

Programming Microsoft
®

SQL Server
™
 2005

Andrew J. Brust,
Stephen Forte

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/9153.aspx

9780735619234
Publication Date: December 2004

A05T619239.fm Page vii Tuesday, May 31, 2005 9:13 PM
Table of Contents

Acknowledgements . xix

Introduction . xxiii

Who This Book Is For . xxiv
How This Books is Organized . xxv
System Requirements. xxvi
Using the Samples . xxvii
Support for This Book . xxix

Questions and Comments. xxix

Part I Design Fundamentals and Core Technologies

1 Overview .3
A Tough Act to Follow . 3

The Software Industry and Disruptive Change . 3
Industry Trends, SQL Server Features, and a Book to Show You the Way 4

Programming the Server. 4
Application Code and SQL Server: Extending Your Database’s Reach 5
It’s the Strategy, Stupid . 7

A Collaborative Effort for, and by, Developers. 9

2 Exploring the T-SQL Enhancements in SQL Server 2005 11
Introducing SQL Server Management Studio . 12
Common Table Expressions. 13

Recursive Queries with CTEs . 16
The PIVOT and UNPIVOT Operators . 20

Using UNPIVOT . 21
Dynamically Pivoting Columns. 22
The APPLY Operator. 24

TOP Enhancements . 25
Ranking Functions . 26

ROW_NUMBER() . 26
RANK() . 30
DENSE_RANK() and NTILE(n) . 32
Using All the Ranking Functions Together . 34
Ranking over Groups: PARTITION BY . 35
vii

What do you think of this book?
We want to hear from you!

Microsoft is interested in hearing your feedback about this publication so we can
continually improve our books and learning resources for you. To participate in a brief
online survey, please visit: www.microsoft.com/learning/booksurvey/

viii Table of Contents

A05T619239.fm Page viii Tuesday, May 31, 2005 9:13 PM
Exception Handling in Transactions . 38
New Data Types . 40

varchar(max) Data Type . 40
xml Data Type. 40

The WAITFOR Command . 41
DDL Triggers and Notifications . 42
SNAPSHOT Isolation . 43
Statement-Level Recompile . 44
Summary . 44

3 An Overview of SQL CLR. 45
Getting Started: Enabling CLR Integration. 46
Visual Studio/SQL Server Integration . 48

SQL Server Projects in Visual Studio . 49
Automated Deployment. 51
SQL CLR Code Attributes . 52

Your First SQL CLR Stored Procedure . 53
CLR Stored Procedures and Server-Side Data Access. 55

Piping Data with SqlDataRecord and SqlMetaData . 57
Deployment . 59

Deploying Your Assembly. 59
Deploying Your Stored Procedures . 61
Testing Your Stored Procedures. 63

CLR Functions . 65
CLR Triggers . 69
CLR Aggregates . 74
CLR Types . 78
Security . 84
Examining and Managing CLR Types in a Database . 85
Best Practices for SQL CLR Usage . 91
Summary . 92

4 XML and the Relational Database . 93
XML in SQL Server 2000 . 95
The XML Data Type . 96

Working with the XML Data Type as a Variable . 96
Working with XML in Tables . 98
XML Schemas . 99
XML Indexes . 102

FOR XML Commands . 105
FOR XML RAW . 106
FOR XML AUTO . 106
FOR XML EXPLICIT. 108

Table of Contents ix

A05T619239.fm Page ix Tuesday, May 31, 2005 9:13 PM
OPENXML Enhancements in SQL Server 2005 . 120
XML Bulk Load . 121

Querying XML Data Using XQuery . 122
XQuery Defined . 122
SQL Server 2005 XQuery in Action . 125
XML DML. 134
Converting a Column to XML. 135

Summary . 137

5 Introducing SQL Server Management Studio . 139
The New Management Studio Interface. 140

Overview of New Features . 140
Window Types. 141
Positioning a Docking Window . 142
Window Customization Options . 143
Connecting to a Database Server . 144

Using Object Explorer . 145
Object Explorer Filters . 146

Management Studio Solutions, Projects, and Files . 149
Code and Text Editor . 150
Track Changes Indicator . 152
Bookmarks. 153

Creating Objects . 154
Creating Tables . 154
Creating Table-Related Objects . 156
Creating Indexes. 156
Setting Properties for New Users. 157
Generating Scripts from Objects . 158

Creating Queries . 158
Executing Queries. 160

Using Templates . 161
Maintenance Features . 163

Using a Maintenance Plan . 164
Performance Tools . 166

SQL Server Profiler . 166
Database Engine Tuning Advisor . 167

Summary . 167

6 Using SQL Server Management Objects (SMO) 169
What Is SMO? . 170

What About SQL-DMO? . 170
New Features in SMO . 174

Working with SMO in Visual Studio. 174

x Table of Contents

A05T619239.fm Page x Tuesday, May 31, 2005 9:13 PM
Iterating Through Available Servers . 177
Retrieving Server Settings . 178
Creating Backup-and-Restore Applications. 182
Performing Programmatic DBCC Commands with SMO 188

Summary . 190

7 SQL Server 2005 Security . 191
Four Themes of the Security Framework . 192

Secure by Design . 192
Secure by Default. 192
Secure by Deployment . 192
Communications . 192

SQL Server 2005 Security Overview . 193
SQL Server Logins . 194
Database Users. 194
The Guest User Account . 195

Authentication and Authorization . 196
How Clients Establish a Connection . 196
Password Policies . 197
User-Schema Separation. 199
Execution Context . 201

Encryption Support in SQL Server 2005. 204
Encrypting Data on the Move . 205
Encrypting Data at Rest . 206

Protecting SQL Server 2005 . 211
Reducing the Surface Area for Attack . 211

How Hackers Attack SQL Server . 213
Direct Connection to the Internet. 213
Weak SA Passwords . 213
SQL Server Browser Service . 213
SQL Injection . 214
Intelligent Observation . 214

Summary . 215

Part II Applications Development and Reach Technologies

8 ADO.NET 2.0, Typed DataSet Objects, and .NET Data Binding. 219
A Brief History of Data Access Object Models . 220

DAO: A Golden Oldie . 220
RDO: A Thin API Wrapper . 220
Enter OLE DB and ADO “Classic”. 220
ADO + .NET = ADO.NET. 221

What’s New in ADO.NET 2.0?. 221

Table of Contents xi

A05T619239.fm Page xi Tuesday, May 31, 2005 9:13 PM
New Typed DataSet Members . 222
Other Enhancements . 222

Typed DataSet Enhancements . 223
DataTable Objects in the Typed DataSet Designer . 225
TableAdapter Objects . 226
Connection String Management . 226
Using the TableAdapter Configuration Wizard . 228
More on Queries and Parameters . 230
Adding Query Objects. 231
DBDirect Methods and Connected Use of Typed DataSet Objects 232
Standalone DataTable Objects . 233

“Pure” ADO.NET: Working in Code . 233
Querying 101 . 234
Keeping Data Up to Date . 235
Responsive UIs: Executing Queries Asynchronously . 237
Not for Servers Only: Client-Side Bulk Copy . 242

It’s Not Just Text: Processing XML Columns with ADO.NET and
the System.Xml Namespace . 244

Nothing but .NET: Consuming SQL CLR UDT Data as
Native .NET Objects . 245
Back to the Drawing Board. 246

Embedding SQL CLR Objects in Typed DataSet Objects . 247
Adding a CLR Stored Procedure to a Typed DataSet . 247
TVFs: Easy Living. 249
Aggregates and UDTs . 250

Windows Forms Data Binding . 251
DataGridView Binding . 252
Details View Binding . 253
Smart Defaults . 253
Binding to Stored Procedures and Views . 254
SQL CLR Binding. 254
Master-Detail and Lookup Binding . 254
Parameterized Query Data Binding. 257

Data Binding on the Web . 258
Typed DataSet Objects and the Web.config File . 258
The Data Source Configuration Wizard, the ObjectDataSource
Control, and the New Data-Bound Controls . 259

Summary . 260

9 Debugging . 261
About the Sample Code . 262
Ad Hoc Debugging . 264

Creating Database Connections. 264

xii Table of Contents

A05T619239.fm Page xii Tuesday, May 31, 2005 9:13 PM
T-SQL “Step Into” Debugging . 267
Application Debugging. 276

Entering Debugging Mode . 279
Debugging SQL CLR Code . 280
Breakpoints and Context Switching . 283

Mixing SQL CLR and T-SQL Code . 284
Test Script Debugging. 289
Debugging Queries External to Visual Studio . 289
Remote Debugging . 292

Server Configuration. 292
Server Firewall Considerations. 294
Back to the Client . 295
Client Firewall Configuration . 295
Attaching to a Remote Process . 297

Summary . 299

10 SQL Server 2005 Native XML Web Services. 301
Understanding Native XML Web Services . 302

Comparing Native XML Web Services and SQLXML . 302
Exposing SQL Programmability as Web Services . 303

Stored Procedures and User-Defined Functions . 303
SQL Batch . 303
Reserving URLs with Http.sys . 303
Creating and Managing Endpoints. 304
Granting Endpoint Permissions . 309
Calling Native XML Web Service Endpoints from Client Applications 310

Example Native XML Web Services Project . 312
Creating the SQL Server Functionality . 312
Registering the URL with Http.sys . 316
Exposing the Endpoints . 316
Granting Security Access to the Endpoints . 317
Creating the Client Application . 319

Best Practices for Using Native XML Web Services . 324
Advantages of Native XML Web Services . 325
Limitations of Native XML Web Services . 325
Security Recommendations . 326
Performance Recommendations . 326
When to Avoid Native XML Web Services. 326
When to Use Native XML Web Services. 327

Summary . 328

Table of Contents xiii

A05T619239.fm Page xiii Tuesday, May 31, 2005 9:13 PM
11 Transactions . 329
What Is a Transaction? . 330

Understanding the ACID Properties . 330
Local Transactions Support in SQL Server 2005. 332

Autocommit Transaction Mode . 333
Explicit Transaction Mode . 333
Implicit Transaction Mode . 336
Batch-Scoped Transaction Mode . 337
Using Local Transactions in ADO.NET . 338

Transaction Terminology . 340
Isolation Levels . 341

Isolation Levels in SQL Server 2005 . 341
Isolation Levels in ADO.NET . 346

Distributed Transactions . 347
Distributed Transaction Terminology . 348
Rules and Methods of Enlistment . 349
Distributed Transactions in SQL Server 2005 . 351
Distributed Transactions in the .NET Framework . 352
Using a Resource Manager in a Successful Transaction 360

Transactions in SQL CLR (CLR Integration) . 364
Putting It All Together . 368
Summary . 369

12 SQL Server Service Broker: The New Middleware. 371
What Is Middleware? . 371
What Is SQL Server Service Broker?. 372

Comparing Service Broker and MSMQ. 372
What Is a SQL Server Service Broker Application? . 373
Service Broker Architecture. 374
Integrated Management and Operation . 377
Routing and Load Balancing. 377
Service Broker Programming in T-SQL . 379

A Word About Programming Languages. 380
Enabling Service Broker. 380

Defining Service Broker Objects. 380
The Sending Service Program . 382
The Receiving Service Program . 383
Running the Application . 385
A More Robust, Real-World Application. 386

Service Broker and Query Notification . 387
Service Broker’s Place in the Middleware World . 391
Summary . 392

xiv Table of Contents

A05T619239.fm Page xiv Tuesday, May 31, 2005 9:13 PM
13 Using SQL Server 2005 Notification Services . 393
What Is a Notification Application? . 393

Notification Services Components . 394
Notification Services Deployment Strategies . 396

Working with Notification Services. 397
Creating Notification Applications . 398

A Sample Notification Application . 400
Flight Price Notification Sample Application . 400

Summary . 424

14 Developing Desktop Applications
with SQL Server Express Edition . 427

What Is SQL Server Express Edition?. 427
Licensing . 429
Feature Review . 429
SQL Server 2005 Express Edition with Advanced Services 431

Configuration . 435
Working with SQL Server Express Edition . 437

SQLCMD Command-Line Tool. 442
User Instances. 446
SSEUTIL . 449

Installing SQL Server Express Edition . 451
Using the Setup Wizard to Manually Install Express Edition. 452
Installing via Command-Line Parameters or a Configuration File 456
Deploying Express Edition Applications Using a Wrapper 460
Deploying Express Edition Applications Using ClickOnce. 471
Updating ClickOnce Deployments That Use Express Edition 475

Summary . 485

15 Developing Applications with SQL Server 2005 Everywhere Edition
and SQL Server Merge Replication . 487

SQL Everywhere Integration with SQL Server 2005 . 488
Working with SQL Everywhere Databases in Management Studio 489
Working with SQL Everywhere Data in Management Studio 493

Creating a SQL Everywhere Application with SQL Server Replication
and Visual Studio 2005 . 496

Creating a Publication. 498
Installing and Configuring SQL Everywhere Server
Components for IIS . 505
Creating a Subscription Using Management Studio . 508
Creating a Mobile Application Using Visual Studio 2005 513

Summary . 520

Table of Contents xv

A05T619239.fm Page xv Tuesday, May 31, 2005 9:13 PM
Part III Reporting and Business Intelligence

16 Using SQL Server 2005 Integration Services . 523
History of Data Transfer in SQL Server . 523

DTS Packages . 524
Working with Integration Services Packages . 524

Control Flow . 524
Data Flow. 526

Using Integration Services Packages . 532
Creating Packages Using the Import And Export Wizard 532
Creating Packages Using BI Development Studio. 533
Managing Packages Using Management Studio . 533
Using the Command Line to Execute and Manage Packages 533
Scheduling Packages Using SQL Server Agent . 534
Configuring and Deploying Packages. 535
Overview of Programming Package Extension . 536

Security . 537
Dealing with Sensitive Information and Assets . 537
Considerations for Working on a Single Development Machine 538
Considerations for Workgroups . 538

Programming Integration Services . 539
Programming in Visual Studio . 539
Loading and Executing Packages in Applications . 539
Creating Packages Programmatically . 540

Extensibility . 554
Script Tasks . 554
Custom Tasks. 555
Custom Components . 556
Script Components. 566
Custom Connection Managers. 571
Log Providers . 572
Foreach Enumerator . 572

Summary . 572

17 Basic OLAP . 573
Wherefore BI? . 573
OLAP 101 . 575

OLAP Vocabulary . 576
Dimensions, Axes, Stars, and Snowflakes . 576

Building Your First Cube . 578
Preparing Star Schema Objects . 579
A Tool by Any Other Name. 579

xvi Table of Contents

A05T619239.fm Page xvi Tuesday, May 31, 2005 9:13 PM
Creating the Project . 581
Adding a Data Source View . 582
Creating a Cube with the Cube Wizard . 586
Using the Cube Designer . 589
Using the Dimension Wizard . 591
Using the Dimension Designer . 594
Working with the Properties Window and Solution Explorer. 596
Processing the Cube . 597

Running Queries . 597
Summary . 599

18 Advanced OLAP . 601
What We’ll Cover in This Chapter . 602

MDX in Context . 602
And Now a Word from Our Sponsor…. 603

Advanced Dimensions and Measures . 603
Keys and Names. 604
Changing the All Member . 606
Adding a Named Query to a Data Source View. 607
Parent-Child Dimensions . 609
Member Grouping. 614
Server Time Dimensions . 615
Fact Dimensions . 617
Role-Playing Dimensions . 620
Advanced Measures . 621

Calculations. 622
Calculated Members . 623
Named Sets. 629
More on Script View . 629

Key Performance Indicators . 633
KPI Visualization: Status and Trend . 634
A Concrete KPI . 635
Testing KPIs in Browser View . 637
KPI Queries in Management Studio . 639
Other BI Tricks in Management Studio . 643

Actions . 645
Actions Simply Defined. 645
Designing Actions . 645
Testing Actions . 647

Partitions, Aggregation Design, Storage Settings, and Proactive Caching 648
Editing and Creating Partitions . 649
Aggregation Design . 651
Partition Storage Options. 652

Table of Contents xvii

A05T619239.fm Page xvii Tuesday, May 31, 2005 9:13 PM
Proactive Caching. 652
Additional Features and Tips . 654

Perspectives . 654
Translations . 657
Roles . 662
Summary . 665

19 OLAP Application Development . 667
Using Excel. 668

Working Within Excel . 669
Using PivotTables and Charts in Applications and Web Pages 676

Beyond OWC: Full-On OLAP Development . 691
MDX and Analysis Services APIs. 691
Moving to MDX . 692
Management Studio as an MDX Client. 692
OLAP Development with ADO MD.NET . 706
XMLA at Your (Analysis) Service. 718
Analysis Services CLR Support: Server-Side ADO MD.NET. 729

Summary . 739

20 Extending Your Database System with Data Mining 741
Why Mine Your Data? . 742
Getting Started . 745

Preparing Your Source Data . 745
Creating Training and Test Samples. 747
Adding an SSAS Project. 752

Using the Data Mining Wizard and Data Mining Designer . 752
Creating a Mining Structure . 755
Creating a Mining Model . 755
Editing and Adding Mining Models . 758
Deploying and Processing Data Mining Objects. 763
Viewing Mining Models . 765
Validating and Comparing Mining Models . 773
Nested Tables . 776

Using Data Mining Extensions . 782
Data Mining Modeling Using DMX. 782
Data Mining Predictions Using DMX . 792
DMX Templates. 799

Data Mining Applied . 800
Data Mining and API Programming . 801
Using the WinForms Model Content Browser Controls 801
Executing Prediction Queries with ADO MD.NET . 804

xviii Table of Contents

A05T619239.fm Page xviii Tuesday, May 31, 2005 9:13 PM
Model Content Queries . 804
ADO MD.NET and ASP.NET . 805
Using the Data Mining Web Controls . 805
Developing Managed Stored Procedures . 806
XMLA and Data Mining . 808
Data Mining and Reporting Services . 810

Summary . 817

21 Reporting Services . 819
Report Definition and Design . 820

Data Sources. 820
Report Layouts . 822
Report Designer . 826
Report Builder . 838
Report Definition Language. 843

Report Management . 843
Publishing . 843
Report Manager. 844
SQL Server Management Studio . 851
Command-Line Utilities . 852
Programming: Management Web Services. 852

Report Access and Delivery . 852
Delivery on Demand . 852
Subscriptions . 855
Presentation Formats . 857
Programming: Rendering . 859

Report Server Architecture . 862
Deployment Modes. 865
Extensibility . 865
Report Integration . 867

Summary . 867

Index. 869

What do you think of this book?
We want to hear from you!

Microsoft is interested in hearing your feedback about this publication so we can
continually improve our books and learning resources for you. To participate in a brief
online survey, please visit: www.microsoft.com/learning/booksurvey/

619239.book Page 45 Tuesday, May 31, 2005 9:24 PM
Chapter 3

An Overview of SQL CLR

—Andrew Brust

In this chapter:

Getting Started: Enabling CLR Integration . 46

Visual Studio/SQL Server Integration . 48

Your First SQL CLR Stored Procedure . 53

CLR Stored Procedures and Server-Side Data Access . 55

Deployment . 59

CLR Functions . 65

CLR Triggers . 69

CLR Aggregates . 74

CLR Types . 78

Security . 84

Examining and Managing CLR Types in a Database. 85

Best Practices for SQL CLR Usage . 91

Summary . 92

The banner headline for Microsoft SQL Server 2005 is its integration of the Microsoft .NET com-
mon language runtime (CLR). This architectural enhancement means that SQL Server can use
certain .NET classes as basic data types and can accommodate the use of .NET languages for the
creation of stored procedures, triggers, and functions, and even user-defined aggregates.

Note Throughout this chapter, we will refer to the CLR integration in SQL Server as SQL CLR
features, functionality, or integration, and we will refer to stored procedures, triggers, func-
tions, aggregates, and user-defined types as the five basic SQL CLR entities.

Let’s face facts: Transact SQL (T-SQL) is essentially a hack. Back when SQL Server was first
developed, Microsoft and Sybase took SQL—a declarative, set-based language—and added vari-
able declaration, conditional branching, looping, and parameterized subroutine logic to make
it into a quasi-procedural language. Although extremely clever and useful, T-SQL lacked, and
still lacks, many of the niceties of a full-fledged procedural programming language.
45

46 Part I: Design Fundamentals and Core Technologies

619239.book Page 46 Tuesday, May 31, 2005 9:24 PM
This shortcoming has forced some people to write T-SQL stored procedures that are overly
complex and difficult to read. It has forced others to put logic in their middle-tier code that
they would prefer to implement on the database. And it’s even forced some people to abandon
stored procedures altogether and use dynamic SQL in their applications, a practice that we do
not endorse. Because of these workarounds to address T-SQL’s procedural limitations, CLR
integration is a welcome new feature in SQL Server, and it has caught the market’s attention.

Meanwhile, T-SQL—and, one might argue, SQL itself—is vastly superior to procedural lan-
guages for querying and manipulating data. Its set-based syntax and implementation simply
transcend the approach of procedurally iterating through rows of data. This is no less true in
SQL Server 2005 than in previous versions of the product, and T-SQL has been greatly
enhanced in this release (as detailed in Chapter 2), making it more valuable still.

So this places database application developers at a crossroads. We must simultaneously learn
how the SQL CLR features work and develop a sophisticated, judicious sense of when to use
T-SQL instead of the SQL CLR feature set. We must resist the temptation to completely “.NET-
ify” our databases but learn to take advantage of the SQL CLR feature set where and when
prudent. This chapter aims to help you learn to use SQL CLR features and to develop an
instinct for their appropriate application.

In this chapter, you will learn:

■ How to enable (or disable) SQL CLR integration on your SQL Server

■ How SQL Server accommodates CLR code, through the loading of .NET assemblies

■ How to use SQL Server 2005 and Visual Studio 2005 together to write SQL CLR code
and deploy it, simply and quickly

■ How to deploy SQL CLR code independently of Visual Studio, using T-SQL commands,
with or without the help of SQL Server Management Studio

■ How to create simple CLR stored procedures, triggers, functions, aggregates, and user-
defined types, use them in your databases, and utilize them from T-SQL

■ How both the standard SQL Server client provider and the new server-side library can
be combined to implement SQL CLR functionality

■ How SQL CLR security works and how to configure security permissions for your
assemblies

■ When to use SQL CLR functionality, and when to opt to use T-SQL instead

Getting Started: Enabling CLR Integration
Before you can learn how to use SQL CLR features, you need to know how to enable them. As
with many new products in the Microsoft Windows Server System family, many advanced
features of SQL Server 2005 are disabled by default. The reasoning behind this is sound: Each

Chapter 3: An Overview of SQL CLR 47

619239.book Page 47 Tuesday, May 31, 2005 9:24 PM
additional feature that is enabled provides extra “surface area” for attacks on security or
integrity of the product, and the added exposure is inexcusable if the feature goes unused.

The SQL CLR features of SQL Server 2005 are sophisticated and can be very useful, but
they are also, technically, nonessential. It is possible to build high-performance databases and
server-side programming logic without SQL CLR integration, so it is turned off
by default.

Don’t be discouraged, though: Turning on the feature is easy. Microsoft provides both a
user-friendly GUI tool (aptly named the SQL Server Surface Area Configuration tool) and a
system stored procedure for enabling or disabling SQL CLR integration. We’ll cover both
approaches.

To use the Surface Area Configuration tool, simply start it from the Configuration Tools
subgroup in the Microsoft SQL Server 2005 programs group on the Windows start menu.
Figure 3-1 shows the tool as it appears upon startup.

Figure 3-1 The SQL Server 2005 Surface Area Configuration tool

To configure CLR integration, click the Surface Area Configuration For Features link at the
bottom of the form. After a short pause, the Surface Area Configuration For Features dialog
box appears; a tree view-style list of features appears on the left, and the Ad Hoc Remote Que-
ries feature is preselected. Click the CLR Integration node immediately below it, and you will
see an Enable CLR Integration check box on the right of the form. (This is shown in Figure 3-
2.) To enable SQL CLR features, make sure that the check box is checked, and click OK to
close the Surface Area Configuration For Features window. (You can also clear the check box
to disable SQL CLR integration.) Close the Surface Area Configuration tool by clicking its
close box in the upper-right corner of the window.

48 Part I: Design Fundamentals and Core Technologies

619239.book Page 48 Tuesday, May 31, 2005 9:24 PM
Figure 3-2 The Surface Area Configuration For Features window

If you’d prefer a command-line method for enabling or disabling SQL CLR functionality, open
up SQL Server Management Studio and connect to the server you’d like to configure. Then,
from a query window, type the following commands, and click the Execute button on the
Management Studio SQL Editor toolbar.

sp_configure 'clr enabled', 1

GO

RECONFIGURE

GO

That’s all there is to it! To disable SQL CLR integration, just use a value of 0, instead of 1, as
the second parameter value in the sp_configure call.

Tip Don’t forget that this will work from any tool that can connect to SQL Server, not just
Management Studio. In fact, you could issue the previous command text from your own code
using the ADO.NET SqlCommand object’s ExecuteNonQuery method as long as your code can
connect to your server and your sever can authenticate as a user in the sysadmin server role.

With SQL CLR integration enabled, you’re ready to get started writing SQL CLR code. Before
we dive in, we need to discuss Visual Studio/SQL Server integration and when to use it.

Visual Studio/SQL Server Integration
Visual Studio 2005 and SQL Server 2005 integrate tightly in a number of ways. It’s important
to realize, however, that the use of Visual Studio integration is completely optional and the use
of T-SQL is a sufficient substitute. T-SQL has been enhanced with new DDL commands for

Chapter 3: An Overview of SQL CLR 49

619239.book Page 49 Tuesday, May 31, 2005 9:24 PM
maintaining CLR assemblies, types, and aggregates, and its existing commands for stored
procedures, triggers, and functions have been enhanced to recognize code within deployed
assemblies. Visual Studio can execute those commands on your behalf. It can also make
writing individual SQL CLR classes and functions easier.

Ultimately, we think all developers should be aware of both Visual Studio–assisted and more
manual coding and deployment methods. You might decide to use one method most of the
time, but in some situations you’ll probably need the other, so we want to prepare you. As we
cover each major area of SQL CLR programming, we will discuss deployment from both
points of view. We’ll cover some general points about Visual Studio integration now, and then
we’ll move on to cover SQL CLR development.

SQL Server Projects in Visual Studio

The combination of Visual Studio 2005 and SQL Server 2005 on the same development
machine provides a special SQL Server Project type in Visual Studio and, within projects of
that type, defined templates for the five basic SQL CLR entities. These templates inject specific
code attributes and function stubs that allow you to create SQL CLR code easily. The attributes
are used by Visual Studio to deploy your assembly and its stored procedures, triggers, and so on
to your database. Some of them are also used by SQL Server to acknowledge and properly use
your functions, user-defined types (UDTs), and aggregates.

To test out the new project type and templates, start Visual Studio 2005 and create a new project
by using the File/New/Project… main menu option, the New Project toolbar button, the
Ctrl+Shift+N keyboard accelerator, or the Create Project… hyperlink on the Visual
Studio Start Page. In the New Project dialog box (Figure 3-3), select Database from the Project
types tree view on the left (the Database node appears under the parent node for your program-
ming language of choice; in Figure 3-3, the language is C#), and click the SQL Server Project icon
in the Templates list on the right. Enter your own project name if you’d like, and click OK.

Figure 3-3 The Visual Studio 2005 New Project dialog box with the SQL Server project type selected

50 Part I: Design Fundamentals and Core Technologies

619239.book Page 50 Tuesday, May 31, 2005 9:24 PM
Next, the Add Database Reference dialog box appears (Figure 3-4).

Figure 3-4 The Add Database Reference dialog box

Because Visual Studio provides automated deployment of your SQL CLR code, it must associate
your project with a specific server and database via a database reference (connection). Any
database connections that have already been defined in the Server Explorer window appear in
this window, as does an Add New Reference button that allows you to define a new connection,
if necessary. Pick an existing connection or define a new one, and then click OK. The project
opens.

Note If no data connections have already been defined in the Server Explorer window, the
New Database Reference dialog box will appear in place of the Add Database Reference dialog
box. In the New Database Reference dialog box, you may specify server, login, and database
details for a new database connection that will be used by your project as its database refer-
ence and added to the Server Explorer as a new data connection.

You can easily add preconfigured classes for the five basic SQL CLR entities to your project.
You can do this in a number of ways: directly from the Project menu or from the Add submenu
on the Server Explorer’s project node shortcut menu (Figure 3-5).

You can also add the preconfigured classes from the Add New Item dialog box (Figure 3-6),
which is available from the Project/Add New Item… option on the main menu, or the Add/
New Item… option on the Solution Explorer project node’s shortcut menu.

Chapter 3: An Overview of SQL CLR 51

619239.book Page 51 Tuesday, May 31, 2005 9:24 PM
Figure 3-5 The Server Explorer project node shortcut menu and its Add submenu

Figure 3-6 The Visual Studio SQL Server project Add New Item dialog box

Automated Deployment

Once opened, SQL Server projects add a Deploy option to the Visual Studio Build menu.
In addition, the Play (Start Debugging) button and the Start Debugging, Start Without
Debugging, and Step Over options on the Debug menu (and their keyboard shortcuts F5,
Ctrl+F5, and F10, respectively) all deploy the project assembly in addition to performing their
listed function.

52 Part I: Design Fundamentals and Core Technologies

619239.book Page 52 Tuesday, May 31, 2005 9:24 PM
Visual Studio can do a lot of deployment work for you. But as you’ll learn, you can do so on
your own and, in certain circumstances, have more precise control over the deployment pro-
cess when you do so.

SQL CLR Code Attributes

A number of .NET code attributes are provided for SQL CLR developers; these are contained
in the Microsoft.SqlServer.Server namespace. Many of them are inserted in your code when
you use the various templates in the SQL Server project type, as is a using statement for the
Microsoft.SqlServer.Server namespace itself. If you choose to develop code without these tem-
plates, you must add the appropriate attributes, and optionally the using statement, yourself.
Although all these attributes are provided in the same namespace, some are used exclusively
by Visual Studio and others are used by both Visual Studio and SQL Server.

Covering all SQL CLR attributes and their parameters would itself require an entire chapter,
so our coverage will be intentionally selective. Specifically, we will provide coverage of the
SqlProcedure, SqlFunction, SqlTrigger, SqlUserDefinedAggregate, and SqlUserDefinedType
attributes. We will not cover the SqlFacet and SqlMethod attributes.

Just as certain attributes are not covered here, we cover only some of the parameters accepted
by the attributes that we do cover. And in some cases, we cover only certain of the possible val-
ues that can be passed to these attributes. For example, SqlFunction accepts several parameters
but the only ones we will cover are Name, FillRowMethodName, and TableDefinition. For
SqlUserDefinedAggregate and SqlUserDefinedType, we will cover only a single value setting for
the Format parameter, and will not cover the several other parameters those two attributes
accept.

The coverage we provide will be more than sufficient for you to implement basic, intermediate,
and certain advanced functionality with all the basic five SQL CLR entities. The attributes and
parameters that we won’t cover are useful mostly for optimizing your SQL CLR code, and they
are well documented in SQL Server Books Online and articles on MSDN.

About the Sample Code
The sample .NET code for this chapter is provided in two versions. The primary material
is supplied as a Visual Studio SQL Server project, accessible by opening the solution file
Chapter03.sln in the Chapter03 subfolder of this chapter’s VS sample code folder. We
also supply the code as a standard Class Library project, accessible by opening the solu-
tion file Chapter03Manual.sln in the Chapter03Manual subfolder. The code in each
project is virtually identical, although the Class Library project does not autodeploy
when the various Build and Debug options are invoked in Visual Studio 2005. As we
cover each SQL CLR feature, we’ll discuss how automated deployment takes place from
the SQL Server project and how command-driven deployment should be performed for
the Class Library project.

Chapter 3: An Overview of SQL CLR 53

619239.book Page 53 Tuesday, May 31, 2005 9:24 PM
We’ll also discuss executing test scripts from within Visual Studio for the SQL Server
project and from SQL Server Management Studio for the Class Library project. As a com-
panion to those discussions, we also provide a Management Studio project, accessible
by opening Chapter03.ssmssln in this chapter’s SSMS folder. This project consists of a
number of SQL scripts used for testing the sample SQL CLR code and a script for clean-
ing up everything in the database created by the sample code and tests. The project also
contains a script file called CreateObjects.sql, which deploys the Class Library assembly
and the SQL CLR entities within it.

Your First SQL CLR Stored Procedure
Although SQL CLR programming can get quite complex and involved, it offers in reality a sim-
ple model that any .NET developer can use with high productivity in relatively short order.
That’s because the crux of SQL CLR functionality is nothing more than the ability of SQL
Server 2005 to load .NET assemblies into your database and then to allow you to use the pro-
cedures, functions, and types within the assembly as you define your columns, views, stored
procedures, triggers, and functions.

To give you a good understanding of SQL CLR integration, we must go through its features
and techniques carefully. Before doing so, however, let’s quickly go through an end-to-end sce-
nario for creating and executing a SQL CLR stored procedure. This will make it easier for you
to understand the individual features as we describe them.

Strictly speaking, any .NET class library assembly (in certain cases using appropriate .NET
code attributes in its classes and functions) can be loaded into your database with a simple
T-SQL command. To see how easily this works, start up Management Studio and open
a query window using a connection to the AdventureWorks sample database. In the
sample code folder for this chapter, confirm that the file Chapter03.dll is located in the
VS\Chapter03Manual\Chapter03\bin\Debug subfolder. If the parent folder were
C:\ProgrammingSQL2005\Chapter03, you would load the assembly into the Adventure-
Works database with the following T-SQL command:

CREATE ASSEMBLY Chapter03

FROM 'C:\ProgrammingSQL2005\Chapter03\VS\Chapter03Manual\Chapter03\bin\Debug\Chapter03.dll'

There are other syntax options for the CREATE ASSEMBLY command, but for now we’ll focus
on the previous limited usage.

Functions in an assembly that reside within a class and perform local computational tasks
and/or certain types of data access can be easily exposed as SQL Server stored procedures,
triggers, or functions. As with conventional stored procedures, triggers, and functions, all it
takes is a simple T-SQL CREATE PROCEDURE, CREATE TRIGGER, or CREATE FUNCTION

54 Part I: Design Fundamentals and Core Technologies

619239.book Page 54 Tuesday, May 31, 2005 9:24 PM
command to make this happen. We’ll go through each of these options in this chapter, but
let’s cut to the chase and create a simple CLR stored procedure right now.

You can view the source code for the Chapter03 assembly by opening the solution file
VS\Chapter03Manual\Chapter03Manual.sln in this chapter’s sample code folder. Within the
project, the file Sprocs.cs contains the following code:

using System.Data.SqlClient;

using Microsoft.SqlServer.Server;

public partial class Sprocs

{

public static void spContactsQuick()

{

SqlContext.Pipe.ExecuteAndSend(new SqlCommand("Select * from Person.Contact"));

}

};

The code within the procedure is designed to connect to the database in which its assembly has
been loaded (AdventureWorks), perform a SELECT * against the Person.Contact table, and use
special server-side objects to send the data back to the client application. To make this CLR code
available via SQL Server as a stored procedure, also called spContactsQuick, you simply execute
the following command from the Management Studio query window you opened previously.

CREATE PROCEDURE spContactsQuick

AS EXTERNAL NAME

Chapter03.Sprocs.spContactsQuick

Important Be sure to enter the Sprocs.spContactsQuick portion of the command verbatim.
This phrase is case-sensitive.

To test the SQL CLR stored procedure, run it from a Management Studio query window as
you would any conventional stored procedure:

EXEC spContactsQuick

Or simply:

spContactsQuick

Management Studio should respond by displaying the contents of the Person.Contact table in
the Results tab of the query window.

As you can see from this rather trivial example, writing a CLR stored procedure can be very
easy and is a lot like writing client-side or middle-tier code that performs data access using

Chapter 3: An Overview of SQL CLR 55

619239.book Page 55 Tuesday, May 31, 2005 9:24 PM
ADO.NET. The biggest differences involve the provision of a database connection and the fact
that the data must be “piped” back to the client rather than loaded into a SqlDataReader and
returned, manipulated, or displayed through a UI. In addition, the presence of the SqlContext
object differentiates SQL CLR code from conventional .NET data access code. We’ll cover the
use of the SqlContext object and its Pipe property in the next section.

The bits of T-SQL and C# code just shown certainly don’t tell the whole SQL CLR story. The
use of the ExecuteAndSend method allowed us to skip over a number of otherwise important
concepts. There are three ways to deploy assemblies, and you’ve seen only a simplified version
of one of those ways. Security considerations must be taken into account, and we haven’t even
begun to look at triggers, functions, aggregates, or UDTs. So although the example showed
how easy SQL CLR programming can be, we’ll now take our time and show you the nooks
and crannies.

CLR Stored Procedures and Server-Side Data Access
Our previous “quick and dirty” sample looked at CLR stored procedure development, but we
need to cover that topic more thoroughly now. We’ve already covered the mechanics of writ-
ing and deploying a stored procedure, but let’s back up a bit and try and understand how CLR
stored procedures work from a conceptual standpoint.

SQL CLR stored procedure code runs in an instance of the .NET CLR that is hosted by SQL
Server itself; it is not called as an external process, as COM-based extended stored procedures
(XPs) would be. Because SQL CLR code runs in the context of the server, it treats objects in
the database as native, local objects, more or less. Likewise, it must treat the client that calls it
as remote. This contextual environment is, in effect, the opposite of that under which client
and middle-tier ADO.NET code runs. This takes a little getting used to, but once you’ve mas-
tered thinking about things this way, SQL CLR code becomes easy to write and understand.

Meanwhile, as .NET has no intrinsic way of accessing local objects on the server or transmit-
ting data and messages to the client, you must use a special set of classes to perform these
tasks. These classes are contained in the Microsoft.SqlServer.Server namespace.

Note As an aside, it is interesting and important to note that the Microsoft.SqlServer.Server
namespace is actually supplied by the System.Data Framework assembly. This means that
you don’t need to worry about adding a reference to your project to use this namespace.
The namespace’s location within System.Data also further emphasizes the tight integration
between .NET and SQL Server.

If you’d like, you can think of Microsoft.SqlServer.Server as a helper library for System.Data.Sql-
Client. It supplies the SQL CLR code attributes we already mentioned, a few enumerations, an
exception class, an interface, and five classes: SqlContext, SqlPipe, SqlTriggerContext, SqlMeta-
Data, and SqlDataRecord. We’ll cover SqlMetaData and SqlDataRecord at the end of this

56 Part I: Design Fundamentals and Core Technologies

619239.book Page 56 Tuesday, May 31, 2005 9:24 PM
section, and we’ll cover SqlTriggerContext when we discuss CLR triggers. We’ll cover the Sql-
Context and SqlPipe objects right now.

At a high level, the SqlContext object, which is static, provides a handle to the server-side con-
text in which your code runs. It also has a channel to the client through which you can return
data and text: its Pipe property, which in turn provides access to a properly initiated SqlPipe
object.

A SqlPipe object can send data and messages to the calling client though several methods:
Send, SendResultsStart, SendResultsRow, SendResultsEnd, and ExecuteAndSend. In the previous
code sample, we used the SqlPipe object’s ExecuteAndSend method to implicitly open a con-
nection, call ExecuteReader on an SqlCommand object that uses that connection, and transmit
the contents of the resulting SqlDataReader back to the client. Although the implicit work
done by ExecuteAndSend might have been convenient, it’s important to avoid such shortcuts in
our detailed discussion on SQL CLR programming.

In general, SQL CLR stored procedure code that queries tables in the database must open a
connection to that database, use the SqlCommand object’s ExecuteReader method to query
the data, and then use one or a combination of the Send methods to send it back. The Send
methods do not accept DataSet objects; they accept only SqlDataReader objects, strings,
and/or special SqlDataRecord objects. Listing 3-1, which shows the implementation of the
function spContacts from spTest.cs in the sample project, is a representative example of how
this is done.

Listing 3-1 spContacts from spTest.cs

[SqlProcedure]

public static void spContacts()

{

SqlConnection conn = new SqlConnection("context connection=true");

SqlCommand cm = new SqlCommand("Select * from Person.Contact", conn);

conn.Open();

SqlDataReader dr = cm.ExecuteReader();

SqlContext.Pipe.Send("Starting data dump");

SqlContext.Pipe.Send(dr);

SqlContext.Pipe.Send("Data dump complete");

dr.Close();

conn.Close();

}

For this code to work, we need to use both the Microsoft.SqlServer.Server and System.Data.SqlCli-
ent namespaces (and if you look in the sample project rather than Listing 3-1, you’ll see that we
have). This is because any conventional ADO.NET objects we might use, such as SqlConnection,
SqlCommand, and SqlDataReader, are supplied to us from System.Data.SqlClient, just as they
would be in a conventional client application or middle-tier assembly. As already discussed, we
need the Microsoft.SqlServer.Server namespace in order to use objects such as SqlContext and

Chapter 3: An Overview of SQL CLR 57

619239.book Page 57 Tuesday, May 31, 2005 9:24 PM
SqlPipe. The stored procedure template in Visual Studio SQL Server projects includes the using
statement for Microsoft.SqlServer.Server and System.Data.SqlClient automatically.

Note Readers who worked with early beta versions of SQL Server 2005 might recall a
System.Data.SqlServer library, which in effect supplied all conventional and server-side
ADO.NET objects necessary to write SQL CLR code. This hybrid library was eliminated and
replaced with the dual-library approach later in the beta process.

Although server-side code uses SqlClient objects, it does so in a specialized way. For example,
notice that the context connection=true connection string passed to the SqlConnection object’s
constructor. This essentially instructs ADO.NET to open a new connection to the database in
which the CLR assembly resides. Notice also the second call to the SqlContext.Pipe object’s
Send method. Here, the SqlDataReader parameter overload of the SqlPipe object’s Send method
is used to push the contents of the SqlDataReader back to the client. You can think of this
method as performing a while (dr.Read()) loop through the SqlDataReader and echoing out
the values of each column for each iteration of the loop, but instead of having to do that work
yourself, the Send method does it for you.

Before and after the SqlDataReader is piped, we use the String parameter overload of the Send
method to send status messages to the client. When this stored procedure is run in Manage-
ment Studio, the piped text appears on the Results tab of the query window when you use the
Management Studio Results To Text option and on the Messages tab when you use the Results
To Grid option.

The rest of the listing contains typical ADO.NET code, all of it using objects from the SqlClient
provider. And that illustrates well the overall theme of SQL CLR programming: Do what you’d
normally do from the client or middle tier, and use a few special helper objects to work within
the context of SQL Server as you do so.

Piping Data with SqlDataRecord and SqlMetaData

We mentioned that the SqlPipe object’s Send method can accept an object of type SqlDataRecord,
and we mentioned previously that Microsoft.SqlServer.Server provides this object as well as an
object called SqlMetaData. You can use these two objects together in a CLR stored procedure to
return a result set one row at a time, instead of having to supply the SqlPipe object’s Send method
with an SqlDataReader. This allows (but does not require) you to inspect the data before sending
it back to the client. Sending SqlDataReader objects prevents inspection of the data within the
stored procedure because SqlDataReader objects are forward-only result set structures. Using
the ExecuteAndSend method and an SqlCommand object has the same limitation.

The SqlDataRecord object permits .NET code to create an individual record/row to be returned
to the calling client. Its constructor accepts an array of SqlMetaData objects, which in turn
describe the metadata for each field/column in the record/row.

58 Part I: Design Fundamentals and Core Technologies

619239.book Page 58 Tuesday, May 31, 2005 9:24 PM
Listing 3-2, which shows the implementation of function spContactCount from spTest.cs in the
sample project, illustrates how to use SqlPipe.Send together with SqlDataRecord and SqlMeta-
Data objects to return a single-column, single-row result set from a stored procedure.

Listing 3-2 spContactCount from spTest.cs

[SqlProcedure()]

public static void spContactCount()

{

SqlConnection conn = new SqlConnection("context connection=true");

SqlCommand cm = new SqlCommand("Select Count(*) from Person.Contact", conn);

SqlDataRecord drc = new SqlDataRecord(new SqlMetaData("ContactCount", SqlDbType.Int));

conn.Open();

drc.SetInt32(0, (Int32)cm.ExecuteScalar());

SqlContext.Pipe.Send(drc);

conn.Close();

}

The code declares variable drc as a SqlDataRecord object and passes its constructor a single Sql-
MetaData object. (Passing a single object rather than an array is permissible if the SqlDa-
taRecord object will only have a single field/column.) The SqlMetaData object describes a
column called ContactCount of type SqlDbType.Int.

Note The SqlDbType enumeration is contained within the System.Data.SqlTypes namespace.
The SQL Server Stored Procedure template inserts a using statement for this namespace. If you are
creating SQL CLR code without using this template, you should add the using statement yourself.

The rest of the code is rather straightforward. First, a context connection and command
are opened and a SELECT COUNT(*) query is performed against the AdventureWorks
Person.Contact table. Because the query returns a single scalar value, it is run using the
SqlCommand object’s ExecuteScalar method. Next, the value returned by ExecuteScalar is
casted into an integer and that value is loaded into field/column 0 (the only one) of the
SqlDataRecord object using its SetInt32 method. The SqlDataRecord is then piped back to
the client using the SqlContext object’s Send method.

Note If we wanted to send back multiple SqlDataRecord objects, we would send the first
one using the SqlContext object’s SendResultsStart method and then send all subsequent
SqlDataRecord objects using the SendResultsRow method. We would call the SendResultEnd
method after all SqlDataRecords had been sent.

Once the stored procedure has been deployed (the techniques for which we will discuss
shortly), you can execute it from SQL Server Management Studio as you would any other
stored procedure. Although the result is a single value, it is presented as a column and the

Chapter 3: An Overview of SQL CLR 59

619239.book Page 59 Tuesday, May 31, 2005 9:24 PM
column name ContactCount is shown on the Results tab of the query window. Keep in mind
that this COUNT(*) query result could have been returned without using the SqlMetaData
and SqlDataRecord objects; the sample is provided to demonstrate the use of these objects as
an alternative to piping SqlDataReader objects and text to the client.

CLR Stored Procedure Usage Guidelines
It’s important to understand how to perform data access and retrieval in CLR stored
procedures. As a .NET developer, you already know how to do more computational
tasks within your code, so our samples illustrate server-side data access more than any-
thing else. As proof-of-concept code, these samples are completely adequate.

Meanwhile, you should avoid writing CLR stored procedures that merely perform sim-
ple “CRUD” (Create, Retrieve, Update, and Delete) operations. Such tasks are better left
to conventional T-SQL stored procedures, which typically perform these operations
more efficiently than ADO.NET can. CLR stored procedures work well when you need
to perform computation on your data and you need the expressiveness of a .NET lan-
guage to do so (where such expressiveness is missing from T-SQL).

For example, implementing a “fuzzy search” using business logic embedded in .NET
assemblies to determine which data has an affinity to other data is a good use of SQL
CLR stored procedures. Regular-expression-based data validation in an update or insert
stored procedure is another good application of SQL CLR integration. As a general rule,
straight data access should be left to T-SQL. “Higher-valued” computations are good
candidates for SQL CLR integration. We’ll revisit the SQL CLR usage question at various
points in this chapter.

Deployment
Before you can test your SQL CLR code, you must deploy the assembly containing it and reg-
ister the individual functions that you want recognized as stored procedures. A number of
deployment methods are at your disposal; we will pause to cover them now, before discussing
testing of your stored procedures and the other four basic SQL CLR entities.

Deploying Your Assembly

As mentioned earlier, Visual Studio deploys the SQL Server project version of the sample code
when you build, start, or step through the project or use the Build/Deploy function on Visual
Studio’s main menu. If you’re working with the SQL Server project version of the samples, go
ahead and use the Deploy option or one of the Start or Build options in Visual Studio now.

For deploying the Class Library project version, assuming C:\ProgrammingSQL2005\ Chapter03
as this chapter’s sample code parent directory, you can execute the following T-SQL command

60 Part I: Design Fundamentals and Core Technologies

619239.book Page 60 Tuesday, May 31, 2005 9:24 PM
from within Management Studio:

CREATE ASSEMBLY Chapter03

AUTHORIZATION dbo

FROM 'C:\ProgrammingSQL2005\Chapter03\VS\Chapter03Manual\Chapter03\bin\Debug\Chapter03.dll'

WITH PERMISSION_SET = SAFE

GO

The AUTHORIZATION clause allows you to specify a name or role to which ownership of the
assembly is assigned. The default authorization is that of the current user, and because you
are most likely logged in as dbo for AdventureWorks, in this case the clause is unnecessary
(which is why we omitted it from our previous example).

The meaning and effect of the WITH PERMISSION_SET clause are discussed at the end of
this chapter. For now, just note that this clause allows you to specify the security permissions
with which your assembly runs. As with the AUTHORIZATION clause, in this case the
WITH PERMISSION_SET clause is technically unnecessary because SAFE is the default
PERMISSION_SET value used when a CREATE ASSEMBLY command is executed.

If your assembly has dependencies on other assemblies, SQL Server looks to see if those
assemblies have already been loaded into the database and, if so, confirms that their owner-
ship is the same as that of the specified assembly. If the dependent assemblies have not yet
been loaded into the database, SQL Server looks for them in the same folder as the specified
assembly. If it finds all dependent assemblies in that location, it loads them and assigns them
the same ownership as the primary assembly. If it does not find the dependent assemblies in
that folder, the CREATE ASSEMBLY command will fail.

You can supply a string expression instead of a literal in the FROM clause, allowing for some
interesting data-driven possibilities. For example, you could fetch an assembly path reference
from a table in your database. It is also possible to supply a bitstream in the FROM clause instead
of a file specification. You do this by specifying a varbinary literal value or expression (or a
comma-delimited list of varbinary values or expressions, when dependent assemblies must be
specified) that contains the actual binary content of your assembly (or assemblies). This allows
the creation of a database, including any CLR assemblies it contains, to be completely scripted,
without requiring distribution of actual assembly files. The binary stream can be embedded in
the script itself or, using an expression, it can be fetched from a table in a database.

More Info See SQL Server Books Online for more information on this option.

In addition to using Visual Studio deployment and the T-SQL CREATE ASSEMBLY command,
you can upload the assembly into your database interactively from Management Studio. Sim-
ply right-click the servername/AdventureWorks/Programmability/Assemblies node in the
Object Explorer (where servername is the name of your server) and choose New Assembly…
from the shortcut menu. The New Assembly dialog box, shown in Figure 3-7, appears.

Chapter 3: An Overview of SQL CLR 61

619239.book Page 61 Tuesday, May 31, 2005 9:24 PM
Figure 3-7 The Management Studio New Assembly dialog box

Type the assembly path and file name in the Path To Assembly text box, or use the Browse…
button to specify it interactively. You can specify AUTHORIZATION and WITH PERMISSION_SET
details in the Assembly Owner text box (using the ellipsis button, if necessary) and the
Permission Set combo box, respectively.

Regardless of the deployment method you use, once your assembly has been added to your
database, it becomes an integral part of that database and its underlying MDF file. This means
if your database is backed up and restored, or xcopy deployed, any assemblies within it move
along with the data itself and need not be manually added as a subsequent step.

Deploying Your Stored Procedures

In the SQL Server project version of the sample code, deployment of all the stored procedures
is handled by Visual Studio when the assembly itself is deployed. This is due to the applica-
tion of the SqlProcedure attribute to the functions in class StoredProcedures (found in file
spTest.cs). The SqlProcedure attribute accepts an optional Name parameter, the value of which
is the actual callable stored procedure name. If you do not supply a value for the Name param-
eter, the name of the .NET function is used as the stored procedure name.

The SqlProcedure attribute is used only by Visual Studio in SQL Server projects. Therefore, it
has been removed from the source code in the Class Library project. Deploying the stored pro-
cedures from that version of the source code requires issuing a CREATE PROCEDURE T-SQL
command using the new EXTERNAL NAME clause to specify the assembly, fully qualified
class name specifier, and function name. For example, to load the Class Library version of
spContacts, you would issue the following command.

62 Part I: Design Fundamentals and Core Technologies

619239.book Page 62 Tuesday, May 31, 2005 9:24 PM
CREATE PROCEDURE spContacts

AS EXTERNAL NAME Chapter03.StoredProcedures.spContacts

The preceding command specifies that function spContacts, in class StoredProcedures, in the
loaded assembly with T-SQL name Chapter03, should be registered as a CLR stored procedure
callable under the name spContacts.

Note All necessary CREATE PROCEDURE commands for the Class Library project version
of the sample code are contained in the CreateObjects.sql script in the Management Studio
project supplied with the sample code. You will need to run that script in order to execute the
various SQL CLR entities implemented in the Class Library project.

Note that had the CLR stored procedure been written in Visual Basic .NET rather than C#, the
class name specifier would change to Chapter03.StoredProcedures. This would necessitate a
change to the deployment T-SQL code as follows:

CREATE PROCEDURE spContacts

AS EXTERNAL NAME Chapter03.[Chapter03.StoredProcedures].spContacts

In Visual Basic projects, the default namespace for a project itself defaults to the project name,
as does the assembly name. The class within the project must be referenced using the default
namespace as a prefix. Because the class specifier is a multipart dot-separated name, it must
be enclosed within square brackets so that SQL Server can identify it as a single indivisible
name. Because C# projects handle the default namespace setting a little differently, the
namespace prefix is not used in the class specifier for C# assemblies.

One last point before we discuss how to test your now-deployed CLR stored procedures. It
is important to realize that the class specifier and function name in the EXTERNAL NAME
clause are case-sensitive and that this is true even for assemblies developed in Visual Basic .NET.
Although this point perplexed us quite a bit at first, it does make sense in hindsight. SQL
Server searches for your subs/functions within your assemblies, not within your source code.
In other words, it’s looking within Microsoft Intermediate Language (MSIL) code, not Visual
Basic .NET or C# source code. Because MSIL is case-sensitive (it has to be, to support case-
sensitive languages like C#), SQL Server must be as well as it searches for a specific class and
sub/function.

The fact that SQL Server is not case sensitive by default (even though it once was) and that
Visual Basic .NET is not a case-sensitive language is of no import! If you attempt to register a
sub/function and you receive an error that it cannot be found within the assembly, double-
check that the case usage in your command matches that of your source code.

Chapter 3: An Overview of SQL CLR 63

619239.book Page 63 Tuesday, May 31, 2005 9:24 PM
Testing Your Stored Procedures

With your assembly and stored procedures now deployed, you’re ready to run and test them.
Typically, you should do this from Management Studio; however, Visual Studio SQL Server
projects allow you to test your SQL CLR code from Visual Studio itself. When you create a
Visual Studio SQL Server project, a folder called Test Scripts is created as a subdirectory in
your source code directory. Within that subdirectory, Visual Studio creates a script file called
Test.sql. If you look at that file, you will see that it contains commented instructions as well as
commented sample T-SQL code for testing stored procedures, functions, and UDTs. It also
contains an uncommented generic SELECT command that echoes a text literal to the caller.

Visual Studio connects to your database and runs this script immediately after your assembly
is deployed, and the output from the script appears in Visual Studio’s Output window. This
allows you to execute any number of T-SQL commands directly from Visual Studio without
having to switch to another tool. Although this approach is much less interactive than a Man-
agement Studio query window, it allows you to run quick tests against your code. It is espe-
cially useful for regression testing—that is, confirming that a new version of your assembly
does not break older, critical functionality.

The file extension of the script must be .sql, but otherwise the name of the file is inconsequen-
tial. You can have multiple script files in the Test Scripts folder. To add a new one, right-click
the Test Scripts folder node or the project node in the Solution Explorer window and select
the Add Test Script option from the shortcut menu. Only one script can be active at one time,
and as soon as you have more than one script, you must specify which one is active. To make
a script active, simply right-click its node in the Solution Explorer window and select the Set
As Default Debug Script option from its shortcut menu. When you do so, the node is dis-
played in bold. You may run or debug a script even if it is not the active script. To do so, right-
click its node in the Solution Explorer window and select the Debug Script option from its
shortcut menu.

Warning At press time, there appears to be an anomaly in the working of the test script
facility and the Output window in Visual Studio 2005. Simply put, if your test script executes a
query (whether it be a T-SQL SELECT command or a call to a stored procedure) that returns
a column of type uniqueidentifier (GUID), the query’s result set will not appear in the Output
window, and execution of the test script might hang Visual Studio. For this reason, you should
avoid calling the sample code CLR stored procedures spContactsQuick and spContacts (both of
which perform a SELECT * FROM Person.Contact query and thus retrieve the rowguid column,
which is of type uniqueidentifier) from your test script and instead test these procedures from
SQL Server Management Studio, where the anomaly does not occur. You can safely call spCon-
tactCount, which simply performs a SELECT COUNT(*) FROM Person.Contact query, from your
Visual Studio test script. Alternatively, you can modify spContactsQuick and/or spContacts to
select specific columns from the Person.Contact table, making sure that rowguid is not one of
them.

64 Part I: Design Fundamentals and Core Technologies

619239.book Page 64 Tuesday, May 31, 2005 9:24 PM
If you’re working with the Class Library version of the sample code, you must test the stored
procedures from Management Studio or another SQL Server query tool. Even if you are work-
ing with the SQL Server project version, you’ll find that testing your SQL CLR code in Man-
agement Studio provides a richer experience and more flexibility.

The script file TestStoredProcs.sql in the Management Studio project supplied with the sam-
ple code will run both of our CLR stored procedures (spContactCount and spContacts). Open
the file in Management Studio, and click the Execute button on the SQL Editor toolbar,
choose the Query/Execute option on the main menu, or press F5. (You can also right-click the
query window and select Execute from the shortcut menu.)

When the script runs, you should see the single-valued result of the spContactCount stored
procedure appear first, as shown in Figure 3-8. Note that the column name ContactCount
appears on the Results tab and recall that this is a direct result of your using the SqlMetaData
object in the CLR code. Below the spContactCount result, you will see the results from the
spContacts stored procedure come in. Because the Person.Contact table has almost 20,000
rows, these results might take some time to flow in.

Figure 3-8 TestStoredProcs.sql script code and results

Even while the results are coming in, the “Starting data dump” status message should be visi-
ble on the Messages tab (or on the Results tab if you’re using Management Studio’s Results To
Text option). Once all rows have been fetched, you should see the “Data dump complete”
message appear as well. If you get impatient and want to abort the query before all rows have
been fetched, you can use the Cancel Executing Query button on the SQL Editor toolbar or
the Query/Cancel Executing Query option on the main menu; you can also use the Alt+Break
keyboard shortcut.

Chapter 3: An Overview of SQL CLR 65

619239.book Page 65 Tuesday, May 31, 2005 9:24 PM
We have yet to cover CLR functions, triggers, aggregates, and UDTs, but you have already
learned most of the skills you need to develop SQL CLR code. You have learned how to create
Visual Studio SQL Server projects and use its autodeployment and test script features. You
have also learned how to develop SQL CLR code in standard Class Library projects and to use
T-SQL commands and Management Studio to deploy the code for you. You’ve learned about
the subtle differences between deploying C# code and Visual Basic .NET code, and we’ve cov-
ered the case-sensitive requirements of T-SQL-based deployment.

With all this under your belt, we can cover the remaining four basic SQL CLR entities rela-
tively quickly.

CLR Functions
Let’s take everything we’ve discussed about CLR stored procedures and deployment and
apply it to CLR functions. As any programmer knows, a function is a lot like a procedure, except
that it returns a value (or an object). Mainstream .NET functions typically return .NET types.
SQL CLR functions, on the other hand, must return a SqlType. So to start with, we need to make
sure our classes that implement SQL CLR functions import/use the System.Data.SqlTypes
namespace. The SQL Server Project template for User Defined Functions contains the appro-
priate using code by default; you must add the code manually to standard Class Library class
code.

Once the namespace is imported, you can write the functions themselves. In Visual Studio
SQL Server Projects, they should be decorated with the SqlFunction attribute; this attribute
accepts an optional name parameter that works identically to its SqlProcedure counterpart. In
our sample code, we will not supply a value for this parameter. SqlFunction is used by Visual
Studio SQL Server projects for deployment of your SQL CLR functions, but for scalar-valued
functions in Class Library projects it is optional, so it appears in the Class Library sample
code only for our table-valued function (described later).

Listing 3-3, which shows the code for function fnHelloWorld from fnTest.cs in the sample
project, implements a simple “Hello World” function that returns a value of type SqlString.

Listing 3-3 fnHelloWorld from fnTest.cs

[SqlFunction()]

public static SqlString fnHelloWorld()

{

return new SqlString("Hello World");

}

Notice that SqlType objects require explicit instantiation and constructor value passing; you
cannot simply declare and assign values to them. The code in Listing 3-3 instantiates a
SqlString object inline within the return statement to avoid variable declaration.

66 Part I: Design Fundamentals and Core Technologies

619239.book Page 66 Tuesday, May 31, 2005 9:24 PM
A function that returns a hardcoded value is of little practical use. Typically, functions are
passed values and perform calculations on them, and they are often used from within T-SQL
statements, in effect as extensions to the functions built into the T-SQL language itself.
Listing 3-4, which shows the code for function fnToCelsius in fnTest.cs in the sample project,
implements a Fahrenheit-to-Celsius conversion function.

Listing 3-4 fnToCelsius from fnTest.cs

[SqlFunction()]

public static SqlDecimal fnToCelsius(SqlInt16 Fahrenheit)

{

return new SqlDecimal((((Int16)Fahrenheit) - 32) / 1.8);

}

The function accepts a Fahrenheit temperature (as a SqlInt16), converts it to Celsius, and
returns it (as a SqlDecimal). Notice that the code casts the input parameter from a SqlInt16 to
a .NET Int16, applies a Fahrenheit-to-Celsius conversion formula, and passes the result to the
constructor of a new SqlDecimal object.

Deployment of these functions is automatic in the Visual Studio SQL Server project version of our
sample code. For the Class Library version, use the T-SQL CREATE FUNCTION command in a
similar fashion to our use of the CREATE PROCEDURE command in the previous section, but
include a data type specification for the return value. For example, to deploy the fnHelloWorld
function, you would use this command:

CREATE FUNCTION fnHelloWorld()

RETURNS NVARCHAR(4000) WITH EXECUTE AS CALLER

AS EXTERNAL NAME Chapter03.UserDefinedFunctions.fnHelloWorld

Notice the use of data type NVARCHAR(4000) to correspond with the SqlString type used in
the function’s implementation. The WITH EXECUTE AS CALLER clause specifies that the SQL
CLR function should execute under the caller’s identity.

Tip You can enter the CREATE FUNCTION command yourself, but all such necessary com-
mands for the sample code SQL CLR functions are contained in the CreateObjects.sql script file
in the Management Studio project supplied with the sample code.

You can test these functions using the Visual Studio SQL Server project test script or in Man-
agement Studio. Use the following query in your test script or a Management Studio query
window to test the two functions. (You can also run the TestScalarFunctions.sql script file in
the Management Studio sample project.)

Chapter 3: An Overview of SQL CLR 67

619239.book Page 67 Tuesday, May 31, 2005 9:24 PM
SELECT

dbo.fnHelloWorld() AS HelloWorld,

dbo.fnToCelsius(212) AS CelsiusTemp

T-SQL functions can return result sets as well as scalar values. Such functions are called table-
valued functions (TVFs). Writing SQL CLR TVFs is possible, although you do so differently
than you would CLR scalar-valued functions or CLR stored procedures. CLR TVFs must
return a type that implements the .NET interface IEnumerable, and they must declare a
“FillRow” method that interprets that type and converts an instance of the type to a table row.

Listing 3-5, which shows the code for functions fnPortfolioTable and FillTickerRow in fnTest.cs
in the sample project, implements a TVF called fnPortfolioTable.

Listing 3-5 fnPortfolioTable and FillTickerRow from fnTest.cs

[SqlFunction(

FillRowMethodName="FillTickerRow",

TableDefinition="TickerSymbol nvarchar(5), Value decimal")]

public static System.Collections.IEnumerable fnPortfolioTable(SqlString TickersPacked)

{

string[] TickerSymbols;

object[] RowArr = new object[2];

object[] CompoundArray = new object[3];

char[] parms = new char[1];

parms[0] = ';';

TickerSymbols = TickersPacked.Value.Split(parms);

RowArr[0] = TickerSymbols[0];

RowArr[1] = 1;

CompoundArray[0] = RowArr;

RowArr = new object[2];

RowArr[0] = TickerSymbols[1];

RowArr[1] = 2;

CompoundArray[1] = RowArr;

RowArr = new object[2];

RowArr[0] = TickerSymbols[2];

RowArr[1] = 3;

CompoundArray[2] = RowArr;

return CompoundArray;

}

public static void FillTickerRow(object row, ref SqlString TickerSymbol, ref SqlDecimal

Value)

{

object[] rowarr = (object[])row;

TickerSymbol = new SqlString((string)rowarr[0]);

Value = new SqlDecimal(decimal.Parse(rowarr[1].ToString()));

}

68 Part I: Design Fundamentals and Core Technologies

619239.book Page 68 Tuesday, May 31, 2005 9:24 PM
Rather than implementing its own IEnumerable-compatible type, fnPortfolioTable uses an array.
This is perfectly legal because arrays implement IEnumerable. Function fnPortfolioTable accepts
a semicolon-delimited list of stock ticker symbols and returns a table with each ticker symbol
appearing in a separate row as column TickerSymbol and a value for the ticker as column
Value. The structure of the returned table is declared in the TableDefinition parameter of the
SqlFunction attribute in SQL Server projects and in the CREATE FUNCTION T-SQL command
for Class Library projects. The assigned values are hardcoded, and only three rows are
returned, regardless of how many ticker symbols are passed in. As with our other samples,
this one is more useful as a teaching tool than as a practical application of TVFs.

Arrays are the name of the game here. First the String.Split method is used to crack the delimited
ticker list into an array of single ticker strings. Then the TVF structures the data so that each ele-
ment in the return value array (CompoundArray) is itself a two-element array storing a single
ticker symbol and its value. The function code itself needs only to return CompoundArray. Next,
the FillTickerRow function (named in the FillRowMethodName parameter of the SqlFunction
attribute) takes each two-element array and converts its members to individual scalars that
correspond positionally to the columns in the TableDefinition argument of the SqlFunction
attribute.

Because the FillRowMethodName parameter of the SqlFunction attribute is required by SQL
Server, we have decorated the Class Library version of function fnPortfolioTable with that
attribute, supplying a value for that one parameter. In the SQL Server project version, we also
supply a value for the TableDefinition parameter to enable autodeployment of the TVF.

As with the other functions, deployment of this function is performed by Visual Studio in the
SQL Server project sample code. For the Class Library version, you can deploy the function
using the following T-SQL command (also contained in the CreateObjects.sql script file):

CREATE FUNCTION fnPortfolioTable(@TickersPacked [NVARCHAR](4000))

RETURNS TABLE (

TickerSymbol NVARCHAR(5),

VALUE DECIMAL

)

WITH EXECUTE AS CALLER

AS EXTERNAL NAME Chapter03.UserDefinedFunctions.fnPortfolioTable

As with fnHelloWorld, we have mapped the SqlString data type to an NVARCHAR(4000), this
time for one of the input parameters. Because fnPortfolioTable is a TVF, its return type is
declared as TABLE, with inline specifications for the table’s definition.

Use the following query in your Visual Studio test script or a Management Studio query win-
dow to test the TVF (or run the TestTableValuedFunction.sql script file in the Management
Studio sample project):

SELECT * FROM fnPortfolioTable('IBM;MSFT;SUN')

Chapter 3: An Overview of SQL CLR 69

619239.book Page 69 Tuesday, May 31, 2005 9:24 PM
The following data should be returned:

TickerSymbol Value

------------ ------

IBM 1

MSFT 2

SUN 3

CLR Triggers
T-SQL triggers are really just stored procedures that are called by SQL Server at specific times
and query values in the “inserted” and “deleted” pseudo-tables. SQL CLR triggers are similar
to SQL CLR stored procedures, and they can be created for all data manipulation language
(DML) actions (updates, inserts, and deletes).

SQL Server 2005 introduces the concept of data definition language (DDL) triggers, which
handle actions such as CREATE TABLE and ALTER PROCEDURE. Like DML triggers, DDL
triggers can be implemented in T-SQL or SQL CLR code. We will cover SQL CLR DML and
DDL triggers in this section.

SQL CLR DML triggers, like their T-SQL counterparts, have access to the “inserted” and
“deleted” pseudo-tables and must be declared as handling one or more specific events for a
specific table or, under certain circumstances, a specific view. Also, they can make use of the
SqlTriggerContext object (through the SqlContext object’s TriggerContext property) to deter-
mine which particular event (update, insert, or delete) caused them to fire and which columns
were updated.

Once you latch on to these concepts, writing SQL CLR DML triggers is really quite simple.
Listing 3-6, which shows the code for function trgUpdateContact from trgTest.cs in the sample
project, shows the SQL CLR code for DML trigger trgUpdateContact, which is designed to
function as a FOR UPDATE trigger on the Person.Contact table in the AdventureWorks
database.

Listing 3-6 trgUpdateContact from trgTest.cs

//[SqlTrigger(Target="Person.Contact", Event="for UPDATE")]

public static void trgUpdateContact()

{

SqlTriggerContext TriggerContext = SqlContext.TriggerContext;

String OldName = String.Empty;

String NewName = String.Empty;

String OldDate = String.Empty;

String NewDate = String.Empty;

SqlConnection conn = new SqlConnection("context connection=true");

SqlCommand cmOld = new SqlCommand("SELECT FirstName, ModifiedDate from DELETED", conn);

SqlCommand cmNew = new SqlCommand("SELECT FirstName, ModifiedDate from INSERTED", conn);

conn.Open();

SqlDataReader drOld = cmOld.ExecuteReader();

if (drOld.Read())

70 Part I: Design Fundamentals and Core Technologies

619239.book Page 70 Tuesday, May 31, 2005 9:24 PM
{

OldName = (string)drOld[0];

OldDate = drOld[1].ToString();

}

drOld.Close();

SqlDataReader drNew = cmNew.ExecuteReader();

if (drNew.Read())

{

NewName = (string)drNew[0];

NewDate = drNew[1].ToString();

}

drNew.Close();

conn.Close();

SqlContext.Pipe.Send("Old Value of FirstName:" + OldName);

SqlContext.Pipe.Send("New Value of FirstName:" + NewName);

SqlContext.Pipe.Send("Old Value of ModifiedDate:" + OldDate);

SqlContext.Pipe.Send("New Value of ModifiedDate:" + NewDate);

for (int i = 0; i <= TriggerContext.ColumnCount - 1; i++)

{

SqlContext.Pipe.Send("Column " + i.ToString() + ": " + TriggerContext

.IsUpdatedColumn(i).ToString());

}

}

This CLR DML trigger queries the “deleted” and “inserted” tables and echoes back the “before
and after” values for the FirstName and ModifiedDate columns when a row is updated. It does
so not by piping back SqlDataReader objects but by fetching values from them and echoing
back the values as text using the SqlPipe object’s Send method. The trigger code also uses
the TriggerContext.IsUpdatedColumn method to echo back a list of all columns in the
Person.Contact table and whether each was updated.

To deploy the trigger automatically, you would normally configure a SqlTrigger attribute and
apply it to the .NET function that implements the trigger. Because DML triggers are applied
to a target object (a table or a view) and an event (for example, “for update” or “instead of
insert”), the SqlTrigger attribute has parameters for each of these pieces of information and you
must supply values for both. The SqlTrigger attribute deploys only a single copy of the trigger,
but you can use T-SQL to deploy the same code as a separate trigger for a different event and/
or table. Each separate deployment of the same code is assigned a unique trigger name.

Unfortunately, a bug in Visual Studio prevents the SqlTrigger attribute from being used for
target objects not in the dbo schema. (For example, our table, Person.Contact, is in the Person
schema rather than the dbo schema.) This is because the value for the Target parameter is
surrounded by square brackets when Visual Studio generates its T-SQL code (generating, for
example, [Person.Contact], which will cause an error). It is for this reason that the SqlTrigger
attribute code is commented out in Listing 3-6. A workaround to this problem is available

Chapter 3: An Overview of SQL CLR 71

619239.book Page 71 Tuesday, May 31, 2005 9:24 PM
through the use of pre-deployment and post-deployment scripts, which we will discuss
shortly.

Important Although you might be tempted to work around the Visual Studio schema bug
by supplying a Target value of Person].[Contact instead of Person.Contact, rest assured that this
will not work. You may initiate a trace in SQL Server Profiler to observe the erroneous
T-SQL generated by Visual Studio in either scenario.

Although Listing 3-6 does not demonstrate it, you can create a single piece of code that func-
tions as both the update and insert trigger for a given table. You can then use the TriggerCon-
text object’s TriggerAction property to determine exactly what event caused the trigger to fire,
and you can execute slightly different code accordingly. Should you wish to deploy such a
CLR trigger using the SqlTrigger attribute, you would set its Event parameter to “FOR UPDATE,
INSERT”.

The T-SQL command to register a .NET function as a SQL CLR trigger for the update event
only is as follows:

CREATE TRIGGER trgUpdateContact

ON Person.Contact

FOR UPDATE

AS EXTERNAL NAME Chapter03.Triggers.trgUpdateContact

Note All necessary CREATE TRIGGER commands for the Class Library project version of the
sample code are contained in the CreateObjects.sql script in the Management Studio project
supplied with the sample code.

Beyond using such T-SQL code in Management Studio, there is a way to execute this T-SQL
command from Visual Studio, and thus work around the SqlTrigger non-dbo schema bug.
An essentially undocumented feature of Visual Studio SQL Server projects is that they allow
you to create two special T-SQL scripts that will run immediately before and immediately
after the deployment of your assembly. To use this feature, simply create two scripts, named
PreDeployScript.sql and PostDeployScript.sql, in the root folder (not the Test Scripts folder)
of your project. Although not case-sensitive, the names must match verbatim.

Tip You can create the PreDeployScript.sql and PostDeployScript.sql scripts outside of Visual
Studio and then add them to your project using Visual Studio’s Add Existing Item… feature. You
can also add them directly by right-clicking the project node or Test Scripts folder node in the
Solution Explorer, choosing the Add Test Script option from the shortcut menu, renaming the
new scripts, and dragging them out of the Test Scripts folder into the root folder of your
project.

72 Part I: Design Fundamentals and Core Technologies

619239.book Page 72 Tuesday, May 31, 2005 9:24 PM
To use this feature to work around the SqlTrigger non-dbo schema bug, insert the preceding
CREATE TRIGGER code in your PostDeployScript.sql file and insert the following T-SQL code
into your PreDeployScript.sql:

IF EXISTS (SELECT * FROM sys.triggers WHERE object_id = OBJECT_ID(N'[Person].[trgUpdateC

ontact]'))

DROP TRIGGER Person.trgUpdateContact

Regardless of deployment technique, you can use the following query in your Visual Studio
test script or a Management Studio query window to test the trigger (this T-SQL code can be
found in the TestTriggers.sql script file in the Management Studio project):

UPDATE Person.Contact

SET FirstName = 'Gustavoo'

WHERE ContactId = 1

When you run the preceding query, you will notice that the trigger is actually run twice. This
is because the AdventureWorks Person.Contact table already has a T-SQL update trigger,
called uContact. Because uContact itself performs an update on the ModifiedDate column of
Person.Contact, it implicitly invokes a second execution of trgUpdateContact. By looking at the
output of trgUpdateContact, you can confirm that the FirstName column is updated on the
first execution (by the test query) and the ModifiedDate column is modified on the second
execution (by trigger uContact). The two executions’ output might appear out of order, but the
values of ModifiedDate will make the actual sequence clear.

If you place the TriggerContext object’s TriggerAction property in a comparison statement,
IntelliSense will show you that there is a wide array of enumerated constants that the property
can be equal to, and that a majority of these values correspond to DDL triggers. This demon-
strates clearly that SQL CLR code can be used for DDL and DML triggers alike.

In the case of DDL triggers, a wide array of environmental information might be desirable
to determine exactly what event caused the trigger to fire, what system process ID (SPID)
invoked it, what time the event fired, and other information specific to the event type such as
the T-SQL command that caused the event. The SqlTriggerContext object’s EventData property
can be queried to fetch this information. The EventData property is of type SqlXml; therefore it,
in turn, has a CreateReader method and a Value property that you can use to fetch the XML-
formatted event data as an XmlReader object or a string, respectively.

The code in Listing 3-7, taken from function trgCreateTable in trgTest.cs in the sample project,
shows the SQL CLR code for the DDL trigger trgCreateTable registered to fire for any CREATE
TABLE command executed on the AdventureWorks database.

Chapter 3: An Overview of SQL CLR 73

619239.book Page 73 Tuesday, May 31, 2005 9:24 PM
Listing 3-7 trgCreateTable from trgTest.cs

[SqlTrigger(Target = "DATABASE", Event = "FOR CREATE_TABLE")]

public static void trgCreateTable()

{

SqlTriggerContext TriggerContext = SqlContext.TriggerContext;

if (!(TriggerContext.EventData == null))

{

SqlContext.Pipe.Send("Event Data: " + TriggerContext.EventData.Value.ToString());

}

}

The code interrogates the Value property of SqlContext.TriggerContext.EventData, casts it to a
string, and pipes that string back to the client. Note that the SqlTrigger attribute is not com-
mented out in this case because a schema prefix is not used in the Target parameter value.
Thus, you can use attribute-based deployment in the SQL Server project or the following
command for the Class Library version:

CREATE TRIGGER trgCreateTable

ON DATABASE

FOR CREATE_TABLE

AS EXTERNAL NAME Chapter03.Triggers.trgCreateTable

Use the following T-SQL DDL command in your Visual Studio test script or a Management
Studio query window to test the DDL trigger. (You can find this code in the TestTriggers.sql
script file in the sample Management Studio project.)

CREATE TABLE Test (low INT, high INT)

DROP TABLE Test

Your result should appear similar to the following:

<EVENT_INSTANCE>

<EventType>CREATE_TABLE</EventType>

<PostTime>2006-04-29T16:37:50.690</PostTime>

<SPID>54</SPID>

<ServerName>CGH-T42AB</ServerName>

<LoginName>CGH-T42AB\AndrewB</LoginName>

<UserName>dbo</UserName>

<DatabaseName>AdventureWorks</DatabaseName>

<SchemaName>dbo</SchemaName>

<ObjectName>Test</ObjectName>

<ObjectType>TABLE</ObjectType>

<TSQLCommand>

<SetOptions ANSI_NULLS="ON" ANSI_NULL_DEFAULT="ON" ANSI_PADDING="ON" QUOTED_IDENTIFIER=

"ON" ENCRYPTED="FALSE" />

<CommandText>CREATE TABLE Test (low INT, high INT)</CommandText>

</TSQLCommand>

</EVENT_INSTANCE>

74 Part I: Design Fundamentals and Core Technologies

619239.book Page 74 Tuesday, May 31, 2005 9:24 PM
Note The actual output would consist of continuous, unformatted text. We added the line
breaks and indentation to make the EventData XML easier to read.

CLR Aggregates
T-SQL has a number of built-in aggregates, such as SUM(), AVG(), and MAX(), but that set of
built-in functions is not always sufficient. Luckily, the SQL CLR features in SQL Server 2005
allow us to implement user-defined aggregates in .NET code and use them from T-SQL. User-
defined aggregates can be implemented only in SQL CLR code; they have no T-SQL equiva-
lent. Because aggregates tend to perform computation only, they provide an excellent use case
for SQL CLR code. As it turns out, they are also quite easy to build.

At first, aggregates feel and look like functions because they accept and return values. In fact,
if you use an aggregate in a non-data-querying T-SQL call (for example, SELECT SUM(8)), you
are in fact treating the aggregate as if it were a function. The thing to remember is that the argu-
ment passed to an aggregate is typically a column, and so each discrete value for that column,
for whichever WHERE, HAVING, ORDER BY, and/or GROUP BY scope applies, gets passed
into the aggregate. It is the aggregate’s job to update a variable, which eventually will be the
return value, as each discrete value is passed to it.

CLR aggregates require you to apply the SqlUserDefinedAggregate attribute to them. The
SqlUserDefinedAggregate attribute accepts a number of parameters, but all of them are optional
except Format. In our example, we will use the value Format.Native for the Format parameter.
For more advanced scenarios, you might want to study SQL Server Books Online to acquaint
yourself with the other parameters this attribute accepts. Sticking with Format.Native for the
Format parameter is sufficient for many scenarios.

Unlike the SqlProcedure, SqlFunction, and SqlTrigger attributes, the SqlUserDefinedAggregate
attribute is required by SQL Server for your class to be eligible for use as an aggregate. Visual
Studio SQL Server projects do use this attribute for deployment, and the attribute is included
in the aggregate template, but it also must be used in generic Class Library project code in
order for T-SQL registration of the aggregate to succeed.

Aggregate classes must have four methods: Init, Accumulate, Merge, and Terminate. The
Accumulate method accepts a SQL type, the Terminate method returns one, and the Merge
method accepts an object typed as the aggregate class itself.

The Accumulate method handles the processing of a discrete value into the aggregate value,
and the Terminate method returns the final aggregated value after all discrete values have been
processed. The Init method provides startup code, typically initializing a class-level private
variable that will be used by the Accumulate method. The Merge method is called in a specific
multi-threading scenario, which we will describe later on.

Chapter 3: An Overview of SQL CLR 75

619239.book Page 75 Tuesday, May 31, 2005 9:24 PM
Just to be perfectly clear, your aggregate class will not implement an interface to supply these
methods; you must create them to meet what we might term the “conventions” that are
expected of SQL CLR aggregate classes (as opposed to a “contract” with which they must
comply). When you develop your code in a Visual Studio 2005 SQL Server project, the Aggre-
gate template includes stubs for these four methods as well as the proper application of the
SqlUserDefinedAggregate attribute.

Creating your own aggregates is fairly straightforward, but thinking through aggregation logic
can be a bit confusing at first. Imagine you want to create a special aggregate called Bakers-
Dozen that increments its accumulated value by 1 for every 12 units accumulated (much as a
baker, in simpler times, would throw in a free 13th donut when you ordered 12). By using
what you now know about CLR aggregates and combining that with integer division, you can
implement a BakersDozen aggregate quite easily. Listing 3-8, the code from struct BakersDozen
in aggTest.cs in the sample project, contains the entire implementation of the aggregate
BakersDozen.

Listing 3-8 struct BakersDozen from aggTest.cs

[Serializable]

[Microsoft.SqlServer.Server.SqlUserDefinedAggregate(Format.Native)]

public struct BakersDozen

{

private SqlInt32 DonutCount;

public void Init()

{

DonutCount = 0;

}

public void Accumulate(SqlInt32 Value)

{

DonutCount += Value + ((Int32)Value) / 12;

}

public void Merge(BakersDozen Group)

{

DonutCount += Group.DonutCount;

}

public SqlInt32 Terminate()

{

return DonutCount;

}

}

The code here is fairly straightforward. The private variable DonutCount is used to track the
BakersDozen-adjusted sum of items ordered, adding the actual items- ordered value and incre-
menting the running total by the integer quotient of the ordered value divided by 12. By this

76 Part I: Design Fundamentals and Core Technologies

619239.book Page 76 Tuesday, May 31, 2005 9:24 PM
logic, bonus items are added only when an individual value equals or exceeds a multiple of
12. Twelve includes a full dozen, and so would 13. Twenty-four includes two dozen, and so
would 27. Two individual orders of 6 items each would not generate any bonus items because
a minimum of 12 items must be ordered in a line item to qualify for a bonus.

To deploy the aggregate, use attribute-based deployment in the SQL Server project or the
following command for the Class Library version:

CREATE AGGREGATE BakersDozen

(@input int)

RETURNS int

EXTERNAL NAME Chapter03.BakersDozen

Notice that no method name is specified because the aggregate is implemented by an entire
class rather than an individual function. Notice also that the return value data type must be
declared as the data type of the values this aggregate function will process. The @input param-
eter acts as a placeholder, and its name is inconsequential. Note that aggregates can be built
on SQL CLR types (covered in the next section) as well as SQL scalar types.

Note The preceding CREATE AGGREGATE command for the Class Library project version of
the sample code is contained in the CreateObjects.sql script in the Management Studio project
supplied with the sample code.

To see the aggregate work, first run the CreateTblAggregateTest.sql script file in the Manage-
ment Studio sample project to create a table called AggregateTest with columns OrderItemId,
OrderId, and ItemsOrdered and several rows of data, as shown here:

CREATE TABLE tblAggregateTest(

[OrderItemId] [int] IDENTITY(1,1) NOT NULL,

[OrderId] [int] NULL,

[ItemsOrdered] [int] NOT NULL

)

GO

INSERT INTO tblAggregateTest VALUES (1,2)

INSERT INTO tblAggregateTest VALUES (1,4)

INSERT INTO tblAggregateTest VALUES (2,1)

INSERT INTO tblAggregateTest VALUES (2,12)

INSERT INTO tblAggregateTest VALUES (3,3)

INSERT INTO tblAggregateTest VALUES (3,2)

Chapter 3: An Overview of SQL CLR 77

619239.book Page 77 Tuesday, May 31, 2005 9:24 PM
With such a table built, use the following T-SQL DDL command in your Visual Studio
test script or a Management Studio query window to test the aggregate function:

SELECT

OrderId,

SUM(ItemsOrdered) AS SUM,

dbo.BakersDozen(ItemsOrdered) AS BakersDozen

FROM tblAggregateTest

GROUP BY OrderId

For each distinct value in the OrderId column, this query effectively uses our CLR code under
the following algorithm:

■ Call Init().

■ Call Accumulate once for each row with the same OrderId value, passing it that row’s
value of the ItemsOrdered column.

■ Call Terminate upon a change in the OrderId value to retrieve the aggregated value that
the query will pipe to the client.

The results should be as follows:

OrderId SUM BakersDozen

----------- ----------- -----------

1 6 6

2 13 14

3 5 5

By including the built-in T-SQL aggregate SUM in our query, we can see how many bonus
items were added. In this case, for OrderId 2, a single bonus item was added, due to one row
in the table with the following values:

OrderItemId OrderId ItemsOrdered

----------- ----------- ------------

4 2 12

All the other rows contain ItemsOrdered values of less than 12, so no bonus items were added
for them.

Because SQL Server sometimes segments the work required to satisfy a query over multiple
threads, the query processor might need to execute your aggregate function multiple times for
a single query and then merge the results together. For your aggregate to work properly in this
scenario, you must implement a Merge method.

The Merge method takes the result of one thread’s aggregation and merges it into the current
thread’s aggregation. The calculation required to do this could be complicated for some aggre-
gates; in our case, we simply added the DonutCount value from the secondary thread’s aggre-
gate (accessible via the Group input parameter) to our own. There is no need to add bonus

78 Part I: Design Fundamentals and Core Technologies

619239.book Page 78 Tuesday, May 31, 2005 9:24 PM
items because they would have been added in the individual Accumulate calls on the second-
ary thread. Simple addition is all that’s required. An aggregate that calculated some type of
average, or tracked the largest value in the data series supplied, for example, would require
more complex merge code.

Don’t forget that aggregates can be passed scalar values and can be used from T-SQL without
referencing a table. Your aggregate must accommodate this scenario, even if it seems imprac-
tical. In the case of BakersDozen, single scalar values are easily handled. To see for yourself, try
executing the following table-less T-SQL query:

SELECT dbo.BakersDozen(13)

You will see that it returns the value 14.

Note The TestAggregate.sql script file in the Management Studio project contains both
aggregate-testing queries.

Aggregates are an excellent use of SQL CLR programming. Because they are passed data
values to be processed, they typically perform only computational tasks and no data access
of their own. They consist of compiled CLR code, so they perform well, and unlike stored
procedures, triggers, and functions, they cannot be implemented at all in T-SQL. That said,
you must still make your aggregate code, especially in the Accumulate method, as “lean and
mean” as possible. Injecting your own code into the query processor’s stream of work is an
honor, a privilege, and a significant responsibility. Take that responsibility seriously, and make
sure that your code is as low-impact as possible.

CLR Types
The last SQL CLR feature for us to explore is user-defined types (UDTs). This feature is per-
haps the most interesting, yet also the most controversial. It’s interesting because, technically,
it allows for storage of objects in the database. It’s controversial because it’s prone to abuse.
CLR types were not implemented to allow developers to create object-oriented databases; they
were created to allow multi-value or multi-behavior data types to be stored, retrieved, and eas-
ily manipulated.

CLR types have an 8 KB size limit. They also have certain indexing limitations, and their entire
value must be updated when any of their individual property/field values is updated.

Note More information on CLR user-defined types is available in the MSDN article “Using
CLR Integration in SQL Server 2005” by Rathakrishnan, Kleinerman, et al. You can find this arti-
cle online at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsql90/html/
sqlclrguidance.asp.

Chapter 3: An Overview of SQL CLR 79

619239.book Page 79 Tuesday, May 31, 2005 9:24 PM
CLR type methods must be static. You cannot, therefore, call methods from T-SQL as instance
methods; instead, you must use a special TypeName::MethodName() syntax. You can imple-
ment properties as you would in any conventional class and read from them or write to them
from T-SQL using a standard variable.property/column.property dot-separated syntax.

Listing 3-9, the code from struct typPoint in typTest.cs in the sample project, shows the imple-
mentation of typPoint, a CLR type that can be used to store Cartesian coordinates in the data-
base.

Listing 3-9 struct typPoint from typTest.cs

[Serializable]

[SqlUserDefinedType(Format.Native)]

public struct typPoint : INullable

{

private bool m_Null;

private double m_x;

private double m_y;

public override string ToString()

{

if (this.IsNull)

return "NULL";

else

return this.m_x + ":" + this.m_y;

}

public bool IsNull

{

get

{

return m_Null;

}

}

public static typPoint Null

{

get

{

typPoint pt = new typPoint();

pt.m_Null = true;

return pt;

}

}

public static typPoint Parse(SqlString s)

{

if (s.IsNull)

return Null;

else

80 Part I: Design Fundamentals and Core Technologies

619239.book Page 80 Tuesday, May 31, 2005 9:24 PM
{

typPoint pt = new typPoint();

char[] parms = new char[1];

parms[0] = ':';

string str = (string)s;

string[] xy = str.Split(parms);

pt.X = double.Parse(xy[0]);

pt.Y = double.Parse(xy[1]);

return pt;

}

}

public static double Sum(typPoint p)

{

return p.X + p.Y;

}

public double X

{

get { return m_x; }

set { m_x = value; }

}

public double Y

{

get { return m_y; }

set { m_y = value; }

}

}

Through the class’s X and Y properties, you can process coordinates in a single database
column or variable. You can assign coordinate values to an instance of the type as a colon-
delimited string (for example, 3:4, by using the Parse method [implicitly]); you can read them
back in the same format by using the ToString method. Once a value has been assigned, you
can individually read or modify its X or Y portion by using the separate X and Y properties.
The class implements the INullable interface and its IsNull property. The Sum method demon-
strates how to expose a static member and allow it to access instance properties by accepting
an instance of the CLR type of which it is a member.

Notice that the class is a struct and that the Serializable and SqlUserDefinedType attributes
have been applied to it. As with the SqlUserDefinedAggregate attribute, SqlUserDefinedType is
required by SQL Server and appears in the Class Library sample code as well as the SQL
Server project version. As with the SqlUserDefinedAggregate, we simply assign a value of
Format.Native to the Format parameter and leave the other parameters unused.

More Info You might want to study SQL Server Books Online for information on using
other parameters for this attribute.

Chapter 3: An Overview of SQL CLR 81

619239.book Page 81 Tuesday, May 31, 2005 9:24 PM
Listing 3-10, the code from struct typBakersDozen in typTest.cs in the sample project, re-imple-
ments the BakersDozen logic we used in our aggregate example, this time in a UDT.

Listing 3-10 struct typBakersDozen from typTest.cs

[Serializable]

[SqlUserDefinedType(Format.Native)]

public struct typBakersDozen : INullable

{

private bool m_Null;

private double m_RealQty;

public override string ToString()

{

return (m_RealQty + (long)m_RealQty / 12).ToString();

}

public bool IsNull

{

get

{

return m_Null;

}

}

public static typBakersDozen Null

{

get

{

typBakersDozen h = new typBakersDozen();

h.m_Null = true;

return h;

}

}

public static typBakersDozen Parse(SqlString s)

{

if (s.IsNull)

return Null;

else

{

typBakersDozen u = new typBakersDozen();

u.RealQty = double.Parse((string)s);

return u;

}

}

public static typBakersDozen ParseDouble(SqlDouble d)

{

if (d.IsNull)

return Null;

else

82 Part I: Design Fundamentals and Core Technologies

619239.book Page 82 Tuesday, May 31, 2005 9:24 PM
{

typBakersDozen u = new typBakersDozen();

u.RealQty = (double)d;

return u;

}

}

public double RealQty

{

get { return m_RealQty; }

set { m_RealQty = value; }

}

public double AdjustedQty

{

get

{

return (m_RealQty + (long)m_RealQty / 12);

}

set

{

if (value % 12 == 0)

m_RealQty = value;

else

m_RealQty = value - (long)value / 13;

}

}

}

The RealQty and AdjustedQty properties allow the ordered quantity to be assigned a value and
the adjusted quantity to be automatically calculated, or vice versa. The real quantity is the default
“input” value, the adjusted quantity is the default “output” value of the type, and the Parse and
ToString methods work accordingly. If the AdjustedQty property is assigned a value that is an
even multiple of 12 (which would be invalid), that value is assigned to the RealQty property, forc-
ing the AdjustedQty to be set to its passed value plus its integer quotient when divided by 12.

To deploy the UDTs, use attribute-based deployment for the SQL Server project. The script file
CreateObjects.sql in the Management Studio project supplied with the sample code contains
the T-SQL code necessary to deploy the Class Library versions of the UDTs. Here’s the com-
mand that deploys typPoint:

CREATE TYPE typPoint

EXTERNAL NAME Chapter03.typPoint

The script file TestTypPoint.sql in the Management Studio project contains T-SQL code that
tests typPoint. Run it and examine the results for an intimate understanding of how to work

Chapter 3: An Overview of SQL CLR 83

619239.book Page 83 Tuesday, May 31, 2005 9:24 PM
with the type. The script file CreateTblPoint.sql creates a table with a column that is typed
based on typPoint. Run it, and then run the script file TestTblPoint.sql to see how to manipu-
late tables that use SQL CLR UDTs.

The script file TestTypBakersDozen.sql contains T-SQL code that tests typBakersDozen. The
ParseDouble method demonstrates how to implement a non-SqlString parse method. We
named it ParseDouble because the Parse method itself cannot be overloaded. You must call
ParseDouble explicitly as follows:

DECLARE @t AS dbo.typBakersDozen

SET @t = typBakersDozen::ParseDouble(12)

This is equivalent to using the default Parse method (implicitly) and assigning the string 12 as
follows:

DECLARE @t AS dbo.typBakersDozen

SET @t = '12'

Notice that typBakersDozen essentially stores a value for the real quantity, and its properties
are really just functions that accept or express that value in its native form or as an adjusted
quantity. There is no backing variable for the AdjustedQty property; the get block of the Adjust-
edQty property merely applies a formula to the backing variable for RealQty and returns the
result.

So typBakersDozen is not really an object with distinct properties, as typPoint is (with its
admittedly simple ones). Because it merely implements a SqlDouble and adds some
specialized functionality to it, typBakersDozen is a more appropriate implementation of
CLR UDTs than is typPoint. In this vein, other good candidates for CLR UDTs include
date-related types (for example, a type that stores a single underlying value for an annual
quarter and accepts/presents its value as a calendar quarter or a fiscal quarter) and
currency types (especially those with fixed rates of exchange between their native and
converted values).

In general, you can think of CLR UDTs as “super scalars”—classes that wrap a scalar value and
provide services and conversion functions for manipulating that scalar value and converting
it among different interpretive formats or numbering systems. Do not think of SQL CLR
UDTs as object-relational entities. This might seem counterintuitive, but consider the use of
(de)serialization and the XML data type as more appropriate vehicles for storing objects in
the database.

We have now investigated all five SQL CLR entities. Before we finish up, we need to discuss
assembly security and ongoing maintenance of SQL CLR objects in your databases.

84 Part I: Design Fundamentals and Core Technologies

619239.book Page 84 Tuesday, May 31, 2005 9:24 PM
Security
Depending on the deployment method, you have numerous ways to specify what security
level to grant a CLR assembly. All of them demand that you specify one of three permission
sets:

■ Safe Assembly can perform local data access and computational tasks only.

■ External_Access Assembly can perform local data access and computational tasks and
also access the network, the file system, the registry, and environment variables.
Although External_Access is less restrictive than Safe, it still safeguards server stability.

■ Unsafe Assembly has unrestricted permissions and can even call unmanaged code.
This setting can significantly compromise SQL Server security; only members of the
sysadmin role can create (load) unsafe assemblies.

When you deploy an assembly from Visual Studio, its security level is set to Safe by default. To
change it, you can select the project node in the Solution Explorer window and set the Permis-
sion Level property in the Properties window by selecting Safe, External, or Unsafe from the
combo box provided (Figure 3-9).

Figure 3-9 The Permission Level property and its options in the Visual Studio 2005 Properties
window

Alternatively, you can right-click the project node in the Solution Explorer window and select
Properties from the shortcut menu. You can also double-click the Properties node (or the My
Project node in Visual Basic projects). Either action opens up the project properties designer.
Select the designer’s Database tab and then select a permission set from the Permission Level
combo box (Figure 3-10). (The same three options are available here as in the Properties
window.)

To specify an assembly’s permission set using T-SQL, simply specify SAFE, EXTERNAL_ACCESS,
or UNSAFE within the “WITH PERMISSION_SET” clause of the CREATE ASSEMBLY
statement covered earlier in this chapter. Recall that our example used the default SAFE
setting in this clause.

Finally, in the Management Studio New Assembly dialog box (shown earlier in Figure 3-7),
you can select Safe, External Access, or Unsafe from the Permission Set combo box.

Chapter 3: An Overview of SQL CLR 85

619239.book Page 85 Tuesday, May 31, 2005 9:24 PM
Figure 3-10 The Database tab of the Visual Studio project properties designer

Examining and Managing CLR Types in a Database
Once deployed, your SQL CLR stored procedures, functions, triggers, aggregates, and user-
defined types and their dependencies might become difficult to keep track of in your head.
Luckily, you can easily perform discovery on deployed CLR entities using the Management
Studio UI. All CLR objects in a database can be found in Management Studio’s Object
Explorer window. To find them within the Object Explorer window’s tree view, first navigate
to the \servername\Databases\databasename node (where servername and databasename are
the names of your server and database, respectively). Refer to Table 3-1 for the subnodes of
this node that contain each CLR entity.

Table 3-1 Finding CLR Objects in Object Explorer

To view… Look in…

Parent node for SQL CLR
stored procedures, DDL
triggers, functions,
aggregates, and UDTs

Programmability (see Figure 3-11)

Assemblies Programmability\Assemblies (see Figure 3-12)

Stored procedures Programmability\Stored Procedures (see Figure 3-13)

Functions Programmability\Functions\Scalar-Valued Functions and Pro-
grammability\Functions\Table-Valued Functions (see Figure 3-14)

Aggregates Programmability\Functions\Aggregate Functions (see Figure 3-14)

DML triggers Tables\tablename\Triggers, where tablename is the name of the
database table, including schema name, on which the trigger is
defined (see Figure 3-15)

86 Part I: Design Fundamentals and Core Technologies

619239.book Page 86 Tuesday, May 31, 2005 9:24 PM
Figure 3-11 The SQL Server Management Studio Object Explorer window, with Programmability
node highlighted

Figure 3-12 The Object Explorer window, with Assemblies node highlighted

Figure 3-13 The Object Explorer window, with CLR stored procedures highlighted

DDL triggers Programmability\Database Triggers (see Figure 3-16) (also
\servername\Server Objects\Triggers, where servername is the
name of your server)

User-defined types Programmability\Types\User-Defined Types (see Figure 3-17)

Table 3-1 Finding CLR Objects in Object Explorer

To view… Look in…

Chapter 3: An Overview of SQL CLR 87

619239.book Page 87 Tuesday, May 31, 2005 9:24 PM
Figure 3-14 The Object Explorer window, with CLR table-valued, scalar-valued, and aggregate
functions highlighted

Figure 3-15 The Object Explorer window, with CLR DML trigger highlighted

88 Part I: Design Fundamentals and Core Technologies

619239.book Page 88 Tuesday, May 31, 2005 9:24 PM
Figure 3-16 The Object Explorer window, with CLR DDL trigger highlighted

Figure 3-17 The Object Explorer window, with CLR UDTs highlighted

Bear in mind that you might need to use the Refresh shortcut menu option on the nodes listed
in the table to see your CLR objects. If you’ve deployed or deleted any SQL CLR objects (as
discussed shortly) since opening the Object Explorer’s connection to your database, the tree
view will be out of date and will have to be refreshed. Notice that the tree view icons for CLR
stored procedures and CLR DML triggers differ slightly from their T-SQL counterparts; they
have a small yellow padlock on the lower-right corner.

Once you’ve located a CLR entity in the Object Explorer window, you can right-click its tree
view node and generate CREATE, DROP, and in some cases ALTER scripts for it by selecting

Chapter 3: An Overview of SQL CLR 89

619239.book Page 89 Tuesday, May 31, 2005 9:24 PM
the Script object type As option from the shortcut menu (where object type is the SQL CLR object
type selected). The script text can be inserted into a new query window, a file, or the clipboard.

For stored procedures, you can also generate EXECUTE scripts or, by selecting Execute Stored
Procedure from the shortcut menu, execute it interactively and generate the corresponding
script via Management Studio’s Execute Procedure dialog box. This dialog box explicitly
prompts you for all input parameters defined for the stored procedure.

In addition to generating scripts for your CLR entities, you can view their dependencies
(either objects that are dependent on them or objects on which they depend). Just right-click
the object and choose the View Dependencies option from the shortcut menu.

To remove your CLR objects, either in preparation for loading a new version of your assem-
bly or to delete the objects permanently, you have several options. For Visual Studio SQL
Server projects, redeploying your assembly causes Visual Studio to drop it and any SQL CLR
objects within it that were previously deployed by Visual Studio. This means that new ver-
sions can be deployed from Visual Studio without any preparatory steps.

For Class Library projects, you must issue T-SQL DROP commands for each of your SQL CLR
objects and then for the assembly itself. You must drop any dependent objects before you
drop the SQL CLR entity. For example, you must drop tblPoint before dropping typPoint. You
can write these DROP scripts by hand or generate them by using the Script object type As/
DROP To shortcut menu options in the Management Studio Object Explorer window.

You can also use the Delete shortcut menu option on any SQL CLR object in the Management
Studio Object Explorer window to drop an object. This option brings up the Delete Object
dialog box (Figure 3-18).

Figure 3-18 The Management Studio Delete Object dialog box

90 Part I: Design Fundamentals and Core Technologies

619239.book Page 90 Tuesday, May 31, 2005 9:24 PM
The script file Cleanup.sql in the Management Studio project provided with the sample code
contains all the necessary DROP commands, in the proper order, for removing all traces of our
Visual Studio SQL Server project or Class Library project from the AdventureWorks database.
For the SQL Server project, run this script only if you want to permanently remove these
objects. For the Class Library project, run it before you deploy an updated version of your
assembly or if you want to permanently remove these objects.

SQL CLR objects, with the exception of DDL triggers, can also be viewed in Visual Studio
2005’s Server Explorer window, as shown in Figure 3-19.

Figure 3-19 The Visual Studio Server Explorer window, with CLR stored procedures, functions,
aggregates, and UDTs highlighted

You’ll find most of the objects under their appropriate parent nodes within the data connec-
tion parent node: CLR stored procedures appear under the Stored Procedures node; scalar
and table-valued functions, as well as aggregates, appear under the Functions node; the Types
and Assemblies nodes contain their namesake objects; and DML triggers appear under the
node of the table to which they belong.

You may also drill down on a particular assembly node and view a list of all its SQL CLR
objects, as well as the source code files that make it up (see Figure 3-20).

For assemblies created from Visual Studio 2005 SQL Server projects, you may double-click on
any SQL CLR object in the Server Explorer window to view its source code. (You may also do
this by selecting the Open option from the SQL CLR object node’s shortcut menu or the
Data/Open option from Visual Studio’s main menu while the node is selected.) If the assem-
bly’s project is open when you open the object’s source, the code will be editable; if the project
is not open, the source will be read-only.

Chapter 3: An Overview of SQL CLR 91

619239.book Page 91 Tuesday, May 31, 2005 9:24 PM
Figure 3-20 The Server Explorer window, with the Assemblies node and its child nodes highlighted

Caution Because trgUpdateContact, our SQL CLR DML trigger, was deployed via T-SQL
in the PostDeployScript.sql script and not via the SqlTrigger attribute, its source cannot be
browsed through the Server Explorer window connection’s Tables\Contact (Person)\trgUp-
dateContact node or its Assemblies\Chapter03\trgUpdateContact (Person) node. You can,
however, view its source through the Assemblies\Chapter03\trgTest.cs node.

Best Practices for SQL CLR Usage
Before we close this chapter, we’d like to summarize certain best practices for the appropriate
use of SQL CLR programming.

The CLR integration in SQL Server 2005 is a powerful technology. In some cases, it allows you
to do things you can’t do practically in T-SQL (such as apply complex business logic in stored
procedures or triggers), and in other cases it allows you to do things you can’t do at all in
T-SQL (such as create your own aggregate functions).

The fact remains, however, that set-based data selection and modification is much better han-
dled by the declarative constructs in T-SQL than in the procedural constructs of .NET and the
ADO.NET object model. SQL CLR functionality should be reserved for specific situations
when the power of .NET as a calculation engine is required.

In general, functions and aggregates are great uses of SQL CLR integration. UDTs, if used as
“super scalars” rather than objects per se, make good use of SQL CLR integration as well.

For stored procedures and triggers, we recommend that you start with the assumption that
these should be written in T-SQL and write them using SQL CLR code only if a case can be
made that they cannot be reasonably written otherwise. And before you make such a case,

92 Part I: Design Fundamentals and Core Technologies

619239.book Page 92 Tuesday, May 31, 2005 9:24 PM
consider that SQL CLR functions, aggregates, and UDTs can be used from within T-SQL
stored procedures and triggers.

Summary
In this chapter, you’ve been exposed to the “mechanics” of developing the five basic SQL CLR
entities and using them from T-SQL. You’ve seen how to take advantage of SQL Server 2005/
Visual Studio 2005 integration as well as how to develop SQL CLR code in conventional Class
Library assemblies and deploy them using T-SQL and SQL Server Management Studio. You’ve
also been exposed to most of the SQL CLR .NET code attributes and their use in SQL Server
projects and standard Class Library projects. You’ve gotten a sense of how to use Management
Studio and the Visual Studio 2005 Server Explorer window as management tools for your
SQL CLR objects, and we’ve discussed scenarios in which using SQL CLR integration is a
good choice as well as scenarios in which T-SQL is the better choice.

This first part of the book essentially covers building databases, so in this chapter we inten-
tionally kept our focus on using SQL CLR objects from T-SQL and Management Studio. In the
previous chapter, we highlighted a number of enhancements to T-SQL that you can use in
your database development process. The second part of the book covers developing applica-
tions that use your databases. In Chapter 8, we’ll look at how to consume your SQL CLR
objects in .NET applications by using ADO.NET, including within strongly typed DataSet
objects, and optionally using Windows Forms and ASP.NET data binding. And in Chapter 9,
we’ll show you how to perform end-to-end debugging of client-side and SQL CLR code, as
well as T-SQL code, in Visual Studio 2005. The sum total of the material from Chapters 3, 8,
and 9 provides a rich resource for diving into SQL CLR development.

619239.book Page 427 Tuesday, May 31, 2005 9:24 PM
Chapter 14

Developing Desktop
Applications with SQL Server
Express Edition

—Rob Walters

In this chapter:

What Is SQL Server Express Edition?. 427

Configuration . 435

Working with SQL Server Express Edition . 437

Installing SQL Server Express Edition . 451

Summary . 485

As time passes, database engines that perform basic relational database actions are becoming
more of a commodity. With the advent of MySQL, Postgres, and a number of other open
source database vendors, more options exist today for developers then ever before. The
impact of these disruptive technologies can be seen in the free database offerings not only
from Microsoft but also from Oracle (Oracle Express) and IBM (DB2 Express). Each of these
relational database vendors wants you, the developer, to use their product so that one day
your application might grow enough that you actually need to buy a license for an “upper-
level” edition. Although these marketing tactics might be of little interest to us as developers,
in reality we benefit tremendously from this competitive environment. Could you ever have
imagined 10 years ago that companies like Microsoft would essentially give away a powerful
developer tool like Visual Studio Express? Bundled with a rock-solid database like SQL Server,
it solves a lot of development needs for a reasonable price: free.

This chapter covers SQL Server Express Edition. It goes into depth about installation, config-
uration, and management, and it explores Express Edition’s features. It also compares and
contrasts Express Edition with the Microsoft SQL Server Desktop Engine (MSDE). Finally,
you will learn how Express Edition fits into the overall SQL Server product lineup.

What Is SQL Server Express Edition?
Express Edition is one of four SQL Server editions. The others are Workgroup, Standard, and
Enterprise. Figure 14-1 shows the progression of editions from Express to Enterprise.
427

428 Part II: Application Development and Reach Technologies

619239.book Page 428 Tuesday, May 31, 2005 9:24 PM
Figure 14-1 The four editions of SQL Server 2005

Some people might be wondering, “Where is Developer Edition?” The Developer and Evalua-
tion editions are actually the same as Enterprise Edition, but with some licensing restrictions.
Each SQL Server edition builds on the previous one’s functionality. So Standard Edition, for
example, has the same functionality as Express Edition and Workgroup Edition (such as man-
agement tools, the ability to import and export, and so on).

Note that the Express database engine itself is the same as those of the other editions. It dif-
fers only in the restrictions imposed on its use: 1 CPU, 1 GB of RAM, and 4 GB database file
size. There are some interesting things to note about these restrictions. If you have a multi-core
CPU, Express Edition will leverage all the cores. (After all, to the SQL engine it’s still just one
CPU.) If you exceed the database file size limit, you will get an error on the command that
caused the size to exceed the limit and any transactions in that session will be rolled back.
This is the same behavior you would see if you set a fixed size for a database, the database
almost reached that size, and then you tried to insert one more row, causing it to exceed the
limit. One of the restrictions that existed previously in MSDE was the workload governor.
This “feature” intentionally decreased performance as the workload increased. You can
forget about this in Express Edition—there is no such thing, so you can throw as much
work at Express Edition as your box can handle (and as the CPU, RAM, and database
size restrictions allow). Express Edition truly is the same database engine as all the other
editions.

Express

Fastest way for
developers to
learn, build, &

deploy siimple data
driven applications

1 CPU
1 GB RAM
4 GB Database Size

Management Tool

Reporting

Replication

Service Broker

Full Text

Workgroup

Easiest to use &
most affordable

database solution
for smaller

departments &
growing businesses

2 CPU
3 GB RAM

Management Tools

Import/Export

Limited Replication
Publishing

Back-up Log-
shipping

Standard

Complete data
management &

analysis platform for
medium busninesses

and large
departments

4 CPU
Unlimited RAM
(64bit)

Database Mirroring

OLAP Server

Report Server

New Integraton
Services

Data Mining

Full Replication

Enterprise

Fully integrated data
management and

analysis platform for
business critical

enterprise
applications

Unlmited Scale
+ Partitioning

Database mirroring,
Complete online &
parallel operations.

Database snapshot

Advanced Analysis
Tools including full
OLAP % Data
Mining

Customized & High
Scale Reporting

Chapter 14: Developing Desktop Applications with SQL Server Express Edition 429

619239.book Page 429 Tuesday, May 31, 2005 9:24 PM
Licensing

Some in the developer community might be thinking about deploying Express Edition with their
own applications. This is possible, legal, and royalty-free as long as you do not change any parts
of the shipped bits of Express Edition. You must also register on Microsoft’s Web site if you want
to redistribute Express Edition. The URL is http://go.microsoft.com/fwlink/?LinkId=64062.

Later in this chapter, we will cover how to silently install Express Edition—this is the most likely
way you will deploy Express Edition with your application. In addition to the database engine,
Express Edition contains a few extra components such as SQL Server Management Studio
Express and SQLCMD. All these tools are also redistributable as long as you don’t change them.
You cannot redistribute the tools alone, however—you must redistribute Express Edition in
addition to the tools. You can, however, redistribute just the SQL Server Express Edition engine.

Feature Review

With the exception of the memory, database size, and CPU restrictions, SQL Server Express
Edition contains all the basic relational database features seen in the other editions. For
example, you can create common language runtime (CLR) stored procedures, store data as
XML, and encrypt your data using symmetric keys. However, Microsoft did not give away the
farm in this edition—if you want to use more “enterprise-like” features such as database mir-
roring or partitioning, you have to pay for the upper-level edition. The business intelligence
tools (such as SQL Server Analysis Services) and extract, transform, and load (ETL) tools
(such as SQL Server Integration Services, known as Data Transformation Services in SQL
2000) are also not available in Express Edition.

The lack of Integration Services in Express Edition causes some minor pain. For one thing,
there is no Import And Export Wizard for moving a database nor any relatively easy alterna-
tive. The easiest workaround is to perform a detach, file copy, and attach. Alternatively, you
can back up and then restore a database on the destination server. If you need just specific
tables within a database, you might consider using the Bulk Copy Program (BCP), which
ships with Express Edition as well as all the other editions of SQL Server.

Now let us focus on the database engine–specific features that are significant to SQL Server
Express Edition users. Table 14-1 shows key database administration features for the SQL
Server product as described by the folks in SQL Server marketing. This table includes a col-
umn that describes the availability of the feature in Express Edition.

Table 14-1 SQL Server Database Engine Features

Feature Available in Express Edition?

Database Mirroring No

Online Restore No

Online Indexing
Operations

Yes

Fast Recovery Yes

430 Part II: Application Development and Reach Technologies

619239.book Page 430 Tuesday, May 31, 2005 9:24 PM
Table 14-2 shows the key development features of SQL Server as well as their availability in
Express Edition.

Security Enhancements Yes

New SQL Server
Management Studio

Available as a scaled-down version called SQL Server Management
Studio Express.

Dedicated Administrator
Connection

Yes, but it is not enabled by default. To use it in Express Edition, you
must start the service using the trace flag 7806. You do not need to
specify this trace flag if you are using any other edition of SQL Server.

Snapshot Isolation No

Data Partitioning No

Replication Enhancements Available but scaled down. Later in this chapter, see the “Replication in
Express Edition” section for additional details.

SQL Server Agent No. The workaround is to create Transact-SQL (T-SQL) scripts that are
executed via SQLCMD through the Windows Task Scheduler.

SQL Mail and Database
Mail

No

Mirrored Media Sets No

Address Windowing
Extensions (AWE)

No

Hot-add memory No

Failover clustering No

VIA Protocol support No

Table 14-2 SQL Server Database Development Features

Feature Available in Express Edition?

.NET Framework Hosting Yes. This feature is off by default in all SQL Server editions, so you must
enable the CLR by selecting the Enable CLR check box in the SQL Server
Surface Area Configuration tool.

XML Technologies Yes

ADO.NET 2.0 Yes

T-SQL Enhancements Yes

SQL Service Broker Available but scaled down. Later in this chapter, see the “Service Broker
in Express Edition” section for additional details.

Notification Services No

Web Services No. You cannot create HTTP endpoints in Express Edition, but it is still
possible to create a Web service and use Express Edition—you just can’t
make Express Edition an HTTP listener.

Reporting Services Yes. Later in this chapter, see the “Reporting Services in Express Edition”
section for additional details.

Full-Text Search
Enhancements

Yes. Later in this chapter, see the “Full Text in Express Edition” section
for additional details.

Table 14-1 SQL Server Database Engine Features

Feature Available in Express Edition?

Chapter 14: Developing Desktop Applications with SQL Server Express Edition 431

619239.book Page 431 Tuesday, May 31, 2005 9:24 PM
Replication in Express Edition

Express Edition can serve as a Subscriber for all types of replication, providing a convenient
way to distribute data to client applications that use SQL Server Express Edition. Note that
this is a change in behavior from MSDE. If you are using MSDE for replication, MSDE can be
either a Snapshot Publisher or a Merge Publisher. If you want to continue to use this function-
ality, you must upgrade to at least Workgroup Edition.

SQL Server Express Edition does not include the SQL Server Agent, which is typically used to
run replication agents. If you use push subscription, replication agents run at the Distributor,
which will be an instance of SQL Server 2005, so options are available for synchronizing. But
if you use a pull subscription, in which agents run at the Subscriber, you must synchronize the
subscription by using the Windows Synchronization Manager tool or do it programmatically
using Replication Management Objects (RMO).

Windows Synchronization Manager is available with Microsoft Windows 2000 and later. If
SQL Server is running on the same computer as Synchronization Manager, you can do the
following:

■ Synchronize a subscription.

■ Reinitialize a subscription.

■ Change the update mode of an updatable transactional subscription.

Service Broker in Express Edition

Service Broker is a new technology in SQL Server 2005 that helps developers create distrib-
uted applications that provide support for queuing and reliable messaging. Developers can
compose applications from independent, self-contained components called services. Applica-
tions can then use messages to interact with these services and access their functionality. Ser-
vice Broker uses TCP/IP to exchange messages between SQL Server instances, and it includes
features to help prevent unauthorized access from the network and to encrypt messages sent
over the network.

The SQL Server Express Edition database engine supports Service Broker only as a client.
Express Edition can participate in a Service Broker messaging application only when a paid
edition of SQL Server (Workgroup, Standard, or Enterprise) is part of the message chain.
Express Edition can also send Service Broker messages to itself.

SQL Server 2005 Express Edition with Advanced Services

At the time SQL Server 2005 Express Edition shipped, Microsoft promised that it would soon
release a version of Reporting Services as well as Full-Text Search capabilities for Express
Edition. The time has come—with the release of Service Pack 1 (SP1) also comes the release of
SQL Server Express Edition with Advanced Services, SQL Server Express Edition Toolkit, and
SQL Server Management Studio Express.

432 Part II: Application Development and Reach Technologies

619239.book Page 432 Tuesday, May 31, 2005 9:24 PM
Express Edition Download Page
SQL Server 2005 Express Edition with Advanced Services is available for download
from the main SQL Server Express Edition page. The URL is http://
msdn.microsoft.com/vstudio/express/sql/download/.

On the download page for Express Edition, you have a number of options, depending on
exactly what features you need. The following are the available downloads:

■ SQL Server Express Edition with SP1 (SQLEXPR.exe) This download gives you just the
Express Edition database engine and connectivity tools. It does not include any
management tools or any of the advanced services such as Full-Text Search or Reporting
Services.

■ SQL Server Express Edition with Advanced Services (SQLEXPR_ADV.exe) This download
gives you the Express Edition database engine plus additional components that include
SQL Server Management Studio Express, support for full-text catalogs, and support
for viewing reports via Report Server. SQL Server Express Edition with Advanced
Services also includes SP1. It’s a bit tricky if you already have Express Edition installed
from RTM: Installing this component is just like installing another instance of Express
Edition. During the setup of Express Edition with Advances Services, if you choose not
to upgrade your current Express Edition installation, you will end up with two
 installations of Express Edition on your box.

■ SQL Server Express Edition Toolkit (SQLEXPR_TOOLKIT.exe) SQL Server 2005 Express
Edition Toolkit provides tools and resources to manage SQL Server Express Edition and
SQL Server Express Edition with Advanced Services. It also allows you to create reports
using SQL Server 2005 Business Intelligence Development Studio. This download does
not include the database engine; it includes only the management tools.

■ SQL Server Management Studio Express (SQLServer2005_SSMSEE.msi) SQL Server
Management Studio Express provides a graphical management tool for managing SQL
Server 2005 Express Edition and SQL Server 2005 Express Edition with Advanced
Services instances. Management Studio Express can also manage relational engine
instances created by any edition of SQL Server 2005. It cannot manage Analysis
Services, Integration Services, SQL Server 2005 Mobile Edition, Notification Services,
Reporting Services, or SQL Server Agent. This download is just for the Management
Studio Express tool; it does not contain the database engine or the reporting services
designer.

In summary, if you want to install Express Edition with all the bells and whistles, just down-
load and install SQL Server Express Edition with Advanced Services (SQLEXPR_ADV.exe)
followed by SQL Server Express Edition Toolkit (SQLEXPR_TOOLKIT.exe). This will get you
all the components that Express Edition has to offer.

Chapter 14: Developing Desktop Applications with SQL Server Express Edition 433

619239.book Page 433 Tuesday, May 31, 2005 9:24 PM
Reporting Services in Express Edition

Reporting Services in SQL Server Express Edition is a server-based solution that enables the
creation and management of reports derived from data stored in Express Edition. The full ver-
sion of Reporting Services found in other editions provides many more features—such as the
ability to schedule deployment of reports and create subscriptions—but even without these
advanced features, Express Edition users have a powerful enough database engine and toolset
to conquer many scenarios.

To use Reporting Services within Express Edition, you must have Microsoft Internet Informa-
tion Services (IIS) installed before you install Express Edition.

Note If you installed the Microsoft .NET Framework before installing IIS, you might receive
an error in the Express Edition setup program asking you to reinstall the .NET Framework. To
avoid rolling back and reinstalling the .NET Framework, run the following on the command
line and then click the Retry button.

Aspreg_iis.exe –i This .exe file is located in the .NET Framework folder under <installation
drive>:\WINDOWS\Microsoft.NET\Framework\v2.0.50727.

Reporting Services can be considered a two-part installation. The Reporting Server service and
Web-based administration page can be installed as an option with SQL Server Express Edition
with Advanced Services (SQLEXPR_ADV.exe). If you want to actually create reports and do
not want to modify XML using Notepad, you might want to also install BI Development Stu-
dio from the SQL Server Express Edition Toolkit (SQLEXPR_TOOLKIT.exe). BI Development
Studio is a Visual Studio application that allows you to create reports using a full-featured
wizard or by manually building reports using a designer surface (Figure 14-2).

Figure 14-2 Report designer in SQL Server BI Development Studio

434 Part II: Application Development and Reach Technologies

619239.book Page 434 Tuesday, May 31, 2005 9:24 PM
During the setup of SQL Server Express Edition with Advanced Services, if you opt to include
Report Server, you are presented with some additional forms asking whether you want to con-
figure the Report Server now or later. If you install the report server without configuring it,
you can use the Reporting Services Configuration Manager to perform the same configuration
work. You must configure the Report Server before you can deploy any reports (Figure 14-3).

Figure 14-3 Configure Report Server tool

Note If you instructed setup to automatically configure Report Server, you should know that
it creates the Report Server Virtual Directory as ReportServer$SQLEXPRESS and it creates the
Report Manager Virtual Directory as Reports$SQLEXPRESS. This is important because when
you are deploying your report using the Report Designer, you must tell the designer to use
ReportServer$SQLEXPRESS, not ReportServer, which is the default. This property is called the
TargetServerURL, and you can change it by going to the Properties dialog box reached via the
Project menu.

An in-depth discussion of Reporting Services is beyond the scope of this book, but a plethora
of resources are available online, including free Report Packs to help you get started writing
reports. Report Packs can be found at http://www.microsoft.com/downloads/
details .aspx?FamilyId=D81722CE-408C-4FB6-A429-2A7ECD62F674&displaylang=en.

MSDN provides tutorials on Reporting Services as well as Webcasts and many other types of
information. Go to this URL: http://msdn.microsoft.com/sql/bi/reporting/.

Full Text in Express Edition

The full-text feature within SQL Server Express Edition is no different than in any other
edition of SQL Server. The main issue with full text in Express Edition is that the SQL Server

Chapter 14: Developing Desktop Applications with SQL Server Express Edition 435

619239.book Page 435 Tuesday, May 31, 2005 9:24 PM
Management Studio Express tool does not have any fancy user interface to manage the
full-text catalogs or anything related to full text. Thus, to use full text within Express
Edition, you must brush up on your T-SQL skills. Luckily, Template Explorer within
Management Studio Express helps you by providing templates for creating a full-text
catalog, creating a full-text index, populating an index, and stopping population of an index.

To start playing with full text in Express Edition, we’ll walk through creating a full-text index
on the ProductName of the Products table in the Northwind database. First we must create
our full-text catalog as shown here:

USE Northwind

GO

CREATE FULLTEXT CATALOG MyNorthwindCatalog AS DEFAULT

In SQL Server 2005, all user-defined databases are enabled for full text by default, so there is
no need to explicitly call sp_fulltext_database ‘enable’, as you do in previous versions of SQL
Server. Next we will create the actual index:

CREATE FULLTEXT INDEX ON dbo.Products(ProductName) KEY INDEX PK_Products

Now we can use this index and query the Products table. Because I love gumbo, I can now
quickly return all the gumbo products using the CONTAINS keyword, as shown here:

SELECT ProductName from Products where CONTAINS(ProductName,'Gumbo')

The result is as follows:

ProductName

Chef Anton’s Gumbo Mix

In SQL Server 2005, only columns of type char, varchar, nchar, nvarchar, text, ntext, image, xml,
and varbinary can be indexed for full-text search. The previous example shows how to quickly
get an index up and running. However, as with most multi-generational features in SQL
Server, the capabilities of full text go far beyond what was discussed here. If you are interested
in learning more about full-text searching within SQL Server 2005, go to http://
msdn2.microsoft.com/en-us/library/ms142547(SQL.90).aspx.

Configuration
Every new database version seems to have even more features, more knobs to turn, and other
things that users must learn about. SQL Server 2005 reflects a lot of effort put into improving
the security of the product. One aspect of this effort was an “off by default” initiative, which
basically required all nonessential features of SQL Server to be turned off. For example, on a
default installation of SQL Server, the Browser service and Full-Text service are not running.
Turning these features off reduces the surface area available for a malicious user.

436 Part II: Application Development and Reach Technologies

619239.book Page 436 Tuesday, May 31, 2005 9:24 PM
The SQL Server Surface Area Configuration tool allows you to turn on and off these various
features. This tool is installed as part of a database engine installation, so you have it regard-
less of which edition or components you install.

When the Surface Area Configuration tool is launched, you get two options: Surface Area
Configuration for Services and Connections, and Surface Area Configuration for Features.

The Services and Connections dialog box, shown in Figure 14-4, shows a tree view list of SQL
Server components installed on the server.

Figure 14-4 The Surface Area Configuration tool’s remote connections panel

Under Database Engine you’ll find two panels: Services allows the user to start, stop, and
change the automatic startup settings of the service, and Remote Connections is perhaps
one of the more important switches to remember. By default, in the Express, Evaluation,
and Developer editions of SQL Server, remote connections are disabled. Thus, if you
installed Express Edition and try to connect to it from another client machine, the
connection will fail. To enable remote connections, you must choose which kind of remote
connections to allow.

Note If you allow remote connections and are still having trouble connecting, check your
firewall settings. You might have to add an exception for the sqlsvr.exe process or open a
specific port for SQL Server.

The other important feature of this tool is the ability to configure which features should be on
or off. Clicking on Surface Area Configuration for Features launches the dialog box shown in
Figure 14-5.

Chapter 14: Developing Desktop Applications with SQL Server Express Edition 437

619239.book Page 437 Tuesday, May 31, 2005 9:24 PM
Figure 14-5 The Surface Area Configuration tool’s features panel

Express Edition has a reduced set of features to enable or disable compared to other versions
of SQL Server. This is because Express Edition doesn’t have features such as SQL Mail,
Database Mail, and SQL Server Agent. In Figure 14-5, you can see that the Surface Area
Configuration tool allows you to enable and disable the use of the xp_cmdshell extended
stored procedure. Other features that you can turn on and off include the CLR, ad hoc remote
queries, and Service Broker.

You can programmatically turn on and off each of these options via the sp_configure stored
procedure. To view these options, set the Show Advanced property on sp_configure first. There
is also a new system view called sys.configurations that effectively shows the same information
as sp_configure with the Show Advanced option set.

Working with SQL Server Express Edition
SQL Server Management Studio Express is a graphical user interface tool for managing SQL
Server. It is a stripped-down version of its parent SQL Server Management Studio. The full
version, which ships with all other editions of SQL Server, includes support for managing
Analysis Services and Integration Services and offers much more functionality. This isn’t to say
that Management Studio Express is not useful; on the contrary, it supports all the basic
administration functions, such as backup and restore, and it provides a rich text editor for
creating and executing queries.

You can launch Management Studio Express from the Start menu. You first see a Connection
dialog box. The default SQLEXPRESS instance name is automatically provided for you, so to
connect to your Express Edition instance on your local machine, simply click the Connect
button.

438 Part II: Application Development and Reach Technologies

619239.book Page 438 Tuesday, May 31, 2005 9:24 PM
The GUI has three main parts: the toolbar, the Object Explorer tree view, and the document
window, as shown in Figure 14-6. Visual Studio users will be most familiar with how the
GUI works—in fact, SQL Server Management Studio is technically a Visual Studio
application.

Figure 14-6 The SQL Server Management Studio Express tool

Figure 14-6 shows Management Studio Express connected to a server. The Object Explorer
tree enumerates the Tables node of the Northwind database. One issue to note is that multi-
select is not supported in Object Explorer in either Management Studio or Management Stu-
dio Express. To perform an action such as deleting multiple objects, you must use the Sum-
mary panel. By default, this panel shows information that depends on which object is selected
in Object Explorer. You can close this panel without closing Management Studio Express. If
this panel is not visible, you can always enable it by choosing Summary from the View menu
or by pressing F7.

On the subject of multi-select, you can hold down the Ctrl key and select multiple objects
in the grid and then right-click on the grid to see a shortcut menu of available options.
This is the same behavior you would expect from any other Windows application. Another
thing you will notice with shortcut menus and multi-select is that a lot more options are
available when you select only one object. Because Object Explorer only supports selecting
one item at a time, you get the same shortcut menu for both Object Explorer and the
Summary grid if you have only one object selected.

You can use Management Studio Express to manage other editions of SQL Server, but the
functionality is limited to what is available for Express Edition. (For example, when you
connect to Workgroup Edition or Enterprise Edition, there is no way to manage Agent
jobs.)

Chapter 14: Developing Desktop Applications with SQL Server Express Edition 439

619239.book Page 439 Tuesday, May 31, 2005 9:24 PM
At this point, we are ready to discuss some of the more useful features within Management
Studio Express. For this example, we will create a new database called CustomerOrders.
Connect to your Express Edition server and select New Database from the shortcut menu of the
Database Node in Object Explorer. This brings up the New Database dialog box (Figure 14-7).

Figure 14-7 The New Database dialog box in Management Studio Express

Using this dialog box, we can specify the most common parameters, such as data and log file
location, autogrowth parameters, and other database attributes. Almost all dialog boxes in
Management Studio Express (including those in the full version of Management Studio) allow
you to script the action instead of actually executing the action against the server. This is
useful in a variety of ways—for example, if we want to know exactly what will be executed
against our server without actually executing any commands. All you do is click the Script
button in the dialog box and choose where to dump the script.

Once we have specified the name of the database—in our case, CustomerOrders—we can click
OK, and we will see the new CustomerOrders node in Object Explorer. Now it’s time to create
a table for our new database. We could open a new query window and type the CREATE
TABLE syntax with all the interesting columns we want, but there is a much simpler way to
use Management Studio Express.

Management Studio Express provides a table designer for creating and modifying tables, as
well as a view designer. To launch the table designer, right-click on the Tables node under our
new database and choose New Table. This launches the table designer in another document
window, as shown in Figure 14-8. This modeless approach allows users to go back and forth
between document windows without having to close down each one first. Every dialog box
used in Management Studio Express is modeless, so you do not have to launch another
instance of Management Studio Express to do other work while another task (such as
restoring a database) is taking a long time.

440 Part II: Application Development and Reach Technologies

619239.book Page 440 Tuesday, May 31, 2005 9:24 PM
Figure 14-8 The table designer in Management Studio Express

The table designer has two main sections, the column definition grid and the column
properties panel at the bottom of the window. The grid allows you to simply type the name of
the column, select a data type from the combo box, and specify whether the column will allow
null values. You can set the primary key, create an index, and create check constraints—among
other things—by right-clicking a row in the grid. The power of the table designer and its ease
of use make it a valuable asset in Management Studio Express.

The View designer in Management Studio Express provides a feature-rich environment for
creating and modifying views. This designer has four panes: Diagram, Criteria, SQL, and
Results. You can enable all panes at once (which results in a busy user interface, but if you
have a big enough monitor this might be OK). For a clearer demonstration, Figure 14-9 shows
the designer with the Diagram and Criteria panes, and Figure 14-10 shows the SQL and
Results panes. These figures show data from the Northwind database because it offers a more
complex relationship than the single table we have built so far in this chapter.

The Diagram pane shows an entity relationship among the various tables within the view.

Note To diagram the database, you can use a separate Diagram node in Object Explorer,
which produces a user interface that is similar to the designers previously described.

The boxes indicate a table; you can resize and move them by clicking and dragging with the
mouse. This view is not read-only; it’s interactive—you can modify the contents of the tables
and add or remove tables. For example, if you selected the Description check box in the
Categories table, this would add Description to the criteria pane and you can add this to your
view.

Chapter 14: Developing Desktop Applications with SQL Server Express Edition 441

619239.book Page 441 Tuesday, May 31, 2005 9:24 PM
Figure 14-9 The View designer with the Diagram and Criteria panes

Figure 14-10 The View designer with the SQL and Results panes

If you want to tweak the T-SQL in the view, you can do so through the SQL pane. Any changes
made in the SQL pane are carried over to all the other panes, and vice-versa. So if you checked
the Description check box in the Categories table, this information is automatically added to
the Criteria pane and the T-SQL within the SQL pane.

To conclude our discussion of Management Studio Express, we’ll look at the ability to create
and manage ad hoc queries. To create a new query, you simply click the New Query button.
This creates a new document window and allows you to free-type T-SQL or load or save a
script file. The query editor (as it is called) does not have IntelliSense (which offers
autocompletion based on the first few characters of an object name that are typed), but it
does have some other helpful features, such as line numbering and displaying the execution
plan. Figure 14-11 shows the execution plan of the Invoices view in the Northwind
database.

442 Part II: Application Development and Reach Technologies

619239.book Page 442 Tuesday, May 31, 2005 9:24 PM
Figure 14-11 Invoices view

Notice the three tabs in the bottom section of the document window: Results, Messages, and
Execution Plan. The Results tab normally shows up by default, displaying the results of
whatever we submitted to SQL Server. In this example, to get the Execution Plan tab to show
up, we had to first choose Include Actual Execution Plan from the Query menu.

Management Studio Express goes far beyond any management tool provided with MSDE—
which is, basically, nothing. Most important, its tools are free and can be freely distributed
with any custom application as long as the SQL Server Express Edition engine is shipped in
the same application.

SQLCMD Command-Line Tool

Traditionally, command-line tools have always been available for executing script or ad hoc
queries against SQL Server. These have included iSQL and oSQL, which each use a different
technology, such as Open Database Connectivity (ODBC), to connect to the server instance
and have different features. In SQL Server 2005, a new command-line tool replaces both oSQL
and iSQL. SQLCMD is not just a replacement—it extends the functionality of the current tools
in a variety of ways. Some of the new features include the following:

■ Scripting variables

■ Ability to include multiple in-line scripts

■ Ability to dynamically change connections

■ Support for Dedicated Administrator Connection (DAC)

■ Support for the new SQL Server 2005 data types: xml and nvarchar(max)

Chapter 14: Developing Desktop Applications with SQL Server Express Edition 443

619239.book Page 443 Tuesday, May 31, 2005 9:24 PM
Suppose you need to create a maintenance script that performs a DBCC CHECKDB, performs
a database backup, and then copies the backup file to another location. Here is an example
T-SQL script:

DBCC CHECKDB (‘Northwind’) WITH NO_INFOMSGS

GO

BACKUP DATABASE [Northwind] TO DISK=’C:\Backups\Northwind\Northwind.bak’

GO

Exec xp_cmdshell ‘copy C:\Backups\Northwind*.bak D:\TapeBackupDropFolder\Northwind’

GO

Life with this single script file goes well, and eventually you are tasked with doing this for
another database. Fine—you copy and paste the code and change the Northwind entries
to pubs entries, and now you have the script shown in Listing 14-1.

Listing 14-1 T-SQL script

DBCC CHECKDB (‘Northwind’) WITH NO_INFOMSGS

GO

BACKUP DATABASE [Northwind] TO DISK=’C:\Backups\Northwind\Northwind.bak’

GO

Exec xp_cmdshell ‘copy C:\Backups\Northwind*.bak D:\TapeBackupDropFolder\Northwind’

GO

DBCC CHECKDB (‘Pubs’) WITH NO_INFOMSGS

GO

BACKUP DATABASE [Pubs] TO DISK=’C:\Backups\Pubs\Pubs.bak’

GO

Exec xp_cmdshell ‘copy C:\Backups\Pubs*.bak D:\TapeBackupDropFolder\Pubs’

GO

Time passes, and you are asked to do this for another three databases, and the location of the
drop folder has changed. You can imagine that every time you want to add databases to this
script, another copy and paste will be required, which introduces the possibility of bugs
within the script. Wouldn’t it be great if we could use variables within the script instead? SQL-
CMD in SQL Server 2005 supports the use of variables for this type of scenario. To create a
variable, we use :SETVAR, as shown in the modified script in Listing 14-2.

Listing 14-2 T-SQL script (modified)

:SETVAR DatabaseName Northwind

DBCC CHECKDB ($(DatabaseName)) WITH NO_INFOMSGS

GO

BACKUP DATABASE $(DatabaseName) TO DISK=’C:\Backups\$(DatabaseName)\$(DatabaseName).bak’

GO

Exec xp_cmdshell ‘copy C:\Backups\$(DatabaseName)*.bak D:\TapeBackupDropFolder\

$(DatabaseName)’

GO

:SETVAR DatabaseName Pubs

444 Part II: Application Development and Reach Technologies

619239.book Page 444 Tuesday, May 31, 2005 9:24 PM
DBCC CHECKDB ($(DatabaseName)) WITH NO_INFOMSGS

GO

BACKUP DATABASE $(DatabaseName) TO DISK=’C:\Backups\$(DatabaseName)\$(DatabaseName).bak’

GO

Exec xp_cmdshell ‘copy C:\Backups\$(DatabaseName)*.bak

D:\TapeBackupDropFolder\$(DatabaseName)’

GO

Before we optimize this example, we should mention a few key points. You can create and
change variables throughout the script. You can also place the value of the variable by typing
the name of the variable preceded by $(and followed by). The replacement happens at run
time for the script, and as you can see in this example, it dynamically places the backup in the
folder whose name is defined in the variable. In addition, a list of environment variables are
available to use within your script. They are listed in Table 14-3.

Using these special variables is the same as using a custom variable. For example, if we want
to print out the name of the workstation executing the script, we can do the following:

Print “$(SQLCMDWORKSTATION)”

Returning to our example, if we simply left the script as is, our managers and colleagues might
question our programming skills. To make this script more efficient, let’s just write the
process once and define the variables on the command line. So our script, which we will call
BackupMyDatabase.sql, becomes that shown in Listing 14-3.

Table 14-3 SQLCMD Environment Variables

Variable Related Switch Read/Write

SQLCMDUSER U R

 SQLCMDPASSWORD P N/A

 SQLCMDSERVER S R

SQLCMDWORKSTATION H R

 SQLCMDDBNAM d R

 SQLCMDLOGINTIMEOUT l R/W

 SQLCMDSTATTIMEOUT t R/W

 SQLCMDHEADERS h R/W

 SQLCMDCOLSEP s R/W

 SQLCMDCOLWIDTH w R/W

 SQLCMDPACKETSIZE a R

 SQLCMDERRORLEVEL m R/W

 SQLCMDMAXVARTYPEWIDTH y R/W

 SQLCMDMAXFIXEDTYPEWIDTH Y R/W

Chapter 14: Developing Desktop Applications with SQL Server Express Edition 445

619239.book Page 445 Tuesday, May 31, 2005 9:24 PM
Listing 14-3 BackupMyDatabase.sql

DBCC CHECKDB ($(DatabaseName)) WITH NO_INFOMSGS

GO

BACKUP DATABASE $(DatabaseName) TO DISK=’C:\Backups\$(DatabaseName)\$(DatabaseName).bak’

GO

Exec xp_cmdshell ‘copy C:\Backups\$(DatabaseName)*.bak D:\TapeBackupDropFolder\

$(DatabaseName)’

GO

To back up each database, we can use SQLCMD as follows:

SQLCMD –E –S.\SQLEXPRESS –i “C:\MaintenanceScripts\BackupMyDatabase.sql” –

v DatabaseName=”Northwind”

Notice that the parameters are case sensitive. A -v tells SQLCMD that the subsequent value is
a variable name, not a severity level (as in the case of a capital V). In this example, we tell SQL-
CMD to connect to the SQLEXPRESS instance, execute the .sql script file BackupMyData-
base.sql, and define the DatabaseName variable to be Northwind. Now all we have to do is
repeat this for pubs, and we are all set. However, we can leverage yet another feature to make
this even more efficient. We can include a script within an existing script and still keep our
variable values. Expanding on this example, let’s create a new script called LaunchBackup.sql,
as defined in Listing 14-4.

Listing 14-4 LaunchBackup.sql

:SETVAR DatabaseName Northwind

:R “BackupMyDatabase.sql”

:SETVAR DatabaseName Pubs

:R “BackupMyDatabase.sql”

The :R tells SQLCMD to load the .sql script in-line at run time, before execution. Now it’s quite
easy to add another database to our process of backing up the database.

Note To run this script, all we have to do is tell SQLCMD to launch the script file. We don’t
have to pass variables because they are defined in the script file itself.

SQLCMD –E –S.\SQLEXPRESS –i “LaunchBackup.sql”

What if we want to perform this operation on multiple servers or multiple instances of SQL
Server? SQLCMD has yet another feature that allows the script to make connections from
within the script using the :CONNECT command. Expanding on our example, say we want to
connect to our test server and perform this operation. We can do this with the code in
Listing 14-5.

446 Part II: Application Development and Reach Technologies

619239.book Page 446 Tuesday, May 31, 2005 9:24 PM
Listing 14-5 LaunchBackup.sql connecting to multiple servers

--Connect to my local express machine

:CONNECT .\SQLEXPRESS

:SETVAR DatabaseName Northwind

:R “BackupMyDatabase.sql”

--Now connect to my test server and backup Northwind

:CONNECT TESTSERVER1\SQLEXPRESS

:SETVAR DatabaseName Northwind

:R “BackupMyDatabase.sql”

Combining the powerful functionality of connecting to different servers and variables gives us
the ability to do a plethora of tasks within our database scripts. One additional key feature of
SQLCMD is worth mentioning here. In the SQL Server 2005 engine there is a special thread
that basically waits just for a connection from an SQLCMD client with a -A parameter. This
special connection is called the Dedicated Administrator Connection (DAC), and its purpose
is to provide administrators with a way to connect to SQL Server if, for whatever reason, the
server becomes unresponsive. The DAC is available only when you connect to SQL Server via
SQLCMD with the special -A parameter. You cannot make this connection from any other
client software (such as SQL Server Management Studio). In addition, only one connection of
this type is allowed per instance of SQL Server because this feature is designed to be used only
in the event that administrators cannot gain access through a normal network connection.

There is one more important point about the DAC: In Express Edition, the DAC is disabled. To
use the DAC, you must start the service running a trace flag of 7806. If you have trouble
connecting to the DAC once you restart the service with this trace flag, make sure the SQL
Server Browser service is running.

Note To set a trace flag in SQL Server, use -T# as a startup parameter, where # is the trace
flag number. If you view the SQL Server service properties from the Service control panel, you
will see a Start Parameters text box. To experiment with the DAC, you can place -T7806 (no
space between the T and 7) there.

SQLCMD can connect to the Express Edition–only feature called User Instances. However,
there is another tool called SSEUTIL (available for download on MSDN) that looks and feels
like SQLCMD but is used primarily to manage Express Edition user instances. Before we go
into the details of SSEUTIL and how it compares with SQLCMD, we should first provide
an overview of User Instances.

User Instances

SQL Server 2005 Express Edition supports a new feature called User Instances that is
available only when you use the .NET Framework data provider for SQL Server (SqlClient).
This feature is available only with Express Edition. A user instance is basically a separate

Chapter 14: Developing Desktop Applications with SQL Server Express Edition 447

619239.book Page 447 Tuesday, May 31, 2005 9:24 PM
instance of the Express Edition database engine that is generated by a parent instance. For
example, as a Windows administrator, I can install Express Edition on my client machine. I
can then take an application that will connect to Express Edition and create a separate
instance of Express Edition for each client user of the application. When connected to this
user instance, the client is the sysadmin for that instance but does not have any special privi-
leges on the parent Express Edition instance. This is important because software executing on
a user instance with limited permissions cannot make system-wide changes. This is because
the instance of Express Edition is running under the non-administrator Windows account of
the user, not as a service. Each user instance is isolated from its parent instance and from any
other user instances running on the same computer. Databases running on a user instance are
opened in single-user mode only, and multiple users cannot connect to databases running on
a user instance. Replication, distributed queries, and remote connections are also disabled for
user instances.

When you install Express Edition, one of the setup wizard pages asks if you want to enable
User Instances. This is one way to enable them; the other is to toggle the setting using
sp_configure, as follows:

-- Enable user instances.

sp_configure 'user instances enabled','1'

-- Disable user instances.

sp_configure 'user instances enabled','0'

There are a couple more restrictions on user instances. For one thing, the only way to connect
to them is through Named Pipes. In addition, SQL Server logins are not supported on User
Instances; connections to the User Instance must be made using Windows Authentication.

Now that we have discussed User Instances and some of the restrictions on them, take a look
at the example connection string shown here:

Data Source=.\\SQLExpress;Integrated Security=true;

User Instance=true;AttachDBFilename=|DataDirectory|\InstanceDB.mdf;

Initial Catalog=InstanceDB;

Note the following:

■ The Data Source keyword refers to the parent instance of Express Edition that is gener-
ating the user instance. The default instance is .\sqlexpress.

■ Integrated Security is set to true. To connect to a user instance, you must use Windows
Authentication; SQL Server logins are not supported.

■ User Instance is set to true, which invokes a user instance. (The default is false.)

■ AttachDBFilename indicates the location of the InstanceDB database.

448 Part II: Application Development and Reach Technologies

619239.book Page 448 Tuesday, May 31, 2005 9:24 PM
■ The DataDirectory substitution string enclosed in the pipe symbols refers to the data
directory of the application opening the connection and provides a relative path
indicating the location of the .mdf and .ldf database and log files. If you want to locate
these files elsewhere, you must provide the full path to the files.

When the SqlConnection is opened, it is redirected from the default Express Edition instance
to a run-time-initiated instance running under the caller’s account.

Unlike with versions of SQL Server that run as a service, SQL Server Express Edition user
instances do not need to be manually started and stopped. Each time a user logs in and con-
nects to a user instance, the user instance is started if it is not already running. User instance
databases have the AutoClose option set so that the database is automatically shut down after
a period of inactivity. The Sqlservr.exe process that is started is kept running for a limited
timeout period after the last connection to the instance is closed, so it does not need to be
restarted if another connection is opened before the timeout has expired. The user instance
automatically shuts down if no new connection opens before that timeout period has expired.
A system administrator on the parent instance can set the duration of the timeout period for
a user instance by using sp_configure to change the user instance timeout option. The default
is 60 minutes.

The first time a user instance is generated for each user, the master and msdb system data-
bases are copied from the Template Data folder to a path under the user’s local application
data repository directory for exclusive use by the user instance. This path is typically C:\Doc-
uments and Settings\<UserName>\Local Settings\Application Data\Microsoft\Microsoft
SQL Server Data\SQLEXPRESS. When a user instance starts up, the tempdb, log, and trace
files are also written to this directory. A name is generated for the instance, which is
guaranteed to be unique for each user.

By default, all members of the Windows Builtin\Users group are granted permissions to
connect on the local instance as well as read and execute permissions on the SQL Server
binaries. Once the credentials of the calling user hosting the user instance have been verified,
that user becomes the sysadmin on that instance. Only shared memory is enabled for user
instances, which means that only operations on the local machine are possible.

Note that users must be granted both read and write permissions on the .mdf and .ldf files
specified in the connection string. These files represent the database and log files, respec-
tively, and are a matched set. The main database file will not open if it is coupled with the
wrong log file.

To prevent data corruption, a database in the user instance is opened with exclusive access. If
two different user instances share the same database on the same computer, the user on the
first instance must close the database before it can be opened in a second instance. User
instances are given a globally unique ID (GUID) as a name. This makes them a bit more
challenging to manage. The SSEUTIL command-line tool makes managing user instances
easier.

Chapter 14: Developing Desktop Applications with SQL Server Express Edition 449

619239.book Page 449 Tuesday, May 31, 2005 9:24 PM
SSEUTIL

SSEUTIL is available as a free download from MSDN at http://www.microsoft.com/downloads/
details.aspx?FamilyID=fa87e828-173f-472e-a85c-27ed01cf6b02&DisplayLang=en. The tool lets
you easily interact with SQL Server. Among other things, it allows you to:

■ Connect to the main instance or user instance of SQL Server

■ Create, attach, detach, and list databases on the server

■ Upgrade database files to match the version of the server

■ Execute SQL statements via the console (similar to SQLCMD)

■ Retrieve the version of SQL Server that is running

■ Enable and disable trace flags (for example, to trace SQL statements sent to the server by
any client application)

■ List the instances of SQL Server on the local machine or on remote machines

■ Checkpoint and shrink a database

■ Measure the performance of executing specific queries

■ Create and play back lists of SQL commands for the server to execute

■ Log all input and output

Although SSEUTIL might appear to be very similar to SQLCMD, it uses different command-
line switches to connect to SQL Server. Once you connect to SQL Server Express Edition
using SSEUTIL, you can either use a command prompt (which resembles the SQLCMD
behavior) or you can request a graphical console window. Either way, you must specify either
-c for a command prompt or -consolewnd to use the graphical user interface, as shown here:

C:\>sseutil –s .\sqlexpress –c

The default in Express Edition is to call the named instance, SQLEXPRESS. SSEUTIL does not
require you to specify the -s (servername) parameter; if you omit it, SSEUTIL assumes that you
want to connect to the SQLEXPRESS instance on your local box.

Another important point about SSEUTIL and defaults is worth noting. From the preceding
information, you might think that we are connecting to the default parent instance of Express
Edition. In reality, we are connecting to the server instance, .\sqlexpress, but our connection is
then redirected to the user instance of the user who is logged in. If we specifically want to con-
nect to the Express Edition parent instance, we must pass the -m parameter, as shown here:

C:\>sseutil –s .\sqlexpress –m

If you do not specify -m, SSEUTIL uses the -child parameter, which tells SSEUTIL to connect
to the user instance of the user who is currently logged in to the box. You can append a

450 Part II: Application Development and Reach Technologies

619239.book Page 450 Tuesday, May 31, 2005 9:24 PM
different user name to this parameter if you want to connect to another user instance. To
obtain a list of active user instances, you can use the -childlist parameter, as shown here:

C:\>sseutil -childlist

User Pipe ProcessId Status

DOMAIN\robwal \\.\pipe\07EB27D8-877E-4F\tsql\query 2168 alive

Now that we have discussed how to connect to both the parent and child instances using
SSEUTIL, it’s time to do something useful with SSEUTIL. Suppose we want to attach the
Northwind database to our user instance. We can enumerate the databases that are attached
to our instance by using the -l parameter:

C:\>sseutil -child DOMAIN\robwal -l

Using instance '\\.\pipe\07EB27D8-877E-4F\tsql\query'.

1. master

2. tempdb

3. model

4. msdb

SSEUTIL lets you attach or detach a database from both the parent instance and any user
instance on your box. Let’s attach Northwind, whose database files we’ll assume are located in
a directory called C:\databases.

C:\>sseutil -child DOMAIN\robwal -a "C:\databases\northwnd.mdf" Northwind

Using instance '\\.\pipe\07EB27D8-877E-4F\tsql\query'.

Command completed successfully.

For completeness, we specified the -child parameter, but it does not actually need to be there
because it’s the default. The -a attach parameter takes two values. The first is the location of
the .mdf file to be attached. The second parameter, which is optional, is the name of the data-
base. Once attached, the database exists on the instance but not on the parent instance, again
reinforcing our belief that user instances are truly a separate instance of SQL Server.

Here is a list of databases on the parent Express Edition instance:

C:\>sseutil -m -l master

2. tempdb

3. model

4. msdb

5. CustomerOrders

Chapter 14: Developing Desktop Applications with SQL Server Express Edition 451

619239.book Page 451 Tuesday, May 31, 2005 9:24 PM
Here is a list of databases on the user instance of the logged-in user:

C:\>sseutil -child DOMAIN\robwal -l

Using instance '\\.\pipe\07EB27D8-877E-4F\tsql\query'.

1. master

2. tempdb

3. model

4. msdb

5. Northwind

If you develop an application that uses user instances, you will find that SSEUTIL is a useful
tool for quickly obtaining information and performing tasks against the instance. Alterna-
tively, you can use SQL Server Management Studio Express against a user instance. To do
this, you simply obtain the pipename of the user instance. One way to get the pipename is
to use the -childlist parameter. In the examples in this section, our pipename was
\\.\pipe\07EB27D8-877E-4F\tsql\query. Open Management Studio Express and, in the
Connection dialog box, paste the pipename into the Server Name text box.

Installing SQL Server Express Edition
Express Edition offers three ways to perform an installation or upgrade: via the Setup Wizard,
silently through the use of command-line parameters, or via a configuration file. Using the
wizard to quickly get your development or test environment set up is useful if you don’t
already have Express Edition on your box. When bundling Express Edition with your appli-
cation, you might find that installing Express Edition via a configuration file provides the best
user experience.

Note You might already have Express Edition installed if you already have Visual Studio
installed on your box. You can check to see whether Express Edition is installed by going to the
Services applet in Control Panel and looking for “SQL Server (SQLEXPRESS).” Note that if you
installed Express Edition and gave it a different instance name from the default SQLEXPRESS,
the name shown in Control Panel might be different.

You can also run the Express Edition setup to install another instance of Express Edition.
Express Edition supports up to 50 instances on a single computer.

Existing Beta Versions of SQL Server 2005
If your box contains previously released versions of SQL Server, you might run into
problems if you attempt to upgrade to the released version by simply executing the
setup program of the released version. To ensure a successful installation, manually
remove all pre-release versions of SQL 2005, Visual Studio 2005, and the .NET

452 Part II: Application Development and Reach Technologies

619239.book Page 452 Tuesday, May 31, 2005 9:24 PM
Framework 2.0. If you are lucky enough to be in this situation, it will be beneficial to
read through the MSDN article “Uninstalling Previous Versions of Visual Studio 2005,”
which can be found at http://msdn.microsoft.com/vstudio/express/support/uninstall.

If you want to download SQL Server 2005 Express Edition from the Microsoft Web site,
you can go to http://go.microsoft.com/fwlink/?LinkId=64064. On this Web page, you will
see the prerequisites for installing Express Edition. You need Windows Installer 3.0 and
the .NET Framework 2.0. The Web page includes links for downloading these—you
must install them before you can run setup for Express Edition, which is the file on this
Web page called SQLEXPR.exe. If you simply run this executable, it self-extracts and
runs through the Setup Wizard. To perform a silent installation or an installation using
the configuration file, you can download this file and run SQLEXPR.exe /X with the /X
attribute; this extracts the files without running the Setup Wizard. If you do not want to
extract all the Express Edition installation files, you can also pass installation parame-
ters to SQLEXPR.exe.

After we have the Express Edition setup bits on our box, we can either run through the
wizard to install or upgrade to SQL Server 2005 Express Edition or we can use a config-
uration file called Template.ini to silently perform an installation. We will first cover
installing Express Edition using the Setup Wizard.

Using the Setup Wizard to Manually Install Express Edition

Once you have the .NET Framework 2.0 and at least version 3.0 of the Windows Installer, you
are ready to run the Setup Wizard for Express Edition. In this example, we’ll use the setup for
SQL Server Express Edition with Advanced Services (SQLEXPR_ADV.exe).

Setup first installs the SQL Native Client and some additional setup support files. The SQL
Native Client is a standalone data access API that is used for both the Object Linking and
Embedding Database (OLE DB) and ODBC. It combines the SQL OLE DB provider and the
SQL ODBC driver into one native dynamic link library (DLL). It also provides new function-
ality beyond that supplied by the Microsoft Data Access Components (MDAC).

Next, the familiar Welcome screen appears. Continuing through the wizard brings us to the
System Configuration Check page. This page does some rudimentary checks to see whether
your operating system is appropriate for Express Edition and whether you have any pending
reboot requests from another application, and it looks at a number of other issues that could
prevent setup from working correctly.

The next page in the wizard is for registration (Figure 14-12).

Notice the Hide Advanced Configuration Options check box at the bottom of the page. This is
selected by default; if we uncheck it, we can change the name of the instance and database

Chapter 14: Developing Desktop Applications with SQL Server Express Edition 453

619239.book Page 453 Tuesday, May 31, 2005 9:24 PM
collation, as well as specify some of the service settings for the SQL Server and SQL Server
Browser service.

Figure 14-12 Registration Information page of the Setup Wizard

If we uncheck the box and continue with the wizard, we are presented with the Feature
Selection page. This page is not an advanced option; users see it whether or not they chose to
hide the advanced options. Figure 14-13 shows this page.

Figure 14-13 Feature Selection page of the Setup Wizard

454 Part II: Application Development and Reach Technologies

619239.book Page 454 Tuesday, May 31, 2005 9:24 PM
Note If you are running the Advanced Services setup and have IIS installed, you will see an
option for installing Reporting Services. Choosing to install Reporting Services leads to a few
other dialog boxes not listed here. If you choose to install Reporting Services, the wizard will
ask if you want to configure Report Server now or later. If you select later, you can always con-
figure it through the Report configuration tool, which is one of the tools provided under the
Microsoft SQL Server node on the Start Menu.

Note that by default, only the database engine and its support files (such as the master
database) are installed. If you want Replication, Full-Text, or Management Tools, you must
explicitly add them using the drop-downs in the tree view.

If we had requested to see the advanced options, we would see the Instance Name page next.
This page has two option buttons, one for installing Express Edition as the default instance
and one for installing it as a named instance. The default is to install Express Edition as a
named instance with the name SQLEXPRESS. This is how all Visual Studio installations of
Express Edition create their installations of Express Edition, and it is the recommended
installation.

The next advanced page is the Service Account page (Figure 14-14).

Figure 14-14 Service Account page of the Setup Wizard

The first option you see is the ability to specify credentials for each service account. This is
applicable if you are planning to use both the SQL Server service and the SQL Browser service.
Most of the time, you can run both services using the Network service account.

Chapter 14: Developing Desktop Applications with SQL Server Express Edition 455

619239.book Page 455 Tuesday, May 31, 2005 9:24 PM
Most developers can probably intuit what the “SQL Server” service is. But some of us might
not be so sure about the SQL Browser service. In previous versions of SQL Server that sup-
ported the idea of “instances,” there needed to be a way for client machines to connect to SQL
and ask, “What are all your available instances and their corresponding port numbers?” Tra-
ditionally, UDP port 1434 was used for this. As you can imagine, having this inside the server
process was not only taxing but there was no way to effectively turn it off. In SQL Server 2005,
this functionality has been separated out into a new service called the SQL Browser service.

The next page is the Authentication Mode page. Here you can set Express Edition to support
only Windows Authentication or both SQL Authentication and Windows Authentication. If
you choose Windows Authentication, you will still have an “sa” account, but that account will
be disabled and have a random complex password.

Continuing on with the wizard, if you elected to show advanced pages, you will see the Colla-
tion Settings page. This page allows you to specify whether databases should be case sensitive
or case insensitive, as well as what kind of sort order the database should use.

The next page asks you if you want to enable User Instances. User Instances is an Express
Edition–specific feature—it is not available on any other edition of SQL Server. (User Instances
were covered in the earlier section titled “Working with SQL Server Express Edition.”)

At this point, we are almost done with the wizard. The last page that requires us to make some
sort of decision is the Error And Usage Report Settings page. This page asks two questions:
“Can SQL automatically send error reports to either a central server in your organization or
directly to Microsoft?” and “Can SQL send data on feature usage to Microsoft?” Both of these
options enable Microsoft to compile a lot of information about the use of SQL Server and com-
mon errors. With the second option, no personally identifiable information is sent, so if you
are in the mood to contribute to future products, you might want to select this box.

The next page shows a summary of the actions the wizard will perform. After this page, the wizard
proceeds and installs Express Edition, including whatever options you have selected. The final
page (Figure 14-15) displays some information about the installation, as well as two hyperlinks.

Figure 14-15 The final page of the Setup Wizard

456 Part II: Application Development and Reach Technologies

619239.book Page 456 Tuesday, May 31, 2005 9:24 PM
The Summary Log link loads the installation log into Notepad for your reading or trouble-
shooting enjoyment. The other link launches the Surface Area Configuration tool (described
previously in this chapter). If you do not run this tool now, you can always launch it from the
Start menu later.

At this point, you are ready to start working with Express Edition.

Installing via Command-Line Parameters or a Configuration File

There are two ways to programmatically install, modify, and remove SQL Server Express Edi-
tion components. First, you can call Setup.exe and pass a series of parameters on the com-
mand line. Alternatively, you can configure all the parameters within a single file and pass that
file as a command-line parameter to Setup.exe. This file is called Template.ini, and it is located
in the root directory of SQL Server Express Edition. An example of launching Setup and pass-
ing the configuration file is as follows:

start /wait setup.exe /qb /settings c:\template.ini

For those not familiar with the Windows command line, start is an application that opens
a new console window. The /wait parameter tells the console window to wait until the
program finishes execution before terminating itself. A complete list of parameters for the
start command can be obtained by passing /? as a parameter. The next parameter in the
line of code is setup.exe. This is the name of the application to launch; in this case, it’s SQL
Server Express Edition Setup. The rest of the parameters are arguments for the setup
program. The Setup.exe argument /qb tells Setup to run in quiet mode, which requires no
user interaction. This mode does provide some visual indicators about the status of the
installation.

Note Alternatively, you can specify /qn. The only difference between /qb and /qn is that
when you use /qn, there is no visual status indicator.

All errors from Setup in SQL Server are recorded in the setup log files. If you call Microsoft
for support on a setup-related issue, the Product Support specialist will probably want you
to find these files. By default, the setup log files are located at C:\Program Files\Microsoft
SQL Server\90\Setup Bootstrap\LOG\Files. If you encounter problems when developing a
custom SQL Server Express Edition installation, these files are a good place to start
debugging.

The /settings parameter in the command-line code tells Setup to obtain all installation
information from the file that is defined in the next parameter. In the code example, the
Template.ini file is stored in the root of the C drive.

Chapter 14: Developing Desktop Applications with SQL Server Express Edition 457

619239.book Page 457 Tuesday, May 31, 2005 9:24 PM
Important If you have downloaded SQL Server Express Edition from the Web, you might
not see the Setup.exe application if you downloaded a single SQLEXPR.exe file. If this is the
case, you need to call Setup.exe from the command line to extract the Express Edition files
from this compressed executable. To perform this extraction, run SQLEXPR /X from the com-
mand line. A dialog box appears, prompting you for a location to extract the files to. The
Express Edition files are copied to the location that you specify. These files include Setup.exe
and Template.ini, among many other files and folders.

The Template.ini file is a plain-text file that can be opened by using a text editor such as Note-
pad. When you open this file, you see a long commented introduction citing examples of how
to use the file. The file itself is well documented, and a lot of the options are explained in great
detail within the file itself. For that reason, this chapter will not cover all the options. Instead,
here are just a few parameters of interest.

■ PIDKEY This parameter is required for all SQL Server editions except Express Edition.

■ ADDLOCAL This parameter specifies which components to install. If ADDLOCAL is
not specified, Setup will fail. You can specify ADDLOCAL=ALL, which installs all compo-
nents. There are some rules around this parameter:

1. Feature names are case sensitive.

2. To use ADDLOCAL, you must provide a comma-delimited list of features to install, with
no spaces between them.

3. Selecting a parent feature installs only the parent feature, not the child features. Install-
ing a child feature installs the parent and the child. Removing the parent feature
removes both the parent and the child.

4. You can also use ADDLOCAL to add components in maintenance mode.

Confused yet? We will give a few examples to demonstrate various installation combinations.
First we must explain the possible valid feature names for each edition of SQL Server.
Tables 14-4, 14-5, and 14-6 list the feature names unique to Express Edition, Express Edition
with Advanced Services, and the Express Edition Toolkit, respectively.

Table 14-4 Valid ADDLOCAL Parameters for Express Edition

Feature Parent Feature Name Child Feature Name

SQL Server Database Services SQL_Engine

Data Files SQL_Data_Files

Replication SQL_Replication

Client Components Client_Components

Connectivity Components Connectivity

Software Development Kit SDK

458 Part II: Application Development and Reach Technologies

619239.book Page 458 Tuesday, May 31, 2005 9:24 PM
Even though some of these feature names are self-descriptive, Table 14-7 provides a
description of each feature, for completeness of our discussion.

Table 14-5 Valid ADDLOCAL Parameters for Express Edition with Advanced Services

Feature Parent Feature Name Child Feature Name

SQL Server Database Services SQL_Engine

Data Files SQL_Data_Files

Replication SQL_Replication

Full-Text Search Engine SQL_FullText

Reporting Services RS_Server

Report Manager RS_Web_Interface

Client Components Client_Components

Connectivity Components Connectivity

Software Development Kit SDK

Management Studio Express SQL_SSMSE

Table 14-6 Valid ADDLOCAL Parameters for Express Edition Toolkit

Feature Parent Feature Name Child Feature Name

Client Components Client_Components

Connectivity Components Connectivity

Software Development Kit SDK

BI Development Studio SQL_WarehouseDevWorkbench

Management Studio Express SQL_SSMSE

Table 14-7 Feature Descriptions

Feature Description

SQL_Engine Installs the SQL Server database, including the SQL Server and SQL
Browser services.

SQL_Data_Files Installs core SQL Server databases, including master, the resource
database, and tempdb.

SQL_Replication Installs files necessary for replication support in SQL Server Express
Edition.

Chapter 14: Developing Desktop Applications with SQL Server Express Edition 459

619239.book Page 459 Tuesday, May 31, 2005 9:24 PM
With this many options, quite a number of installation combinations are possible. The follow-
ing are examples of common installation configurations.

■ Install everything
ADDLOCAL=All

■ Install just the database engine
ADDLOCAL=SQL_Engine,SQL_Data_Files,Connectivity

■ Install just the management tool
ADDLOCAL=SQL_SSMSE

■ REMOVE This parameter is similar to ADDLOCAL, but instead of adding components,
it either removes a specific component or completely uninstalls SQL Server Express Edi-
tion if you use REMOVE=ALL. The following example removes the client components of
an existing Express Edition installation:

REMOVE=Client_Components.

You do not have to specify an instance name because the Client_Components are not
instance-specific. If you were removing SQL_Replication support, you would also need to
add the following parameter:

INSTANCENAME=<<name of the SQL Server Express Instance>>

The INSTANCENAME parameter is needed whenever the feature is instance-specific.

SQL_FullText Installs files necessary for Full-Text Search support in SQL Server
Express Edition.

RS_Server Installs the Report Server service, which manages, executes, and
renders reports.

RS_Web_Interface Installs a Web-based tool used for managing a report server.

Client_Components Installs components for communication between clients and servers,
including network libraries for ODBC and OLE DB. Also installs
applications such as the sqlcmd utility (oSQL replacement), SQL Server
Configuration Manager, and the Surface Area Configuration tool.

Connectivity Installs components for communication between clients and servers,
including network libraries for ODBC and OLE DB.

SDK Installs software development kits containing resources for model
designers and programmers. This includes SQL Server Management
Objects (SMO) and Replication Management Objects (RMO).

SQL_SSMSE Installs SQL Server Management Studio Express.

SQL_WarehouseDevWork
bench

Installs BI Development Studio. It also installs Visual Studio Premier
Partner Edition if no other edition of Visual Studio is installed on the
computer.

Table 14-7 Feature Descriptions

Feature Description

460 Part II: Application Development and Reach Technologies

619239.book Page 460 Tuesday, May 31, 2005 9:24 PM
■ UPGRADE This parameter is used for upgrading from MSDE to SQL Server 2005
Express Edition. When you use UPGRADE, you must also specify the same instance
name as the name of the MSDE instance you want to upgrade. This is because it is pos-
sible to have up to 16 MSDE instances on a single computer. Here is an example
upgrade parameter:

UPGRADE=SQL_Engine INSTANCENAME=<<name of the MSDE instance>>

When you write custom installation applications, it can be difficult to remember these param-
eter names for all your projects. To make things easier, you can write a custom wrapper class
to encapsulate setting the parameters and to provide a reusable stub for your custom applica-
tions. The wrapper class does not expose every option available, but it should give enough
direction to suit your own custom installation needs.

Deploying Express Edition Applications Using a Wrapper

As a custom application developer, you have three options for including SQL Server Express
Edition within your application:

■ Install Express Edition and then install the custom application.

■ Install the custom application and then install Express Edition.

■ Create a wrapper that combines the two-step process into a single step.

Note An SQL Server Express Edition wrapper cannot be MSI–based because Windows
Installer does not support multiple instantiation of the Windows Installer service.

The remainder of this section focuses on creating a wrapper for your custom application. In
the example code (Listing 14-6), the wrapper is a simple class that exposes three public
methods: IsExpressInstalled, EnumSQLInstances, and InstallExpress. Ideally, you would not need
to know if Express Edition or any other instance of SQL Server is already installed on the local
computer. This example includes this information in case you want to give the user the
flexibility of selecting an existing instance of Express Edition to install your application
against instead of always creating a new instance.

The first step is to create a simple class. This class will contain local variables of most of the
command-line switches supported by the SQLEXP.exe installation executable. These switches
will be exposed as properties of the class object.

Important The following code is only a guideline for installing SQL Server Express Edition
with your custom application. It is not complete and does not contain robust error-handling
routines.

Chapter 14: Developing Desktop Applications with SQL Server Express Edition 461

619239.book Page 461 Tuesday, May 31, 2005 9:24 PM
Listing 14-6 EmbeddedInstall class definition

public class EmbeddedInstall

{

#region Internal variables

//Variables for setup.exe command line

private string instanceName = "SQLEXPRESS";

private string installSqlDir = "";

private string installSqlSharedDir = "";

private string installSqlDataDir = "";

private string addLocal = "All";

private bool sqlAutoStart = true;

private bool sqlBrowserAutoStart = false;

private string sqlBrowserAccount = "";

private string sqlBrowserPassword = "";

private string sqlAccount = "";

private string sqlPassword = "";

private bool sqlSecurityMode = false;

private string saPassword = "";

private string sqlCollation = "";

private bool disableNetworkProtocols = true;

private bool errorReporting = true;

private string sqlExpressSetupFileLocation =

System.Environment.GetEnvironmentVariable("TEMP") + "\\sqlexpr.exe";

#endregion

#region Properties

public string InstanceName

{

get

{

return instanceName;

}

set

{

instanceName = value;

}

}

public string SetupFileLocation

{

get

{

return sqlExpressSetupFileLocation;

}

set

{

sqlExpressSetupFileLocation = value;

}

}

public string SqlInstallSharedDirectory

{

get

462 Part II: Application Development and Reach Technologies

619239.book Page 462 Tuesday, May 31, 2005 9:24 PM
{

return installSqlSharedDir;

}

set

{

installSqlSharedDir = value;

}

}

public string SqlDataDirectory

{

get

{

return installSqlDataDir;

}

set

{

installSqlDataDir = value;

}

}

public bool AutostartSQLService

{

get

{

return sqlAutoStart;

}

set

{

sqlAutoStart = value;

}

}

public bool AutostartSQLBrowserService

{

get

{

return sqlBrowserAutoStart;

}

set

{

sqlBrowserAutoStart = value;

}

}

public string SqlBrowserAccountName

{

get

{

return sqlBrowserAccount;

}

set

{

sqlBrowserAccount = value;

}

}

public string SqlBrowserPassword

{

get

Chapter 14: Developing Desktop Applications with SQL Server Express Edition 463

619239.book Page 463 Tuesday, May 31, 2005 9:24 PM
{

return sqlBrowserPassword;

}

set

{

sqlBrowserPassword = value;

}

}

//Defaults to LocalSystem

public string SqlServiceAccountName

{

get

{

return sqlAccount;

}

set

{

sqlAccount = value;

}

}

public string SqlServicePassword

{

get

{

return sqlPassword;

}

set

{

sqlPassword = value;

}

}

public bool UseSQLSecurityMode

{

get

{

return sqlSecurityMode;

}

set

{

sqlSecurityMode = value;

}

}

public string SysadminPassword

{

set

{

saPassword = value;

}

}

public string Collation

{

get

{

return sqlCollation;

}

464 Part II: Application Development and Reach Technologies

619239.book Page 464 Tuesday, May 31, 2005 9:24 PM
set

{

sqlCollation = value;

}

}

public bool DisableNetworkProtocols

{

get

{

return disableNetworkProtocols;

}

set

{

disableNetworkProtocols = value;

}

}

public bool ReportErrors

{

get

{

return errorReporting;

}

set

{

errorReporting = value;

}

}

public string SqlInstallDirectory

{

get

{

return installSqlDir;

}

set

{

installSqlDir = value;

}

}

#endregion

Now that you have set up the local variables and properties for the class object, you can work
on the public methods IsExpressInstalled, EnumSQLInstances, and InstallExpress.

Assuming a local server installation, you can simply look to the local registry to see if Express
Edition or any other instance of SQL Server is installed. The method in Listing 14-7 enumer-
ates and checks the Edition value for keys under this location, where X is an instance of SQL
Server:

HKEY_LOCAL_MACHINE\Software\Microsoft\Microsoft SQL Server\MSSQL.X

Chapter 14: Developing Desktop Applications with SQL Server Express Edition 465

619239.book Page 465 Tuesday, May 31, 2005 9:24 PM
Listing 14-7 IsExpressInstalled method

public bool IsExpressInstalled()

{

using (RegistryKey Key =

Registry.LocalMachine.OpenSubKey("Software\\Microsoft\\Microsoft SQL

Server\\", false))

{

if (Key == null) return false;

string[] strNames;

strNames = Key.GetSubKeyNames();

//If we cannot find a SQL Server registry key, we

don't have SQL Server Express installed

if (strNames.Length == 0) return false;

foreach (string s in strNames)

{

if (s.StartsWith("MSSQL."))

{

//Check to see if the edition is "Express Edition"

using (RegistryKey KeyEdition =

Key.OpenSubKey(s.ToString() + "\\Setup\\", false))

{

if ((string)KeyEdition.GetValue("Edition") ==

"Express Edition")

{

//If there is at least one instance of

SQL Server Express installed, return true

return true;

}

}

}

}

}

return false;

}

By using the local registry, you can determine more information about all the SQL Server
instances, regardless of edition, that are installed on the local server. Having this information
is useful if you want to provide a better installation experience. The method in Listing 14-8
takes a reference and populates a string array for instances, editions, and versions. It returns
the number of instances of SQL Server that are installed on the local computer.

Listing 14-8 EnumSQLInstances method

public int EnumSQLInstances(ref string[] strInstanceArray, ref string[] strEditionArray,

ref string[] strVersionArray)

{

using (RegistryKey Key = Registry.LocalMachine.OpenSubKey("Software\\

Microsoft\\Microsoft SQL Server\\", false))

{

466 Part II: Application Development and Reach Technologies

619239.book Page 466 Tuesday, May 31, 2005 9:24 PM
if (Key == null) return 0;

string[] strNames;

strNames = Key.GetSubKeyNames();

//If we can not find a SQL Server registry key, we return 0 for none

if (strNames.Length == 0) return 0;

//How many instances do we have?

int iNumberOfInstances = 0;

foreach (string s in strNames)

{

if (s.StartsWith("MSSQL."))

iNumberOfInstances++;

}

//Reallocate the string arrays to the new number of instances

strInstanceArray = new string[iNumberOfInstances];

strVersionArray = new string[iNumberOfInstances];

strEditionArray = new string[iNumberOfInstances];

int iCounter = 0;

foreach (string s in strNames)

{

if (s.StartsWith("MSSQL."))

{

//Get Instance name

using (RegistryKey KeyInstanceName =

Key.OpenSubKey(s.ToString(), false))

{

strInstanceArray[iCounter] =

(string)KeyInstanceName.GetValue("");

}

//Get Edition

using (RegistryKey KeySetup =

Key.OpenSubKey(s.ToString() + "\\Setup\\", false))

{

strEditionArray[iCounter] =

(string)KeySetup.GetValue("Edition");

strVersionArray[iCounter] =

(string)KeySetup.GetValue("Version");

}

iCounter++;

}

}

return iCounter;

}

}

Now you can install SQL Server Express Edition. First convert the properties of the class into
a command-line argument that can be passed to the SQLEXPR.exe installation application.
The BuildCommandLine method performs this task, as shown in Listing 14-9.

Chapter 14: Developing Desktop Applications with SQL Server Express Edition 467

619239.book Page 467 Tuesday, May 31, 2005 9:24 PM
Listing 14-9 BuildCommandLine method

private string BuildCommandLine()

{

StringBuilder strCommandLine = new StringBuilder();

if (!string.IsNullOrEmpty(installSqlDir))

{

strCommandLine.Append("INSTALLSQLDIR=\"").Append(installSqlDir)

.Append("\"");

}

if (!string.IsNullOrEmpty(installSqlSharedDir))

{

strCommandLine.Append("INSTALLSQLSHAREDDIR=\"")

.Append(installSqlSharedDir).Append("\"");

}

if (!string.IsNullOrEmpty(installSqlDataDir))

{

strCommandLine.Append("INSTALLSQLDATADIR=\"")

.Append(installSqlDataDir).Append("\"");

}

if (!string.IsNullOrEmpty(addLocal))

{

strCommandLine.Append(" ADDLOCAL=\"").Append(addLocal).Append("\"");

}

if (sqlAutoStart)

{

strCommandLine.Append(" SQLAUTOSTART=1");

}

else

{

strCommandLine.Append(" SQLAUTOSTART=0");

}

if (sqlBrowserAutoStart)

{

strCommandLine.Append(" SQLBROWSERAUTOSTART=1");

}

else

{

strCommandLine.Append(" SQLBROWSERAUTOSTART=0");

}

if (!string.IsNullOrEmpty(sqlBrowserAccount))

{

strCommandLine.Append("SQLBROWSERACCOUNT=\"")

.Append(sqlBrowserAccount).Append("\"");

}

if (!string.IsNullOrEmpty(sqlBrowserPassword))

468 Part II: Application Development and Reach Technologies

619239.book Page 468 Tuesday, May 31, 2005 9:24 PM
{

strCommandLine.Append("SQLBROWSERPASSWORD=\"")

.Append(sqlBrowserPassword).Append("\"");

}

if (!string.IsNullOrEmpty(sqlAccount))

{

strCommandLine.Append(" SQLACCOUNT=\"").Append(sqlAccount)

.Append("\"");

}

if (!string.IsNullOrEmpty(sqlPassword))

{

strCommandLine.Append(" SQLPASSWORD=\"").Append(sqlPassword)

.Append("\"");

}

if (sqlSecurityMode == true)

{

strCommandLine.Append(" SECURITYMODE=SQL");

}

if (!string.IsNullOrEmpty(saPassword))

{

strCommandLine.Append(" SAPWD=\"").Append(saPassword).Append("\"");

}

if (!string.IsNullOrEmpty(sqlCollation))

{

strCommandLine.Append(" SQLCOLLATION=\"").Append(sqlCollation)

.Append("\"");

}

if (disableNetworkProtocols == true)

{

strCommandLine.Append(" DISABLENETWORKPROTOCOLS=1");

}

else

{

strCommandLine.Append(" DISABLENETWORKPROTOCOLS=0");

}

if (errorReporting == true)

{

strCommandLine.Append(" ERRORREPORTING=1");

}

else

{

strCommandLine.Append(" ERRORREPORTING=0");

}

return strCommandLine.ToString();

}

Chapter 14: Developing Desktop Applications with SQL Server Express Edition 469

619239.book Page 469 Tuesday, May 31, 2005 9:24 PM
Now you can create the InstallExpress method, as shown in Listing 14-10.

Listing 14-10 InstallExpress method

public bool InstallExpress()

{

//In both cases, we run Setup because we have the file.

Process myProcess = new Process();

myProcess.StartInfo.FileName = sqlExpressSetupFileLocation;

myProcess.StartInfo.Arguments = "/qb " + BuildCommandLine();

/* /qn -- Specifies that setup run with no user interface.

/qb -- Specifies that setup show only the basic

user interface. Only dialog boxes displaying progress information are

displayed. Other dialog boxes, such as the dialog box that asks users if

they want to restart at the end of the setup process, are not displayed.

*/

myProcess.StartInfo.UseShellExecute = false;

return myProcess.Start();

}

Finally, we can create the sample application that calls the wrapper class and installs Express
Edition, as shown in Listing 14-11.

Listing 14-11 Main application

class Program

{

static void Main(string[] args)

{

EmbeddedInstall EI = new EmbeddedInstall();

if (args.Length > 0)

{

int i = 0;

while (i < args.Length)

{

if ((string)args[i].ToUpper() == "-V")

{

string[] strInstanceArray = new string[0];

string[] strVersionArray = new string[0];

string[] strEditionArray = new string[0];

int iInstances = EI.EnumSQLInstances(ref strInstanceArray,

ref strEditionArray, ref strVersionArray);

if (iInstances > 0)

{

for (int j = 0; j <= iInstances - 1; j++)

{

Console.WriteLine("SQL Server Instance:

\"" + strInstanceArray[j].ToString() + "\" -- " +

470 Part II: Application Development and Reach Technologies

619239.book Page 470 Tuesday, May 31, 2005 9:24 PM
strEditionArray[j].ToString() + " (" + strVersionArray[j].ToString() +

")");

}

}

else

{

Console.WriteLine("No instance of SQL Server

Express found on local server.\n\n");

}

return;

}

if ((string)args[i].ToUpper() == "-I")

{

if (EI.IsExpressInstalled())

{

Console.WriteLine("An instance of SQL Server

Express is installed.\n\n");

}

else

{

Console.WriteLine("There are no SQL Server

Express instances installed.\n\n");

}

return;

}

i++;

}

}

Console.WriteLine("\nInstalling SQL Server 2005 Express Edition\n");

EI.AutostartSQLBrowserService = false;

EI.AutostartSQLService = true;

EI.Collation = "SQL_Latin1_General_Cp1_CS_AS";

EI.DisableNetworkProtocols = false;

EI.InstanceName = "SQLEXPRESS";

EI.ReportErrors = true;

EI.SetupFileLocation = "C:\\Downloads\\sqlexpr.exe";

//Provide location for the Express setup file

EI.SqlBrowserAccountName = ""; //Blank means LocalSystem

EI.SqlBrowserPassword = ""; // N/A

EI.SqlDataDirectory = "C:\\Program Files\\Microsoft SQL Server\\";

EI.SqlInstallDirectory = "C:\\Program Files\\";

EI.SqlInstallSharedDirectory = "C:\\Program Files\\";

EI.SqlServiceAccountName = ""; //Blank means Localsystem

EI.SqlServicePassword = ""; // N/A

EI.SysadminPassword = "ThIsIsALoNgPaSsWoRd1234!!"; //<<Supply

a secure sysadmin password>>

EI.UseSQLSecurityMode = true;

Chapter 14: Developing Desktop Applications with SQL Server Express Edition 471

619239.book Page 471 Tuesday, May 31, 2005 9:24 PM
EI.InstallExpress();

Console.WriteLine("\nInstalling custom application\n");

//

If you need to run another MSI install, remove the following comment lines

//and fill in information about your MSI

/*Process myProcess = new Process();

myProcess.StartInfo.FileName = "";//

<<Insert the path to your MSI file here>>

myProcess.StartInfo.Arguments = ""; //

<<Insert any command line parameters here>>

myProcess.StartInfo.UseShellExecute = false;

myProcess.Start();*/

}

Deploying Express Edition Applications Using ClickOnce

ClickOnce is a new feature that is part of the .NET Framework 2.0. ClickOnce lets you deploy
Windows-based client applications to a computer by placing the application files on a Web or
file server that is accessible to the client, and then providing the user with a link. This lets
users download and run applications from centrally managed servers without requiring
administrator privileges on the client machine.

In this section, we will illustrate the ClickOnce/SQL Server Express Edition experience by
developing a simple Windows Forms application. This application uses the AdventureWorks
sample database, which can be downloaded from http://go.microsoft.com/fwlink/
?linkid=65209.

This example demonstrates how to create a single WinForm for viewing the departments in
the HumanResources.Department table in the AdventureWorks database.

To create a Windows Form that displays the Department table:

1. Launch Visual Studio.

2. Create a new Windows Application project.

3. When the Form1 Designer opens, add a reference to the AdventureWorks database.

4. Right-click the Project node in the Solution Explorer pane, and then select both Add and
Existing Item. Navigate to the AdventureWorks database and click OK.

5. In the Data Source Configuration Wizard, under the Tables node, select the Department
table, and then continue with the wizard.

6. When the wizard finishes, you will notice the AdventureWorks.mdf database icon in the
Solution Explorer pane and a new AdventureWorks connection in Database Explorer.

472 Part II: Application Development and Reach Technologies

619239.book Page 472 Tuesday, May 31, 2005 9:24 PM
Database Explorer lets you perform database operations such as creating new tables,
querying and modifying existing data, and other database development functions.

7. Add the DataGridView control to the WinForm. This grid control is located in the tool-
box. When you drag the grid control onto the design surface, you have the option of
selecting the AdventureWorks dataset that you created when you ran the Data Source
Configuration Wizard. This dialog box is shown in Figure 14-16.

Figure 14-16 DataGridView task properties

When a data source is configured, you should be able to run the application and have the grid
control display the values for the Department table, as shown in Figure 14-17.

Figure 14-17 Department table enumerated using the DataGridView control

You can now deploy this application using ClickOnce.

To deploy the application by using ClickOnce:

1. To publish the application, select Publish from the Build menu. The Publish Wizard
opens, as shown in Figure 14-18.

Chapter 14: Developing Desktop Applications with SQL Server Express Edition 473

619239.book Page 473 Tuesday, May 31, 2005 9:24 PM
Figure 14-18 The Publish Wizard’s Where Do You Want To Publish The Application? page

2. On the first page of the wizard, you specify where the compiled bits should physically be
placed. In the Specify The Location To Publish This Application box, enter
C:\deploy\ViewDepartments. Click Next.

3. On the next page of the wizard (Figure 14-19), you specify the location from which
users will install the application. Select From A CD-ROM Or DVD-ROM. Click Next.

Figure 14-19 The Publish Wizard’s How Will Users Install The Application? page

4. On the next page of the wizard (Figure 14-20), you specify whether the application will
check for updates.

474 Part II: Application Development and Reach Technologies

619239.book Page 474 Tuesday, May 31, 2005 9:24 PM
Figure 14-20 The Publish Wizard’s Where Will The Application Check For Updates? page

5. ClickOnce gives applications the ability to look for updates at certain times, such as
when the application starts or whenever the application developer chooses to call the
appropriate update APIs. (There are some issues when you use this feature with a
database, which we will discuss later in this chapter.) For this example, select The
Application Will Not Check For Updates. Click Next.

6. The last page of the wizard (Figure 14-21) displays summary information and notifies
you that, because you are writing to a CD or DVD-ROM, Setup will install a shortcut and
entry in Add Or Remove Programs for your application. Click Finish.

Figure 14-21 The last page of the Publish Wizard

You can write an application that will live on the application server only and will never be
installed on the client machine. Regardless, ClickOnce will prompt the user to install any
missing prerequisites, such as the .NET Framework 2.0 or SQL Server Express Edition, as
shown in Figure 14-22.

Chapter 14: Developing Desktop Applications with SQL Server Express Edition 475

619239.book Page 475 Tuesday, May 31, 2005 9:24 PM
Figure 14-22 Prerequisites not installed when user launches application

Note Whether the application itself is designed to be run on demand from an application
server or to be installed locally, SQL Server Express Edition is always installed on the local
machine if the custom application requires it.

When the Publish Wizard finishes, new files are placed in the deployment directory. These
files include the compressed data files and the setup installer application. You might want to
copy these files to a CD and distribute them to your users, to provide them with the necessary
information about applications that use SQL Server Express Edition.

Important A user who is not an administrator on the local machine cannot install the .NET
Framework or SQL Server Express Edition. In this case, system administrators should deploy
these components first. They can do this manually or by using a distributed software manage-
ment system such as Microsoft Systems Management Server.

Updating ClickOnce Deployments That Use Express Edition

Let’s say the user has successfully installed your application. The user had all necessary
prerequisites installed, and the application is running successfully.

The user has entered data into version 1.0 of the database and now the developers have come
out with version 2.0. This new version has an additional column named Location in the
Departments table. This new column stores the geographical location of the department.
When the developer deploys version 2.0, the new version of the database is pushed down to
the client, and the previous version is automatically moved to a separate folder named Pre.
The developer must now write a database migration script to move all the data from the 1.0
version in the Pre folder to the new database. Because Visual Studio does not have any tools to
support this migration, it is completely up to the developer to perform the migration.

476 Part II: Application Development and Reach Technologies

619239.book Page 476 Tuesday, May 31, 2005 9:24 PM
Otherwise, none of the data that was entered in version 1.0 will be accessible to the applica-
tion. Additionally, if the developer publishes an interim version (for example, 2.1) to reconcile
this migration problem, or if the developer accesses the .mdf file by simply viewing the struc-
ture in Server Explorer, ClickOnce will see that the date and time stamp has changed and
deploy version 2.1 of the database. This moves version 2.0 of the database to the Pre folder
and deletes version 1.0 of the database. This results in complete data loss and a poor customer
experience.

To avoid this, Visual Studio should not include the database files when the application is
deployed. Instead, it should provide installation scripts to create the database. Also, when you
perform a ClickOnce update, you must write and call a separate update script. The ViewDe-
partments example from the previous section is used in this section to help clarify the
workaround solution.

ViewDepartments is a single WinForm application that connects to the AdventureWorks
database and enumerates the Departments table. When you developed this application, you
pointed Visual Studio to the AdventureWorks .mdf file, which created a new data source. As
the application functions now, if you were to use ClickOnce to deploy the application, the
application would always include the AdventureWorks .mdf file and cause the overwrite prob-
lems mentioned previously.

To avoid unwanted data loss in your application:

1. In the Solution Explorer pane, click the AdventureWorks database icon, as shown in
Figure 14-23. In the Properties pane, select Do Not Copy for the Copy To Output
Directory property.

Figure 14-23 Copy To Output Directory property for the AdventureWorks database

Chapter 14: Developing Desktop Applications with SQL Server Express Edition 477

619239.book Page 477 Tuesday, May 31, 2005 9:24 PM
2. Choose Properties from the Project menu to open the Project Properties panel. On the
Publish tab, click Application Files. This launches a dialog box that contains a list of all
the files in the solution. Change the Publish Status to Exclude for the .MDF and .LDF
files of the AdventureWorks database, as shown in Figure 14-24.

Figure 14-24 Excluding database files

Next you script the creation of the AdventureWorks database. You can script a database in
many ways. In SQL Server Management Studio, you can right-click the database in Object
Explorer and create the entire script there. Or you can use the Generate SQL Server Scripts
Wizard for more scripting options. If you do not have a license for this tool or any other script-
ing tool, you can easily create a small program that uses the SQL Server Management Objects
(SMO) object model to create a script by using the Scripter class.

Note If you installed SQL Server Express Edition with the developer components, the SMO
DLLs are located by default in C:\Program Files\Microsoft SQL Server\90\SDK\Assemblies.

Listing 14-12 shows a modified AdventureWorks creation script that creates and populates
the Departments table.

Listing 14-12 AdventureWorks creation script

USE [master]

GO

CREATE DATABASE [AdventureWorks] ON PRIMARY

(NAME = N'AdventureWorks_Data', FILENAME = N'C:\Program Files\Microsoft

SQL Server\MSSQL.1\MSSQL\Data\AdventureWorks_Data.mdf' , SIZE = 167936KB

, MAXSIZE = UNLIMITED, FILEGROWTH = 16384KB)

478 Part II: Application Development and Reach Technologies

619239.book Page 478 Tuesday, May 31, 2005 9:24 PM
LOG ON

(NAME = N'AdventureWorks_Log', FILENAME = N'C:\Program Files\Microsoft

SQL Server\MSSQL.1\MSSQL\Data\AdventureWorks_Log.ldf' , SIZE = 2048KB ,

MAXSIZE = 2048GB , FILEGROWTH = 16384KB)

COLLATE SQL_Latin1_General_CP1_CI_AS

GO

EXEC dbo.sp_dbcmptlevel @dbname=N'AdventureWorks', @new_cmptlevel=90

GO

USE [AdventureWorks]

GO

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

CREATE TYPE [dbo].[Name] FROM [nvarchar](50) NULL

GO

EXEC sys.sp_executesql N'CREATE SCHEMA [HumanResources] AUTHORIZATION [dbo]'

GO

CREATE TABLE [HumanResources].[Department](

[DepartmentID] [smallint] IDENTITY(1,1) NOT NULL,

[Name] [dbo].[Name] NOT NULL,

[GroupName] [dbo].[Name] NOT NULL,

[ModifiedDate] [datetime] NOT NULL CONSTRAINT

[DF_Department_ModifiedDate] DEFAULT (getdate()),

CONSTRAINT [PK_Department_DepartmentID] PRIMARY KEY CLUSTERED

(

[DepartmentID] ASC

)WITH (IGNORE_DUP_KEY = OFF) ON [PRIMARY]

) ON [PRIMARY]

GO

insert into [HumanResources].[Department](Name,Groupname)

values('Engineering','Research and Development')

GO

insert into [HumanResources].[Department](Name,Groupname) values('Tool

Design','Research and Development')

GO

insert into [HumanResources].[Department](Name,Groupname)

values('Sales','Sales and Marketing')

GO

insert into [HumanResources].[Department](Name,Groupname)

values('Marketing','Sales and Marketing')

GO

insert into [HumanResources].[Department](Name,Groupname)

values('Purchasing','Inventory Management')

GO

insert into [HumanResources].[Department](Name,Groupname) values('Research

and Development','Research and Development')

GO

insert into [HumanResources].[Department](Name,Groupname)

values('Production','Manufacturing')

GO

insert into [HumanResources].[Department](Name,Groupname)

values('Production Control','Manufacturing')

Chapter 14: Developing Desktop Applications with SQL Server Express Edition 479

619239.book Page 479 Tuesday, May 31, 2005 9:24 PM
GO

insert into [HumanResources].[Department](Name,Groupname) values('Human

Resources','Executive General and Administration')

GO

insert into [HumanResources].[Department](Name,Groupname)

values('Finance','Executive General and Administration')

GO

insert into [HumanResources].[Department](Name,Groupname)

values('Information Services','Executive General and Administration')

GO

insert into [HumanResources].[Department](Name,Groupname) values('Document

Control','Quality Assurance')

GO

insert into [HumanResources].[Department](Name,Groupname) values('Quality

Assurance','Quality Assurance')

GO

insert into [HumanResources].[Department](Name,Groupname)

values('Facilities and Maintenance','Executive General and

Administration')

GO

insert into [HumanResources].[Department](Name,Groupname) values('Shipping

and Receiving','Inventory Management')

GO

insert into [HumanResources].[Department](Name,Groupname)

values('Executive','Executive General and Administration')

GO

--This next table is used to identify the version of the database

CREATE TABLE AdventureWorks..AppInfo

(Property nvarchar(255) NOT NULL,

Value nvarchar(255))

GO

INSERT INTO AdventureWorks..AppInfo Values(‘Version','1.0.0.0')

GO

Because the actual .mdf file is not included in this solution, you must define and synchronize
versions of the database that the application is connected to. An easy workaround is to add
the AppInfo table to the AdventureWorks database. When you start the application, it should
first check to see if the versions match. If they don’t, the application should either run an
upgrade script or fail. This is explained in more detail next.

To implement a version check, you add a resource file to your project and then store the script
as an embedded resource within the application:

1. Right-click the project in the Solution Explorer pane and select Add, and then select
New Item. Select Resource File, and then click Add. This launches the Resource File
document window shown in Figure 14-25.

2. You can add the SQL scripts as separate strings or as text files; for simplicity, we’ll store
the Create and Update scripts as separate files within this resource. From the Add
Resource drop-down menu, select Add Existing File. Locate the creation script we
produced earlier and add this file.

480 Part II: Application Development and Reach Technologies

619239.book Page 480 Tuesday, May 31, 2005 9:24 PM
Figure 14-25 Resource document window showing our creation script

3. Next we’ll create an upgrade script for the AdventureWorks database. Although you
might not have to upgrade your application right away, you should also include the
upgrade script to upgrade your database to version 1.0.0.3.

USE [AdventureWorks]

GO

ALTER TABLE [HumanResources].[Department]

ADD Location char(2)

GO

UPDATE AdventureWorks..AppInfo set Value='1.0.0.3' where

Property='Version'

GO

4. Save this script as UpgradeAdventureWorks.sql. Add it to the resource file, as described
earlier.

5. Modify the application to check versions and run any necessary scripts.

Note In the previous example, the Form_Load method contains code that was
autogenerated when we assigned the AdventureWorks dataset via the UI:
this.departmentTableAdapter.Fill(this.adventureWorks_DataDataSet.Department);
You should remove or comment out this code because you want to perform the database
version check first.

You should also set the DataSource property (which was pre-populated in the grid
control when you used the UI to bind the grid to the data source) to None (Figure 14-26).

Chapter 14: Developing Desktop Applications with SQL Server Express Edition 481

619239.book Page 481 Tuesday, May 31, 2005 9:24 PM
Figure 14-26 DataSource property autogenerated by Visual Studio

Listing 14-13 shows the complete code for the Form1 class:

Listing 14-13 Form1.cs

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;

using System.Data.SqlClient;

using System.Text.RegularExpressions;

namespace ViewDepartments

{

public partial class Form1 : Form

{

enum VersionCheck { Failed = 0, Equal, DatabaseIsMoreNew,

DatabaseIsOlder, DatabaseNotFound };

private SqlConnection sqlCon = new SqlConnection();

private SqlCommand sqlCmd = new SqlCommand();

public Form1()

{

InitializeComponent();

if (SetupDatabase() == false)

{

return;

}

PopulateGrid();

}

482 Part II: Application Development and Reach Technologies

619239.book Page 482 Tuesday, May 31, 2005 9:24 PM

public bool SetupDatabase()

{

bool bContinue = false;

//Create a connection to SQL Server

try

{

sqlCon.ConnectionString = "Server=

.\\sqlexpress;Integrated Security=true";

sqlCon.Open();

}

catch (SqlException sql_ex)

{

MessageBox.Show("Fail to connect to SQL Server Express\n"

+ sql_ex.Number.ToString() + " " + sql_ex.Message.ToString());

return bContinue;

}

//Now that you are connected to Express, check the database versions

switch (CheckVersion())

{

case (int)VersionCheck.Equal:

{

bContinue = true;

break;

}

case (int)VersionCheck.Failed:

{

bContinue = false;

break;

}

case (int)VersionCheck.DatabaseIsOlder:

{

//Run the upgrade script

bContinue = RunScript(Resource1.UpdateAdventureWorks.ToString());

break;

}

case (int)VersionCheck.DatabaseIsMoreNew:

{

bContinue = false;

break;

}

case (int)VersionCheck.DatabaseNotFound:

{

//Run the creation script

bContinue = RunScript(Resource1.CreateAdventureWorks.ToString());

break;

}

default:

{

bContinue = false;

break;

Chapter 14: Developing Desktop Applications with SQL Server Express Edition 483

619239.book Page 483 Tuesday, May 31, 2005 9:24 PM
}

}

return bContinue;

}

public bool RunScript(string strFile)

{

string[] strCommands;

strCommands = ParseScriptToCommands(strFile);

try

{

if (sqlCon.State != ConnectionState.Open) sqlCon.Open();

sqlCmd.Connection = sqlCon;

foreach (string strCmd in strCommands)

{

if (strCmd.Length > 0)

{

sqlCmd.CommandText = strCmd;

sqlCmd.ExecuteNonQuery();

}

}

}

catch (SqlException sql_ex)

{

MessageBox.Show(sql_ex.Number.ToString() + " " +

sql_ex.Message.ToString());

return false;

}

return true;

}

public int CheckVersion()

{

//Get Version information from application

Version v=new Version(Application.ProductVersion.ToString());

try

{

string strResult;

//Verify that the AdventureWorks Database exists

sqlCmd = new SqlCommand("select count(*) from

master..sysdatabases where name='AdventureWorks'",sqlCon);

strResult = sqlCmd.ExecuteScalar().ToString();

if (strResult == "0")

{

sqlCon.Close();

return (int)VersionCheck.DatabaseNotFound;

484 Part II: Application Development and Reach Technologies

619239.book Page 484 Tuesday, May 31, 2005 9:24 PM
}

sqlCmd = new SqlCommand("SELECT value from

AdventureWorks..AppInfo where property='version'", sqlCon);

strResult=(string)sqlCmd.ExecuteScalar();

Version vDb = new Version(strResult);

sqlCon.Close();

if (vDb == v)

return (int)VersionCheck.Equal;

if (vDb > v)

return (int)VersionCheck.DatabaseIsMoreNew;

if (vDb < v)

return (int)VersionCheck.DatabaseIsOlder;

}

catch (SqlException sql_ex)

{

MessageBox.Show(sql_ex.Number.ToString() + " " +

sql_ex.Message.ToString());

return (int)VersionCheck.Failed;

}

catch (Exception system_ex)

{

MessageBox.Show(system_ex.Message.ToString());

return (int)VersionCheck.Failed;

}

return (int)VersionCheck.Failed;

}

public string[] ParseScriptToCommands(string strScript)

{

string[] commands;

commands = Regex.Split(strScript, "GO\r\n", RegexOptions.IgnoreCase);

return commands;

}

public void PopulateGrid()

{

String strCmd = "Select * from [AdventureWorks].[HumanResources].[Department

]";

SqlDataAdapter da;

da = new SqlDataAdapter(strCmd, sqlCon);

DataSet ds = new DataSet();

da.Fill(ds, "Departments");

dataGridView1.DataSource = ds;

dataGridView1.DataMember = "Departments";

Chapter 14: Developing Desktop Applications with SQL Server Express Edition 485

619239.book Page 485 Tuesday, May 31, 2005 9:24 PM

}

private void Form1_Load(object sender, EventArgs e)

{

// TODO: This line of code loads data into the

'adventureWorks_DataDataSet.Department' table. You can move or remove this

line as necessary.

//this.departmentTableAdapter.Fill(this.adventureWorks_DataDataSet.

Department);

}

}

}

In the code for Form1.cs, a call is made to SetDatabase(). This function first attempts to make
a connection to SQL Server Express Edition. When that call succeeds, it calls into the Check-
Version() method, which checks to see if the AdventureWorks database exists. If it does, the
method obtains the version number from the AppInfo table. If the AdventureWorks database
does not exist, the creation script located in the resource file is executed. If the database ver-
sion is earlier than the application version, the upgrade script is run.

Note The version that is compared against the database comes from the File Version prop-
erty of the project. This property can be set within the Assembly Information dialog box (which
is accessible from the Application tab in Project Properties).

When you first execute this application against a blank SQL Server Express Edition database,
it creates the AdventureWorks database, and you see the four columns of the Departments
table. The next time you execute this application, it will be upgraded to include another
column in the table named Location.

Summary
SQL Server Express Edition uses the same database engine as all the other editions of SQL
Server, but with memory, disk, and some feature restrictions. Even with these restrictions, it is
possible to develop and deploy a variety of Express Edition applications.

SQL Server Express Edition with Advanced Services, which was released simultaneously with
Service Pack 1, allows users to develop reports and issue full-text queries against Express
Edition databases. This upgrade comes with a stripped-down version of SQL Server
Management Studio. The Advanced Services Toolkit also includes a graphical report designer
used to create reports for Report Server. With all these features and functionality, SQL Server
Express Edition provides users with a powerful relational database engine—for free.

	Cover
	Table of Contents
	Chapter 3: An Overview of SQL CLR
	Getting Started: Enabling CLR Integration
	Visual Studio/SQL Server Integration
	SQL Server Projects in Visual Studio
	Automated Deployment
	SQL CLR Code Attributes

	Your First SQL CLR Stored Procedure
	CLR Stored Procedures and Server-Side Data Access
	Piping Data with SqlDataRecord and SqlMetaData

	Deployment
	Deploying Your Assembly
	Deploying Your Stored Procedures
	Testing Your Stored Procedures

	CLR Functions
	CLR Triggers
	CLR Aggregates
	CLR Types
	Security
	Examining and Managing CLR Types in a Database
	Best Practices for SQL CLR Usage
	Summary

	Chapter 14: Developing Desktop Applications with SQL Server Express Edition
	What Is SQL Server Express Edition?
	Licensing
	Feature Review
	SQL Server 2005 Express Edition with Advanced Services

	Configuration
	Working with SQL Server Express Edition
	SQLCMD Command-Line Tool
	User Instances
	SSEUTIL

	Installing SQL Server Express Edition
	Using the Setup Wizard to Manually Install Express Edition
	Installing via Command-Line Parameters or a Configuration File
	Deploying Express Edition Applications Using a Wrapper
	Deploying Express Edition Applications Using ClickOnce
	Updating ClickOnce Deployments That Use Express Edition

	Summary

