query’s filter (that is, all OrderDate 
values greater than or equal to the input @odate). Because the input was very selective, only 
four matching OrderDate values were found. In this particular case, the partial scan did not 
need to access additional pages at the leaf level beyond the leaf page that the seek operation 
reached, so it did not incur additional I/O.

The plan used a Nested Loops operator, which invoked a series of Clustered Index Seek oper-
ations to look up the data row for each of the four index entries that the partial scan found. 
Because the clustered index on this small table has two levels, the lookups cost eight page 
reads: 2 × 4 = 8. In total, there were 10 page reads: 2 (seek) + 2 × 4 (lookups) = 10. This is the 
value reported by STATISTICS IO as logical reads.

That’s the optimal plan for this selective query with the existing indexes.

Remember that I mentioned earlier that stored procedures will, by default, reuse a previously 
cached plan? Now that you have a plan stored in cache, additional invocations of the stored 
procedure will reuse it. That’s fine if you keep invoking the stored procedure with a highly 
selective input. You will enjoy the fact that the plan is reused, and SQL Server will not waste 
resources on generating new plans. That’s especially important with systems that invoke 
stored procedures very frequently.

However, imagine that the stored procedure’s inputs vary considerably in selectivity—some 
invocations have high selectivity while others have very low selectivity. For example, the fol-
lowing code invokes the stored procedure with an input that has low selectivity:

EXEC dbo.usp_GetOrders '19960101';



278 Inside Microsoft SQL Server 2005: T-SQL Programming
Because there is a plan in cache, it will be reused, which is unfortunate in this case. I provided 
the minimum OrderDate that exists in the table as input. This means that all rows in the table 
(830) qualify. The plan will require a clustered index lookup for each qualifying row. This 
invocation generated 1,664 logical reads, even though the whole Orders table resides on 
22 data pages. Keep in mind that the Orders table is very small and that in production envi-
ronments such a table would typically have millions of rows. The cost of reusing such a plan 
would then be much more dramatic, given a similar scenario. Take a table with 1,000,000 
orders, for example, residing on about 25,000 pages. Suppose that the clustered index con-
tains three levels. Just the cost of the lookups would then be 3,000,000 reads: 1,000,000 × 3 = 
3,000,000.

Obviously, in a case such as this, in which a lot of data access is involved and there are large 
variations in selectivity, it’s a very bad idea to reuse a previously cached execution plan.

Similarly, if you invoked the stored procedure for the first time with a low selectivity input, you 
would get a plan that is optimal for that input—one that issues a table scan (unordered clus-
tered index scan)—and that plan would be cached. Then, in later invocations, the plan would 
be reused even when the input has high selectivity.

At this point, you can turn off the STATISTICS IO option:

SET STATISTICS IO OFF;

You can observe the fact that an execution plan was reused by querying the sys.syscacheobjects 
system view (or master.dbo.syscacheobjects in SQL Server 2000), which contains information 
about execution plans:

SELECT cacheobjtype, objtype, usecounts, sql 

FROM sys.syscacheobjects 

WHERE sql NOT LIKE '%cache%' 

AND sql LIKE '%usp_GetOrders%';

This query generates the output shown in Table 7-6.

Notice that one plan was found for the usp_GetOrders procedure in cache, and that it was 
used twice (usecounts = 2). 

One way to solve the problem is to create two stored procedures—one for requests with high 
selectivity, and a second for low selectivity. You create another stored procedure with flow 
logic, examining the input and determining which procedure to invoke based on the input’s 
selectivity that your calculations estimate. The idea is nice in theory, but it’s very difficult to 
implement in practice. It can be very complex to calculate the boundary point dynamically 

Table 7-6 Execution Plan for usp_GetOrders in sys.syscacheobjects

cacheobjtype objtype usecounts sql

Compiled Plan Proc 2 CREATE PROC dbo.usp_GetOrders …



Chapter 7 Stored Procedures 279
without consuming additional resources. Furthermore, this stored procedure accepts only 
one input, so imagine how complex things would become with multiple inputs.

Another way to solve the problem is to create (or alter) the stored procedure with the 
RECOMPILE option, as in:

ALTER PROC dbo.usp_GetOrders 

@odate AS DATETIME 

WITH RECOMPILE 

AS 

 

SELECT OrderID, CustomerID, EmployeeID, OrderDate 

FROM dbo.Orders 

WHERE OrderDate >= @odate; 

GO

The RECOMPILE option tells SQL Server to create a new execution plan every time it is 
invoked. It is especially useful when the time it takes to generate a plan is a small portion of 
the run time of the stored procedure, and the implications of running the procedure with an 
inadequate plan would increase the run time substantially.

First run the altered procedure specifying an input with high selectivity:

EXEC dbo.usp_GetOrders '19980506';

You will get the plan shown in Figure 7-1, which is optimal in this case and generates an I/O 
cost of 10 logical reads.

Next run it specifying an input with low selectivity:

EXEC dbo.usp_GetOrders '19960101';

You will get the plan in Figure 7-2, showing a table scan (unordered clustered index scan), 
which is optimal for this input. The I/O cost in this case is 22 logical reads.

Figure 7-2 Execution plan showing a table scan (unordered clustered index scan)

Note that when creating a stored procedure with the RECOMPILE option, SQL Server doesn’t 
even bother to keep the execution plan for it in cache. If you now query sys.syscacheobjects, 
you will get no plan back for the usp_GetOrders procedure:

SELECT * FROM sys.syscacheobjects 

WHERE sql NOT LIKE '%cache%' 

AND sql LIKE '%usp_GetOrders%';

In SQL Server 2000, the unit of compilation was the whole stored procedure. So even if you 
wanted just one particular query to be recompiled, you couldn’t request it. If you created the 



280 Inside Microsoft SQL Server 2005: T-SQL Programming
stored procedure with the RECOMPILE option, the whole procedure went through recompi-
lation every time you invoked it.

SQL Server 2005 supports statement-level recompile. Instead of having all queries in the 
stored procedure recompiled, SQL Server can now recompile individual statements. You’re 
provided with a new RECOMPILE query hint that allows you to explicitly request a recompi-
lation of a particular query. This way, other queries can benefit from reusing previously 
cached execution plans if there’s no reason to recompile them every time the stored procedure 
is invoked.

Run the following code to alter the procedure, specifying the RECOMPILE query hint:

ALTER PROC dbo.usp_GetOrders 

@odate AS DATETIME 

AS 

 

SELECT OrderID, CustomerID, EmployeeID, OrderDate 

FROM dbo.Orders 

WHERE OrderDate >= @odate 

OPTION(RECOMPILE); 

GO

In our case, there’s only one query in the stored procedure, so it doesn’t really matter whether 
you specify the RECOMPILE option at the procedure or the query level. But try to think of the 
advantages of this hint when you have multiple queries in one stored procedure.

To see that you get good plans, first run the procedure specifying an input with high 
selectivity:

EXEC dbo.usp_GetOrders '19980506';

You will get the plan in Figure 7-1, and an I/O cost of 10 logical reads.

Next run it specifying an input with low selectivity:

EXEC dbo.usp_GetOrders '19960101';

You will get the plan in Figure 7-2 and an I/O cost of 22 logical reads.

Don’t get confused by the fact that syscacheobjects shows a plan with the value 2 as the 
usecounts:

SELECT cacheobjtype, objtype, usecounts, sql 

FROM sys.syscacheobjects 

WHERE sql NOT LIKE '%cache%' 

AND sql LIKE '%usp_GetOrders%';

The output is the same as in Table 7-6. Remember that if there were other queries in the stored 
procedure, they could potentially reuse the execution plan.



Chapter 7 Stored Procedures 281
Recompilations

As I mentioned earlier, a stored procedure will reuse a previously cached execution plan by 
default. There are exceptions that would trigger a recompilation. Remember that in SQL 
Server 2000, a recompilation occurs at the whole procedure level, whereas in SQL Server 
2005, it occurs at the statement level.

Such exceptions might be caused by issues related to plan correctness or plan optimality. Plan 
correctness issues include schema changes in underlying objects (for example, adding/drop-
ping a column, adding/dropping an index, and so on) or changes to SET options that can 
affect query results (for example, ANSI_NULLS, CONCAT_NULL_YIELDS_NULL, and so 
on). Plan optimality issues that cause recompilation include making data changes in refer-
enced objects to the extent that a new plan might be more optimal—for example, as a result of 
a statistics update.

Both types of causes for recompilations have many particular cases. At the end of this section, 
I will provide you with a resource that describes them in great detail.

Naturally, if a plan is removed from cache after a while for lack of reuse, SQL Server will gen-
erate a new one when the procedure is invoked again.

To see an example of a cause of a recompilation, first run the following code, which creates the 
stored procedure usp_CustCities:

IF OBJECT_ID('dbo.usp_CustCities') IS NOT NULL 

DROP PROC dbo.usp_CustCities; 

GO 

 

CREATE PROC dbo.usp_CustCities 

AS 

 

SELECT CustomerID, Country, Region, City, 

Country + '.' + Region + '.' + City AS CRC 

FROM dbo.Customers 

ORDER BY Country, Region, City; 

GO

The stored procedure queries the Customers table, concatenating the three parts of the cus-
tomer’s geographical location: Country, Region, and City. By default, the SET option 
CONCAT_NULL_YIELDS_NULL is turned ON, meaning that when you concatenate a NULL 
with any string, you get a NULL as a result.

Run the stored procedure for the first time, and you will get the output shown in abbreviated 
form in Table 7-7:

EXEC dbo.usp_CustCities;



282 Inside Microsoft SQL Server 2005: T-SQL Programming
As you can see, whenever Region was NULL, the concatenated string became NULL. SQL 
Server cached the execution plan of the stored procedure for later reuse. Along with the plan, 
SQL Server also stored the state of all SET options that can affect query results. You can 
observe those in a bitmap called setopts in sys.syscacheobjects.

Set the CONCAT_NULL_YIELDS_NULL option to OFF, telling SQL Server to treat a NULL 
in concatenation as an empty string:

SET CONCAT_NULL_YIELDS_NULL OFF;

And rerun the stored procedure, which will produce the output shown in abbreviated form in 
Table 7-8:

EXEC dbo.usp_CustCities;

Table 7-7 Output of usp_CustCities when CONCAT_NULL_YIELDS_NULL Is ON 
(Abbreviated)

CustomerID Country Region City CRC

CACTU Argentina NULL Buenos Aires NULL

OCEAN Argentina NULL Buenos Aires NULL

RANCH Argentina NULL Buenos Aires NULL

ERNSH Austria NULL Graz NULL

PICCO Austria NULL Salzburg NULL

MAISD Belgium NULL Bruxelles NULL

SUPRD Belgium NULL Charleroi NULL

QUEDE Brazil RJ Rio de Janeiro Brazil.RJ.Rio de Janeiro

RICAR Brazil RJ Rio de Janeiro Brazil.RJ.Rio de Janeiro

HANAR Brazil RJ Rio de Janeiro Brazil.RJ.Rio de Janeiro

GOURL Brazil SP Campinas Brazil.SP.Campinas

WELLI Brazil SP Resende Brazil.SP.Resende

TRADH Brazil SP Sao Paulo Brazil.SP.Sao Paulo

FAMIA Brazil SP Sao Paulo Brazil.SP.Sao Paulo

COMMI Brazil SP Sao Paulo Brazil.SP.Sao Paulo

… … … … …

Table 7-8 Output of usp_CustCities when CONCAT_NULL_YIELDS_NULL Is OFF 
(Abbreviated)

CustomerID Country Region City CRC

CACTU Argentina NULL Buenos Aires Argentina..Buenos Aires

OCEAN Argentina NULL Buenos Aires Argentina..Buenos Aires

RANCH Argentina NULL Buenos Aires Argentina..Buenos Aires

ERNSH Austria NULL Graz Austria..Graz



Chapter 7 Stored Procedures 283
You can see that when Region was NULL, it was treated as an empty string, and as a result, you 
didn’t get a NULL in the CRC column. Changing the session option in this case changed the 
meaning of a query. When you ran this stored procedure, SQL Server first checked whether 
there was a cached plan that also has the same state of SET options. SQL Server didn’t find 
one, so it had to generate a new plan. Note that regardless of whether the change in the SET 
option does or doesn’t affect the query’s meaning, SQL Server looks for a match in the set 
options state in order to reuse a plan. 

Query sys.syscacheobjects, and you will find two plans for usp_CustCities, with two different 
setopts bitmaps, as shown in Table 7-9:

SELECT cacheobjtype, objtype, usecounts, setopts, sql 

FROM sys.syscacheobjects 

WHERE sql NOT LIKE '%cache%' 

AND sql LIKE '%usp_CustCities%';

Why should you care? Client interfaces and tools typically change the state of some SET 
options whenever you make a new connection to the database. Different client interfaces 
change different sets of options, yielding different execution environments. If you’re using 
multiple database interfaces and tools to connect to the database and they have different 
execution environments, they won’t be able to reuse each other’s plans. You can easily identify 
the SET options that each client tool changes by running a trace while the applications 

PICCO Austria NULL Salzburg Austria..Salzburg

MAISD Belgium NULL Bruxelles Belgium..Bruxelles

SUPRD Belgium NULL Charleroi Belgium..Charleroi

QUEDE Brazil RJ Rio de Janeiro Brazil.RJ.Rio de Janeiro

RICAR Brazil RJ Rio de Janeiro Brazil.RJ.Rio de Janeiro

HANAR Brazil RJ Rio de Janeiro Brazil.RJ.Rio de Janeiro

GOURL Brazil SP Campinas Brazil.SP.Campinas

WELLI Brazil SP Resende Brazil.SP.Resende

TRADH Brazil SP Sao Paulo Brazil.SP.Sao Paulo

FAMIA Brazil SP Sao Paulo Brazil.SP.Sao Paulo

COMMI Brazil SP Sao Paulo Brazil.SP.Sao Paulo

… … … … …

Table 7-9 Execution Plans for usp_CustCities in sys.syscacheobjects 

cacheobjtype objtype usecounts setopts sql

Compiled Plan Proc 1 4347 CREATE PROC dbo.usp_CustCities … 

Compiled Plan Proc 1 4339 CREATE PROC dbo.usp_CustCities …  

Table 7-8 Output of usp_CustCities when CONCAT_NULL_YIELDS_NULL Is OFF 
(Abbreviated)

CustomerID Country Region City CRC



284 Inside Microsoft SQL Server 2005: T-SQL Programming
connect to the database. If you see discrepancies in the execution environment, you can code 
explicit SET commands in all applications, which will be submitted whenever a new connec-
tion is made. This way, all applications will have sessions with the same execution environment 
and be able to reuse one another’s plans.

When you’re done experimenting, turn the CONCAT_NULL_YIELDS_NULL option back 
ON:

SET CONCAT_NULL_YIELDS_NULL ON;

This is just one case in which an execution plan is not reused. There are many others. At the 
end of the following section, I’ll provide a resource where you can find more.

Parameter Sniffing Problem

As I mentioned earlier, SQL Server will generate a plan for a stored procedure based on the 
inputs provided to it upon first invocation, for better or worse. “First invocation” also refers to 
the first invocation after a plan was removed from cache for lack of reuse or for any other 
reason. The optimizer “knows” what the values of the input parameters are, and it generates 
an adequate plan for those inputs. However, things are different when you refer to local vari-
ables in your queries. And for the sake of our discussion, it doesn’t matter if these are local 
variables of a plain batch or of a stored procedure. The optimizer cannot “sniff” the content of 
the variables; therefore, when it optimizes the query, it must make a guess. Obviously, this can 
lead to poor plans if you’re not aware of the problem and don’t take corrective measures.

To demonstrate the problem, first insert a new order to the Orders table, specifying the 
GETDATE function for the OrderDate column:

INSERT INTO dbo.Orders(OrderDate, CustomerID, EmployeeID) 

VALUES(GETDATE(), N'ALFKI', 1);

Alter the usp_GetOrders stored procedure so that it will declare a local variable and use it in 
the query’s filter:

ALTER PROC dbo.usp_GetOrders 

@d AS INT = 0 

AS 

 

DECLARE @odate AS DATETIME; 

SET @odate = DATEADD(day, -@d, CONVERT(VARCHAR(8), GETDATE(), 112)); 

 

SELECT OrderID, CustomerID, EmployeeID, OrderDate 

FROM dbo.Orders 

WHERE OrderDate >= @odate; 

GO

The procedure defines the integer input parameter @d with a default value 0. It declares a 
datetime local variable called @odate, which is set to today’s date minus @d days. The stored 



Chapter 7 Stored Procedures 285
procedure then issues a query returning all orders with an OrderDate greater than or equal to 
@odate. Invoke the stored procedure using the default value of @d, which will generate the 
output shown in Table 7-10:

EXEC dbo.usp_GetOrders;

Note The output that you get will have a value in OrderDate that reflects the GETDATE 
value of when you inserted the new order. 

The optimizer didn’t know what the value of @odate was when it optimized the query. So it 
used a conservative hard-coded value that is 30 percent of the number of rows in the table. 
For such a low-selectivity estimation, the optimizer naturally chose a table scan, even though 
the query in practice is highly selective and would be much better off using the index on 
OrderDate.

You can observe the optimizer’s estimation and chosen plan by requesting an estimated 
execution plan (not actual). The estimated execution plan you get for this invocation of the 
stored procedure is shown in Figure 7-3.

Figure 7-3 Execution plan showing estimated number of rows

You can see that the optimizer chose a table scan (unordered clustered index scan), due to its 
selectivity estimation of 30 percent (249 rows / 830 total number of rows).

There are several ways to tackle the problem. One is to use, whenever possible, inline 
expressions in the query that refer to the input parameter instead of a variable. In our case, 
it is possible:

ALTER PROC dbo.usp_GetOrders 

@d AS INT = 0 

AS 

 

Table 7-10 Output of usp_GetOrders 

OrderID CustomerID EmployeeID OrderDate

11079 ALFKI 1 2006-02-12 01:23:53.210



286 Inside Microsoft SQL Server 2005: T-SQL Programming
SELECT OrderID, CustomerID, EmployeeID, OrderDate 

FROM dbo.Orders 

WHERE OrderDate >= DATEADD(day, -@d, CONVERT(VARCHAR(8), GETDATE(), 112)); 

GO

Run usp_GetOrders again, and notice the use of the index on OrderDate in the execution plan:

EXEC dbo.usp_GetOrders;

The plan that you will get is similar to the one shown earlier in Figure 7-1. The I/O cost here 
is just four logical reads.

Another way to deal with the problem is to use a stub procedure. That is, create two proce-
dures. The first procedure accepts the original parameter, assigns the result of the calculation 
to a local variable, and invokes a second procedure providing it with the variable as input. The 
second procedure accepts an input order date passed to it and invokes the query that refers 
directly to the input parameter. When a plan is generated for the procedure that actually 
invokes the query (the second procedure), the value of the parameter will, in fact, be known 
at optimization time.

Run the code in Listing 7-3 to implement this solution.

Listing 7-3 Using a stub procedure

IF OBJECT_ID('dbo.usp_GetOrdersQuery') IS NOT NULL 

DROP PROC dbo.usp_GetOrdersQuery; 

GO 

 

CREATE PROC dbo.usp_GetOrdersQuery 

@odate AS DATETIME 

AS 

 

SELECT OrderID, CustomerID, EmployeeID, OrderDate 

FROM dbo.Orders 

WHERE OrderDate >= @odate; 

GO 

 

ALTER PROC dbo.usp_GetOrders 

@d AS INT = 0 

AS 

 

DECLARE @odate AS DATETIME; 

SET @odate = DATEADD(day, -@d, CONVERT(VARCHAR(8), GETDATE(), 112)); 

 

EXEC dbo.usp_GetOrdersQuery @odate; 

GO

Invoke the usp_GetOrders procedure:

EXEC dbo.usp_GetOrders;



Chapter 7 Stored Procedures 287
You will get an optimal plan for the input similar to the one shown earlier in Figure 7-1, yielding 
an I/O cost of only four logical reads.

Don’t forget the issues I described in the previous section regarding the reuse of execution 
plans. The fact that you got an efficient execution plan for this input doesn’t necessarily mean 
that you would want to reuse it in following invocations. It all depends on whether the inputs 
are typical or atypical. Make sure you follow the recommendations I gave earlier in case the 
inputs are atypical.

Finally, there’s a new tool provided to you in SQL Server 2005 to tackle the problem—the 
OPTIMIZE FOR query hint. This hint allows you to provide SQL Server with a literal that 
reflects the selectivity of the variable, in case the input is typical. For example, if you know that 
the variable will typically end up with a highly selective value, as you did in our example, you 
can provide the literal '99991231', which reflects that:

ALTER PROC dbo.usp_GetOrders 

@d AS INT = 0 

AS 

 

DECLARE @odate AS DATETIME; 

SET @odate = DATEADD(day, -@d, CONVERT(VARCHAR(8), GETDATE(), 112)); 

 

SELECT OrderID, CustomerID, EmployeeID, OrderDate 

FROM dbo.Orders 

WHERE OrderDate >= @odate 

OPTION(OPTIMIZE FOR(@odate = '99991231')); 

GO

Run the stored procedure:

EXEC dbo.usp_GetOrders;

You will get an optimal plan for a highly selective OrderDate similar to the one shown earlier in 
Figure 7-1, yielding an I/O cost of four logical reads.

Note that you might face similar problems when changing the values of input parameters 
before using them in queries. For example, say you define an input parameter called @odate 
and assign it with a default value of NULL. Before using the parameter in the query’s filter, 
you apply the following code:

SET @odate = COALESCE(@odate, '19000101');

The query then filters orders where OrderDate >= @odate. When the query is optimized, the 
optimizer is not aware of the fact that @odate has undergone a change, and it optimizes the 
query with the original input (NULL) in mind. You will face a similar problem to the one 
I described with variables, and you should tackle it using similar logic.

More Info For more information on the subject, please refer to the white paper “Batch 
Compilation, Recompilation, and Plan Caching Issues in SQL Server 2005,” by Arun Marathe, 
which can be accessed at http://www.microsoft.com/technet/prodtechnol/sql/2005/recomp.mspx.



288 Inside Microsoft SQL Server 2005: T-SQL Programming
When you’re done, run the following code for cleanup:

DELETE FROM dbo.Orders WHERE OrderID > 11077; 

GO 

IF OBJECT_ID('dbo.usp_GetOrders') IS NOT NULL 

DROP PROC dbo.usp_GetOrders; 

GO 

IF OBJECT_ID('dbo.usp_CustCities') IS NOT NULL 

DROP PROC dbo.usp_CustCities; 

GO 

IF OBJECT_ID('dbo.usp_GetOrdersQuery') IS NOT NULL 

DROP PROC dbo.usp_GetOrdersQuery; 

GO

EXECUTE AS
Stored procedures can play an important security role. You can grant users EXECUTE permis-
sions on the stored procedure without granting them direct access to the underlying objects, 
thus giving you more control over resource access. However, there are exceptions that would 
require the caller to have direct permissions on underlying objects. To avoid requiring direct 
permissions from the caller, all following must be true:

■ The stored procedure and the underlying objects belong to the same schema.

■ The activity is static (as opposed to using dynamic SQL).

■ The activity is DML (SELECT, INSERT, UPDATE, or DELETE), or it is an execution of 
another stored procedure.

If any listed item is not true, the caller will be required to have direct permissions against the 
underlying objects. Otherwise, the statements in the stored procedure that do not meet the 
requirements will fail on a security violation.

That’s the behavior in SQL Server 2000, which cannot be changed. That’s also the behavior in 
SQL Server 2005, only now you can set the security context of the stored procedure to that of 
another user, as if the other user was running the stored procedure. When you create the 
stored procedure, you can specify an EXECUTE AS clause with one of the following options:

■ CALLER (default) Security context of the caller

■ SELF Security context of the user creating or altering the stored procedure

■ OWNER Security context of the owner of the stored procedure

■ ‘user_name’ Security context of the specified user name

Remember, all chaining rules and requirements not to have direct permissions for underlying 
objects still apply, but they apply to the effective user, not the calling user (unless CALLER 
was specified, of course). 



Chapter 7 Stored Procedures 289
In addition, a user that has impersonation rights can issue an independent EXECUTE AS 
<option> command to impersonate another entity (login or user). If this is done, it’s as if the 
session changes its security context to that of the impersonated entity.

Parameterizing Sort Order
To practice what you’ve learned so far, try to provide a solution to the following task: write a 
stored procedure called usp_GetSortedShippers that accepts a column name from the Ship-
pers table in the Northwind database as one of the inputs (@colname), and that returns the 
rows from the table sorted by the input column name. Assume also that you have a sort direc-
tion as input (@sortdir), with the value 'A' representing ascending order and 'D' representing 
descending order. The stored procedure should be written with performance in mind—that is, 
it should use indexes when appropriate (for example, a clustered or nonclustered covering 
index on the sort column). 

Listing 7-4 shows the first suggested solution for the task. 

Listing 7-4 Parameterizing sort order, solution 1

USE Northwind; 

GO 

IF OBJECT_ID('dbo.usp_GetSortedShippers') IS NOT NULL 

DROP PROC dbo.usp_GetSortedShippers; 

GO  

CREATE PROC dbo.usp_GetSortedShippers 

@colname AS sysname, @sortdir AS CHAR(1) = 'A' 

AS 

 

IF @sortdir = 'A' 

SELECT ShipperID, CompanyName, Phone 

FROM dbo.Shippers 

ORDER BY 

CASE @colname 

WHEN N'ShipperID' THEN CAST(ShipperID AS SQL_VARIANT) 

WHEN N'CompanyName' THEN CAST(CompanyName AS SQL_VARIANT) 

WHEN N'Phone' THEN CAST(Phone AS SQL_VARIANT) 

END 

ELSE 

SELECT ShipperID, CompanyName, Phone 

FROM dbo.Shippers 

ORDER BY 

CASE @colname 

WHEN N'ShipperID' THEN CAST(ShipperID AS SQL_VARIANT) 

WHEN N'CompanyName' THEN CAST(CompanyName AS SQL_VARIANT) 

WHEN N'Phone' THEN CAST(Phone AS SQL_VARIANT) 

END DESC; 

GO

The solution uses an IF statement to determine which of two queries to run based on the 
requested sort direction. The only difference between the queries is that one uses an ascending 



290 Inside Microsoft SQL Server 2005: T-SQL Programming
order for the sort expression and the other a descending one. Each query uses a single CASE 
expression that returns the appropriate column value based on the input column name.

Note SQL Server determines the datatype of the result of a CASE expression based on 
the datatype with the highest precedence among the possible result values of the expression; 
not by the datatype of the actual returned value. This means, for example, that if the CASE 
expression returns a VARCHAR(30) value in one of the THEN clauses and an INT value in 
another, the result of the expression will always be INT, because INT is higher in precedence 
than VARCHAR. If in practice the VARCHAR(30) value is returned, SQL Server will attempt 
to convert it. If the value is not convertible, you get a runtime error. If it is convertible, it 
becomes an INT and, of course, might have a different sort behavior than the original value.

To avoid such issues, I simply converted all the possible return values to SQL_VARIANT. SQL 
Server will set the datatype of the CASE expression to SQL_VARIANT, but it will preserve 
the original base types within that SQL_VARIANT.

Run the following code to test the solution, requesting to sort the shippers by ShipperID in 
descending order, and it will generate the output shown in Table 7-11:

EXEC dbo.usp_GetSortedShippers N'ShipperID', N'D';

The output is logically correct, but notice the plan generated for the stored procedure, shown 
in Figure 7-4.

Figure 7-4 Execution plan showing a table scan (unordered clustered index scan) and 

a sort operator

Remember that the optimizer cannot rely on the sort that the index maintains if you 
performed manipulation on the sort column. The plan shows a table scan (unordered 
clustered index scan) followed by an explicit sort operation. For the problem the query 
was intended to solve, an optimal plan would have performed an ordered scan operation in 
the clustered index defined on the ShipperID column—eliminating the need for an explicit 
sort operation. 

Listing 7-5 shows the second solution for the task.

Table 7-11 Output of usp_GetSortedShippers

ShipperID CompanyName Phone

3 Federal Shipping (503) 555-9931

2 United Package (503) 555-3199

1 Speedy Express (503) 555-9831



Chapter 7 Stored Procedures 291
Listing 7-5 Parameterizing sort order, solution 2

ALTER PROC dbo.usp_GetSortedShippers 

@colname AS sysname, @sortdir AS CHAR(1) = 'A' 

AS 

 

SELECT ShipperID, CompanyName, Phone 

FROM dbo.Shippers 

ORDER BY 

CASE WHEN @colname = N'ShipperID' AND @sortdir = 'A' 

THEN ShipperID END, 

CASE WHEN @colname = N'CompanyName' AND @sortdir = 'A' 

THEN CompanyName END, 

CASE WHEN @colname = N'Phone' AND @sortdir = 'A' 

THEN Phone END, 

CASE WHEN @colname = N'ShipperID' AND @sortdir = 'D' 

THEN ShipperID END DESC, 

CASE WHEN @colname = N'CompanyName' AND @sortdir = 'D' 

THEN CompanyName END DESC, 

CASE WHEN @colname = N'Phone' AND @sortdir = 'D' 

THEN Phone END DESC; 

GO

This solution uses CASE expressions in a more sophisticated way. Each column and sort 
direction combination is treated with its own CASE expression. Only one of the CASE expres-
sions will yield TRUE for all rows, given the column name and sort direction that particular 
CASE expression is looking for. All other CASE expressions will return NULL for all rows. 
This means that only one of the CASE expressions—the one that looks for the given column 
name and sort direction—will affect the order of the output.

Run the following code to test the stored procedure:

EXEC dbo.usp_GetSortedShippers N'ShipperID', N'D';

Though this stored procedure applies an interesting logical manipulation, it doesn’t change 
the fact that you perform manipulation on the column and don’t sort by it as is. This means 
that you will get a similar nonoptimal plan to the one shown earlier in Figure 7-4.

Listing 7-6 shows the third solution for the task.

Listing 7-6 Parameterizing sort order, solution 3

ALTER PROC dbo.usp_GetSortedShippers 

@colname AS sysname, @sortdir AS CHAR(1) = 'A' 

AS 

 

IF @colname NOT IN (N'ShipperID', N'CompanyName', N'Phone') 

BEGIN 

RAISERROR('Possible SQL injection attempt.', 16, 1); 

RETURN; 

END 

 



292 Inside Microsoft SQL Server 2005: T-SQL Programming
DECLARE @sql AS NVARCHAR(4000); 

 

SET @sql = N'SELECT ShipperID, CompanyName, Phone 

FROM dbo.Shippers 

ORDER BY ' 

+ QUOTENAME(@colname) 

+ CASE @sortdir WHEN 'D' THEN N' DESC' ELSE '' END 

+ ';'; 

 

EXEC sp_executesql @sql; 

GO

This solution simply uses dynamic execution, concatenating the input column name and sort 
direction to the ORDER BY clause of the query. In terms of performance the solution achieves 
our goal—namely, it will use an index efficiently if an appropriate one exists. To see that it 
does, run the following code: 

EXEC dbo.usp_GetSortedShippers N'ShipperID', N'D';

Observe in the execution plan shown in Figure 7-5 that the plan performs an ordered back-
ward clustered index scan with no sort operator, which is optimal for these inputs.

Figure 7-5 Execution plan showing ordered backward clustered index scan

Another advantage of this solution is that it’s easy to maintain. The downside of this solution 
is the use of dynamic execution, which involves many security-related issues (for example, 
ownership chaining and SQL injection if the inputs are not validated). For details about secu-
rity issues related to dynamic execution, please refer to Chapter 4.

The fourth solution that I’ll cover is shown in Listing 7-7. 

Listing 7-7 Parameterizing sort order, solution 4

CREATE PROC dbo.usp_GetSortedShippers_ShipperID_A 

AS 

SELECT ShipperID, CompanyName, Phone 

FROM dbo.Shippers 

ORDER BY ShipperID; 

GO 

CREATE PROC dbo.usp_GetSortedShippers_CompanyName_A 

AS 

SELECT ShipperID, CompanyName, Phone 

FROM dbo.Shippers 

ORDER BY CompanyName; 

GO 

CREATE PROC dbo.usp_GetSortedShippers_Phone_A 



Chapter 7 Stored Procedures 293
AS 

SELECT ShipperID, CompanyName, Phone 

FROM dbo.Shippers 

ORDER BY Phone; 

GO 

CREATE PROC dbo.usp_GetSortedShippers_ShipperID_D 

AS 

SELECT ShipperID, CompanyName, Phone 

FROM dbo.Shippers 

ORDER BY ShipperID DESC; 

GO 

CREATE PROC dbo.usp_GetSortedShippers_CompanyName_D 

AS 

SELECT ShipperID, CompanyName, Phone 

FROM dbo.Shippers 

ORDER BY CompanyName DESC; 

GO 

CREATE PROC dbo.usp_GetSortedShippers_Phone_D 

AS 

SELECT ShipperID, CompanyName, Phone 

FROM dbo.Shippers 

ORDER BY Phone DESC; 

GO 

 

ALTER PROC dbo.usp_GetSortedShippers 

@colname AS sysname, @sortdir AS CHAR(1) = 'A' 

AS 

 

IF @colname = N'ShipperID' AND @sortdir = 'A' 

EXEC dbo.usp_GetSortedShippers_ShipperID_A; 

ELSE IF @colname = N'CompanyName' AND @sortdir = 'A' 

EXEC dbo.usp_GetSortedShippers_CompanyName_A; 

ELSE IF @colname = N'Phone' AND @sortdir = 'A' 

EXEC dbo.usp_GetSortedShippers_Phone_A; 

ELSE IF @colname = N'ShipperID' AND @sortdir = 'D' 

EXEC dbo.usp_GetSortedShippers_ShipperID_D; 

ELSE IF @colname = N'CompanyName' AND @sortdir = 'D' 

EXEC dbo.usp_GetSortedShippers_CompanyName_D; 

ELSE IF @colname = N'Phone' AND @sortdir = 'D' 

EXEC dbo.usp_GetSortedShippers_Phone_D; 

GO

This solution might seem childish at first glance. You create a separate stored procedure with 
a single static query for each possible combination of inputs. Then, usp_GetSortedShippers 
can act as a redirector. Simply use a series of IF / ELSE IF statements to check for each possible 
combination of inputs, and you explicitly invoke the appropriate stored procedure for each. 
Sure, it is a bit long and requires more maintenance than the previous solution, but it uses 
static queries that generate optimal plans. Note that each query will get its own plan and will 
be able to reuse a previously cached plan for the same query.

To test the procedure, run the following code:

EXEC dbo.usp_GetSortedShippers N'ShipperID', N'D';



294 Inside Microsoft SQL Server 2005: T-SQL Programming
You will get the optimal plan for the given inputs, similar to the plan shown earlier in Figure 7-5.

When you’re done, run the following code for cleanup:

IF OBJECT_ID('dbo.usp_GetSortedShippers') IS NOT NULL 

DROP PROC dbo.usp_GetSortedShippers; 

IF OBJECT_ID('dbo.usp_GetSortedShippers_ShipperID_A') IS NOT NULL 

DROP PROC dbo.usp_GetSortedShippers_ShipperID_A; 

IF OBJECT_ID('dbo.usp_GetSortedShippers_CompanyName_A') IS NOT NULL 

DROP PROC dbo.usp_GetSortedShippers_CompanyName_A; 

IF OBJECT_ID('dbo.usp_GetSortedShippers_Phone_A') IS NOT NULL 

DROP PROC dbo.usp_GetSortedShippers_Phone_A; 

IF OBJECT_ID('dbo.usp_GetSortedShippers_ShipperID_D') IS NOT NULL 

DROP PROC dbo.usp_GetSortedShippers_ShipperID_D; 

IF OBJECT_ID('dbo.usp_GetSortedShippers_CompanyName_D') IS NOT NULL 

DROP PROC dbo.usp_GetSortedShippers_CompanyName_D; 

IF OBJECT_ID('dbo.usp_GetSortedShippers_Phone_D') IS NOT NULL 

DROP PROC dbo.usp_GetSortedShippers_Phone_D;

Dynamic Pivot
As another exercise, assume that you’re given the task of writing a stored procedure that pro-
duces a dynamic pivot in the database you are connected to. The stored procedure accepts the 
following parameters (all Unicode character strings): @query, @on_rows, @on_cols, @agg_func 
and @agg_col. Based on the inputs, you’re supposed to construct a PIVOT query string and 
execute it dynamically. Here’s the description of the input parameters:

■ @query Query or table/view name given to the PIVOT operator as input

■ @on_rows Column/expression list that will be used as the grouping columns

■ @on_cols Column or expression to be pivoted; the distinct values from this column 
will become the target column names

■ @agg_func Aggregate function (MIN, MAX, SUM, COUNT, and so on)

■ @agg_col Column/expression given to the aggregate function as input

If you’re still confused regarding the requirements and the meaning of each input, skip the 
solution in Listing 7-8. Instead, examine the invocation examples and the outputs that follow 
the listing and the explanation of the solution. Then try to provide your own solution before 
looking at this one.

Important Note that the solution in Listing 7-8 follows bad programming practices and is 
insecure. I’ll use this solution to discuss flaws in its implementation and then suggest a more 
robust and secure alternative.

Listing 7-8 shows a suggested solution for the task.



Chapter 7 Stored Procedures 295
Listing 7-8 Creation script for the sp_pivot stored procedure

USE master; 

GO 

 

IF OBJECT_ID('dbo.sp_pivot') IS NOT NULL 

DROP PROC dbo.sp_pivot; 

GO 

 

CREATE PROC dbo.sp_pivot 

@query AS NVARCHAR(MAX), 

@on_rows AS NVARCHAR(MAX), 

@on_cols AS NVARCHAR(MAX), 

@agg_func AS NVARCHAR(MAX) = N'MAX', 

@agg_col AS NVARCHAR(MAX) 

AS 

 

DECLARE  

@sql AS NVARCHAR(MAX), 

@cols AS NVARCHAR(MAX), 

@newline AS NVARCHAR(2); 

 

SET @newline = NCHAR(13) + NCHAR(10); 

 

-- If input is a valid table or view 

-- construct a SELECT statement against it 

IF COALESCE(OBJECT_ID(@query, N'U'), 

OBJECT_ID(@query, N'V')) IS NOT NULL 

SET @query = N'SELECT * FROM ' + @query; 

 

-- Make the query a derived table 

SET @query = N'( ' + @query + @newline + N' ) AS Query'; 

 

-- Handle * input in @agg_col 

IF @agg_col = N'*' 

SET @agg_col = N'1'; 

 

-- Construct column list 

SET @sql = 

N'SET @result = ' + @newline + 

N' STUFF(' + @newline + 

N' (SELECT N'','' + ' 

+ N'QUOTENAME(pivot_col) AS [text()]' + @newline + 

N' FROM (SELECT DISTINCT(' 

+ @on_cols + N') AS pivot_col' + @newline + 

N' FROM' + @query + N') AS DistinctCols' + @newline + 

N' ORDER BY pivot_col' + @newline + 

N' FOR XML PATH('''')),' + @newline + 

N' 1, 1, N'''');' 

 

EXEC sp_executesql 

@stmt = @sql, 

@params = N'@result AS NVARCHAR(MAX) OUTPUT', 

@result = @cols OUTPUT; 

 



296 Inside Microsoft SQL Server 2005: T-SQL Programming
-- Create the PIVOT query 

SET @sql =  

N'SELECT *' + @newline + 

N'FROM' + @newline + 

N' ( SELECT ' + @newline + 

N' ' + @on_rows + N',' + @newline + 

N' ' + @on_cols + N' AS pivot_col,' + @newline + 

N' ' + @agg_col + N' AS agg_col' + @newline + 

N' FROM ' + @newline + 

N' ' + @query + @newline + 

N' ) AS PivotInput' + @newline + 

N' PIVOT' + @newline + 

N' ( ' + @agg_func + N'(agg_col)' + @newline + 

N' FOR pivot_col' + @newline + 

N' IN(' + @cols + N')' + @newline + 

N' ) AS PivotOutput;' 

 

EXEC sp_executesql @sql; 

GO

I’m using this exercise both to explain how to achieve dynamic pivoting and to discuss bad 
programming practices and security flaws. I’ll start by discussing the logic behind the code, 
and then I’ll describe the bad programming practices and flaws and present a more robust 
and secure solution.

The stored procedure is created as a special procedure in master to allow running it in any 
database. Remember that dynamic execution is invoked in the context of the current data-
base. This means that the stored procedure’s code will effectively run in the context of the 
current database, interacting with local user objects. 

The code checks whether the input parameter @query contains a valid table or view. If it does, 
the code constructs a SELECT statement against the object, storing the statement back in 
@query. If @query doesn’t contain an existing table/view name, the code assumes that it 
already contains a query.

The code then makes the query a derived table by adding surrounding parentheses and a 
derived table alias (AS Query). The result string is stored back in @query. This derived table 
will be used both to determine the distinct values that need to be pivoted (from the column/
expression stored in the @on_cols input parameter) and as the input table expression for the 
PIVOT operator.

Because the PIVOT operator doesn’t support * as an input for the aggregate function—for 
example, COUNT(*)—the code substitutes a * input in @agg_col with the constant 1.

The code continues by constructing a dynamic query string within the @sql variable. This 
string has code that constructs the column list that will later be served to PIVOT’s IN clause. 
The column list is constructed by a FOR XML PATH query. The query concatenates the 
distinct list of values from the column/expression stored in the @on_cols input parameter. 



Chapter 7 Stored Procedures 297
The concatenation query string (stored in @sql) is invoked dynamically. The dynamic code 
returns through an output parameter a string with the column list, and it assigns it to the 
variable @cols.

The next section of code constructs the actual PIVOT query string in the @sql variable. It con-
structs an outer query against the derived table (aliased as Query), which is currently stored 
in @query. The outer query creates another derived table called PivotInput. The SELECT list in 
the outer query includes the following items:

■ The grouping column/expression list stored in @on_rows, which is the part that the 
PIVOT operator will use in its implicit grouping activity

■ The columns/expression to be pivoted (currently stored in @on_cols), aliased as 
pivot_col

■ The column that will be used as the aggregate function’s input (currently stored in 
@agg_col), aliased as agg_col

The PIVOT operator works on the derived table PivotInput. Within PIVOT’s parentheses, the 
code embeds the following items: the aggregate function (@agg_func) with the aggregate column 
as its input (agg_col), and the column list (@cols) within the parentheses of the IN clause. The out-
ermost query simply uses a SELECT * to grab all columns returned from the PIVOT operation.

Finally, the PIVOT query constructed in the @sql variable is invoked dynamically.

More Info For in-depth discussion of the PIVOT operator, refer to Inside T-SQL Querying.

The sp_pivot stored procedure is extremely flexible, though this flexibility comes at a high secu-
rity cost, which I’ll describe later. To demonstrate its flexibility, I’ll provide three examples of 
invoking it with different inputs. Make sure you study and understand all the inputs carefully.

The following code produces the count of orders per employee and order year, pivoted by 
order month, and it generates the output shown in Table 7-12:

EXEC Northwind.dbo.sp_pivot 

@query = N'dbo.Orders', 

@on_rows = N'EmployeeID AS empid, YEAR(OrderDate) AS order_year', 

@on_cols = N'MONTH(OrderDate)', 

@agg_func = N'COUNT', 

@agg_col = N'*';

Table 7-12 Count of Orders per Employee and Order Year Pivoted by Order Month

empid order_year 1 2 3 4 5 6 7 8 9 10 11 12

1 1996 0 0 0 0 0 0 1 5 5 2 4 9

2 1996 0 0 0 0 0 0 1 2 5 2 2 4

3 1996 0 0 0 0 0 0 4 2 1 3 4 4



298 Inside Microsoft SQL Server 2005: T-SQL Programming
The following code produces the sum of the value (quantity * unit price) per employee, piv-
oted by order year, and it generates the output shown in Table 7-13:

EXEC Northwind.dbo.sp_pivot 

@query = N' 

SELECT O.OrderID, EmployeeID, OrderDate, Quantity, UnitPrice 

FROM dbo.Orders AS O 

JOIN dbo.[Order Details] AS OD 

ON OD.OrderID = O.OrderID', 

@on_rows = N'EmployeeID AS empid', 

@on_cols = N'YEAR(OrderDate)', 

@agg_func = N'SUM', 

@agg_col = N'Quantity*UnitPrice';

4 1996 0 0 0 0 0 0 7 5 3 8 5 3

5 1996 0 0 0 0 0 0 3 0 1 2 2 3

6 1996 0 0 0 0 0 0 2 4 3 0 3 3

7 1996 0 0 0 0 0 0 0 1 2 5 3 0

8 1996 0 0 0 0 0 0 2 6 3 2 2 4

9 1996 0 0 0 0 0 0 2 0 0 2 0 1

1 1997 3 2 5 1 5 4 7 3 8 7 3 7

2 1997 4 1 4 3 3 4 3 1 7 1 5 5

3 1997 7 9 3 5 5 6 2 4 4 7 8 11

4 1997 8 6 4 8 5 5 6 11 5 7 6 10

5 1997 0 0 3 0 2 2 1 3 2 3 1 1

6 1997 2 2 2 4 2 2 2 2 1 4 5 5

7 1997 3 1 2 6 5 1 5 3 5 1 1 3

8 1997 5 8 6 2 4 3 6 5 3 7 2 3

9 1997 1 0 1 2 1 3 1 1 2 1 3 3

1 1998 9 9 11 8 5 0 0 0 0 0 0 0

2 1998 7 3 9 18 2 0 0 0 0 0 0 0

3 1998 10 6 12 10 0 0 0 0 0 0 0 0

4 1998 6 14 12 10 2 0 0 0 0 0 0 0

5 1998 4 6 2 1 0 0 0 0 0 0 0 0

6 1998 3 4 7 5 0 0 0 0 0 0 0 0

7 1998 4 6 4 9 2 0 0 0 0 0 0 0

8 1998 7 2 10 9 3 0 0 0 0 0 0 0

9 1998 5 4 6 4 0 0 0 0 0 0 0 0

Table 7-12 Count of Orders per Employee and Order Year Pivoted by Order Month

empid order_year 1 2 3 4 5 6 7 8 9 10 11 12



Chapter 7 Stored Procedures 299
The following code produces the sum of the quantity per store, pivoted by order year and 
month, and it generates the output shown in Table 7-14:

EXEC pubs.dbo.sp_pivot 

@query = N' 

SELECT stor_id, YEAR(ord_date) AS oy, MONTH(ord_date) AS om, qty 

FROM dbo.sales', 

@on_rows = N'stor_id', 

@on_cols = N' 

CAST(oy AS VARCHAR(4)) + ''_'' 

+ RIGHT(''0'' + CAST(om AS VARCHAR(2)), 2)', 

@agg_func = N'SUM', 

@agg_col = N'qty';

The implementation of the stored procedure sp_pivot suffers from bad programming prac-
tices and security flaws. As I mentioned earlier in the chapter, Microsoft strongly advises 
against using the sp_ prefix for user-defined procedure names. On one hand, creating this pro-
cedure as a special procedure allows flexibility; on the other hand, by doing so you’re relying 
on behavior that is not supported. It is advisable to forgo the flexibility obtained by creating 
the procedure with the sp_ prefix and create it with another prefix as a user-defined stored 
procedure in the user databases where you need it.

Table 7-13 Sum of Value per Employee Pivoted by Order Year

empid 1996 1997 1998

3 19231.80 111788.61 82030.89

6 17731.10 45992.00 14475.00

9 11365.70 29577.55 42020.75

7 18104.80 66689.14 56502.05

1 38789.00 97533.58 65821.13

4 53114.80 139477.70 57594.95

2 22834.70 74958.60 79955.96

5 21965.20 32595.05 21007.50

8 23161.40 59776.52 50363.11

Table 7-14 Sum of Quantity per Store Pivoted by Order Year and Month

stor_id 1992_06 1993_02 1993_03 1993_05 1993_10 1993_12 1994_09

6380 NULL NULL NULL NULL NULL NULL 8

7066 NULL NULL NULL 50 NULL NULL 75

7067 80 NULL NULL NULL NULL NULL 10

7131 NULL NULL NULL 85 NULL NULL 45

7896 NULL 35 NULL NULL 15 10 NULL

8042 NULL NULL 25 30 NULL NULL 25



300 Inside Microsoft SQL Server 2005: T-SQL Programming
The code defines all input parameters with a virtually unlimited size (using the MAX speci-
fier) and doesn’t have any input validation. Because the stored procedure invokes dynamic 
execution based on user input strings, it’s very important to limit the sizes of the inputs and 
to check those for potential SQL injection attacks. With the existing implementation it’s very 
easy for hackers to inject code that will do havoc and mayhem in your system. You can find 
discussions about SQL injection in Chapter 4 and in Books Online (URL: http://msdn2
.microsoft.com/en-us/library/ms161953(SQL.90).aspx). As an example for injecting malicious 
code through user inputs, consider the following invocation of the stored procedure:

EXEC Northwind.dbo.sp_pivot 

@query = N'dbo.Orders', 

@on_rows = N'1 AS dummy_col ) DummyTable; 

PRINT ''So easy to inject code here! 

This could have been a DROP TABLE or xp_cmdshell command!''; 

SELECT * FROM (select EmployeeID AS empid', 

@on_cols = N'MONTH(OrderDate)', 

@agg_func = N'COUNT', 

@agg_col = N'*';

The query string generated by the stored procedure looks like this:

SELECT * 

FROM 

( SELECT  

1 AS dummy_col ) DummyTable; 

PRINT 'So easy to inject code here! 

This could have been a DROP TABLE or xp_cmdshell command!'; 

SELECT * FROM (select EmployeeID AS empid, 

MONTH(OrderDate) AS pivot_col, 

1 AS agg_col 

FROM  

( SELECT * FROM dbo.Orders 

) AS Query 

) AS PivotInput 

PIVOT 

( COUNT(agg_col) 

FOR pivot_col 

IN([1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]) 

) AS PivotOutput;

When this code is executed, the injected PRINT statement executes without any problem. I 
used a harmless PRINT statement just to demonstrate that code can be easily injected here, 
but obviously the malicious code could be any valid T-SQL code; for example, a DROP TABLE 
statement, invocation of xp_cmdshell, and so on. In short, it is vital here to take protective 
measures against SQL injection attempts, as I will demonstrate shortly.

Besides SQL injection attempts, input validation is not performed at all; for example, to verify 
the validity of input object and column names. The stored procedure also doesn’t incorporate 
exception handling. I discuss exception handling in Chapter 10, so I won’t demonstrate it 
here in the revised solution. I will demonstrate input validation, though.



Chapter 7 Stored Procedures 301
Before presenting the revised solution, first get rid of the existing sp_pivot implementation:

USE master; 

GO 

IF OBJECT_ID('dbo.sp_pivot') IS NOT NULL 

DROP PROC dbo.sp_pivot;

Listing 7-9 shows a suggested revised solution for the task.

Listing 7-9 Creation script for the usp_pivot stored procedure

USE Northwind; 

GO 

 

IF OBJECT_ID('dbo.usp_pivot') IS NOT NULL 

DROP PROC dbo.usp_pivot; 

GO 

 

CREATE PROC dbo.usp_pivot 

@schema_name AS sysname = N'dbo', -- schema of table/view 

@object_name AS sysname = NULL, -- name of table/view 

@on_rows AS sysname = NULL, -- group by column 

@on_cols AS sysname = NULL, -- rotation column 

@agg_func AS NVARCHAR(12) = N'MAX', -- aggregate function 

@agg_col AS sysname = NULL -- aggregate column 

AS 

 

DECLARE  

@object AS NVARCHAR(600), 

@sql AS NVARCHAR(MAX), 

@cols AS NVARCHAR(MAX), 

@newline AS NVARCHAR(2), 

@msg AS NVARCHAR(500); 

 

SET @newline = NCHAR(13) + NCHAR(10); 

SET @object = QUOTENAME(@schema_name) + N'.' + QUOTENAME(@object_name); 

 

-- Check for missing input 

IF @schema_name IS NULL 

OR @object_name IS NULL 

OR @on_rows IS NULL 

OR @on_cols IS NULL 

OR @agg_func IS NULL 

OR @agg_col IS NULL 

BEGIN 

SET @msg = N'Missing input parameters: ' 

+ CASE WHEN @schema_name IS NULL THEN N'@schema_name;' ELSE N'' END 

+ CASE WHEN @object_name IS NULL THEN N'@object_name;' ELSE N'' END 

+ CASE WHEN @on_rows IS NULL THEN N'@on_rows;' ELSE N'' END 

+ CASE WHEN @on_cols IS NULL THEN N'@on_cols;' ELSE N'' END 

+ CASE WHEN @agg_func IS NULL THEN N'@agg_func;' ELSE N'' END 

+ CASE WHEN @agg_col IS NULL THEN N'@agg_col;' ELSE N'' END 

RAISERROR(@msg, 16, 1); 

RETURN; 

END 

 



302 Inside Microsoft SQL Server 2005: T-SQL Programming
-- Allow only existing table or view name as input object 

IF COALESCE(OBJECT_ID(@object, N'U'), 

OBJECT_ID(@object, N'V')) IS NULL 

BEGIN 

SET @msg = N'%s is not an existing table or view in the database.'; 

RAISERROR(@msg, 16, 1, @object); 

RETURN; 

END 

 

-- Verify that column names specified in @on_rows, @on_cols, @agg_col exist 

IF COLUMNPROPERTY(OBJECT_ID(@object), @on_rows, 'ColumnId') IS NULL 

OR COLUMNPROPERTY(OBJECT_ID(@object), @on_cols, 'ColumnId') IS NULL 

OR COLUMNPROPERTY(OBJECT_ID(@object), @agg_col, 'ColumnId') IS NULL 

BEGIN 

SET @msg = N'%s, %s and %s must' 

+ N' be existing column names in %s.'; 

RAISERROR(@msg, 16, 1, @on_rows, @on_cols, @agg_col, @object); 

RETURN; 

END 

 

-- Verify that @agg_func is in a known list of functions 

-- Add to list as needed and adjust @agg_func size accordingly 

IF @agg_func NOT IN 

(N'AVG', N'COUNT', N'COUNT_BIG', N'SUM', N'MIN', N'MAX', 

N'STDEV', N'STDEVP', N'VAR', N'VARP') 

BEGIN 

SET @msg = N'%s is an unsupported aggregate function.'; 

RAISERROR(@msg, 16, 1, @agg_func); 

RETURN; 

END 

 

-- Construct column list 

SET @sql = 

N'SET @result = ' + @newline + 

N' STUFF(' + @newline + 

N' (SELECT N'','' + ' 

+ N'QUOTENAME(pivot_col) AS [text()]' + @newline + 

N' FROM (SELECT DISTINCT(' 

+ QUOTENAME(@on_cols) + N') AS pivot_col' + @newline + 

N' FROM ' + @object + N') AS DistinctCols' + @newline + 

N' ORDER BY pivot_col' + @newline + 

N' FOR XML PATH('''')),' + @newline + 

N' 1, 1, N'''');' 

 

EXEC sp_executesql 

@stmt = @sql, 

@params = N'@result AS NVARCHAR(MAX) OUTPUT', 

@result = @cols OUTPUT; 

 

-- Check @cols for possible SQL injection attempt 

IF UPPER(@cols) LIKE UPPER(N'%0x%') 

OR UPPER(@cols) LIKE UPPER(N'%;%') 

OR UPPER(@cols) LIKE UPPER(N'%''%') 

OR UPPER(@cols) LIKE UPPER(N'%--%') 

OR UPPER(@cols) LIKE UPPER(N'%/*%*/%') 



Chapter 7 Stored Procedures 303
OR UPPER(@cols) LIKE UPPER(N'%EXEC%') 

OR UPPER(@cols) LIKE UPPER(N'%xp_%') 

OR UPPER(@cols) LIKE UPPER(N'%sp_%') 

OR UPPER(@cols) LIKE UPPER(N'%SELECT%') 

OR UPPER(@cols) LIKE UPPER(N'%INSERT%') 

OR UPPER(@cols) LIKE UPPER(N'%UPDATE%') 

OR UPPER(@cols) LIKE UPPER(N'%DELETE%') 

OR UPPER(@cols) LIKE UPPER(N'%TRUNCATE%') 

OR UPPER(@cols) LIKE UPPER(N'%CREATE%') 

OR UPPER(@cols) LIKE UPPER(N'%ALTER%') 

OR UPPER(@cols) LIKE UPPER(N'%DROP%') 

-- look for other possible strings used in SQL injection here 

BEGIN 

SET @msg = N'Possible SQL injection attempt.'; 

RAISERROR(@msg, 16, 1); 

RETURN; 

END 

 

-- Create the PIVOT query 

SET @sql =  

N'SELECT *' + @newline + 

N'FROM' + @newline + 

N' ( SELECT ' + @newline + 

N' ' + QUOTENAME(@on_rows) + N',' + @newline + 

N' ' + QUOTENAME(@on_cols) + N' AS pivot_col,' + @newline + 

N' ' + QUOTENAME(@agg_col) + N' AS agg_col' + @newline + 

N' FROM ' + @object + @newline + 

N' ) AS PivotInput' + @newline + 

N' PIVOT' + @newline + 

N' ( ' + @agg_func + N'(agg_col)' + @newline + 

N' FOR pivot_col' + @newline + 

N' IN(' + @cols + N')' + @newline + 

N' ) AS PivotOutput;'; 

 

EXEC sp_executesql @sql; 

GO

This implementation of the stored procedure follows good programming practices and 
addresses the security flaws mentioned earlier. Keep in mind, however, that when construct-
ing code based on user inputs and stored data/metadata, it is extremely difficult (if at all 
possible) to achieve complete protection against SQL injection.

The stored procedure usp_pivot is created as a user-defined procedure in the Northwind data-
base with the usp_ prefix. This means that it isn’t as flexible as the previous implementation in 
the sense that it interacts only with tables and views from Northwind. Note that you can 
create a view in Northwind that queries objects from other databases, and provide this view as 
input to the stored procedure.

The usp_pivot stored procedure’s code takes several measures to try and prevent SQL injection 
attempts:

■ The sizes of the input parameters are limited.



304 Inside Microsoft SQL Server 2005: T-SQL Programming
■ Instead of allowing any query as input, the stored procedure accepts only a valid table or 
view name that exists in the database. Similarly, instead of allowing any T-SQL expres-
sion for the arguments @on_rows, @on_cols and @agg_col, the stored procedure accepts 
only valid column names that exist in the input table/view. Note that you can create a 
view with any query that you like and serve it as input to the stored procedure.

■ The code uses QUOTENAME where relevant to quote object and column names with 
square brackets.

■ The stored procedure’s code inspects the @cols variable for possible code strings injected 
to it through data stored in the rotation column values that are being concatenated.

The code also performs input validation to verify that all parameters were supplied; that the 
table/view and column names exist; and that the aggregate function appears in the list of 
functions that you want to support. As I mentioned, I discuss exception handling in Chapter 10.

The usp_pivot stored procedure might seem much less flexible than sp_pivot, but remember 
that you can always create a view to prepare the data for usp_pivot. For example, consider the 
following code used earlier to return the sum of value (quantity * unit price) per employee, 
pivoted by order year:

EXEC Northwind.dbo.sp_pivot 

@query = N' 

SELECT O.OrderID, EmployeeID, OrderDate, Quantity, UnitPrice 

FROM dbo.Orders AS O 

JOIN dbo.[Order Details] AS OD 

ON OD.OrderID = O.OrderID', 

@on_rows = N'EmployeeID AS empid', 

@on_cols = N'YEAR(OrderDate)', 

@agg_func = N'SUM', 

@agg_col = N'Quantity*UnitPrice';

You can achieve the same with usp_pivot by first creating a view that prepares the data: 

USE Northwind; 

GO 

IF OBJECT_ID('dbo.ViewForPivot') IS NOT NULL 

DROP VIEW dbo.ViewForPivot; 

GO 

 

CREATE VIEW dbo.ViewForPivot 

AS 

 

SELECT 

O.OrderID AS orderid, 

EmployeeID AS empid, 

YEAR(OrderDate) AS order_year, 

Quantity * UnitPrice AS val 

FROM dbo.Orders AS O 

JOIN dbo.[Order Details] AS OD 

ON OD.OrderID = O.OrderID; 

GO



Chapter 7 Stored Procedures 305
Then invoke usp_pivot, as in:

EXEC dbo.usp_pivot 

@object_name = N'ViewForPivot', 

@on_rows = N'empid', 

@on_cols = N'order_year', 

@agg_func = N'SUM', 

@agg_col = N'val';

You will get the output shown earlier in Table 7-13.

If you think about it, that’s a small price to pay compared to compromising the security of 
your system.

When you’re done, run the following code for cleanup:

USE Northwind; 

GO 

IF OBJECT_ID('dbo.ViewForPivot') IS NOT NULL 

DROP VIEW dbo.ViewForPivot; 

GO 

IF OBJECT_ID('dbo.usp_pivot') IS NOT NULL 

DROP PROC dbo.usp_pivot;

CLR Stored Procedures
SQL Server 2005 allows you to develop CLR stored procedures (as well as other routines) 
using a .NET language of your choice. The previous chapter provided the background about 
CLR routines, gave advice on when to develop CLR routines versus T-SQL ones, and 
described the technicalities of how to develop CLR routines. Remember to read Appendix A 
for instructions on developing, building, deploying, and testing your .NET code. Here I’d just 
like to give a couple of examples of CLR stored procedures that apply functionality outside the 
reach of T-SQL code.

The first example is a CLR procedure called usp_GetEnvInfo. This stored procedure collects 
information from environment variables and returns it in table format. The environment vari-
ables that this procedure will return include: Machine Name, Processors, OS Version, CLR 
Version.

Note that, to collect information from environment variables, the assembly needs external 
access to operating system resources. By default assemblies are created (using the CREATE 
ASSEMBLY command) with the most restrictive PERMISSION_SET option – SAFE; meaning 
that they’re limited to accessing database resources only. This is the recommended option to 
obtain maximum security and stability. The permission set options EXTERNAL_ACCESS and 
UNSAFE (specified in the CREATE ASSEMBLY or ALTER ASSEMBLY commands, or in the 
Project | Properties dialog in Visual Studio under the Database tab) allow external access to 
system resources such as files, the network, environment variables, or the registry. To allow 



306 Inside Microsoft SQL Server 2005: T-SQL Programming
EXTERNAL_ACCESS and UNSAFE assemblies to run, you also need to set the database 
option TRUSTWORTHY to ON. Allowing EXTERNAL_ACCESS or UNSAFE assemblies to 
run represents a security risk and should be avoided. I will describe a safer alternative shortly, 
but first I’ll demonstrate this option. To set the TRUSTWORTHY option of the CLRUtilities 
database to ON and to change the permission set of the CLRUtilities assembly to 
EXTERNAL_ACCESS you would run the following code:

-- Database option TRUSTWORTHY needs to be ON for EXTERNAL_ACCESS 

ALTER DATABASE CLRUtilities SET TRUSTWORTHY ON; 

GO 

-- Alter assembly with PERMISSION_SET = EXTERNAL_ACCESS 

ALTER ASSEMBLY CLRUtilities 

WITH PERMISSION_SET = EXTERNAL_ACCESS;

At this point you will be able to run the usp_GetEnvInfo stored procedure. Keep in mind 
though, that UNSAFE assemblies have complete freedom and can compromise the robust-
ness of SQL Server and the security of the system. EXTERNAL_ACCESS assemblies get the 
same reliability and stability protection as SAFE assemblies, but from a security perspective 
they’re like UNSAFE assemblies.

A more secure alternative is to sign the assembly with a strong-named key file or Authenti-
code with a certificate. This strong name (or certificate) is created inside SQL Server as an 
asymmetric key (or certificate) and has a corresponding login with EXTERNAL ACCESS 
ASSEMBLY permission (for external access assemblies) or UNSAFE ASSEMBLY permis-
sion (for unsafe assemblies). For example, suppose that you have code in the CLRUtilities 
assembly that needs to run with the EXTERNAL_ACCESS permission set. You can sign 
the assembly with a strong-named key file from the Project | Properties dialog in Visual Studio 
under the Signing tab. Then run the following code to create an asymmetric key from the 
executable .dll file and a corresponding login with the EXTERNAL_ACCESS ASSEMBLY 
permission.

-- Create an asymmetric key from the signed assembly 

-- Note: you have to sign the assembly using a strong name key file 

USE master 

GO 

CREATE ASYMMETRIC KEY CLRUtilitiesKey 

FROM EXECUTABLE FILE = 

'C:\CLRUtilities\CLRUtilities\bin\Debug\CLRUtilities.dll' 

-- Create login and grant it with external access permission 

CREATE LOGIN CLRUtilitiesLogin FROM ASYMMETRIC KEY CLRUtilitiesKey 

GRANT EXTERNAL ACCESS ASSEMBLY TO CLRUtilitiesLogin 

GO

For more details about securing your assemblies, please refer to Books Online and to the 
following URL: http://msdn2.microsoft.com/en-us/library/ms345106.aspx.

Listing 7-10 shows the definition of the usp_GetEnvInfo stored procedure using C# code.



Chapter 7 Stored Procedures 307
Listing 7-10 CLR usp_GetEnvInfo stored procedure, C# version

// Stored procedure that returns environment info in tabular format 

[SqlProcedure] 

public static void usp_GetEnvInfo() 

{ 

// Create a record - object representation of a row 

// Include the metadata for the SQL table 

SqlDataRecord record = new SqlDataRecord( 

new SqlMetaData("EnvProperty", SqlDbType.NVarChar, 20), 

new SqlMetaData("Value", SqlDbType.NVarChar, 256)); 

// Marks the beginning of the result set to be sent back to the client 

// The record parameter is used to construct the metadata 

// for the result set 

SqlContext.Pipe.SendResultsStart(record); 

// Populate some records and send them through the pipe 

record.SetSqlString(0, @"Machine Name"); 

record.SetSqlString(1, Environment.MachineName); 

SqlContext.Pipe.SendResultsRow(record); 

record.SetSqlString(0, @"Processors"); 

record.SetSqlString(1, Environment.ProcessorCount.ToString()); 

SqlContext.Pipe.SendResultsRow(record); 

record.SetSqlString(0, @"OS Version"); 

record.SetSqlString(1, Environment.OSVersion.ToString()); 

SqlContext.Pipe.SendResultsRow(record); 

record.SetSqlString(0, @"CLR Version"); 

record.SetSqlString(1, Environment.Version.ToString()); 

SqlContext.Pipe.SendResultsRow(record); 

// End of result set 

SqlContext.Pipe.SendResultsEnd(); 

}

In this procedure, you can see the usage of some specific extensions to ADO.NET for usage 
within SQL Server CLR routines. These are defined in the Microsoft.SqlServer.Server 
namespace in .NET 2.0.

When you call a stored procedure from SQL Server, you are already connected. You don’t have 
to open a new connection; you need access to the caller’s context from the code running in 
the server. The caller’s context is abstracted in a SqlContext object. Before using the SqlContext 
object, you should test whether it is available by using its IsAvailable property.

The procedure retrieves some environmental data from the operating system. The data can be 
retrieved by the properties of an Environment object, which can be found in the System 
namespace. But the data you get is in text format. In the CLR procedure, you can see how to 
generate a row set for any possible format. The routine’s code stores data in a SqlDataRecord 
object, which represents a single row of data. It defines the schema for this single row by using 
the SqlMetaData objects.

SELECT statements in a T-SQL stored procedure send the results to the connected caller’s 
“pipe.” This is the most effective way of sending results to the caller. The same technique is 
exposed to CLR routines running in SQL Server. Results can be sent to the connected pipe 



308 Inside Microsoft SQL Server 2005: T-SQL Programming
using the send methods of the SqlPipe object. You can instantiate the SqlPipe object with the 
Pipe property of the SqlContext object.

Listing 7-11 shows the definition of the usp_GetEnvInfo stored procedure using Visual Basic code.

Listing 7-11 CLR usp_GetEnvInfo stored procedure, Visual Basic version

' Stored procedure that returns environment info in tabular format 

<SqlProcedure()> _ 

Public Shared Sub usp_GetEnvInfo() 

' Create a record - object representation of a row 

' Include the metadata for the SQL table 

Dim record As New SqlDataRecord( _ 

New SqlMetaData("EnvProperty", SqlDbType.NVarChar, 20), _ 

New SqlMetaData("Value", SqlDbType.NVarChar, 256)) 

' Marks the beginning of the result set to be sent back to the client 

' The record parameter is used to construct the metadata for 

' the result set 

SqlContext.Pipe.SendResultsStart(record) 

'' Populate some records and send them through the pipe 

record.SetSqlString(0, "Machine Name") 

record.SetSqlString(1, Environment.MachineName) 

SqlContext.Pipe.SendResultsRow(record) 

record.SetSqlString(0, "Processors") 

record.SetSqlString(1, Environment.ProcessorCount.ToString()) 

SqlContext.Pipe.SendResultsRow(record) 

record.SetSqlString(0, "OS Version") 

record.SetSqlString(1, Environment.OSVersion.ToString()) 

SqlContext.Pipe.SendResultsRow(record) 

record.SetSqlString(0, "CLR Version") 

record.SetSqlString(1, Environment.Version.ToString()) 

SqlContext.Pipe.SendResultsRow(record) 

' End of result set 

SqlContext.Pipe.SendResultsEnd() 

End Sub

Run the following code to register the C# version of the usp_GetEnvInfo stored procedure in 
the CLRUtilities database:

USE CLRUtilities; 

GO 

IF OBJECT_ID('dbo.usp_GetEnvInfo') IS NOT NULL 

DROP PROC usp_GetEnvInfo; 

GO 

CREATE PROCEDURE dbo.usp_GetEnvInfo 

AS EXTERNAL NAME CLRUtilities.CLRUtilities.usp_GetEnvInfo;

Use the following code to register the stored procedure in case you used Visual Basic to 
develop it:

CREATE PROCEDURE dbo.usp_GetEnvInfo 

AS EXTERNAL NAME 

CLRUtilities.[CLRUtilities.CLRUtilities].usp_GetEnvInfo;



Chapter 7 Stored Procedures 309
Run the following code to test the usp_GetEnvInfo procedure, generating the output shown 
in Table 7-15:

EXEC dbo.usp_GetEnvInfo;

The second example for a CLR procedure creates the usp_GetAssemblyInfo stored procedure, 
which returns information about an input assembly.

Listing 7-12 shows the definition of the usp_GetAssemblyInfo stored procedure using C# 
code.

Listing 7-12 CLR usp_GetAssemblyInfo stored procedure, C# version

// Stored procedure that returns assembly info 

// uses Reflection 

[SqlProcedure] 

public static void usp_GetAssemblyInfo(SqlString asmName) 

{ 

// Retrieve the clr name of the assembly 

String clrName = null; 

// Get the context 

using (SqlConnection connection = 

new SqlConnection("Context connection = true")) 

{ 

connection.Open(); 

using (SqlCommand command = new SqlCommand()) 

{ 

// Get the assembly and load it 

command.Connection = connection; 

command.CommandText = 

"SELECT clr_name FROM sys.assemblies WHERE name = @asmName"; 

command.Parameters.Add("@asmName", SqlDbType.NVarChar); 

command.Parameters[0].Value = asmName; 

clrName = (String)command.ExecuteScalar(); 

if (clrName == null) 

{ 

throw new ArgumentException("Invalid assembly name!"); 

} 

Assembly myAsm = Assembly.Load(clrName); 

// Create a record - object representation of a row 

// Include the metadata for the SQL table 

SqlDataRecord record = new SqlDataRecord( 

new SqlMetaData("Type", SqlDbType.NVarChar, 50), 

new SqlMetaData("Name", SqlDbType.NVarChar, 256)); 

Table 7-15 Output of usp_GetEnvInfo Stored Procedure

EnvProperty Value

Machine Name DOJO

Processors 1

OS Version Microsoft Windows NT 5.1.2600 Service Pack 2

CLR Version 2.0.50727.42



310 Inside Microsoft SQL Server 2005: T-SQL Programming
// Marks the beginning of the result set to be sent back 

// to the client 

// The record parameter is used to construct the metadata 

// for the result set 

SqlContext.Pipe.SendResultsStart(record); 

// Get all types in the assembly 

Type[] typesArr = myAsm.GetTypes(); 

foreach (Type t in typesArr) 

{ 

// Type in a SQL database should be a class or 

// a structure 

if (t.IsClass == true) 

{ 

record.SetSqlString(0, @"Class"); 

} 

else 

{ 

record.SetSqlString(0, @"Structure"); 

} 

record.SetSqlString(1, t.FullName); 

SqlContext.Pipe.SendResultsRow(record); 

// Find all public static methods 

MethodInfo[] miArr = t.GetMethods(); 

foreach (MethodInfo mi in miArr) 

{ 

if (mi.IsPublic && mi.IsStatic) 

{ 

record.SetSqlString(0, @" Method"); 

record.SetSqlString(1, mi.Name); 

SqlContext.Pipe.SendResultsRow(record); 

} 

} 

} 

// End of result set 

SqlContext.Pipe.SendResultsEnd(); 

} 

} 

}

A DBA could have a problem finding out exactly what part of a particular .NET assembly is 
loaded to the database. Fortunately, this problem can be easily mitigated. All .NET assemblies 
include metadata, describing all types (classes and structures) defined within it, including all 
public methods and properties of the types. In .NET, the System.Reflection namespace contains 
classes and interfaces that provide a managed view of loaded types.

For a very detailed overview of a .NET assembly stored in the file system, you can use the 
Reflector for .NET, a very sophisticated tool created by Lutz Roeder. Because it is download-
able for free from his site at http://www.aisto.com/roeder/dotnet/, it is very popular among 
.NET developers. Also, Miles Trochesset wrote in his blog at http://blogs.msdn.com/sqlclr/
archive/2005/11/21/495438.aspx a SQL Server CLR DDL trigger that is fired on the CREATE 
ASSEMBLY statement. The trigger automatically registers all CLR objects from the assembly, 
including UDTs, UDAs, UDFs, SPs and triggers. I guess it is going to be very popular among 



Chapter 7 Stored Procedures 311
database developers. I used both tools as a starting point to create my simplified version of a 
SQL Server CLR stored procedure. I thought that a DBA might prefer to read the assembly 
metadata from a stored procedure, not from an external tool, like Lutz Roeder’s Reflector for 
.NET is, and also that a DBA might want just to read the metadata first, not immediately to 
register all CLR objects from the assembly, like Miles Trochesset’s trigger does.

The usp_GetAssemblyInfo procedure has to load an assembly from the sys.assemblies catalog 
view. To achieve this task, it has to execute a SqlCommand. SqlCommand needs a connection. 
In the usp_GetEnvInfo procedure’s code you saw the usage of the SqlContext class; now you 
need an explicit SqlConnection object. You can get the context of the caller’s connection by 
using a new connection string option, "Context connection = true".

As in the usp_GetEnvInfo procedure, you want to get the results in tabular format. Again you 
use the SqlDataRecord and SqlMetaData objects to shape the row returned. Remember that the 
SqlPipe object gives you the best performance to return the row to the caller.

Before you can read the metadata of an assembly, you have to load it. The rest is quite easy. 
The GetTypes method of a loaded assembly can be used to retrieve a collection of all types 
defined in the assembly. The code retrieves this collection in an array. Then it loops through 
the array, and for each type it uses the GetMethods method to retrieve all public methods in an 
array of the MethodInfo objects. This procedure retrieves type and method names only. The 
Reflection classes allow you to get other metadata information as well—for example, the names 
and types of input parameters. Listing 7-13 shows the definition of the usp_GetAssemblyInfo 
stored procedure using Visual Basic code.

Listing 7-13 CLR usp_GetAssemblyInfo stored procedure, Visual Basic version

' Stored procedure that returns assembly info 

' uses Reflection 

<SqlProcedure()> _ 

Public Shared Sub usp_GetAssemblyInfo(ByVal asmName As SqlString) 

' Retrieve the clr name of the assembly 

Dim clrName As String = Nothing 

' Get the context 

Using connection As New SqlConnection("Context connection = true") 

connection.Open() 

Using command As New SqlCommand 

' Get the assembly and load it 

command.Connection = connection 

command.CommandText = _ 

"SELECT clr_name FROM sys.assemblies WHERE name = @asmName" 

command.Parameters.Add("@asmName", SqlDbType.NVarChar) 

command.Parameters(0).Value = asmName 

clrName = CStr(command.ExecuteScalar()) 

If (clrName = Nothing) Then 

Throw New ArgumentException("Invalid assembly name!") 

End If 

Dim myAsm As Assembly = Assembly.Load(clrName) 

' Create a record - object representation of a row 

' Include the metadata for the SQL table 



312 Inside Microsoft SQL Server 2005: T-SQL Programming
Dim record As New SqlDataRecord( _ 

New SqlMetaData("Type", SqlDbType.NVarChar, 50), _ 

New SqlMetaData("Name", SqlDbType.NVarChar, 256)) 

' Marks the beginning of the result set to be sent back 

' to the client 

' The record parameter is used to construct the metadata 

' for the result set 

SqlContext.Pipe.SendResultsStart(record) 

' Get all types in the assembly 

Dim typesArr() As Type = myAsm.GetTypes() 

For Each t As Type In typesArr 

' Type in a SQL database should be a class or a structure 

If (t.IsClass = True) Then 

record.SetSqlString(0, "Class") 

Else 

record.SetSqlString(0, "Structure") 

End If 

record.SetSqlString(1, t.FullName) 

SqlContext.Pipe.SendResultsRow(record) 

' Find all public static methods 

Dim miArr() As MethodInfo = t.GetMethods 

For Each mi As MethodInfo In miArr 

If (mi.IsPublic And mi.IsStatic) Then 

record.SetSqlString(0, " Method") 

record.SetSqlString(1, mi.Name) 

SqlContext.Pipe.SendResultsRow(record) 

End If 

Next 

Next 

' End of result set 

SqlContext.Pipe.SendResultsEnd() 

End Using 

End Using 

End Sub

Run the following code to register the C# version of the usp_GetAssemblyInfo stored proce-
dure in the CLRUtilities database:

IF OBJECT_ID('dbo.usp_GetAssemblyInfo') IS NOT NULL 

DROP PROC usp_GetAssemblyInfo; 

GO 

CREATE PROCEDURE usp_GetAssemblyInfo 

@asmName AS sysname 

AS EXTERNAL NAME CLRUtilities.CLRUtilities.usp_GetAssemblyInfo;

And in case you used Visual Basic to develop the stored procedure, use the following code to 
register it:

CREATE PROCEDURE usp_GetAssemblyInfo 

@asmName AS sysname 

AS EXTERNAL NAME 

CLRUtilities.[CLRUtilities.CLRUtilities].usp_GetAssemblyInfo;



Chapter 7 Stored Procedures 313
Run the following code to test the usp_GetAssemblyInfo procedure, providing it with the 
CLRUtilities assembly name as input:

EXEC usp_GetAssemblyInfo N'CLRUtilities';

You get the output shown in Table 7-16 with the assembly name and the names of all 
methods (routines) defined within it. You should recognize the routine names except for 
one—trg_GenericDMLAudit—a CLR trigger that I’ll describe in the next chapter.

When you’re done, run the following code for cleanup:

USE CLRUtilities; 

GO 

IF OBJECT_ID('dbo.usp_GetEnvInfo') IS NOT NULL 

DROP PROC dbo.usp_GetEnvInfo; 

GO 

IF OBJECT_ID('dbo.usp_GetAssemblyInfo') IS NOT NULL 

DROP PROC dbo.usp_GetAssemblyInfo;

Conclusion
Stored procedures are one of the most powerful tools that SQL Server provides you. Under-
standing them well and using them wisely will result in robust, secure, and well-performing 
databases. Stored procedures give you a security layer, encapsulation, reduction in network 
traffic, reuse of execution plans, and much more. SQL Server 2005 introduces the ability to 
develop CLR routines, eliminating the need to develop extended stored procedures and 
enhancing the functionality of your database.

Table 7-16 Output of usp_GetAssemblyInfo Stored Procedure

Type Name

Class CLRUtilities

 Method fn_RegExMatch

 Method fn_SQLSigCLR

 Method fn_ImpCast

 Method fn_ExpCast

 Method fn_SplitCLR

 Method ArrSplitFillRow

 Method usp_GetEnvInfo

 Method usp_GetAssemblyInfo

 Method trg_GenericDMLAudit




	Cover
	Contents
	Chapter 3: Cursors
	Using Cursors
	Cursor Overhead
	Dealing with Each Row Individually
	Order-Based Access
	Custom Aggregates
	Running Aggregations
	Maximum Concurrent Sessions
	Matching Problems

	Conclusion

	Chapter 7: Stored Procedures
	Types of Stored Procedures
	User-Defined Stored Procedures
	Special Stored Procedures
	System Stored Procedures
	Other Types of Stored Procedures

	The Stored Procedure Interface
	Input Parameters
	Output Parameters

	Resolution
	Compilations, Recompilations, and Reuse of Execution Plans
	Reuse of Execution Plans
	Recompilations
	Parameter Sniffing Problem

	EXECUTE AS
	Parameterizing Sort Order
	Dynamic Pivot
	CLR Stored Procedures
	Conclusion


