

Object Thinking

David West

M

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2004 by David West

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by
any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data pending.

Printed and bound in the United States of America.

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press
International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments
to mspinput@microsoft.com.

Microsoft, Visual Basic, Visual C++, Visual C#, Visual Studio, and Windows are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. Other
product and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided
without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its
resellers or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions Editor: Robin Van Steenburgh and Linda Engelman
Project Editor: Denise Bankaitis and Devon Musgrave
Indexer: Shawn Peck

Body Part No. X10-25675

Second Printing: July 2014

This product is printed digitally on demand.

iii

Table of Contents
Acknowledgments vii

Preface ix

Introduction xvii

1 Object Thinking 1
Observing the Object Difference 2
Object Thinking = Think Like an Object 12
Problem = Solution 16
Object Thinking and Agile Development Practices 18

Values 19
Selected Practices 22

Thinking Is Key 24
Software Development Is a Cultural Activity 25

Onward 30

2 Philosophical Context 33
Philosophy Made Manifest—Dueling Languages 36

SIMULA 38
C++ 41
Smalltalk 43

Formalism and Hermeneutics 48
Postmodern Critiques 58

3 From Philosophy to Culture 63
Four Presuppositions 66

One: Everything is an object. 66
Two: Simulation of a problem domain drives
object discovery and definition. 71
Three: Objects must be composable. 78
Four: Distributed cooperation and communication must replace
hierarchical centralized control as an organizational paradigm. 81

Object Principles—Software Principles 83
Cooperating Cultures 87

iv Table of Contents

4 Metaphor: Bridge to the Unfamiliar 91
The Lego Brick Metaphor 96
The Object-as-Person Metaphor 101
Software as Theater; Programmers as Directors 108
Ants, Not Autocrats 112
Two Human-Derived Metaphors 113

Inheritance 114
Responsibility 115

Thinking Like an Object 116

5 Vocabulary: Words to Think With 117
Essential Terms 121

Object 121
Responsibility 123
Message 128
Interface (Protocol) 129

Extension Terms 130
Collaboration and Collaborator 130
Class 130
Class Hierarchy (Library) 132
Abstract/Concrete 133
Inheritance 133
Delegation 139
Polymorphism 140
Encapsulation 141
Component 142
Framework 142
Pattern 143

Implementation Terms 145
Method 145
Variable 145
Late/Dynamic Binding 146

Table of Contents v

Auxiliary Concepts 147
Domain 147
Business Requirement 149
Business Process Reengineering 149
Application 149

6 Method, Process, and Models 151
Two Decades of Object Methodology 153
Purpose and Use of Method 159
A Syncretic Approach 164
Models 168

Semantic Net 169
Object Cubes 173
Interaction Diagram 175
Static Relation Diagram 178
Object State Chart 181

7 Discovery 183
Domain Understanding 185

Domain Anthropology 186
Object Definition 200

Heuristics 212

8 Thinking Toward Design 219
Object Internals 220

Knowledge Required 221
Message Protocol 227
Message Contracts 234
State Change Notification 236

Object Appearance 240
Occasions Requiring an Appearance 241

Object State, Object Constraints 245

vi Table of Contents

9 All the World’s a Stage 247
Static Relationships 251

Is-a-Kind-of Relationship 251
Collaborates-with Relationship 254
Situational Relationship 256

Dynamic Relationships 273
Scripts 274
Event Dispatching 277

Constraints 281
Self-Evaluating Rules 282
Implementation 286
Methods 287
Knowledge Maintenance Objects 288

Development at the Speed of Thought 291

10 Wrapping Up 293
Vexations 294

The Impedance Mismatch Problem 294
A Problem with GUIs 297

Extensions 299
Frameworks 299
Object-Based Evocative Architecture 302

Provocation—The Future of Objects 305

Bibliography 309

Index 321

vii

Acknowledgments

One name appears on the cover as author of this book, hiding the fact that
every book is a collaborative effort involving scores of contributors. Although it
is impossible to acknowledge and thank everyone who played a role, I can and
must name some individuals. Each is owed my personal thanks, and each
stands as a proxy for many others whom I acknowledge in my mind and heart.

Mary—without whom this would never have been done. My muse, my
friend, my spouse of twenty-one years.

Maurine, Bob, Sara, Ryan, and Kathleen—my family, whose support was
required and freely given.

Kevin—the best programmer with whom I have ever worked. You
proved, sometimes after a lot of discussion as to why it was impossible, that my
crazy ideas could be implemented.

Tom, Pam, Don, Dion, Julie, Kyle, Dave, Steve, and J.P.—our initial con-
tact was as student and professor, but you became colleagues and friends
and represent the hundreds of St. Thomas alumni who helped shape object
thinking and then applied it in the real world with notable success.

Tom and Ken—your technical review, insightful comments, correction of
errors, and honest advice were invaluable. This would not have been as useful
a book without your assistance.

Linda, Devon, Denise, Robin, Shawn, Joel, Sandi, and Elizabeth—the
editors and staff at Microsoft Press who smoothly dealt with all the technical
aspects of getting a book out the door (including an author with deadline
issues). An author could not have found a friendlier, more helpful, or more
professional group of editors and craftspeople with whom to work.

This page intentionally left blank

ix

Preface

A Different (and Possibly Controversial) Kind of Software Book
This book will be deliberately different from almost any other object analysis/
design, component-based development, software development methodology,
or extreme programming (XP) book you may have encountered. It’s also likely
to be controversial, which is not intended but is, perhaps, inevitable. Several
factors contribute to this book’s differences:

■ The reader will be asked to read and digest a lot of history and
philosophy before embarking on the more pragmatic aspects of
object thinking.

■ The author will unabashedly, adamantly, and consistently advocate
behavior as the key concept for discovering, describing, and design-
ing objects and components.

■ The centrality of CRC (Class-Responsibility-Collaborator) cards as an
object thinking device or tool will likely be viewed as anachronistic
and irrelevant since UML (Unified Modeling Language) has achieved
the status of de facto standard.

■ The apparent indifference, or even antagonism, toward formalism
and the formal approaches to software specification that are
intrinsic to the behavioral approach will concern some readers,
especially those trained in computer science departments at
research universities.

■ The emphasis on analysis and conceptualization—that is, on think-
ing—instead of on implementation detail might strike some readers
as academic.

It will take the rest of the book to explain why these differences are
important and necessary, but the motivation behind them is found in this 1991
quote from Grady Booch:

x Object Thinking

Let there be no doubt that object-oriented design is
fundamentally different than traditional structured design
approaches: it requires different ways of thinking about
decomposition, and it produces software architectures that are
largely outside the realm of the structured design culture.

 “Different ways of thinking” is the key phrase here, and the word culture
is equally important. The history of objects in software development is charac-
terized by the mistaken notion that the object difference was to be found in a
computer language or a software module specification. But objects are funda-
mentally different because they reflect different ideas—particularly about
decomposition—and because they reflect a different set of values and a differ-
ent worldview (that is, culture) from that of traditional software development.
Understanding objects requires understanding the philosophical roots and his-
torical milestones from which objects emerged.

Readers will be expected to review and reflect on two competing philo-
sophical traditions—formalism and hermeneutics-postmodernism—that are
responsible for the value systems and ideas leading to the competition and
heated disagreements between advocates of software engineering (who value
formalism) and advocates of XP/agile methodologies/behavioral objects (who
value hermeneutics). A quick look at the history of programming in general will
show that XP and agile methodologies are but the latest manifestations in this
long-standing philosophical feud, which has also influenced our (mis)under-
standing of objects and patterns.

Distractions to object thinking, such as which programming language is
“best,” will be shown to be mostly irrelevant with a brief recap of classical
languages claiming to be object-oriented. This historical excursion will also
show you how ideas become manifest in tools—in this case programming
languages—and how philosophical principles and cultural values shape soft-
ware development methods and processes.

Metaphor and vocabulary play a major role in shaping object thinking.
Metaphors are essential for bridging the familiar and the unfamiliar, and selec-
tion of the “right” metaphors is critical for further development of fundamental
ideas. Likewise, vocabulary provides us with one of the essential tools for think-
ing and communicating. It’s important to understand why object advocates
elected to use a different vocabulary for object thinking and why it’s inappro-
priate to project old vocabulary onto new concepts.

As you might expect by now, the prominent role of formally defined mod-
els, methods, and processes will be discounted in this book; their claim to be
repositories of objective truth will be challenged. This book will suggest that
methods are little more than helpful reminders of “things to think about” and
that models are only a form of external short-term memory useful in the context

Preface xi

of a particular group of people at a particular point in time. These biases will be
linked to XP/agile approaches.

Note that I’ll also provide applications of the ideas this book offers. I’ll
provide several examples as illustrations of how the ideas exhibit themselves
in practice.

However focused on a particular topic each section of this book might be,
an overarching bias or perspective colors every discussion: behaviorism. If a
single word could be used to capture the “different ways of thinking about
decomposition” noted by Booch, it would be behavior. The centrality of behav-
ior will be most evident when we consider and compare traditional definitions
and models of objects.

A majority of the published books on objects mention using behavior as
the criterion for conceptualizing and defining objects. Many claim to present
behavioral approaches to object development. However, with one or two
exceptions,1 they provide object definitions and specification models that owe
more to traditional concepts of data and function than to behavior. Even when
behavior is used to discover candidate objects, that criterion is rapidly set aside
in favor of detailed discussions of data attributes, member functions, and class/
entity relationships. This book’s focus on behavior, on its aspects and implica-
tions, is consistent, I believe, with both the origins of object ideas and the
design tradition assumed by XP/agile.

Material in this book is presented in a matter-of-fact style, as if everything
stated were unequivocally correct. I’ll cite alternative ideas and approaches, but
I’ll make little effort to incorporate those alternatives or to discuss them in
detail. This is not because I am unaware of other viewpoints or because I am
dismissive of those viewpoints. Alternative ideas are best expressed by their
advocates. To the extent that this book is used as a classroom text, discussion
of alternative viewpoints and alternative texts is the purview of the instructor.

Paths and Destinations
The destination is easy—to become a better software developer. Or maybe not
so easy since “better” requires more than the addition of yet another skill or
technique to one’s repertoire. Techniques, tools, skills, and facts are part of
becoming better but are insufficient in themselves. Integration with existing
skills, the transformation of facts into knowledge (even wisdom), and the ability
to base one’s future actions on principles and ideas instead of rote procedures
are all essential to becoming better.

1. Wirfs-Brock, Weiner, and Wilkerson’s Objected Oriented Design offers a behavior-based method, as
does Wilkinson’s Using CRC Cards.

xii Object Thinking

This book is intended to offer one path to becoming a better developer.
Specifically, a better agile developer; and more specifically yet, a better extreme
programmer. By better, I mean more like the acknowledged masters of agile
development and extreme programming: Ward Cunningham, Kent Beck, Ron
Jeffries, Alistair Cockburn, Bob Martin, Ken Auer … (Please fill in the rest of the
top 20 to reflect your own heroes.)

These people are not masters merely because they practice certain tech-
niques or exhibit certain skills. They embody, they live, they exude shared val-
ues and principles. They share similar experiences and have learned common
lessons from those experiences. They share a worldview. Given a common
anthropological definition of culture—“shared, socially learned knowledge and
patterns of behavior”2—it is reasonable to assert that the agile and extreme pro-
gramming masters constitute a culture—a subculture, actually—of software
developers. If one aspires to be like them, one must become a member of that
culture.

The process of learning a culture—enculturation—is partly explicit but
mostly implicit. The explicit part can be put into books and taught in seminars
or classrooms. Most of culture is acquired by a process of absorption—by living
and practicing the culture with those who already share it. No book, including
this one, can replace the need to live a culture. But it is possible to use a book
as a means of “sensitizing,” of preparing, a person for enculturation—shorten-
ing the time required to understand and begin integrating lived experiences.
That is the modest goal of this author for this book.

Who Should Read This Book
A conscious effort has been made to make this book useful to a wide audience
that includes professional developers and postsecondary students as well as
anyone with an interest in understanding object-oriented thinking. It’s assumed
that the average reader will have some degree of familiarity with software
development, either coursework or experience. It’s further assumed that the
reader will have been taught or will have experience using the vocabulary,
models, and methods prevalent in mainstream software development. This
book focuses on presenting objects and XP and not on providing background
and details of mainstream development.

2. Peoples, James, and Garrick Bailey. Humanity: an Introduction to Cultural Anthropology. Belmont,
CA: Wadsworth/Thompson Learning, 2000.

Preface xiii

The organization of the book, front-loading the philosophical and histori-
cal material, might present some problems for the most pragmatically oriented
reader, the one looking for technique and heuristics to apply immediately. The
introduction attempts to make a case for reading the book in the order pre-
sented, but it’s OK to skip ahead and come back to the early chapters to under-
stand the ideas behind the technique.

Three caveats help to further define the audience for this book:

■ This is not a programming text. Some limited examples of pseudocode
(usually having the flavor of Smalltalk, the language most familiar to
the author) are presented when they can illuminate a concept or
principle of development.

■ The book, however, is expressly intended for programmers, espe-
cially those using Java and C++. It’s hoped that this book will facili-
tate their work, not by providing tricks and compiler insights but by
providing conceptual foundations. Languages such as C++ and Java
require significant programmer discipline if they are to be used to
create true objects and object applications. That discipline must, in
turn, be grounded in the kind of thinking presented in this book.

■ Although this book stresses the philosophy and history of objects/
components, the author’s overarching goal is assisting people in the
development of pragmatic skills.

Note If this text is used in an academic course (undergraduate or
graduate), roughly 40 percent of the available class time should be
devoted to workshop activities. Software development of any kind is
learned through experience, but objects, because they are new and
different, require even greater amounts of reflection and practice.
Another characteristic of an ideal course is interaction and discussion
of multiple viewpoints. This book is best used in conjunction with other
method books (particularly any of the excellent books on UML or RUP)
that present alternative viewpoints and, of course, with at least one of
the XP or agile texts, which will add depth to what is presented here.

Portions of the historical and philosophical material in this book will be
familiar to those readers with their own extensive personal experience as prac-
titioners. To them, the material might appear to be rehashed old arguments. But

xiv Object Thinking

most readers will not share either that experience or that awareness, and they
need to know, explicitly, how those ideas have shaped the profession as we
see it today. I hope that even the most experienced practitioners will see some
new insights or have old insights brought to the forefront of their minds when
reading this material.

One final note. Readers of this book will tend to be professional software
developers or those aspiring to become professionals. Both groups share a
character trait—an eagerness to build, to practice. They are ready to “just do it.”

To them is directed the final message of this introductory chapter: please
be patient.

As a profession, we also tend to be abysmally ignorant of our own history.
In the words of the oft quoted, misquoted, and paraphrased philosopher,
George Santayana, “Those who cannot remember the past are condemned to
repeat it.” In computing, thanks to Moore’s Law, our repetition is disguised a bit
by scale—mainframe mistakes replicated on desktops, then notebooks, then
PDAs and phones, and then molecular computers.

 As a profession, we tend to ignore the various influences—such as cul-
ture, philosophy, psychology, economics, and sheer chance—that have shaped
the practice of software development.

It is my belief that we cannot improve our intrinsic abilities as object and
agile software developers without an examination, however brief, of the histor-
ical and philosophical presuppositions behind our profession. We should not,
and cannot if we want them to truly understand, bring new members into our
profession without providing them with more than tools, methods, and pro-
cesses that they use by rote.

How This Book Is Organized
Readers are encouraged to proceed through the book in sequence, to accept
that each chapter lays a foundation for the one that follows. Overlaying the
order are several implicit logical divisions, including the following:

■ The introduction and Chapter 1, “Object Thinking,” advance argu-
ments for why understanding the background and history of ideas is
a necessary step in the successful application of those ideas. They
also argue that both objects and extreme programming (agile methods)
share common foundations.

■ Chapter 2, “Philosophical Context,” and Chapter 3, “From Philosophy
to Culture,” provide a foundational context, partly based in philoso-
phy and partly in history.

Preface xv

■ Chapter 4, “Metaphor: Bridge to the Unfamiliar,” introduces key ideas
and meta-ideas (metaphors as ideas about how to explain ideas, sim-
ply put).

■ Chapter 5, “Vocabulary: Words to Think With,” introduces vocabulary
and explains why object thinking requires a different vocabulary for
things that appear to be familiar but that use old labels.

■ Chapter 6, “Method, Process, and Models,” revisits commonalities
between object and agile ideas and the relationship of those ideas to
the notion of method and process.

■ Chapter 7, “Discovery,” Chapter 8, “Thinking Toward Design,” and
Chapter 9, “All the World’s a Stage,” apply the ideas of previous
chapters and provide examples of object thinking in action.

■ Chapter 10, “Wrapping Up,” adds a coda with short explorations of
how object thinking can be extended and coordinated with unavoid-
able nonobject worlds, and what the ultimate outcome of object
thinking might be.

I encourage you to engage the book in the order presented, but feel free
to skip Chapter 1 if you’re prepared to take on faith the assertions made about
objects and object thinking in subsequent chapters.

Many readers will be a bit anxious to “get to the good stuff,” to see how
the book’s ideas are applied or how they manifest themselves in practice
(which is shown in Chapters 7 through 9). While I firmly believe that the
book’s initial chapters—as far afield as they might appear to be—need to be
covered first, I also recognize the need to at least foreshadow application. To
this end, I offer a continuing sidebar—the “Forward Thinking” sidebar—in
these initial chapters. This sidebar presents a sample application in bits and
pieces as a means of illustrating important ideas while satisfying the craving
for pragmatic examples.

xvii

Introduction

The time: 1968. A software crisis has been declared. Part of the crisis derives
from the fact that more software is needed than there are developers to produce
it. The other part of the crisis is the abysmal record of development efforts.
More than half of the projects initiated are canceled, and less than 20 percent of
projects are successfully completed, meaning that the time and cost overruns
associated with those projects were less than 100 percent and the software was
actually used to support the business.

The time: 2003. We have a lot of developers—part of the software crisis
has passed for the moment. Many of them are located in other countries
because too many managers seem to believe that developers are developers
and therefore go for greater numbers at lesser cost.

The skills, abilities, attitudes, and aptitudes of the development commu-
nity are, unfortunately, suspect. The “development community” means the
entire development community—from programmers to senior managers—in
the United States and the rest of the world. It is still the case that almost half of
all projects initiated are not completed. Those that are completed almost always
incur significant cost overruns. Quality—the lack thereof—is still a major issue.
Bloated, inefficient, bug-ridden, user-unfriendly, and marginally useful—these
are still common adjectives used to describe software.

The lack of significant improvement is not for want of trying. Numerous
proposals have been advanced to improve software development.

Software engineering provides an umbrella label for a spectrum of
improvement efforts ranging from structured programming to formal (mathe-
matical and logical) foundations for program specification to UML (unified
modeling language) to ISO 9000 certification and CMM (capability maturity
model) formalizations of the development process.

Sharing the goal of software improvement but rejecting the assumptions
implicit in software engineering, several alternative development approaches
have been championed. Creativity and art have been suggested as better meta-
phors than engineering. Software craftsmanship1 is the current incarnation of
this effort. Iterative development has as long a history as the linear-phased
development at the heart of software engineering.

1. McBreen, Peter. Software Craftsmanship: The New Imperative. Addison-Wesley, 2001.

xviii Object Thinking

Extreme programming (XP) and agile software development represent a
contemporary attempt to redefine and improve software and the practice by
which that software comes into existence. XP/agile represents an alternative to
software engineering. Further, XP/agile challenges the assumptions, the core
values, and the worldview upon which software engineering is predicated. It is
not surprising, therefore, that those with a vested interest in software engineer-
ing are trying very hard to marginalize (“it’s OK for small projects by small
teams that are not engaged in mission-critical projects”), co-opt (“XP is just a
subset of RUP2—with a different vocabulary”), or dismiss (“XP is just a tantrum
staged by a few petulant out-of-work Smalltalk programmers angry at the
demise of their favorite programming language”).

This book is motivated by a set of curious questions; it is based on the
belief that “better people” are absolutely essential and that they can be nur-
tured; it is grounded in the conviction that object-oriented ideas and principles
are poorly understood; and it is premised on the belief that XP (and other agile
methods) and object thinking are inextricably entwined—each requires the
other if they are to be successful.

Curiosities
Consider the following curious questions: Why is it that iterative development
has been acknowledged—even by those proposing sequential (waterfall)
development—as the “right” way to produce software, and yet

■ XP is seen as a “novel” and even “radical” approach?

■ So few, except those who have attempted to install an agile
approach the past two or three years, “officially” use iterative
development?

■ There is so much resistance—by managers and professional
developers—to doing things the “right” (iterative) way?

2. RUP—Rational Unified Process, an attempt to standardize and formally define the software develop-
ment process. Created and advocated by the same individuals behind UML (unified modeling lan-
guage), most notably Grady Booch, Ivar Jacobson, and James Rumbaugh.

Introduction xix

■ Discussions between proponents and opponents of agile approaches
are so heated and frequently emotional when both sides seem to
agree, on the surface, on so many things?

■ “Better people” has been recognized as the most promising silver
bullet for addressing the software crisis, and yet almost all of our
energy has been spent on creating better tools, methods, and pro-
cesses instead of better people?

■ Every effort to advance nonformal, iterative, artistic, and humane
ways to develop software seem to be resisted and then co-opted and
debased by formal software engineering?

■ So few developers seem to be able to adopt and practice innovations
such as objects and agile methods in a manner consistent with the
intent and example of those who first advanced the innovation?
(Don’t believe this is a fair statement? Then why, two to four years
after XP and agile were introduced, is that community spending so
much time and effort wrestling with questions of certification? Why
does Alan Kay say the object revolution has yet to occur?)

The long answer to these and similar questions is this book. The short
answer, and hopefully part of your motivation for reading this book, is that soft-
ware developers tend to be so focused on what and how that they forget to
explore questions of why.

The “People Issue”
Fact 1: The most important factor in software work is not the
tools and techniques used by the programmers but rather the
quality of the programmers themselves.

Fact 2: The best programmers are up to 28 times better than the
worst programmers, according to “individual differences”
research. Given that their pay is never commensurate, they are
the biggest bargains in the software field.

—Robert L. Glass3

3. Glass, Robert L., Facts and Fallacies of Software Engineering. Boston: Addison-Wesley, 2003.

xx Object Thinking

In his discussion of the foregoing facts, Glass notes that we have been
aware of these human differences since 1968:4

 Nearly everyone agrees, at a superficial level, that people trump
tools, techniques, and process. And yet we keep behaving as if it
were not true. Perhaps it’s because people are a harder problem
to address than tools, techniques, and process.

We in the software field, all of us technologists at heart, would
prefer to invent new technologies to make our jobs easier. Even
if we know, deep down inside, that the people issue is a more
important one to work.

—Glass, 2003

This book is an attempt to address the “people issue.” Specifically, it is an
attempt to help developers improve their intrinsic abilities.

The Need for Better Developers
For decades, the profession of software development has relied on an implicit
promise: “Better tools, methods, and processes will allow you to create superior
software using average human resources.” Managers have been sold the idea
that their jobs will be made easier and less risky by adoption of strict formal
methods and processes—a kind of intellectual Taylorism. (Taylor, Gilbreth, and
others advanced the concept of scientific management, time and motion stud-
ies, and the modern assembly line. Their distrust of human workers led them to
the idea that imposed process and method could compensate for weaknesses
they felt to be innate in workers. The same attitude and philosophy are
assumed in the field of software engineering.) For the most part, these efforts
have failed miserably.

Instances of success exist, of course.5 You can find cases in which project
A using method X did, in fact, achieve notable success, but industry statistics as
a whole have failed to improve much since 1968, when software engineering
and scientific management were introduced as means for resolving the software
crisis. Abandoned projects, cost/time overruns, and bloated, buggy software
still dominate the landscape.

4. Sackman, H., W.I. Erikson, and E.E. Grant. “Exploratory Experimental Studies Comparing Online and
Offline Programming Performances.” Communications of the ACM, January 1968.

5. Some advocates of software engineering and process improvement will make claims of major suc-
cesses (SEI Report CMU/SEI-2001-SR-014).

Introduction xxi

Even the most ardent advocates of software engineering (for example,
Dykstra, Boehm, and Parnas), as well as those most responsible for populariz-
ing software engineering among the corporate masses (Yourdon and Martin),
recognized the limits of formal approaches. In “A Rational Design Process: How
and Why to Fake It,”6 Parnas acknowledged the fact that highly skilled devel-
opers did not “do” development the way that so-called rational methods sug-
gested they should. Martin suggested that the best way to obtain high-quality
software—software that met real business needs on time and within budget—
was the use of special “SWAT” teams comprising highly skilled and greatly
rewarded developers doing their work with minimal managerial intervention.

The only consistently reliable approach to software development is, sim-
ply, good people. So why have so much attention and effort been devoted to
process and method? There have been at least three contributing reasons:

■ A widespread belief, partially justified, that not enough good people
were available to accomplish the amount of development that
needed to be done.

■ An unspoken but just as widely held belief that really good develop-
ers were not to be trusted—they could not be “managed,” they all
seemed to be “flaky” to some degree, and they did not exhibit the
loyalty to company and paycheck of “normal” employees. Really
“good” developers tended to be “artists,” and art was (is) not a good
word in the context of software development.

■ A suspicion, probably justified, that we did not (do not) know how
to “upgrade” average developers to superior developers except by
giving them lots of experience and hoping for the best.

It is no longer possible to believe that either method or process (or both
together) is an adequate substitute for better people. There is a resurgence of
interest—spurred most recently by XP and the core practices in other agile
methods—in how to improve the human developer. This interest takes many
forms, ranging from XP itself to redefinition of software development as a craft
(McBreen7) and a calling (West8, Denning9) instead of a career to software
apprenticeship (Auer10). Why do we need better developers? Because increasing

6. Parnas, David Lorge, and Paul C. Clements. “A Rational Design Process: How and Why to Fake It.”
IEEE Transactions on Software Engineering. Vol. SE-12, No. 2, February 1986.

7. McBreen, Peter. Software Craftsmanship: The New Imperative. Boston: Addison-Wesley, 2001.

8.

9.

10.Ken Auer, www.rolemodelsoft.com.

West, David. “Enculturating Extreme Programmers,” Proceedings of XP Universe, Chapel Hill, NC.,
 July 2001. "Educating Xgilistas," Educator's Forum-XP/Agile Universe, Edmonton, Canada, July 2004.
Denning, Peter J. "Career Redux," Communications of the ACM. September 2002 / Vol 45 No. 9.

xxii Object Thinking

the supply of highly skilled people—rather than only adhering to particular
methods and processes—is the only way to resolve the software crisis.

Note Extreme programming and agile methods derive from the
actual practice of software development rather than academic theory.
The critical difference between XP/agile and traditional methods is
their focus on attitudes, behaviors, culture, and adaptive heuristics
instead of formal technique and theory. If the “method” label is to be
attached to XP/agile, it should be in terms of a method for producing
better developers rather than a method for producing better software.
Better software comes from, and only from, better people.

Producing Better Developers
What makes a better developer? The traditional answer is experience. Most text-
books on software engineering and formal process contain a caveat to the
effect that extensive real-world experience is required before the tools and
techniques provided by method/process can be effectively utilized. In this con-
text, experience is just a code word for those aspects of development—philos-
ophy, attitude, practices, mistakes, and even emotions—that cannot be reduced
to syntactic representation and cookbook formulation in a textbook.

Today’s practitioners, and some theorists, are intensely interested in teas-
ing apart and understanding the complex elements behind the label “experi-
ence.” There is great desire to understand what developers actually “do” as
opposed to some a priori theory of what is appropriate for them to do. Models
are seen as communication devices, unique to a community of human commu-
nicators, instead of “vessels of objective truth” with a value that transcends the
context of their immediate use. Development is seen as a human activity—
hence a fallible activity—that must accommodate and ameliorate imperfection
and mistakes rather than seek to eliminate them. Communalism is valued over
individualism. Systems are seen as complex instead of just complicated, neces-
sitating a different approach and different insights than were required when
software developers merely produced artifacts that met specification.

All of this intense interest is producing results. Although the total picture
is still emerging, some facets of “the better developer” are coming into focus.

XP provides a foundation by identifying a set of discrete practices that can
actually be practiced. Any developer can actually do these practices and, simply
by doing them, become a better practitioner. They offer no grand theory, nor

Introduction xxiii

are they derived from any theory. The justification for the XP approach is based
on two simple empirical observations: “We have seen master developers do
these things” and “We have seen less proficient developers do these things and
become better.” Although XP does make claims to improve both product and
process, these are side effects—one is tempted to say mere side effects—of the
improvement in the human developers.

XP/agile approaches provide a solid foundation, but just a foundation.
What “Xgilistas”11 do is but part of what makes them master developers. What
they think and how they think are critically important as well. XP relies on max-
imized communication and storytelling as a means for enculturating new devel-
opers in appropriate ways of thinking. Thinking includes a value system, a
history, a worldview, a set of ideas, and a context. And XP encompasses an oral
tradition that has not, as yet, been reduced to ink and paper (and maybe cannot
be so reduced). Aspiring Xgilistas must become conversant with all of this
before they can attain true “master” status.

One component of the oral tradition, of the history, and of the common
worldview is the use of object-oriented approaches to design and program-
ming. Unfortunately, this is seldom made explicit in the XP literature. The terms
object and object-oriented do not appear in any of the first five books in the
Addison-Wesley XP series—except once, and that occasion points to an incor-
rect page in the text. However, object vocabulary and concepts are abundantly
evident. This discrepancy merely confirms that object thinking is presupposed
by those advocating XP. The primary goal of this book is to provide one small
contribution to help those following the Xgilista path—specifically, a contribu-
tion in the area of object thinking.

Object Thinking
Thirty plus years have passed since Alan Kay coined the term object-oriented.
Almost all contemporary software developers describe their work using object
vocabulary and use languages and specification tools that lay claim to the
object label. The ubiquity of object terminology does not mean, however, that
everyone has mastered object thinking. Nor does the popularity of Java. Nor
does the de facto standardization of object modeling embodied in UML. A pre-
diction made by T. Rentsch (cited by Grady Booch in 199112) remains an accu-
rate description of today’s development and developers:

11. A neologism—useful for labeling those that embody one or more of the approaches that fall under
the “agile” label.

12. Booch, Grady. Object-Oriented Analysis and Design with Applications, Second Edition. Boston:
Addison-Wesley, 1993.

xxiv Object Thinking

 My guess is that object-oriented programming will be in the
1980s what structured programming was in the 1970s.
Everyone will be in favor of it. Every manufacturer will promote
his products as supporting it. Every manager will pay lip service
to it. Every programmer will practice it (differently). And no
one will know just what it is.

In fact, the situation may be worse than Rentsch predicted. An argument
can be made that the contemporary mainstream understanding of objects is but
a pale shadow of the original idea. Further, it can be argued that the mainstream
understanding of objects is, in practice, antithetical to the original intent.

Clearly the behavioral approach to understanding objects has all but dis-
appeared. (Yes, UML does allow for a “responsibility” segment in its class dia-
gram and description, but this hardly offsets the dominant trend in UML to treat
objects as if they were “animated data entities” or “miniature COBOL pro-
grams.”) This fact is important because two of the leading advocates behind XP
were also the leading advocates of “behavioral objects.” Kent Beck and Ward
Cunningham invented the CRC card approach to finding and defining objects—the
most popular of the “behavioral methods.” Others deeply involved in the Agile
Alliance were also identified with “object behavioralism” and with Smalltalk, the
programming language that came closest to embodying behavioral objects.

It isn’t unreasonable to assume that the behavioral approach to under-
standing objects dominates the “object thinking” of many of the best XP practi-
tioners, in part because it was almost necessarily part of the oral tradition
passed on by Kent Beck as he initiated others into the XP culture.

Note Certain aspects of XP practice are simply incarnations of earlier
practices. XP “stories,” for example, which deal with a system function
actualized by a group of objects, are identical to the scenarios talked
about in conjunction with CRC cards. Stories that are factored to their
simplest form are nothing more than responsibilities. The only real dif-
ference between stories and scenarios/behaviors is the insistence that
stories are always, and only, told by the domain expert (the customer)
and always depict interactions in the problem domain. This was also
true of good scenarios, but in the object literature scenarios tended to
reflect implementation more than they did problem description.

Introduction xxv

It’s also reasonable to assume that behavioral object thinking is only implicit
in the XP/agile culture because so few books or texts were ever written in sup-
port of this approach. Neither Beck nor Cunningham ever wrote such a book.
Rebecca Wirfs-Brock didn’t update her 1991 book describing behavior-based
object design until this year. Other efforts in this area (for example, Nancy Wilk-
erson’s book on CRC cards) were not widely known and have not been updated.

This is particularly unfortunate because the CRC card “method” as described
in the early 1990s did not incorporate all aspects of object thinking. In fact, I
believe that object thinking transcends the notion of method just as it transcended
programming languages. (You can do good object programming in almost any
language, even though some languages offer you more support than others.)

Object thinking requires more than an understanding of CRC cards as pre-
sented circa 1990. It also requires understanding some of the history and some
of the philosophical presuppositions behind object behavioralism, CRC cards,
and languages such as Smalltalk. It requires an understanding of the metaphors
that assist in good object thinking and an extension of the CRC card metaphor,
in particular, to include more than object identification and responsibility
assignment.

It is my hope that this book will promote such an understanding by cap-
turing at least part of the oral tradition of behavioral objects and making it
explicit.

XP and Object Thinking
This book is based on the following beliefs:

■ Agility, especially in the form of extreme programming, is essential if
the software development profession, and industry, are to improve
themselves.

■ XP offers a way to create “better developers” to improve the intrinsic
abilities of human beings to develop software for use by other
human beings—a way to produce “master” developers.

■ XP cannot be understood, and those practicing XP will not realize
the full potential of the approach, until they understand object think-
ing and the shared historical and philosophical roots of both object
thinking and XP core values and practices.

■ In particular, programmers and technical developers will fail to real-
ize the full potential of XP-based development without a thorough
understanding of object orientation—the “object thinking” promised
by the title of this book.

63

From Philosophy
to Culture

Philosophy provides roots, determines some values, and affects the design of
some tools, but the fullness of the object thinking difference must be under-
stood in terms of a broader context—as a culture. The cultural perspective sug-
gests the need to look for the shared, socially learned knowledge (norms,
values, worldviews) and patterns of behavior (individual actions and organiza-
tional relationships) that characterize a group of people. The philosophical
positions discussed in the preceding chapter are part of the cultural knowledge
shared by object thinkers as members of an object culture.

Robert Glass used the metaphor of culture to explain differences in how
different groups of people conceive of and develop software and how the
results of their work are evaluated. His contrast of Roman and Greek cultures
directly parallels the contrast made in the preceding chapter between formal-
ist and hermeneutic philosophies. The Greek culture described by Glass is
a close match to the XP culture1 and the object culture we will explore in
this chapter.

1. West, David. “Enculturating Extreme Programmers,” Proceedings XP Universe. Chapel Hill,
N.C., 2001.

64 Object Thinking

Greek and Roman
Robert Glass makes the argument for two cultures within the realm of soft-
ware development, two cultures that frequently find themselves in conflict
based on cultural values. He uses an analogy with Greek and Roman culture
to illustrate the differences as follows:

In ancient Greece, an individual would act as his own agent in
his own behalf, or combine with other people to act together as
a team. In a Greek work environment, you bring your tools to
work with you, you do your stuff, and then you pack up your
tools and take them home. You are an individual—an
independent contractor. You are not owned body and mind.
You are merely providing a service for compensation.

In Rome, one’s first duty was to the group, clan, class, or faction
upon which one depended for status. Known as gravitas, this
meant sacrificing oneself for the good of the organization, and
giving up one’s individuality and identifying closely with the
group. In a Roman environment you go to work, the company
hands you your tools, and then it holds you and your mind
hostage until you sever your relationship with the organization.
You are not an individual: you are owned by the organization
body and mind, twenty-four hours a day. There are substantial
rewards for this, however. The organization provides you with
security, money, and power.

Glass is particularly interested in the degree to which the two cultures
support creativity and asserts that the Roman culture is likely to take the cre-
ativity, passion, and magic out of the work of software development. He
further notes that Roman culture will emphasize up-front planning, control,
formal procedures as a means of control, and maximum documentation and
will value logical, analytical thinking above empirical and inductive thinking.

Even a cursory evaluation of XP values and practices reveals their
incompatibility with Roman thinking. When objects were first introduced,
they too reflected a Greek and not a Roman culture. Smalltalk was moti-
vated by a need to empower people, to make interaction with a computer
fun and creative. Exploratory development, a kind of rapid prototyping,
was seen as the proper way to develop new software—as opposed to the
notion of up-front, detailed design and rote implementation favored by
the (Roman) structured development culture.

Chapter 3 From Philosophy to Culture 65

Our exploration of the object culture begins with a rough enumeration of
some groups likely to be included in this culture. The original proponents
of object ideas (the original SIMULA team, the Smalltalk team), advocates of
behavior-based object methods, and the first XP and agile practitioners are likely
candidates, and of course, any who recognize themselves as members of the
“Greek” culture described by Glass.

Absent a full ethnography, a cursory look at the object culture reveals
some important traits and characteristics. Specifically:

■ A commitment to disciplined informality rather than defined formality

■ Advocacy of a local rather than global focus

■ Production of minimum rather than maximum levels of design and
process documentation

■ Collaborative rather than imperial management style

■ Commitment to design based on coordination and cooperation rather
than control

■ Practitioners of rapid prototyping instead of structured development

■ Valuing the creative over the systematic

■ Driven by internal capabilities instead of conforming to external
procedures

Cultures will usually have an origin myth, various heroes and heroines, and
stories about great deeds and important artifacts, as well as a set of core beliefs
and values. All of these are evident in the object culture and someday will be cap-
tured in a definitive ethnography. It is not my intent to elaborate that culture here,
merely to draw the reader’s attention to the fact that such a culture exists.

Being aware of object culture is valuable for object thinkers in four ways.
First, it provides insight into the dynamics of interaction (or lack of it) between
objectivists and traditionalists. Often the only way to understand the mutual
miscommunications and the emotional antipathy of the two groups comes from
understanding the underlying cultural conflict.

Second, and most important, it reminds the aspiring object thinker that
he or she is engaged in a process of enculturation, a much more involved
endeavor than learning a few new ideas and adopting a couple of alternative
practices. Most of the material in the remainder of this book cannot be fully
understood without relating it to object culture in all its aspects.

Third, it suggests a way to know you have mastered object thinking. When
all of your actions, in familiar and in novel circumstances, reflect “the right thing”
without the intervention of conscious thought, you are an object thinker.

66 Object Thinking

Fourth, it reminds the object thinker that culture is not an individual thing;
it is rooted in community. To change a culture, you must change individuals
and the way that individuals interact and make commitments to one another.
Culture is shared.

Subsequent chapters will deal with object thinking specifics, all of which
are intimately related to a set of first principles, or presuppositions reflective of
the object culture as a whole. The four principles introduced here are frequently
stated, stated in a manner that implies that the value of the principle is obvious.
Just as a member of any culture makes assertions that are indeed obvious—to
any other member of that culture.

Four Presuppositions
To those already part of the object culture, the following statements are obvious
(“they go without saying”) and obviously necessary as prerequisites to object
thinking:

■ Everything is an object.

■ Simulation of a problem domain drives object discovery and definition.

■ Objects must be composable.

■ Distributed cooperation and communication must replace hierarchi-
cal centralized control as an organizational paradigm.

For those just joining the object culture, each of these key points will need
to be developed and explained. For those opposed to the object culture, these
same presuppositions will be major points of contention.

One: Everything is an object.
This assertion has two important aspects. One is essentially a claim to the effect
that the object concept has a kind of primal status—a single criterion against
which everything else is measured. Another way of looking at this claim would
be to think of an object as the equivalent of the quanta from which the universe
is constructed. The implication of this aspect of everything-is-an-object suggests
that any decomposition, however complicated the domain, will result in the
identification of a relatively few kinds of objects and only objects.

There will be nothing “left over” that is not an object. For example:

■ Relationships, which are traditionally conceived as an association
among objects that is modeled and implemented in a different way
than an object—would themselves become just another kind of
object, with their own responsibilities and capabilities.

Chapter 3 From Philosophy to Culture 67

■ Data traditionally is seen as a kind of “passive something” fundamen-
tally different from “active and animated things” such as procedures.
Something as simple as the character D is an object—not an element
of data—that exhibits behavior just as does any other object. Whatever
manipulations and transformations are required of an object, even a
character, are realized by that object itself instead of some other kind
of thing (a procedure) acting upon that object. The commonsense
notion of data is preserved because some objects have as their pri-
mary, but not exclusive, responsibility the representation to human
observers of some bit of information.

■ Procedures as a separate kind of thing are also subsumed as ordinary
objects. We can think of two kinds of procedure: a script that allows a
group of objects to interact in a prescribed fashion and the “vital force”
that actually animates the object and enables it to exhibit its behaviors.
A script is nothing more than an organized collection of messages, and
both the collection and the message are nothing more than ordinary
objects. The vital force is nothing more than a flow of electrons
through a set of circuits—something that is arguably apart from the
conceptual understanding of an object, just as the soul is deemed to be
different from but essential to the animation of a human being.

Equating, even metaphorically, a procedure to a soul will strike most readers
as a bit absurd, but there is a good reason for the dramatic overstatement. It some-
times takes a shock or an absurdity to provide a mental pause of sufficient length
that a new idea can penetrate old thinking habits. This is especially true when it
comes to thinking about programming, wherein the metaphysical reality of two
distinct things—data and procedures—is so ingrained it is difficult to transcend. So
difficult, in fact, that most of those attempting object development fail to recognize
the degree to which they continue to apply old thinking in new contexts.

Take object programming, for example—using Smalltalk as an example
merely because it claims to be a pure object language. Tutorials from Digitalk’s
Smalltalk manuals illustrate how programmers perpetuate the notion that some
things “do” and others are “done to.”

The code in Listing One—Pascal is a Pascal program to count unique
occurrences of letters in a string entered by a user via a simple dialog box.
(Pascal was designed to teach and enforce that algorithms [active procedures]
plus [passive] data structures = program mode of thinking.)

Listing Two—Naive Smalltalk shows an equivalent Smalltalk program as
it might be written by a novice still steeped in the algorithms plus data structures
mode of programming. Both programs contain examples of explicit control and
overt looping constructs. The Pascal program also has typed variables—an
implicit nod to the need for control over the potential corruption of passive data.

68 Object Thinking

Listing One—Pascal

program frequency;
const

size 80;
var

s: string[size];
i: integer;
c: character;
f: array[1..26] of integer;
k: integer;

begin
writeln('enter line');
readln(s);
for i := 1 to 26 do f[i] := 0;
for i := 1 to size do

begin
c := asLowerCase(s[i]);
if isLetter(c) then

begin
k := ord(c) – ord('a') + 1;
f[k] := f[k] + 1
end

end;
for i := 1 to 26 do

write(f[i], ' ')
end.

There is some evidence of object thinking in Listing Two—mostly conven-
tions or idioms enforced by the syntax of the Smalltalk language—the use of
the Prompter object, the control loops initiated by integer objects receiving
messages, discovery of the size of the string being manipulated by asking the
string for its size, and so forth.

Listing Two—Naive Smalltalk

| s c f k |
f := Array new: 26.
s := Prompter prompt: 'enter line' default: ' '.
1 to: 26 do: [:i | f at: i put: 0].
1 to: s size do: [

:I | c := (s at: i) asLowerCase.
c isLetter ifTrue: [

k := c asciiValue - $a asciiValue + 1.
f at: k put: (f at: k) + 1.

].
].

^ f

A programmer better versed in object thinking (and of course, the class
library included in the Smalltalk programming environment) starts to utilize the

Chapter 3 From Philosophy to Culture 69

innate abilities of objects, including data objects (the string entered by the user
and character objects), resulting in a program significantly reduced in size and
complexity, as illustrated in Listing Three—Appropriate Smalltalk.

Listing Three—Appropriate Smalltalk

| s f |
s := Prompter prompt: ' enter line ' default: ' '.
f := Bag new.
s do: [:c | c isLetter ifTrue: [f add: c asLowerCase]].
^ f.

Types, as implied earlier, create a different kind of thing than an object.
Types are similar to classes in one sense, but classes are also objects and types are
not. This distinction is most evident when variables are created. If variables are
typed, they are no longer just a place where an object resides. Typing a variable
is a nonobject way to prevent all but a certain kind of object from taking up resi-
dence in a named location. Many people have advanced arguments in favor of
typing, but none of those arguments directly challenges the everything-is-an-
object premise. The arguments in favor of types are orthogonal to the arguments
in favor of treating everything as an object. (See note.)

Note Programs are written by human beings, and human beings
make mistakes. One response to this truism is to assume that the quan-
tity of mistakes is both high and essentially constant, which mandates
the existence and use of error detection and prevention mechanisms—
such as typing. Mechanisms, such as typing, are always constrictive, so
much so that every typed language I know of allows ways to escape the
confines of strict typing—casting, for example—which reintroduce the
potential for the errors that typing was intended to prevent. An alterna-
tive response, one consistent with the ideas and ideals of object think-
ing, is to reduce the programmer’s proclivity for making errors by
teaching the programmer the precepts of simplicity and testing. Most of
the time, data moves about a program with little chance of error arising
from the wrong kind of data being in the wrong place at the wrong time.
(User input is the obvious major exception.) If your thinking about
objects and object communication reveals the potential for a type error,
you should create a test for such errors and include an explicit check in
your code at that point. (“Element of data occupying variable X, what
class are you an instance of?”) Since everything is an object, your ele-
ment of data is an object quite capable of telling you its class. You can
have all the benefits of typing without the constraints and the complica-
tions arising from escape valves such as casting.

70 Object Thinking

The everything-is-an-object principle applies to the world, the problem
domain, just as it applies to design and programming. David Taylor2 and Ivar
Jacobson3 use objects as an appropriate design element for engineering, or
reengineering, businesses and organizations. (See the sidebar, “David A. Taylor
and Convergent Engineering.”)

David A. Taylor and Convergent Engineering
Traditional modeling of businesses and organizations is flawed according
to Taylor because of the lack of consistency among the set of models uti-
lized. For example, neither a financial model nor a data model captures
the cost of a bit of information, and inconsistency in design philosophy
prevents the two models from collectively revealing such costs—they can-
not be coordinated.

In his book Business Engineering with Object Technology (John
Wiley and Sons, 1995), Taylor suggests creating a single object model
incorporating everything necessary to produce traditional financial, simu-
lation, process, data, and workflow models as views of the unifying object
model. His process for accomplishing this goal is convergent engineering,
and it, in turn, is based on a behavioral, CRC (Class, Responsibility, Col-
laborator) card, approach to object discovery and specification.

In addition to describing how to conceptualize objects and classes,
Taylor describes a process for discovery and specification leading to the
creation of the organizational object model. That model identifies all the
objects in an organization and how they interact—not just the ones that
will eventually be implemented as software. He also provides a frame-
work for business objects that illustrates the power of object thinking in
generating simple but powerful objects. His framework defines four
classes (Business Elements, Organizations, Processes, and Resources),
describes the behaviors of each, how those behaviors contribute to the
generation of the five standard types of business model, how they can be
customized, and how their interoperation can be optimized to reengineer
the organization as a whole.

2. Taylor, David. Business Engineering with Object Technology. John Wiley & Sons, 1995.

3. Jacobson, Ivar. The Object Advantage: Business Process Reengineering with Object Technology. ACM
Press. Reading, MA: Addison-Wesley. 1994.

Chapter 3 From Philosophy to Culture 71

The programming example shown earlier illustrates one dimension of
treating everything as an object. Applying the everything-is-an-object principle
to the world—finding and specifying objects that are not going to be imple-
mented in program code or software—can be illustrated by considering a
Human object. Objects, as we will discuss in detail later, are defined in terms of
their behaviors. A behavior can be thought of as a service to be provided to
other objects upon request.

What services do humans provide other objects? For many, this is a sur-
prising question because human beings are not “implemented” by developers
and are therefore considered outside the scope of the system. But it is a fair
question and should result in a list of responsibilities similar to the following:

■ Provides information

■ Indicates a decision

■ Provides confirmation

■ Makes a selection

The utility of having a Human object becomes evident in the simplifica-
tion of interface designs. Acknowledging the existence of Human objects
allows the user interface to reflect the needs of software objects for services
from Human objects. This simple change of perspective—arising from applica-
tion of the everything-is-an-object principle—can simplify the design of other
objects typically used in user-interface construction.

Additional implications of the everything-is-an-object premise will be seen
throughout the remainder of this book.

Two: Simulation of a problem domain drives object discovery
and definition.

Decomposition—breaking a large thing up into smaller, more easily understood
things—is necessary before we can solve most of the problems we encounter as
software developers. There are different approaches to decomposition. For
example, find the data and data structures, find the processing steps, and find
the objects. In object thinking, the key to finding the objects is simulation. The
advocacy of simulation for object discovery has four primary roots:

■ The system description language philosophy behind SIMULA, as dis-
cussed in the preceding chapter.

■ Alan Kay’s ideas about user illusions and objects as reflections of
expectations based on an understanding of how objects behave in a
domain.

72 Object Thinking

■ David Parnas’s arguments in favor of a “design decision hiding”
approach to decomposition—partitioning the problem space and not
the solution space as did functional decomposition approaches—as
discussed in the preceding chapter.

■ Christopher Alexander’s4 ideas about design as the resolution of forces
in a problem space and his subsequent work on patterns that underlie
the organization of a problem space and provide insights into good
design. These will be elaborated later in this book in the discussion of
patterns and pattern languages as an aspect of object thinking.

Proper decomposition has been seen as the critical factor in design from very
early times. This quotation from Plato (which you might recall from Chapter 1) is
illustrative.

[First,] perceiving and bringing together under one Idea the
scattered particulars, so that one makes clear the thing which he
wishes to do... [Second,] the separation of the Idea into classes, by
dividing it where the natural joints are, and not trying to break
any part, after the manner of a bad carver... I love these processes
of division and bringing together, and if I think any other man is
able to see things that can naturally be collected into one and
divided into many, him I will follow as if he were a god.

Plato suggests three things: decomposition is hard (and anyone really
good at it deserves adoration), any decomposition that does not lead to the dis-
covery of things that can be recombined—composed—is counterproductive,
and the separation of one thing into two should occur at “natural joints.” By
implication, if you decompose along natural joints—and only if you do so—you
end up with objects that can be recombined into other structures. Also by impli-
cation, the natural joints occur in the domain, and “bad carving” results if you
attempt to use the wrong “knife”—the wrong decomposition criterion.

If you have the right knife and are skilled in its use—know how to think
about objects and about decomposition—you will complete your decomposi-
tion tasks in a manner analogous to that of the Taoist butcher:

The Taoist butcher used but a single knife, without the need to
sharpen it, during his entire career of many years. When asked
how he accomplished this feat, he paused, then answered, “I
simply cut where the meat isn’t.”

4. Alexander, Christopher. Notes on the Synthesis of Form. Harvard University Press, 1970.

Chapter 3 From Philosophy to Culture 73

According to this traditional story, even meat has natural disjunctions that
can be discerned by the trained eye. Of course, a Taoist butcher is like the Zen
master who can slice a moving fly in half with a judicious and elegant flick of
a long sword. Attaining great skill at decomposition will require training and
good thinking habits. It will also require the correct knife.

Decomposition is accomplished by applying abstraction—the “knife” used
to carve our domain into discrete objects. Abstraction requires selecting and
focusing on a particular aspect of a complex thing. Variations in that aspect are
then used as the criteria for differentiation of one thing from another. Tradi-
tional computer scientists and software engineers have used data (attributes) or
functions (algorithms) to decompose complex domains into modules that could
be combined to create software applications. This parallels Edsger Wybe Dijkstra’s
notion that “a computer program equals data structures plus algorithms.”

Behind the Quotes
Edsger Wybe Dijkstra
Professor Edsger Wybe Dijkstra, a noted pioneer of the science and indus-
try of computing, died in August 2002 at his home in the Netherlands.

Dijkstra was the 1972 recipient of the ACM Turing Award. (Some
consider this award the Nobel Prize for computing.) He was a member of
the Netherlands Royal Academy of Arts and Sciences and a Distinguished
Fellow of the British Computer Society. He received the 1989 ACM SIGCSE
Award for Outstanding Contributions to Computer Science Education. The
C&C Foundation of Japan recognized Dijkstra “for his pioneering contri-
butions to the establishment of the scientific basis for computer software
through creative research in basic software theory, algorithm theory, struc-
tured programming, and semaphores.” He is credited with the idea of
building operating systems as explicitly synchronized sequential processes
and for devising an amazingly efficient shortest-path algorithm. He
designed and coded the first Algol 60 compiler.

Dijkstra is one of the best examples of the formalist position in
computer science. He believed and argued in favor of the position that
mathematical logic must be the basis for sensible computer program
construction. He added the term structured programming to the language
of our profession and led the fight against unconstrained “GO TO” state-
ments in program code.

(continued)

74 Object Thinking

Some other common computer science concepts and vocabulary
credited to Dijkstra include separation of concerns (which is important to
object thinking), synchronization, deadly embrace, dining philosophers,
weakest precondition, and the guarded command. He introduced the con-
cept of semaphores as a means of coordinating multiprocessing. The
Oxford English Dictionary credits him for introducing the words vector
and stack into the computing context.

The fact that a computer program consists of data and functions does not
mean that the nonsoftware world is so composed. Using either data or function
as our abstraction knife is exactly the imposition of artificial criteria on the real
world—with the predictable result of “bad carving.” The use of neither data nor
function as your decomposition abstraction leads to the discovery of natural
joints. David Parnas pointed this out in his famous paper “On Decomposition.”
Parnas, like Plato, suggests that you should decompose a complex thing along
naturally occurring lines, what Parnas calls “design decisions.”

Both data and function are poor choices for being a decomposition tool.
Parnas provided several reasons for rejecting function. Among them are the
following:

■ Resulting program code would be complicated, far more so than
necessary or desirable.

■ Complex code is difficult to understand and test.

■ Resulting code would be brittle and hard to modify when require-
ments changed.

■ Resulting modules would lack composability—they would not be
reusable outside the context in which they were conceived and
designed.

Parnas’s predictions have consistently been demonstrated as the industry
blithely ignored his advice and used functional decomposition as the primary
tool in program and system design for 30 years (40 if you recognize that most
object development also uses functionality as an implicit decomposition crite-
rion). Using data as the decomposition abstraction leads to a different set of
problems. Primary among these is complexity arising from the explosion in
total data entities required to model a given domain and the immense costs
incurred when the data model requires modification.

Behind the Quotes (continued)

Chapter 3 From Philosophy to Culture 75

Note Some examples of the kind of explosion referred to in the pre-
ceding paragraph are from my own consulting practice. One organiza-
tion designed a customer support system that identified 15 different
customer classes because they were using a data-oriented approach
and had to create new classes when one type of customer did not
share attributes of the other types. In a much larger example, a com-
pany had just completed a corporate data model (costing millions of
dollars) when they decided to build a very large object system. They
mandated the use of the data model for identifying objects, resulting in
a class library of more than 5000 classes. This became the foundation
of their system, causing enormous implementation problems. A final,
midrange, example was a database application for billing and invoicing
wherein management demanded 1:1 replication of the existing system.
This was accomplished, but it took more than a year with an offshore
development team of 10 or 15 developers. My colleague and I dupli-
cated the capabilities of the system, using object thinking, in a weekend.
Management, however, was not impressed.

What criterion should be used instead of data or functions? Behavior!
Coad and Yourdon5 claimed that people have natural modes of thought.

Citing the Encyclopedia Britannica, they talk about three pervasive human meth-
ods of organization that guide their understanding of the phenomenological
world: differentiation, classification, and composition. Taking advantage of those
“natural” ways of thinking should, according to them, lead to better decomposition.

Behind the Quotes
Ed Yourdon and Peter Coad
Edward Yourdon is almost ubiquitous in the world of software development—
publishing, consulting, and lecturing for decades on topics ranging from
structure development to various kinds of crises (for example, the demise of
the American programmer and Y2K).

5. Yourdon, Edward, and Peter Coad. Object Oriented Analysis. Yourdon Press. Englewood Cliffs, NJ:
Prentice Hall, 1990.

(continued)

76 Object Thinking

The foundation for his reputation arose from his popularization of
structured approaches to analysis and design. His textbook on structured
analysis and design was a standard text through several editions. In 1991,
he published two books, a new edition of Structured Analysis and Design
and a small book, coauthored with Peter Coad, called Object Oriented
Analysis.

In the object book, Yourdon made a surprising admission: the multi-
ple model approach—data in the form of an entity relation diagram, pro-
cess flow in the form of a data flow diagram, and implementation in the
form of a program structure chart—advocated in his structured develop-
ment writings (including the one simultaneously published) never, in his
entire professional career, worked! In practice, it was impossible to recon-
cile the conceptual differences incorporated into each type of model.

Objects, he believed, would provide the means for integrating the
multiple models of structured development into one. Unfortunately, he
chose data as the “knife” to be used for object decomposition. Other ideas
advanced in that book proved to be more useful for understanding objects
and object thinking—especially the discussion of natural modes of thought.

Peter Coad parted ways with Yourdon after the publication of this
book and developed a method and an approach to object modeling and
development that was far more behavioral in its orientation. He has several
books on object development that are worthy of a place in every object pro-
fessional’s library.

Classification is the process of finding similarities in a number of things
and creating a label to represent the group. This provides a communication and
thinking shortcut, avoiding the need to constantly enumerate the individual
things and simply speak or think of the group. Six different tubular, yellow, and
edible things become “bananas,” while five globular, red, edible things become
“apples.” The process of classification can continue as we note that both apples
and bananas have a degree of commonality that allows us to lump them into an
aggregate called “fruit.” In continuing the process of classification, we create a
taxonomy that can eventually encompass nearly everything—the Linnaean tax-
onomy of living things (and its more sophisticated DNA-based successors) being
one commonly known example.

Composition is simply the recognition that some complicated things consist
of simpler things. Ideally, both the complicated things and the simple things they
are composed of have been identified and classified. Grady Booch suggested

Behind the Quotes (continued)

Chapter 3 From Philosophy to Culture 77

that all systems have a canonical form. His book Object Oriented Design includes
a diagram captioned, “Canonical Form of Complex Systems,” which captures both
classification and composition hierarchies and the relationship that should exist
between the two.

Classification requires differentiation, some grounds for deciding that one
thing is different from another. The differentiation grounds should reflect natural
ways of thought, as do classification and composition. So how do we differentiate
things in the natural world?

Consider a tabby and a tiger. What differentiates a tiger from a tabby? Why
do we have separate names for them? Because one is likely to do us harm if
given the chance, and the other provides companionship (albeit somewhat
fickle). Each has at least one expected behavior that differentiates it from the
other. It is this behavior that causes us to make the distinction.

Some (people who still believe in data, for example) would argue that tab-
bies and tigers are differentiated because they have different attributes. But this is
not really the case. Both have eye color, number of feet, tail length, body mark-
ings, and so on. The values of those attributes are quite different—especially
length of claw and body weight—but the attribute set remains relatively constant.

Behavior is the key to finding the natural joints in the real world. This
means, fortunately, that most of our work has already been done for us. Soft-
ware developers simply must listen to domain experts. If the domain expert has
at hand a name (noun) for something, there is a good chance that that some-
thing is a viable, naturally carved, object.

Note Listening to the domain expert and jotting down nouns cap-
tures the essence of finding a natural decomposition. A full and shared
domain understanding requires the negotiation of a domain language,
a term used by Eric Evans in his forthcoming book Domain-Driven
Design: Tackling Complexity in the Heart of Software.

Using behavior (instead of data or function) as our decomposition crite-
rion mandates the deferral of much of what we know about writing software
and almost everything we learned to become experts in traditional (structured)
analysis and design. That knowledge will be useful eventually, but at the outset
it is at best a distraction from what we need to accomplish. We must relearn
how to look at a domain of interest from the perspective of a denizen (user) of
that domain. We need to discover what objects she sees, how she perceives
them, what she expects of them, and how she expects to interact with them.
Only when we are confident that our understanding of the domain and of its

78 Object Thinking

decomposition into objects mirrors that of the user and the natural structure of
that domain should we begin to worry about how we are going to employ that
understanding to create software artifacts. (Our understanding may come one
story at a time, à la XP.)

Note The focus of decomposition is understanding the domain as it is.
Developers and domain experts should always be aware that “what is”
is not necessarily “what is best.” Just because an object exists in the
domain in a particular form and has specific expectations associated
with it doesn’t mean that the object should and must continue to exist in
that form. Domains are subject to redesign, as are the objects and the
relationships and communications among objects in that domain. As
developers and domain experts work together, it’s quite possible that
they will define new objects and redesign existing objects. This is not
only acceptable but highly desirable—as long as the basis for redesign
activities remains the domain, not implementation environments.

Three: Objects must be composable.
As Plato noted, putting things together again is just as important as taking them
apart. In fact, it is the measure of how well you took them apart. Any child with
a screwdriver and a hammer can take things apart. Unless another child can
look at the pieces and determine how to put them together again (or even more
important, see how to take a piece from one pile and use it to replace a piece
missing from another pile), the first child’s decomposition was flawed.

Composability incorporates the notions of both reusability and flexibility
and therefore implies that a number of requirements must be met:

■ The purpose and capabilities of the object are clearly stated (from
the perspective of the domain and potential users of the object), and
my decision as to whether the object will suit my purposes should be
based entirely on that statement.

■ Language common to the domain (accounting, inventory, machine
control, and so on) will be used to describe the object’s capabilities.

■ The capabilities of an object do not vary as a function of the context in
which it is used. Objects are defined at the level of the domain. This
does not eliminate the possible need for objects that are specialized to
a given context; it merely restricts redefinition of that same object when

Chapter 3 From Philosophy to Culture 79

it is moved to a different context. Objects that are useful in only one
context will necessarily be created but should be labeled appropriately.

■ When taxonomies of objects are created, it is assumed that objects
lower in the taxonomy are specialized extensions of those above them.
Specialization by extension means that objects lower in the taxonomy
can be substituted for those above them in the same line of descent.
Specialization by constraint (overrides) might sometimes be required
but almost inevitably results in a “bad” object because it is now impos-
sible to tell whether that object is useful without looking beyond what
it says it can do to an investigation of how it does what it says it can do.6

Although relatively simple to state, these requirements are difficult to satisfy.
The general principle guiding the creation of composable objects is to discover and
generalize the expected behavior of an object before giving any consideration to
what lies behind that behavior. This is a concept that has been a truism in computer
science almost from its inception. The most pragmatic consequence of this princi-
ple is the need to defer detailed design (coding) until we have a sure and complete
grasp of the identification and expected behaviors of our objects (the objects rele-
vant to the story we are currently working on) in the domain where they live.

Forward Thinking
A Problem of Reuse
In “Forward Thinking: Metaphor and Initial Stories,” which appeared in
Chapter 2, it was noted that two stories dealt with dispensing (change and
product) and might involve the same objects. Further discussion of dis-
pensing revealed three variations of a story involving some kind of
dispense action: dispense a measured volume of liquid, dispense a product,
and dispense change due the customer.

It would be nice if we had a single class, Dispenser, that could be
used in all three stories. This would mean that Dispenser would have to be
a composable object, able to be reused in different contexts without mod-
ification of its essential nature.

6. The exception occurs when a method is declared high in the hierarchy with the explicit intent that all
subclasses provide their own unique implementation of that method and when the details of how are
idiosyncratic but irrelevant from the perspective of a user of that object.

(continued)

80 Object Thinking

Because of the work of the team of developers on three different sto-
ries involving dispensing, three versions of the Dispenser object have been
created. The pairs of developers involved meet to look at each other’s
code and see whether they can refactor and redesign the Dispenser object
to make it more composable—more reusable.

In one case (product dispensing), the code for the dispense method
looked like the following pseudocode:

IF dispenserType = "Gate"
Gate open.
Else

Set timer = 10.
Open switch.

End-if
When timer =< 0 close switch.

The code in question reveals an awareness of two types of vending
evident in the machines in the hall: opening a gate to drop a can of soda
and pushing a product out of a coil.

The dispense method for the change dispenser looked like the
following:

While amountToBePaid >= SmallestDenominationAvailable
AND

AmountToBePaid > LargestDenominationAvailable
LargestDenominationDispenser ejectCoin

 AmountToBePaid = (AmountToBePaid – largestDenomination).

Yes, I know you would never write code this ugly and that the sec-
ond example will not really work, but code is not the issue here; refactor-
ing is. After some discussion, the teams decided that the dispenser object
was really just a façade for some mechanism that did the actual work of
dispensing: a valve that opened for a period of time, a motor that ran for
a period of time, or a push bar that kicked an item out of the dispenser
storage area. It was also decided that the quantity to be dispensed should
be supplied to the dispenser rather than calculated by the dispenser.
These decisions simplified the method dramatically. In all cases, the
pseudocode would look something like this:

For 1 to quantityToBeDispensed
DispensingMechanism dispense.

End-loop.

Forward Thinking (continued)

Chapter 3 From Philosophy to Culture 81

The only other behaviors of Dispenser—to disable itself when empty
or when not functioning and to identify itself—were already simple and
common in all contexts. Dispenser was now defined in such a way as to
be truly composable.

Was this accomplished only at the expense of moving some essential
complexity to another object? No. Two other objects are probably involved
in every dispensing operation: a collection object that contains the actual
dispensers and relays dispense requests to the appropriate dispenser
within the collection—a trivial behavior already built into well-designed
collection objects—and a dispensingRule object, which is an instance of
(not a subclass of) a SelfEvaluatingRule object. (See “Forward Thinking:
Communication and Rules,” for more discussion of rules in the UVM.)

Four: Distributed cooperation and communication must replace
hierarchical centralized control as an organizational paradigm.

Consider one of the more widely used models in traditional software development,
the program structure chart (Figure 3-1), popularized by Meillor Page-Jones.7 At
the top of the chart is the puppet master module, attended to by a court of special-
purpose input, transform, and output modules. The puppet master incorporates all
the knowledge about the task at hand, the capabilities of each subordinate module,
and when and how to invoke their limited capabilities. The same thinking charac-
terizes structured source code, wherein a main-line routine (frequently a Case
statement) consolidates overall control. Each paragraph of a collection of special-
purpose subroutine paragraphs is individually invoked and given limited authority
to perform before control reverts to the main line.

Unlike puppet modules, objects are autonomous. They are protected from
undue interference and must be communicated with, politely, before they will
perform their work. It is necessary to find a different means to coordinate the
work of objects, one based on intelligent cooperation among them.

It is sometimes difficult to conceive how coordination among autonomous
objects can be achieved without a master controller or coordinator. One simple
example is the common traffic signal. Traffic signals coordinate the movement
of vehicles and people but have no awareness of what those other objects are
about or even if any of them actually exist. A traffic signal knows about its own
state and about the passage of time and how to alter its state as a function
of elapsed time. In this model, the necessary “control” has been factored and

7. Page-Jones, Meillor. The Practical Guide to Structured Systems Design. Yourdon Press Computing
Series. Englewood Cliffs, NJ: Prentice-Hall, Inc.1988.

Forward Thinking (continued)

82 Object Thinking

distributed. The traffic signal controls itself and notifies (by broadcasting as a
different color) others of the fact that it has changed state. Other objects, vehi-
cles, notice this event and take whatever action they deem appropriate accord-
ing to their own needs and self-knowledge.

F03MQ01 Figure 3-1 Program structure chart.

Note But what about intersections with turn arrows that appear only
when needed? Who is in control then? No one. Sensors are waiting to
detect the “I am here” event from vehicles. The traffic signal is waiting
for the sensor to detect that event and send it a message: “Please add
turn arrow state.” It adds the state to its collection of states and pro-
ceeds as before. The sensor sent the message to the traffic signal
only because the traffic signal had previously asked it to—registered
to be notified of the “vehicle present” event. Traffic management is a
purely emergent phenomenon arising from the independent and
autonomous actions of a collectivity of simple objects—no controller
needed. If you have a large collection of traffic signals and you want
them to act in a coordinated fashion, will you need to introduce control-
lers? No. You might need to create additional objects capable of
obtaining information that individual traffic signals can use to modify
themselves (analogous to the sensor used to detect vehicles in a turn
lane). You might want to use collection objects so that you can conve-
niently communicate with a group of signals. You might need to make
a signal aware of its neighbors, expanding the individual capabilities of
a traffic signal object. You will never need to introduce a “controller.”

Afferent
Module

Transform
Module

Transform
Module

Efferent
Module

Master Control
Module

Afferent
Module

Transform
Module

Efferent
Module

Data FlowControl Flow

Chapter 3 From Philosophy to Culture 83

Eliminating centralized control is one of the hardest lessons to be learned
by object developers.

Object Principles—Software Principles
Stating and explaining object presuppositions is important. It is also important
to show the relationship between those principles and generally accepted prin-
ciples of software design criteria. Exploring that relationship will further explain
and illustrate the object principles and show how they recast thinking about
design without rejecting traditional design goals.

Witt, Baker, and Merritt have written an excellent encapsulation of the
fundamental ideas about software design and architecture.8 Chapter 2 of their
book identifies a set of generally accepted axioms and principles that define
software quality:

■ Axiom of separation of concerns Solve complex problems by
solving a series of intermediate, simpler problems.

■ Axiom of comprehension Accommodate human cognitive limitations.

■ Axiom of translation Correctness is unaffected by movement
between equivalent contexts.

■ Axiom of transformation Correctness is unaffected by replace-
ment with equivalent components.

■ Principle of modular design Elaborates the axiom of separation
of concerns.

■ Principle of portable designs Elaborates the axiom of translation.

■ Principle of malleable designs Provides the means for composi-
tional flexibility.

■ Principle of intellectual control Appropriate use of abstractions.

■ Principle of conceptual integrity Suggests a limited set of concep-
tual forms.

Few would argue with these axioms and principles, although they would
certainly argue about the appropriate means for realizing them. Object thinkers
strive to achieve the goals implied by these axioms and principles as much as

8. Witt, Bernard I., F. Terry Baker, and Everett W. Merrit. Software Architecture and Design: Principles,
Models, and Methods. Van Nostrand Reinhold, 1994.

84 Object Thinking

any other software developer and believe that objects provide the conceptual
vehicle most likely to succeed.

For example, the separation-of-concerns axiom and the principle of mod-
ularity mandate the decomposition of large problems into smaller ones, each of
which can be solved by a specialist. An object is a paradigmatic specialist. Large
problems (requiring a number of objects, working in concert to resolve
the problem) are decomposed into smaller problems that a smaller community
of objects can solve, and those into problems that an individual object can deal
with. At the same time, each object addresses the principles of intellectual con-
trol (individual objects are simple and easy to understand) and the principle of
conceptual integrity (there should be a small number of classes). Properly con-
ceived, an object is a natural unit of composition as well. An object should
reflect natural, preexisting decomposition (“along natural joints”) of a large-
scale domain into units already familiar to experts in that domain. Conceived in
this fashion, an object clearly satisfies the principle of intellectual control.
Objects will also satisfy the principle of conceptual integrity because there will
be a limited number of classes of objects from which everything in the domain
(the world) will be constructed. In Chapter 4, “Metaphor: Bridge to the Unfa-
miliar,” an argument will be presented suggesting that the total number of
objects required to build anything is around 1000.

Objects are designed so that their internal structure and implementation
means are hidden—encapsulated—in order to satisfy the axiom of transforma-
tion and the principle of portable designs.

The principle of malleable designs has been the hardest one for software to
realize: only a small portion of existing software is flexible and adaptable enough
to satisfy this principle. In the context of object thinking, malleability is a key moti-
vating factor. Object thinkers value designs that yield flexibility, composability, and
accurate reflection of the domain, not machine efficiency; not even reusability,
although reusability is little more than cross-context malleability.

In fact, it might be said that for object thinkers, all the other axioms and
principles provide the means for achieving malleability and that malleability is
the means whereby the highest-quality software, reflective of real needs in the
problem domain, can be developed and adapted as rapidly as required by
changes in the domain. Agile developers and lean developers9 value malleabil-
ity as highly as object thinkers. XP software systems emerge from software that
satisfies the demands of a single story, an impossibility unless it is easy to refac-
tor, adapt, and evolve each piece of software (each object); impossible unless
each bit of software is malleable.

9. Poppendieck, Mary, and Tom Poppendieck. Lean Software Development: An Agile Toolkit for Software
Development Managers. Addison-Wesley. 2003.

Chapter 3 From Philosophy to Culture 85

Fred Brooks wrote one of the most famous papers in software develop-
ment, “No Silver Bullet: Essence and Accidents of Software Engineering.”10 In
that paper, he identified a number of things that made software development
difficult and separated them into two categories, accidental and essential.

Accidental difficulties arise from inadequacies in our tools and methods and
are solvable by improvements in those areas. Essential difficulties are intrinsic to the
nature of software and are not amenable to any easy solution. The title of Brooks’s
paper refers to the “silver bullet” required to slay a werewolf—making the meta-
phorical assertion that software is like a werewolf, difficult to deal with. Software,
unlike a werewolf, cannot be “killed” (solved) by the equivalent of a silver bullet.

Brooks suggests four essential difficulties:

■ Complexity Software is more complex, consisting of more unlike
parts connected in myriads of ways, than any other system designed
or engineered by human beings.

■ Conformity Software must conform to the world rather than the
other way around.

■ Changeability A corollary of conformity: when the world changes,
the software must change as well, and the world changes frequently.

■ Invisibility We have no visualization of software, especially exe-
cuting programs, that we can use as a guide for our thinking.

He also investigates potential silver bullets (high-level languages, time
sharing, AI, and so on) and finds all of them wanting. Object-oriented pro-
gramming is considered a silver bullet and dismissed as addressing accidental
problems only.

Although I would agree with Brooks in saying that object technology—
languages, methods, class hierarchies, and so on—addresses only accidental
problems, object thinking does address essential difficulties, and it does so with
some promise. Objects can conform to the world because their design is pred-
icated on that world. Objects are malleable, resolving the changeability issue.
Objects provide a way to deal with the complexity issue and even allow for the
emergence of solutions to complex problems not amenable to formal analysis.
The metaphors presented in Chapter 4 provide the tools for visualization to
guide our thinking.

Object thinking suggests we deal with software complexity in a manner
analogous to the ways humans already deal with real-world complexity—using
behavior-based classification and modularization. Object thinking is focused
on the best means for dealing with conformity and changeability issues—the

10. IEEE Computer, April 1987.

86 Object Thinking

malleability principle—as a kind of prime directive. And invisibility is
addressed, not with an abstract geometry as suggested by Brooks, but via simu-
lation (working software using an XP perspective)—direct, albeit metaphorical,
simulation of the real world. If we can understand the complex interactions of
objects in the real world (and we do so every day), we should be able to visualize
our software as an analogous interaction of objects.

Forward Thinking
Communication and Rules
Because the UVM might be dispensing food items and because we want
the customer experience to be always positive, we want to ensure that no
spoiled products are vended. This leads to a story—Expire: no product is
sold after its expiration date has been reached.

The development team discusses (and codes) various ways this
might be accomplished. Through a combination of refactoring efforts and
arguments, it is decided that the expiration problem will best be solved by
a group of objects communicating with one another, with those commu-
nications being triggered by events.

Whenever a product is placed in the vending machine, it asks itself
for its expiration date. It then asks the SystemClockCalendar to add an
eventRegistration (consisting of the productID and the “die” message) for
the event generated whenever a new day is recognized by the System-
ClockCalendar. (Programmers, even extreme programmers, often have a
rather grim sense of humor; hence the “die” message to effect product
expiration.) At the same time, the Dispenser object asks the new product
to accept a registration for the “I’m dead” event that the product will gen-
erate when it receives the “die” message from its own event registration that
was placed with the SystemClockCalendar. The dispenser’s eventRegistration
with the product will cause the message “disableYourself” to be sent to the
dispenser, who will, indeed, “disable” itself (with the accompanying event
that other objects—such as the menu or the dispenser collection—might
register for).

Breaking up a potentially complex decision-making and cascading-
effects problem into pieces that can be distributed among many objects
while at the same time relying on simple, reusable components such as an
eventRegistration and a Dispatcher greatly reduces the complexity that
worries Brooks. It also accommodates the conformity and changeability
requirements imposed on software: event registrations can be added or

Chapter 3 From Philosophy to Culture 87

deleted as needed, redirected to other objects, or transformed so that the
registering object receives different messages at different times without the
need to rewrite and recompile source code.

The development team found another opportunity for simplification as
they worked with various types of rules that governed actions in different
parts of the UVM. One kind of rule was, “Don’t vend a product unless suf-
ficient funds have been accumulated.” Another rule was, “Refund money
using the largest coins available, moving to lower-denomination coins only
when the larger denomination is greater than the sum yet to be refunded.”

Using a combination of refactoring and appropriate abstraction, the
development team defined and designed a rule object. (XP philosophy
warns against premature abstraction: abstraction that is not derived from
refactoring, meaning not grounded in efforts to achieve simplification.
Hence the adjective appropriate in the preceding sentence.) A rule is an
ordered collection of constants, variables, and operations. A variable con-
sists of an object and a message to be sent to that object. When a variable
sends the message to the target, the resultant value replaces the unknown
value of the variable. When asked to evaluate to a result, a rule iterates
across its elements, asking each variable to instantiate itself to a real value,
and then applies the operators to the instantiated variables and constants.

All four of Brooks’s concerns about software’s essential difficulties
are addressed: simplification of complexity, ease of conformity and adapt-
ability, and visualization. A rule is an easy thing to visualize—we see
examples of them in everyday life frequently—and the process of instan-
tiation and resolution is very straightforward—we can see it operating in
our mind’s eye with no difficulty. Reliance on simulation constantly pro-
vides other visualizations of the software we are creating.

Cooperating Cultures
Arguing for the existence of an object paradigm or object culture is not and
should not be taken as an absolute rejection of traditional computer science
and software engineering11. It would be foolhardy to suggest that nothing of
value has resulted from the last fifty years of theory and practice.

11. The ideas in this section were first published in a short editorial by the author in Communications
of the ACM, 1997.

Forward Thinking (continued)

88 Object Thinking

Claiming that there are clear criteria for determining whether software is
object oriented is not the same as saying all software should be object oriented.
Expecting a device driver implemented with 100 lines of assembly language
to reflect full object thinking is probably pointless. It’s possible that Internet
search engines must be implemented using “database thinking” rather than object
thinking—at least for the immediate present. Different problems do require dif-
ferent solutions. The vast majority of problems that professional developers are
paid to deliver, however, almost certainly require object solutions.

Traditional approaches to software—and the formalist philosophy behind
them—are quite possibly the best approach if you are working close to the
machine—that is, you are working with device drivers or embedded software.
Specific modules in business applications are appropriately designed with more
formalism than most. One example is the module that calculates the balance of
my bank account. A neural network, on the other hand, might be more herme-
neutic and objectlike, in part because precision and accuracy are not expected
of that kind of system.

Traditional methods, however, do not seem to scale. Nor do they seem
appropriate for many of the kinds of systems being developed 50 years after the
first computer application programs were delivered. Consider the simple graph
in Figure 3-2.

F03MQ02Figure 3-2 Applicability graph.

Natural -
Sociocultural

World

Deterministic
World

Comprehension

Implementation

Object
Paradigm

Computer
Science

Paradigm

Chapter 3 From Philosophy to Culture 89

The horizontal axis represents the spectrum of activities involved in sys-
tems modeling and application development. It ranges from analysis (with the
accompanying tasks of comprehending the real world, making useful abstrac-
tions, and decomposition) to implementation (compiling, testing, and executing).

The vertical axis opposes the deterministic world (the domain of hardware,
discrete modules, algorithms, and small-scale formal systems) to the natural
world (businesses and organizations, societies, composite systems, and cultures).

A diagonal bisects the graph to demarcate two realms. To the lower right
is the realm where mainstream computer science and formalist ideas have dem-
onstrated success. Emphasis in this realm is on defining and building hardware
and using a finite set of representations (binary and operation codes) and
manipulation rules (the grammar of a compiler) to implement software designs.
This is the realm of formalism, where systems can be complicated and even
large but not complex—that is, they do not exhibit nondeterministic behavior,
they are not self-organizing, and they do not have emergent properties.

At the upper left is an area that is largely terra incognita as far as computer
scientists are concerned. This is the realm of social, biological, and other com-
plex (as that term is coming to be understood) systems. Meaning in this realm
is not defined; it is negotiated. Rules are not fixed but are contextual and
ephemeral. Constant flux replaces long-term consistency. This is the arena in
which hermeneutic and object ideas offer an expansion of our ability to model
and build systems capable of interacting with the natural systems in which they
will have to exist.

This is the realm where objects and the object paradigm should dominate.
Objects provide a foundation for constructing a common vocabulary and a

process of negotiated understanding of the complex world. Behavioral objects
offer a decomposition technique that will yield adaptable constructs for building
highly distributed, “intelligent,” and flexible computer artifacts and computer-
based systems.

Object thinking provides a foundation for attaining an integration of arti-
ficial systems (computer and software) with the natural systems (social and
cultural contexts). Object thinking requires an awareness of the domain and the
fitness of our artifacts as they operate in that domain in ways that traditional
thinking (“Make the artifact meet specification”) cannot. Object thinking cou-
pled with the values of XP, especially communication, create a basis for true
collaboration among users, managers, and developers.

All of this, once we learn object thinking.

This page intentionally left blank

321

Index
A
abstract classes, 133
abstractions, 203, 204, 299–305

avoiding premature, 299
frameworks, 299–302

composable document, 300
described, 299
extending, 299
object routing and tracking, 301
resource allocation and scheduling, 301–302

object thinking vs. XP, 203
reapplying, 299

aformalism, 160–163
importance of human developer, 160–161
methods as exercises, 163–164

determining efficacy of methods, 164
karma yoga, 163

agents, refactoring, 107
agile development, 18–23. See also extreme

programming (XP)
practices linked to object thinking, 22–23

coding standards, 23
metaphors, 22
on-site customers, 23
refactoring, 22–23
simple design, 22

predated by object thinking, 31
values, 19–22

communication, 19
courage, 21–22
feedback, 20
simplicity, 20–21

Alexander, Christopher
designs as defined by, 249
finding divisions in problem space, 17
gates, passing through to attain mastery, 30
mysticism of, rejected by formalists, 61
Notes on the Synthesis of Form, 16, 18, 249
Pattern Language, A: Towns, Buildings,

Construction, 60
inspiration for software patterns movement,

18

philosophically based on The Timeless Way of
Building, 60

pattern language proposed, 143–144
Timeless Way of Building, The, 60, 144, 163

animated data entity model, 122
ant metaphor

blind coordination vs. centralized control,
112–113

complex adaptive systems, simple elements in,
113

traffic signal example, 112
anthropomorphism, 93, 101–108, 215, 221–222

applying object-as-person metaphor, 102–103
delegation, 103
guiding decomposition, 104
limitations of objects, 103
object-as-agent metaphor, 107
objects as COBOL programs, 3
objects as actors, 107
Philippe Kahn using musicians to illustrate, 101
replacing metaphors with suppositions,

107–108
applications

architectures, 263–273. See also architectures
blackboard, 266
client/server, 266
hierarchical control, 263
model-view-controller, 264–273
pipes-and-filters, 265

artifacts, 248
assembly specialists, replacing programmers

with, 307–308
defined, 149, 250
defining objects in terms of, 251
designing based on GUIs, 240
designing GUIs based on, 297–298
frameworks, 143
minimal-intervention principle, 250
objects

vs. DBMS execution environments, 149
designing based on GUIs, 297
models assuming role of, 269

322

architectures, 263–273
blackboard, 266

bulletin board architecture, 267
whiteboard architecture, 267

client/server, 266
evocative (object-based), 302–305

adding dynamism to model, 304
essential elements, 304
purpose, 303

frameworks, 143
hierarchical control, 263
model-view-controller, 264–273

controllers (coordinators), 270–271
models, 269
outside world, 272–273
views, 269

pipes-and-filters, 265
artifacts

defined, 248, 250
minimal-intervention principle, 250

artificial intelligence (AI)
foundation behind research, 50
theory of, 54

artificial life, as challenge to formalism, 53
Auer, Ken, 241
autopoietec (self-organizing) systems, 59

B
Beck, Kent

abstractions, when to provide, 203
agile development values, 19
coding standards, 23
coinventor of CRC cards, 173
courage advocated by, 21
exploration of how metaphor affects XP, 94
importance of metaphor, 22
maturity levels of XP, 163
relationship to Ward Cunningham, 27
role in object revolution, 27

Behavior! tool, 274
behaviors, 192–193

constraints, 281–290
implementing, 282, 286
implementing scripts with methods, 287–288
knowledge maintenance (data) objects,

288–290
self-evaluating rules, 282–286

CRC cards, 29
criterion for differentiation, 77–78
vs. data, 124
as guide to design, 221

binding, dynamic (late), 146–147
disadvantages, 146
support for, in programming languages, 146

black box module, equating objects with, 60
blackboard architecture, 266

bulletin board as form of, 267
whiteboard as form of, 267

Booch, Grady, 2, 10
canonical form of systems, 76
contribution to UML, 27

breakdown, Martin Heideggers’s notion of,
explored by Winograd and Flores, 59

Brooks, Fred
difficulties in software development, 85–87
object-oriented programming as silver bullet, 85

business
forms, objects required to create, 4
objects. See components
process reengineering, 149
requirements (stories), 149

C
C++

challenge to Smalltalk, 29
developed by Bjarne Stroustrup, 38, 41–42
example of compile-link-test environment, 101
focus on computer, 42
superseded by Visual Basic and Java, 29

charts, state, 181–182
classes, 130–136

abstract vs. concrete, 133
combining with is-a-kind-of relationships, 251
as exemplar objects, 131
hierarchies, 179. See also taxonomies
libraries, 98, 132–136
as object factories, 132
primitives, using to maintain knowledge,

289–290
as sets, 131
as storage locations, 131
variables, 145

classification, 203
canonical form of systems, 76

architectures

323

defined, 76
differentiation, criterion for, 77–78
Linnaean taxonomy, 76

client/server architecture, 266
Coad, Peter (developer of behavioral approach to

object development), 76
COBOL programs

encapsulation
algorithms, 15
data structures, 15

vs. object orientation, 9
as objects, 4

coding standards, linked to object thinking, 23
collaborates-with relationships, 254
collaboration, 130, 204, 225–226

as covert exchange, 130
defined, 130
encapsulation and, 254
graphs, 254

collagists (application assembly specialists),
replacing programmers with, 307–308

collective memory maps (CMMs), 181, 259–263
domain-level vs. enterprise-level, 262
modeling relationships among data depiction

objects, 259–263
rules for construction, 262

communication, as value in agile development,
19

components, 142, 218
composability, 78–81

documents, 300
Lego bricks, 96
requirements for, 78–79
reuse, 79–81

byproduct of composability, 150
refactoring, 80

composition
canonical form of systems, 76
defined, 76

computer science, formalist basis of, 51
computer-aided software engineering (CASE)

tools, 152, 158
computers, objects as virtual, 106
computers, thinking like, 184

focus on solution space, 16
isomorphism, 18
vs. object thinking, 12–18

constructivism. See hermeneutics

contracts, 234–235
control, centralized

failure of Soviet Union, 112
replacing with distributed cooperation and

communication, 81–83
controllers (coordinators)

event dispatchers, 271
in model-view-controller architectures, 270–271
traditional thinking indicated by, 11

convergent engineering, 70
coupling, 295
courage

confronting fear, 21
as value in agile development, 21–22

Cox, Brad
early advocate of object-oriented programming,

92
originator of superdistribution concept, 92
software integrated circuit metaphor coined by,

92
CRC cards, 70, 158, 159

behavior-centricity, 29
compared with object cubes, 201
developed by Ward Cunningham, 27, 28
elaborated by Rebecca Wirfs-Brock, 173
foundation for object cubes, 28
invented by Kent Beck and Ward Cunningham,

173
near disappearance of, 29
object cubes derived from, 173

CRUD (create, read, update, destroy) matrices,
288

cultures
Greek vs. Roman, 64
object, 65–89

characteristics, 65
cooperating with traditional, 87–89
groups included in, 65
value of awareness of object culture, 65

Western, shaped by formalist philosophy, 51
Cunningham, Ward

coinventor of CRC cards, 173
CRC cards developed by, 27, 28
inspiration for most extreme programming

practices, 27
relationship to Kent Beck, 27
role in object revolution, 27

Cunningham, Ward

324

customers
models, 5
on-site, linked to object thinking, 23

D
data

vs. behavior, 124
as decomposition tool, 76
nonexistent in object thinking, 121
as objects, 67, 259–263. See also knowledge,

maintenance objects
poor choice for decomposition tool, 74–75
treating as passive, 9
uniting with procedures, 9

databases
in ideal object environment, 295
impedance mismatch problem, 294–297
management systems, 148
philosophy vs. object thinking, 294
reasons for using, 296–297
relational

implications of employing, 45–47
problems with mixing objects and, 294–295

datacentricity, 15
DataItem class, 289–290
DBMS. See databases, management systems
decomposition, 164

applying object thinking to, 219
vs. assembling applications, 98–100
criteria for proper, 72–75
described by Plato, 72
guided by object-as-person metaphor, 104
object, 8
object thinking heuristics, 283–284
Parnas, David Lorge

decomposing according to design decisions,
74

On Decomposition (paper written by), 40
providing insufficient information for object

simulations, 220
tools, 74–75
traditional, 8

delegation, 213–214
vs. multiple inheritance, 139–140
result of refactoring, 214

designs
decision hiding, 40
as defined by Christopher Alexander, 249
GUI-driven

dangers of, 241
vs. object-oriented programming, 110

of objects, 219–245
decisions regarding object design, 221
guiding object design by domains and object

behaviors, 221
implications of thinking toward object design,

220
simple, linked to object thinking 22

determinism. See formalism
development, software, limited concept of reuse,

97
diagrams. See also models

interaction, 175–178
Behavior! tool, 274
use cases, 176
usefulness of, 178

soccer ball
vs. object thinking, 3
reinforcing program thinking, 4

static relation, 178–181
class hierarchy diagrams, 179
collective memory maps, 181
gestalt maps, 179

Dijkstra, Edsger Wybe
accomplishments of, 73–74
example of formalist position, 73–74

discovery, 183–218, 226
applying object thinking to decomposition, 219
decomposition, 220
domains

anthropology, 186–200
understanding, 185–200

object definition, 200–218
abstractions, 203, 204
capturing object information, 200–218
classification, 203
essentialism, 203
generalizations, 203
heuristics, 212–218
vs. object specification, 200

dispatching events, 277–280

customers

325

documents, composable, 300
domains, 147–149

anthropology, 186–200
behaviors in domain, 192–193
constructing semantic nets, 189–192
eliminating preconceptions, 192–193
initial focus, 192
management and, 189
organizing work, 193–200

defined, 147
execution, 148
experts, 19
focus of, 78
guiding designs by, 221
implementation, 148
problem

deriving patterns from, 144
everything-is-an-object principle applied to,

70
simulating, 71–78
vs. solution spaces, 97, 123

as systems, 249–250
understanding, 185–200

focus of decomposition, 78
negotiation of domain language, 77

Dynabook, idea developed by Alan Kay, 37
dynamic (late) binding, 146–147

disadvantages, overcoming, 146
support for, in programming languages, 146

dynamic relationships, 273–280. See also static
relationships

events, dispatching, 277–280
scripts

interaction diagrams, 274–277
XP, 275

dynamism, adding to object-based evocative
architectural model, 304

E
emergence, inconsistency with formalism, 54
encapsulation, 141–142

algorithms, 15
COBOL programs, 15
collaborating objects and, 254
collaboration covert exchange within, 130
data structures, 15

not preserved by databases, 295
selecting encapsulating object, 226

engineering, convergent, 70
entity models, 5

normalization rules, 5
vs. object models, 6
vs. UML models, 5

environments
integrated development (IDEs), 240
visual development (Visual Basic), 240

essentialism, 203
events, dispatching, 277–280

event dispatchers in model-view-controller
architectures, 271

interaction diagrams, 277–278
object cubes, 277–278
state modeling, 278–280

execution domains
database management systems (DBMSs), 148
defined, 148

extreme programming (XP), 275. See also agile
development

asserting importance of people, 57
culture of, 62
evocative (object-based) architectures, 302–305
incompatibility with Roman thinking, 64
maturity levels, 163, 291
object thinking central to, 28
Objectionary, 306–308
practices, inspired by Ward Cunningham, 27
replacing programmers with collagists

(application assembly specialists), 307–308
resemblance to playing with Lego bricks, 101
role of metaphor in, 94
systematizing programming practice, 153
Universal Vending Machine (UVM), 32

F
feedback, as value in agile development, 20–21
Flores, Fernando, 59
foreshadowing, 214–215
formalism, 50–51, 161–162

areas of success, 89
automated tools (CASE tools), 152
basis of computer science, 51
bias toward, in software development, 25

formalism

326

formalism, continued
central notions, 51
challenges to, 53
critiqued by Robert L. Glass, 57
defined, 51, 58
equating objects with black box module, 60
vs. hermeneutics, 54–58
vs. heuristics, 58
methods, 152–153, 160
rejecting mysticism, 61
Western industrial culture shaped by, 51

forms, business 4
Fowler, Martin, Analysis Patterns vs. Design

Patterns (Gang of Four), 144
frameworks, 142–143, 299–302

abstract (foundational), 143
application (vertical market), 143
architectural, 143
composable document, 300
described, 299
extending, 299
implementation, 142
object routing and tracking, 301
objects as core of, 301–302
resource allocation and scheduling, 301–302

function, as choice for decomposition tool, 74–75

G
Gang of Four (GoF), 143–144
gestalt maps, 179
Glass, Robert L.

analogy with Greek and Roman cultures, 64
complementing work of Terry Winograd, 59
critiquing formalism, 57
favoring heuristics in software design, 58

glyphs
objects, 242–244
purpose for using in GUIs, 297

Goldberg, Adele
author of object behavior analysis (OBA), 154
influence on Smalltalk, 154

graphical user interfaces (GUIs), 297–298
building, with Smalltalk IDE tools, 240
designing

applications based on, 240, 297

based on applications, 297–298
vs. object thinking, 240–241
visual development environments, 240

environments presumed in definition of views,
269

focus of early object-oriented programming on,
110

GUI-driven designs
dangers of, 241
vs. object-oriented programming, 110

H
Harel, David (originator of state charts), 181
Heidegger, Martin (hermeneutic philosopher), 59
hermeneutics, 51–53

defined, 52
denial of intrinsic truth, 59
derivation of term, 52
vs. formalism, 54–58
nondeterminism fundamental to, 53
semantic meaning of documents, 52

heuristics, 58, 164, 212–218
anthropomorphism, 215
assuming responsibility for tasks, 213
avoiding characteristic-specific responsibilities,

216–217
creating proxies for objects, 218
defined, 58
delegating responsibilities, 213–214
determining components, 218
distributing responsibilities, 215
foreshadowing, 214–215
vs. formalism, 58
object discovery, 100
object thinking, 283–284
stating responsibilities, 215

hierarchies. See also taxonomies
classes, 179. See also classes, libraries
control architecture, 263

Hopi language, Whorf-Sapir hypothesis and, 7
human-derived metaphors

inheritance, 114–115
responsibility, 115–116

humans, as objects, 8, 71

forms, business

327

I
idioms, 224–225

determining factors, 224
examples of, 224
proper use of, 224

impedance mismatch problem, 149, 294–297
cause of, 257
databases, 294–297

implementation
domains, 148
languages, 34–36
pitfall of moving directly into, 219

informalism, 160, 161, 162
inheritance, 114–115, 133–136

genealogical charts, 114
multiple, 136, 139–140
obtaining reuse through, 150
taxonomies

behavior as criterion for, 114
Linnaean, 114, 133

instance variables, 145
integrated development environments (IDEs),

240
interaction diagrams, 175–178

Behavior! tool, 274
specifying scripts with, 274–277
use cases, 176
usefulness of, 178

interfaces
protocols, 129
views, as means for interobject communication,

297
interpretationalism. See hermeneutics
is-a-kind-of relationships, 251–253
isomorphism, 18

J–K
Java, C++ superseded by, 29
Kahn, Philippe, 101–102
Kay, Alan

describing Smalltalk, 43–45
Dynabook idea developed by, 37
objects as virtual computers, 106
thinking about computers changed by, 37

Kidd, Jeff (metrics for object projects), 10–11

knowledge
maintenance objects, 288–290

CRUD matrices, 288
primitives, 289–290

requirements, 221–229
choosing appropriate piece of knowledge,

225–226
responsibilities, 222–224
ways for an object to gain knowledge, 225

L
Lakoff, George

research by, revealing central role of metaphor
in human cognition, 93

Whorf-Sapir hypothesis, 7
languages. See also programming languages

influence on thinking, 7, 8
pattern, 143, 163

late binding. See dynamic (late) binding
Lego brick metaphor, 96–101

architects as domain experts, 99
compared to software integrated circuits

metaphor, 96
compared to XP, 101
delivering objects to end users, 98
delivering objects to professional assemblers,

99
employing bricks based on obvious

characteristics, 99
Legoland store, events sponsored by, 99
small number of simple objects suggested by,

100
libraries, class. See classes, libraries
Linnaean taxonomy, 76, 133
LISP (nonprocedural language), datacentric

development accommodated in, 15
Lorenz, Mark (metrics for object projects), 10–11
Low-Income Mortgage Trust (LIMT), 170–173

M
managers, traditional thinking indicated by, 11
maps

collective memory, 181, 259–263
domain-level vs. enterprise-level, 262

maps

328

maps, collective memory, continued
modeling relationships among data depiction

objects, 259–263
rules for construction, 262

gestalt, 179
mechanism. See formalism
messages, 227–240

contracts, 234–235
protocols, 227–232
state change notifications, 236–240
types, 128

metaphors, 91–116
anthropomorphism, 93, 101–108

applying object-as-person metaphor, 102–103
delegation, 103
guiding decomposition, 104
limitations of objects, 103
object-as-agent metaphor, 107
objects as actors, 107
Philippe Kahn using musicians to illustrate,

101
replacing metaphors with suppositions,

107–108
ants

vs. centralized control, 112–113
complex adaptive systems, 113
traffic signal example, 112

central role of, in human cognition, 93
contrasted with specifications, 107
human-derived

inheritance, 114–115
responsibility, 115–116

inheritance, 133–136
multiple, 136
taxonomies, 133

Lego bricks, 96–101
architects as domain experts, 99
compared to software integrated circuits, 96
compared to XP, 101
composability of, 96
delivering objects to end users, 98
delivering objects to professional assemblers,

99
employing bricks based on obvious

characteristics, 99
Legoland store, events sponsored by, 99

small number of simple objects suggested by,
100

linked to object thinking, 22
role in everyday thinking, 93
role in XP and object thinking, 94
software as theater, 108–111

re-creating old standards, 108
scripting, complexity of, 109

software integrated circuits, 92
thinking shaped by, 93–94

methods, 159–164
aformal

importance of human developer, 160
vs. other methods, 161

behavioral, 158–159
difference from traditional methods, 159
reasons for failure in market, 158–159

cultures embracing, 161–164
aformalism, 161–163
formalism, 161–162
informalism, 161–162

data-driven, 155–157
efficacy, criteria for, 164
as exercises, 163–164
formal, 160
implementing scripts using, 287–288
informal, 160
private, 145
public, 145
software engineering, 157–158
syncretism, 164–168

defined, 165
requirements imposed by object thinking,

166–167
vs. traditional functions, 145

Microsoft Visual Basic. See Visual Basic
minimal-intervention principle, 250
models, 168–182

architectural, 263–273
blackboard, 266
client/server, 266
hierarchical control, 263
pipes-and-filters, 265

collective memory maps, 259–263
domain-level vs. enterprise-level, 262
rules for construction, 262

customer (entity, object, UML), 5

mechanism

329

diagrams
interaction, 175–178
static relation, 178–181

entity, 6
in model-view-controller architectures, 268
object

vs. entity models, 6
vs. UML models, 6

object cubes, 173–175
aspects (sides), 173–175
derived from CRC cards, 173

of objects
animated data entity, 122
soccer ball, 122

semantic nets, 169–173
as brainstorming tools, 172
Low-Income Mortgage Trust example,

170–173
state, 278–280
state charts, 181–182
static relationship, 256–259
UML, 6

model-view-controller (MVC) architectures,
264–273

controllers (coordinators), 270–271
event dispatchers, 271
models, assuming role of application objects,

269
outside world, 272–273
views, GUI environments and, 269

modularization, destruction of by object
coupling, 295

modules, black box, 60
musicians, used by Philippe Kahn to illustrate

anthropomorphism, 101

N
nondeterminism, 53
nonprocedural languages, 15
normalization rules

entity models, 5
object models, 6
UML models, 5

Nygaard, Kristen (developer of SIMULA
programming language), 37

O
object analysis, CRC card approach, 27
object applications vs. DBMS execution

environments, 149
object behavior analysis (OBA), 154
object cubes, 173–175, 201–212

air traffic control example, 209–212
airplane example, 222–224
aspects (sides), 173–175
compared with CRC cards, 201
CRC cards as foundation of, 28, 173
self-evaluating rules, 285

object culture, 65–89
characteristics, 65
groups included in, 65
value of awareness of object culture, 65

object definition, 200–218
abstractions, 203, 204
capturing object information, 200–218

object cubes, 201–212
stereotypes, 200, 209

classification, 203
essentialism, 203
generalizations, 203
heuristics, 212–218

anthropomorphism, 215
assuming responsibility for tasks, 213
avoiding characteristic-specific

responsibilities, 216–217
creating proxies for objects, 218
delegating responsibilities, 213–214
determining components, 218
distributing responsibilities, 215
foreshadowing, 214–215
stating responsibilities, 215

vs. object specification, 200
object discovery, 100
object methodology, history of, 153–159

behavioral methods, 158–159
data-driven methods, 155–157
Goldberg, Adele, 154
RUP, 155
software engineering methods, 157–158
UML, 155

object models, 5
vs. entity models, 6
vs. UML models, 6

object models

330

object programming (in Smalltalk), 28
object projects, metrics for, 10–11
object revolution, 27
object routing and tracking framework, 301
object-as-agent metaphor, 107
object-as-person metaphor. See

anthropomorphism
object-based evocative architecture, 302–305

adding dynamism to model, 304
essential elements, 304
purpose, 303

Objectionary, 307–308
Objective-C, 92
object-oriented programming

IDE tools, 240
Smalltalk, 240

objects, defined, 121
objects, thinking like

applying old thinking in new contexts, 67
areas of success of object thinking, 89
autonomy of objects, 81
vs. computer thinking, 12–18
culture of object thinking, 62
encapsulation, 84
focus on problem space, 16
vs. GUI-driven design, 110
humans as objects, 71
internalizing object perspective, 30
isomorphism, 18
prerequisites, 66–83

composability of objects, 78–81
primal status of objects, 66–71
replacing centralized control, 81–83
simulating problem domain, 71–78

role of metaphor in object thinking, 94
software development, 85–87
Universal Vending Machine (UVM), 48–50

objects, views of, 240–245
glyphs, 242–244
GUI design vs. object thinking, 240–241
relational database management systems

(RDBMSs), 242
separating from objects themselves, 243

objects, vs. modules, 121–123

operators, 284
outside world, assumed in model-view-controller

architectures, 272–273

P
Parnas, David Lorge, 163

decomposition
design decision hiding, 40
using design decisions for, 74

head of Strategic Defense Initiative (“Star
Wars”), 14

object thinking vs. computer thinking, 12–18
Pascal, program mode of thinking reinforced by,

67
patterns

architectural, 143
deriving from problem domain, 144
design vs. implementation, 144
Gang of Four (GoF), 143–144
languages, 143, 163
Martin Fowler vs. GoF, 144
reflecting solution space, 144
shortcuts for object thinkers, 144
software, inspired by Christopher Alexander, 18
as solution to recurring programming problem,

143
philosophy of implementation languages, 34–36
pipes-and-filters architecture, 265
Plato

describing decomposition, 72
finding divisions in problem space, 17

polymorphism, 140–141
postmodernism, 59. See also hermeneutics
primitives, 289–290
problem domains

deriving patterns from, 144
everything-is-an-object principle applied to, 70
finding divisions in, 17
simulating, 71–78
vs. solution spaces, 16, 97, 123

procedures as objects, 67
program thinking, 4
programming languages, 38–48

bias toward rationalism, 25

object programming (in Smalltalk)

331

C++
developed by Bjarne Stroustrup, 41–42
focus on computer, 42

differences among, 45
implementation languages

philosophy, 34–36
Smalltalk, 98
Visual Basic, 98

Java
defining objects according to traditional

thinking, 15
as imitation of Smalltalk, 154

Objective-C, 92
reasons for selecting, 33–36

invalid, 33–34
valid, 34–36

representing virtual computers, 15
shaped by philosophical context, 46
SIMULA, 38–41

focus on problem description, 40
objectives, 39

Smalltalk, 43–45, 154, 240
described by Alan Kay, 43–45
designed by Alan Kay, 37
IDE tools, 240

Squeak (reinvention of Smalltalk), 37
support for dynamic binding, 146
visual, 244–245

programs
COBOL

vs. object orientation, 9
programs as objects, 4

size of, and object thinking, 9
projects, object, metrics for, 10–11
Prolog, 15
protocols, 129, 227–232

Q–R
quality, software, principles of, 83–87
rationalism. See formalism
refactoring, 80, 204

agents, 107
airplane objects, 22–23
delegation arising from, 214
extreme programming compared to playing

with Lego bricks, 101

linked to object thinking, 22–23
Universal Vending Machine (UVM), 136–139

registrations, accepting for event notification, 126
relational databases

implications of employing, 45–47
preserving encapsulation of objects, 295
problems with mixing objects and, 294–295
management systems (RDBMSs), 242

relationships
dynamic, 273–280

events, 277–280
scripts, 274–277

as objects, 66
situational, 251
static, 251–273

collaborates-with relationships, 254
is-a-kind-of relationships, 251–253
situational relationships, 256–273

requirements
anthropomorphism, 221–222
applying object thinking to, 219
knowledge, 221–229

choosing appropriate piece of, 225–226
responsibilities, 222–224
ways for an object to gain, 225

resource allocation and scheduling framework,
objects forming core of, 301–302

responsibilities, 115–116, 123–127, 222–224
assigned to objects, 202–212

air traffic control example, 209–212
collaboration, 204
validation, 205–209

assuming, by objects, 213
attributes, 124
avoiding characteristic-specific, 216–217
coordinating objects, 127
data-driven vs. behavioral approach, 124
defined, 123
delegating, by objects, 213–214
distributing among objects, 215
vs. functions, 124
performing computational tasks, 125
stating, 215
supplying information, 124
updating objects, 126

reuse. See composability

reuse

332

routes, in object routing and tracking framework,
301

rules
creating as first-class objects, 286
normalization

entity models, 5
object models, 6
UML models, 5

recursiveness of, 285
self-evaluating, 282–286

behaviors, 285–286
business rules, 283
defined, 5
structure, 283–284

RUP (Rational Unified Process), 155

S
scenarios. See interaction diagrams
scripts, implementing with methods, 287–288
self-evaluating rules, 282–286

behaviors, 285–286
business rules, 283
defined, 5
object cubes, 285
operators, 284
structure, 283–284
variables, 284

semantic nets, 169–173
as brainstorming tools, 172
compared with static relationship models

(SRMs), 257
constructing, 189–192
Low-Income Mortgage Trust example, 170–173

semantics, relationship to hermeneutics, 52
simplicity, as value in agile development, 20
SIMULA, 38–41, 164

focus on problem description, 40
objectives, 39

situational relationships, 251, 256–273
architectures, 263–273

blackboard, 266
client/server, 266
hierarchical control, 263
model-view-controller, 264–273
pipes-and-filters, 265

collective memory maps, 259–263

domain-level vs. enterprise-level, 262
rules for construction, 262

static relationship models (SRMs), 256–259
Smalltalk, 20, 43–45, 101, 154, 240

challenged by C++, 29
class libraries, 98
computer efficiency subordinate to other goals,

44
demise of, 29
described by Alan Kay, 43–45
designed by Alan Kay, 37
developed in parallel with graphical user

interfaces, 110
development of, 28
emphasis on GUI building, 240

soccer ball model, 3–4, 122
vs. object thinking, 3
reinforcing program thinking, 4

software development
addressing difficulties, 85–87
as art, 24

manufacturing software developers, 24
mastering software development, 24

bias toward rationalism, 25
as cultural activity, 25–30
failure to remove humanity from, 24
limited concept of reuse, 97
as social activity, 26
trends in, 26
using rules, 86–87

software integrated circuits, 92
software patterns, 18
software quality, principles of, 83–87
software-as-theater metaphor, 108–111

re-creating old standards, 108
scripting, complexity of, 109

solution space vs. problem domain, 16, 97
Soviet Union, 112
Squeak (reinvention of Smalltalk), 37
standards, coding, 23
states

capturing information about UML, 245
change notifications, 236–240
charts, 181–182
constraints based on, 245
modeling, 278–280

routes, in object routing and tracking framework

333

static relation diagrams, 178–181
class hierarchy diagrams, 179
collective memory maps, 181
gestalt maps, 179

static relationship models (SRMs), 256–259
static relationships, 251–273. See also dynamic

relationships
collaborates-with, 254
is-a-kind-of, 251–253
situational, 256–273

architectures, 263–273
collective memory maps, 259–263
static relationship models, 256–259

stereotypes, 200, 209
stories (business requirements)

development driven by, 124
used in XP, 149

Stroustrup, Bjarne (developer of C++), 38, 41–42
structured analysis vs. object thinking, 249–250
superdistribution, 92
syncretism, 164–168

defined, 165
requirements imposed by object thinking,

166–167
systems, domains as, 249–250

T
taxonomies, 251–253

behavior as criterion for, 114
derived from classes and is-a-kind-of

relationships, 251
Linnaean, 76, 114, 133
of objects, 79
rules for, 253

Taylor, David A.
convergent engineering, 70
framework for business objects, 70

testing
development driven by, 124
of methods, 287, 288

thinking, as influenced by language, 7, 8
Timeless Way of Building, The, 144, 163
tools

automated (CASE tools), 152
object-modeling, 15

traditional software development, 108. See also

formalism

traditionalism. See formalism
traffic signals, as example of ant metaphor, 112
tuples, 267
types, 146
typing

as constrictive mechanism, 69
orthogonality to object thinking, 69

U
Unified Modeling Language (UML), 155

capturing state information, 245
contribution of Grady Booch, 27
defining objects according to traditional

thinking, 15
domain anthropology, 194
dominance attained by, 29
UML models vs. entity models, 5
UML models vs. object models, 6

Universal Vending Machine (UVM), 32, 48–50
accumulate money story, 94–95
addressing software development difficulties

with rules, 86–87
make selection story, 104–106
refactoring, 136–139

V
validation, 205–209
variables

class, 145
instance, 145
self-evaluating rules, 284

views
as means for interobject communication, 297
in model-view-controller architectures, 269
of objects, 240–245
RDBMSs, 242

virtual computers, 15
virtual persons, 16
Visual Basic

class libraries, 98
superseding C++, 29

Visual C++, as example of compile-link-test
environment, 101

visual programming environments, 101
Visual Studio, as example of visual programming

environment, 101

Visual Studio, as example of visual programming environment

334

vocabularies, specialized, 117–150
auxiliary concepts, 147–150

applications, 149
business process reengineering, 149
business requirements (stories), 149
domains, 147–149

differentiating between object and traditional
software concepts, 117–120

essential terms, 121–129
interfaces, 129
messages, 128–129
objects, 121–122
responsibilities, 123–127. See also

responsibilities
extension terms, 130–144

classes, 130–136
collaboration, 130
components, 142
delegation, 139–140
encapsulation, 141–142
frameworks, 142–143
inheritance, 133–136
patterns, 143–144
polymorphism, 140–141

implementation terms, 145–147
dynamic (late) binding, 146–147
methods, 145
variables, 145

W
Western culture, influence of formalist

philosophy on, 51
whiteboard architecture, 267
Whorf-Sapir hypothesis

Hopi language, 7
influence of language on thinking, 7, 8

widgets
purpose for using in GUIs, 297
types of, 244–245

Winograd, Terry
complementing work of Robert L. Glass, 59
influenced by Martin Heidegger, 59

Wirfs-Brock, Rebecca
collaboration graphs, 254
contracts, 234
CRC cards, 173, 234

X–Y
XP (extreme programming). See extreme

programming (XP)
Yourdon, Edward, 75–76

structured development popularized by, 76
using objects to integrate modules, 76

vocabularies, specialized

About the Author
Currently Dr. David West is a professor in the
School of Business at New Mexico Highlands
University, where he is developing an object-based
curriculum in software architectures, business
engineering, and management information systems.
He also teaches at the University of New Mexico,
where he is engaged in developing a software
development track for students in graduate and
undergraduate computer science.

Prior to joining the faculty at NMHU, he was
an associate professor in the Graduate Programs
in Software at the University of St. Thomas and a
consultant/trainer to several Fortune 500 companies. He has taught courses in
object-oriented development ranging from three-hour introductory sessions for
managers to multiday technical seminars for professional developers, as well as
semester-long courses at both the graduate and the undergraduate level.

He founded and served as the director of the Object Lab at the University
of St. Thomas. The Object Lab was a cooperative effort with local corporations
dedicated to researching and promoting object technology.

He was a cofounder of the Object Technology User Group (the original,
not the Rational-sponsored group), the first editor of its monthly newsletter,
and the principal organizer and chair of two regional conferences sponsored
by OTUG.

Digitalk’s Methods (the first incarnation of Smalltalk for the personal com-
puter, later named Smalltalk/V) was his first object development environment,
used to construct an “automated cultural informant,” a teaching tool for cultural
anthropologists learning ethnographic fieldwork techniques. His object experi-
ence is complemented by more than 20 years of software development work,
ranging from assembly-language programmer to executive management.

His undergraduate education at Macalester College (oriental philosophy
and East Asian history) was capped with an MS in computer science (artificial
intelligence) and an MA in cultural anthropology followed by a PhD in cogni-
tive anthropology. All the graduate degrees were earned at the University of
Wisconsin at Madison.

	Cover
	Copyright page

	Table of Contents
	Acknowledgments
	Preface
	A Different (and Possibly Controversial) Kind of Software Book
	Paths and Destinations
	Who Should Read This Book
	How This Book Is Organized

	Introduction
	Curiosities
	The “People Issue”
	The Need for Better Developers
	Producing Better Developers

	Object Thinking
	XP and Object Thinking

	Chapter 3: From Philosophy to Culture
	Four Presuppositions
	One: Everything is an object.
	Two: Simulation of a problem domain drives object discovery and definition.
	Three: Objects must be composable.
	Four: Distributed cooperation and communication must replace hierarchical centralized control as an organizational paradigm.

	Object Principles—Software Principles
	Cooperating Cultures

	Index
	A
	B, C
	D
	E, F
	G, H
	I, J, K, L, M
	N, O
	P
	Q, R
	S
	T, U, V
	W, X, Y

	About the Author

